
Surfpack User’s Manual

Version 1.1

Keith R. Dalbey1, Anthony A. Giunta1, Mark D. Richards2, Eric C. Cyr1

Laura P. Swiler1, Shane L. Brown1, Michael S. Eldred1, Brian M. Adams1

February 16, 2022

1Sandia National Laboratories*
P.O. Box 5800, Mail Stop 1318

Albuquerque, NM 87185-1318 USA
Email: surfpack-developers@development.sandia.gov
Web: http://dakota.sandia.gov/packages/surfpack

2University of Illinois at Urbana-Champaign
Dept. of Computer Science
201 North Goodwin Ave.

Urbana, IL 61801-2302 USA
Web: http://cs.engr.uiuc.edu

Copyright 2006, Sandia National Laboratories

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under contract
DE-AC04-94AL85000.

1

1 Overview

Surfpack is a collection of surface-fitting methods and accompanying metrics to
evaluate or predict the quality of the generated surfaces. The concept of creating
a global approximation or “fit” from a collection of data samples is utilized in
many scientific disciplines, but the nomenclature varies widely from field to field.
The results from the application of such methods are commonly called empirical
models, response surfaces, surrogate models, function approximations, or meta-
models. Many different algorithms have been developed to generalize from a set
of data; these algorithms have different strengths and weaknesses. The goals of
Surfpack are

1. to give users the option to use any of several methods, depending on the
nature of the specific application; and

2. to put data-fitting methods that are commonly used in various disciplines
into a common framework, where their properties can be more easily com-
pared and analyzed.

Surfpack’s API includes a small set of commands, centered on the following
general operations:

• Prepare a data set for use. This typically involves reading a formatted
text file from disk. Alternatively, the user may specify upper- and lower-
bounds along one or more dimensions and generate a set of data points
from those boundaries (either a grid or a set of Monte Carlo samples).

• Create an empirical model from a set of data. The user may choose
one of several algorithms to create the surface approximation: Least-
squares regression using polynomials, Multivariate Adaptive Regression
Splines (MARS), Kriging interpolation, Artificial Neural Networks, Mov-
ing Least Squares, or Radial Basis Function Networks.

• Evaluate an empirical model on a set of data. For the non-interpolating
algorithms (e.g. polynomial regression), it may be of interest to evaluate
the model at the same data sites that were used to generate it, to see
how closely the model fits the data. All of the algorithms all the user to
evaluate the model at other data points where the true function value is
not available.

• Obtain measures of the “goodness of fit” of the model. Surfpack
supports metrics such as mean squared error or maximum absolute error
for data sets where the true function values are known. Cross-validation
metrics (e.g. PRESS) are also available for situations where all of the
known data points for the function that is being approximated were used
to create the empirical model.

• Save the data and/or empirical models for future use. Data can
be saved for later use, e.g., with a plotting package. The approximating

2

surfaces themselves may also be saved, so that a user can evaluate the
model on a data set at a later time without having to recompute it.

2 Installation

Surfpack is being developed primarily under Linux and is targeted to all flavors
of UNIX. Platforms on which Surfpack has been successfully built include Linux,
SunOS, IRIX, OSF, AIX, Windows (Cygwin), and Mac OS X. Native Visual
C++ compilation is not currently supported.

2.1 Obtaining Surfpack

Surfpack source packages are distributed from http://dakota.sandia.gov/

packages/surfpack. It is also included in all Dakota distributions and can be
obtained via anonymous Subversion checkout from https://software.sandia.

gov/svn/public/surfpack. Binary packages are no longer supported.

2.2 Requirements

• C++. A majority of the source code for Surfpack is written in C++.
Surfpack makes frequent use of the standard C and C++ libraries, includ-
ing the Standard Template Library. The Kriging algorithm calls some
FORTRAN code (pivoted Cholesky and some optimizers such as CON-
MIN).

• Fortran 77. The MARS algorithm is implemented in FORTRAN.

• BLAS. Many of the data-fitting algorithms rely on the Basic Linear Al-
gebra Subroutines to perform rudimentary linear algebra operations.

• LAPACK. Surfpack makes use of the following LAPACK [1] driver rou-
tines: dpotrf, dpocon, dpotrs, dlange, dgetrf, dgetri, dgels, dgglse. Imple-
mentations of LAPACK across different platforms seem to vary in terms
of how many of these algorithms they support. Therefore, source for these
functions and their dependencies is included in the Surfpack distribution.
However, BLAS and LAPACK routines are usually highly optimized for
each platform; performance is best when pre-compiled, native versions of
these functions are available.

2.3 Options

• Boost serialization. As of Version 1.1, Surfpack’s model save/load fa-
cility requires the Boost serialization binary component.

• CPP Unit. A suite of unit tests is available on platforms where CPP
Unit has been built.

3

• lex and yacc. Surfpack may be used as a library or as a stand-alone
program. The stand-alone executable requires lex and yacc (a lexical an-
alyzer generator and parser generator, respectively), which are normally
distributed with Unix-like operating systems. They are also freely avail-
able on the Internet.

2.4 Standard build

To compile Surfpack from source, extract the source, configure with CMake,
and compile with your native make system, for example:

tar xzf surfpack-1.1.tar.gz

cd surfpack-1.1

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=/apps/surfpack -DCMAKE_BUILD_TYPE=Release ..

make -j 4

[make install]

2.5 Testing the Installation

Installation testing is not currently supported. Surfpack is distributed with its
test suite. The unit testing suite utilizes the CPP Unit libraries (http://www.
sourceforge.net/projects/cppunit), which must be present if the tests are
to be executed. If the CPP Unit libraries are installed in a location that is not
automatically searched by the compiler, the full path of the libraries should be
specified as an argument to configure:

./configure --with-cppunit-prefix=/home/userid/cppunit

To run the test suite, type make check at the command line, after the successful
execution of make or make install. CPP Unit summarize the results of the
tests.

3 Getting Started

This chapter outlines the basic commands in the Surfpack API. Normally, a
script file is passed to surfpack as a command-line argument; the commands
in the file are executed sequentially. If no command-line arguments are given,
Surfpack reads a list of commands from standard input.

General conventions are presented in Section 3.1. The various Surfpack
commands are discussed in Sections 3.2–3.6 and are illustrated using the sample
script examples/GettingStarted/getting started.spk.

