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A Machine Learning-Genetic 
Algorithm (ML-GA) Approach 
for Rapid Optimization Using  
High-Performance Computing

Abstract
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover 
optimum designs using training data generated from multi-dimensional simulations. Machine learning 
(ML) presents a pathway to transform complex physical processes that occur in a combustion engine 
into compact informational processes. In the present work, a total of over 2000 sector-mesh compu-
tational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run 
concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized 
was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) 
mode. A total of nine input parameters were varied, and the CFD simulation cases were generated 
by randomly sampling points from this nine-dimensional input space. These input parameters 
included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic 
conditions at intake valve closure (IVC). The outputs (targets) of interest from these simulations 
included five metrics related to engine performance and emissions. Over 2000 samples generated 
from CFD were then used to train an ML model that could predict these five targets based on the 
nine input features. A robust super learner approach was employed to build the ML model, where 
results from a collection of different ML algorithms were pooled together. Thereafter, a stochastic 
global optimization genetic algorithm (GA) was used, with the ML model as the objective function, 
to optimize the input parameters based on a merit function so as to minimize fuel consumption 
while satisfying CO and NOx emissions constraints. The optimized configuration from ML-GA was 
found to be very close to that obtained from a sequentially performed CFD-GA approach, where a 
CFD simulation served as the objective function. In addition, the overall turnaround time was (at 
least) 75% lower with the ML-GA approach, as the training data was generated from concurrent CFD 
simulations and employing the ML model as the objective function significantly accelerated the GA 
optimization. This study demonstrates the potential of ML-GA and high-performance computing 
(HPC) to reduce the number of CFD simulations to be performed for optimization problems without 
loss in accuracy, thereby providing significant cost savings compared to traditional approaches.

This article is based on a presentation at WCX18, Detroit, MI, April 10-12, 2018.

Ahmed Abdul Moiz, Pinaki Pal, Sibendu Som, and Janardhan Kodavasal, Argonne National Laboratory, USA

Dan Probst, Convergent Science Inc., USA

Yuanjiang Pei and Yu Zhang, Aramco Research Center, USA
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Introduction

Consumer demand and government regulations are 
driving automakers to explore new engine designs 
that simultaneously reduce fuel consumption as well 

as emissions. To develop these new designs, automakers use 
a combination of experimental prototyping and numerical 
modeling. Of late, numerical simulation has assumed a much 
greater significance in engine design optimization, particu-
larly with the impetus toward advanced and novel combustion 
concepts coupled with new fuels, where engineers cannot rely 
solely on past expertise to narrow down the design space for 
experimental prototyping.

A commonly used approach to engineering design opti-
mization is to employ the design of experiments (DOE) tech-
nique [1]. In a simulation-based DOE, the entire design space 
can be explored by running a large number of simulations to 
fill the DOE hyper-volume using suitable space-filling tech-
niques. A response surface is then fitted to the simulation data 
and used for design optimization. This response surface 
connects the inputs to the outputs and is usually built based 
on linear regression. However, these linear regression-based 
response surface methods (RSMs) are not well suited to char-
acterize any non-linearities and interactions between various 
inputs without a tuning effort by the designer, such as adding 
cross-terms and higher-order terms. This can often lead to 
large errors when dealing with inputs that non-linearly 
interact, as can often be  the case in engine combustion. 
Another robust approach for design optimization is based on 
genetic algorithms (GAs) [2, 3, 4, 5, 6, 7]. In a GA-based opti-
mization, a computational fluid dynamics (CFD) simulation 
is used as an objective function, and the merit of this objective 
function is evaluated on completion of the CFD run. The CFD 
runs are performed sequentially in waves of several genera-
tions, where each generation has some prescribed number of 
individuals/samples to evaluate (i.e., CFD runs to perform). 
The more the number of samples in each generation, the fewer 
the number of generations needed to find the optimum. Using 
a stochastic approach where the population is varied using a 
set of genetic operations often leads to much better optimum 
solutions than DOE-based approaches. However, a GA may 
take a considerable amount of time (over 2 or 3 months) even 
with a reasonably sophisticated cluster (100-1000 processors) 
for a problem with a moderate number of input or design 
features (5-10) to optimize for. This is attributed to the fact 
that physics-based CFD simulations tend to be very expensive.

In this context, data-driven machine learning (ML) 
models can play an important role. An ML model can 
be thought of as a function that, after being trained, can learn 
from various patterns and structures in the data and capture 
input-output relationships. Depending on the complexity of 
the chosen ML model, it is possible to capture non-linear 
relationships including any interaction effects between the 
inputs. This results in a very reasonable fit of the input-output 
data space and provides an accurate and faster-running surro-
gate model for CFD. Over the past few decades, there have 
been significant developments in using artificial neural 

networks (ANNs), a type of ML approach, in understanding 
and solving combustion problems [8, 9, 10, 11, 12]. Here ANNs 
are used for predicting various combustion-related outputs 
after being trained on sample data. New applications for ML 
have been receiving substantial interest, and as a result many 
new promising models have been developed [13, 14, 15, 16, 17]. 
ML models can be  considered as fast-running surrogate 
models for the more time-consuming methods used in gener-
ating their training data, viz., experiments or CFD models. 
In the past, ML models have been used in real-time control 
of engines [9, 10, 18, 19, 20, 21]. Vaughan et al. [19, 20] used a 
form of support vector machine (SVM) to understand the 
bifurcation behavior of the combustion stability limit in a 
homogenous charge compression ignition (HCCI) engine and 
used it for prediction of cycle-to-cycle variations of combus-
tion phasing and for misfire detection. Validi et al. [21] used 
an ANN approach to detect and optimize the start of combus-
tion in HCCI engines. He et al. [10] created engine cylinder 
models by capturing various in-cylinder physical processes 
using ANNs, which were used in the prediction of engine 
performance and emissions over a transient federal test proce-
dure (FTP) cycle.

Recent efforts have coupled optimization techniques 
with ML models to optimize the system outputs within the 
target design space [1, 22, 23, 24]. In these studies, the ML 
model served as the objective function for GA optimization, 
as opposed to a CFD model. Brahma et al. [23] used a set of 
ANNs together with a hybrid GA/hill-climbing-type algo-
rithm to optimize operating parameters over the entire 
speed-torque map of a diesel engine. Alonso et  al. [22] 
followed a similar approach while using experimental 
datasets for a high-dimensional diesel engine GA optimiza-
tion problem. Costa et al. [24] looked into the diesel opti-
mization problem from the point of view of soot-NOx trade-
off and used an optimization code to obtain Pareto fronts 
of soot-NOx predictions by an ANN for various piston 
bowls. However, one of the common features of these studies 
was that only one type of ML approach was employed. 
Moreover, the optimization accuracy of these models was 
not validated.

