
Design of experiments, space 

exploration, and numerical 

optimization using DAKOTA and 

OpenFOAM®

Online Training – Advanced session

February 2022

1



Copyright and disclaimer

This offering is not approved or endorsed by OpenCFD Limited, the producer of the 

OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trademarks.

© 2014-2022 Wolf Dynamics. 

All rights reserved. Unauthorized use, distribution or duplication is prohibited.

Contains proprietary and confidential information of Wolf Dynamics.

Wolf Dynamics makes no warranty, express or implied, about the completeness, accuracy, 

reliability, suitability, or usefulness of the information disclosed in this training material.  This 

training material is intended to provide general information only. Any reliance the final user 

place on this training material is therefore strictly at his/her own risk.  Under no 

circumstances and under no legal theory shall Wolf Dynamics be liable for any loss, damage 

or injury, arising directly or indirectly from the use or misuse of the information contained in 

this training material.

All trademarks are property of their owners.

Revision 1-2022

JG 2



On the training material

Before we begin

• This training is based on OpenFOAM 9 and DAKOTA 6.14 (and newer).

• In the USB key/downloaded files you will find all the training material (tutorials, slides, and lectures notes).

• You can extract the training material wherever you want. From now on, this directory will become:

• $TM 
(abbreviation of Training Material)

• To uncompress the tutorials go to the directory where you copied the training material ($TM) and then type in 

the terminal,

• $> tar –zxvf file_name.tar.gz

• In the case directory of every single tutorial, you will find a few scripts with the extension .sh, namely, 
run_all.sh, run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_all.sh 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM and DAKOTA commands.  

• If you are already comfortable with OpenFOAM and DAKOTA, run the cases automatically using these 

scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.
3



Conventions used

4

• Text in Courier new font indicates Linux commands that should be typed literally by the user 

in the terminal.

• Text in Courier new bold font indicates directories.

• Text in Courier new italic font indicates human readable files or ascii files.

• Text in Arial bold font indicates program elements such as variables, function names, classes, 

statements and so on.  It also indicates environment variables, and keywords. They also 

highlight important information.

• Text in Arial underline in blue font indicates URLs and email addresses.

• This icon          indicates a warning or a caution.

• This icon          indicates a tip, suggestion, or a general note.

• This icon          indicates a folder or directory.

• This icon          indicates a human readable file (ascii file).

• This icon          indicates that the figure is an animation (animated gif).

• These characters $> indicate that a Linux command should be typed literally by the user in the 

terminal.

The following typographical conventions are used in this training material



Conventions used

1 #include <iostream>

2 using namespace std;

3

4 // main() is where program execution begins.  It is the main function.

5 // Every program in c++ must have this main function declared

6

7 int main ()

8 {

9 cout << "Hello world";   //prints Hello world

10 return 0; //returns nothing

11 }

5

The following typographical conventions are used in this training material

• Large code listing, ascii files listing, and screen outputs can be written in a square box, as 

follows:

• To improve readability, the text might be colored.

• The font can be Courier new or Arial bold.

• And when required, the line number will be shown.



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

6



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

7



Introduction to optimization methods

In CFD,

• Who owns the mesh, owns the solution

In numerical optimization with CFD,

• Who owns the parameterization, owns the optimal solution

Therefore, meshing and scripting are of paramount importance.

No need to say that it is also important to understand the theory 

behind numerical optimization.

8



What is optimization?

Introduction to optimization methods

• In plain English, optimization is the act of obtaining the best result under given circumstances. 

• The ultimate goal is to minimize, maximize, equalize or zeroed an outcome, a process or a 

function, which we are going to call a quantity of interest or QOI.

• In order to optimize a QOI, we should be able to measure it quantitatively or qualitatively.

• Optimization, in its broadest sense, can be used to solve any real-life or engineering problem, 

such as,

• Finance, health, construction, operations, manufacturing, transportation, engineering 

design, sales, public services, mail, communication networks, energy distribution, delivery 

services, CFD and so on.

9



What is optimization?

Introduction to optimization methods

• If you can measure the QOI, you can optimize it. 

• And it does not matter how you measure the QOI.

• To find the optimal solution there are many methods available, in this training we re going to 

explore a few of them.

• And depending on your problem, finding that optimal solution might not be an easy task.

• There are also many tools to conduct optimization, we are going to use one them, namely, 

DAKOTA.

10



Introduction to optimization methods

Optimization and space exploration methods

11

• In this training we are going to focus our attention of numerical optimization and search 

methods.

• In CFD, optimality criteria methods are not used because we do not know the behavior of QOI  

a-priori, that is, we do not have an analytical function of the QOI



Introduction to optimization methods

Optimization and space exploration methods

12

• Design space exploration methods are used to explore and characterize the design space.

• These methods, do not converge to the optimal solution, they are only used to gather 

information.



Applications

Introduction to optimization methods

• The following applications from different disciplines indicate the wide scope of the subject: 

• Design of aircraft and aerospace structures for minimum weight.

• Reduce of fuel consumption in transportation.

• Design of civil engineering structures for minimum cost.

• Optimum design of mechanical components.

• Optimum design of electrical networks. 

• Shortest route taken by a salesperson visiting various cities during one tour.

• Optimal production planning, controlling, and scheduling. 

• Selection of a site for an industry.

• Planning of maintenance and replacement of equipment to reduce operating costs.

• Inventory control. 

• Allocation of resources or services among several activities to maximize the benefit.

• Controlling the waiting and idle times and queuing in production lines to reduce the costs. 

• Planning the best strategy to obtain maximum profit in the presence of a competitor.

• Analysis of statistical data and building empirical models from experimental results to obtain the most 

accurate representation of the social or physical phenomenon (big data).

• If you can measure it, you can optimize it.
13



Find                                  which                         

where      is an n-dimensional vector called the design vector,               is the objective 

function or QOI, and                and                are known as inequality and equality 

constraints, respectively.

Mathematical definition of an optimization problem

Subject to the following constraints (linear and non-linear)

minimizes

maximizes

equalizes

zeroed 

Introduction to optimization methods

• Mathematically speaking, an optimization problem can be formulated as follows,

Design vector

Quantity of interest

14



The curse of dimensionality

Introduction to optimization methods

• The biggest hurdle to overcome in numerical optimization is the design vector.

The higher the number of  design variables in a modelling 

problem, the more objective function measuring locations 

we need if  we are to build a reasonably accurate predictor. 

This guy is responsible for the 

curse of dimensionality

The curse of dimensionality…

15



Introduction to optimization methods

• During this training session we will 

introduce a few basic concepts using 

univariate and bivariate functions.

• The choice of using univariate and 

bivariate functions is to help visualize the 

various concepts.

• However, have in mind that in optimization 

the design space can be multivariate or n 

dimensional.

• In the slides to follow, the goal is to 

optimize a toy function or quantity of 

interest (QOI).

• This toy function or QOI can easily 

represent the output or trend of an actual 

application.

http://www.wolfdynamics.com/training/opt/ani1.gif

http://www.wolfdynamics.com/training/opt/image6.gif 16

http://www.wolfdynamics.com/training/opt/ani1.gif
http://www.wolfdynamics.com/training/opt/image6.gif


Unimodal vs. Multimodal function

Introduction to optimization methods

• Let us use these figures to introduce a few concepts.  

• A unimodal function contains one global minimum or maximum.

• A multimodal function contains many global and local minima/maxima.

Multimodal function – Many global and local 

minima/maxima
http://www.wolfdynamics.com/training/opt/ani1.gif

Unimodal function – One global minimum
http://www.wolfdynamics.com/training/opt/ani2.gif

Local maximum

Local minimum

Global minimum

17

http://www.wolfdynamics.com/training/opt/ani1.gif
http://www.wolfdynamics.com/training/opt/ani2.gif


Multimodal functions

Introduction to optimization methods

• The goal is to optimize this function or QOI. 

• Depending on our goal (local or global optimization), we should use a particular             

optimization method. 

• Also, depending on the starting point we might arrive to a global or local minimum/maximum.

Multimodal function – Global minimum
http://www.wolfdynamics.com/training/opt/ani1.gif

Multimodal function – Local minimum
http://www.wolfdynamics.com/training/opt/ani3.gif

18

http://www.wolfdynamics.com/training/opt/ani1.gif
http://www.wolfdynamics.com/training/opt/ani3.gif


Symmetry of functions

Introduction to optimization methods

• The goal is to optimize this function or quantity of interest. 

• The function           is symmetrical.  That is, we can minimize           or we can maximize - , 

the outcome will be the same.

• By the way, the function          represented on this figure, can easily represent the output or 

trend of an actual application.

Minimum of           is the same as the maximum of  -

-

Global minimum

Global maximum

19



Constrained multimodal function

Introduction to optimization methods

• The design space can be bounded or unbounded.

• We can optimize this function or QOI, subject to many linear and/or non-linear constraints 

(equalities and inequalities).

Constrained multimodal function – The shaded area represents the non-feasible region

Non-linear constraint

Linear constraint

20



Noisy functions

Smooth Noisy

Introduction to optimization methods

• In physical or computer experiments, the QOI often does not exhibit a smooth behavior.  

• Very often the response is noisy, which makes optimization very challenging.  

• Also, evaluating the objective function can be very expensive.  

• And if you need the gradients and hessians, things get even more expensive. 

21



Introduction to optimization methods

• In single-objective optimization we are interested in optimizing one objective function.

• The optimization problem can be bounded and constrained.

• The optimization method can converge to a local or global optimal value.

• The optimal value depends on the initial value.

Single-objective optimization

Multimodal function – Many global and local minima/maxima
http://www.wolfdynamics.com/training/opt/ani1.gif

Local maximum

Local minimum

Global minimum

22

http://www.wolfdynamics.com/training/opt/ani1.gif


Multi-objective optimization

Introduction to optimization methods

• In multi-objective optimization we are interested in optimizing more than one objective function 

or QOI simultaneously.

• The final goal is to find a representative set of optimal solutions (Pareto frontier or non-

dominated solutions), quantify the trade-offs in satisfying the different objectives, and/or finding a 

single solution that satisfies the subjective preferences of a human decision maker.

23



Multi-objective optimization

Introduction to optimization methods

• Each optimal solution in the objective function space can be mapped to the design space. 

• The functions to optimize can be constrained (linear and non-linear constraints).

• The design space can be bounded or unbounded.

Design space
http://www.wolfdynamics.com/training/opt/ani4.gif

Objective function space
http://www.wolfdynamics.com/training/opt/ani5.gif

24

http://www.wolfdynamics.com/training/opt/ani4.gif
http://www.wolfdynamics.com/training/opt/ani5.gif


Multi-objective optimization

Introduction to optimization methods

• Each optimal solution in the objective function space can be mapped to the design space. 

• The functions to optimize can be constrained (linear and non-linear constraints).

• The design space can be bounded or unbounded.

Design space
http://www.wolfdynamics.com/training/opt/ani4.gif

Objective function space
http://www.wolfdynamics.com/training/opt/ani5.gif

25

http://www.wolfdynamics.com/training/opt/ani4.gif
http://www.wolfdynamics.com/training/opt/ani5.gif


Surrogate based optimization (SBO)

Introduction to optimization methods

• When we do SBO, we use a surrogate model (also know as meta-model or response surface) to 

approximate an original high-fidelity model (e.g., expensive CFD simulations).

• The surrogate acts as data fit or mathematical model to the observations so that new results can 

be predicted without recurring to expensive simulations.

• Once the surrogate is built, we can use any kind of optimization or calibration method. 

• Evaluating the QOI at the surrogate level is inexpensive.  

• Working at the surrogate level is order of magnitudes faster than using high fidelity models.

• Surrogates can also be used with noisy and incomplete data.

• They can also be used for data mining and data analytics.

• In engineering design, surrogates can be used for initial screening and to provide information on 

the sensitivities of the data.

26



SBO workflow

Introduction to optimization methods

27



Surrogate model

Surrogate, meta-model, response surface, data-fit, you name it.Analytical function - Experiments 

Introduction to optimization methods

• Once the surrogate has been built, we can use any kind of optimization or calibration method. 

• The surrogate is constructed using a limited number of observations in the design space.

• As we have a mathematical model of the observations, evaluating the QOI at the surrogate level 

is inexpensive.  

28



Introduction to optimization methods

Design optimization vs. Design space exploration

Design optimization (DO) Design space exploration (DSE)

• Converging-Iterative process. • Diverging-Iterative process.

• DO aims at determining the optimum design. • DSE aims at searching and characterizing the design space.

• DO strategies have two distinct parts; formulate the 

problem and converge to the solution. 

• Once we know the design space, a better solution can 

then be found through DO.

• DO depends on a well-posed optimization problem 

formulation (starting point, gradients, tolerance, etc).

• Contrary to DO, in DSE we do not need a well 

formulated problem.

29



Introduction to optimization methods

Design optimization vs. Design space exploration

Surrogate-based optimization (SBO)

• It is a mix of DSE and DO (space exploration and converging-iterative process).

• SBO explores the design space from a limited number of observations (it can be used with high multi-dimensional design 

spaces).

• Then, SBO exploits and optimizes the design space by constructing a surrogate model (also known as meta-model, 

predictor model, or response surface).

• At the surrogate level, any optimization method can be used (gradient-based or derivative-free).  Working at the 

surrogate level is orders of magnitude faster than working at the high-fidelity level.

• SBO is well fitted to engineering design.  Especially during the conceptual and preliminary design phases.

Explore the design space Construct the surrogate Exploit and optimize at the surrogate level30



Design optimization vs. Design space exploration

Introduction to optimization methods

• The essential difference between design optimization (DO) and design 

exploration (DSE) is the method used for characterizing the outcome.

• In DO we use gradient-based or derivative-free methods to 

characterize the outcome.

• In DSE we simply explore the design space using a method that 

covers the design space at a reasonable cost.

31



Design optimization

Introduction to optimization methods

• Design optimization (DO) is a converging-iterative process.

• DO aims at determining the optimum design.

• DO strategies have two distinct parts; 

• Formulate the problem, 

• and converge to the solution. 

• In DO it is assumed that the problem can be formulated before the search and convergence 

begins. 

• DO depends on a well-posed optimization problem formulation.

• After defining the problem, we can proceed to the find the optimal solution in an iterative way by 

using an appropriate search algorithm.

• In DO, many of the search algorithms used require the information related to the starting point, 

step size, stopping criteria, population size, and so on.

32



Design optimization using a gradient-based method. 

Fletcher-Reeves method

• Gradient-based optimizers are best suited for efficient navigation to a local minimum in the 

vicinity of the initial point. 

• They are not intended to find global optima in nonconvex design spaces.  

Introduction to optimization methods

Design optimization

33



Design space exploration

Introduction to optimization methods

• Design space exploration (DSE) is diverging-converging-iterative process.

• DSE is based on the belief that the problem formulation evolves during the process of 

searching the design space.

• The main idea of design space exploration is to search the design space in a very efficient way 

at a minimal cost.

• Once this is known, a better solution can then be found through DO.

• Contrary to DO, in DSE we do not need a well formulated problem. 

• That is, we do not need to provide information related to the starting point, step size, stopping 

criteria, population size, and so on.

34



Design space exploration

Introduction to optimization methods

• The main idea of design space exploration is to search the design space in a very efficient way 

at a minimal cost.

• When we conduct design space exploration, we follow a systematic mathematical or statistical 

approach to acquire model behavior to the maximum extent.

• With design space exploration we can:

• Gain a deep statistical understanding of the problem.