3.1 Conventions

Surfpack commands consist of a capitalized command name followed by a comma-
delimited list of arguments in square brackets []. Lines beginning with ‘#’ are

4

interpreted as comments and are ignored. White-space is ignored inside com-
mands. Lines beginning with ‘!’ are passed along to the underlying shell. (The
leading ‘!’ is first removed.) This allows the user to, for example, echo infor-
mation to the terminal or do pre- or post-processing on the data files. Multiline
shell commands are delimited by /* and */.

The Surfpack interpreter internally maintains lists of three types of variables:
axes, data, and surfaces. Axes variables are created using the CreateAxes

command. Data variables may be created by the Load, or CreateSample com-
mands. Surfaces variables are created with the Load or CreateSurface com-
mands. Any command that creates an axes, data, or surface variable must
have a name argument, so that the variable can be used in future commands.
When an existing variable is used in a subsequent command, it is designated by
an argument which names its type (axes, data, or surface). Figure 1 shows
examples of commands that create and/or use the different types of variables.

Define boundaries for a future data set. Min/max values are separated by

white space; values for different dimensions are delimited by ’|’:

Then use the axes variable to create a new data set

CreateAxes[name = boundaries_2d, bounds = ’-2 2 | -2 2’]

CreateSample[name = rosenbrock_2d, axes = boundaries_2d, grid_points = (11,11),

labels = (x0,x1), test_functions = (rosenbrock)]

Load a data file from disk. This data will be used later in

an evaluate command.

Load[name = test_rosen, file = ’rosenbrock_2d.spd’, n_predictors = 2,

n_responses = 1]

Use the data set to create a new surface. The ’name’ argument gives a name

for the newly create surface object. The ’data’ argument refers to a data

object previously created using Load or CreateSample. Then use the newly

created surface object to predict the responses for an existing data set

CreateSurface[name = krig_rosen, data = rosenbrock_2d, type = kriging]

Evaluate[surface = krig_rosen, data = test_rosen, label = ’krig_est’]

Figure 1: Examples showing the creation and usage of axes, data,
and surface variables. The file, conventions.spk, is located in the
examples/GettingStarted subdirectory.

3.1.1 Command Arguments

Each argument has the format argument name = argument value. An argu-
ment name is an identifier: a letter followed by a combination of letters, dig-
its, and underscores. An argument value may be an identifier, an integer or
real-valued number, a string literal (enclosed in single quotes ‘ ’), or a comma-
separated list of values enclosed in parentheses, e.g., (1.0,3.5,4.0). Argu-

5

ments may appear in any order.

3.2 Loading Data From a File

The first step in a Surfpack application is usually to prepare a data set for future
computation. Typically, data have already been collected and are stored in a
text file. Surfpack requires data files to conform to a specific format. The data
points in the file should be listed one point per line. Each point should consist
of one or more predictor variables followed by zero or more response variables.
All data points in a single file must have the same number of variables; the
variables for each point must appear in the same order. An optional header
line, beginning with a ‘%’, lists the labels for each of the variables. Figure 2
shows an example.

%Yr World Africa Asia Europe Lt. Am. No.Am. Oceania

1960 3021475 277398 1701336 604401 218300 204152 15888

1965 3334874 313744 1899424 634026 250452 219570 17657

1970 3692492 357283 2143118 655855 284856 231937 19443

1975 4068109 408160 2397512 675542 321906 243425 21564

1980 4434682 469618 2632335 692431 361401 256068 22828

1985 4830979 541814 2887552 706009 401469 269456 24678

1990 5263593 622443 3167807 721582 441525 283549 26687

1995 5674380 707462 3430052 727405 481099 299438 28924

2000 6070581 795671 3679737 727986 520229 315915 31043

2005 6453628 887964 3917508 724722 558281 332156 32998

Figure 2: A data file containing ten data points with one
predictor variable and seven response variables. The file is
examples/GettingStarted/world pop.spd.

Data files can be read into Surfpack using the Load command, which expects
four arguments: a name identifier for the data set, a string argument file spec-
ifying the full or relative path of the data file, and integers n predictors and
n responses which indicate the number of predictor and response variables, re-
spectively, in the data set. Surfpack expects data files to have a .spd extension.
The data set shown in Figure 2 can be loaded into Surfpack using the following
command:

Load[name = world_pop, file = ’world_pop.spd’, n_predictors= 1, n_responses = 7]

3.3 Creating a model from existing data

The CreateSurface command creates a global approximation to a function us-
ing a sample of known points. CreateSurface takes at least three arguments:
a name for the surface, the data from which the model is to be created, and the

6

type of data-fitting algorithm. Additional arguments may specify algorithm-
specific parameters and/or data scaling options. Consider the following com-
mand:

CreateSurface[name = world_poly, data = world_pop, response = World,

type = polynomial, order = 2, log_scale = (World), norm_scale = (Yr)]

The polynomial value for the type argument tells Surfpack to use linear re-
gression to fit the world pop data, which must have been created or loaded in
a previous command. The order = 2 argument specifies that up to quadratic
terms may be used in the regression model. The name argument specifies that
future commands may refer to this model as world poly. The response param-
eter indicates which of the response variables in the world poly data set should
be used to create the global approximation. The log scale and norm scale

arguments take parenthesized lists of variables that are to be scaled before the
global approximation is created. When a variable is scaled using norm scale,
all of the values for that variable in the given data set are mapped to the interval
[0, 1].