In the present work, a novel ML-GA model was employed 
to perform numerical optimization of a gasoline compression 
ignition (GCI) engine operating with a low-octane gasoline-
like fuel. Partially premixed compression ignition (PPCI) is 
an advanced combustion mode which has the potential to 
achieve diesel-like fuel efficiency with ultra-low nitrogen 
oxides (NOx) and particulate matter (PM) emissions. 
However, the primary challenges for practical implementation 
of PPCI include achieving robust control of ignition timing, 
preventing excessive pressure rise rates, and mitigating hydro-
carbon (HC) and carbon monoxide (CO) emissions. In this 
study, a total of 2048 samples were randomly generated using 
Monte Carlo (MC) sampling, and 3D CFD simulations for 
these samples were performed concurrently on Argonne’s 
Mira [25] supercomputer. The samples were distributed over 
nine input parameters related to the fuel injector design, 
 injection strategy, initial in-cylinder chamber pressure and 
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temperature, and swirl flow. A merit function was formulated 
consisting of five targets related to engine performance and 
emissions. A stacked generalization approach called “super 
learning” was employed to develop the ML model based on 
CFD simulations. Employing a stacked generalization 
approach instead of a stand-alone ML model (as in the above 
cited works) results in higher error compensation of the ML 
algorithm for robust performance. The stacked ML model 
was trained and tested on the input-output CFD data. The 
overall output of the ML model was the merit value after 
considering the individual outputs which constituted the 
merit function. The ML model was characterized by gauging 
the bias-variance trade-off using learning curves. 
Subsequently, a stochastic global optimization GA was used 
with the ML model as an objective function to perform opti-
mization of the merit value. The ML-GA approach was imple-
mented using R programming language [26]; custom scripts 
were written to combine the approaches efficiently and to 
validate the concept. The ML-GA optimum was compared to 
that from a conventional CFD-GA run using CFD as the 
objective function. In addition, CFD simulation for the 
ML-GA-predicted optimum point was also performed to 
further validate the optimization. A parametric study with 
varying sample sizes for ML model training was also carried 
out to find out the minimum number of simulations needed 
to efficiently and accurately carry out the ML-GA optimiza-
tion. Finally, the runtimes of the conventional CFD-GA and 
ML-GA approaches were compared keeping various compu-
tational resources in mind.

Methodology

Engine Design Space and 
Optimization Strategy
The present numerical study aims to optimize a heavy-duty 
engine operating at medium load conditions with a  low-octane 
gasoline-like fuel. The engine considered is a four-stroke, six-
cylinder Cummins ISX15 engine with a variable-geometry 
turbocharger, high-pressure cooled exhaust gas recirculation 
(EGR) loop, and charge air cooler [27, 28]. The details of the 
engine configuration and baseline operating conditions are 
listed in Table 1.

The design parameters considered in the present work 
are listed in Table 2, along with their respective ranges 
of variation.

In total, nine input variables were chosen pertaining to 
fuel injector design (number of nozzle holes, total nozzle area, 
nozzle inclusion angle), fuel injection strategy (injection 
pressure, start of injection (SOI) timing), and initial thermo-
dynamic and flow conditions (intake valve closing (IVC) 
temperature and pressure, EGR fraction, and in-cylinder 
swirl). The ranges of variation included the baseline  conditions. 
Note that in Table 2, the total nozzle area is normalized with 
respect to its baseline value; therefore the baseline value is 1. 

Throughout the optimization study, the total mass of fuel 
injected, that is, the engine load, was kept constant.

For optimization, an objective merit function, as shown 
in Equation 1, was defined using indicated specific fuel 
consumption (ISFC, g/kW-hr) as the performance variable 
(to be minimized) and constraint variables based on emis-
sions (soot, NOx) and engine mechanical limits (peak 
cylinder pressure (PMAX), maximum pressure rise rate 
(MPRR)). The merit function incurs a penalty only if soot, 
NOx, PMAX, and MPRR exceed their constraints of 0.0268 
g/kW-hr, 1.34 g/kW-hr, 220 bar, and 15 bar/0CA,  respectively. 
No penalty is incurred if these are within their prescribed 
limits, in which case the merit function varies only with 
ISFC. In addition, the constraint variables are assigned 
different weights to reflect their relative importance in 
the  optimization process. A similar merit function 

TABLE 1 Engine configuration and baseline 
operating conditions.

Engine model Cummins ISX15

Cylinders 6

Displacement 14.9 L

Bore 137 mm

Stroke 169 mm

Connecting rod 262 mm

Compression ratio 17.3:1

Engine speed 1375 rpm

Intake valve closing (IVC) −137 °CA after top dead center 
(ATDC)

Exhaust valve opening (EVO) 148 °CA ATDC

Start of injection (SOI) timing −9 °CA ATDC

Injection duration 15.58 °CA

Mass of fuel injected 0.498 g/cycle

Fuel injection temperature 360 K

Injection pressure 1600 bar

Nozzle inclusion angle 152°

IVC pressure 323 K

IVC temperature 2.15 bar

Exhaust gas recirculation (EGR) 41%

Global equivalence ratio 0.57A
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TABLE 2 Input parameter ranges for the engine design space.

Parameter Description Min max units
nNoz Number of nozzle holes 8 10 -

TNA Total nozzle area 1 1.3 -

Pinj Injection pressure 1400 1800 bar

SOI Start of injection timing −11 −7 °CA ATDC

Nang Nozzle inclusion angle 145 166 deg

EGR EGR fraction 0.35 0.5 -

Tivc IVC temperature 323 373 K

Pivc IVC pressure 2.0 2.3 bar

SR Swirl ratio −2.4 −1 -A
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formulation was also employed in a previous engine design 
optimization study [1].

Merit ISFC
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f SOOT f NOx

= *
- * ( )- * ( )

- ( ) - ( )

é

ë

ê100

160
100 10

êê
ê

ù

û

ú
ú
ú

( ) = - >

£

ì
í
ï

îï

Where

if

if

f PMAX

PMAX
PMAX

PMAX
220

1 220

0 220

,

,

üü
ý
ï

þï

( ) = - >

£

ì
í
ï

îï

ü
ý
ï

þï
f MPRR

MPRR
MPRR

MPRR

f SOOT

15
1 15

0 15

,

,

if

if

(( ) = - >

£

ì
í
ï

îï

ü
ý
ï

þï

SOOT
SOOT

SOOT

f NO

0 0268
1 0 0268

0 0 0268
.

, .

, .

if

if

xx

x
x

x

NO
NO

NO
( ) = - >

£

ì
í
ï

îï

ü
ý
ï

þï
1 34

1 1 34

0 1 34
.

, .

