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Abstract

JEGA is a software package that implements a multi-objective genetic algo-
rithm (MOGA) for solution to multi-objective optimization problems (MOPs)
and a single objective genetic algorithm (SOGA) for solution to single objective
optimization problems (SOPs). JEGA is highly configurable and provides a
rich set of algorithmic components for tailored optimization. It has been used
successfully on many problems by users both internal and external to Sandia.
By employing object-oriented design to implement abstractions of the key com-
ponents making up the algorithms, JEGA provides a flexible and extensible
problem-solving environment for design and performance analysis of computa-
tional models.

This report serves as a user’s manual for the JEGA software and provides ca-
pability overviews and procedures for software execution, as well as a variety of
example studies.
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Chapter 1

Introduction

The JEGA library contains two global optimization methods. The first is a
Multi-objective Genetic Algorithm (MOGA) which performs Pareto optimiza-
tion. This is the primary deliverable of the JEGA software. The second is a
Single-objective Genetic Algorithm (SOGA) which performs optimization on a
single objective function or a weighted sum of multiple objectives. Both meth-
ods support general constraints, a mixture of real and discrete variables, and a
variety of objective types. The JEGA library was written by John Eddy, cur-
rently a principal member of the technical staff in the System Readiness and
Sustainment Technologies department at Sandia National Laboratories, Albu-
querque, New Mexico.

1.1 Motivation for JEGA Development

The following quote from the DAKOTA 5.3 User’s Manual [?] briefly describes
the motivation for optimization in general.
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“Computational models are commonly used in engineering design and scientific
discovery activities for simulating complex physical systems in disciplines such as
fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics,
shock physics, and many others. These simulators can be an enormous aid to engi-
neers who want to develop an understanding and/or predictive capability for complex
behaviors typically observed in the corresponding physical systems. Simulators of-
ten serve as virtual prototypes, where a set of predefined system parameters, such
as size or location dimensions and material properties, are adjusted to improve the
performance of a system, as defined by one or more system performance objectives.
Such optimization or tuning of the virtual prototype requires executing the simu-
lator, evaluating performance objective(s), and adjusting the system parameters in
an iterative, automated, and directed way. System performance objectives can be
formulated, for example, to minimize weight, cost, or defects; to limit a critical
temperature, stress, or vibration response; or to maximize performance, reliability,
throughput, agility, or design robustness.”

Of particular interest to the JEGA project are those problems that have multi-
ple objectives. See Section 1.2 for a detailed discussion of multi-objective opti-
mization problems (MOPs). Such problems are very commonly encountered in
optimization. Quoting from [?]:

“Problems with multiple objectives arise in a natural fashion in most disciplines and
their solution has been a challenge to researchers for a long time.”

The solutions to multi-objective problems can provide a decision maker with a
great deal of information about how the various objectives relate to one another
including the trade-offs that must occur when choosing a final solution. This
will be discussed further in Section 1.2 when the form of the solutions to these
problems is discussed.

One of the primary motivations for the development of JEGA has been to
provide engineers with a systematic means of obtaining improved or optimal
designs using their simulator-based models. Making this capability available to
engineers generally leads to better designs and improved system performance
at earlier stages of the design phase, and eliminates some of the dependence on
real prototypes and testing, thereby shortening the design cycle and reducing
overall product development costs.

The next section discusses both single and multiple objective optimization prob-
lems in mathematical detail.

1.2 Optimization Problems

The standard form single objective optimization problem (SOP) is shown in
Equation 1.1.

JEGA Version 2.7 User’s Manual generated on February 17, 2022



1.2. OPTIMIZATION PROBLEMS 9

minimize :

F (x̄)

subject to :

gi(x̄) ≤ 0 i = 1, 2, ...,m (1.1)

hi(x̄) = 0 i = 1, 2, ..., p

xli ≤ xi ≤ xui

Where x̄ is a vector of design variables, F is a scalar function or composition of
functions resulting in a scalar value, g are inequality constraints, h are equal-
ity constraints, and the variables may be bounded. The fact that F is scalar
indicates that this is a single objective problem.

As stated, the primary deliverable of JEGA is a multi-objective genetic opti-
mizer which operates on multi-objective optimization problems. The general
form of an MOP is shown in Equation 1.2 below.

minimize :

F̄ (x̄) = [f1(x̄), f2(x̄), ..., fk(x̄)]
T

subject to :

gi(x̄) ≤ 0 i = 1, 2, ...,m (1.2)

hi(x̄) = 0 i = 1, 2, ..., p

xli ≤ xi ≤ xui

The difference between Equation 1.1 and Equation 1.2 is that in Equation 1.2,
the objective function is vector valued.

When the objective function in a problem is vector valued, there is the potential
for a vector valued solution. The existence of such a solution depends on the
relationships that exists between the objectives. The three possible relationships
between any two objectives are as follows:

1. Cooperative - This is the relationship that exists if the two objectives
share design variables and are not in competition with one another. This
means that the two objectives desire the same trends in the shared design
variables and that improvement of one objective typically accompanies
improvement of the other.

2. Competitive - This is the relationship that exists if the two objectives
share design variables and are not cooperative with one another. This
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10 CHAPTER 1. INTRODUCTION

means that the two objectives desire a different trend for at least one of
the shared variables and that improvement of one typically accompanies
worsening of the other.

3. Indifferent - This is the relationship that exists if the two objectives have
no design variables in common. In this case, the two objectives move
independently of one another. The problem may be effectively solved by
carrying out two separate single objective optimizations depending on the
form of any shared constraints or may be solved using an appropriate
weighted-sum-of-objectives scheme.

The case of indifferent objectives is quite un-interesting from a multi-objective
optimization viewpoint because it does not require true multi-objective opti-
mization and it can generally be detected prior to any analysis or optimization.
This case can be expressed using set notation as follows:

f1(x̄1 ⊆ x̄), f2(x̄2 ⊆ x̄) : x̄1 ∩ x̄2 = ∅ (1.3)

where x̄ is the set of all design variables used throughout the entire problem, x̄1

is the subset of x̄ used by objective 1, and x̄2 is the subset of x̄ used by objective
2. In this equation, x̄ has components x̄ = {x1, x2, x3...xn} where n is the total
number of design variables.

The case in which all objectives are cooperative is more interesting than that
of indifference because it is often not possible to detect this situation prior to
the optimization. However, the result of solving a problem such as this will
generally be a single superior solution or a set of solutions with the exact same
superior performance characteristics.

The case in which two or more of the objectives in a multi-objective problem
are in competition with one another is by far the most interesting from a multi-
objective optimization viewpoint. It is in this case that the solution will no
longer be a single superior design point but instead will be a set, possibly infinite
in size, of efficient solutions called the Pareto optimal set [?].

The Pareto optimal set is the collection of all Pareto optimal solutions. A Pareto
optimal solution is one that is efficient or non-dominated in the set of all possible
solutions where the criteria for dominance is given in Equation 1.4 below.

A feasible performance vector ū = {u1, u2, u3...uk} dominates a feasible perfor-
mance vector v̄ = {v1, v2, v3...vk} (denoted ū ⪯ v̄) iff ū is partially less than
v̄.

∀i ∈ {1, ..., k}, ui ≤ vi ∧ ∃i ∈ {1, ..., k}, ui < vi (1.4)

where k is the total number of objectives each of which is to be minimized.

Equation 1.4 states that in order for one design to dominate another it must be
better with respect to at least one objective and no worse with respect to all
others.
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1.2. OPTIMIZATION PROBLEMS 11

The Pareto optimal set is then given by Equation 1.5 below.

P ∗ := {x̄ ∈ Ω | ¬∃x̄′ ∈ Ω F̄ (x̄′) ⪯ F̄ (x̄)} (1.5)

where Ω is the set of all feasible solutions to the problem [?].

Equation 1.5 states that the Pareto optimal set is defined as the set of all feasible
solutions for which there are no other feasible solutions that dominate them, or
more simply, every solution that is non-dominated in the entire feasible space.

Plotting the Pareto optimal set in the performance space displays the Pareto
frontier which is a portion of the boundary of the feasible space such that all
points on the region are Pareto optimal as shown in Figure 1.1 below. The blue
line in the figure is the Pareto frontier.

Figure 1.1: The Typical Looking Pareto Frontier.

As can be seen from the figure, having a representation of the Pareto frontier can
not only provide a decision maker with a variety of possible efficient solutions,
but it can also provide a designer with information about the trade-offs that
exist between objectives. For example, with such a curve, a designer can answer
questions like:

”From my current candidate solution, how much of objective 1 would I have to
sacrifice to achieve a corresponding improvement of X% in objective 2?”

There is a vast body of research involving techniques for solving single objective
optimization problems. The options for solving multiple objective problems are
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12 CHAPTER 1. INTRODUCTION

considerably more limited. Problems such as these can be difficult to solve. Of-
ten, multi-objective optimization problems are converted into single objective
problems for the purpose of solution. There are a number of ways to do this in-
cluding various weighted sum schemes, the normal boundary intersection (NBI)
method [?], goal programming, utility theoretical methods, etc. Generally, such
techniques require the repeated solution of the resulting single objective prob-
lem using different problem parameters in order to generate a sampling of the
Pareto optimal set. Each of these techniques suffers from certain drawbacks
generally caused by a sensitivity to the shape of the Pareto frontier [?].

