
Supplemental material to Spatio-temporal disease risk

estimation using clustering-based adjacency modelling

1 Introduction

This supplemental material accompanies the paper entitled "Spatio-temporal disease risk estimation using

clustering-based adjacency modelling" and has the following sections. Section 2 shows maps of the simulated

cluster structures for each time period under Case 2 of the simulation study in the main paper. Section 3

performs a sensitivity analysis assessing the robustness of our methodology to changing the prior distribution

for the spatial random effects variance parameter τ2
t . In Section 4 we test the performance of the proposed

models under a set of model-free scenarios, whereby the risk surface is assumed to be piecewise constant and

not based on a set of spatially correlated random effects. Section 5 provides the computational time for the

analysis of the motivating data under each model. Section 6 displays the estimated spatio-temporal risk

patterns from 2011 to 2017 under the proposed cluster models ST-A* and ST-B* for the Glasgow respiratory

disease data. Finally, the posterior distribution of W̃WW t for model ST-B* in the Glasgow respiratory disease

study is shown in Section 7.

2 Simulated cluster structures for each time period under Case 2

Figure S1 presents maps of the simulated cluster structures for each time period under Case 2 (time-varying

clusters) of the simulation study in the main paper, where high-risk, medium-risk and low-risk clusters are

respectively shaded in black, gray and white. The figure shows that the cluster structure evolves slowly over

time, which is realistic when studying a chronic rather than an infectious disease as is the case in the

motivating study.
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Figure S1: Maps of the simulated cluster structures for each time period under Case 2 of the simulation study in
the main paper. High-risk, medium-risk and low-risk clusters are respectively shaded in black, gray and white.

3 Sensitivity analysis to changing the prior distribution for τ2
t

In the main paper we use an Inverse-Gamma(1,0.01) prior for the spatial random effects variance τ2
t in the

proposed models. To assess the impact of this prior for τ2
t on model performance, we re-run part of the
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simulation study by fitting the proposed clustering models separately with both Inverse-Gamma(0.001,0.001)

and Inverse-Gamma(0.5,0.0005) priors. Specifically, one hundred simulated data sets are generated as

described in Section 4 of the main paper, where we consider Z = 1,0.5,0 and both Cases 1 (static clusters) and

2 (time-varying clusters). In generating the data we fix ρs = ρst = 0.9, and use the expected number of disease

cases from the motivating data (i.e., SF = 1). The proposed models ST-A, ST-B, ST-A* and ST-B* are

respectively applied to the data using the three different choices of prior Inverse-Gamma distribution for τ2
t ,

and the results are summarised in Table S1.

The results show that changing the hyperparameters of the Inverse-Gamma prior for τ2
t does not seem to

have any substantial effect on the ability of the proposed cluster models to estimate disease risk or identify the

correct cluster structure, as the differences in RMSE, 95% coverage probabilities and ARI values are very

minimal when the prior varies. When the clusters are temporally constant (Case 1) ST-A and ST-A* generally

produce lower RMSE values and higher ARI values (very close to one) than model ST-B and ST-B*, excepting

the scenario when Z = 0.5 and Inverse-Gamma(0.001,0.001) is used. When the clusters evolve over time

(Case 2) ST-B and ST-B* perform better than ST-A and ST-A*. When there are no clusters in disease risk

(Z = 0), model ST-A and ST-A* produce lower RMSE values than ST-B and ST-B* regardless of the choice of

the prior and ST-A is the best of the four in terms of cluster identification, with a median ARI of 1. In addition,

estimating (ρs,ρst ) (ST-A*, ST-B*) rather than fixing them at 0.99 (ST-A, ST-B) produces better results

overall in terms of both risk estimation and cluster identification in almost all scenarios. These conclusions are

consistent with those provided in the simulation study in the main paper. Therefore, our methodology appears

to be robust to the choice of the hyperparameters of the prior Inverse-Gamma distribution for τ2
t .
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Table S1: Median values of the RMSE, 95% credible interval coverages of the risk estimates and adjusted Rand
Index (ARI) for each model and scenario.