, .

if

if

 Eq. (1)

Numerical Model Setup
A 3D CFD code, CONVERGE (version 2.3) [29], was used to 
perform numerical simulations for the closed part of the cycle, 
from IVC to EVO. Assuming axisymmetry, the simulation 
domain was modeled using a sector mesh representing a single 
cylinder and accounting for only one spray plume, in order 
to reduce computational cost. Periodic boundary conditions 
were imposed in the azimuthal direction. Uniform mixture 
and temperature distributions were specified at IVC. A base 
mesh size of 1.4 mm was employed. One level of fixed embed-
ding was prescribed near the cylinder head and piston, while 
two levels of fixed embedding were employed to resolve the 
flow near the fuel injector. In addition, two levels of adaptive 
mesh refinement (AMR) were employed based on velocity and 
temperature gradients of 1 m/s and 2.5 K, respectively. This 
resulted in the minimum grid size of 0.35 mm and peak cell 
count per simulation of ~500,000. The simulation time step 
was automatically adjusted based on the maximum convec-
tive, diffusive, and Mach Courant-Friedrichs-Lewy (CFL) 
numbers of 1, 2, and 50, respectively.

In-cylinder turbulence was modeled using the Reynolds-
averaged Navier-Stokes (RANS)-based re-normalized group 
(RNG) k-ε model [30] with wall functions. The liquid spray 
was treated in a Lagrangian fashion, and the “blob” injection 
model developed by Reitz and Diwakar [31] was used, which 
initializes the diameter of a liquid droplet to the effective 
nozzle diameter. The Kelvin-Helmholtz (KH)-Rayleigh-Taylor 
(RT) breakup model [32] and “no-time counter” collision 
model of Schmidt and Rutland [33] were employed to describe 
the subsequent spray atomization and collision processes, 
respectively. Droplet evaporation was modeled using the 
Frossling correlation [34], and models for dynamic drop drag 

and droplet turbulent dispersion [35] were also included. A 
RON70 primary reference fuel (PRF) blend comprising of 70% 
iso-octane and 30% n-heptane (by mass) was employed as the 
surrogate for gasoline-like fuel [36]. A reduced kinetic mecha-
nism for PRF consisting of 48 species and 152 reactions based 
on Liu et al. [37] was used to account for fuel chemistry. In 
addition, the NOx formation was modeled using a reduced 
mechanism comprising 4 species and 13 reactions [38]. The 
empirical Hiroyasu soot model [39], coupled with the Nagle 
and Strickland-Constable model [40], was used to determine 
the soot formation and oxidation rates with acetylene (C2H2) 
as the precursor for soot formation. For combustion modeling, 
the SAGE detailed chemistry solver [41] was employed along 
with a multi-zone (MZ) approach, with bins of 5 K in tempera-
ture and 0.05 in equivalence ratio. The CFD model predictions 
were validated against experimental data in previous studies 
[27, 28, 42] and hence are not shown here for the sake of 
brevity. In addition, an exhaustive global sensitivity analysis 
(GSA) was also performed by the authors for the same baseline 
engine operating condition, with respect to the input param-
eters (and their corresponding ranges) listed in Table 1 and 
targets considered in the present work. These details can 
be found in Ref. [42].

A separate GA optimization (herein referred to as 
CFD-GA) using CFD simulation as the objective function was 
performed. The CFD-GA also used the same merit function 
described in Equation 1. More details about the CFD-GA 
approach are given in the following section.

CFD-GA Approach
The Converge CONGO utility [29] was employed to perform 
the CFD-GA optimization based on an elitist micro-GA 
approach [43]. The micro-GA has a small population of nine 
individuals and is run for a large number of generations. Each 
individual is a CFD simulation case with a distinct set of input 
parameters. The initial population of nine individuals is 
generated randomly. The merit values for the individuals are 
evaluated after each generation is completed, and the popula-
tion is monitored for similarity between the individuals using 
a statistical calculation based on the input parameters. Micro-
convergence is achieved when the population reaches a suffi-
cient convergence level (convergence criterion of 0.97). At that 
point, the population is declared to have converged and is 
replaced with randomly generated individuals (except for the 
elite individual with the best merit value, which is always kept 
in the population). This provides randomness to avoid local 
optima being erroneously identified as the global optimum. 
However, until a micro-convergence event is encountered, the 
individuals of the new population are generated from parents 
which are selected based on a tournament. A uniform cross-
over of the DNA (i.e., the input parameters) is used to create 
children from the parents. The micro-GA used in this work 
does not allow mutations. The tournament size is set as the 
size of the population, and as parents are selected, the tourna-
ment size decreases without re-shuffling. The population is 
re-shuffled only after depleting the selection pool. The GA is 
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considered to have reached a global optimum when at least 
five micro-convergence events occur, without any improve-
ment in the maximum merit value.

In this work, the CFD-GA was run for 98 generations 
(784 CFD simulations) until it converged. The runtime of each 
CFD simulation was approximately 12 hours on 128 proces-
sors. So, the full GA took around 50 days to run. The GA 
reached a maximum merit value of 104.0 at 57th generation. 
Afterward, five micro-convergence events were encountered 
without any further improvement in the merit value. At that 
point, it was assumed that the GA had finally found the global 
optimum. The evolution of maximum merit value during the 
progress of the CFD-GA optimization is shown in Figure 1.

The input parameters and the corresponding outputs for 
both the baseline and best (optimum) cases are listed in 
Table 3. Evidently, the best case found by CFD-GA yielded an 

ISFC benefit of 1.7% over the baseline design. Moreover, none 
of the emissions and cylinder pressure constraints were 
exceeded by the GA optimum.

The temporal evolution of in-cylinder pressure for both 
the baseline and best cases are shown in Figure 2. Clearly, the 
total work done in the best case is much higher, thereby 
resulting in lower ISFC, considering that the total fuel mass 
injected was kept constant. It must be noted that pressure at 
IVC for the best case is higher than the baseline. In addition, 
Figure 3 shows the comparison of in-cylinder temperature 
and equivalence ratio distributions at 12 °CA ATDC on a 
vertical cut plane, between the two cases. It is evident that the 
islands of fuel-rich mixture are much smaller in the best case, 
owing to a better fuel-air mixing caused by earlier SOI timing, 
higher swirl, and higher number of nozzle holes. Moreover, 
in-cylinder temperatures are also higher relative to the 
baseline configuration. All these factors contribute to higher 
peak cylinder pressure, lower ISFC, lower soot emissions, and 
slightly higher NOx emissions, in case of the GA optimum.

 FIGURE 1  Merit evolution using the micro-GA approach 
(CFD-GA).
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TABLE 3 Input parameters and outputs for the baseline and 
CFD-GA best cases.

Parameter Baseline Best case
Inputs
nNoz 9 10

TNA 1.0 1.0

Pinj 1600 bar 1490 bar

SOI −9° CA ATDC −10.3° CA ATDC

Nang 152° 158°

SR −1 −1.66

EGR 0.41 0.44

Tivc 323 K 323.5 K

Pivc 2.15 bar 2.3 bar

Outputs
ISFC 156.53 g/kWh 153.85 g/kWh

PMAX 152.31 bar 162.03 bar

MPRR 11.22 bar/°CA 11.31 bar/°CA

SOOT 0.0235 g/kWh 0.0220 g/kWh

NOx 1.07 g/kWh 1.28 g/kWh

Merit 102.2 104.0A
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 FIGURE 2  Temporal evolution of in-cylinder pressure for 
baseline and CFD-GA best cases.
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 FIGURE 3  In-cylinder equivalence ratio and temperature 
distributions along a vertical cut plane at 12 0CA ATDC for the 
baseline and CFD-GA best case.
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ML-GA Approach
In this approach, an ML model was employed as a surrogate 
for a CFD simulation and was used to compute merit values 
of the individuals within a GA optimization routine. The 
details of the data generation for ML model training are 
presented next. A description of the ML model and GA 
 technique is provided subsequently.

