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Introduction

� OPT++ is an open source toolkit for general 
nonlinear optimization problems

� Original development started in 1992 at Sandia 
National Labs/CA

�Major contributors
� Juan Meza, LBNL
� Ricardo Oliva, LBNL
� Patty Hough, SNL/CA
� Pam Williams, SNL/CA
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OPT++ USERSOPT++ USERS

Total = 338
Other (Country not identified) = 120

As of April, 2003
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Application targets
� Predict properties of 

nanostructures and/or 
design nanostructures 
with desired propertiesr

� Create secondary 
structures: obtain 
predictions of D-helices 
and E-sheets. 

� Configuration of T174 
generated using 
ProteinShop

http://graphics.cs.ucdavis.edu/~okreylos/ResDev/ProtoShop/index.html
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General Optimization Problem
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Classes of Optimization Problems

� Unconstrained optimization
� Bound constrained optimization

� Only upper and lower bounds
� Sometimes called “box” constraints

� General nonlinearly constrained optimization
� Equality and inequality constraints
� Usually nonlinear

� Some special case classes (not currently handled in 
OPT++)
� Linear programming (function and constraints linear)
� Quadratic programming (quadratic function, linear 

constraints)
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OPT++ Philosophy

� Problem should be defined in terms the user 
understands
� Do I have second derivatives available? and not
� Is my objective function twice continuously differentiable?

� Solution methods should be easily interchangeable
� Once the problem is setup, methods should be easy to 

interchange so that the user can compare algorithms

� Common components of algorithms should be 
interchangeable
� Algorithm developers should be able to re-use common 

components from other algorithms, for example line 
searches, step computations, etc.
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Classes of Problems in OPT++

�Four major classes of problems available
� NLF0(ndim, fcn, init_fcn, constraint)

• Basic nonlinear function, no derivative information 
available

� NLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information available

� FDNLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information 

approximated

� NLF2(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first and second derivative 

information available
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Classes of Solvers in OPT++

� Direct search
� No derivative information required

� Conjugate Gradient
� Derivative information may be available but doesn’t use 

quadratic information

� Newton-type methods
� Algorithm attempts to use/approximate quadratic information
� Newton
� Finite-Difference Newton
� Quasi-Newton
� NIPS
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Quick tour of some of the algorithms
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Pattern search

� Can handle noisy 
functions

� Do not require 
derivative information

� Inherently parallel
� Convergence can be 

painfully slow
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Conjugate Gradient Methods

� Two major classes
� Standard nonlinear conjugate gradient

� Two different types of line searches

� Limited Memory BFGS
� Unconstrained version available
� Bound constrained version under development
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Newton-type Methods

� Fast convergence 
properties

� Good global 
convergence 
properties

� Inherently serial
� Difficulties with 

noisy functions

xN

xc

xCP
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NIPS: Nonlinear Interior Point Solver

� Interior point method
� Based on Newton’s method for a particular system of 

equations (perturbed KKT equations, slack variable 
form)

� Can handle general nonlinear constraints
� Can handle strict feasibility
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Constraints

� Constraint types
� BoundConstraint(numconstraints, lower, upper)
� LinearInequality(A, rhs, stdFlag)
� NonLinearInequality(nlprob, rhs, numconstraints, stdFlag)
� LinearEquation(A, rhs)
� NonLinearEquation(nlprob, rhs, numconstraints)

� The whole shebang
� CompoundConstraint(constraints)



175th International Congress on Industrial and Applied Mathematics,  Sydney, Australia, July 7-11, 2003

Algorithm Choices Depend on Problem

xxxOptLBFGS
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FDNLF1

xxOptFDNewton

xOptNIPS
xOptBCNewton
xOptNewton
xxOptFDNIPS

xxOptBCQNewton
xxOptQNewton

xxOptCG
xxxOptPDS

NLF2NLF1NLF0
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Bare bones example: unconstrained 
optimization

void init_rosen_x0(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {

int ndim = 2;

FDNLF1 nlp(ndim, rosen, init_rosen_x0);

nlp.initFcn();

OptQNewton objfcn(&nlp);

objfcn.setSearchStrategy(TrustRegion);

objfcn.setMaxFeval(200);

objfcn.setFcnTol(1.e-4);

objfcn.optimize();

}
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Example 2: Constrained optimization
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Constrained optimization: Step 1

