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(I) High-order topology characterization via crystalline symmetry  

In this part, we present the details of symmetry representations at the high 

symmetric points (HSPs) in the Brillouin zone (BZ), which are utilized to characterize 

the higher-order topology. It is known that the topological crystalline index can be 

expressed by the full set of the C3 eigenvalues at the high-symmetry points (HSPs) [1]. 

For an HSP denoted by the symbol Π , the 𝐶𝐶3 eigenvalues can only be Π𝑛𝑛 =

𝑒𝑒𝑖𝑖2𝜋𝜋(𝑛𝑛−1)/3 with 𝑛𝑛 = 1,2,3. Here, the HSPs include the Γ, 𝐾𝐾 and 𝐾𝐾′ points. The full 

set of 𝐶𝐶3 eigenvalues at the HSPs are redundant due to the time-reversal symmetry 

and the conservation of the number of bands below the band gap. The minimal set of 

indices that describe the band topology is given by  

[𝐾𝐾]𝑛𝑛 = #𝐾𝐾𝑛𝑛 − #Γ𝑛𝑛                      (1) 

where #𝐾𝐾𝑛𝑛(#Γ𝑛𝑛)  is the number of bands below the band gap with symmetry 

eigenvalue 𝐾𝐾𝑛𝑛(Γ𝑛𝑛) at the 𝐾𝐾(Γ) points. In this scheme, the point Γ  is taken as the 

reference point to get rid of the redundance. For the trivial atomic insulator (i.e., the 

band gap formed by uncoupled atoms), all the HSPs have exactly the same symmetry 

eigenvalues. Therefore, the trivial atomic insulators have [Π]𝑛𝑛  for all the HSP. In 

contrast, any nonzero [Π]𝑛𝑛  indicates a topological band gap that is adiabatically 

disconnected from the trivial atomic insulator.  

In our cases, the topological indices can be written in a compact form as 𝜒𝜒 =

([𝐾𝐾1], [𝐾𝐾2]). To obtain the 𝐶𝐶3 eigenvalues at 𝐾𝐾(Γ) points, we display the phase field 

patterns of various breathing kagome PhCs in Fig. S1. It is evident that the 𝐶𝐶3 

eigenvalues at 𝐾𝐾(Γ) points for BK1 and BK2 are 1, indicating that both BK1 and BK2 

are trivial phases. For BK3 (BK4), the 𝐶𝐶3 eigenvalue at Γ point is 1(1), while at 𝐾𝐾 

point is 𝑒𝑒
𝑖𝑖2𝜋𝜋
3  (𝑒𝑒

𝑖𝑖4𝜋𝜋
3  ), indicating that both BK3 and BK4 are nontrivial phases.  



 

Figure S1 The phase patterns of electric field at HSPs, which give C3 symmetry 

eigenvalues.  

 

Therefore, the topological indice is 𝜒𝜒1 = (0,0) for both BK1 and BK2,  𝜒𝜒2 =

(−1,1) for BK3, and 𝜒𝜒3 = (−1,0)  for BK4. We list the topological index of the 

breathing kagome PhCs in Table I. 

Table I The topological index of the breathing kagome PhCs. 

 

 

(II) Tight-binding models on triangular-shaped supercells 

For 2D photonic breathing kagome lattice, the higher-order bulk-edge 

correspondence does not tell the exact number of the HOTCMs. In fact, the number of 

HOTCMs depends on the geometric configurations of the corners. To this end, we 

construct tight-binding models on triangular-shaped supercells.  

We first study the tight-binding model with next-nearest neighbor hopping on the 

TA and TB, where the outer claddings are trivial PhCs. For convenience, we ignore the 

outer cladding structure and only consider the inner structure with nontrivial 



topological phase. As displayed in Fig. S2(a), the bulk (edge) of the TA consists of 

trimers (isolated dimers), while the corner (colored in red) consists of an isolated site. 