3.4 Evaluating an existing model on a set of data

The world pop data set contains world population data from the years 1960–
2005. Suppose we wish to create a model to predict the size of the population
at five year intervals up to 2050. If a file with these query points already
exists, it may be read in using the Load command as described above. Alter-
natively, the data set may be created on the fly using Surfpack’s CreateAxes and
CreateSample commands. The CreateAxes command defines minimum/maximum
pairs for a list of variables on a Cartesian coordinate system. These range pairs
serve as the boundaries inside which future data sets may be created. In this
example, there is only one variable (time) and the range of values that we are
interested in is [2010, 2050]. CreateAxes takes two arguments: normally a name

identifier for the resulting axes variable that is created, and a string bounds

that defines the boundaries for the data set. For multidimensional data sets, the
min/max pairs for each dimension should be delimited by ’|’. Since the popula-
tion data set has only one predictor variable (year), the appropriate CreateAxes
command is

CreateAxes[name = test_years, bounds = ’2010 2050’]

With appropriate boundaries for our data set defined in an axes variable,
we can use the CreateSample command to generate a set of query points.
CreateSample expects at least three arguments. The name and axes identifiers
give a designation and a reference to an existing axes variable, respectively, for
the new data set. For a random sampling of Monte Carlo points (i.e., a data
set where each variable for each point receives a random value drawn uniformly
from the boundaries defined by the axes variable), the size argument speci-
fies the number of points in the data set. Alternatively, to generate regularly

7

spaced points on a grid, the grid points argument is used. The value for the
grid points argument is a list of integers which specifies the number of grid
points along each dimension. The optional labels argument specifies a list of
identifiers that are to be used as the headings for the variables in the new data
set. To generate query points at five-year intervals, we can use

CreateSample[name = test_years, axes = test_ax, grid_points = (9),

labels = (Yr)]

Now we can use Surfpack’s Evaluate command to make the predictions.
Evaluate takes two required parameters: a surface argument indicates which
existing surface is to be evaluated; a data argument gives the set of data that
are to be evaluated. Surfpack appends a new response variable to the data set.
An optional label argument gives a name for the new response:

Evaluate[surface = world_poly, data = test_years, label = WorldEst]

3.5 Quantifying Model Fitness

The quality of an approximation depends on the properties of the function being
approximated and on the data samples and algorithm used to create the model.
Surfpack provides several metrics for quantifying how well the model fits the
data used to create it and for predicting how well the model might generalize
to unseen data. These are accessible via the Fitness command, which takes at
least two arguments: the surface to be analyzed and the quality-of-fit metric
to be used:

Fitness[surface = world_poly, metric = mean_squared]

In this example, the mean squared error (MSE) for the world poly model is
printed to the terminal. Since we used a least-squares regression to fit the sample
data points, our model is not guaranteed to match these ten points exactly
(i.e., the model’s prediction at those points may not match the response values
of the training data). The difference between the model’s prediction and the
true response value is the residual. The MSE is the arithmetic mean of all the
squared residuals. MSE values near zero indicate a close fit of the model to the
training data.

3.6 Saving the results of Surfpack computations

The Save command make it possible to store the results of Surfpack computa-
tions to files for inspection and future use. The commands requires two argu-
ments: an existing surface or data variable and the name of the file to be
written:

Save[data = test_years, file = ’pop_est.spd’]

Save[surface = world_poly, file = ’world_poly.sps’]

Filename extensions should be .spd for data files and .sps for surface files. The
files resulting from Save commands can be read into future Surfpack scripts
using the Load command.

8

3.7 Putting it all together

The full listing for the world population example is shown in Figure 3.

Load[name = world_pop, file = ’world_pop.spd’, n_predictors= 1, n_responses = 7]

CreateAxes[name = years_ax, bounds = ’2010 2050’]

CreateSample[name = test_years, axes = years_ax, grid_points = (9),

labels = (Yr)]

CreateSurface[name = world_poly, data = world_pop, response = World,

type = polynomial, order = 2, log_scale = (World), norm_scale = (Yr)]

Evaluate[surface = world_poly, data = test_years, label = WorldEst]

Fitness[surface = world_poly, data = world_pop, metric = mean_squared]

Fitness[surface = world_poly, data = world_pop, metric = root_mean_squared]

Fitness[surface = world_poly, data = world_pop, metric = press]

Fitness[surface = world_poly, data = world_pop, metric = rsquared]

Fitness[surface = world_poly, data = world_pop, metric = max_abs]

Fitness[surface = world_poly, data = world_pop, metric = mean_abs]

Fitness[surface = world_poly, data = world_pop, metric = mean_scaled]

Fitness[surface = world_poly, data = world_pop, metric = max_scaled]

Save[data = test_years, file = ’pop_est.spd’]

Save[surface = world_poly, file = ’world_poly.sps’]

Figure 3: Full listing of the world population example presented in throughout
this chapter.

4 Surface Fitting Algorithms

4.1 Linear, Quadratic, and Cubic Polynomial Models

Linear, quadratic, and cubic polynomial models are available in Surfpack. The
form of the linear polynomial model is

f̂(x) = c0 +

n∑
i=1

cixi (1)

the form of the quadratic polynomial model is:

f̂(x) = c0 +

n∑
i=1

cixi +

n∑
i=1

n∑
j≥i

cijxixj (2)

and the form of the cubic polynomial model is:

f̂(x) = c0 +

n∑
i=1

cixi +

n∑
i=1

n∑
j≥i

cijxixj +

n∑
i=1

n∑
j≥i

n∑
k≥j

cijkxixjxk (3)

9

In all of the polynomial models, f̂(x) is the response of the polynomial model;
the xi, xj , xk terms are the components of the n-dimensional design parameter
values; the c0 , ci , cij , cijk terms are the polynomial coefficients, and n is the
number of design parameters. The number of coefficients, nc, depends on the
order of the polynomial model and the number of design parameters. For the
linear polynomial, nc = n+1; for the quadratic polynomial, nc = (n+1)(n+2)/2;
and for the cubic polynomial, nc = (n3 + 6n2 + 11n + 6)/6. There must be at
least nc data samples in order to form a fully determined linear system and
solve for the polynomial coefficients. Surfpack employs a standard least-squares
approach using subroutines from the LAPACK software library to solve the
linear system for the unknown coefficients.

The utility of the polynomial models stems from two sources: (1) over a
small region of the parameter space, a low-order polynomial model is often
an accurate approximation to the true data trends, and (2) the least-squares
procedure provides a surface fit that smooths out noise in the data. However, a
polynomial surface fit may not be the best choice for modeling data trends over
the entire parameter space, unless it is known a priori that the true data trends
are close to linear, quadratic, or cubic.

The polynomial regression model can take a single parameter: an integer
order that specifies the maximum degree of the polynomial approximation.
Permissible values are 1, 2, or 3, for linear, quadratic, or cubic polynomials
respectively. The default is a quadratic fit.

4.2 Kriging Interpolation

The Kriging model in Surfpack version 1.0 was that of Giunta and Watson [2],
with reference to [3] and [4]. However, the Kriging model has been re-implemented
with numerous additional options for Surfpack 1.1.