Performance metric Cluster case Z Inverse-Gamma (IG) prior
Model

ST-A ST-A* ST-B ST-B*

RMSE Case 1 1 IG(1,0.01) 0.088 0.070 0.090 0.075
1 IG(0.001,0.001) 0.088 0.067 0.090 0.074
1 IG(0.5,0.0005) 0.088 0.066 0.090 0.072
0.5 IG(1,0.01) 0.074 0.059 0.098 0.095
0.5 IG(0.001,0.001) 0.100 0.057 0.099 0.095
0.5 IG(0.5,0.0005) 0.073 0.056 0.099 0.095

Case 2 1 IG(1,0.01) 0.132 0.128 0.090 0.076
1 IG(0.001,0.001) 0.132 0.126 0.091 0.075
1 IG(0.5,0.0005) 0.132 0.127 0.090 0.076
0.5 IG(1,0.01) 0.115 0.111 0.102 0.101
0.5 IG(0.001,0.001) 0.115 0.111 0.099 0.102
0.5 IG(0.5,0.0005) 0.115 0.110 0.102 0.101

- - 0 IG(1,0.01) 0.024 0.034 0.082 0.071
0 IG(0.001,0.001) 0.023 0.034 0.070 0.071
0 IG(0.5,0.0005) 0.023 0.033 0.069 0.072

Coverage probability Case 1 1 IG(1,0.01) 0.975 0.973 0.968 0.954
1 IG(0.001,0.001) 0.976 0.958 0.970 0.936
1 IG(0.5,0.0005) 0.976 0.942 0.969 0.919
0.5 IG(1,0.01) 0.968 0.974 0.927 0.922
0.5 IG(0.001,0.001) 0.939 0.958 0.927 0.893
0.5 IG(0.5,0.0005) 0.969 0.946 0.926 0.876

Case 2 1 IG(1,0.01) 0.932 0.942 0.964 0.969
1 IG(0.001,0.001) 0.933 0.942 0.963 0.952
1 IG(0.5,0.0005) 0.934 0.942 0.964 0.934
0.5 IG(1,0.01) 0.930 0.928 0.901 0.887
0.5 IG(0.001,0.001) 0.930 0.930 0.904 0.845
0.5 IG(0.5,0.0005) 0.931 0.931 0.899 0.817

- - 0 IG(1,0.01) 0.989 0.994 0.703 0.911
0 IG(0.001,0.001) 0.961 0.978 0.720 0.843
0 IG(0.5,0.0005) 0.925 0.955 0.698 0.803

Adjusted Rand Index (ARI) Case 1 1 IG(1,0.01) 1 1 0.986 0.976
1 IG(0.001,0.001) 1 1 0.986 0.976
1 IG(0.5,0.0005) 1 1 0.985 0.975
0.5 IG(1,0.01) 0.995 1 0.851 0.846
0.5 IG(0.001,0.001) 0.541 1 0.855 0.841
0.5 IG(0.5,0.0005) 0.994 1 0.847 0.846

Case 2 1 IG(1,0.01) 0.367 0.386 0.987 0.987
1 IG(0.001,0.001) 0.347 0.384 0.987 0.987
1 IG(0.5,0.0005) 0.367 0.384 0.987 0.987
0.5 IG(1,0.01) 0 0.390 0.671 0.707
0.5 IG(0.001,0.001) 0 0.388 0.733 0.687
0.5 IG(0.5,0.0005) 0 0.389 0.628 0.667

- - 0 IG(1,0.01) 1 0 0 0
0 IG(0.001,0.001) 1 0 0 0
0 IG(0.5,0.0005) 1 0 0 0
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4 Summary of model performance under the model-free scenarios

In this section we assess the performance of the proposed clustering models under a set of model-free

scenarios. In these scenarios disease risks for areas with high, medium and low risk levels are respectively

fixed at {exp(Z),1,exp(−Z)}, rather than being generated by simulating spatial random effects using a

multivariate Gaussian distribution with a Leroux CAR covariance structure and a piecewise constant mean as

described in Section 4 of the main paper. For this additional study the expected counts {Eit} are taken from the

motivating study (SF = 1), and the observed disease counts {Yit} are then generated from a Poisson

distribution with mean EitRit . One hundred simulated data sets are generated for each value of Z = 1,0.5 under

each of Cases 1 and 2. The five models ST-A, ST-B, ST-A*, ST-B* and ST-N are applied to each data set, and

the results are displayed in Table S2. The performance of each model under the model-free scenarios is similar

to that displayed in the simulation study in the main paper. ST-N performs poorly in terms of risk estimation

compared to the clustering models in the presence of clusters. ST-A and ST-A* have lower RMSE and higher

ARI values than model ST-B and ST-B* when the simulated clusters are constant over time, but ST-B and

ST-B* perform better when the clusters evolve over time. Additionally, estimating (ρs,ρst ) (ST-A*, ST-B*)

rather than fixing them at 0.99 (ST-A, ST-B) produces more accurate risk estimates and cluster structures in

almost all scenarios.