• Explore a wide design space through intelligent sampling.

• Identify the most important influencing design variables.

• Create accurate mathematical models.

• Provide a set of starting points for design optimization.

35



Design space exploration

• LHS is a DACE type method (design and analysis of computer experiments).

• DACE methods are ideal for deterministic experiments (computer simulations) and design space 

exploration. In computer experiments we are interested in sampling the parameter space in a 

representative way with the minimum number of samples.

• The output can be used in a sensitivity analysis, uncertainty quantification, or building a 

surrogate (mathematical model).

Introduction to optimization methods

Space filling - Latin Hypercube Sampling (LHS)

LHS sampling Response surface constructed using DACE sampling
36



Design space exploration

Introduction to optimization methods

• Design space exploration studies can be conducted using multi-dimensional studies full 

factorial), and with computer experiments (e.g., DACE or design analysis of computer 

experiments).

• Multi-dimensional studies explore the effect of parametric changes within simulation models by 

computing response data sets at a selection of points in the parameter space, yielding one type 

of sensitivity analysis. 

• The selection of points is deterministic and structured, or user-specified.

• Classical design of experiments (DoE) methods and the more modern design and analysis 

of computer experiments (DACE) methods are both techniques which seek to extract as 

much trend data from a parameter space as possible using a limited number of sample points.

• In DACE, the sampling is stochastic and covers most of the design space (space filling 

experiments).

• A few DACE sampling techniques: orthogonal array sampling, Latin hypercube sampling, 

Quasi-Monte Carlo sampling.

37



Design space exploration

Introduction to optimization methods

DACE experimentDOE experiment

Multidimensional study
38



Introduction to optimization methods

What else can we do with all the data collected?

• When conducting DSE studies, we collect a lot data.

• This data can be  used to get a much better insight of the problem.

• We can analyze the data using machine learning, statistical learning, 

and exploratory data analysis techniques.

• We can also create bespoke visualizations and dashboards to 

communicate the data.

Design space exploration

39



Introduction to optimization methods

Data visualization, machine learning and statistical analysis

Boxplot Histogram

Scatter matrix plotScatter plot + regression

40



Introduction to optimization methods

Data visualization, machine learning and statistical analysis

Hexbin plot Regression plot – Paired plot

http://www.wolfdynamics.com/training/opt/image1.gif http://www.wolfdynamics.com/training/opt/image2.gif

41

http://www.wolfdynamics.com/training/opt/image1.gif
http://www.wolfdynamics.com/training/opt/image2.gif


Introduction to optimization methods

Data visualization, machine learning and statistical analysis

Interactive scatter plot Interactive dashboard with cross filtering of data

http://www.wolfdynamics.com/training/opt/image4.gif http://www.wolfdynamics.com/training/opt/image5.gif

42

http://www.wolfdynamics.com/training/opt/image4.gif
http://www.wolfdynamics.com/training/opt/image5.gif


Introduction to optimization methods

• To get a better idea how data visualization, machine learning and statistical analysis (which I prefer to call 

knowledge extraction) can help us to understand better a DO or DSE study, let us take a look at the following 

case: Sailing yacht daggerboard optimization case

• The goals were to maximize the vertical force and minimize the drag coefficient (2 objective functions).

• There are 12 design variables and 1 non-linear constraint (the lateral force on the daggerboard).  

• All design variables are bounded and for the non-linear constraint we use an inequality.

• All the simulations were conducted in a workstation with 24 cores and in less than 32 hours.

Data visualization, machine learning and statistical analysis

43



Scatter plot matrix of a DSE study – 700 experiments (high fidelity simulations)

This plot shows correlation, skewness, kurtosis, tendency and distribution of the data

Introduction to optimization methods

Data visualization, machine learning and statistical analysis

44



Scatter plot of design variables distribution (sampling distribution in design space)

Scatter plot matrix – 700 experiments (high fidelity simulations)

Introduction to optimization methods

Data visualization, machine learning and statistical analysis

45



Correlation matrix of design space variables (design variables and objective functions)

Scatter plot matrix – 700 experiments (high fidelity simulations)

Introduction to optimization methods

Data visualization, machine learning and statistical analysis

46



Histograms of design variables and objective functions

Scatter plot matrix – 700 experiments (high fidelity simulations)

Introduction to optimization methods

Data visualization, machine learning and statistical analysis

47



Response of design space (scatter plot of design variables vs. objective functions)

Scatter plot matrix – 700 experiments (high fidelity simulations)

Introduction to optimization methods

Data visualization, machine learning and statistical analysis

48



Response or trade-off of objective functions

Scatter plot matrix – 700 experiments (high fidelity simulations)

Introduction to optimization methods

Data visualization, machine learning and statistical analysis

49



Introduction to optimization methods

Correlation matrix (spearman coefficient) – 700 experiments (high fidelity simulations)

Data visualization, machine learning and statistical analysis

50



QOI vs. Design variables – DSE (DACE experiment)

Introduction to optimization methods

Data visualization, machine learning and statistical analysis

51



Introduction to optimization methods

Data visualization, machine learning and statistical analysis

• Pareto front and overall response of the design 

space.

• The MOGA pareto was constructed using 1500 high-

fidelity simulations and a genetic algorithm.

• The SBO 750 pareto was constructed using 750 

high-fidelity simulations and kriging interpolation.

• The SBO 550 pareto was constructed using 550 high 

fidelity simulations and kriging interpolation.

• By using SBO we were able to obtain similar 

response in half the computational time.

• Plus the insight gained from the DSE study.

52



Introduction to optimization methods

Data visualization, machine learning and statistical analysis

Interactive parallel coordinates

http://www.wolfdynamics.com/training/opt/image3.gif

• When working with multi-dimensional data, the best way to explore the data is by using interactive parallel 

coordinates.

• These plots let us easily find correlations between design variables and system responses.

53

http://www.wolfdynamics.com/training/opt/image3.gif


Introduction to optimization methods

Data visualization, machine learning and statistical analysis

Initial geometry

Optimal candidates 

Four non-dominated solutions belonging to the pareto 54



Introduction to optimization methods

General optimization loop in CFD

55



Introduction to optimization methods

• Graphical summary of a general optimization loop in CFD.

• This optimization loop can be based on a loosely coupled approach, where all the applications interact via 

shell scripting or the command line interface.

• Or in a strongly coupled approach (or monolithic framework), where all applications interact using a single 

interface, graphical or command line based (usually seen in commercial applications).

The parametric design variables 

can be anything:

• Geometry.

• Mesh.

• Boundary conditions.

• Initial conditions.

• Turbulence model 

coefficients.

• Discretization methods.

• Linear solvers.

• Physical properties,

• And so on.

56



Introduction to optimization methods

• For example, a loosely coupled approach for shape optimization in CFD might looks like the following one.

• To conduct different tasks in the optimization loop, we use different tools that can interact between each 

another using shell scripting or the command line interface.

• Also, all the proposed applications are open-source.

• This framework can be extended to any engineering application (aerospace, automotive, HVAC, AEC, medical 

devices thermal management, naval, and so on).

• Code coupling/Optimizer:

DAKOTA 

• Concurrent computations scheduler:      

DAKOTA

• Parametric CAD: 

Onshape (API)

• Black-box solver:                                  

OpenFOAM

• Quantitative and qualitative post-

processing:                                 

Python, paraview, JavaScript

• Real time data monitoring: 

Python, R, BASH

• Exploration and exploitation of 

design space:                              

Python, R, BASH

• Additional automation scripting:               

Python, BASH

57



Introduction to optimization methods

Shape optimization methods in CFD

58



Introduction to optimization methods

Shape optimization methods in CFD

• We can also classify the optimization methods used in CFD according to the geometry 

parametrization level:

• Parameter-based or CAD based optimization.

• Parameter-free or free-form optimization.

Parameter-based or CAD based optimization Parameter-free or free-form optimization

http://www.wolfdynamics.com/training/opt/ani7.gif

59

http://www.wolfdynamics.com/training/opt/ani7.gif


Introduction to optimization methods

• Parameter-based optimization, works at the CAD level.

• Gives the designer incredible level of control over the geometry.

• A couple of parametrical variables are enough to make significant and well controlled 

changes in the final geometry.

• Changes can be introduced easily.

• The final geometry is ready to use for manufacturing or production.

• The main difficulty is making the CAD application interact with the optimization loop.

• It is usually used with gradient-based and derivative-free methods (local and global).

• It is a very mature method and widely used in industry.

Shape optimization methods in CFD – Parameter-based optimization

60



Introduction to optimization methods

• Parameter-based optimization is usually used with gradient-based and derivative-free 

optimization methods.

• It can be used with multi-objective and multi-disciplinary optimization.

Cant angle and toe angle variations

P
a

ra
m

e
tr

ic
 v

a
ri
a

b
le

s

Shape optimization methods in CFD – Parameter-based optimization

61



Introduction to optimization methods

• Parameter-free optimization, works at the surface mesh level or volume mesh level.

• As is not based on parametrical variables gives a lot flexibility when deforming the 

geometry.

• However, the flexibility gained does not necessarily means that the designer has extensive 

control on the mesh deformation.

• It requires the selection of many control points or lattice boxes with many control points in 

order to define deformations.

• As it can used at the mesh level, it does not require remeshing, reducing in this way the 

simulation time.

• But for large mesh deformation, the quality of the mesh can be compromised.

• It is usually used with adjoint methods.

• The adjoint method has been proved a very efficient way to compute the sensitivities, but 

they are not easy to use.

• A lot of R&D is being done and it has been used with success in very specific industries.

Shape optimization methods in CFD – Parameter-free optimization

62



Introduction to optimization methods

• Parameter-free optimization is usually used with adjoint optimization methods. 

• Difficult to use with multi-objective and multi-disciplinary optimization.

• It is not easy to control, and it can generate unrealistic geometries.

Control points and control box selection

Shape optimization methods in CFD – Parameter-free optimization

63



Optimization approach Pros Cons Design stage

•
P

a
ra

m
e
te

r-
fr

e
e

• Topology optimization.

• Surface optimization.

• Often used with adjoint 

based methods.

• Can generate innovative and 

unconventional designs.

• Fast, it requires one solver run or a few 

design iterations.

• Gives a lot insight on where to modify the 

geometry.

• Topology optimization (volume based):

• Requires reverse engineering the 

results into CAD.

• Used only for internal flows.

• Adjoint optimization (surface based):

• Confined to small changes, unless 

used in and iterative way.

• Can be difficult to interpret the 

results.

• Limited to the implemented QOIs.

• Difficult to use in multi-objective and 

multi-disciplinary optimization.

• Topology optimization 

can be used from 

Initial design to fine 

tuning.

• Adjoint optimization is 

preferably used for 

fine tuning the design.

•
P

a
ra

m
e
tr

ic
-b

a
s
e
d

• Fully parametric CAD.

• CAD geometry of high quality.

• Can be used with gradient-based and 

derivative-free methods (local and global).

• Applicable to multi-objective and multi-

disciplinary optimization.

• Gives a lot of insight, the designer can 

determine which parametric variables 

have higher correlations.

• It requires many solver runs in order to 

compute the sensitivities.

• Confined to the design space of the 

parametric model.

• Requires a parametric CAD model.

• Initial design to fine 

tuning.

Introduction to optimization methods

Comparison matrix of shape optimization methods in CFD

64



Introduction to optimization methods

Parameter-based optimization on the cloud

• Using a feature-based, fully parametric CAD application gives the designer incredible level of 

control over the solid model.

• But the problem with most CAD apps, is that they do not work in Linux and they do not take 

input parameters using scripting language.

• In general, they are not easy to introduce in an optimization loop.

• To overcome this problem, we can use Onshape (www.onshape.com).

• Full cloud based professional 3D CAD system.

• Fully collaborative and simultaneous real time editing.

• It runs on any device with a working web browser.

• Academic and public versions → Free. 

• Professional version → Monthly/annual subscription. 

• All versions share same capabilities.

• RESTful API, so it can be scripted using python or nodeJS.

65

http://www.onshape.com/


Introduction to optimization methods

Parameter-based optimization on the cloud

• By using Onshape RESTful API, we are able to close our optimization loop using a fully 

parametric CAD system.

66



Introduction to optimization methods

Parameter-based optimization on the cloud

• RESTful requests → POST, GET, PUT, DELETE

• Request a feature/document update or change.

• Get the request response.

• Download the new solid model in STL format or any CAD exchange format.

A
n

y
 f

e
a

tu
re

 i
n

 t
h

e
 t
re

e
 c

a
n

 b
e

 m
o

d
if
ie

d
 u

s
in

g
  
  

  

O
n

s
h

a
p

e
 R

E
S

T
fu

l A
P

I

{       }RESTful

Response

{       }RESTful

Request

API – Python interface

Oauth authentication

http://www.wolfdynamics.com/training/opt/ani7.gif 67

http://www.wolfdynamics.com/training/opt/ani7.gif


Introduction to optimization methods

Parameter-based optimization on the cloud

• By using a fully parametric CAD, things such as this high-lift wing can be easily parametrized.

• Doing such modifications using mesh morphing is not that easy and robust.

• But if you are still interested in working at the mesh level, a workaround can be the use of 

overset meshes.

68



Introduction to optimization methods

More advanced optimization methods used in CFD

The adjoint method

69



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• Gradient-based methods and derivative-free methods find the optimal value by computing the 

sensitivity of the QOI in response to changes in each design variable.

• By sensitivity of the solution, we mean the response of the QOI to changes of the inputs (design 

variables). 

• For problems were computing the QOI is expensive or when we have a large design vector, this 

might not be the best way to compute the sensitivities.

• Remember the curse of dimensionality:

• A way to circumvent the curse of dimensionality is by computing the gradients (or derivatives) 

using the adjoint method.

The higher the number of  design variables in a modelling 

problem, the more objective function measuring locations 

we need if  we are to build a reasonably accurate predictor. 

70



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• In the framework of CFD, an adjoint solver takes a flow solution and calculate the sensitivity of 

the QOI in response to all the inputs of the system, simultaneously, in a single computation. 

• The QOI can be a measure of the system performance such as the lift or drag of a body, heat 

flux from a surface, or the total pressure drop through a system. 

71



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• A typical optimization loop using the adjoint method. 

• Hereafter, an airfoil shape optimization design loop is illustrated.

72



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• A typical optimization loop using the adjoint method. 

• Hereafter, an airfoil shape optimization design loop is illustrated.

• We aimed at a percentage change of 5% between design iterations.

Iteration 20Iteration 10

73



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• A typical optimization loop using the adjoint method. 

• Hereafter, an airfoil shape optimization design loop is illustrated.

• We aimed at a percentage change of 5% between design iterations.

Iteration 20Iteration 10

74



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• A typical optimization loop using the adjoint method. 

• Hereafter, an airfoil shape optimization design loop is illustrated.

• We aimed at a percentage change of 5% between design iterations.

Iteration 20Iteration 10

75



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• A typical optimization loop using the adjoint method. 

• Hereafter, an airfoil shape optimization design loop is illustrated.

• We aimed at a percentage change of 5% between design iterations.

76



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• Adjoint solvers can be: 

• Continuous solvers

• Discrete solvers

• Automatic differentiated solvers (algorithmic differentiation)

• Each solver type has different implementation details, limitations, and pros/cons, but at the end 

of the day, they all find derivatives with respect to the shape of the body or flow path, allowing 

the sensitivities to be evaluated.