4.2.1 Notational Conventions

The notational conventions used in this section on Kriging are that vectors
are indicated by single underlines, matrices are indicated by double underlines,
capital letters are associated with data used to build the model, and lower case
letters are used for arbitrary points (e.g. where the emulator is to be evaluated).
The standard convention is that each row of a sample design matrix contains a
point.

4.2.2 Introduction

The set of interpolation techniques known as Kriging, also referred to as Gaus-
sian processes, were originally developed in the geostatistics and spatial statis-
tics communities to produce maps of underground geologic deposits based on a
data from widely and irregularly spaced boreholes [5]. Building a Kriging model
typically requires

10

1. Choice of a trend function;

2. Choice of a correlation function; and

3. Estimation of correlation parameters from data.

The Surfpack 1.1 Kriging model can use both function value and gradi-
ent information (when available) to construct the emulator. The default is to
construct a Kriging model without using derivative information, but gradient-
enhanced Kriging (GEK) can be selected with the derivative_order keyword
followed by the value “1” to indicate first order derivative (gradient) information.

GEK is available when Surfpack is called by Sandia’s DAKOTA software
package for optimization and uncertainty quantification, and via direct C++
interfacing to the Kriging model class (as it supports reading and writing deriva-
tive data through its supporting nfm::SurfData class). However, since the cur-
rent Surfpack data .spd file format does not support derivative data, GEK is
not available in stand-alone Surfpack executables.

A Kriging emulator, f̂ (x), consists of a trend function (frequently a least

squares fit to the data, g (x)
T
β) plus a Gaussian process error model, ε (x), that

is used to correct the trend function.

f̂ (x) = g (x)
T
β + ε (x)

This represents an estimated distribution for the unknown true surface, f (x).
The error model, ε (x), makes an adjustment to the trend function so that the
emulator will interpolate, and have zero uncertainty at, the data points it was
built from. The covariance between the error at two arbitrary points, x and x′,
is modeled as

Cov (y (x) , y (x′)) = Cov (ε (x) , ε (x′)) = σ2 r (x, x′) .

Here σ2 is known as the unadjusted variance and r (x, x′) is a correlation func-
tion. Measurement error can be modeled explicitly by modifying this to

Cov (ε (x) , ε (x′)) = σ2 r (x, x′) + ∆2δ (x− x′)

where

δ (x− x′) =

{
1 if x− x′ = 0
0 otherwise

and ∆2 is the variance of the measurement error. In this work, the term “nugget”

refers to the ratio η = ∆2

σ2 .

11

4.2.3 Trend Function

By convention, the terms simple Kriging, ordinary Kriging, and universal Krig-
ing are used to indicate the three most common choices for the trend func-
tion. In simple Kriging, the trend is treated as a known constant, usually zero,
g (x)β ≡ 0. Universal Kriging [6] uses a general polynomial trend model g (x)

T
β

whose coefficients are determined by least squares regression. Ordinary Kriging
is essentially universal Kriging with a trend order of zero, i.e. the trend function
is treated as an unknown constant, so g (x) = 1 and β is estimated from data.
Let Nβ denote the number of basis functions in g (x) and therefore number of
elements in the vector β.

Universal Kriging is implemented in Surfpack and the default trend func-
tion is a main effects (no interaction terms) quadratic polynomial. If the order

keyword is used to specify a different polynomial order (any nonnegative in-
teger is valid input for order) then a full polynomial with be used unless the
reduced_polynomial keyword is also used to indicate a main effects polyno-
mial. If the build data is insufficient to construct a polynomial of the requested
order, the order will be automatically reduced.

For a finite number of sample points, N , there will be uncertainty about the
most appropriate value of the vector, β, which can therefore be described as
having a distribution of possible values. If one assumes zero prior knowledge
about this distribution, which is referred to as the “vague prior” assumption,
then the maximum likelihood value of β can be computed via least squares
generalized by the inverse of the error model’s correlation matrix, R

β̂ =
(
G R−1GT

)−1 (
G R−1Y

)
.

Here G is a Nβ by N matrix that contains the evaluation of the least squares
basis functions at all points in the sample design matrix, X, such that Gl,i =

gl
(
Xi

)
. If G R−1GT is singular or if the number of basis functions in the

requested trend is greater than half of the number of equations in R then a

pivoted Cholesky factorization of G R−1GT will be perform to select the retain-
able subset of basis functions with the maximum one norm condition number.
This protects against a singular G R−1GT matrix, but if too high a trend order
is specified it will “steal” the most useful information for the Gaussian Pro-
cess error model and result in a Kriging model with relatively poor prediction
quality.

4.2.4 Correlation Functions and Lengths

The real, symmetric, positive-definite correlation matrix, R, of the error model
contains evaluations of the correlation function, r, at all pairwise combination
of points (rows) in the sample design, X.

Ri,j = Rj,i = r
(
Xi, Xj

)
= r

(
Xj , Xi

)
12

There are many options for r, among them are the following families of
correlation functions:

• Powered-Exponential

r
(
Xi, Xj

)
= exp

(
−

M∑
k=1

θk |Xi,k −Xj,k|γ
)

(4)

where 1 < γ ≤ 2 and 0 < θk. The squared-exponential correlation function
is also known as the “Gaussian” correlation function.

• Matern

r
(
Xi, Xj

)
=

M∏
k=1

21−ν

Γ(ν)
(θk |Xi,k −Xj,k|)ν Kν (θk |Xi,k −Xj,k|)

where 0 < ν, 0 < θk, and Kν(·) is the modified Bessel function of order
ν. The Matern function is commonly implemented with ν restricted to
ν = i + 1

2 , where i is a non negative integer because these values of ν
result in greatly simplified formulas. For example, Matern with ν = 1

2 is
the exponential correlation function. Matern with ν =∞ is the squared-
exponential or “Gaussian” correlation function. Discontinuities in the
Matern correlation function’s derivatives can only occur at the coordinates
of build points, and there the Matern correlation function is ceil (ν) times
differentiable. However note that although the second derivative of the 1D
Matern function with ν = 3/2 is not defined at build points, its limits from
both sides are defined and equal to each other. This allows the Matern
3/2 correlation function to be used for Gradient Enhanced Kriging.

• Cauchy

r
(
Xi, Xj

)
=

M∏
k=1

(1 + θk |Xi,k −Xj,k|γ)
−ν

where 0 < γ ≤ 2, 0 < ν, and 0 < θk.