Data Generation for ML Model Training The nine 
input variables were perturbed simultaneously within their 
respective ranges of variation using MC method to generate 
2048 sample (parameter) sets. The input files for the 2048 
simulation cases were generated using the Converge CONGO 
utility [29]. The CFD simulations were run in six batches of 
256 cases. Each batch was run on half of a rack of Mira [25], 
an IBM BG/Q supercomputer at the Argonne Leadership 
Computing Facility (ALCF) and Office of Science User Facility 
at Argonne, with each case running on 32 processors. The 
total runtime for all the simulations was around two weeks 
including queue time. It must be noted that the 2048 simula-
tions can potentially be simulated all at once if resources allow, 
which can bring down the simulation time to as low as one 
day. The minimum and maximum values of the five outputs 
extracted from the simulation data are given in Table 4.

The surface of the merit function versus two inputs is 
shown in Figure 4, which sheds light on the highly non-convex 
nature of the problem. The goal of the ML model is to capture 
the input-output interactions and reproduce this non-linear 
surface, while the GA is expected to find the optimum merit 
based on this surface.

ML-GA Model The ML-GA consists of an ML model acting 
as a surrogate for CFD model and as an objective function 
with a GA optimization algorithm. In the following section, 
the ML model is described first followed by the GA algorithm.

Machine Learning Model. The ML approach of super 
learner [44] was employed in the present work and was imple-
mented in the R package [45]. The super learning technique 
falls under the broader approach of stacked generalization of 
multiple models. Super learning is a loss-based learning 
method [46] which calculates the optimal combination of a 
pool of prediction algorithms. The optimal combination mini-
mizes the cross-validated risk (error) during the training 
phase of the multiple models. Figure 5 shows a simple repre-
sentation of the stacked generalization approach followed by 
the super learner algorithm.

Following Figure 5, in the beginning of the model fitting 
procedure, the data was split into training and test sets. An 
80%/20% split was used during the model accuracy charac-
terization process (accuracy characterization is discussed in 
a subsequent section). A k-fold cross-validation was then 
performed to assess the prediction of the individual base 
learners or sub-models. Cross-validation is a technique to 
evaluate model performance by splitting the original dataset 
into a training set to train the model and a cross-validation 
set to evaluate it. Random splitting of the original 
(80% training) dataset into 10 (k=10) equal-sized subsample 
folds was performed. Out of the ten subsample folds, a single 
subsample fold (called the tenth fold) was retained as the 
cross-validation dataset, and the remaining nine subsamples 
were used as training data. In this way, the 80% original 
training data was split into further training and cross- 
validation datasets for performing cross-validation. 

TABLE 4 Range of outputs generated from 2048 MC runs.

Output Min Max Units
ISFC 153.3 180.6 g/kWh

SOOT 0 0.2 g/kWh

NOX 0.06 5.25 g/kWh

MPRR 7.9 20.4 bar/deg

PMAX 121 170.3 bar A
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 FIGURE 4  The response surface of merit function w.r.t. SOI 
and Tivc based on CFD simulations of the uniform MC 
generated 2048 samples.
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 FIGURE 5  A schematic of the super learner model.
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This cross-validation process was then repeated 10 (k=10) 
times over all the 10 subsample folds. In this way, each of the 
ten subsamples was used exactly once as the cross-validation 
dataset. Thus, all observations were used for both training 
and cross-validation, and each observation was used for 
cross-validation exactly once. The results from individual 
folds were then averaged to produce a single estimation. The 
predictions of the tenth fold for each of the algorithms were 
saved. Following this, weighted combinations were prescribed 
as coefficients to these predictions of individual base learner 
algorithms. A non-negative least squares (NNLS) method 
was employed to compute these coefficients. This was done 
to minimize the cross-validation error (i.e., to minimize the 
error in the tenth fold of predictions). The weightage given 
to each of the base learners would thus change as the test data 
is varied, and it is possible that some of the base learners get 
a zero weightage in the linear equation of NNLS, if they have 
high error. The NNLS model here is called the meta-learner. 
In practice, any general ML model can be used as a meta-
learner [47]. The meta-learner which operates on the predic-
tions (not the raw data) is the final step in the super learning 
process and is ultimately used to predict new outcomes.

Architecture of the Super Learner. Six different ML 
algorithms were considered for the individual base learner 
system. Baseline values of parameters of each of the algo-
rithms were used during their implementation in the super 
learner model, and expensive grid search techniques over the 
model parameter space to optimize the performance of each 
model were avoided. A brief description of these base learners 
is provided below. For more details on the theory and math-
ematical formulation of these models, the reader is directed 
to the cited literature in the relevant model descriptions below.

Linear model: A linear model is the simplest form of 
regression model. The model is obtained by 
minimizing the sum of squares of the differences 
between the actual observed values and those 
predicted by a linear equation with a set of 
explanatory variables as coefficients.

Ridge regression [13]: Ridge regression is an ordinary 
least square linear regression problem with built-in 
regularization term (lambda) to avoid over-fitting or 
high variance during predictions.

k-nearest neighbor (kNN) [14]: kNN is a non-
parametric method in which the input consists of 
clusters of training examples containing “k” 
samples each, in the feature space. In kNN 
regression, the prediction is the average of these 
cluster values which have “k” points each (which are 
called nearest neighbors).

Random forest [15]: Random forest is an ensemble of 
user-specified decision trees, in which each tree uses a 
random number of samples from the given dataset. 
The individual decision tree is trained on various 
parts of the same training set. Random forest models 
circumvent the over-fitting problem by averaging 
results from separate decision trees.

Extreme gradient boosting (xgboost) [12]: xgboost is an 
advanced implementation of decision tree algorithms 
(similar to random forest) but is developed keeping in 
mind speed and performance. The general concept of 
gradient boosted trees is that initially the model 
predictions are made with simple tree structures, and 
later on new tree structures are created that predict 
the errors of prior models. These are subsequently 
added together to make the final predictions. The 
term gradient boosting comes from the fact that the 
loss minimization during addition/ensembling of the 
new models is achieved using a gradient 
descent algorithm.

SVM [16]: The idea behind an SVM is to find a 
separation line that splits the data, for example, 
between two different clusters in a training dataset. 
This line separates the clusters of data in such a way 
that the individual clusters are farthest away from the 
line. A new test data point is predicted depending on 
where it will be placed on either side of the line. The 
determination of this line is done through quadratic 
programming and resembles an 
optimization problem.