• Obtaining an adjoint solution (sensitivities, derivatives, gradients, you name it) gives designers 

key information on how to modify the shape of the body. 

• An adjoint solution can be used to estimate the effect of a change prior to actually making the 

change.

• To get an adjoint solution, about the same computational resources as for the flow solution are 

required.

• Some adjoint solvers can be memory eager.

77



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• Adjoint solvers are closely related to mesh morphing and free-form deformation techniques.

• Shape sensitivity data can be combined with mesh morphing to guide smooth mesh 

deformations.

• Mesh morphing and free-from deformation are powerful tools that allows designers to alter the 

geometry at the mesh level to evaluate effects of the design alterations. 

• Designers can then iterate to achieve an optimum design without the need to return to the 

original CAD geometry. 

• When using mesh deformation and free-form deformation, we lose the CAD parametrization, 

and we might get very unrealistic designs (that still are optimal) but are not feasible due to 

operational or manufacturing requirements.

• For complex geometries, the insight gained by adjoint solvers can take the design in unexpected 

directions.

78



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

The primal simulation for the Volkswagen XL1. The symmetry plane is colored according to the velocity 

magnitude, while the car surface shows the pressure distribution.

• Adjoint methods for car aerodynamics, C. Othmer, Journal of Mathematics in Industry, 2014, 4:6 79



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

Drag sensitivity maps for the XL1. Isometric front and back view, bottom view (bottom left) and top view (top right).

• Adjoint methods for car aerodynamics, C. Othmer, Journal of Mathematics in Industry, 2014, 4:6 80



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• Adjoint methods for car aerodynamics, C. Othmer, Journal of Mathematics in Industry, 2014, 4:6

One-shot optimization of the XL1 spoiler shape. 

The rear edge of the XL1 half-model is parameterized with five morphing control points (top left). After twenty steepest 

descent driven shape updates in one-shot fashion, drag reduced by 2% and lift by 30% at a total cost of five equivalent 

flow solutions (right). The bottom left figure compares the original and the optimal shape of the rear car edge.

81



Introduction to optimization methods

More advanced optimization methods used in CFD – The adjoint method

• The adjoint method is a very powerful technique for shape optimization in CFD.

• However, is not an entry level method. It requires a well prepare user.

• It is recommended to use this method for fine tuning and not during the initial stage of product 

development. 

• Have in mind that it can give you very unrealistic shapes that still are optimal.

• We will not address the adjoint method during this training.

• But if you are interested in using it in OpenFOAM, there are a few open-source implementations 

available. Just no name a couple:

• Discrete adjoint:

• https://github.com/mdolab/dafoam

• Algorithmic differentiation:

• https://www.stce.rwth-aachen.de/research/software/discreteadjointopenfoam

• Continuous adjoint

• https://www.openfoam.com/releases/openfoam-v2006/numerics.php

82

https://github.com/mdolab/dafoam
https://www.stce.rwth-aachen.de/research/software/discreteadjointopenfoam
https://www.openfoam.com/releases/openfoam-v2006/numerics.php


Introduction to optimization methods

Numerical simulations, product development, 

and the need of optimization

83



Introduction to optimization methods

During the life cycle of  a product, and to improve 

its performance and reduce production and 

operational costs, industry is relying more and 

more in numerical simulations, numerical 

optimization, exploratory data analysis* and 

business intelligence**.

Numerical simulations, product development, and the need of optimization

Exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods.

Business intelligence (BI) comprises the strategies and technologies used by enterprises for the data analysis of business information. BI 

technologies provide historical, current and predictive views of business operations.

*

**
84



Introduction to optimization methods

Numerical simulations, product development, and the need of optimization

• To design innovative products in a cost-effective way, the industry is relying more and more on numerical simulations. 

• The benefits of simulating far outweighs the costs related to physical experiments and constructing prototypes.

• Simulate early, simulate often. Get it right the first time.

• Plan your optimization study and exploit your computational resources in an efficient way.

Desi n space e ploration Desi n optimi ation

                        

                  

As time passes , production cost and 

problem resolution cost increase

 
 
 
 
 
  
 
  
 
  

 
  
  
 
 
 

Feasibility study ,

conceptuali ation, and 

preliminary desi n

                                                                    

Detailed desi n, production 

plannin , prototypin , and 

evaluation

Testin , production, 

mar etin , and roll up

                 

85



Introduction to optimization methods

Path to optimized design, robust design, and best ROI in product 

development

Design of experiments

Surrogate model

Design optimization

Data analytics

Robust design

Optimized robust design

Best ROI

Right approach in product development

Desi n variable  

D
e
si
 
n
 v
a
ri
a
b
le
  

 

 

 

Single/random simulations

What if study 
We do not want to do this

Trial and error. This approach is not 

recommended in product development
86



Introduction to optimization methods

And in case you did not know it

• Robust design optimizes design variables to achieve a particular probabilistic level, such as Six 

Sigma, which translates into 3.4 defective features in one million opportunities.

• Robust design takes into account the variation of input parameters and seeks a design with a 

probabilistic goal.

• In order to arrive to a robust design, we need to specify probabilistic parameters and use 

probabilistic optimizations algorithms.

• Guess what?, the probabilistic input is obtained from a design exploration study.

87



Introduction to optimization methods

Planning your optimization study

88



Introduction to optimization methods

Planning your optimization study

• Conventional high-lift configuration of a civil aircraft.

• What do we want to do?

• Are we interested in studying the influence of slats/flaps in the configuration? If this is the 

case, we should conduct a design space exploration study with a full parametric CAD.

• Are we interested in controlling the flow to avoid flow separation/shock waves? If this is the 

case free-form mesh deformation is the way to go.

89



Introduction to optimization methods

Planning your optimization study

• Wind turbine configuration.

• What do we want to do?

90



Introduction to optimization methods

Planning your optimization study

• Wind turbine configuration.

• What do we want to do?

BCs:

• RPM

• Wind velocity

• Cross flow

91



Introduction to optimization methods

Final remarks

92



Introduction to optimization methods

Final remarks

• Can optimization methods guarantee the existence and uniqueness of a global (or a local) 

optimum solution?

• The short answer is no.

• Optimization is very subjective. 

• So, for a designer or engineer an optimal value found by the optimizer might not be a practical 

solution.

• It is also not uncommon to have multiple solutions, as in the case of multi-objective optimization.

• And many times, we need to optimize concepts a little bit more abstract, such as, costumer 

satisfaction, manufacturing process, packing factor, form factor, idle time, cost reduction.  And 

formulating these kind of problems is not very easy.

• Also, ill-conditioned problems can result in poor convergence.

93



Introduction to optimization methods

Final remarks

• And to make matters worst, in engineering design we often deal with multi-disciplinary 

optimization (MDO).

• For example, improving the aerodynamic performance of an airplane (aerodynamics 

group), can result in larger weight of the airplane due to larger aerodynamic loads 

(structural group), and this might reduce the payload and the handling qualities of the 

airplane (flight performance group), and therefore the revenues (sales department).

• At the end of the day, the current design iteration should be an improvement of the previous 

iterations.

• And we find a better solution by using any of the methods we just described.

• We aim at using a sound approach instead of the what-if approach (guessing).

94



Introduction to optimization methods

Final remarks

• In engineering design, usually the optimization cycle is conducted until,

• We run out of money.

• We run out of time.

• We say it is enough, as the current solution is better than the starting point and we stop the 

optimization cycle.

• Finally, have in mind that,

• Optimization is a slow converging, meticulous and thoughtful process that requires careful 

planning, fault tolerant loops, and real-time data monitoring and analysis.

• Do not expect fast outcomes leading to miraculous solutions.

95



Introduction to optimization methods

• Nowadays as the competition is getting stronger and stronger the need 

for robust designs is bigger than ever. 

• The cost of failure has never been so high, even for successful 

companies.

• Take the automotive industry for example, where manufacturers have 

been forced to recall thousands of cars to fix some problem. 

• Design exploration and robust design is a great aid to increase product 

performance and integrity in less time. 

• We can easily consider more design variants, find the optimal design 

and ensure performance across a wide range of conditions.

• Design exploration and robust design can be used to identify problems 

as the product evolve. 

Final remarks

96



Introduction to optimization methods

Final remarks

97



Introduction to optimization methods

New trends in design optimization

• Digital twins.

• Internet of things (IoT).

• Machine learning, deep learning, and artificial intelligence.

• Image manipulation, image recognition, image segmentation, image similarity, object detection, 

and pattern recognition.

• Reduce order models (ROM).

• Collaborative frameworks. Everyone working together on the same document, real-time, on any-

device, anywhere.

• Cloud computing.

• In summary, the new trends are towards,

Agile product development, real-time collaboration, 

automation, concurrent tasks, rapid iterations, data 

driven insight, interactive data analysis.

98



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

99



Choosing an optimization method

General guidelines

• The choice of the optimization method highly depends on the problem you are trying to solve.  

• Before formulating the optimization problem, ask yourself the following questions:

• Smooth or noisy behavior?

• Unimodal or multimodal function?

• Single or multi objective?

• Constrained or unconstrained?

• Any special structure, e.g., quadratic objective, highly linearly constrained?

• Computational expensive?

• Resources available?

• Local optimization or global optimization?

• Well defined problem?

• Variable types present (real, integer, categorical)?

100



General guidelines – Decision matrix

Choosing an optimization method

Unconstrained or bound-

constrained problems
Nonlinearly-constrained problems

Smooth and inexpensive
Any method. Gradient-based will be 

the fastest
Gradient-based methods

Smooth and expensive Gradient-based methods Gradient-based methods

Non-smooth and 

inexpensive

Derivative-free methods

Surrogate based optimization

Derivative-free methods

Surrogate based optimization

Non-smooth and 

expensive
Surrogate based optimization Surrogate based optimization

Multi-objective
Derivative-free methods

Surrogate based optimization

Derivative-free methods

Surrogate based optimization

101



• Gradient-based optimization methods are highly efficient, with the best convergence rates of all 

the optimization methods.

• Gradient-based optimization methods looks for improvement based on derivative information.

• Gradient-based optimization methods are the clear choice when the problem is smooth, 

unimodal, and well-behaved. 

• However, when the problem exhibits non-smooth, discontinuous, or multimodal behavior, these 

methods can also be the least robust since inaccurate gradients will lead to bad search 

directions.

General guidelines – Gradient based methods

Choosing an optimization method

http://www.wolfdynamics.com/training/opt/image6.gif
102

http://www.wolfdynamics.com/training/opt/image6.gif


• Derivative-free optimization methods can be applied in situations where gradient calculations are 

too expensive or unreliable. 

• Derivative-free based methods requires only function values (no need to compute gradients or 

high order derivatives). 

• Derivative-free based methods can be used for local and global optimization.

• Derivative-free local methods sample the design space with bias/rules toward improvement.

• Derivative-free global methods do broad exploration of the design space with selective 

exploitation.

• These methods deserve consideration when the problem may be non-smooth, multimodal, 

poorly behaved, or the derivative are expensive to compute. 

• If you are dealing with multi-objective optimization, you should use derivative-free methods.

• Derivative-free methods exhibit much slower convergence rates for finding an optimum, and as 

a result, tend to be much more computationally demanding than gradient-based methods. 

General guidelines – Derivative free methods

Choosing an optimization method

103



• Clearly, for non-gradient optimization studies, the computational cost of the function evaluation 

must be relatively small in order to obtain an optimal solution in a reasonable amount of time. 

• Genetic algorithms, division of rectangles, pattern search, simplex method, Nelder-Mead 

method, particle swarm, greedy search, are examples of derivative free methods. 

General guidelines – Derivative free methods

Choosing an optimization method

Nelder-Mead method

http://www.wolfdynamics.com/training/opt/image7.gif

MOGA – Genetic algorithm

http://www.wolfdynamics.com/training/opt/ani5.gif

104

http://www.wolfdynamics.com/training/opt/image7.gif
http://www.wolfdynamics.com/training/opt/ani5.gif


General guidelines – DOE/DACE and SBO

• Parameter studies, classical design of experiments (DOE), design/analysis of computer 

experiments (DACE), and sampling methods share the purpose of exploring the design space. 

• The distinction between DOE and DACE methods is that the former are intended for physical 

experiments containing an element of non-repeatability (and therefore tend to place samples at 

the extreme parameter vertices), whereas the latter are intended for repeatable computer 

experiments and are more space-filling in nature. 

• DOE for stochastic behavior (physical experiments).

• DACE for deterministic behavior (computer simulations).

• When a global space-filling set of samples is desired, then DACE and sampling methods are 

recommended. These techniques are useful for scatter plot and variance analysis as well as 

surrogate model construction.

• DACE experiments can be used to construct a surrogate (also known as response surface or 

meta-model). 

• Optimizing at the surrogate level is inexpensive.

• SBO is recommended for expensive experiments and in the presence of noisy data.

• SBO is a good choice for conducting multi-objective optimization.

Choosing an optimization method

105



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

106



General optimization loop – The big picture

Optimization loop – The big picture

• A general optimization loop can be used in any field.

• The input parameters can be any kind of design variable (numerical, categorical, text, an image, and so on).

• The quantity of interest (QOI) can be any kind quantitative or qualitative data (numerical, categorical, text, an image, and so on).

• The black-box application can be any kind of application. 

• In a loosely coupled optimization loop, as the one that we are going to study, the black box application must be able to 

interact via the command line interface or using parametric input files. 

• Preferable, it also should be able to work with no graphical user interface

107



General optimization loop in CFD – Vertical approach

Optimization loop – The big picture

• Typical vertical approach when conducting CFD studies and launching one simulation at a time.

• In this vertical approach the design optimization loop can iterate back to any of the previous steps.

• This single case can be run in parallel.

108



General optimization loop in CFD – Vertical approach

Optimization loop – The big picture

• Concurrent design optimization loop for CFD studies.

• Here we use many processors to solve many problems at the same time.

• At the same time, we solve each problem using many processors.

109



General optimization loop in CFD – Tools in use

Optimization loop – The big picture

• From the point of view of code coupling there are two types of optimization loops:

• Loosely coupled approach

• Where all the applications interact via shell scripting or the command line interface. 

• Usually, the applications belong to different software developers and do not share 

common data exchange formats.

• Not very user friendly.

• Strongly coupled approach

• where all applications interact using a single interface, graphical or command line 

based. 

• Often, the applications belong to the same software developer, and they share a 

common data exchange format.

• User friendly (to some extension).

110



General optimization loop in CFD – Tools in use

Optimization loop – The big picture

• The strongly coupled approach is commonly found when using commercial applications, such 

as, Ansys Fluids, StarCCM, VisualDOC, CAESES. 

• The loosely coupled approach, is found when using open-source applications or applications 

that do not belong to the same software developer or are not meant to interact with other 

applications. 

• From the performance point of view, the strongly coupled approach performs better due to the 

tight integration.

• But this does not mean that the loosely coupled approach is much worse. 

• By using good practices, the user can get an acceptable performance when integrating 

different applications. 

• It is also more flexible, because it allows user to use applications that do not belong to the 

same software developer, which may be a limitation when using a GUI based strongly 

coupled approach.

• Hereafter, we will work with a loosely coupled approach.

• We will propose an optimization loop using DAKOTA as optimizer and code coupling 

application.

• Then, by using the code line interface and scripting, we will integrate different applications. 