Gneiting, et al., [7] provide a more thorough discussion of the properties of and
relationships between these three families. Some additional correlation func-
tions include the Dagum family [8] and cubic splines.

Surfpack supports the powered-exponential correlation function with 1 ≤
γ ≤ 2 and Matern correlation function with ν ∈ {1/2, 3/2, 5/2,∞}. The
powered-exponential correlation function can be specified with powered_exponential

keyword followed a real number between 1 and 2 (inclusive). The Matern corre-
lation function can be specified with the matern keyword followed by 0.5 or 1.5
or 2.5 or infinity. For gradient-enhanced Kriging, only the Gaussian, Matern
3/2, and Matern 5/2 correlation functions may be used. In empirical studies,
the Gaussian correlation function was often the most accurate (for both Kriging

13

and gradient-enhanced Kriging) and as such it is Surfpack’s default. Its infinite
smoothness or differentiability is beneficial for leveraging sparse data (which is
the most typical case).

For the Gaussian correlation function, the correlation parameters, θ, are
related to the correlation lengths, L, by

θk =
1

2 L2
k

. (5)

Here, the correlation lengths, L, are analogous to standard deviations in the
Gaussian or normal distribution and often have physical meaning. Similarly,
for the powered-exponential correlation function

θk =
1

γ Lγk
, (6)

and for the Matern function

θk =

√
2 ν

Lk
. (7)

When the user has knowledge or intuition of reasonable correlation lengths to
build the Kriging model, they can be directly specified by setting optimization_method
= none and the keyword correlation_lengths followed a list of M correlation
lengths, where M is the number of dimensions.

4.2.5 Methods of Handling Ill-Conditioned R Matrices

Ill-conditioning of R and other matrices is widely recognized as a significant
challenge for Kriging. Davis and Morris [9] gave a thorough review of six fac-
tors affecting the condition number of matrices associated with Kriging (from
the perspective of semivariograms rather than correlation functions). They con-
cluded that “Perhaps the best advice we can give is to be mindful of the con-
dition number when building and solving Kriging systems.” In the context of
estimating the optimal θ, Martin [10] stated that Kriging’s “three most prevalent
issues are (1) ill-conditioned correlation matrices, (2) multiple local optima, and
(3) long ridges of near-optimal values.” Martin used constrained optimization
to address ill-conditioning of R. Rennen [11] advocated that ill-conditioning be
handled by building Kriging models from a uniform subset of available sample
points. This last mitigation approach has been available in DAKOTA’s “Gaus-
sian process” model since version 4.1 [12].

Adding a nugget, η, to the diagonal entries of R (the generalization to
gradient-enhanced Kriging used in Surfpack, which does not have all ones on its
diagonal, is to multiply diagonal elements by 1+η) is a popular approach for both
accounting for measurement error in the data and alleviating ill-conditioning.
However, doing so will cause the Kriging model to smooth or approximate rather
than interpolate the data. Methods for choosing a nugget include:

14

• Choosing a nugget based on the variance of measurement error (if any);
this will be an iterative process if σ2 is not known in advance. The keyword
nugget followed by a non negative real number can be used to directly
specify η for the Surfpack Kriging model.

• Iteratively adding a successively larger nugget until R + ηI is no longer
ill-conditioned. This approach is not supported in Surfpack.

• Exactly calculating the minimum nugget needed for a target condition
number from R’s maximum λmax and minimum λmin eigenvalues. Note,
however, that calculating eigenvalues is expensive and can be used to
obtain a desired 2-norm condition number. For linear algebraic operations,
the 1 norm condition number is generally more appropriate and LAPACK
can produce inexpensive estimates of “rcond” or the reciprocal of the 1-
norm condition number The estimated rcond of R can be used to calculate
a still quite small upper bound on the nugget which might be needed to
alleviate ill conditioning. This is the what is added, as needed, when the
find_nugget option of the Surfpack Kriging model is added.

• Treating η as an independent parameter to be selected via the same process
used to choose θ, has elsewhere been used to handle ill-conditioning but
this option is not supported in Surfpack. Two approaches for determining
θ are discussed below.

4.2.6 The Adjusted Mean and Variance

The adjusted (by data) mean of the emulator is a best linear unbiased estimator
of the unknown true function,

ŷ = E
(
f̂ (x) |f

(
X
))

= g (x)
T
β̂ + r (x)

T
R−1ε. (8)

Here, ε =
(
Y −GT β̂

)
is the known vector of differences between the true out-

puts and trend function at all points in X and the vector r (x) is defined such

that ri (x) = r
(
x,Xi

)
. This adjustment can be interpreted as the projection of

prior belief (the least squares fit) into the span of the data. The adjusted mean
of the emulator will interpolate the data that the Kriging model was built from
as long as its correlation matrix, R, is numerically non-singular.

The Kriging model’s adjusted variance is commonly used as a spatially vary-
ing measure of uncertainty. Knowing where, and by how much, the model
“doubts” its own predictions helps build user confidence in the predictions and
can be utilized to guide the selection of new sample points during optimization
or to otherwise improve the surrogate. The adjusted variance is

Var (ŷ) = Var
(
f̂ (x) |f

(
X
))

= σ̂2
(

1− r (x)
T
R−1r (x) + ...

15

(
g (x)

T − r (x)
T
R−1GT

) (
G R−1GT

)−1
(
g (x)

T − r (x)
T
R−1GT

)T)
where the maximum likelihood estimate of the unadjusted variance is

σ̂2 =
εTR−1ε

N −Nβ
.

4.2.7 Methods of Choosing θ

There are at least two types of numerical approaches for choosing θ. One of
these is to use Bayesian techniques such as Markov chain Monte Carlo (MCMC)
to obtain a distribution represented by an ensemble of vectors θ. In this case,
evaluating the emulator’s mean involves taking a weighted average of Equation
8 over the ensemble of θ vectors.

Another more common estimation approach uses optimization to find the set
of correlation parameters θ that maximizes the likelihood of the model given the
data. It is equivalent, and more convenient to maximize the natural logarithm
of the likelihood, which assuming a vague prior is,

log (lik (θ)) = −1

2

(
(N −Nβ)

(
σ̂2

σ2
+ log

(
σ2
)

+ log(2π)

)
+ ...

log
(
det
(
R
))

+ log
(
det
(
G R−1GT

)))
.