JEGA employs a genetic algorithm to solve these sorts of problems. the ad-
vantages of using evolutionary algorithms for solving such problems are many.
They include:

• insensitivity to the shape of the Pareto frontier;

• intrinsic maintenance of a set of solutions;

• solution to the problem in a single optimization;

• potential for global solutions; and

• zeroth order operations.

There are also disadvantages to using evolutionary algorithms for solving opti-
mization problems such as:

• a need for a large number of objective function and constraint function
evaluations;

• no guarantee of optimality nor any indication of degree of optimality of a
solution;

• no guarantee of achieving the same solution on subsequent runs of the
algorithm.

1.3 Capabilities of JEGA

JEGA is highly configurable and is therefore very flexible both at run time and
at compile time. In addition, it is easily extensible such that new algorithmic
components can be inserted with few or no changes to the core code.
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1.4. HOW DOES JEGA WORK 13

1.4 How Does JEGA Work

JEGA can easily be used as a library by other programs or as a stand alone
application. The advantage to the stand alone approach is that only your evalu-
ation code would have to be written and compiled instead of re-compiling and/or
relinking JEGA. The disadvantage is that communication between JEGA and
the evaluation code takes place through the file system which is many orders
of magnitude slower than the direct interface possible when using JEGA as a
library.

1.5 Using This Manual

JEGA Version 2.7 User’s Manual generated on February 17, 2022



14 CHAPTER 1. INTRODUCTION

JEGA Version 2.7 User’s Manual generated on February 17, 2022



Chapter 2

Background

JEGA is the evolution of work began in 1999 at the University at Buffalo, SUNY
in Buffalo, NY while persuing a masters degree. At the time the package had
no official name and contained only a multi-objective genetic algorithm. The
operations are detailed in [?].

Over the next two years after completion of the masters thesis, the algorithm
was refined and re-factored and built into a larger package as an optimization
component. This work was also completed at SUNY Buffalo by John Eddy. This
package was never made publicly available. It included a handful of optimization
methods and a custom visualization technique called Cloud Visualization [?].

In the summer of 2003 while still working on a Ph.D. John was hired on at
Sandia labs as a technical intern working in the Optimization and Uncertainty
Estimation department. During the three month internship, the code was again
re-factored and made a sub-package of The DAKOTA Project and was given
the name JEGA. It was also at this time that a separate single objective GA
was added to the package.

With the exception of minor bug fixes, the code available through DAKOTA
remained the same until December 2006. During the interim time, John con-
tinued to modify, extend, and improve JEGA in support of his doctoral work.
Once finished with his doctorate, John was hired on as a permanent member
of the technical staff at Sandia in the System Readiness and Sustainment de-
partment. In the time since, JEGA has undergone a great deal of development
but the software design has remained conceptually in tact. Many additional
capabilities, bug fixes, new operator types, new operator specializations, etc.
have been added.

In September 2006, JEGA was officially migrated out of the DAKOTA project
and became an independent Sandia software development project. That is the
current status of JEGA.

http://dakota.sandia.gov
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Chapter 3

Getting Started

I have a multi-objective optimization problem to solve, how do I use JEGA?

JEGA can be used in a number of ways. Regardless of how you wish to use it,
there are some common things that must be done.

3.1 Obtaining JEGA

Currently, JEGA can only be publicly obtained through The DAKOTA Project.
Downloading DAKOTA will result in a download of the full JEGA package as
well.

3.2 Building JEGA

JEGA is primarily meant to be compiled into a static library. It is intended
to be used from within an existing or newly created program. There is a way
to use JEGA as a stand alone application and provide input via an input file.
See ?? for more details. Regardless of how you are using JEGA, the first step
is to compile it. This of course only need be done once and then the JEGA
library can be used in multiple projects. JEGA uses an autoconf build harness
for Unix style systems and Visual Studio .NET 2003, 2005, and 2008 solution
and project files for Windows. Build JEGA with your desired configuration
options and make note of the name and location of the resulting library file. See
Chapter 5 for information on the configuration options.

http://dakota.sandia.gov
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3.2.1 Building on Unix and Unix-like Systems

The JEGA distribution includes the files produced by autoconf. The end user
need only issue two commands to compile JEGA. The first is a call to the
configure script. You will issue this call with any desired arguments as described
in Section 5.1. It is strongly recommended that you maintain separate build
and source trees. In order to accomplish this, you should issue the configure
call from a directory other than $(JEGA ROOT). Recommended practice is to
create subfolders within the $(JEGA ROOT)/build directory. This way, you can
maintain multiple configurations on multiple different platforms/machines, etc.
simultaneously.

Once configuration is complete, JEGA can be built with a call to make. The
commands that must be issued are shown below.

>> $(JEGA ROOT)/configure ARGS

>> make

As an example, suppose you have multiple machines on which you may want
to use JEGA. Suppose that the JEGA source distribution is on a shared drive
and you wish to share a source tree but not a build tree. Also suppose that you
wish to maintain both a debug and a release build. Here is the recommended
procedure. Lets say the two machines are named yin and yang.

- Browse into $(JEGA ROOT)/build:
>> cd $(JEGA ROOT)/build

- Make a directory for each of yin and yang:
>> mkdir yin

>> mkdir yang

- Make subdirectories in each for debug and release:
>> cd yin

>> mkdir debug

>> mkdir release

>> cd ../yang

>> mkdir debug

>> mkdir release

- Enter the yin debug directory while on yin, configure, and make:
>> <LOGON> yin

>> cd $(JEGA ROOT)/build/yin/debug

>> $(JEGA ROOT)/configure CXXFLAGS=-g --enable-debugging

>> make

- Enter the yin release directory while on yin, configure, and make:
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3.3. USING JEGA ONCE BUILT 19

>> cd ../release

>> $(JEGA ROOT)/configure CXXFLAGS=-O2

>> make

- Do the same in the yang directories while on yang.

Once you have completed these steps, you will have static libraries in each of
the 4 directories built from the same shared source tree.

3.2.2 Building in Microsoft Visual Studio

JEGA is distributed with solution and project files for both Visual Studio .NET
2003 (7.1), 2005 (8.0), and 2008 (9.0). The solution files can be found in
$(JEGA ROOT)/build/vc71, $(JEGA ROOT)/build/vc80, $(JEGA ROOT)/build/vc90

respectively. Open the desired “.sln” file. There are a number of build config-
urations available. Each is set up to build JEGA with different options. See
Table ?? below for a listing of those options. Choose your desired build config-
uration and then build the project. The result will be a library against which
you can link and an executable if building the configuration file front end.

3.2.3 Building in Eclipse Using CDT

3.3 Using JEGA Once Built

In order to get started using the created library, you will have to create a project.
Exactly what this requires depends on what system you are developing on. If
developing on Window for example, you will want to create a new Visual Studio
project or a new nmake project. If on a unix type system, you will create a new
makefile project, etc. If you already have a project that you want to start using
JEGA in, you need only modify it slightly to start using JEGA.

Regardless of what system you are using, there are some common requirements
for using JEGA.

Required Include Paths

You will have to add some paths to your list of include directories. This is
typically done with a command line argument to your compiler such as -I or /I.

• $(JEGA ROOT)/include

• $(JEGA ROOT)/eddy
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There may be additional include path requirements depending on what system
you are using. See the sections below for specific requirements.

Windows does not come with an implementation of pthreads which JEGA uses
if compiled with JEGA THREADSAFE defined. To deal with this case, JEGA
is distributed with a snapshot of the PThreads Win32 headers and libraries
(http://sourceware.org/pthreads-win32/). If you need to use them, then you
must also include the path:

• $(JEGA ROOT)/eddy/threads/pthreads/include

Required Libraries

You will also have to link against the JEGA library created during the build.
This is typically specified with two inputs to the compiler. One to specify a
path to look in and one to specify the name of the library. The library created
when building JEGA will be called libjega.$(LIB EXT) where $(LIB EXT) is
the file extension for static libraries on your system; typically .a or .lib.

The easiest thing to do is to follow the examples in Chapter 8.

3.3.1 Using JEGA on Unix and Unix-like Systems

If on a unix like system, you will want to add the paths to the configuration head-
ers that were created by autoconf. There are two paths needed for two headers.
They are in the build tree, not the source tree. Consider $(BUILD DIR) to be the
path to the trunk of your build directory in the discussion below. In the example
of Section 3.2.1, $(BUILD DIR) would be one of $(JEGA ROOT)/build/yin/debug,
$(JEGA ROOT)/build/yang/release, etc. The directories you will need to add
are:

• $(BUILD DIR)

• $(BUILD DIR)/eddy

3.3.2 Using JEGA in Microsoft Visual Studio
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Chapter 4

Features

See Chapter 5 for information on how to enable/disable and use the features
described in this chapter.

4.1 Operator Abstraction

The operations performed by JEGA are broken up both conceptually and in
actual software design such that each is performed by a specific class of op-
erator. The operators are invoked in some order until some stopping and/or
convergence criteria has been met. Each of the operations can be performed by
any number of available operator specializations. For example, the initialization
of a population can be performed by any of the available ”Initializers”. Chap-
ter 5 details the different specializations available for each operator type. The
current operator categories are shown in the list below in no particular order.
The description accompanying each is not intended to imply in any way exactly
how these operations are carried out, only their desired result or intent.

• Main Loops - Define the progression or order of operations of the algo-
rithm as well as perform any relevant intermediate actions.