Neural net [11]: Neural net (also called ANN) is a 
network of simple units called neurons which are 
subjected to raw inputs. Based on the inputs, the 
neurons then vary their internal state and produce an 
output. A network, in the form of a directed weighted 
graph, is formed by connecting the outputs to the 
inputs. The internal aspects of the learning process of 
neural nets are usually optimized through a process 
called learning where researchers have applied 
methods such as fuzzy logic, Bayesian method, 
and GAs.

The ML algorithms used and their model parameters are 
presented in Table 5.

The GA used with the ML model was not an elitist 
micro-GA unlike in the CFD-GA approach. Instead, a GA 
technique available from the R package was chosen which was 
compatible with the ML model. A previous comparative study 
[48] was taken as an index to first down-select a few good GA 
model candidates exhibiting good runtime/accuracy trade-
offs. An in-house testing exercise was subsequently carried 
out with this subset of better performing GA models from the 

TABLE 5 Sub-model parameters used in the super learner.

Model Details
Random forest ntree=1000, mtry=3

Support vector machines  
(nu-regression)

nu=0.5, degree=3, cost=16, 
coef0=0, kernel=radial

Ridge regression lambda=1 to 20 (steps of 0.1)

xgboost ntrees=1000,max_depth=4, 
shrinkage=0.1,minobspernode=10

Neural net size=9,hiddenlayers=1

Linear model ordinary least square

k-nearest neighbor k=10A
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 FIGURE 6  A schematic of the ML-GA technique.
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study [48] to finalize the GA to be used for the present work. 
Details of this GA model are presented next.

Genetic Algorithm Model. The GA used here is called 
malschains [49], which stands for memetic algorithms with 
local search chains. The implementation in R (Rmalschains) 
was used in this work [50]. Malschains uses a combination of 
local and global optimization techniques. The idea behind the 
algorithm is to apply a local search method on the most prom-
ising regions which are found to have highest fitness value 
using a (global) GA. Malschains uses a steady-state GA as an 
evolution algorithm which executes the global optimization. 
The GA in malschains is different from a standard GA, where 
the individuals of the population are subjected to genetic 
operations simultaneously. In the present GA method (a 
steady-state GA), only single individuals are used at a time to 
generate offspring, which replace other single individuals of 
the population.

The malschains algorithm randomly generates an initial 
population of individuals. The GA then evaluates the merit 
values (fitness) of these individuals and builds a set of indi-
viduals which can be  further refined by the local search 
method. For local optimization, Solis-Wet algorithm is used. 
The local search method is iteratively applied on these best-fit 
cluster of individuals obtained from the GA, and a best indi-
vidual is picked and recorded. This solution replaces the worst 
solution in the next application of the GA and local search 
loop. This final solution is also used for the initialization of a 
subsequent local search application which creates a chain of 
local search solution. This allows for improvement of the same 
solution several times.

The GA model acts as a wrapper around the ML model 
to constitute the ML-GA. A complete overview of the ML-GA 
pipeline is explained in the flow chart shown in Figure 6.

To apply the ML method, CFD or experimental data is 
needed. After running 2048 CFD simulations, the input-output 
data was extracted from the simulation results and split into 
training and test datasets. In this study, 80% of the data was 
randomly sampled to generate a training set and the remaining 

20% of the data was used as the test set. A super learner model 
was then trained on each of the outputs/targets (ISFC, PMAX, 
MPRR, soot, NOx), that is, one super learner model for 
predicting each output parameter. After the models were 
trained, they were tested on both the training (in-sample) and 
test (out-of-sample) datasets to generate learning curves for 
individual output predictions. For a learning curve, training 
data size was increased from a minimum sample size to 
maximum of 80% of the total CFD samples. The model was 
trained each time and a training root mean squared error 
(RMSE) was calculated. For each of these training stages, 20% 
of test data was evaluated and the test RMSEs were noted. 
Learning curves were then obtained by plotting train and test 
RMSEs versus training sample size. A bias-variance trade-off 
analysis was carried out using the learning curves to under-
stand the model behavior. If both the test and train RMSEs 
were within 10% of the mean value of the CFD outputs (for 
reduced bias) and their test RMSEs were within 5% of the train 
RMSEs (for reduced variance), then the model was considered 
to have a good bias-variance trade-off. A high bias would cause 
under-fitting, leading to its inability to capture the trends in 
the data points effectively. To remedy under-fitting, it is desir-
able to make the model complex so that it captures all the 
important interactions in the input-output space. In this work, 
adding more models to the super learner (to increase 
complexity) was an option. The strength of the super learner 
approach is to replace the costly model parameter tuning 
exercise and work with the baseline model setting, combine 
the predictions, and provide high error compensation. 
However, if the model is too “coarse” and predicts with high 
error, then slight tuning will be necessary. If a model predicts 
with high error, then it will not be selected for predictions by 
the meta-learner in the first place, and so tuning will allow the 
individual model to be  picked up by the meta-learner, 
increasing the model complexity and thus avoid under-fitting. 
Tuning of model parameters of the individual algorithms was, 
however, not performed here. On the other hand, a high 
variance leads to over-fitting, which is a result of the model not 
generalizing the data very well and exhibiting large changes 
in outputs as the inputs change. To remedy over-fitting, it is 
desirable to add more data during model training. Thus, if the 
bias-variance trade-off is not acceptable, the model parameters 
can be tuned or more data can be sought, and the process is 
repeated until a good trade-off is obtained. The steps until now 
characterize the model behaviors (further discussed in the next 
section). After the model characterization was done, all the 
data (in our case 2048 simulations) was considered for training 
so that the ML model was trained on as much data as possible 
to cover majority of input combinations which the GA would 
(randomly) generate. This trained ML model was then 
employed as a surrogate for the CFD model to compute and 
optimize the objective merit function in the GA optimization.

ML Prediction Accuracy Characterization To assess 
the behavior of the ML model, learning curves were generated 
to characterize bias-variance trade-offs. A brief description of 
learning curves and the importance of bias-variance trade-off 
was given in the previous section. Specifically, a high bias would 

Downloaded from SAE International by Pinaki Pal, Wednesday, January 16, 2019



 Moiz et al. / SAE Int. J. Commer. Veh. / Volume 11, 2018, WCX18 Best Papers Special Issue 299

Created by Argonne National Laboratory

cause under-fitting, rendering the ML model incapable of 
capturing the trends in the data effectively. On the other hand, 
a high variance would lead to over-fitting, which is a result of 
the model not generalizing to data very well and exhibiting 
large changes in output predictions as the inputs change. The 
learning curves for different outputs are plotted in Figure 7. 
Since there are multiple models within the super learner which 
are involved in making a prediction, the learning curves are 
not smooth. The authors have found that using a single ML 
model for predictions usually gives smoother learning curves.