111



Optimization loop – The big picture

• Code coupling/Optimizer:

• DAKOTA – https://dakota.sandia.gov/

• RAVEN – https://raven.inl.gov/

• OpenMDAO – https://openmdao.org/

• Concurrent computations scheduler:      

• DAKOTA – https://dakota.sandia.gov/

• Python

• Bash shell and GNU parallel

• Uncertainty quantification

• DAKOTA – https://dakota.sandia.gov/

• OpenTURNS – https://openturns.github.io/www/index.html 

• UQLab – https://www.uqlab.com/

• UQ Toolkit – https://www.sandia.gov/uqtoolkit/

• UQ Tools – https://uqtools.larc.nasa.gov/

• Uncertainty toolbox – https://github.com/uncertainty-toolbox/uncertainty-toolbox

General optimization loop in CFD – A few open-source tools

112



Optimization loop – The big picture

• Parametric CAD: 

• Onshape (API) – https://onshape-public.github.io/

• FreeCAD – https://www.freecadweb.org/

• SALOME – https://www.salome-platform.org/

• OpenSCAD – https://www.openscad.org/

• Meshing tools:

• GMSH – https://gmsh.info/

• TETGEN – http://wias-berlin.de/software/tetgen/

• SALOME – https://www.salome-platform.org/

• pyhyp – https://github.com/mdolab/pyhyp

• MeshKit – https://sigma.mcs.anl.gov/meshkit-library/

• Mesh morphing tools

• MESQUITE – https://trilinos.github.io/mesquite.html

• PyGeM – https://mathlab.sissa.it/pygem

• idwarp – https://github.com/mdolab/idwarp

• pygeo – https://github.com/mdolab/pygeo

General optimization loop in CFD – A few open-source tools

113



Optimization loop – The big picture

• Black-box solver:                                  

• OpenFOAM – https://openfoam.org/

• SU2 – https://su2code.github.io/

• CFL3D – https://github.com/nasa/CFL3D

• FLUBIO – https://flubiopetsc.github.io/flubiopetsc/

• Quantitative and qualitative post-processing:                                 

• Python, paraview, JavaScript, VTK

• Real time data monitoring: 

• Python, R, JavaScript, BASH

• Exploration and exploitation of design space:                              

• Python, R, BASH

• Additional automation scripting:               

• Python, BASH

General optimization loop in CFD – A few open-source tools

114



General optimization loop in CFD – Automatic loop

Optimization loop – The big picture

• The automatic loop should cover the whole workflow of a CFD simulation:

             g → M  h  g → C          →                          g →     -processing

• We will illustrate an automatic loop for simple simulations with many applications interacting.

• But have in mind that the proposed framework can be easily extended to deal with complex 

scenarios 

• And as a we are dealing with CFD, the proposed framework can cover different fields in science 

and engineering (aerospace, automotive, HVAC, AEC, medical devices, thermal management, 

naval, and so on).

• For the cases that we will be presenting, the simulations are run using a pre-specified level of 

accuracy and iterative marching (which is not bad).

• However, by using data and metadata (data-of-data) to compute basic descriptive statistics and 

by leveraging a few concepts of SL/ML, the design loop can freely iterate until it reaches an 

acceptable level of convergence.

115



General optimization loop in CFD – Automatic loop

Optimization loop – The big picture

• A few comments on the automatic loop or optimization framework to be proposed:

• The framework is automatic and to some extent fault tolerant.

• But in the case of fatal failure, the user can restart from the latest stable solution.

• In the case of anomalies while the loop is running, the input parameters can be changed 

on-the-fly to stabilize the solution, this can be done automatically (a lot SL/ML involved) or 

manually.

• To achieve this, a lot of things need to be monitored. 

• Therefore, it is important to monitor all the QOIs and KPIs real-time.

• Every single modification is recorded and reported to the user. 

• The bottleneck is the meshing stage.

• In case of meshing failure or bad quality meshes, the domain is remeshed using more 

robust parameters (which will increase the meshing time and mesh size).

• If the mesh issues cannot be repaired in an automatic way, the user must fix the problems 

manually, which is not desirable.

116



General optimization loop in CFD – Automatic loop

Optimization loop – The big picture

• Graphical summary of an engineering design loop using a feature-based CAD.

• Code coupling/Optimizer:

DAKOTA 

• Concurrent computations scheduler:      

DAKOTA

• Parametric CAD: 

Onshape (API)

• Black-box solver:                                  

OpenFOAM

• Quantitative and qualitative post-

processing:                                 

Python, paraview, JavaScript

• Real time data monitoring: 

Python, R, BASH

• Exploration and exploitation of 

design space:                              

Python, R, BASH

• Additional automation scripting:               

Python, BASH

117



Optimization loop – Automation, parametrization, and concurrency

• If you are planning to conduct optimization studies, things need to be automatic and parametric.

• It is also important to take advantage of concurrency, that is, running many simulations at the 

same time.

• While iterating to the optimal solution, do not forget to use real-time data analytics and 

exploratory data analysis to study the data gathered.  

• Sometimes there might be a hidden story in this data.

• Avoid to iterate in your optimization loop manually, it is too slow and prone to errors.

• As stated in the NASA contractor report “CFD Vision 2030 Study: A Path to Revolutionary 

Computational Aerosciences”,

A single engineer/scientist must be able to conceive, create, 

analyze, and interpret a large ensemble of  related simulations 

in a time-critical period (e.g., 24 hours), without individually 

managing each simulation, to a pre-specified level of  accuracy. 

Optimization loop – The big picture

118



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

119



DAKOTA in a nutshell

DAKOTA overview

• DAKOTA stands for Design and Analysis toolKit for Optimization and Terascale Applications.

• DAKOTA is a general-purpose software toolkit for performing optimization, uncertainty 

quantification, parameter estimation, design of experiments, and sensitivity analysis on high 

performance computers. 

• DAKOTA is developed and supported by U.S. Sandia National Labs.

• DAKOTA is well documented and comes with many tutorials.

• Support via a dedicated mailing list.

• You can download DAKOTA toolkit at the following link: http://dakota.sandia.gov/

• Official releases and nightly stable releases are freely available worldwide via GNU GPL.

• Current version: 6.15 (released in November 2021)

120

http://dakota.sandia.gov/


DAKOTA capabilities

DAKOTA overview

• Parameter Studies (PS).

• Design of Experiments (DOE) – Design and Analysis of Computer Experiments (DACE) .

• Sensitivity Analysis (SA).

• Uncertainty Quantification (UQ).

• Optimization (OPT) via Gradient-based methods, and derivative-free local and global methods.

• Surrogate based optimization (SBO).

• Calibration (CAL) or data fitting – Parameter estimation or Nonlinear Least Squares 

Capabilities.

• Generic interface to black box solvers.

• Scalable parallel computations from desktop to clusters.

• Asynchronous evaluations.

• Simulation failure capturing.

• Restart capabilities.

• Matlab, scilab, AMPL, Python interface.

• Time-tested and advanced research algorithms to address challenging science and engineering 

simulations.
121



Why DAKOTA? Why not matlab, scilab, octave, Java, Python, R, or any 

other optimization framework?

DAKOTA overview

• DAKOTA does pretty much what any other optimizer does.

• A few DAKOTA’s features:

• Generic interface to black box solvers.

• Scalable parallel computations, from desktop to clusters to the cloud.

• Extensively validated.

• Fully scriptable.

• Simulation failure capturing.

• Restart capabilities.

• Parallel asynchronous or concurrent evaluations.

• Can be linked to third-party optimization libraries.

• No license fee.

• Open-source.

122

These are the main reasons 

why I use DAKOTA



Why DAKOTA? Why not matlab, scilab, octave, Java, Python, R, or any 

other optimization framework?

DAKOTA overview

• In DAKOTA, two interfaces are available to introduce the simulation code into the optimization 

loop, namely, direct interface and fork interface.

• The direct interface is the fastest, but it is intrusive. You will need to modify your simulation 

code to interact with DAKOTA.

• The fork interface is slower but very flexible. It interacts with the simulation code via 

scripting files and input/output files.

• All the DAKOTA-OpenFOAM coupling tutorials that we are going present are based on the fork

interface.

• However, we are going to see the direct interface in action using a toy application.

123



• DAKOTA uses a single input file to orchestrate the optimization loop.

• The input file is human readable (ASCII format) and has the extension *.in (the extension is 

superfluous in UNIX*Linux like OS).

• In this input file the user formulates the problem, that is: 

• Method to use, variables, and responses. 

• Additionally, the  user can define the interface to the black box solver, the level of 

parallelism, and general settings (such as the format of the output).

• If you misspell something or use a keyword that does not exist in the input file, DAKOTA will list 

the available options.

• Also, if you forget a compulsory entry in the input file, DAKOTA will complain and will ask you 

for that value.

• Optional entries will use the default values.

• Refer to the documentation for more information about the compulsory and optional entries of 

each method.

DAKOTA overview

DAKOTA Input file – The file *.in

124



Sample DAKOTA input file – The file *.in

DAKOTA overview

environment

tabular_data

tabular_data_file = ‘output.dat’

method

max_iterations = 100

convergence_tolerance = 1e-4

conmin_frcg

model

single

variables

continuous_design = 2

initial_point    -1.2      1.0

lower_bounds     -2.0     -2.0

upper_bounds      2.0      2.0

descriptors       ‘x1’     ‘x2’

Interface

fork

analysis_driver = ‘simulator_script’

asynchronous

responses

objective_functions = 1

numerical_gradients

no_hessians

D
e

fi
n

e
 a

lg
o

ri
th

m
D

e
fi

n
e
 p

ro
b

le
m

 (
in

p
u

ts
 a

n
d

 o
u

tp
u

ts
) 

S
e

t 
in

te
rf

a
c
e

responses (required): model output(s) to 

be studied, these are the response metrics.

interface (required): map from variables to 

responses; control parallelism

variables (required): parameters input to 

the simulation; these are the design 

variables.

method (required): specifies the method 

(DO or DSE) and specific settings

environment (required): specify general 

settings such as tabular output.  It also 

identifies the top-level method.

model (optional): a model provides a logical unit for determining 

how a set of variables is mapped into a set of responses.  The 

model allows one to specify a single interface or to manage more 

sophisticated mappings involving surrogates or nested iterations. 

Default value is single.

125



DAKOTA execution

DAKOTA overview

• DAKOTA can be run from a UNIX or Windows command line interface.

• DAKOTA also comes with a GUI (version 6.12 and newer), but we will not address how to use 

this graphical user interface.

• To run DAKOTA just type in the terminal window,

$> dakota –i input_file_name.in

• To run DAKOTA and save the standard output stream (stdout), input variables and response 

functions information for each function evaluation, method-specific info and so on,

$> dakota –i input_file_name.in –o output_file.out

• To save the standard error stream (stderr) as well,

$> dakota –i input_file_name.in –o output_file.out –e error.dat

126



DAKOTA execution

DAKOTA overview

• DAKOTA can be run from a UNIX or Windows command line interface.

• You can also use these options,

$> dakota –i input_file_name.in –o output_file.out > stdout.dat

$> dakota –i input_file_name.in > stdout.dat

$> dakota –i input_file_name.in | tee stdout.dat

• To get additional information and command line options,

$> dakota –help

127



Workflow for data exchange between DAKOTA and a black-box application

DAKOTA overview

• Workflow for data exchange between Dakota and a black-box application.

• The white rectangles denote process blocks. 

• The light-shaded blue document symbols denote unchanging sets of files.

• The light-shaded green document symbols indicate files that change with each set of design parameters 

generated by Dakota or after the end of the evaluation of the QOI. 

• The light-shaded grey area denotes the domain of the control script that automatically prepares the case; 

including, automatic formatting of input and output files, organization of the data generated, and executing 

the application in serial or parallel.

• This single input file contains all 

the information to orchestrate 

the optimization loop

128

• Every black-box solver will format the output 

in a different way.  

• It is the user responsibility to shape the 

output data in a format suitable for DAKOTA.



DAKOTA documentation

• DAKOTA comes with extensive documentation and tutorials.

• You can access or download DAKOTA’s documentation from the followin  lin :

https://dakota.sandia.gov/content/manuals

DAKOTA overview

Reference documentation of all 

available methods

Documentation tab

129

https://dakota.sandia.gov/content/manuals


Summary of DAKOTA optimization methods

DAKOTA overview

Gradient-based Optimization: 

• CONMIN: frcg, mfd

• OPT++: cg, Newton, quasi-Newton

• DOT: frcg, bfgs, mmfd, slp, sqp (external package – commercial) 

• NPSOL: sqp (external package – commercial) 

• NLPQLP: sqp (external package – commercial) 

Derivative-free Optimization:

• COLINY: PS, EA, Solis-Wets, COBYLA, DIRECT 

• JEGA: MOGA, SOGA

• EGO: efficient global optimization via Gaussian Process models

• NCSU: DIRECT

• OPT++: PDS (Parallel Direct Search, simplex based method)

• NOMAD: mesh_adaptive_search

Parameter studies: vector, list, centered, grid, multidimensional, user defined

Design of experiments: 

• DDACE: LHS, MC, grid, OA, OA_LHS, CCD, BB  

• FSUDace: CVT, Halton, Hammersley 

• PSUADE: MOAT 

• Sampling: LHS, MC, Incr. LHS, IS/AIS/MMAIS

Multi-objective optimization, pareto, hybrid, multi-start, surrogate-based optimization (local and global), 

uncertainty quantification. 
130



Summary of DAKOTA optimization methods

• adaptive_sampling

• asynch_pattern_search

• bayes_calibration

• branch_and_bound

• centered_parameter_study

• coliny_beta

• coliny_cobyla

• coliny_direct

• coliny_ea

• coliny_pattern_search

• coliny_solis_wets

• conmin

• conmin_frcg

• conmin_mfd

• dace

• dl_solver

• dot

• dot_bfgs

• dot_frcg

• dot_mmfd

• dot_slp

• dot_sqp

• efficient_global

DAKOTA overview

• efficient_subspace

• fsu_cvt

• fsu_quasi_mc

• genie_direct

• genie_opt_darts

• global_evidence

• global_interval_est

• global_reliability

• gpais

• hybrid

• importance_sampling

• list_parameter_study

• local_evidence

• local_interval_est

• local_reliability

• mesh_adaptive_search

• moga

• multi_start

• multidim_parameter_study

• ncsu_direct

• Nl2sol

• nlpql_sqp

• nlssol_sqp

• nonlinear_cg

• npsol_sqp

• optpp_cg

• optpp_fd_newton

• optpp_g_newton

• optpp_newton

• optpp_pds

• optpp_q_newton

• pareto_set

• pof_darts

• polynomial_chaos

• psuade_moat

• richardson_extrap

• Rkd_darts

• sampling

• soga

• stanford

• stoch_collocation

• surrogate_based_global

• surrogate_based_local

• vector_parameter_study

Note: The list is not complete
131



DAKOTA overview

A valuable advice before starting to work with DAKOTA:

Remember to always clean the case directory

• When running DAKOTA (using a direct or fork interface), it is highly advisable to start from a 

clean directory structure.

• In the case directory of every single tutorial distributed with this training material, you will find the 
script dakota_cleanup.  This script will clean the case directory.

• To use this script, type in the terminal window:

• $> ./dakota_cleanup

• By the way, you can customize this script.

Cleaning the case directory

132



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

133



• Optimization with DAKOTA. 

• The Rosenbrock function.

• You will find this tutorial in the following directory:

Working with DAKOTA:  Rosenbrock function

$TM/dakota_sample_cases/model_problems/rosenbrock_direct_interface

134



• In this tutorial, we will use the Rosenbrock 

function to illustrate many of the features included 

in DAKOTA.