• Initializers - Create the initial population of candidate solutions.

• Mutators - Add random variation to a group of candidate solutions for
the purposes of design space exploration.

• Crossers - Mate existing candidate solutions together to create new candi-
date solutions for the purposes of exploitation of observed good solutions.

• Convergers - Determine when the algorithm should stop and return its
current result.



22 CHAPTER 4. FEATURES

• Evaluators - Perform the evaluation of response functions including ob-
jectives and constraints with respect to a supplied set of design variable
values.

• Fitness Assessors - Assess the fitness of evaluated candidate solutions
with respect to one another.

• Selectors - Choose a subset of all current candidate solutions to become
the next population.

• Niche Pressure Applicators - Encourage differentiation amongst the
candidate solutions for the purposes of exploration. Also referred to simply
as “Nichers”.

• Post Processors - Perform whatever operations are desired on the final
set of reported solutions prior to their return from the algorithm.

This design allows a great deal of flexibility in the way JEGA behaves. It
also allows for easy incorporation of new techniques for performing the various
operations.

4.2 Running Multiple Algorithms

JEGA is the project that houses the various genetic algorithms available. It is
not entirely abstract in that there is some code that is external to the algorithms
themselves. This code is primarily embodied by the front end sub-project. Using
this front end code, multiple GA’s can be created and used to solve multiple
problems within a single application.

4.3 Thread Safety

JEGA can be configured at compile time to be thread aware. In this way,
multiple instances of the JEGA algorithms can be safely run simultaneously
from different threads within a program. See Chapter 5 for information on how
to configure for this feature at compile time.

4.4 Logging

JEGA reports information to users via a logging capability. It can be configured
to log to the console, text files, or both (see Section 5.1.2 for more information).

No matter what else is happening, if file logging is enabled, JEGA will create and
write some information to a “global” log file. This is where messages generated
by non-algorithmic components are written.
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4.5. PORTABILITY AND INTEROPERABILITY 23

JEGA can be used in a number of ways and multiple algorithms may be run in
a given program. If multiple algorithms are to be run, each algorithm can be
configured to log to a separate file or each can log to the “global” log file or any
combination.

Every message has a similar format as shown below.

< day >< time >< year >:< level > − < issuer >:< message >

An example would then be:

Fri Sep 01 08:59:29 2006: quiet- JEGA Front End: Random seed = 12345

JEGA will not overwrite previous logs. If a file exists with the name supplied
to JEGA, JEGA will open the existing file and begin appending log entries
into it. For this reason, it is important to archive or discard old log files when
appropriate.

4.5 Portability and Interoperability

The core of JEGA is written in ANSI C++ without the use of any vendor specific
or third party libraries. All source code required to make and use JEGA as a
library is included with the distribution. It is regularly tested on a number
of platforms including multiple Unix and Linux flavors as well as on Windows
(both natively and using cygwin). For building JEGA on the *nix platforms,
an autoconf harness is included in the distribution. For building natively on
windows, Visual Studio projects for each of VS .NET 2003, 2005, and 2008 are
provided.

To create a JEGA executable from code requires use of boost libraries.

For Windows users, JEGA is also distributed with a Managed front end. This
is a separate (small) body of code that will operate JEGA from a project that
uses the Microsoft managed extensions for C++. Using this body of code, it
is possible to use JEGA directly from within any of the .NET languages using
common language runtime support. JEGA is also distributed with a Visual
Basic front end that takes advantage of this capability. Other front ends are
planned for the future including those for the other .NET languages as well as
one for JAVA (non-Microsoft specific).
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Chapter 5

Configuring JEGA

There are two conceptually different types of configuration to be discussed in
this chapter. The first involves how to configure the source code when compiling
JEGA. The second is how to configure JEGA to perform operations the way
you want at run time.

5.1 Compile Time Configuration Options

JEGA is distributed as source code and thus, it must be compiled prior to being
used. The following sections describe the various compile time options that are
available with JEGA and how to use them.

5.1.1 Compiler Specification

You can specify to the configure utility which C++ compiler to use by providing
a value for the CXX variable on the command line. You can specify flags to
be passed to the compiler by providing a value for the CXXFLAGS variable on
the command line. For example, suppose your default compiler is g++ 3.4 and
you wish to use 4.0 and build with debugging information. The configuration
command line would look like:

>> $(JEGA ROOT)/configure CXX=/usr/local/bin/g++4 CXXFLAGS=-g

5.1.2 Logging

As discussed in Section 4.4, JEGA is capable of logging status messages de-
scribing the workings of the various algorithmic components, the progression of
the algorithm, etc. This behavior can be controlled in part during compilation
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of JEGA. JEGA supports logging to the console window using the standard
output stream (cout for C++ programmers) and to a file with a name that can
be specified programmatically at configuration time.

By default, JEGA will do no logging whatsoever. To enable logging, the pre-
processor constant JEGA LOGGING ON must be defined for your project. This
is typically accomplished by modifying make files and/or project files. If you
are using the autoconf harness distributed with JEGA then logging is on by
default and can be disabled by passing the optional flag --disable-logging at
configuration time.

If you wish to log to only one or the other of the console and file you can option-
ally define constants to disable the other. They are JEGA LOGGING NO CONSOLE

and JEGA LOGGING NO FILE respectively. These constants must be defined along
with JEGA LOGGING ON. Defining either of these without defining JEGA LOGGING ON

will have no effect and no logging will occur. Defining both of these will result
in no logging regardless of whether or not you’ve defined JEGA LOGGING ON. If
using the autoconf harness, then the options --enable-logging-no-console

and --enable-logging-no-file can be used to achieve the desired effect.

To summarize, if you wish to do no logging, do not define JEGA LOGGING ON. If
you wish to log to both the console window and to a file, define JEGA LOGGING ON.
If you wish to log to only the console window, define JEGA LOGGING ON and
JEGA LOGGING NO FILE. Finally, if you wish to log only to a file and not to the
console window, define JEGA LOGGING ON and JEGA LOGGING NO CONSOLE.

5.1.3 Debugging

If distributed under the LGPL, GPL, or certain other open source licenses,
JEGA comes equipped with a very simple but powerful debugging capability. A
great deal of source code exists in the JEGA project to support the use of this
facility. This code checks for exceptional, unusual, or erroneous conditions. If
such a condition is found, the debugging code causes an assertion failure along
with a rudimentary scope trace. The same scope trace will appear if a signal is
caught with a description of the signal if it is known. Figure 5.1 below shows
what one might see if a segmentation fault occurs during JEGA execution.

This capability is disabled by default. To enable it, you must define the JEGA OPTION DEBUG

preprocessor constant on your compiler command line or in your project files. If
using the autoconf harness that is distributed with JEGA, then you may supply
the optional --enable-debugging flag during the configuration step to enable
debugging.

Compiling with this option will add a fair amount of additional code to your
assembly and slow down your execution. It is therefore only recommended as a
debugging tool if you are having problems.

JEGA Version 2.7 User’s Manual generated on February 17, 2022



5.1. COMPILE TIME CONFIGURATION OPTIONS 27

Figure 5.1: Example JEGA Debug Scope Trace

5.1.4 Thread Safety

As discussed in Section 4.3, JEGA can be configured to run in a thread safe
manner. This allows multiple JEGA algorithms to be run in order to solve
the same problem simultaneously from separate threads. This behavior can be
controlled only during compilation of JEGA.

By default, JEGA will will not compile with thread safe behavior. To enable
thread safety, the preprocessor constant JEGA THREADSAFE must be defined for
your project. This is typically accomplished by modifying make files and/or
project files. If you are using the autoconf harness distributed with JEGA then
thread safety can be enabled by passing the optional flag --enable-threadsafe
at configuration time.

Note that this feature is not only relevant to the running of multiple concurrent
algorithms, but also to the ability for JEGA evaluators to perform concurrent
evaluations using multiple threads. If JEGA THREADSAFE is not defined, concur-
rent evaluations cannot be performed.
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5.1.5 Dynamically Linked Libraries

This discussion is meant specifically for Windows users since building shared
objects in Unix and Unix-like environments is trivial in terms of source code
modification. Windows requires modifications of the actual source code when
building shared or dynamically linked libraries (dlls).

If you wish to compile JEGA into a dll, you must define certain constants to
inform JEGA that it must insert the necessary code. Regardless of whether you
are building an import or an export library, you must define JEGA SL (for JEGA
shared library). Then, you must define JEGA IMPORTING or JEGA EXPORTING

depending on whether you are building an import or export library respectively.

There are no flags for this provided with the autoconf harness but there are
project configurations available in the Visual Studio solution and project files
distributed with JEGA (for each of VS .NET 2003, 2005, and 2008).

5.2 Run Time Algorithm Configuration Options

JEGA is the package containing the genetic algorithms that can be run. They
are the MOGA and the SOGA. In any given program, JEGA can be used to
run multiple instances of MOGAs and SOGAs. Each algorithm that is to be
run must be configured individually.

The configuration of a JEGA algorithm is accomplished by the creation and sub-
sequent loading of two configuration objects. The first is an object in which a de-
scription of the problem is housed. This object is of the JEGA::FrontEnd::ProblemConfig
type. The second is an object in which the details of how JEGA is to operate
are housed. This is an instance of the JEGA::FrontEnd::AlgorithmConfig type.
These two objects, fully loaded, together with an evaluator and an instance of
the JEGA::FrontEnd::Driver class, are all that are necessary to perform opti-
mization using JEGA.

