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Introduction

*» OPT++ is an open source toolkit for general
nonlinear optimization problems

% Original development started in 1992 at Sandia
National Labs/CA

“* Major contributors
Juan Meza, LBNL
Ricardo Oliva, LBNL
Patty Hough, SNL/CA
Pam Williams, SNL/CA
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OPT++ USERS

Total = 338

Other (Country not identified) = 120 S
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Application targets

“* Predict properties of
nanostructures and/or
design nanostructures
with desired propertiesr

“ Create secondary
structures: obtain
predictions of a-helices
and [-sheets.

% Configuration of T174
generated using

V(@//; os}:},}}:g.‘/:’/'graph|cs.cs.ucdaws.edul~okreylos/ResDelerotoShopllndex.html r::>| .
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General Optimization Problem

min f (x), Objective function

xeR”

s.t. h(x)=0, Equality constraints
g(x)=0 Inequality constraints

L= f(x)+y h(x)—w g(x)
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Classes of Optimization Problems

*»» Unconstrained optimization

*» Bound constrained optimization
= Only upper and lower bounds
= Sometimes called “box” constraints

“* General nonlinearly constrained optimization
= Equality and inequality constraints
= Usually nonlinear

**» Some special case classes (not currently handled in
OPT++)
= Linear programming (function and constraints linear)

= Quadratic programming (quadratic function, linear
constraints)
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OPT ++ Philosophy

** Problem should be defined in terms the user
understands
= Do | have second derivatives available? and not
= [s my objective function twice continuously differentiable?

% Solution methods should be easily interchangeable
= Once the problem is setup, methods should be easy to
interchange so that the user can compare algorithms
+» Common components of algorithms should be
iInterchangeable

= Algorithm developers should be able to re-use common
components from other algorithms, for example line
searches, step computations, etc.
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Classes of Problems in OPT++

“* Four major classes of problems available

= NLFO(ndim, fcn, init_fcn, constraint)

« Basic nonlinear function, no derivative information
available

= NLF1(ndim, fcn, init_fcn, constraint)
* Nonlinear function, first derivative information available
= FDNLF1(ndim, fcn, init_fcn, constraint)

* Nonlinear function, first derivative information
approximated

= NLF2(ndim, fcn, init_fcn, constraint)

* Nonlinear function, first and second derivative
information available
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Classes of Solvers in OPT++

*» Direct search
= No derivative information required
% Conjugate Gradient

= Derivative information may be available but doesn’t use
quadratic information

“* Newton-type methods
= Algorithm attempts to use/approximate quadratic information
= Newton

Finite-Difference Newton

Quasi-Newton
NIPS
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Quick tour of some of the algorithms
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Pattern search

¢ Can handle noisy
functions

*+ Do not require
derivative information

¢ Inherently parallel

¢ Convergence can be
painfully slow
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Conjugate Gradient Methods

*» Two major classes

* Standard nonlinear conjugate gradient
= Two different types of line searches

“* Limited Memory BFGS

= Unconstrained version available
= Bound constrained version under development
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Newton-type Methods

noisy functions

-15F

| — \ | ¢ Fast convergence
/) properties
l i £ «» Good global
1 / convergence
[ ]/ | properties
osff | & < Inherently serial
. e % Difficulties with
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NIPS: Nonlinear Interior Point Solver

¢ Interior point method

“+ Based on Newton’s method for a particular system of
equations (perturbed KKT equations, slack variable
form)

% Can handle general nonlinear constraints
% Can handle strict feasibility

Vi (x)+Vh(x)y —Vg(x)w]
W—z
F(u)= h(x) =0

g(x)—s
ZSe — ue
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Constraints

)

" Office of

* Constraint types

BoundConstraint(numconstraints, lower, upper)
Linearlnequality(A, rhs, stdFlag)
NonLinearlnequality(nlprob, rhs, numconstraints, stdFlag)
LinearEquation(A, rhs)

NonLinearEquation(nlprob, rhs, numconstraints)

*» The whole shebang
= CompoundConstraint(constraints)
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Algorithm Choices Depend on Problem