By solving the tight-binding Hamiltonian of the finite systems, we present the eigen 

energy solutions in Fig. S2(b). It is observed that three degenerate states (colored in red) 

are pinned to zero-energy level owing to the generalized chiral symmetry [2], namely 

type-I HOTCMs, while other three degenerate states (colored in blue) follow closely 

the spectrum of the topological edge states [3], namely type-II HOTCMs. Moreover, 

the type-I and type-II HOTCMs also make a difference on their eigen modes, as 

depicted in Fig. S2(c). In a similar way, we construct another tight-binding model on 

the TB. The geometric configuration of the corner of the TB in Fig. S2(d) shows that 

there exist two isolated sites, which may result in different HOTCMs. As expected, the 

eigen spectrum consists of two sets of type-I HOTCMs with different frequencies as 

well as a set of type-II HOTCMs in the band gap, which successfully explain our 

simulation results in Fig. 2(e).  

We then proceed to consider the tight-binding model on the TC and TD. As shown 

in Fig. S2(g), the corner area between the inner and outer structures of the TC only 

consists of one lattice site (colored in red). The eigen solution of the tight-binding of 

the Tc presented in Fig. S2(h) shows that there are six HOTCMs, including both type-I 

and type-II, of which the eigen modes are presented in Fig. S2(i). It is worthy to point 

out that the HOTCMs in the band gap owing to the outer structure with nontrivial 

topological phase are also observed. By exchanging the outer and inner structure of the 

TC, we have another tight-binding model TD, as depicted in Fig. S2(j). Note that the 

corner area between the inner and outer structures of TD consists of two lattice sites, 

and the eigen solutions as well as the eigen states of HOTCMs in Fig. S2(k) and S2(l) 

make a difference with other tight-binding modes.  

To sum up, our simulation results of the HOTCMs in various triangular-shaped 

supercell in Fig. 2 can be successfully explained via the tight-binding approach. 

 



 
Figure S2 (a,d,g,j) Schematic of the tight-binding models on triangular-shaped 

supercell formed by (a) the BK3 (inner) and the BK1 (outer), which belong to phase 

𝜒𝜒2 and 𝜒𝜒1, respectively, (d) the BK4 (inner) and the BK1 (outer), which belong to 

phase 𝜒𝜒3 and 𝜒𝜒1, respectively, (g) the BK3 (inner) and the BK4 (outer), which belong 

to phase 𝜒𝜒2  and 𝜒𝜒3 , respectively, (j) the BK4 (inner) and the BK3 (outer), which 

belong to phase 𝜒𝜒3 and 𝜒𝜒2, respectively. (b,e,h,k) Eigen solution of the tight-binding 

model on the (b) TA, (e) TB, (h) TC, (k) TD. Note that the different corner configurations 



are highlighted by colored dot. The corresponding eigen states of type-I and type-II 

HOTCMs in the tight-binding models are also displayed in order in (c,f,i,l).  

 

(III) Tight-binding models on hexagon-shaped supercells 

Following above, we continue to construct tight-binding models on hexagon-

shaped supercell as we have studied in Fig. 3. We first study the tight-binding model 

with next-nearest neighbor hopping on the HA, which the outer claddings are trivial 

PhCs. For convenience, we ignore the outer cladding structures and only consider the 

inner structures with nontrivial topological phase. As shown in Fig. S3(a), the supercell 

consists of trimers in the bulk and is featured by armchair-type boundary. Specifically, 

thanks to the symmetry constrain, there exist two types of corner geometric 

configuration, one consisting of an isolated site and the other consisting of two isolated 

sites. The former is distributed in up-triangular array while the latter are distributed in 

down-triangular array. As a result, the number of HOTCMs shall be more than that in 

the triangular-shaped supercell [see Fig. S3(b) and 3(c)]. It is seen that there exists two 

HOTCMs localized at down-triangular distributed corners with higher energy, while 

three HOTCMs localized at up-triangular distributed corners. By inspecting their eigen 

states in the tight-binding model of the HA in Fig.S3(c), we find that there is a 

fundamental difference between type-I and type-II HOTCMs, which originate from 

nearest- and next-nearest- neighboring coupling, respectively. 