Learning curves play an important role in model char-
acterization. As can be seen in Figure 7, the learning curves 
for the five outputs exhibit good bias-variance trade-off as per 
the target set. On the Y-axis of each of the sub-plots in Figure 7, 
single arrows denote the training set and test set RMSEs as 
percentages of the mean of the corresponding target, used as 
quantitative metrics to assess bias in the model. Double arrow, 
on the other hand, shows the difference between test and train 
RMSE percentages, thereby representing the model variance. 
It can be observed that both test and train RMSEs are within 
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 FIGURE 7  Learning curves of the individual outputs of ISFC, SOOT, NOx, MPRR, and PMAX. Single arrows on the right Y-axis 
signify the training set and test set RMSEs as percentages of the mean of the corresponding output (to account for bias). Double 
arrow shows the difference between the test set and training set RMSE percentages (to account for variance).
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10% of the mean value and test RMSEs are within 5% of the 
train RMSEs (shown on secondary Y-axis). The R-squared 
values of the predictions shown in Figure 7, over all the sample 
sizes and 5 output parameters, were above 98%. An R-squared 
value is not a good measure of goodness of the fit though, be it 
variance or bias; a learning curve sheds more light on those 
aspects. Additionally, it can be observed that all the 5 outputs 
reach a quasi-steady RMSE state after ~300 samples; this indi-
cates that ~300 samples might be good enough for the ML 
model to capture various input-output non-linearities in the 
dataset satisfactorily, for this particular engine simulation 
case. A later section introduces a test done by reducing sample 
sizes to explore this possibility.

Results and Discussion
Based on the process specified in Figure 6, since the learning 
curves exhibited good behavior, all the data was considered 
for training of the ML model. After training the models on 
each of the five outputs, the five models were employed in the 
GA solver to compute the merit values of the individual CFD 
input sets. The goal of the optimization was to maximize the 
merit value.

Before discussing the results of the GA optimization, it 
is worthwhile to check the performance of the individual 
models within the super learner and their contributions to 
the model predictions as a whole. This will emphasize the need 
for using a super learner-type approach. Figure 8 shows a plot 
of model importance. Model importance is gauged as the value 
of the coefficient in the linear NNLS equation which optimizes 
the selection of the individual sub-models.

It is evident that out of the six different ML models 
employed within the super learner, only neural network, SVM, 
and xgboost (in that order) contribute to the overall  prediction. 
The rest of the models have no contribution and so have zero 
weightage. The selection of the models based on their 

individual contributions, that is, the decision of how impor-
tant these models are in the super learner model, was made 
by considering the cross-validation error. Weights were 
decided according to the mathematical optimization tech-
nique of NNLS which was based on the Lawson-Hanson algo-
rithm. NNLS is a constrained version of the least squares 
problem, in which the coefficients are not allowed to become 
negative. The cross-validated errors are mean square error 
values and are shown as an error risk estimate in Figure 9. The 
error bars in the figure signify the variation in each validation 
loop of the k-folds. The risk is meant to be a measure of model 
accuracy. By minimizing this risk, the model makes fewer 
erroneous predictions. It can be clearly seen that the model 
with the lowest CV errors are the ones chosen by the NNLS 
meta-learner model to maximize the prediction accuracy. In 
short, the super learner uses tenfold cross-validation to 
estimate the risk (or error) on future data. The super learner 
then employs a meta-learner and reduces the error of the 
stacked models by assigning proper weights to the best 
performing models. Figure 9 also shows that the error using 
super learner is less than or equal to the errors from the best 
performing models, namely, neural net, SVM, and xgboost, 
considered individually and so indicates its benefits over using 
individual ML models.

This super learner model was then applied along with the 
GA (malschains). Although ~3500 evaluations would have been 
sufficient to get to true convergence, a much higher number of 
35000 evaluations were chosen, as repeated runs of the GA 
would converge at slightly different number of evaluations. 
Note that the ML-GA optimization is not a time-consuming 
process: the runtime of the ML-GA was between 1 and 10 
minutes. The major portion of time for this approach was spent 
generating the initial CFD data for training. The training of 
the ML model took between 30 seconds and 2 minutes.

The resulting optimized values of the inputs are presented 
in Figure 10 in the form of a normalized plot, that is, the values 
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super learner model. The arrow points toward a reduced error 
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 FIGURE 8  Weights of each ML sub-model comprising the 
super learner model for each output.
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are scaled between corresponding minimum and maximum 
values with centering done at the minimum value. Ten repeats 
of the GA model (with different random initializations) were 
performed to make sure that the GA did not output different 
values for each run, in which case the GA might be getting 
stuck at various local optima. The standard deviations of the 
repeats are also depicted in Figure 10 but are not so obvious 
due to their low values. In addition, the optimized values from 
the CFD-GA approach are also shown, which can be consid-
ered as a form of validation of ML-GA. It can be seen from 
Figure 10 that the optimum values predicted by the ML-GA 
approach are very close to the corresponding CFD-GA values.

Corresponding to Figure 10, in Table 6, absolute values 
of the optimized input variables are shown along with the 
corresponding values of the outputs from both ML-GA and 
CFD-GA. For reference, the highest merit obtained in the 
2048 simulation dataset for the ML training was 103.2. 
ML-GA optimized inputs, and corresponding predicted 

outputs are shown in column labeled “a.” The CFD predicted 
outputs for the ML-GA optimized inputs are compared and 
shown in the column labeled “b.” The CFD-GA optimized set 
of inputs and outputs are shown in the column labeled “c.” 
The percentage differences among these columns are shown 
in the next three columns. The comparison between the 
ML-GA predicted outputs of the “a” column and CFD 
predicted outputs for the ML-GA optimized inputs from the 
“b” column gives an idea of the level of confidence one might 
have in using ML-GA as a surrogate for CFD-GA.

Comparing columns “a” and “b,” the differences in most 
of the outputs are within 10%, but soot has a high error of 50%. 
It must be noted that inaccurate predictions of outputs might 
deviate the GA in a wrong direction. However, if the ML 
predictions are below the set constraints for the outputs, the 
corresponding terms in the merit function would not be penal-
ized, thereby not affecting the overall GA process. In the 
present case, for the high error in soot predictions, the overall 
effect on the merit value due to this under-prediction of soot 
would be negligible as long as the ML soot under-prediction 
lies below the threshold soot constraint of 0.0268 g/kW-hr. On 
the other hand, the current GA has a strong influence from 
ISFC since it is not constrained in the merit function. Thus, a 
good ISFC prediction is very important to ensure that the merit 
calculation is done properly and the GA trajectory represents 
reality, as is evident from the ISFC and merit rows of Table 6. 
Considering the comparison of ML-GA inputs and outputs of 
column ”a” versus CFD-GA inputs and outputs of column “c” 
from Table 6, it can be seen that most of the predicted values 
of the inputs are within 10% of the CFD-GA predicted values. 
Regarding the outputs, soot predictions show the maximum 
error of 50%. It is however important to note that the CFD run 
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 FIGURE 10  Comparison of the normalized values of the 
optimized input variables between CFD-GA and ML-GA.
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TABLE 6 Comparison of the inputs and outputs from the ML-GA optimum, CFD prediction of ML-GA optimized inputs, and CFD-
GA optimum. Their percentage differences are also shown.