5.2.1 The JEGA Problem Configuration Object

The problem configuration object is used to describe the problem that is to
be solved. This includes information such as the number of design variables
and what they are like, the number of objective functions and what they are
like, and the number of constraints and what they are like. It may be a bit
counterintuitive, but the details of the evaluation of the objective functions and
constraints are not part of the problem configuration. They are actually part
of the algorithm configuration as described below in Section 5.2.2.

Preparing a problem configuration object is as simple as declaring one and load-
ing it. The only real question is what to load (meaning what is available/possible
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with JEGA). For the following discussion, consider that a problem configuration
object has been declared as:

JEGA : : FrontEnd : : ProblemConfig pConfig ;

Design Variables

JEGA supports the declaration of both real and integral design variables each
with either a continuous or discrete nature. The different types may be mixed
at will within a given problem.

Real Variables

Simply stated, real valued variables are those that may have significant digits
to the right of the decimal point. If you define a real valued variable with a
continuous nature, then you must supply an upper and lower bound for that
variable. JEGA will vary the value of that variable to any value within that
range (inclusive). In the case of a real valued continuous variable, JEGA also
accepts a desired decimal precision value. This value is treated as the number
of digits to the right of the decimal point that are of interest. This value may
be used by various operators when for example they must convert a real valued
variable into a bit string representation.

If you define a real valued variable with a discrete nature, then you must supply
JEGA the list of possible values that it can use and it will use only those values.

The following are some examples of informing JEGA of real variables via a
problem configuration object.

// A d d i n g a s i m p l e c o n t i n u o u s r e a l v a r i a b l e w i t h b o u n d s [ −5 , 5 ]

// a nd a d e s i r e d p r e c i s i o n o f 6 d e c i m a l p l a c e s .

pConfig . AddContinuumRealVariable ( ”X1” , −5.0 , 5 . 0 , 6 ) ;

// A d d i n g a d i s c r e t e r e a l v a r i a b l e w i t h 4 p o s s i b l e v a l u e s .

JEGA: : DoubleVector d i sVa l s ;
d i sVa l s . push back ( 2 . 7 ) ;
d i sVa l s . push back ( 3 . 6 ) ;
d i sVa l s . push back ( 1 . 9 ) ;
d i sVa l s . push back ( 7 . 3 5 ) ;
pConfig . AddDiscreteRealVar iable ( ”X2” , d i sVa l s ) ;

Integral Variables

Integral variables are those that do not have any significant digits to the right of
the decimal point. If you define an integral variable with a continuous nature,
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then you must supply an upper and lower bound for that variable. JEGA will
vary the value of that variable to any integral value within that range (inclusive).

If you define an integral valued variable with a discrete nature, then you must
supply JEGA the list of possible values that it can use and it will use only those
values.

The following are some examples of informing JEGA of integral variables via a
problem configuration object.

// A d d i n g a s i m p l e c o n t i n u o u s i n t e g e r v a r i a b l e w i t h b o u n d s [ −5 , 5 ]

pConfig . AddContinuumIntegerVariable ( ”X3” , −5, 5 ) ;

// A d d i n g a d i s c r e t e i n t e g e r v a r i a b l e w i t h 4 p o s s i b l e v a l u e s .

JEGA: : IntVector d i sVa l s ;
d i sVa l s . push back ( 2 ) ;
d i sVa l s . push back ( 5 ) ;
d i sVa l s . push back ( 1 ) ;
d i sVa l s . push back ( 7 ) ;
pConfig . AddDisc re te IntegerVar iab l e ( ”X4” , d i sVa l s ) ;

Boolean Variables

Boolean variables are those that can only take on the values of true or false (1
or 0 respectively). The only input required when defining a boolean variable is
its label.

Internally, JEGA treats Boolean variables as discrete variables with two possible
values. Attempts to add additional values will fail.

The following are some examples of informing JEGA of Boolean variables via a
problem configuration object.

// A d d i n g a s i m p l e B o o l e a n v a r i a b l e

pConfig . AddBooleanVariable ( ”X5” ) ;

Objective Functions

JEGA supports a number of types of objective function types. These like all
problem descriptors used in JEGA are broken up conceptually into a type and
a nature. The type of an objective function describes to JEGA how to treat it
and how to determine when one value is better than another. The nature in
the case of an objective function is one of linear or non-linear. The only time
a linear nature should be used is if you are planning to supply coefficients such
that JEGA can perform the evaluation. See Section REF!! for an example.
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Such evaluations will be a simple weighted sum of design variables. Otherwise,
all functions should be declared nonlinear.

Minimize Objectives

This is by far the most common type of objective function. Declaring an ob-
jective of type minimize tells JEGA to seek as low a value as possible where
−∞ is ideal. If you define a minimize objective with a linear nature, then you
must provide a collection of coefficients to multiply the design variables in the
evaluation of the objective.

The following are some examples of informing JEGA of minimize objectives via
a problem configuration object.

// A d d i n g a n o n l i n e a r m i n i m i z a t i o n o b j e c t i v e .

pConfig . AddNonlinearMinimizeObjective ( ”F1” ) ;

// A d d i n g a l i n e a r m i n i m i z a t i o n o b j e c t i v e .

JEGA: : DoubleVector c o e f f s ;
c o e f f s . push back ( 1 . 7 ) ;
c o e f f s . push back ( 7 . 9 ) ;
c o e f f s . push back ( 2 . 4 ) ;
c o e f f s . push back ( 1 2 . 5 ) ;
pConfig . AddLinearMinimizeObjective ( ”F2” , c o e f f s ) ;

In the above example declaration of the linear objective function, the result will
be the sum of the first coefficient multiplied by the first design variable, the
second coefficient multiplied by the second design variable, etc.

Maximize Objectives

The maximize objective type is the second most common type. Declaring an
objective of type maximize tells JEGA to seek as high a value as possible where
∞ is ideal. If you define a maximize objective with a linear nature, then you
must provide a collection of coefficients to multiply the design variables in the
evaluation of the objective.

The following is an example of informing JEGA of a nonlinear maximize objec-
tive via a problem configuration object. To declare a linear maximize objective,
perform the same steps as for minimize objectives but replace the AddLin-
earMinimizeObjective function call with AddLinearMaximizeObjective.

// A d d i n g a n o n l i n e a r m a x i m i z a t i o n o b j e c t i v e .

pConfig . AddNonlinearMaximizeObjective ( ”F3” ) ;

Seek Value Objectives

The third objective type available through JEGA is the seek value objective.
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Declaring an objective of type seek value tells JEGA to seek as close to a give
a value as possible where exact equality with the value is ideal. If you define a
seek value objective with a linear nature, then you must provide a collection of
coefficients to multiply the design variables in the evaluation of the objective.

The following is an example of informing JEGA of a nonlinear seek value ob-
jective via a problem configuration object. To declare a linear seek value objec-
tive, perform the same steps as for the previous objective types but replace the
AddLinearObjective function call with AddLinearSeekValueObjective.

// A d d i n g a n o n l i n e a r s e e k v a l u e o b j e c t i v e w h e r e 4 . 7 i s t h e s o u g h t v a l u e .

pConfig . AddNonlinearSeekValueObjective ( ”F4” , 4 . 7 ) ;

Seek Range Objectives

The fourth and final objective type available through JEGA is the seek range
objective. Declaring an objective of type seek range tells JEGA to seek any
values within a given range where any such value is equally ideal and values
get worse the further away from that range they get. So for example, if your
range were [2, 3], then a 2.4 would be equally as good as a 2.9 and a 1.0 would
be equally as bad as a 4.0. If you define a seek range objective with a linear
nature, then you must provide a collection of coefficients to multiply the design
variables in the evaluation of the objective.

The following is an example of informing JEGA of a nonlinear seek range ob-
jective via a problem configuration object. To declare a linear seek range ob-
jective, perform the same steps as for the previous objective types but replace
the AddLinearObjective function call with AddLinearSeekRangeObjective.

// A d d i n g a n o n l i n e a r s e e k r a n g e o b j e c t i v e t o s e e k v a l u e s i n

// t h e r a n g e 8 . 3 t o 1 0 . 2 5 .

pConfig . AddNonlinearSeekRangeObjective ( ”F4” , 8 . 3 , 1 0 . 2 5 ) ;

Constraints

JEGA supports a number of constraint types. Again, these are broken up
conceptually into a type and a nature. The type of a constraint describes to
JEGA how to treat it and how to determine whether a value is feasible or not.
The nature in the case of a constraint is one of linear or non-linear exactly as
it is for objective functions.

Inequality Constraints

This is by far the most common type of constraint. The equation representation
of an inequality constraint is:

g(x̄) ≤ UL (5.1)
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where UL is some given upper limit, commonly 0. Declaring a constraint of
type inequality tells JEGA to seek any value less than or equal to UL where
any such value is equally acceptable and any other value is unacceptable. If you
define an inequality constraint with a linear nature, then you must provide a
collection of coefficients to multiply the design variables in the evaluation of the
constraint.

The following are some examples of informing JEGA of inequality constraints
via a problem configuration object.