In a similar way, we proceed to study the tight-binding model on the HB, as 

depicted in Fig. S3(d). It is seen that the supercell consists of trimers in the bulk and is 

featured by armchair-type boundary. Although there still exist two corner geometric 

configurations (one isolated site and two isolated sites), the one isolated site corners are 

inside the supercell, whereas the two isolated site corners are outside the supercell, 

leading to distinct energy spectrum [see Fig. S3(e)]. By inspecting the eigen states of 

the HOTCMs in Fig. S3(f), we find that there exist two type-I and type-II HOTCMs.  

In summary, the tight-binding models on hexagon-shaped supercells give the main 

features of HOTCMs in Fig. 3, which explain the origin of the HOTCMs. 
 



 
Figure S3 (a,d) Schematic of the tight-binding models on hexagon-shaped supercell 

formed by (a) the BK3 (inner) and the BK1 (outer), which belong to phase 𝜒𝜒2 and 𝜒𝜒1, 

respectively, (d) the BK3 (inner) and the BK4 (outer), which belong to phase 𝜒𝜒2 and 

𝜒𝜒3, respectively. (b,e) Eigen solutions of the tight-binding model on the (b) HA and (e) 

HB. Note that the corner states are highlighted by colored dot. The corresponding field 

patterns of type- I and type-II HOTCMs are also displayed in order in (c,f).   

 

(IV) The analysis on the polygon structure with multiple configurations of 

corners 

To verify the rainbow trapping effect, we propose a polygon structure where inner 

and outer PhCs belong to distinct topological phases in the maintext. Such a structure 

containing seven corners with intersection angles of 60°, 120°, 150°  and 240° . 

Specifically, we have demonstrated that those corners with intersection angles of 60° 

and 120°, labeled as C1, C2, C3 and C4, can support HOTCMs in Figs. 2 and 3. Here 

we further discuss the other three corners by calculating their eigen solutions.  

To check whether HOTCMs survive in the corner with intersection angles of 150°, 



we construct a regular dodecagon-shaped supercell, where the BK3 is surrounded by 

the BK1 [see the inset of Fig.S4 (a)]. From the eigen spectrum depicted in Fig. 4(a), it 

is evident that there is no HOTCMs except the bulk and edge states, indicating that the 

corner with intersection angle of 150° does not support the HOTCM. In addition, we 

also design a rhombus-shaped structure that containing corners with 240° and 300°, 

where BK1 is embedded in BK3 [see the inset of Fig. S4(b)]. By inspecting the eigen 

spectrum and corresponding eigen modes in Fig. S4, we find that there is no HOTCMs 

emerging in the corners with 240° except a type-I HOTCM localized at the corner 

with 300° [see the field pattern of HOTCM in the inset of Fig. S4(b)]. Therefore, we 

theoretically demonstrate that only the intersection angles of 60° and 120°, labeled 

as C1, C2, C3, and C4 in the polygon structure, can support HOTCMs. 

 

 

Figure S4 Eigen spectrum of (a) dodecagon-shaped supercell consisting of the BK1 

and the BK3. Inset: schematic of dodecagon-shaped supercell. (b) Rhombus-shaped 

structure supercell consists of the BK1 and the BK3. Inset: schematic of rhombus-

shaped structure and the eigen mode of HOTCMs localized at the corner with 

intersection angle of 60°.  