6

Table S2: Median values of the RMSE, 95% credible interval coverages of the risk estimates and adjusted Rand
Index (ARI) for each model and model-free scenario.

Performance metric Cluster case Z
Model

ST-A ST-A* ST-B ST-B* ST-N

RMSE Case 1 1 0.088 0.065 0.091 0.072 1.202
0.5 0.068 0.057 0.097 0.092 0.118

Case 2 1 0.132 0.129 0.088 0.070 0.887
0.5 0.115 0.111 0.097 0.097 0.113

Coverage probability Case 1 1 0.981 0.980 0.971 0.962 0.832
0.5 0.969 0.980 0.931 0.934 0.949

Case 2 1 0.933 0.942 0.964 0.975 0.809
0.5 0.934 0.928 0.909 0.906 0.949

Adjusted Rand Index (ARI) Case 1 1 1 1 0.988 0.975 - -
0.5 0.982 1 0.857 0.868 - -

Case 2 1 0.359 0.402 0.987 0.987 - -
0.5 0 0.412 0.775 0.776 - -

5 Computational time required to fit each model

Table S3 displays the time taken to fit each of the five models to the motivating Greater Glasgow and Clyde

Health Board respiratory disease data. The run times relate to a single Markov chain containing 100 000

samples with a burn-in period of 80 000, which is then thinned by 10. All models are run on an HP computer

with an Intel Core i7-7700 CPU 3.60 GHz processor and 16GB of RAM. The table shows that model ST-N is

the fastest of the five models, which is because it doesn’t estimate the neighbourhood matrix within the model

as the other models do. However, the clustering models only have to be fitted once to the data to estimate the

cluster structure. In contrast, if model ST-N was fitted separately with each candidate cluster structure

generated in stage one of our approach, and then the best structure was chosen via a model comparison metric,

then it would have to be fitted around 70 times. Thus using model ST-N in this fashion would be much

computationally slower than using any of the cluster models proposed here. When comparing the speed of the

clustering models the table shows that models ST-B and ST-B* are slower than ST-A and ST-A*, which is

because they need to estimate a separate neighbourhood matrix for each time period. Additionally, models
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ST-A* and ST-B* that estimate the spatial dependence parameters (ρs,ρst ) from the data are naturally slower

than models ST-A and ST-B that treat these parameters as fixed.

Table S3: Comparison of the computational time required to apply each model to the motivating data.

Model Inference Elapsed Time
ST-A MCMC (with C++) 826.31s
ST-A* MCMC (with C++) 866.00s
ST-B MCMC (with C++) 1 358.05s
ST-B* MCMC (with C++) 2 345.14s
ST-N MCMC (with C++) 169.52s

6 Temporal evolution in the spatial risk surfaces

The estimated spatio-temporal variation in disease risk is displayed in Figures S2 and S3 for models ST-A*

and ST-B* respectively, where the former assumes a constant cluster structure over time while the latter allows

it to vary from year to year. As models ST-A* and ST-B* were shown in the main paper to represent the data

better than models ST-A and ST-B in terms of DIC, the results for the former are shown here.
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Figure S2: Maps of the estimated disease risks (posterior median) in Greater Glasgow over 2011-2017 from
model ST-A*. The estimated clusters (discontinuities), which are determined using the posterior mode of W̃WW ,
remain fixed over time and are highlighted using dots.
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Figure S3: Maps of the estimated disease risks (posterior median) in Greater Glasgow over 2011-2017 from
model ST-B*. The estimated clusters (discontinuities), which are determined using the posterior mode of W̃WW t ,
evolve over time and are highlighted using dots.
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7 Summary of the posterior distribution of W̃WW t for model ST-B*

Figure S4 summarises the posterior distribution of W̃WW t for ST-B* in the motivating study for 2011, 2014 and

2017, the first, middle and last years of the study period. The figure shows that the no cluster structure (i.e.,

k = 1) is not supported by the data, with a posterior probability of zero for each time period. It also shows that

the posterior distribution is mainly centered on the candidate cluster structures with the number of cluster

levels (risk levels) varying between 4 and 6 clusters depending on the year.
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Figure S4: Summary of the posterior distribution of W̃WW t over 10 Markov chains for 2011, 2014 and 2017 for
model ST-B*.