And, if one substitutes the maximum likelihood estimate σ̂2 in for σ2, then it
is equivalent to minimize the following objective function

obj (θ) = log
(
σ̂2
)

+
log
(
det
(
R
))

+ log
(
det
(
G R−1GT

))
N −Nβ

.

Because of the division by N − Nβ , this “per-equation” objective function is
mostly independent of the number of sample points, N . It is therefore useful
for comparing the (estimated) “goodness” of Kriging models that have different
numbers of sample points; this will be important later.

In the Surfpack Kriging model, the domain of correlation length space over
which the objective function is optimized is d/4 ≤ Lk ≤ 8d where d is the
average distance between points; d = N−1/M when the input space has be nor-
malized to a unit hypercube or unit hyper-rectangle (centered at zero). Here
again M is the number of input variables. In Surfpack this normalization is
always done because it make the definition of d simple and significantly im-
proves the conditioning of

(
G R−1GT

)
. The user can use the lower_bounds

and upper_bounds keywords (each of these keywords is followed by a list of M
real numbers) to specify the size of the input space. If bounds are not specified,

16

then the minimum and maximum values of the coordinates of build data points
in each dimension are used. The dimension_groups keyword can be used to
specify M integers to indicate which group each input belongs to, if this is done
then the distance aspect ratios within each group is preserved when the build
data is scaled, i.e. the scaled inputs space will be a unit hyper-rectangle rather
than a unit hypercube. By default each dimension is considered to have its own
group.

The options for optimization_method available in the Surfpack Kriging
model are

• global optimization using the DIRECT (DIvision of RECTangles) algo-
rithm (this is the default),

• local gradient-based optimization using the CONMIN (CONstrained MIN-
imization) optimizer, (one or multiple starting locations can be used,
by default a single starting location, the center of the search region in
log2 (L) space, is used you can also specify a starting location using the
correlation_lengths keyword),

• global_local or coarse global polished by local optimization,

• sampling or optimizing by guessing randomly and picking the best guess
(by default 2M+1 guesses are used, you can use the correlation_lengths
keyword to specify one guess and increase the total to 2M+2 guesses, and
or directly specify the maximum number of guesses using the max_trials

keyword)

• none uses the center of the search region in log2 (L) space or the set of
correlation lengths specified using the correlation_lengths keyword.

The optimization used to determine θ is performed under the constraint that R

is not ill-conditioned; specifically that 2−40 < rcond
(
R
)
. As indicated above,

the keywords nugget and find_nugget can be used to avoid ill-conditioning
and enable a larger set of θ to be considered during the optimization process.

Ill-conditioning of R can also be addressed by a using pivoted Cholesky de-
composition of R to rank points according to how much unique information
they containing (given an assumed θ). Trailing “low information” points can
then be discarded until the retained portion of R is no longer ill-conditioned.
The discarded points are the ones with the least unique information and are
therefore the ones that are easiest to predict. A different optimal set of points
is retained for each θ considered during the optimization process. The set of
retained points associated with the optimal θ is therefore “the best of the best”
possible subsets. This is done by default in the Surfpack Kriging model when
neither the nugget nor find_nugget keywords are specified. This approach
uses the negative of the per-equation log likelihood as the objective function to

17

make a fair comparison between different sizes of subsets.

Because the Kriging R matrix has unit diagonal, the first point (row) will
always be retained by the pivoted Cholesky algorithm. The user can alternately
specify rentention of a different “anchor point” via the anchor_index keyword
followed by a integer 0 ≤ a < N.

4.2.8 Table Of Kriging Options

Keyword Value Default Explanation
derivative_order 0|1 0 The maximum derivative order used to construct the emulator, 0=Kriging, 1=Gradient Enhanced Kriging (GEK)
anchor_index 0 ≤ integer < N 0 If pivoted Cholesky is being used to select a subset of points, this allows the user to specify which point is the anchor point, the anchor point is the only point that is guaranteed to be retained
lower_bounds M real numbers minimum coordinate in each of the M input dimensions used to scale the inputs and thus affects the region of correlation length space that is searched during the maximum likelihood optimization, these can only be specified if the upper_bounds are also specified.
upper_bounds M real numbers maximum coordinate in each of the M input dimensions used to scale the inputs and thus affects the region of correlation length space that is searched during the maximum likelihood optimization, these can only be specified if the lower_bounds are also specified.

dimension_groups M integers/group numbers each of the M dimension is scaled independently if two or more input dimensions share the same group numbers then their aspect ratios will be preserved during the scaling, which will cause the input space to be scaled to a unit hyper-rectangle instead of a unit hypercube
optimization_method global|local|global_local|sampling|none global the optimization method used to find the correlation lengths with the maximum per-equation likelihood

num_starts 1 ≤ integer 1 the number of starting locations for local optimization
correlation_lengths M real numbers center of the search region in log(correlation length) space allows the user to specify one set of correlation lengths used in the sampling, local, and none optimzation methods

max_trials 1 ≤ integer varies by optimization method the maximum number of objective function evaluations per optimization, or per starting location in local optimization
order 0 ≤ integer the maximum order of any term in the requested trend function, if order isn’t specified the requested trend function defaults to a main effects (no cross terms) quadratic

reduced_polynomial 1 if order is specified then the requested trend function will be a full (including cross terms) polynomial, if order and reduced_polynomial are both specified, the requested trend function will be a main effects polynomial
powered_exponential 1.0 ≤ real number ≤ 2.0 this keyword allows to the user to choose a member of the powered exponential family of correlation functions, can not be used in combination with matern, if no correlation family is specified the Gaussian correlation function is used

matern 0.5|1.5|2.5|infinity this keyword allows to the user to choose a member of the matern family of correlation functions, can not be used in combination with powered_exponential, if no correlation family is specified the Gaussian correlation function is used
find_nugget 1 this command causes ill-conditioning to be handled by adding a small nugget on an as needed basis, it can not be used in combination with nugget, if neither find_nugget nor nugget are specified ill conditioning of the correlation matrix is handled by having pivoted Cholesky select an optimal subset of points to retain (for pivoted Cholesky with GEK, some or all of the derivative equations may be dropped from the last retained point)

nugget 0.0 ≤ real number 0.0 this causes all diagonal elements of the correlation matrix to be multiplied by 1 + η during the maximum per-equation likelihood optimization, correlation matrices that are still ill-condtioned after the addition of the nugget are excluded from consideration