a b c
Parameter ML-GA optimum CFDMLGA CFD-GA optimum % (a-b) diff % (a-c) diff % (b-c) diff
Inputs

nNoz (-) 10 10 10 - 0 0.00

TNA (-) 1.05 1.05 1.0 - 4.58 4.58

Pinj (bar) 1492.5 1492.5 1490 - 0.17 0.17

SOI (deg.) −10.65 −10.65 −10.3 - 2.99 3.00

Nang (deg.) 159.26 159.26 158.0 - 0.73 0.73

SR (-) −1.81 −1.81 −1.66 - 9.03 9.04

EGR (-) 0.45 0.45 0.44 - 2.27 2.27

Tivc (K) 323 323 323.5 - −0.15 -0.15

Pivc (bar) 2.3 2.3 2.3 - 0.44 0.44

Outputs

ISFC (g/kWh) 153.375 153.97 153.85 −0.38 −0.31 0.08

PMAX (bar) 166.73 165.23 162.03 0.9 2.90 1.97

MPRR (bar/deg.) 13.28 12.22 11.31 8.67 17.42 8.04

Soot (g/kWh) 0.011 0.020 0.022 −50.62 −50.00 −9.09

NOx (g/kWh) 1.32 1.23 1.28 8.24 3.125 −3.91

Merit 104.32 103.91 104.0 0.39 0.32 −0.08A
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of ML-GA optimized point from column “b” falls very close 
to the CFD-GA optimized input-output set from column “c” 
and soot predictions are actually within 10% error based on 
the CFD run. The high error in predictions of soot from the 
ML model could be due to an inherent non-linearity of a higher 
degree in the soot output with respect to the nine inputs that 
the ML model could not capture. In order to reduce the error 
in soot prediction, the values of the inputs were converted to 
logarithmic scale, after which the ML code normalized them 
for training. But this approach also did not yield a noticeable 
impact on the predicted outcomes of the optimized inputs and 
outputs from ML-GA. The improvement in soot predictions 
will be investigated and addressed in future studies.

Since optimization using ML-GA showed promising 
results with merit values and the optimized inputs being 
consistent with CFD-GA, a parametric study was carried to 
find out the minimum number of samples needed to obtain a 
merit value close to what the CFD-GA approach predicted. To 
further investigate the ML-GA approach for its performance 
and accuracy, only the worst merit data points were chosen 
when reducing the data samples. In other words, the training 
data was sorted in decreasing order of merit values, and only 
the samples less than a particular value were considered to 
train the ML model and GA was performed using that ML 
model. For example, if samples with merit value less than −80 
are chosen, the original 2048 sample dataset reduces to 345 
samples. The ML model is trained on these 345 samples and 
the GA approach uses this trained ML model to optimize the 
inputs. Considering an output space constrained in a low merit 
region and trying to optimize the inputs to a higher merit 
region is a good test of the ML-GA technique. In a conventional 
ML-GA optimization approach, one would randomly generate 
these 345 samples and so the output space will be well distrib-
uted among high and low merit values resulting in better ML 
model training and a better optimization result. From the 
learning curves of Figure 7, a quasi-steady state was observed 
after 300 samples. So, around 300 was the lowest number of 
samples which was expected to perform well with the ML-GA 
optimization approach for this problem. Sample size reduction 
was however performed until 66 samples to confirm if there 
indeed was a knee point prior to 300 samples beyond which 
ML-GA became inefficient in performing optimization.

For sample sizes above 275, which correspond to samples 
above a maximum merit value of −100, except for the nNoz 
(number of nozzles) parameter, some variation in the opti-
mized input space was observed as the sample size was reduced. 
In other words, the sample size variation study above 275 did 
not result in the same optimized inputs as CFD-GA except for 
number of nozzle holes which was consistently same as the 
CFD-GA value (nNoz=10). Since there was a wide variation of 
inputs observed in the optimization process as the sample size 
was reduced, it was checked if some or all of these optimized 
inputs would result in a merit closer to that predicted by the 
CFD-GA approach. The merit predictions for mean values of 
the optimized input solutions (upon ten repeated applications 
of the GA) for various sample sizes are plotted in Figure 11. 
The percentage error between ML-GA merit predictions and 

CFD-GA merit predictions is shown as black dashed line. It 
can be observed that the ML-GA merit predictions are within 
~0.5% of CFD-GA merit predictions for sample sizes above 
275. For less than 275 samples, ML-GA does not optimize the 
merit to the level of CFD-GA (black solid line) and hence the 
error increases sharply. This may be due to a bad prediction of 
number of nozzle holes among other parameter mis-predic-
tions. To confirm that ML-GA optimized merit values were 
indeed true, CFD simulations were performed for the opti-
mized input sets and the calculated merit values from CFD 
were compared to the ML-GA merits. The CFD merit predic-
tions of the ML-GA optimized inputs are shown in Figure 11 
as red circles. The ML-GA merits (black cross marks) and their 
corresponding CFD validations (red circles) show similar 
values above 275 samples with errors (red dashed line) being 
within 0.5%. For sample sizes smaller than 275, these errors 
increase sharply. Additionally, for sample sizes under 275 
samples, since the number of nozzles is also predicted incor-
rectly, it creates a big uncertainty for injector optimization. 
The error seen as a red dashed line is the merit prediction error 
related to the ML technique not performing well with less 
number of samples and thus showing bad validations on 
comparing with CFD simulations. The error between the 
merits of ML-GA optimum and CFD-GA optimum is higher 
than the error seen between ML-GA optimum and its corre-
sponding CFD prediction, since merit mis-prediction error (of 
that between ML-GA and CFD predictions) propagates 
through the GA causing a higher error in optimizing the merit 
value. However, according to this study, as low as 275 (worst) 
samples would still be enough to optimize the feature set using 
the ML-GA technique for this CFD engine case. With random 
sampling of input data, the merits would be fairly well distrib-
uted in the output space, which will result in even better 
learning of the ML model, and this may result in the lowest 
acceptable sample size limit (here 275) getting even lower.

Although the optimized inputs are different as sample 
sizes change, the fact that the optimized merit is still as high 
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as the CFD-GA technique is the essential outcome supporting 
the validity of ML-GA optimization technique. An ML-GA 
optimization with lower sample size may not provide a global 
optimum but would point to a very close local optima. It can 
be said that the ML-GA technique works best with higher 
number of samples, which in this case is 2048. The sample 
size variation study adds value to the ML-GA technique by 
showing that a high value of merit is attainable even when the 
sample sizes are lowered. A mean value of the optimized input 
solutions (upon repeated application of the GA) was observed 
to give a merit value with a maximum error of ~0.5% compared 
to the CFD-GA optimized merit value as shown in Figure 11.