• We are going to work with gradient based and 

derivative-free algorithms.

• We are going to do parametrical studies and 

design of experiments as well.

• Feel free to e plore DAKOTA’s input file.

Working with DAKOTA:  Rosenbrock function

135



Rosenbrock function

Search domain

Global minimum

Working with DAKOTA:  Rosenbrock function

136



Rosenbrock function

• The Rosenbrock function, is also known as the banana function because it actually looks like a 

banana (well, if you use the right color map and your imagination).

Working with DAKOTA:  Rosenbrock function

137



Rosenbrock function

Global minimum

Working with DAKOTA:  Rosenbrock function

• In two dimensions (or two design variables), this problem seems to be an easy one. We can 

pinpoint the minimum visually. 

• This problem can be extended to multiple dimensions (or design variables), where visual 

methods are of no use.  

• Here is where optimization methods are valuable.

138



Rosenbrock function with white noise

• In the ideal world, the optimization is done in a smooth function.  

• But in reality (numerical or physical experiments) we have noisy data.

• Doing optimization in noisy data is tricky.

• Here, optimization using gradient based methods does not perform very well. 

Working with DAKOTA:  Rosenbrock function

Smooth function Noisy data

139



So, what can we do with DAKOTA?

Working with DAKOTA:  Rosenbrock function

140



Multidimensional study

• In the directory $TM/dakota_sample_cases/model_problems/rosenbrock_direct_interface/multi1 you will 

find the input files to run this case.

• Use multidimensional experiments for parametrical studies and design space exploration.

• The output can be used in a sensitivity analysis, uncertainty quantification, initial screening or 

building a surrogate.

Working with DAKOTA:  Rosenbrock function

Sampling SBO constructed from sampling

141



Let us use this simple case to 

illustrate how to use DAKOTA. 

But first we need to take a look at the 

input file.

Working with DAKOTA:  Rosenbrock function

142



environment

graphics

tabular_data

       _    _     = ‘     _        .   ’

method

multidim_parameter_study

partitions = 8 8

model

single

…

Working with DAKOTA:  Rosenbrock function

Display a 2D graphics window of variables and responses (not used any more in 

DAKOTA 6.10 and newer releases)

Write an ascii file with the results (variables and responses).

Name of the tabular_data file.

Name of the optimization/parametrization method.

Parameters related to the

optimization/parametrization method.

Method used to map variables into responses.

If no method is specified, the single method is used by default.

• If you do not want to use the graphics option in the environment block, you can erase it or 

commented.

• To comment a line in Da ota’s input file, just add at the be innin  the # symbol, e.g.:    

#graphics.

Running a simple DAKOTA case – dakota_case.in file

143



…

variables

continuous_design = 2

lower_bounds -2 -2

upper bounds 2 2

descriptors ‘x1’ ‘x2’

interface

direct

        _       = ‘         k’

responses

response_functions = 1

no_gradients

no_hessians

Working with DAKOTA:  Rosenbrock function

Labels for the variables.

Defines how Dakota should evaluate the function.  

In this case we use the direct method, which is a driver 

Compiled with Dakota.

Number of design variables in a real interval.

Upper and lower bounds of the design variables.

Name of the driver that Dakota will use.

Number of outputs or objective functions.

Do not compute gradients and hessians.

Running a simple DAKOTA case – dakota_case.in file

144



Working with DAKOTA:  Rosenbrock function

• If you want to get more information about all the options available for each of the blocks in 

Da ota’s input file, refer to the reference manual and loo  for the section keywords Area.

• https://dakota.sandia.gov/content/latest-reference-manual

Running a simple DAKOTA case – dakota_case.in file

145

https://dakota.sandia.gov/content/latest-reference-manual


• This case is ready to run, go to the following directory,

$> cd $TM/dakota_sample_cases/model_problems/rosenbrock_direct_interface/multi1 

• To run it, type in the terminal:

How to run this tutorial

Working with DAKOTA:  Rosenbrock function

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in

• You can run all the tutorials in a similar way.  

• Remember to use the right name of the input file.

• Also, we are going to run first using the direct interface.

146



• After running the case, you will find two new files in the case directory, namely:

• dakota.rst

• rosen_multidim.dat

• The file dakota.rst is created automatically by Dakota, and it can be used to restart the 

simulation.

• The file rosen_multidim.dat contains the information about the variables and function 

evaluations. In the environment block of the input file, we enable this option and gave a name 

to the output file.

• Depending on the method you are using, you might find more files.  

• But generally speaking, these two files are the most important ones.

How to run this tutorial

Working with DAKOTA:  Rosenbrock function

147



• Also, depending on the method you are using you will get a different screen output with the 

information of the simulation.

• The screen output contains information about the problem, each function evaluation and 

summary statistics.

Screen output

Working with DAKOTA:  Rosenbrock function

…

Using Dakota input file 'rosen_multidim.in'

Writing new restart file dakota.rst

>>>>> Executing environment.

>>>>> Running multidim_parameter_study iterator.

Multidimensional parameter study variable partitions of

8

8

…

148



Working with DAKOTA:  Rosenbrock function

…

---------------------

Begin Evaluation    1

---------------------

Parameters for evaluation 1:

-2.0000000000e+00 x1

-2.0000000000e+00 x2

Direct interface: invoking rosenbrock 

Active response data for evaluation 1:

Active set vector = { 1 }

3.6090000000e+03 response_fn_1

…

Screen output

• Also, depending on the method you are using you will get a different screen output with the 

information of the simulation.

• The screen output contains information about the problem, each function evaluation and 

summary statistics.

149



Working with DAKOTA:  Rosenbrock function

…

<<<<< Function evaluation summary: 81 total (81 new, 0 duplicate)

Simple Correlation Matrix among all inputs and outputs:

x1           x2 response_fn_1 

x1  1.00000e+00 

x2  1.73472e-17  1.00000e+00 

response_fn_1 -3.00705e-03 -5.01176e-01  1.00000e+00 

Partial Correlation Matrix between input and output:

response_fn_1 

x1 -3.47498e-03 

x2 -5.01178e-01 

…

Screen output

• Also, depending on the method you are using you will get a different screen output with the 

information of the simulation.

• The screen output contains information about the problem, each function evaluation and 

summary statistics.

150



Working with DAKOTA:  Rosenbrock function

…

Simple Rank Correlation Matrix among all inputs and outputs:

x1           x2 response_fn_1 

x1  1.00000e+00 

x2 -3.87308e-02  1.00000e+00 

response_fn_1 -4.11247e-02 -5.03071e-01  1.00000e+00 

Partial Rank Correlation Matrix between input and output:

response_fn_1 

x1 -7.01821e-02 

x2 -5.05471e-01 

<<<<< Iterator multidim_parameter_study completed.

…

Screen output

• Also, depending on the method you are using you will get a different screen output with the 

information of the simulation.

• The screen output contains information about the problem, each function evaluation and 

summary statistics.

151



Working with DAKOTA:  Rosenbrock function

…

<<<<< Environment execution completed.

DAKOTA execution time in seconds:

Total CPU        =   0.074166 [parent =      0.076, child =  -0.001834]

Total wall clock =   0.181436

Exit graphics window to terminate DAKOTA.

• If you want to save the screen output to a file, you can proceed as follows:

• $> dakota –i dakota_case.in –o log.dat

Screen output

• Also, depending on the method you are using you will get a different screen output with the 

information of the simulation.

• The screen output contains information about the problem, each function evaluation and 

summary statistics.

152



• Let us take a look at the rosen_multidim.dat file.

Working with DAKOTA:  Rosenbrock function

%eval_id interface             x1             x2  response_fn_1 

1            NO_ID             -2             -2           3609 

2            NO_ID           -1.5     -2         1812.5 

3            NO_ID             -1             -2            904 

…

…

…

79          NO_ID              1                2            100 

80           NO_ID            1.5             2            6.5 

81           NO_ID             2                2            401 

• This file summarizes the variables and responses of the problem.  Useful for Excel, Matlab, 

scilab, gnuplot, Python, or any other data analysis and plotting package.

Tabular output file – rosen_multidim.dat file

153



• Let us use gnuplot to plot the results of the tabular output file.

• Type in the terminal:

• $> gnuplot

• You should get a screen output similar to this one:

Plotting the tabular output

Working with DAKOTA:  Rosenbrock function

G N U P L O T

Version 4.6 patchlevel 5    last modified February 2014

Build System: Linux x86_64

Copyright (C) 1986-1993, 1998, 2004, 2007-2014

Thomas Williams, Colin Kelley and many others

gnuplot home:     http://www.gnuplot.info

faq, bugs, etc:   type "help FAQ"

immediate help:   type "help"  (plot window: hit 'h')

Terminal type set to 'qt'

gnuplot>

gnuplot version

gnuplot 

prompt

154



• To plot the variables (columns 3 and 4 in the file rosen_multidim.dat), type in the gnuplot 

prompt:

• gnuplot> plot ‘rosen_multidim.dat’ using 3:4 with points

Plotting the tabular output

Working with DAKOTA:  Rosenbrock function

155



• To do a 3D plot of the variables and the response (columns 3, 4 and 5 in the file 
rosen_multidim.dat), type in the gnuplot prompt:

• gnuplot> splot ‘rosen_multidim.dat’ using 3:4:5 with points pointtype 7

Plotting the tabular output

Working with DAKOTA:  Rosenbrock function

156



• To do a 3D plot of the variables and the response (columns 3, 4 and 5 in the file 
rosen_multidim.dat), color the points using the value of the response and add a colorbar, 

type in the gnuplot prompt:

• gnuplot> splot ‘rosen_multidim.dat’ using 3:4:5:5 with points   

pointtype 7 palette

Plotting the tabular output

Working with DAKOTA:  Rosenbrock function

157



• Finally, let us add axis labels and turn off the legend,

• gnuplot> set xlabel “x1”

• gnuplot> set ylabel “x2”

• gnuplot> set zlabel “of1”

• gnuplot> set key off

• gnuplot> splot ‘rosen_multidim.dat’ u 3:4:5:5 pt 7 ps 1 palette

Plotting the tabular output

Working with DAKOTA:  Rosenbrock function

158



• You can run all the tutorials in a similar way.  

• Depending on the method you are using, you might 

find more files in the case directory.

• Also, depending on the method you are using, you 

might need to use different options.

Working with DAKOTA:  Rosenbrock function

159



DACE – Latin Hypercube Sampling (LHS)

• In the directory $TM/dakota_sample_cases/model_problems/rosenbrock_direct_inteface/dace1 you will 

find the input files to run this case.

• DACE stands for design and analysis of computer experiments.

• Use DACE methods for deterministic experiments (computer simulations) and design space 

exploration. In computer experiments we are interested in sampling the parameter space in a 

representative way with the minimum number of samples.

• The output can be used in a sensitivity analysis, uncertainty quantification, or building a 

surrogate.

Working with DAKOTA:  Rosenbrock function

160



DOE – Central Composite Design (CCD)

• In the directory $TM/dakota_sample_cases/model_problems/rosenbrock_direct_inteface/doe1 you will 

find the input files to run this case.

• DOE stands for design of experiments. 

• Use DOE methods for stochastic experiments (physical experiments) and and design space 

exploration.

Working with DAKOTA:  Rosenbrock function

161



Gradient-based optimization – Fletcher-Reeves

• In the directory $TM/dakota_sample_cases/model_problems/rosenbrock_direct_interface/grad1 you will 

find the input files to run this case.

• Gradient-based optimizers are best suited for efficient navigation to a local minimum in the 

vicinity of the initial point.  Use this method for design optimization.

• They are not intended to find global optima in nonconvex design spaces.  

• There are many gradient-based optimizer implemented in DAKOTA. The Fletcher-Reeves 

method requires first derivative information and can only be used in unconstrained problems.

Working with DAKOTA:  Rosenbrock function

162



• Let us study this example to introduce a few 

  w            D KOT ’       .

• We are also going to study how to formulate 

an optimization problem. 

Working with DAKOTA:  Rosenbrock function

163



environment

#graphics

tabular_data

       _    _     = ‘     _g   _   .   ’

method

conmin_mfd

max_iterations = 100

convergence_tolerance = 1e-4

#linear_inequality_constraint_matrix 1 0

# 0 1

#linear_inequality_lower_bounds -2 2

#linear_inequality_upper_bounds -2 2

…

Working with DAKOTA:  Rosenbrock function

Optimization method (method of feasible directions).

Parameters related to the optimization method.

Remember, each optimization method has its own 

options. Refer to the reference manual for more 

information on the options available.

Define coefficients of the linear 

inequality constraints.

Define lower and upper bounds for 

the linear inequality constraint.

Gradient-based optimization case – dakota_case.in file

Display a 2D graphics window of variables and responses (not used any more in 

DAKOTA 6.10 and newer releases)

164



…

model

single

variables

continuous_design = 2

lower_bounds -2 -2

upper bounds 2 2

descriptors ‘x1’ ‘x2’

interface

direct

        _       = ‘         k’

…

Working with DAKOTA:  Rosenbrock function

Labels for the variables.

Number of design variables in a real interval.

Upper and lower bounds of the design variables.

Gradient-based optimization case – dakota_case.in file

165



…

responses

response_functions = 1

#analytic_gradients

numerical_gradients

method_source 

dakota

interval_type

forward

fd_gradient_step_size = 1.e-5

no_hessians

      ‘   ’

Working with DAKOTA:  Rosenbrock function

Number of outputs or objective functions.

Do not compute hessians.

Compute analytical gradients, 

must be provided by the user.

Compute numerical gradients.

Compute numerical gradients using dakota.

Type of gradient (forward, central).

Gradient step size.

Goal of the optimization, min or max.

If it is not specified it will minimize by the default (min).

Gradient-based optimization case – dakota_case.in file

166



Gradient-free optimization – Pattern search

• In the directory $TM/dakota_sample_cases/model_problems/rosenbrock_direct_interface/pattern_search you 

will find the input files to run this case.

• Derivative/gradient-free methods can be more robust than gradient-based approaches. 

• They can be applied in situations where gradient calculations are too expensive or unreliable.

• Pattern Search methods can be applied to nonlinear optimization problems. Use this method   

for design optimization.

• They generally walk through the domain according to a defined stencil of search directions. 

Working with DAKOTA:  Rosenbrock function

167



Evolutionary algorithm – COLINY_EA

• In the directory $TM/dakota_sample_cases/model_problems/rosenbrock_direct_interface/ea1 you will 

find the input files to run this case.

• Evolutionary algorithm are used for global optimization or multi-objective optimization. 

• Evolutionary Al orithms (EA) are based on Darwin’s theory of survival of the fittest. 

• The EA simulates the evolutionary process by employing the mathematical analogs of processes 

such as natural selection, breeding, offspring and mutation. 

• Use this method for design optimization.  The data can be also used for design exploration.

Working with DAKOTA:  Rosenbrock function

168



Evolutionary algorithm – SOGA

• In the directory $TM/dakota_sample_cases/model_problems/rosenbrock_direct_interface/ea2 you will 

find the input files to run this case.

• Ultimately, the EA identifies a design point (or a family of design points) that minimizes the 

objective function. 

• EA methods are often used when the problem is non-smooth, multimodal, or poorly behaved.

• Use this method for design optimization. The data can be also used for design exploration.

Working with DAKOTA:  Rosenbrock function

169



• Let us couple DAKOTA with a generic application 

using the fork interface.

• This applies to any external application that can be 

run from the terminal window or command line 

interface.