'HILQLQJ�WKH�ERXQG�FRQVWUDLQWV� �4.5 d x1 d 4.5,
�4.5 d x2 d 4.5,
�5.0 d x3 d 5.0

LQW�QGLP� ���

&ROXPQ9HFWRU�ORZHU�QGLP���XSSHU�QGLP���

ORZHU�����������������������������

XSSHU������������������������

&RQVWUDLQW�EF  �QHZ�%RXQG&RQVWUDLQW�QGLP��ORZHU��XSSHU��
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Constrained optimization: Step 2

'HILQLQJ�WKH�QRQOLQHDU�LQHTXDOLW\�FRQVWUDLQW�

x1
2 � x2

2 � x3
2 d 48

1/3
�FKV��  �QHZ�1/3�QHZ�1/)��QGLP���� LQHT��LQLWBKV��B[����

&RQVWUDLQW QOHTQ  �QHZ 1RQ/LQHDU,QHTXDOLW\�FKV�����

&ROOHFWLQJ�ERWK�FRQVWUDLQWV�LQWR�RQH�FRQVWUDLQW�REMHFW��

&RPSRXQG&RQVWUDLQW
�FRQVWUDLQWV  �
QHZ�&RPSRXQG&RQVWUDLQW�QOHTQ� EF��
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Constrained optimization: Step 3

'HILQLQJ�DQG�LQLWLDOL]LQJ�WKH�QRQOLQHDU�SUREOHP�

1/)��QLSV�QGLP��KV����LQLWBKV��B[���FRQVWUDLQWV���

QLSV�LQLW)FQ���

'HILQLQJ�WKH�2SWLPL]DWLRQ�REMHFW�DQG�RSWLPL]LQJ�LW�

2SW1,36�RSWREM�	QLSV����

RSWREM�RSWLPL]H���
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Parallel Optimization
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Schnabel (1995) Identified Three Levels for 
Introducing Parallelism Into Optimization

�Parallelize evaluation of 
function/gradient/constraints
� May or may not be easy to implement

�Parallelize linear algebra
� Really only useful if the optimization 

problem is large-scale
�Parallelize optimization algorithm at a 

high level
� Multiple function evaluations in parallel
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Trust Region + PDS

xN

xc

xCP

� Fast convergence 
properties of Newton 
method

� Good global 
convergence properties 
of trust region approach

� Inherent parallelism of 
PDS

� Ability to handle noisy 
functions
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Comparison of TRPDS with other 
approaches
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Application: Protein Folding

void init_X0(int ndim, ColumnVector& x);
void eval_energy(int ndim, const ColumnVector& x, double& fx, int& 

result);
int main() {

PDB pdb(“t162.pdb”);  // loads pdb file

int ndim = 3 * pdb.NumAtoms();

FDNLF1 nlp(ndim, eval_energy, init_X0);

nlp.initFcn();

OptLBFGS optobj(&nlp);

optobj.setMaxFeval(10000);   

optobj.setFcnTol(1.e-6);

optobj.optimize();

}
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Energy Minimization Using LBFGS

� N=13728 (4576 Atoms)
� Energy Function: AMBER
� LBFGS with M=15
� 11656 iterations, 11887 

function evaluations
� Stop on f tolerance with

ftol=1e-6
� Each function eval: ~5sec 

Protein T162 (from CASP5)
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Energy vs. LBFGS iterations
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Norm of gradient for each atom
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Distribution of ||gradient|| by atom

4576 atoms

54 have ||g||2 > 0.5
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Protein T162 (from CASP5)

� Initial configuration 
created using 
ProteinShop (S. 
Crivelli)

� Energy minimization 
computed using 
OPT++/LBFGS

� Final RMSD change: 
3.9 (avg)

� Total simulation took 
approximately 
32hours on a 1.7GHz 
machine with 512 
RAM
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Summary

� OPT++ can handle many types of nonlinear 
optimization problems

� The toolkit can be used to compare the effectiveness 
of several algorithms on the same problem easily

� The user needs to provide only functions for the 
objective function and the constraints
� If additional information is available it can be easily 

incorporated

� The code is open source and available at either
� http://www.nersc.gov/~meza/projects/opt++
� http://csmr.ca.sandia.gov/opt++

http://www.nersc.gov/~meza/projects/opt
http://csmr.ca.sandia.gov/opt
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