Table 1: Table of the options available for the Kriging Model

4.3 Artificial Neural Network

The artificial neural network (ANN) surface fitting method in Surfpack employs
a stochastic layered perceptron (SLP) based on the direct training approach of
Zimmerman [13]. The SLP ANN method is designed to have a lower training
cost than traditional ANNs. It uses fixed-value weights on some of the links
within the network. That is, only a portion of the network weights must be
computed in the ANN training process. While this approach offers a lower
training cost than traditional ANNs, it also sacrifices some modeling flexibility.
The form of the SLP ANN model is

f̂(x) = tanh(tanh((xA0 + θ0)A1 + θ1)) (9)

where x is the current point in n-dimensional parameter space, and the
terms A0, θ0,A1, θ1 are the matrices and vectors that correspond to the neuron
weights and offset values in the ANN model. These terms are computed during

18

the ANN training process and are analogous to the coefficients in a polynomial
function approximation. A singular value decomposition method is used to
compute the network weights and offsets.

The SLP ANN is a non-parametric surface fitting method. Thus, along
with kriging and MARS, it can be used to model data trends that have slope
discontinuities as well as multiple maxima and minima. However, unlike kriging,
the ANN surface is not guaranteed to exactly match the response values of the
data points from which it was constructed. Thus, this ANN method provides
some data smoothing similar to that provided by the low-order polynomials.

4.4 Multivariate Adaptive Regression Spline (MARS) Mod-
els

The multivariate adaptive regression splines (MARS) function approximation
method is based on a recursive partitioning algorithm involving truncated power
spline basis functions [14]. The form of the MARS model is

f̂(x) = a0 +

M1∑
m=1

amBm(xi) +

M2∑
m=1

amBm(xi, xj) + . . . (10)

where the Bm terms are the basis functions, the am terms are the coef-
ficients and Mn is the number of n-parameter basis functions. The MARS
software partitions the parameter space into subregions and then applies a for-
ward/backward selection process to add/remove basis functions from the model.
The am coefficients are generated using a regression algorithm. The user may
choose linear or cubic-spline basis functions. With cubic basis functions, the
resulting model is C2 continuous.

MARS is a nonparametric surface fitting method and can represent com-
plex multimodal data trends. The regression component of MARS generates a
surface model that is not guaranteed to pass through all of the response data
values. Thus, like the quadratic polynomial model, it provides some smoothing
of the data. While the MARS algorithm is capable of producing a model from
a very small number of samples, the user should not expect such models to
generalize well.

MARS may take any of the following parameters:

• Integer max bases: the maximum number of basis functions that can be
incorporated into the model. With a greater number of basis functions,
MARS has more flexibility to fit the data well but is also more prone
to over-fitting. Increasing the number of allowable basis functions also
increases the time needed to create the model. The default is 15.

• Integer max interactions: the maximum number of variables that can
be used in any single basis function. This is analagous to the order

parameter for polynomial regression. The default is 2.

19

• Identifier interpolation. The argument value should be linear for
first-order basis functions or cubic for third-order basis functions. The
default is cubic, and this causes MARS to create a C2-continuous model.

4.5 Radial Basis Functions

Radial basis functions are functions whose value typically depends on the dis-
tance from a center point, called the centroid, c. The surrogate model approxi-
mation is then built up as the sum of K weighted radial basis functions:

f̂(x) =

K∑
k=1

wkφ(‖ x− ck ‖) (11)

where the φ are the individual radial basis functions. These functions can
be of any form, but often a Gaussian bell-shaped function or splines are used.
Our implementation uses a Gaussian radial basis function. The weights are
determined via a linear least squares solution approach. See [15] for more details.

4.6 Moving Least Squares

Moving Least Squares can be considered a more specialized version of linear
regression models. In linear regression, one usually attempts to minimize the
sum of the squared residuals, where the residual is defined as the difference
between the surrogate model and the true model at a fixed number of points. In
weighted least squares, the residual terms are weighted so the determination of
the optimal coefficients governing the polynomial regression function, denoted
by f̂(x), are obtained by minimizing the weighted sum of squares at N data
points:

N∑
n=1

wn(‖ f̂(xn)− f(xn) ‖) (12)

Moving least squares is a further generalization of weighted least squares
where the weighting is “moved” or recalculated for every new point where a
prediction is desired. [16] The implementation of moving least squares is still
under development. We have found that it works well in trust region methods
where the surrogate model is constructed in a constrained region over a few
points. It does not appear to be working as well globally, at least at this point
in time.

5 Fitness Metrics

Surfpack provides several error metrics which can be used to assess the quality
of a function approximation and to predict how well the model might generalize
to unseen data. All of these metrics require a set of data for which the true

20

function values are known. The error measures summarize the differences be-
tween the true response values and the approximating model’s estimates at the
same points.

For a given data point i, the difference between the true (observed) re-
sponse value oi and the model’s prediction pi is the residual. Since the resid-
uals for known data points are often added together to produce a summary
error measure, the absolute values of the residuals |oi − pi| or squared resid-
uals (oi − pi)2 can be used to ensure that positive and negative residuals do
not cancel each other out. In applications where the response values in dif-
ferent regions of the parameter space vary by orders of magnitude, scaled
residuals | oi−pioi

| can also be useful. Surfpack supports metrics which give
the sum, arithmetic mean, or maximum of the absolute, squared, or scaled
residuals. The name of the error measure is given as the value of the metric

argument in the Fitness command. The metrics are named sum squared,

mean squared, max squared, mean abs, sum scaled, etc. The square root
of the mean squared error (RMS) is also commonly used in many fields and is
available in Surfpack as root mean squared.

The R2 fitness metric was developed for use with polynomial regressions.
The formula is

R2 =

∑n
i=1 (pi − ō)2∑n
i=1 (oi − ō)2 , (13)

where n is the number of data points used to create the model, and ō is the
mean of the true response values. The metric, named rsquared in Surfpack,
quantifies the amount of variability in the data that is captured by the model.
The value of R2 falls on in the interval [0, 1]. Values close to 1 indicate that the
model matches the data closely.