// A d d i n g an i n e q u a l i t y c o n s t r a i n t w h e r e t h e u p p e r l i m i t i s 6 . 2 .

pConfig . AddNonl inear Inequa l i tyConstra int ( ”G1” , 6 . 2 ) ;

// A d d i n g a l i n e a r i n e q u a l i t y c o n s t r a i n t w h e r e t h e u p p e r l i m i t i s 0 . 0 .

JEGA: : DoubleVector c o e f f s ;
c o e f f s . push back ( 1 . 7 ) ;
c o e f f s . push back ( 7 . 9 ) ;
c o e f f s . push back ( 2 . 4 ) ;
c o e f f s . push back ( 1 2 . 5 ) ;
pConfig . AddLinear Inequa l i tyConstra int ( ”G2” , 0 . 0 , c o e f f s ) ;

Two-Sided Inequality Constraints

The equation representation of a two-sided inequality constraint is:

LL ≤ g(x̄) ≤ UL (5.2)

where LL is some given lower limit and UL is some given upper limit. Declaring
a constraint of type two-sided inequality tells JEGA to seek any value greater
than or equal to LL and less than or equal to UL where any such value is
equally acceptable and any other value is unacceptable. If you define a two-sided
inequality constraint with a linear nature, then you must provide a collection of
coefficients to multiply the design variables in the evaluation of the constraint
just as for all linear equations.

A two-sided inequality constraint can always be expressed as two simple in-
equality constraints. This formulation is here for convenience. The following
are some examples of informing JEGA of two-sided inequality constraints via a
problem configuration object.

// A d d i n g a two− s i d e d i n e q u a l i t y c o n s t r a i n t w i t h l o w e r

// l i m i t o f −3 .5 a n d u p p e r l i m i t o f 6 . 2 .

pConfig . AddNonl inearTwoSidedInequal i tyConstraint ( ”G3” , −3.5 , 6 . 2 ) ;

Equality Constraints
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The equation representation of an equality constraint in JEGA is:

h(x̄) = C ± δ (5.3)

where C is some constant value (commonly 0) and δ is an allowable violation
amount. JEGA uses this value to effectively give the constraint a “thickness”.
JEGA allows this behavior because equality constraints are notoriously difficult
for genetic algorithms to deal with. This value can of course be 0 in which case
JEGA will enforce strict equality with C. Declaring an equality constraint in
this way tells JEGA to seek any value equal to C ± δ where any such value is
equally acceptable and any other value is unacceptable. If you define an equality
constraint with a linear nature, then you must provide a collection of coefficients
to multiply the design variables in the evaluation of the constraint just as for
all linear equations.

An equality constraint can always be expressed as two simple inequality con-
straints. This formulation is here for convenience. The following are some ex-
amples of informing JEGA of equality constraints via a problem configuration
object.

// A d d i n g an e q u a l i t y c o n s t r a i n t w i t h t a r g e t v a l u e o f 10 a nd a l l o w a b l e

// v i o l a t i o n o f 0 . 0 5 .

pConfig . AddNonl inearEqual i tyConstra int ( ”G4” , 10 . 0 , 0 . 0 5 ) ;

Not-Equality Constraints

The equation representation of a not-equality constraint in JEGA is:

h(x̄) ̸= C (5.4)

where C is some constant value (commonly 0). Declaring a not-equality con-
straint in this way tells JEGA to seek any value not equal to C where any such
value is equally acceptable and the exact value of C is unacceptable. If you
define a not-equality constraint with a linear nature, then you must provide a
collection of coefficients to multiply the design variables in the evaluation of the
constraint just as for all linear equations.

The following are some examples of informing JEGA of not-equality constraints
via a problem configuration object.

// A d d i n g a no t − e q u a l i t y c o n s t r a i n t w i t h t a b o o v a l u e o f 1 7 . 4 .

pConfig . AddNonl inearNotEqual ityConstraint ( ”G5” , 1 7 . 4 ) ;

Once all design variables, constraints, and objective functions are loaded into
the problem config, it is complete. The next section begins the discussion of
loading an algorithm configuration object.
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5.2.2 The JEGA Algorithm Configuration Object

As previously mentioned, the algorithm configuration object is the place in
which all information instructing the algorithm on how to behave is stored.
It is the loading of the algorithm configuration that requires the most JEGA
specific knowledge. In order to inform JEGA what operations to perform, in
what order, and what parameter values to use for each, you must be familiar
with what is available and how to instruct JEGA in its use.

Figure 5.2 below shows the typical progression of JEGA. Note that since the
main loop can be specialized, this is only typical. It is not necessarily the
progression of any given run of JEGA and there may be intermediate operations
taking place.

Figure 5.2: The Typical JEGA Algorithm Progression

In order to inform JEGA what versions of each operator to use, you must
supply it with a string identifier for each. These strings will be keyed by an-
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other string identifier that indicates the class of operator that is being spec-
ified. The result is a key-value pair consisting of the operator type identifier
followed by the operator specialization identifier. So for example, such a pair
may have the form as shown below. Note that the actual input to JEGA will
look differently because these arguments will be supplied to methods of the
JEGA::FrontEnd::AlgorithmConfig class.

<”initialization type”, ”unique random”>

The one exception to this rule is the evaluator which is handled in a different
way as described in Section ??. Table 5.1 below shows each of the operator types
along with the strings that identify them, the strings that identify the available
specializations common to all algorithms, and the inputs that are common to
all specializations. In addition to those in this table, there are operator spe-
cializations that are designed specifically for a one or another algorithm. Those
will be described later. Note that an input must be supplied for each operator
type meaning that they are all required.

Algorithm Independent Inputs

Regardless of which specialization is ultimately chosen for an operator, in many
cases there is information required by the base class. This is the information
referred to above as being “common to all specializations”. That information is
also displayed in Table 5.1. Values such as those seen in the table are specified
as triplets whereby a key, type, and value are all supplied. An example of such
a triplet may have the form shown below. Note again that the actual input to
JEGA will look differently.

<”crossover rate”, real, 0.8>

These values must be supplied (or will be given default values) regardless of
what specialization is chosen. So for example, no matter what initializer you
choose, you must supply a population size or be willing to accept the default of
50.

The inputs of the base class will be used by the specializations in different ways
but in general, they have a common meaning. For example, the crossover rate
will always be used by a crosser to determine how many crossover operations will
take place. However, it may be used differently depending on how the operator
works. This will become apparent in Section ?? where the individual operator
specializations are described.

In addition to inputs required for operators, the algorithms themselves will
require inputs. Again, each algorithm specialization (MOGA or SOGA) may
have specialized requirements but each will share the requirements of the base
class. The common algorithm inputs are displayed in Table 5.2 below.
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The meanings of these inputs are as follows. Remember when reading these de-
scriptions that these inputs pertain to a single algorithm instance within JEGA.
A single run of JEGA may involve the creation and marshaling of multiple al-
gorithms.

• method.algorithm - Tells JEGA whether to treat the problem as a true
multi-objective problem and seek the Pareto optimal solutions or to treat
it as a single objective problem and seek the single best solution. Even if
you define your problem to have multiple objectives, you can still solve it
as a single objective problem by supplying JEGA with weights with which
it can combine the multiple objectives into a single objective. This is a
required input and has no default value. If not properly supplied, JEGA
will cause an exception.

• method.print each pop - Tells JEGA whether or not to print the cur-
rent population after all operators in the main loop have been executed at
each generation. If this flag is set to true, the populations will be written
to files with the pattern “population< GEN# >.dat” where < GEN# >
is the number of the current generation. The files will be written in tab
delimited format as follows.

dv0 < tab > dv1...dvN [< tab > of0 < tab > of1...ofM < tab > con0 <
tab > con1...conK]

The objectives and constraints are only written if the design has been
evaluated and is not ill-conditioned. The constraints of course are not
written if there are none. This is an optional input with a default value
of false meaning that the files will not be written.

• method.jega.algorithm name - Tells JEGA what the name of the cur-
rent algorithm instance is to be. This if of primary use in the creation of
logging message. When information is produced for the user by a JEGA
algorithm, it is adorned with the name of the algorithm that produced it.
This is especially important when JEGA is being used to marshal many
algorithms sequentially or in parallel. This is an optional input with a
default value that is constructed based on the algorithm type (MOGA
or SOGA) and the number of algorithms previously created (ex. MOGA
#5).

• method.output - Tells JEGA how much output to supply to the user.
This input is ignored if logging is not enabled. Each message produced by
JEGA is given an importance level. JEGA only outputs those messages
whose level is high enough compared to the level defined by this input. The
options shown in Table 5.1 are in order of decreasing output. If you choose
the “debug” level for example, JEGA will write every single message. If
you choose “silent” on the other hand, JEGA will write almost nothing.
This is an optional input with a default value of “quiet”.
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• method.log file - Tells JEGA the name of the file to which you would like
the current algorithm to log messages. This input is ignored if file logging
is not enabled. This input is optional and by default, the algorithm will
log into the global log.

JEGA v2.0 also utilizes the output method independent control to vary the
amount of information presented to the user during execution.

• Evaluate the new population members.

• Assess the fitness of each member in the population. There are a number
of ways to evaluate the fitness of the members of the populations. Choice
of fitness assessor operators is strongly dependent on the type of algorithm
being used and can have a profound effect on the choice of selectors. For
example, if using MOGA, the available assessors are the layer rank and
domination count fitness assessors. If using either of these, it is strongly
recommended that you use the below limit selector as well (although the
roulette wheel selectors can also be used). The functionality of the domi-
nationr count selector of JEGA v1.0 can now be achieved using the dom-
ination count fitness assessor and below limit selector together. If using
SOGA, the only fitness assessor is themerit function fitness assessor which
currently uses an exterior penalty function formulation to assign fitnesses.
Any of the selectors can be used in conjunction with this fitness assessment
scheme. This is the first of the selection operators.