• These cases are located in the directory 
$TM/dakota_sample_cases/model_problems/python3/rosenbrock_fork_interface

Working with DAKOTA:  Rosenbrock function

170



Running DAKOTA using a fork interface

• So far, we solved the Rosenbrock function using a program built-in in DAKOTA via direct

simulation interface.

• It is also possible to call an external program by using DAKOTA black-box interface. 

• Two interfaces are available to link a simulation code with DAKOTA, namely, system interface

and fork interface.

• Disregarding of the interface used (system or fork), pre-processing and post-processing 

functionality typically needs to be supplied (or developed) in order to transfer the parameters 

from DAKOTA to the black-box application and to extract the response values from the black-

box application output file for return to DAKOTA.

• The big question is, 

• fork or system interface, which one do we use?.  

• Following recommendations from the developers, we are going to use fork interface.

Working with DAKOTA:  Rosenbrock function

171



DAKOTA
DAKOTA 
Input file 

DAKOTA 
Output file

DAKOTA 
Parameters file

DAKOTA 
Results file

Analysis driver

BLACK BOX 
simulator

Pre-processing 
APREPRO 
DPREPRO

Automatic  
post-processing 

User supplied

Code input Code output

INTERFACE

VARIABLES RESPONCES

METHOD AND ENVIRONMENT

Running DAKOTA using a fork interface

Working with DAKOTA:  Rosenbrock function

• To run a simulation loop using the fork

interface, we only need to modify the 

block interface in da ota’s input file.

• In the interface block we define the 

level of parallelism, analysis driver, and 

the name of the files generated and 

read by DAKOTA.

• Let us study how to interface a black-

box program with DAKOTA.

• The program to be used is written in 

Python.

172



• The results of this simulation are the same as the one using the direct interface. 

• The only difference is that it takes more time as it needs to parse all the information using the 

black-box interface.

• Remember, all the information of the design variables and quantities of interest is saved in the 
file dakota_output.dat.  This was defined in the block environment in the .in file.

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface

173

• In the directory $TM/dakota_sample_cases/model_problems/python3/rosenbrock_fork_interface/grad1 

you will find the input files to run this case.



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

fork interface

• The fork interface is defined in the block interface of DAKOTA’s input file (.in)

• In this block we define the level of parallelism, analysis driver, and the name of the files generated 

and read by DAKOTA.

• We also define the name of the template directory.

Running DAKOTA using a fork interface – dakota_case.in file

174



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

asynchronous

• First at all, this entry is commented. The # symbol is used to comment lines.

• This entry defines if we want to run an asynchronous simulation, i.e., several simulations at the 

same time.

Running DAKOTA using a fork interface – dakota_case.in file

175



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

evaluation_concurrency

• This keyword is related to the entry asynchronous and is also commented.

• This entry defines the number of concurrent simulations we want to conduct.

• If we do not define a value, DAKOTA will use the maximum number of cores available.

• The concurrent simulations can be parallel simulations as well.

• Concurrent simulations is an efficient way to exploit computational resources.

Running DAKOTA using a fork interface – dakota_case.in file

176



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

analysis_driver

• In this entry we call the simulation script. In the simulation script we define what we want to do (we 

call the programs, we manipulate files, do the post-processing, and so on).

• In this script we give the instructions of how to copy the input generated by DAKOTA (params.in) 

to the input needed by the simulator program.

• We also create the simulation output file (results.out) that DAKOTA reads.

• We are going to study the simulator_script later on.

Running DAKOTA using a fork interface – dakota_case.in file

177



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

parameters_file

• This is the name of the file generated by DAKOTA.

• This file will be used later as an input for the simulation program.

• The default name is params.in, but you can change it.

Running DAKOTA using a fork interface – dakota_case.in file

178



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

results_file

• This is the name of the file that DAKOTA reads.

• This file is generated by the simulation program.

• The default name is results.out, but you can change it.

Running DAKOTA using a fork interface – dakota_case.in file

179



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface – dakota_case.in file

work_directory 

• When the work_directory feature is enabled, DAKOTA will create a directory for each evaluation, 

with optional tagging (directory_tag) and saving (directory_save).

• Everything will be done in the working directory and all evaluations are relative to the current 

working directory.

180

These are two 

different entries



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface – dakota_case.in file

directory_tag

• If this keyword is used, DAKOTA will append a period and the function evaluation number to the 

work directory names.

• If this keyword is omitted, the default is no tagging, and the same work directory will be used for all 

function evaluations. 

• Tagging is most useful when multiple function evaluations are running simultaneously. 

181

These are two 

different entries



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface – dakota_case.in file

copy_files

• In this entry we define the directory where all files needed to run the simulation are located.

• Every file needed to run the simulation must be located here.

• The location of this directory is in reference to the case directory. 

• That is, templatedir is located in the working directory.

182



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface – dakota_case.in file

      ‘w  k   ’

• In this entry we give the base name of the simulation directories (workdir.N).

• Every file needed to run the simulation will be copied in the directory workdir.N.

• The location of this directory is in reference to the case directory, which is enable by using the 

entry work_directory.

• That is, workdir.N is located in the case directory.

183

These are three 

different entries



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface – dakota_case.in file

directory_save

• Preserve the work directory after function evaluation completion.

• By default, when a working directory is created by DAKOTA using the work_directory keyword, it 

is deleted after the evaluation is completed. 

• The directory_save keyword will cause DAKOTA to leave (not delete) the directory.

184

These are three 

different entries



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface – dakota_case.in file

file_save

• Keep the parameters and results files after the analysis driver completes.

• If file_save is used, Dakota will not delete the parameters and results files after the function 

evaluation is completed.

185

These are three 

different entries



interface

fork

#asynchronous

#evaluation_concurrency = 2

analysis_driver = ‘         _      ’

          _     = ‘      .  ’

       _     = ‘       .   ’

work_directory directory_tag

    _      = ‘           /*’

      ’w  k   ’     _              _    

#aprepro

Working with DAKOTA:  Rosenbrock function

Running DAKOTA using a fork interface – dakota_case.in file

aprepro

• The format of data in the parameter files can be modified for direct usage with the APREPRO pre-

processing tool using the aprepro [1] specification

• Without this keyword, the parameters file are written in DPrePro format. 

• DPrePro is a utility included with Dakota, described in the Users Manual. 

[1] G. D. Sjaardema. APREPRO: An algebraic preprocessor for parameterizing finite element analyses. Technical Report SAND92-2291, Sandia National 

Laboratories, Albuquerque, NM, 1992.
186



dprepro $1 ros.template ros.in

python3 p1.py

mv results.txt $2

Working with DAKOTA:  Rosenbrock function

dprepro $1 ros.template ros.in

• In the simulator_script file, $1 refers to the file params.in generated by DAKOTA and $2 

refers to the results file returned to DAKOTA.

• Here, dprepro will take the values generated by DAKOTA (the file params.in), and will copy them 

into ros.template.  

• The final file will be named ros.in.

• The script dprepro will copy the values generated by DAKOTA in the places where it finds the 
entries {x1} and {x2} in the file ros.template.  

• The values x1 and x2 correspond to the design variables defined in the .in file.

• In this way, we automatically copy the values generated by DAKOTA to the file ros.in, that will be 

read by the program.

• The file ros.template is located in the directory templatedir, as defined in the 

dakota_rosenbrock.in file.

Running DAKOTA using a fork interface – simulator_script file

187



dprepro $1 ros.template ros.in

python3 p1.py

mv results.txt $2

Working with DAKOTA:  Rosenbrock function

python3 p1.py

• After creating the file ros.in, we can proceed to run the program.

• In this case, we are using a small Python script (Python 3) to compute the Rosenbrock function 

and its derivatives.

• Have in mind that at this point, you can call any program.  The only requirement is that it must be 

able to run from the terminal, and preferably with no graphical interface.

• The Python script p1.py will read the file ros.in, will do some computations and will create the 

file results.txt

• Remember, we are now working in a subdirectory located in the case directory, namely workdir.1, 

w  k   .2  … w  k   . . 

• All the files needed, and the simulation information are saved in this directory.

• The python script p1.py is located in the directory templatedir, as defined in the 

dakota_rosenbrock.in file.

Running DAKOTA using a fork interface – simulator_script file

188



dprepro $1 ros.template ros.in

python3 p1.py

mv results.txt $2

Working with DAKOTA:  Rosenbrock function

mv results.txt $2

• Finally, we copy the file results.txt into the file results.out.

• DAKOTA will read the file results.out and it will keep iterating until reaching convergence or 

the maximum number of function evaluations.

• Creating all the files, doing the post-processing and setting the rules,                                               

is the user responsibility.

Running DAKOTA using a fork interface – simulator_script file

189



Working with DAKOTA:  Rosenbrock function

• The file ros.in (which is created from the file ros.template), needed by your program and 

generated by DAKOTA, is structured as follows:

{x1} {x2}

• The script dprepro will copy the values generated by DAKOTA in the places where it finds the 
entries {x1} and {x2} in the file ros.template.  

• The values x1 and x2 correspond to the design variables defined in the variables block in the 
dakota_rosenbrock.in file.

• The values generated by DAKOTA will be automatically copied to the file ros.in, that will be 

read by the program.

• Remember, the file ros.template is located in the directory templatedir, as defined in the 

interface block of the dakota_rosenbrock.in file.

• You can have as many templates files as you like.

Running DAKOTA using a fork interface – simulator_script file

190



Working with DAKOTA:  Rosenbrock function

• The file results.out needed by DAKOTA, must be structured as follows:

Objective functions

Non-linear inequalities

Non-linear equalities

[ Analytical gradients ]

[[ Analytical hessians ]]

• The entries are used only if they are required by DAKOTA.

• If a required entry is not specified, DAKOTA will complain.  In the same way, if an additional 

entry is provided and it is not required, DAKOTA will complain.

• In a few words, if the amount of data in this file does not match the function request vector, 

DAKOTA will abort execution with an error message.

Running DAKOTA using a fork interface – simulator_script file

191



Working with DAKOTA:  Rosenbrock function

• For example, for a problem with two objective functions, one non-linear inequality, three non-
linear equalities, no analytical gradients, and no analytical hessians, the results.out file 

should look like this one:

1.510 #Objective function 1

3.743 #Objective function 2

0.35 #Non-linear inequality 1

2.1 #Non-linear equality 1

1.0 #Non-linear equality 2

0.514 #Non-linear equality 3

• It is the user responsibility to create and format this file.

Running DAKOTA using a fork interface – simulator_script file

192



Working with DAKOTA:  Rosenbrock function

• In this case, DAKOTA will only ask for one input (objective function value).

• Therefore, the file results.out needed by DAKOTA, is structured as follows:

Objective function numerical value

Running DAKOTA using a fork interface – simulator_script file

193



DAKOTA
DAKOTA 
Input file 

DAKOTA 
Output file

DAKOTA 
Parameters file

DAKOTA 
Results file

Analysis driver

BLACK BOX 
simulator

Pre-processing 
APREPRO 
DPREPRO

Automatic  
post-processing 

User supplied

Code input Code output

INTERFACE

VARIABLES RESPONCES

METHOD AND ENVIRONMENT

So, what just happened here?

Working with DAKOTA:  Rosenbrock function

params.in 

ros.in

ros.template

results.txt

results.out

dakota_output.datdakota_case.in

194



So, what just happened here?

Working with DAKOTA:  Rosenbrock function

• At this point we hope that the workflow for data exchange between Dakota and the black-box 

application is crystal clear.

195



Working with DAKOTA:  Rosenbrock function

Fork interface directory structure

196



Working with DAKOTA:  Rosenbrock function

Fork interface directory structure

197



• Directories:

• Case directory.

• templatedir

• Input files:

• dakota_case.in

• simulator_script

• templatedir/ros.template

• templatedir/p1.py

• Output files:

• dakota_output.dat

• A lot of files inside the generated working directories (workdir.N).

Running DAKOTA using a fork interface – Files and directories that will be used

Working with DAKOTA:  Rosenbrock function

198



• This case is ready to run, go to the directory 

• $> cd $TM/dakota_sample_cases/model_problems/python3/rosenbrock_fork_interface/grad1

• To run it, type in the terminal:

How to run this tutorial

Working with DAKOTA:  Rosenbrock function

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in

• At this point, let us explore the rest of the sub-directories.

199



Restarting a DAKOTA simulation

• It is possible to restart a DAKOTA simulation.

• Restarting can be necessary after interruptions imposed by computer usage policies, power 

failures, system failures, and so on. 

• Also, it may happen that you would like to conduct the same optimization, but to a tighter final 

convergence tolerance.

• Dakota automatically records the variable and response data from all function evaluations so 

that new executions of DAKOTA can pick up where previous executions left off.

• Unless otherwise specified, the restart information is written to the default restart file, i.e., 
dakota.rst, which is written in binary format.

• Restarting can be used with direct and fork interfaces.

Working with DAKOTA:  Rosenbrock function

200



Restarting a DAKOTA simulation

• To write a restart file using a particular name, the –write_restart  command line input (may be 

abbreviated as –w ) is used:

• $> dakota –i input.in –write_restart my_restart_file

• To restart DAKOTA from a restart file, the –read_restart  command line input (may be 

abbreviated as –r ) is used:

• $> dakota –i input.in –read_restart my_restart_file

• To read in only a portion of a restart file, the –stop_restart  control (may be abbreviated as –s ) 

is used to specify the number of entries to be read from the database. For example, to read in 

the first 50 evaluations from dakota.rst:

• $> dakota –i input.in –r dakota.rst –s 50 –w dakota_new.rst

Working with DAKOTA:  Rosenbrock function

201



The DAKOTA restart utility

• The Dakota restart utility program provides a variety of facilities for managing restart files from 

Dakota executions. The executable program name is dakota_restart_util  and it has many 

options, as shown by the usage message returned when executing the utility without any 

options.

• To print  the contents of a particular restart file in human-readable format, you can proceed as 

follows: 

• $> dakota_restart_util print dakota.rst

• To save the contents of a particular restart file in tabular format, you can proceed as follows:

• $> dakota_restart_util to_tabular dakota.rst output.txt

• You can also remove corrupted data from the restart file, but we will not address this.  For more 

information refer to DAKOTA’s user  uide.

Working with DAKOTA:  Rosenbrock function

202



• Let us run again the case                          
$> cd $TM/dakota_sample_cases/model_problems/python3/rosenbrock_fork_interface/grad1

• To run it, type in the terminal:

How to restart a case

Working with DAKOTA:  Rosenbrock function

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in

• At any point in the simulation press ctrl-c, in my case I will stop the simulation about the 45th

function evaluation.

203



• Now let us print the information contained in the file dakota.rst, type in the terminal:

• $> dakota_restart_util print dakota.rst

• It will print all the simulations that where correctly evaluated and saved.

• This means, that we can restart the simulation from the last record saved in the file 
dakota.rst.  

• However, it is a good practice to restart one or two records before the last one reported in the 
file dakota.rst. 

How to restart a case

Working with DAKOTA:  Rosenbrock function

204



• In my case I get the following information:

How to restart a case

Working with DAKOTA:  Rosenbrock function

…

…

…

------------------------------------------

Restart record   43  (evaluation id   43):

------------------------------------------

Parameters:

-4.8642720829849601e-01 x1

1.8615938867625639e-01 x2

Active response data:

Active set vector = { 1 }

2.4640066825800000e+00 obj_fn

Restart file processing completed: 43 evaluations retrieved.

• To play it safe, I will restart from the record 40.