 

V. Rainbow trapping with well-localized HOTCMs 

In the main text, we theoretically and experimentally demonstrate the rainbow 

trapping effect in a well-designed polygon-shaped structure. However, due to the low 



primitivity of the dielectric rods ( 4.8ε = ) and narrow band gap, the excited HOTCMs 

are not localized well. To this end, we improve the rainbow trapping effect by 

optimizing the PhCs with higher primitivity of the dielectric rods (𝜀𝜀 = 7 ). Other 

parameters of the optimal PhCs are listed as follows: the radius of the dielectric rod 

𝑟𝑟 = 0.15𝑎𝑎 and the lattice constant 𝑎𝑎 = 10𝑚𝑚𝑚𝑚.  

As shown in Fig. S5(a), the polygon-shaped structure R1 consists of the BK3 and 

the BK1, where the BK3 is embedded in the BK1. Note that those corners supported 

HOTCMs are labeled. The whole structure is surrounded by perfect match layers 

(PMLs) to avoid unwanted scattering. The eigen spectrum displayed in the left panel of 

Fig. S5(b) shows that there exist some modes in the band gap, indicating well-localized 

HOTCMs. To excite the HOTCMs, we place the point source (indicated by the pentacle) 

around the C1 as well as the detecting probes around C1, C2, C3, and C4, respectively. 

By scanning the frequency of point source from 8GHz to 10 GHz with step of 0.05GHz, 

we obtain the transmission spectra for C1, C2, C3, and C4, as depicted in the right panel 

of Fig. S5(b). It is seen that the transmission for C4 is very weak, which is attributed to 

the nonlocal eigen mode. To check whether the rainbow trapping still survives, we also 

present the excited electric field profiles of HOTCMs in Fig. S5(c). As expected, 

HOTCMs are excited in anticlockwise corner order, i.e., C1→C2→C3→C4→C1, 

indicating the rainbow trapping effect. Moreover, the HOTCMs look more localized in 

comparison to that in Fig. 4(d) with low permittivity of the dielectric rods.  



 
Figure S5 (a) Schematic of the polygon structure R1 made of the BK3 (inner) and BK1 

(outer). Four corners are labeled as C1, C2, C3 and C4. A point source is placed around 

C4. The adopted boundary is the perfect match layer. (b) Left panel: the eigen spectrum 

of the R2. Right panel: The transmission spectra for C1 (blue), C2 (orange), C3 (green) 

and C4 (purple). (c) The excited field patterns of five HOTCMs in anticlockwise corner 

order with raising frequency, i.e., C4→C1→C2→C3→C4. The white lines refer to the 

boundary of the polygon. 

 

In addition, we study another polygon-shaped structure R2, as depicted in Fig. 

S6(a). The other parameters are same as that in Fig. S5(a). To see whether the rainbow 

trapping effect persists, we display the eigen spectrum of the R2 in the left panel of Fig. 

S6(b). At this time, the HOTCMs with maximal and minimal frequencies are localized 

at C1 while the other three are localized at C2, C3, and C4 in a lowering frequency 

order. We measure transmission spectra of C1, C2, C3, and C4 by placing a point source 

around C3 [see the inset in Fig. S6(a)] and the detecting probes at C1, C2, C3, and C4, 

respectively. The measured spectra of HOTCMs are displayed in the right panel of Fig. 

S6(b). It is seen that the HOTCMs are excited in a clockwise corner order, i.e., C1→

C4→C3→C2→C1, indicating the rainbow trapping effect in R2. Specifically, the 

HOTCMs look more localized in comparison to that in Fig. 5(d) with low permittivity 



of the dielectric rods. 

 
Figure S6 (a) Schematic of the polygon structure R2 made of the BK4 (inner) and the 

BK1 (outer). Four corners are labeled as C1, C2, C3, and C4. A point source is placed 

around C4. The adopted boundary is the perfect match layer. (b) Left panel: the eigen 

spectrum of the R2. Right panel: The transmission spectra for C1 (blue), C2 (orange), 

C3 (green) and C4 (purple). (c) The excited field patterns of five HOTCMs in clockwise 

corner order with raising frequency, i.e., C1→C4→C3→C2→C1. The white lines refer 

to the boundary of the polygon. 
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