• Replace the population with members selected to continue in the next
generation. The pool of potential members is the current population and
the current set of offspring. The replacement type of roulette wheel or
unique roulette wheel may be used either with MOGA or SOGA prob-
lems however they are not recommended for use with MOGA. Given that
the only two fitness assessors for MOGA are the layer rank and domi-
nation count, the recommended selector is the below limit selector. The
replacement type of favor feasible is specific to a SOGA. This replacement
operator will always take a feasible design over an infeasible one. Beyond
that, it favors solutions based on an assigned fitness value which must
have been installed by some fitness assessor.

• Apply niche pressure to the population. This step is specific to the MOGA
and is new to JEGA v2.0. Technically, the step is carried out during runs
of the SOGA but only the null niching operator is available for use with
SOGA. In MOGA, the radial niching operator or the distance niching op-
erator can be used. The purpose of niching is to encourage differentiation
along the Pareto frontier and thus a more even and uniform sampling. In
JEGA, niching operators typically work by determining when two designs
are too close in the performance (phenotype) space and caching them until
the next round of selection.
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• Test for convergence. The final step in the iterator loop is to assess the
convergence of the algorithm. There are two aspects to convergence that
must be considered. The first is stopping criteria. A stopping criteria
dictates some sort of limit on the algorithm that is independent of its
performance. Examples of stopping criteria available for use with JEGA
are the max iterations and max function evaluations inputs. All JEGA
convergers respect these stopping criteria in addition to anything else that
they do.

The second aspect to convergence involves repeated assessment of the
algorithms progress in solving the problem. In JEGA v1.0, the fitness
tracker convergers (best fitness tracker and average fitness tracker) per-
formed this function by asserting that the fitness values (either best or
average) of the population continue to improve. There was no such oper-
ator for the MOGA. As of JEGA v2.0, the same fitness tracker converg-
ers exist for use with SOGA and there is now a converger available for
use with the MOGA. The MOGA converger (metric tracker) operates by
tracking various changes in the non-dominated frontier from generation to
generation. When the changes occurring over a user specified number of
generations fall below a user specified threshold, the algorithm stops.

• Post Process. This occurs after convergence has been attained. This
operator provides a means of filtering the data returned by the algorithm
in whatever way is relevant. For example, if using a MOGA, it may be
desired to return only a certain number of points within a particular region
or evenly dispersed throughout the performance space, etc.

There are many controls which can be used for both MOGA and SOGA meth-
ods. These include among others the random seed, initialization types, crossover
and mutation types, and some replacement types.

The seed control defines the starting seed for the random number generator.
The algorithm uses random numbers heavily but a specification of a random
seed will cause the algorithm to run identically from one trial to the next so
long as all other input specifications remain the same. New to JEGA v2.0 is the
introduction of the log file specification. JEGA v2.0 uses a logging library to
output messages and status to the user. JEGA can be configured at build time to
log to both standard error and a text file, one or the other, or neither. The log file
input is a string name of a file into which to log. If the build was configured
without file logging in JEGA, this input is ignored. If file logging is enabled and
no log file is specified, the default file name if JEGAGlobal.log is used. Also new
to JEGA v2.0 is the introduction of the print each pop specification. It serves
as a flag and if supplied, the population at each generation will be printed to a
file named “population< GEN# >.dat” where < GEN# > is the number of
the current generation.

The initialization type defines the type of initialization for the GA. There are
three types: simple random, unique random, and flat file. simple random cre-
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ates initial solutions with random variable values according to a uniform random
number distribution. It gives no consideration to any previously generated de-
signs. The number of designs is specified by the population size. unique random
is the same as simple random, except that when a new solution is generated,
it is checked against the rest of the solutions. If it duplicates any of them, it
is rejected. flat file allows the initial population to be read from a flat file. If
flat file is specified, a file name must be given.

Variables can be delimited in the flat file in any way you see fit with a few
exceptions. The delimiter must be the same on any given line of input with the
exception of leading and trailing whitespace. So a line could look like: 1.1, 2.2
,3.3 for example but could not look like: 1.1, 2.2 3.3. The delimiter can vary
from line to line within the file which can be useful if data from multiple sources
is pasted into the same input file. The delimiter can be any string that does not
contain any of the characters .+-dDeE or any of the digits 0-9. The input will
be read until the end of the file. The algorithm will discard any configurations
for which it was unable to retrieve at least the number of design variables. The
objective and constraint entries are not required but if ALL are present, they
will be recorded and the design will be tagged as evaluated so that evaluators
may choose not to re-evaluate them. Setting the size for this initializer has the
effect of requiring a minimum number of designs to create. If this minimum
number has not been created once the files are all read, the rest are created
using the unique random initializer and then the simple random initializer if
necessary.

Note that the population size only sets the size of the initial population. The
population size may vary in the JEGA methods according to the type of oper-
ators chosen for a particular optimization run.

There are many crossover types available. multi point binary crossover requires
an integer number, N, of crossover points. This crossover type performs a bit
switching crossover at N crossover points in the binary encoded genome of two
designs. Thus, crossover may occur at any point along a solution chromo-
some (in the middle of a gene representing a design variable, for example).
multi point parameterized binary crossover is similar in that it performs a bit
switching crossover routine at N crossover points. However, this crossover type
performs crossover on each design variable individually. So the individual chro-
mosomes are crossed at N locations. multi point real crossover performs a vari-
able switching crossover routing at N crossover points in the real real valued
genome of two designs. In this scheme, crossover only occurs between design
variables (chromosomes). Note that the standard solution chromosome repre-
sentation in the JEGA algorithm is real encoded and can handle integer or real
design variables. For any crossover types that use a binary representation, real
variables are converted to long integers by multiplying the real number by 106

and then truncating. Note that this assumes a precision of only six decimal
places. Discrete variables are represented as integers (indices within a list of
possible values) within the algorithm and thus require no special treatment by
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the binary operators.

The final crossover type is shuffle random. This crossover type performs crossover
by choosing design variables at random from a specified number of parents
enough times that the requested number of children are produced. For exam-
ple, consider the case of 3 parents producing 2 children. This operator would
go through and for each design variable, select one of the parents as the donor
for the child. So it creates a random shuffle of the parent design variable values.
The relative numbers of children and parents are controllable to allow for as
much mixing as desired. The more parents involved, the less likely that the
children will wind up exact duplicates of the parents.

All crossover types take a crossover rate. The crossover rate is used to calculate
the number of crossover operations that take place. The number of crossovers
is equal to the rate * population size.

There are five mutation types allowed. replace uniform introduces random vari-
ation by first randomly choosing a design variable of a randomly selected design
and reassigning it to a random valid value for that variable. No consideration
of the current value is given when determining the new value. All mutation
types have a mutation rate. The number of mutations for the replace uniform
mutator is the product of the mutation rate and the population size.

The bit random mutator introduces random variation by first converting a ran-
domly chosen variable of a randomly chosen design into a binary string. It then
flips a randomly chosen bit in the string from a 1 to a 0 or visa versa. In this
mutation scheme, the resulting value has more probability of being similar to
the original value. The number of mutations performed is the product of the
mutation rate, the number of design variables, and the population size.

The offset mutators all act by adding an “offset” random amount to a variable
value. The random amount has a mean of zero in all cases. The offset normal
mutator introduces random variation by adding a Gaussian random amount to
a variable value. The random amount has a standard deviation dependent on
the mutation scale. The mutation scale is a fraction in the range [0, 1] and is
meant to help control the amount of variation that takes place when a variable is
mutated. mutation scale is multiplied by the range of the variable being mutated
to serve as standard deviation. offset cauchy is similar to offset normal, except
that a Cauchy random variable is added to the variable being mutated. The
mutation scale also defines the standard deviation for this mutator. Finally,
offset uniform adds a uniform random amount to the variable value. For the
offset uniform mutator, the mutation scale is interpreted as a fraction of the
total range of the variable. The range of possible deviation amounts is +/-
1/2 * (mutation scale * variable range). The number of mutations for all offset
mutators is defined as the product of mutation rate and population size.

As of JEGA v2.0, all replacement types are common to both MOGA and SOGA.
They include the roulette wheel, unique roulette wheel, and below limit selectors.
In roulette wheel replacement, each design is conceptually allotted a portion of
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a wheel proportional to its fitness relative to the fitnesses of the other Designs.
Then, portions of the wheel are chosen at random and the design occupying those
portions are duplicated into the next population. Those Designs allotted larger
portions of the wheel are more likely to be selected (potentially many times).
unique roulette wheel replacement is the same as roulette wheel replacement,
with the exception that a design may only be selected once. The below limit
selector attempts to keep all designs for which the negated fitness is below a
certain limit. The values are negated to keep with the convention that higher
fitness is better. The inputs to the below limit selector are the limit as a real
value, and a shrinkage percentage as a real value. The shrinkage percentage
defines the minimum amount of selections that will take place if enough designs
are available. It is interpreted as a percentage of the population size that must
go on to the subsequent generation. To enforce this, below limit makes all the
selections it would make anyway and if that is not enough, it takes the remaining
that it needs from the best of what is left (effectively raising its limit as far as it
must to get the minimum number of selections). It continues until it has made
enough selections. The shrinkage percentage is designed to prevent extreme
decreases in the population size at any given generation, and thus prevent a big
loss of genetic diversity in a very short time. Without a shrinkage limit, a small
group of “super” designs may appear and quickly cull the population down to
a size on the order of the limiting value. In this case, all the diversity of the
population is lost and it is expensive to re-diversify and spread the population.