205



• To restart the simulation, type in the terminal:

• $> dakota –i dakota_case.in –r dakota.rst –s 40 –w dakota1.rst

• We are restarting the simulation using the file dakota.rst, we are restarting from the record 

40 (check that the folder exist in the case directory), and we are writing a new restart file named 
dakota1.rst.

• Before restarting, feel free to change any parameter in the dakota_case.in file.  

• For instance, you can change the interval_type and fd_gradient_step_size keywords.

How to restart a case

Working with DAKOTA:  Rosenbrock function

206



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

207



• Optimization with DAKOTA. 

• The Branin function.

• You will find this tutorial in the following directory:

$TM/dakota_sample_cases/model_problems/python3/branin

Working with DAKOTA:  Branin function

208



• In this tutorial, we will use the Branin function to illustrate 

the idea behind surrogate-based optimization (SBO)

• First, we are going to work with design and analysis of 

computer experiments (DACE).

• After building the surrogate, we are going to work with 

gradient based algorithms.

• Feel free to e plore DAKOTA’s input file.

Working with DAKOTA:  Branin function

209



The Branin function

Subject to 

Global minimum

Working with DAKOTA:  Branin function

210



The Branin function

Working with DAKOTA:  Branin function

Analytical function – Surface representation

211



The Branin function

Working with DAKOTA:  Branin function

Analytical function – Contour plot and minimum values

212



Working with DAKOTA:  Branin function

To perform the SBO, we proceed as follows:

• Design an experiment.

• Run high fidelity simulations.

• Construct the surrogate.  

• There are many methods, just to name a few: 

kriging interpolation (Gaussian process), neural 

networks, radial basis functions, polynomial 

functions, least squares and so on.

• Compute initial sensitivities and do initial screening.

• Explore the design space.

• Validate the surrogate.

• Improve the surrogate.  

• This includes training the surrogate, removing 

outliers and smoothing the surrogate.

• Do the optimization at the surrogate level.  

• Visualize to design scenario.

The Branin function - SBO workflow

213



The Branin function

Branin function - Analytical LHS sampling in design space 

(30 experiments)

Working with DAKOTA:  Branin function

DACE experiment

214



The Branin function

Branin function – Surrogate, meta-model, response 

surface, you name it.

Branin function - Analytical 

Working with DAKOTA:  Branin function

Surrogate – Kriging interpolation

215



The Branin function

• The red points are global minimum of the analytical Branin function, and the yellow points are 

the global minimum in the surrogate.

• We conduct constrained gradient-based optimization on the surrogate, for this we use the 

method of feasible directions (MFD), with multiple starting points (multi-start). 

• We choose different initial points because we want to increase the possibilities of finding all the 

minimum.  

Working with DAKOTA:  Branin function

Surrogate based optimization at the surrogate level

216



The Branin function

Working with DAKOTA:  Branin function

• Surrogate based optimization using the MFD gradient based method.

• Surrogate generated using kriging interpolation.

217



The Branin function

Working with DAKOTA:  Branin function

• Optimization using the MFD gradient based method and high-fidelity simulations.

• Maybe we have a very well posed problem, but we do not know the design space.

• We also get different optimal values depending on the starting point.

218



The Branin function

Working with DAKOTA:  Branin function

• Optimization using the MFD gradient based method and high-fidelity simulations.

• Maybe we have a very well posed problem, but we do not know the design space.

• We also get different optimal values depending on the starting point.

219



The Branin function

Working with DAKOTA:  Branin function

• Optimization using the MFD gradient based method and high-fidelity simulations.

• Maybe we have a very well posed problem, but we do not know the design space.

• We also get different optimal values depending on the starting point.

220



The Branin function

Working with DAKOTA:  Branin function

• Comparison of optimization using high fidelity simulations and SBO.

• The red points are the global minimum of the multimodal function.

• At the surrogate level we can find optimal and sub-optimal values.

SBO (30 experiments)Optimization using high fidelity simulations

(more than 60 experiments)
221



• This function is highly non-linear and multimodal.

• Local methods will have problems in finding all the optimal points.

• Global methods can find all the optimal points.

Derivative free global method – DIRECT (division of rectangles)

1000 function evaluations at surrogate level

The Branin function

Working with DAKOTA:  Branin function

222



Surrogate based optimization

• So, how many experiments do we need to run to get a good surrogate?

• One way to determine the number of experiments is to use 10 experiments for each design 

variable.

• For example, if you have 5 design variables, you can use 50 experiments.

• Have in mind that this approach is very conservative.

• For non-linear problems and in order to better explore the design space, you will need to 

use much more experiments.

Working with DAKOTA:  Branin function

223



Surrogate based optimization

where

• So, how many experiments do we need to run to get a good surrogate?

• The following equation will give you a fairly good initial estimate of the number of 

experiments,

is the number of design variables

is a correcting factor

Working with DAKOTA:  Branin function

• This equation will give you a good initial estimate only for linear and quadratic 

problems with no non-linear constraint, two QOI’s and a ma imum of  0 desi n 

variables.
224



• To illustrate how to setup a SBO case, let us go to 

the directory:

$TM/dakota_sample_cases/model_problems/python3/branin/surrogate/c1

Working with DAKOTA:  Branin function

225



environment

tabular_data

       _    _     = ‘     _   .   ’

   h  _        = ‘M ’

method

  _   h   = ‘M ’

   h  _         = ‘METHOD_O _ URR’

multi_start

starting_points =

9 4.2

-4 1

7 15

2 9

-4.8 13.5

…

Working with DAKOTA:  Branin function

Pointer to sub-method to run from 

each starting point.

We will use a multi-start method.Method

Identifier of the method block.

Multiple starting points for the method

Identify which method leads the Dakota study

SBO – dakota_case.in file

226



…

method

  _   h   = ‘METHOD_O _ URR’

   h  _         = ‘ URR_MODEL’

output verbose

conmin_mfd

…

Working with DAKOTA:  Branin function

Optimization method (method of feasible directions).

Control how much method information is written to the 

screen and output file.

Identifier of the method block.

Identifier for model block to be used by 

a method.

SBO – dakota_case.in file

227



…

model

  _      = ‘ URR_MODEL’

    _   h  _        = ‘D CE’

surrogate global

       _     = ‘    1. x ’

custom_annotated header eval_id

gaussian_process 

surfpack

export_model

        _     x = ‘  _     g   . x ’

…

Working with DAKOTA:  Branin function

File containing points to be used to build the surrogate.

Give the model block an identifying name, in case of 

multiple model blocks.

Pointer to method to be used to gather training data.

An empirical model that is created from data or the results of a 

submodel. Select a surrogate model with global support. 

Use the Surfpack version of gaussian 

process surrogates. 

Exports surrogate model in 

user-selected format

SBO – dakota_case.in file

Format of the input file

228



…

method

  _   h   = ‘D CE’

     _         = ‘D CE_M’

sampling

samples 0

model

  _      = ‘D CE_M’

single

         _        = ‘V1’

         _        = ‘I1’

         _        = ‘R1’

…

Working with DAKOTA:  Branin function

Identifier for model block to be used by a method

Specify which variables block will be included with this model block

Interface block pointer for the single model type

Specify which responses block will be used by this model block

Identifier of the method block.

Identifier of the model block.

Randomly samples variables according to their distributions.

As we are reading in a file, we use 0 samples (no need to generate 

random experiments).

SBO – dakota_case.in file

229



…

variables

  _          = ‘V1’

continuous_design = 2

upper_bounds -10.0 -15.0

lower_bounds -5.0 0.0

cdv_descriptors ‘x1’ ‘x2’

interface

  _          = ‘I1’

fork

        _       ‘         _      ’

…

Working with DAKOTA:  Branin function

Identifier of the variables block.

Identifier of the interface block.

SBO – dakota_case.in file

230



…

responses

  _          = ‘R1’

num_objectives_functions = 1

numerical_gradients

method_source 

dakota

interval_type 

forward

no_hessians

      ‘   ’

Working with DAKOTA:  Branin function

Identifier of the responses block.

SBO – dakota_case.in file

231



  h  “1” >    . x 

mv tmp.txt $2

Working with DAKOTA:  Branin function

• We save the numerical value 1 in the file tmp.txt., and then we pass this value to 

the file results.out.

• As we are creating a surrogate model using external data, we do not need to interface 

with an e ternal application, we will use da ota’s surro ate library (surfpack) to 

construct the surrogate and evaluate the function internally. 

• However, DAKOTA will always ask for the results.out file.  

• Therefore, we create a dummy file.

• Also, we do not need to use templates files.

SBO fork interface – simulator_script file

232



• Directories:

• Only the case directory.

• Input files:

• dakota_case.in

• simulator_script

• data1.txt

(this file contains the training points to be used to construct the surrogate,          

it must be generated a priory)

• Output files:

• table_out.dat

• my_surrogate.txt.obj_fn.alg

• my_surrogate.txt.obj_fn.sps

Working with DAKOTA:  Branin function

SBO fork interface – Files and directories that will be used

233



• This case is ready to run, go to the directory 

$> cd $TM/dakota_sample_cases/model_problems/python3/branin/surrogate/c1

• To run it, type in the terminal:

Working with DAKOTA:  Branin function

How to run this tutorial

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in

• At this point, explore the rest of the sub-directories.

234



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

235



Working with DAKOTA:  Multi-objective optimization

• Multi-objective optimization with DAKOTA. 

• Optimization case 1.  Parabolic function.

• You will find this case in the following directory:

$TM/dakota_sample_cases/model_problems/python3/parabolic_function

236



Working with DAKOTA:  Multi-objective optimization

• In this tutorial, we will use two parabolic functions to 

illustrate the idea behind multi-objective optimization 

(MOO).

• First, we are going to do gradient based optimization in 

each individual function.

• Then, we are going to solve the MOO problem using a 

derivative free method.

237



Working with DAKOTA:  Multi-objective optimization

and

• In the following search domain,

• Problem definition:

Case 1. Parabolic function

238



Working with DAKOTA:  Multi-objective optimization

Case 1. Parabolic function

at

at

• If we solve for each function independently (single-objective optimization), we get,

239



Working with DAKOTA:  Multi-objective optimization

Case 1. Parabolic function

• Single-objective optimization is easy.

• Even easier when we have a well posed problem (bounded, constrained, and smooth problem).

• Let us work with the same problem but this time we will solve both functions at the same time.

• That is, we want to minimize QOI 1 and at the same time we want to minimize QOI 2.

• It is clear that we do not have a single solution.

• Instead, we have a set a solutions, that represents the optimal solutions for a combination of 

design variables.

240



Working with DAKOTA:  Multi-objective optimization

Case 1. Parabolic function

• Multi-objective optimization.

• Pareto front and feasible solutions in the design space.

241



Working with DAKOTA:  Multi-objective optimization

Case 1. Parabolic function

• From this point on, please follow me.  We are all going to work at the same pace. 

• In the directory $TM/dakota_sample_cases/model_problems/python3/parabolic_function you will find 

four directories containing different case setup. 

• Let us go to the directory fork1 which corresponds to the MOO case, and type in the terminal,

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in 

• At this point, explore the rest of the sub-directories.

242



Working with DAKOTA:  Multi-objective optimization

Case 1. Parabolic function

• These are the directories and files that you will find in each directory:

• Directories:

• templatedir

• Files:

• dakota_case.in

• simulator_script

• templatedir/input.template

• templatedir/p1.py

243



Working with DAKOTA:  Multi-objective optimization

• Multi-objective optimization with DAKOTA. 

• Optimization case 2.  Cone problem.

• You will find this case in the following directory:

$TM/dakota_sample_cases/model_problems/python3/cones

244



Working with DAKOTA:  Multi-objective optimization

Case 2. Cone problem

where

and

• Problem definition:

245



Working with DAKOTA:  Multi-objective optimization

Case 2. Cone problem

(Volume)

(Base area)

(Lateral surface area)

(Total area)

(Slant height)

• And h is the height and r is the base radius.

• If you want, consider all the linear dimensions in meters (pretty much it does not matter what 

units do you use).

• And where,

246



Working with DAKOTA:  Multi-objective optimization

Case 2. Cone problem

• Let us study this problem from two different points of view:

• Single-objective optimization problem. We are interested in finding one minima.

• Multi-objective optimization problem.  There is no single solution, the solution is a set of 

optimal solutions (pareto front or non-dominated solutions).

Goals:

247



Working with DAKOTA:  Multi-objective optimization

Case 2. Cone problem

• Single-objective optimization problem. 

• Each design represents the optimum solution for its corresponding single-objective optimization 

problem.

• But, what about the designs between both scenarios?

• r = 5.131

• h = 7.254

• V = 200

• S = 143.23

• T = 225.935

?

• r = 4.073

• h = 11.51

• V = 200

• S = 156.227

• T = 208.345
248



Working with DAKOTA:  Multi-objective optimization

Case 2. Cone problem

• Multi-objective optimization problem.

• All the non-dominated solutions are represented by the Pareto frontier. 

249



Working with DAKOTA:  Multi-objective optimization

Case 2. Cone problem

• From this point on, please follow me.  We are all going to work at the same pace. 

• We are going to conduct two cases in the following order:

• Multi-objective optimization using the MOGA method (directory fork1).

• Single-objective optimization using a gradient based method (directory fork2).

• These are the directories and files that will be used

• Directories:

• templatedir

• Files:

• dakota_case.in

• simulator_script

• templatedir/input.template

• templatedir/p1.py

250



Working with DAKOTA:  Multi-objective optimization

Case 2. Cone problem

• To run this case, go to the directory:

$> cd $TM/dakota_sample_cases/model_problems/python3/cones

• Go to the desired sub-directory and type in the terminal

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in 

• At this point, explore the rest of the sub-directories.

251



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

252



• Coupling DAKOTA and OpenFOAM. 

• The driven cavity case.

• You will find this tutorial in the following directory:

$TM/dakota_openfoam_coupling/cavity

Coupling DAKOTA and OpenFOAM: driven cavity case 

253



Coupling DAKOTA and OpenFOAM: driven cavity case 

• In this tutorial, we will couple DAKOTA with OpenFOAM.

• Hereafter, we demonstrate DAKOTA code coupling, 

parallel asynchronous execution, and optimization 

capabilities.

• We are assuming that we all know how to use 

OpenFOAM.  

• Therefore, unless strictly necessary we will not go into 

details on how to run OpenFOAM or how setup a case. 

254



Driven cavity optimization

Coupling DAKOTA and OpenFOAM: driven cavity case 

• In this tutorial we conduct a parametric study, a bounded-unconstrained gradient optimization, nonlinear least 

squares study (calibration), a genetic algorithm optimization and SBO.

• The design variable is velocity, and the objective function is the pressure measured at a point located in the 

middle of the cavity.

• We aim at finding the optimal velocity (going to the left or to the right), to obtain the maximum pressure at the 

center of the cavity.

255



Driven cavity optimization

Parametric study High fidelity gradient-based optimization 

(CONMIN – FRCG)

Coupling DAKOTA and OpenFOAM: driven cavity case 

256



Coupling DAKOTA and OpenFOAM: driven cavity case 

• We are going to conduct five  studies in the following order:

• Parametric study.

• Bounded-unconstrained gradient optimization.

• Nonlinear least squares study (calibration).

• Genetic algorithm optimization.

• SBO.

• From this point on, please follow me.  We are all going to work at the same pace. 

• But first let us recall the fork interface directory structure.

257



Coupling DAKOTA and OpenFOAM: driven cavity case 

• Workflow for data exchange between DAKOTA and OpenFOAM. 