From Figure 1 concerning CFD-GA, a steady-state 
convergence was defined when the GA encountered five 
micro-convergence events without any improvement in the 
maximum merit value. It can be seen that a minimum of 98 
generations, corresponding to 784 CFD simulations run 
sequentially in batches of 8, were needed for CFD-GA to 
converge. In this study, 2048 runs were used to perform opti-
mization using ML-GA. The training of the ML model and 
GA optimization was performed on a single core of Intel Core 
i7-5600U CPU (2.6 GHz). The runtime for ML model training 
was between 30 seconds and 2 minutes depending on the size 
of the data, and the runtime of a single run of the GA routine 
was between 1 minute and 10 minutes. Since the ML training 
and GA runtimes were very low and could in fact be reduced 
further if run in a parallel fashion (especially the ML model), 
they were not included in the runtime calculation of ML-GA, 
and only the time taken for CFD simulations was considered. 
ML-GA provides the flexibility to run all the simulations at 
once, if resources allow. For example, simulations can be run 
all at once (within a day) on a supercomputer. On the other 
hand, in case of a CFD-GA, the simulations need to be run in 
batches sequentially over many days. A simulation run on a 
supercomputer usually needs more cores since memory per 
core of a supercomputer is less than that of a typical computing 
cluster. The “time to completion” of job is also higher for a 
supercomputer compared to a cluster. Nevertheless, the core 
hours of a supercomputer are cheaper (in terms of dollar value) 
than the core hours of a typical cluster. So, a direct comparison 
of core hours used by a job on a supercomputer versus a cluster 
is not complete without the economic considerations (which 
is not done here). A comparison of CFD-GA and ML-GA 
runtimes considering the supercomputing and cluster 
resources is presented in Table 7. Shown in the table are the 
number of simulations required for the CFD-GA (784), the 
minimum number of simulations needed for training the ML 
model (~300) to satisfactorily carry out the GA, and the full 

dataset of simulations used for training the ML model in this 
study (2048). The clusters used in this study can be classified 
as small clusters, since 128 cores were used at any point of 
time during the computations unlike bigger clusters which 
allow for cores in the order of 1000 to be  used at once. 
Comparisons on considering the resources on big and small 
clusters are also presented in Table 7 along with considering 
supercomputing resources.

Considering a smaller cluster and keeping the resources 
the same between CFD-GA and ML-GA, it can be observed 
that ML-GA can reduce runtimes by about 75% without 
much sacrifice in the optimization accuracy. It also allows 
to efficiently increase the optimization accuracy if bigger 
clusters and supercomputers are used, since it gives the 
freedom to choose the number of CFD simulations that can 
be  run at once without effecting the quality of the 
optimization process.

It must be noted that for a CFD-GA, higher number of 
individuals can be chosen to reduce the generations and 
hence complete the optimization faster. A micro-GA was 
used in the CFD-GA approach of the present work and is 
traditionally employed for engine optimization problems. 
Micro-GAs are designed to work with a very small number 
of individuals in the initial population (hence the word 
“micro”). For the micro-GA of the present work, it has been 
observed that as the number of individuals in the initial 
population increases, the generations needed to achieve the 
optimum decrease in a linear trend (keeping the number of 
CFD simulations constant). This trend was seen to be valid 
in the range of 5-13 individuals in the population [51]. For 
populations above 13 individuals, the micro-GA does not 
perform well, since the algorithm relies on the population 
converging to highly similar individuals and larger popula-
tions take prohibitively longer to converge. So, the micro-GA 
in the present form does not provide much leverage in 
decreasing the number of generations to expedite the opti-
mization time. Nevertheless, there is scope to develop the 
micro-GA technique to use larger populations in order to 
reduce the number of generations. An ML-GA approach 
provides a time-saving equally efficient alternative with 
added benefits of post-processing (for sensitivity analysis, 
uncertainty quantification, reliability analysis of the opti-
mized points, etc.), since now one has a faster-running math-
ematical model at hand (although black box). In addition to 
that, multiple optima can be readily found by the ML-GA 
model. This allows for testing on a wider optima pool so that 
a design can be  chosen which is easy to implement and 
operate in real-world situations.

TABLE 7 Runtimes for different scenarios of performing CFD simulations.

Setting
No. of procs 
per sim. Hrs per sim. No. of sim. Sim. per batch

No. of cores 
active at a time Runtime in day(s) Core hours

CFD-GA Small cluster 16 12 784 8 128 49 150528

ML-GA Small cluster 16 12 300 8 128 19 57600

ML-GA Big cluster 16 12 300 64 1024 2 57600

ML-GA Supercomputer 32 24 2048 2048 65536 1 1572864
Argonne National Laboratory
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Summary and Conclusions
ML and GA were used in conjunction to formulate an 
ML-GA technique. ML-GA was shown to significantly 
decrease the runtimes of a GCI engine design optimization 
process by at least 75%, keeping computational resources 
the same between ML-GA and a traditional CFD-GA. A 
super learner ML model was employed which pooled the 
predictions of various individual ML models and thus 
provided for high error compensation. This super learner 
was shown to have a better accuracy than traditional ML 
models when used separately. An exhaustive and necessary 
accuracy characterization of the ML models using learning 
curves was also carried out. The ML-GA technique was 
validated using stand-alone CFD simulations along with a 
separate run of a traditional and costlier CFD-GA optimi-
zation. The results showed that the accuracy of merit opti-
mization using ML-GA was on par with CFD-GA. The 
CFD-GA approach requires the CFD simulations to be run 
in sequential batches to perform the optimization. In 
contrast, ML-GA allows the CFD simulations to be run in 
a parallel fashion to train the ML model and provides a 
surrogate ML model to replace the CFD simulations in the 
GA and perform optimization using the ML model instead. 
A parametric study with different sample sizes of ML 
training data was performed to show that the ML-GA 
optimum plateaued to a high merit value above a certain 
(low) number of training samples but the ML-GA merit 
prediction accuracy decreased below that threshold sample 
size. Thus, ML-GA allowed for a lower number of CFD 
simulations while still achieving merit optimization 
accuracy close to the CFD-GA approach. This has the 
potential to reduce design optimization times significantly. 
In addition, ML-GA allows for the optimization process to 
be  scalable to higher computational platforms such as 
supercomputers, with the potential to complete the opti-
mization in a day, since (a large number of) CFD simula-
tions for training the ML model can be run all at once. The 
benefit of having a faster-running mathematical model at 
hand also provides the flexibility to carry out other post-
processing studies like sensitivity analysis, uncertainty 
quantification, and reliability analysis of the optimized 
points. ML-GA was also shown to yield different optimized 
input sets having similar high merit values (when training 
the ML model with different sample sizes). This can 
be  highly beneficial to an experimentalist, in terms of 
readily assessing multiple design configurations and 
choosing the one which is practically most feasible.
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