The specification for controls specific to Multi-objective Evolutionary algorithms
are described here. These controls will be appropriate to use if the user has
specified moga as the method.

The initialization, crossover, and mutation controls were all described in the
preceding section. There are no MOGA specific aspects to these controls. The
fitness type for a MOGA may be domination count or layer rank. Both have
been specifically designed to avoid problems with aggregating and scaling ob-
jective function values and transforming them into a single objective. Instead,
the domination count fitness assessor works by ordering population members
by the negative of the number of designs that dominate them. The values
are negated in keeping with the convention that higher fitness is better. The
layer rank fitness assessor works by assigning all non-dominated designs a layer
of 0, then from what remains, assigning all the non-dominated a layer of -1, and
so on until all designs have been assigned a layer. Again, the values are negated
for the higher-is-better fitness convention. Use of the below limit selector with
the domination count fitness assessor has the effect of keeping all designs that
are dominated by fewer then a limiting number of other designs subject to the
shrinkage limit. Using it with the layer rank fitness assessor has the effect of
keeping all those designs whose layer is below a certain threshold again subject
to a minimum.

New to JEGA v2.0 is the introduction of niche pressure operators. These op-
erators are meant primarily for use with the moga. The job of a niche pressure
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operator is to encourage diversity along the Pareto frontier as the algorithm
runs. This is typically accomplished by discouraging clustering of design points
in the performance space. In JEGA, the application of niche pressure occurs
as a secondary selection operation. The nicher is given a chance to perform
a pre-selection operation prior to the operation of the selection (replacement)
operator, and is then called to perform niching on the set of designs that were
selected by the selection operator.

Currently, the only niche pressure operator available is the radial nicher. This
niche pressure applicator works by enforcing a minimum distance between de-
signs in the performance space at each generation. The algorithm proceeds by
starting at the (or one of the) extreme designs along objective dimension 0 and
marching through the population removing all designs that are too close to the
current design. One exception to the rule is that the algorithm will never remove
an extreme design which is defined as a design that is maximal or minimal in
all but 1 objective dimension (for a classical 2 objective problem, the extreme
designs are those at the tips of the non-dominated frontier).

The designs that are removed by the nicher are not discarded. They are buffered
and re-inserted into the population during the next pre-selection operation. This
way, the selector is still the only operator that discards designs and the algorithm
will not waste time “re-filling” gaps created by the nicher.

The niche pressure control consists of two options. The first is the null niching
option which specifies that no niche pressure is to be applied. The second is
the radial niching option which specifies that the radial niching algorithm is to
be use. The radial nicher requires as input a vector of fractions with length
equal to the number of objectives. The elements of the vector are interpreted as
percentages of the non-dominated range for each objective defining a minimum
distance to all other designs. All values should be in the range (0, 1). The
minimum allowable distance between any two designs in the performance space
is the euclidian distance defined by these percentages.

Also new to JEGA v2.0 is the introduction of the MOGA specific metric tracker
converger. This converger is conceptually similar to the best and average fit-
ness tracker convergers in that it tracks the progress of the population over a
certain number of generations and stops when the progress falls below a certain
threshold. The implementation is quite different however. The metric tracker
converger tracks 3 metrics specific to the non-dominated frontier from generation
to generation. All 3 of these metrics are computed as percent changes between
the generations. In order to compute these metrics, the converger stores a du-
plicate of the non-dominated frontier at each generation for comparison to the
non-dominated frontier of the next generation.

The first metric is one that indicates how the expanse of the frontier is changing.
The expanse along a given objective is defined by the range of values existing
within the non-dominated set. The expansion metric is computed by tracking
the extremes of the non-dominated frontier from one generation to the next.
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Any movement of the extreme values is noticed and the maximum percentage
movement is computed as:

Em =
nof
max
j=1

|range(j, i)− range(j, i− 1)

range(j, i− 1)
| (5.5)

where Em is the max expansion metric, j is the objective function index, i is
the current generation number, and nof is the total number of objectives. The
range is the difference between the largest value along an objective and the
smallest when considering only non-dominated designs.

The second metric monitors changes in the density of the non-dominated set.
The density metric is computed as the number of non-dominated points divided
by the hypervolume of the non-dominated region of space. Therefore, changes
in the density can be caused by changes in the number of non-dominated points
or by changes in size of the non-dominated space or both. The size of the
non-dominated space is computed as:

Vps(i) =

nof∏
j=1

range(j, i) (5.6)

where Vps(i) is the hypervolume of the non-dominated space at generation i and
all other terms have the same meanings as above.

The density of the a given non-dominated space is then:

Dps(i) =
Pct(i)

Vps(i)
(5.7)

where Pct(i) is the number of points on the non-dominated frontier at generation
i.

The percentage increase in density of the frontier is then calculated as:

Cd = |Dps(i)−Dps(i− 1)

Dps(i− 1)
| (5.8)

where Cd is the change in density metric.

The final metric is one that monitors the “goodness” of the non-dominated
frontier. This metric is computed by considering each design in the previous
population and determining if it is dominated by any designs in the current
population. All that are determined to be dominated are counted. The metric
is the ratio of the number that are dominated to the total number that exist in
the previous population.
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As mentioned above, each of these metrics is a percentage. The tracker records
the largest of these three at each generation. Once the recorded percentage
is below the supplied percent change for the supplied number of generations
consecutively, the algorithm is converged.

The specification for convergence in a MOGA can either be metric tracker or
can be omitted all together. If omitted, no convergence algorithm will be
used and the algorithm will rely on stopping criteria only. If metric tracker
is specified, then a percent change and num generations must be supplied as
with the other metric tracker convergers (average and best fitness trackers).
The percent change is the threshold beneath which convergence is attained
whereby it is compared to the metric value computed as described above. The
num generations is the number of generations over which the metric value should
be tracked. Convergence will be attained if the recorded metric is below per-
cent change for num generations consecutive generations.

The MOGA specific controls are described in below. Note that MOGA and
SOGA create additional output files during execution. “finaldata.dat” is a file
that holds the Pareto members of the population in the final generation. “dis-
cards.dat” holds solutions that were discarded from the population during the
course of evolution. It can often be useful to plot objective function values
from these files to visually see the Pareto front and ensure that finaldata.dat
solutions dominate discards.dat solutions. The solutions are written to these
output files in the format “Input1...InputN..Output1...OutputM”. If MOGA is
used in a multi-level optimization strategy (which requires one optimal solution
from each individual optimization method to be passed to the subsequent opti-
mization method as its starting point), the solution in the Pareto set closest to
the “utopia” point is given as the best solution. This solution is also reported
in the DAKOTA output. This “best” solution in the Pareto set has minimum
distance from the utopia point. The utopia point is defined as the point of ex-
treme (best) values for each objective function. For example, if the Pareto front
is bounded by (1,100) and (90,2), then (1,2) is the utopia point. There will be
a point in the Pareto set that has minimum L2-norm distance to this point, for
example (10,10) may be such a point. In SOGA, the solution that minimizes
the single objective function is returned as the best solution.

The specification for controls specific to Single-objective Evolutionary algo-
rithms are described here. These controls will be appropriate to use if the
user has specified soga as the method.

The initialization, crossover, and mutation controls were all described above.
There are no SOGA specific aspects to these controls. The replacement type
for a SOGA may be roulette wheel, unique roulette wheel, or favor feasible. The
favor feasible replacement type always takes a feasible design over an infeasible
one. Beyond that, it selects designs based on a fitness value. As of JEGA
v2.0, the fitness assessment operator must be specified with SOGA although the
merit function is currently the only one. The roulette wheel selectors no longer
assume a fitness function. The merit function fitness assessor uses an exterior

JEGA Version 2.7 User’s Manual generated on February 17, 2022



46 CHAPTER 5. CONFIGURING JEGA

penalty function formulation to penalize infeasible designs. The specification
allows the input of a constraint penalty which is the multiplier to use on the
constraint violations.

The SOGA controls allow two additional convergence types. The convergence type
called average fitness tracker keeps track of the average fitness in a population.
If this average fitness does not change more than percent change over some num-
ber of generations, num generations, then the solution is reported as converged
and the algorithm terminates. The best fitness tracker works in a similar man-
ner, only it tracks the best fitness in the population. Convergence occurs after
num generations has passed and there has been less than percent change in the
best fitness value. Both also respect the stopping criteria.