• The white rectangles denote process blocks.

• The light-shaded blue document symbols denote unchanging sets of files, 

• The light-shaded green document symbols indicate files that change with each set of design parameters 

generated by DAKOTA or after the end of the evaluation of the QOI.

• The light-shaded grey area denotes the domain of the control script that automatically prepares the case.

• This includes, CAD geometry, mesh generation, launching the solver, quantitative and qualitative 

post-processing, and automatic formatting of input and output files.

258



Coupling DAKOTA and OpenFOAM: driven cavity case 

• Workflow for data exchange between DAKOTA and OpenFOAM. 

• The first input is DAKOTA input file, where the problem is defined.

• A Template directory is created to store the parametrical input files, i.e., subject to change as a result of 

the optimization process (e.g., files containing the definition of the geometry, boundary conditions, 

physical properties, and so on).

• The automatic update of the parametrical files located in the Template directory is done automatically by 

using a DAKOTA supplied utility or user-defined scripts. 

• These utilities skim all files located in the Template directory and automatically insert the values 

generated by DAKOTA, into the predefined locations in the template files.

259



Coupling DAKOTA and OpenFOAM: driven cavity case 

• Workflow for data exchange between DAKOTA and OpenFOAM. 

• A Base case directory is also created, where all the files needed to run the OpenFOAM simulations are 

stored.

• The Simulation control script file (or simulation driver), merges the automatically edited files in the 

Template directory with the Base case directory, creating in this way a working directory for a specific 

set of design parameters.

• At this point, the Simulation control script executes all the steps related to the simulation, i.e., geometry 

update, meshing, and launching the solver (in serial or parallel).

260



Coupling DAKOTA and OpenFOAM: driven cavity case 

• Workflow for data exchange between DAKOTA and OpenFOAM. 

• All the data generated is automatically post-processed following the instructions defined in the Simulation 

control script.

• It is important to mention that the output of OpenFOAM is converted into DAKOTA Results file following 

the instructions defined in the Simulation control script.

• This instructions are encoded by the user.

• It should be emphasized that the Template directory and Base case directory are created by the user. 

And he Base case directory contains a working OpenFOAM case.

261



Coupling DAKOTA and OpenFOAM: driven cavity case 

Fork interface directory structure

262



Coupling DAKOTA and OpenFOAM: driven cavity case 

Fork interface directory structure

263



Applications needed to run this case

Coupling DAKOTA and OpenFOAM: driven cavity case 

• To run this case, you need the following applications,

• DAKOTA.

• OpenFOAM.

• Bash utilities.

264



Coupling DAKOTA and OpenFOAM: driven cavity case 

These are the directories and files that will be used

• Directories:

• casebase

• templatedir

• Files:

• dakota_case.in (DAKOTA’s input file)

• simulator_script

• templatedir/p.template

• templatedir/U.template

265



How to run this tutorial

Coupling DAKOTA and OpenFOAM: driven cavity case 

• To run the case, go to the case directory

$> cd $TM/dakota_openfoam_coupling/cavity

• Go to the desired sub-directory (cavity_gradient for instance) and type in the terminal

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in 

• At this point, explore the rest of the sub-directories.

266



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

267



Additional code coupling tutorials

$TM/dakota_openfoam_coupling/ahmed_OPENSCAD/geo

• Geometry parameterization. 

• You will find this case in the following directory:

268



Ahmed body

• In this case we parameterize the geometry using openscad. 

• The design variable is the slant angle. 

• This geometry can be used as input file for snappyHexMesh or cfMesh.

http://www.wolfdynamics.com/training/opt/image7.gif

Additional code coupling tutorials

269

http://www.wolfdynamics.com/training/opt/image7.gif


Applications needed to run this case

• To run this case, you need the following applications,

• DAKOTA.

• OpenFOAM.

• OpenSCAD.

• Bash utilities.

Additional code coupling tutorials

270



• From this point on, please follow me.  

• We are all going to work at the same pace. 

• Directories:

• casebase

• templatedir

• Files:

• dakota_case.in

• simulator_script

• templatedir/geo.template

• templatedir/input.template

These are the directories and files that will be used

Additional code coupling tutorials

271



• This case is ready to run.

• To run it, go to the case directory:

$> cd $TM/dakota_openfoam_coupling/ahmed_OPENSCAD/geo

• Inside the directory geo type in the terminal

How to run this tutorial

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in 

Additional code coupling tutorials

272



• If you want to take the extra step, you can do the 

actual optimization.

• The case is ready to run.

• Have in mind that running the case (meshing and 

simulation) is computationally intensive.

Additional code coupling tutorials

273



• In this case we aim at optimizing the ahmed body.

• The design variable is the slant angle, and the objective function is the drag coefficient. 

• You can conduct a parametric study, a constrained gradient optimization and/or a surrogate 

based optimization (SBO).

Ahmed body

http://www.wolfdynamics.com/training/opt/image7.gif

Additional code coupling tutorials

274

http://www.wolfdynamics.com/training/opt/image7.gif


Parametric study

Ahmed body

Outlier

Additional code coupling tutorials

275



Surrogate, meta-model or response surface.

Ahmed body

Outlier

Additional code coupling tutorials

276



SBO on the surrogate model built using Kriging interpolation. 

Optimization method: MFD.

Ahmed body

Outlier

Additional code coupling tutorials

277



• Directories:

• casebase

• templatedir

• Files:

• dakota_case.in

• simulator_script

• templatedir/input.template

• templatedir/run_simulation.template

These are the directories and files that will be used

Additional code coupling tutorials

278



• This case is ready to run.

• To run it, go to the case directory:

$> cd $TM/dakota_openfoam_coupling/ahmed_OPENSCAD/multi_OF

• Go to the desired sub-directory and type in the terminal

How to run this tutorial

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in 

Additional code coupling tutorials

279



$TM/dakota_openfoam_coupling/blunt_body_SALOME

• Blunt body shape optimization.

• You will find this case in the following directory:

Additional code coupling tutorials

280



Blunt body shape optimization

• In this case we aim at optimizing the shape of a blunt body.

• The goal is to minimize the drag coefficient.

• The body is parametrized using Bezier curves with four control points.

• In this case we use gradient-based optimization and four linear constraints.

Additional code coupling tutorials

281



Blunt body shape optimization

Additional code coupling tutorials

282



• We are going to conduct two cases in the following order:

• A DACE experiment where we only generate the geometry and the mesh.

• Bounded-constrained gradient optimization.

• To run this case, you need the following applications,

• DAKOTA.

• OpenFOAM.

• SALOME.

• Bash utilities.

Blunt body shape optimization

Additional code coupling tutorials

283



• Directories:

• casebase

• templatedir

• Files:

• dakota_case.in

• simulator_script

• templatedir/input.template

• templatedir/profile4points.py.template

These are the directories and files that will be used

Additional code coupling tutorials

284



• This case is ready to run.

• To run it, go to the case directory:

$> cd $TM/dakota_openfoam_coupling/blunt_body_SALOME

• Go to the desired sub-directory and type in the terminal

How to run this tutorial

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in 

Additional code coupling tutorials

285



$TM/dakota_onshape/API_python2/test_cases/DAKOTA_static_mixer

• Static mixer optimization.

• You will find this case in the following directory:

Additional code coupling tutorials

286



Static mixer optimization

• Code coupling/Optimizer:

DAKOTA 

• Concurrent computations scheduler:      

DAKOTA

• Parametric CAD: 

Onshape (API)

• Black-box solver:                                  

OpenFOAM

• Quantitative and qualitative post-

processing: Python, paraview, 

JavaScript

• Real time data monitoring: 

Python, R, BASH

• Exploration and exploitation of design 

space: Python, R, BASH

• Additional automation scripting:               

Python, BASH

• In this example we will use a workflow a little bit more complicate.

• The workflow involves optimization using a cloud-based parametric CAD application.

• We will use image similarity to drive the optimization study.

Additional code coupling tutorials

287



Static mixer optimization

Additional code coupling tutorials

Inlet 1

Inlet 2
outlet

Change inlet pipe angle 

Monitor velocity 

distribution at the outlet

• Let us see this engineering design framework in action.

• The main goal in this case is to obtain a given velocity distribution at the outlet by changing the angle of the 

inlet pipe 1 (refer to the figure below). 

• The velocity distribution field at the outlet was designed in such a way that the velocity normal to the outlet 

surface has a paraboloid distribution. 

• Then, by using the SSIM index method we can compare the target image with current image.

http://www.wolfdynamics.com/training/opt/ani8.gif
288

http://www.wolfdynamics.com/training/opt/ani8.gif


Static mixer optimization

Additional code coupling tutorials

Inlet 1

Inlet 2
outlet

Change inlet pipe angle 

Monitor velocity 

distribution at the outlet

• The advantage of using image similarity is that we can now fit or optimize the problem according to a given 

visual field (which can come from an experiment).

• This kind of problems are often optimized using integral quantities such a uniformity index, distortion 

coefficient, or swirl index.

• These key performance indicators (KPI) not necessarily indicate that we are satisfying a given distribution of a 

field variable in a given surface or section of interest.

http://www.wolfdynamics.com/training/opt/ani8.gif
289

http://www.wolfdynamics.com/training/opt/ani8.gif


Static mixer optimization

Additional code coupling tutorials

• Let us digress from the main topic to stress the importance of visualization.

• In reference [1] you can find an enlightening discussion about the importance of visualizing the data.

• In the datasaurus dataset used in reference [1], we can see how the data points morph from one shape to 

another, all the while maintaining the same summary statistical values to two decimal places throughout the 

entire process.

290

“...make both calculations and 

graphs. Both sorts of output 

should be studied; each will 

contribute to understanding.”

F. J. Anscombe [2].

http://www.wolfdynamics.com/training/opt/image12.gif

[1] J. Matejka, G. Fitzmaurice. Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing. Autodesk Research. ACM 

SIGCHI Conference on Human Factors in Computing Systems, 2017.

[2] F. Anscombe. Graphs in Statistical Analysis. The American Statistician 27, 1, 17–21, 1973. 

http://www.wolfdynamics.com/training/opt/image12.gif


Static mixer optimization

Additional code coupling tutorials

• The datasaurus dataset it is a variant of the Anscombe’s quartet on steroids.

• The Anscombe’ quartet [ ] is a set of four datasets with similar statistic.

291

I II III IV

X Y X Y X Y X Y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

For all datasets:

Statistical 
property

Value

Sample size 11

Mean (x) 9

Variance (x) 11

Mean (y) 7.50

Variance (y) 4.122

Correlation 0.816

Linear 

regression
Y = 3.00 + 0.5000X

[1] F. Anscombe. Graphs in Statistical Analysis. The American Statistician 27, 1, 17–21, 1973. 



Static mixer optimization

Additional code coupling tutorials

• Anscombe's quartet comprises four datasets that have nearly identical simple statistical properties, yet appear 

very different when graphed

292
[1] F. Anscombe. Graphs in Statistical Analysis. The American Statistician 27, 1, 17–21, 1973. 

For all datasets:

Statistical 
property

Value

Sample size 11

Mean (x) 9

Variance (x) 11

Mean (y) 7.50

Variance (y) 4.122

Correlation 0.816

Linear 

regression
Y = 3.00 + 0.5000X



Static mixer optimization

Additional code coupling tutorials

• Qualitative comparison of velocity distribution at the outlet.

• To compare the images, we will use the SSIM method. 

• In the SSIM, a value of 1 means that the images are identical.

293



Static mixer optimization

Additional code coupling tutorials

• Comparison of the outcome of a DO study and a DSE study. 

• The DO study was conducted using the method of feasible directions (gradient-based method) with numerical gradients 

computed using forward differences. 

• For the DO case, the starting point was 0 degrees, and the case converged to the optimal value in 31 function evaluations. 

• Optimal value: pipe angle equal to 111.0549 degrees and SSIM index equal to 0.9660

• In the DSE case, we explored the design space from 0 to 180 degrees, in steps of 5 degrees (36 function evaluations).

• So roughly speaking, we used the same number of function evaluations as for the DO case.

• The DSE study, while not formerly converging to the optimal solution, gives more information about the design space than the 

DO method.

294



Static mixer optimization

Additional code coupling tutorials

• This case can be easily extended to more design variables.

• The use of exploratory data analysis techniques is of extremely importance when studying high dimensional design spaces.

• In the figure below, the outcome of a case with three design variables is visualized using parallel coordinates (interactive).

• https://joelguerrero.github.io/parallel_coordinates_dse_case/

http://www.wolfdynamics.com/training/opt/ani9.gif
295

http://www.wolfdynamics.com/training/opt/ani9.gif


Applications needed to run this case – Additional information

• To run this case, you need the following applications,

• DAKOTA.

• OpenFOAM.

• Onshape API

• Python2 and python3

• Paraview (headless mode).

• Javascript and D3.js

• Bash utilities.

• You can find more information about this case at the following links:

• https://www.mdpi.com/2311-5521/5/1/36

• https://github.com/joelguerrero/cloud-based-cad-paper/

Additional code coupling tutorials

296



• Directories:

• support_files

• templatedir

• Files:

• dakota_case.in

• simulator_script

• templatedir/feature_to_update.json.template

• Many files in the directory support_files

These are the directories and files that will be used

Additional code coupling tutorials

297



• This case is ready to run.

• To run it, go to the case directory:

$> cd $TM/dakota_onshape/API_python2/test_cases/DAKOTA_static_mixer

• Go to the desired sub-directory and type in the terminal

How to run this tutorial

1. $> ./dakota_cleanup

2. $> dakota –i dakota_case.in 

Additional code coupling tutorials

298



Roadmap

1. Introduction to optimization methods

2. Choosing an optimization method

3. Optimization loop – The big picture

4. DAKOTA overview

5. Working with DAKOTA:  Rosenbrock function

6. Working with DAKOTA:  Branin function

7. Working with DAKOTA:  Multi-objective optimization

8. Coupling DAKOTA and OpenFOAM: driven cavity 

case 

9. Additional code coupling tutorials

10. Some kind of conclusion

299



Some kind of conclusion

• Implementing an engineering design loop is a meticulous and thoughtful 

process that requires careful planning.

• Always monitor and analyze your data (quantitative or qualitative) real-time. 

• Validate and calibrate your design loop, be sure that is fault tolerant, accurate, 

and robust.

• We all want rapid iterations; however, do not sacrifice solution accuracy over 

solution speed. Design engineering loops are time consuming.

• Leverage your computational resources (local, remote, or on the cloud) and 

deploy concurrent tasks.

300



Thank you for your attention

• We hope you have found this training useful, and we hope to see you in one of our advanced 

training sessions:

• OpenFOAM® – Multiphase flows

• OpenFOAM® – Naval applications

• OpenFOAM® – Turbulence Modeling

• OpenFOAM® – Compressible flows, heat transfer, and conjugate heat transfer

• OpenFOAM® – Advanced meshing

• DAKOTA – Optimization methods and code coupling

• Python – Programming, data visualization, and exploratory data analysis

• Python and R – Data science and big data

• ParaView – Advanced scientific visualization and python scripting

• And many more available on request

• Besides consultin  services, we also offer ‘Mentoring Days’ which are days of one-on-one 

coaching and mentoring on your specific problem.

• For more information, ask your trainer, or visit our website

http://www.wolfdynamics.com/

301

http://www.wolfdynamics.com/


guerrero@wolfdynamics.com

www.wolfdynamics.com
Let’s connect

302