NLFO FDNLF1 NLF1 NLF2
OptPDS X X X X
OptCG X X X
OptLBFGS X X X
OptQNewton X X X
OptBCQNewton X X X
OptFDNewton X X X
OptFDNIPS X X X
OptNewton X
OptBCNewton X
OptNIPS X
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Bare bones example: unconstrained
optimization

void init_rosen_x0(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {
int ndim = 2;
FDNLF1 nlp(ndim, rosen, init_rosen_x0);
nlp.initFcn();
OptQNewton objfcn(&nlp);
objfcn.setSearchStrategy(TrustRegion);
objfcn.setMaxFeval(200);
objfcn.setFenTol(1.e-4);
objfcn.optimize();
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Example 2: Constrained optimization

min (x, —x,)" +(1/9)(x, +x, —10)* Hx, — 5)°
S.I.

x| +x; +x; <48,

—4.5<x, <45,

_45<x, <45

-5.0<x,<5.0
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Constrained optimization: Step 1

w0

Defining the bound constraints: —4.5<x,<4.5,
—4.5<x,<4.5,
—-5.0<x,<5.0
int ndim = 3;

ColumnVector lower(ndim), upper(ndim);
lower << -4.5 << -45<<-50;

upper << 4.5<<4.5<<35.0;

Constraint bc = new BoundConstraint(ndim, lower, upper);
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Constrained optimization: Step 2

Defining the nonlinear inequality constraint:
X+ x5+ x5 <48
NLP* chs65 = new NLP(new NLF2(ndim, 1, ineq, init_hs65_x0));

Constraint nlegn = new NonLinearlnequality(chs65);

Collecting both constraints into one constraint object :

CompoundConstraint® constraints =
new CompoundConstraint(nlegn, bc);

’; ' Office of
/J Science
U.5. DEPARTMENT OF ENERGY

5th International Congress on Industrial and Applied Mathematics, Sydney, Australia, July 7-11, 2003



Constrained optimization: Step 3

Defining and initializing the nonlinear problem:

NLF2 nips(ndim, hs65, init_hs65_x0, constraints);

nips.initFcn();

Defining the Optimization object and optimizing it!

OptNIPS optobj(&nips);
optobj.optimize();
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Parallel Optimization
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Schnabel (1995) Identified Three Levels for
Introducing Parallelism Into Optimization

*» Parallelize evaluation of
function/gradient/constraints
= May or may not be easy to implement

*» Parallelize linear algebra
= Really only useful if the optimization
problem is large-scale
*» Parallelize optimization algorithm at a
high level

= Multiple function evaluations in parallel
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Trust Region + PDS

L)

>

Fast convergence
properties of Newton

)

051

method
ol | % Good global
convergence properties
/ of trust region approach
g * Inherent parallelism of
PDS
| | * Ability to handle noisy
functions
51 g W |
% 15 I 05 0 05 1
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Comparison of TRPDS with other

approaches
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Application: Protein Folding

void init_XO0(int ndim, ColumnVector& x);

void eval_energy(int ndim, const ColumnVector& x, double& fx, int&
result);

int main() {
PDB pdb(“t162.pdb"); // loads pdb file
int ndim = 3 * pdb.NumAtoms();
FDNLF1 nlp(ndim, eval_energy, init_X0);
nlp.initFcn();
OptLBFGS optobj(&nlp);
optobj.setMaxFeval(10000);
optobj.setFcnTol(1.e-6);
optobj.optimize();

}
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Energy Minimization Using LBFGS

“* N=13728 (4576 Atoms)
“* Energy Function: AMBER
% LBFGS with M=15

** 11656 iterations, 11887
function evaluations

“» Stop on ftolerance with
ftol=1e-6
“+ Each function eval: ~5sec

~

&), ez Protein T162 (from CASPS) ceced)
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Energy vs. LBFGS iterations
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Distribution of ||gradient|| by atom
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Protein T162 (from CASP5)

* Initial configuration
created using
ProteinShop (S.
Crivelli)

“* Energy minimization
computed using
OPT++/LBFGS

“ Final RMSD change:
3.9 (avg)

+» Total simulation took
approximately
32hours on a 1.7GHz
machine with 512
RAM
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Summary

*» OPT++ can handle many types of nonlinear
optimization problems

*» The toolkit can be used to compare the effectiveness
of several algorithms on the same problem easily

“* The user needs to provide only functions for the
objective function and the constraints

= |f additional information is available it can be easily
incorporated

*» The code is open source and available at either
= http://www.nersc.gov/~meza/projects/opt++
= http://csmr.ca.sandia.gov/opt++
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