The SOGA specific controls are described in below.
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Operator Identifier Type Options Status Default

Main Loops method.jega.mainloop type String
duplicate free

Requirednull main loop
standard

Initializers
method.initialization type String

double matrix

Required
flat file
null initialization
random
unique random

method.population size Integer [0, ∞] Optional 50

Mutators
method.mutation type String

bit random

Required

null mutation
offset cauchy
offset normal
offset uniform
replace uniform

method.mutation rate Real [0.0, 1.0] Optional 0.05

Crossers
method.crossover type String

multi point binary

Required
multi point parameterized binary
multi point real
null crossover
shuffle random

method.crossover rate Real [0.0, 1.0] Optional 0.75

Convergers
method.jega.convergence type String

average fitness tracker

Required

best fitness tracker
max evals or gens
max evaluations
max generations
null convergence

method.max iterations Integer [0, ∞] Optional ∞
method.max function evaluations Integer [0, ∞] Optional ∞

Evaluators null evaluation

method.max function evaluations Integer [0, ∞] Optional ∞
Fitness

method.jega.fitness type String null fitness Required
Assessors

Selectors method.replacement type String

below limit

Required
null selection
roulette wheel
unique roulette wheel

Nichers method.jega.niching type String null niching Required

method.jega.cache niched designs Boolean true or false Optional true
Post

method.jega.postprocessor type String
null postprocessor

Required
Processors distance postprocessor

Table 5.1: Operator Class Input Requirements.
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Identifier Type Options Status Default

method.algorithm String
moga

Required
soga

method.print each pop Boolean true or false Optional false

method.jega.algorithm name String Optional <type> #<instance #>

method.output Integral

debug (10)

Optional quiet (30)
verbose (20)
quiet (30)
silent (40)
fatal (50)

method.log file String Optional JEGAGlobal.log

Table 5.2: Algorithm Class Input Requirements.
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Chapter 8

Examples

This chapter provides some example applications for running JEGA. This is not
meant to show off the capabilities of JEGA but instead demonstrate how to use
it. Therefore, all examples in this chapter will solve the same test problem.

The test problem is a case where the Pareto frontier is continuous and concave.
The problem is to simultaneously optimize f1 and f2 given three input variables,
x1, x2, and x3, where the inputs are bounded by −4 ≤ xi ≤ 4:

f1(x) = 1− exp

(
−

3∑
i=1

(
xi −

1√
3

)2
)

f2(x) = 1− exp

(
−

3∑
i=1

(
xi +

1√
3

)2
)

A solution to this problem generated using JEGA can be seen in Figure 8.1
below.

8.1 Example 1 - A Minimal Implementation

This section displays the minimal amount of code necessary to solve this problem
using JEGA. It is not a ”best-practice” implementation. To achieve the minimal
implementation, this example makes use of the core SimpleFunctorEvaluator
and the associated front end SimpleFunctorEvaluatorCreator.

As with any C++ program, we will need a main function. As described in Chap-
ter 5, we will also need a problem configuration object, an algorithm configura-
tion object, an evaluator and associated creator, and a parameter database.
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MOGA Test Problem #1 − Concave Pareto Frontier
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Figure 8.1: The Pareto Frontier of the Example Problem.

#include <cmath>
#include <memory>
#include <iostream>
#include < . ./FrontEnd/ core / include/Driver . hpp>
#include < . ./FrontEnd/ core / include/ProblemConfig . hpp>
#include < . ./FrontEnd/ core / include/AlgorithmConfig . hpp>
#include < . ./ U t i l i t i e s / include/BasicParameterDatabaseImpl . hpp>
#include < . ./FrontEnd/ core / include/ SimpleFunctorEvaluatorCreator . hpp>

struct MyEvaluationFunctor :
public JEGA: : Algorithms : : SimpleFunctorEvaluator : : Functor

{
virtual bool Evaluate (

const JEGA: : DoubleVector& X,
JEGA: : DoubleVector& F,
JEGA: : DoubleVector& G
)

{
const std : : s i z e t ndv = X. s i z e ( ) ;
stat ic const double sq r t 3 inv = 1.0/ std : : s q r t ( 3 . 0 ) ;

F [ 0 ] = F [ 1 ] = 0 . 0 ;

for ( s i z e t dv=0; dv<ndv ; ++dv ) {
F [ 0 ] += std : : pow(X[ dv ] − ( sq r t 3 inv ) , 2 . 0 ) ;
F [ 1 ] += std : : pow(X[ dv ] + ( sq r t3 inv ) , 2 . 0 ) ;

}
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F [ 0 ] = 1 .0 − std : : exp(−F [ 0 ] ) ;
F [ 1 ] = 1 .0 − std : : exp(−F [ 1 ] ) ;

return true ;
}

} ;

int main ( int argc , char∗ argv [ ] )
{

// A l l p r o g r a m s mu s t i n i t i a l i z e JEGA o n c e a nd o n l y o n c e .

JEGA: : FrontEnd : : Dr iver : : In i t ia l i z eJEGA (
”JEGAGlobal . l og ” , JEGA : : Logging : : ldebug ( ) , 0
) ;

// L o a d up a p r o b l e m c o n f i g .

JEGA: : FrontEnd : : ProblemConfig pConfig ;
pConfig . AddContinuumRealVariable ( ”x1” , −4.0 , 4 . 0 , 6 ) ;
pConfig . AddContinuumRealVariable ( ”x2” , −4.0 , 4 . 0 , 6 ) ;
pConfig . AddContinuumRealVariable ( ”x3” , −4.0 , 4 . 0 , 6 ) ;
pConfig . AddNonlinearMinimizeObjective ( ”F1” ) ;
pConfig . AddNonlinearMinimizeObjective ( ”F2” ) ;

// Now l o a d up an a l g o r i t h m c o n f i g f o r w h i c h we ’ l l n e e d a p a r a m e t e r

// d a t a b a s e a n d an e v a l u a t o r c r e a t o r .

JEGA: : U t i l i t i e s : : BasicParameterDatabaseImpl pdb ;
std : : auto ptr<MyEvaluationFunctor> e f (new MyEvaluationFunctor ( ) ) ;
JEGA : : FrontEnd : : S impleFunctorEvaluatorCreator ec ( e f . get ( ) ) ;
JEGA : : FrontEnd : : AlgorithmConfig aConfig ( ec , pdb ) ;

// S t a r t w i t h a l g o r i t h m l e v e l c o n f i g u r a t i o n .

aConfig . SetAlgorithmType (JEGA: : FrontEnd : : AlgorithmConfig : :MOGA) ;
aConfig . SetDefau l tLogg ingLeve l (JEGA : : Logging : : ldebug ( ) ) ;
aConfig . SetAlgorithmName ( ”MOGA 1” ) ;
aConfig . SetPrintPopEachGen ( fa l se ) ;
aConfig . SetOutputFilenamePattern ( ” f i n a l d a t a#.dat” ) ;

// Now move on t o o p e r a t o r c o n f i g u r a t i o n s .

aConfig . SetConvergerName ( ”me t r i c t r a ck e r ” ) ;
pdb . AddIntegralParam ( ”method . max i t e r a t i on s ” , 2147483647) ;
pdb . AddIntegralParam ( ”method . max func t i on eva lua t i ons ” , 3000 ) ;
pdb . AddDoubleParam( ”method . j ega . percent change ” , 0 . 0 3 ) ;
pdb . AddSizeTypeParam( ”method . j ega . num generat ions ” , 1 0 ) ;

aConfig . SetCrosserName ( ”mu l t i po i n t b ina ry ” ) ;
pdb . AddDoubleParam( ”method . c r o s s o v e r r a t e ” , 0 . 8 ) ;
pdb . AddSizeTypeParam( ”method . j ega . num cros s po int s ” , 2 ) ;
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aConfig . SetNichePressureAppl icatorName ( ” d i s t anc e ” ) ;
pdb . AddDoubleVectorParam (

”method . j ega . n i ch e v e c t o r ” , JEGA : : DoubleVector (2 , 0 . 05 )
) ;

pdb . AddBooleanParam( ”method . j ega . c a che n i ch ed de s i gn s ” , true ) ;

aConfig . SetFitnessAssessorName ( ” dominat ion count ” ) ;

aConfig . S e t In i t i a l i z e rName ( ”unique random” ) ;
pdb . AddIntegralParam ( ”method . p opu l a t i o n s i z e ” , 5 0 ) ;

aConfig . SetMainLoopName ( ” d up l i c a t e f r e e ” ) ;

aConfig . SetMutatorName ( ” r ep l a c e un i f o rm ” ) ;
pdb . AddDoubleParam( ”method . mutat ion rate ” , 0 . 1 ) ;

aConfig . SetSelectorName ( ” be l ow l im i t ” ) ;
pdb . AddDoubleParam( ”method . j ega . f i t n e s s l i m i t ” , 4 ) ;
pdb . AddDoubleParam( ”method . j ega . sh r inkage pe r c en tage ” , 0 . 9 ) ;

aConfig . SetPostProcessorName ( ” nu l l p o s t p r o c e s s o r ” ) ;

// Now i n s t a n t i a t e a n d u s e a D r i v e r t o g e t t h e

// s o l u t i o n s t o t h e p r o b l e m .

JEGA: : FrontEnd : : Dr iver app ( pConfig ) ;
JEGA : : U t i l i t i e s : : DesignOFSortSet r e s (

app . ExecuteAlgorithm ( aConfig )
) ;

// Do s o m e t h i n g w i t h t h e s o l u t i o n s h e r e . We ’ l l j u s t p r i n t t h em

// t o t h e c o n s o l e f o r now .

r e s . stream out ( std : : c e r r ) << ”\n\n” ;

// YOU MUST FLUSH THE RETURNED SET OF SOLUTIONS

// TO AVOID A MEMORY LEAK ! !

r e s . f l u s h ( ) ;
}
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