The class of k-fold cross-validation metrics is used to predict how well a
model might generalize to unseen data. The training data is randomly divided
into k partitions. Then k models are computed, each excluding the correspond-
ing kth partition of the data. Each model is evaluated at the points that were
excluded in its generation. The sum of the squared residuals over all k models is
the cross-validation error for a model that uses all of the available data. To use
a cross-validation metric, the user should enter cv as the value of for the metric
argument to the Fitness command and supply an additional integer parameter
k. A special case, when k is equal to the number of data points, is known as
leave-one-out cross-validation or prediction error sum of squares (PRESS) and
can be accessed in the Fitness command with metric = press.

Users should exercise great care in applying and interpreting the results of
these error metrics. Not all metrics are applicable in to every surface fitting
algorithm, or to every application. For example, metrics involving scaled resid-
uals are probably not appropriate for data sets which include response values
at or near 0 because the scaled residuals would be undefined. Users should also
be aware that surface approximations with “better” values for some particu-
lar metric are not necessarily more desirable models. In particular, algorithms
with many degrees of freedom can be prone to over-fitting (producing mod-

21

els that match the training data very closely but generalize poorly to unseen
data). It should also be noted that in some cases, choosing a metric is a matter
of preference rather than principle (e.g. the difference between mean squared

and sum squared is only a constant factor). Goodness-of-fit metrics provide
a valuable tool for analyzing and comparing models but must not be applied
blindly.

22

6 Examples

6.1 Timing Data

Many scientific computations involve expensive linear algebra operations, such
as matrix inversion. Although modern processors can perform billions of opera-
tions per second, the computational complexity of even the fastest matrix inver-
sion algorithms means that many interesting problems are simply intractable.
And while the numerical algorithms involved in matrix inversion are well un-
derstood, the complexities of memory hierarchies, scheduling algorithms, and
hardware architectures can make it difficult to predict wall-clock performance
for various sizes of matrices. Perhaps the best way to evaluate the limits of
problem size on a particular computer is through the analysis of empirical data.

Suppose we want to characterize the speed of inversion for matrices of various
sizes on a particular machine. What size of matrices can be handled in one
second, one minute, one hour, etc? Figure 6.1 shows data for a Pentium IV
machine.

Figure 4: Running times in seconds for the execution of the Kriging algorithm,
which is dominated by a matrix inversion, for data sets of size 50 to 3000.

The Kriging algorithm used in Surfpack—for which the running time is domi-
nated by a matrix inversion operation—was run using 50–3000 data points, with
tests at intervals of 50 points. If the algorithm is run using n points, the in-
version of an n-by-n matrix is required. For each matrix size, the median time
for five runs of the algorithm is reported. (The experiments were run when the
machine was not heavily loaded with other processes, but there is still some
variation in running times.)

We will use Surfpack to generate an empirical model from these data, which
we can then use to predict running times on problem sizes for which we have
not gathered actual data. A portion of the data file is shown in Figure 6.1.

23

% num_pts time_in_seconds

5.00000000000000000e+01 7.05000013113021851e-04

1.00000000000000000e+02 3.78199992701411247e-03

1.50000000000000000e+02 1.05759999714791775e-02

2.00000000000000000e+02 2.33480000169947743e-02

2.50000000000000000e+02 4.59529999643564224e-02

... ...

2.90000000000000000e+03 8.74331180000444874e+01

2.95000000000000000e+03 9.18161309999413788e+01

3.00000000000000000e+03 9.63073910000966862e+01

Figure 5: Timing data for execution of the Kriging algorithm on data sets with
50–3000 points.

This data was gathered for problems using up to 3000 points (which requires
the inversion of a 3000 by 3000 matrix). After we create a model to fit these
data, we will evaluate the model to predict running times for problems with up
to 5000 points. The first step is to load the data from the file.

Load[name = timing_data, file = ’krigtimes_50to3000.txt’, n_predictors = 1,

n_responses = 2]

From the plot of the data, we can see that the trend in the data is definitely
not linear. We will attempt to fit the data using a quadratic polynomial.

CreateSurface[name = timing_poly2, data = timing_data, response = ’median5’,

type = polynomial, order = 2]

We can use Surfpack to generate the set of test data points and then evaluate
the model on those data.

CreateAxes[name = test_axes, bounds = ’50 5000’]

CreateSample[name = test_timing_data, axes = test_axes, grid_points = (50)]

Evaluate[surface = timing_poly2, data = test_timing_data]

Save[surface = timing_poly2, file = ’timing_poly2.sps’]

Save[data = test_timing_data, file = ’test_timing_data.spd’]

Figure 6.1 shows a portion of the output file test timing data.txt, which
lists the predictions of the model for problem sizes of 50 to 5050, at 100 point
intervals. A plot of the observed data and model predictions is shown in Fig-
ure 6.1.

Figure 6.1 shows an excerpt from quad poly snippet.txt, which shows the
formula for the quadratic approximation.

time ≈ f̂(numpts) = 1.62x2 − 0.02x+ 5.14

24

% ’num_pts’ ’time_in_seconds_est’

5.00000000000000000e+01 4.19372236767611373e+00

1.00000000000000000e+02 3.32891937004349936e+00

1.50000000000000000e+02 2.54549093625508993e+00

...

4.90000000000000000e+03 2.99187800855931528e+02

4.95000000000000000e+03 3.06216330551186843e+02

5.00000000000000000e+03 3.13326234810286337e+02

Figure 6: Timing predictions for quadratic polynomial fit.

Figure 7: Measured execution times and quadratic polynomial model predictions
for Kriging timing study.

Polynomial

1 dimensions

2 order

5.139899929152933 +

-0.019737296867978441 x1 +

1.6274912768841024e-05 x1^2

....

Figure 8: Analytic form of quadratic polynomial model.

25

The predictions appear to follow the general trend of the data fairly well. The
model does curve away from the observed values at the lower-valued data points,
but we are more likely to be concerned about the predictions for larger-sized
problems.

We can use Surfpack’s Fitness command to quantify the error between the
model and the data. We will use the mean abs metric as an example, which
computes the absolute value of the difference between each data point used to
create the model and the prediction of the model at that point. The reported
value is the mean of those residuals.

mean_abs for timing_poly2 on timing_data: 1.48252

The value of 1.48 means that, on average, the predicted running time differs
from the reported running time by 1.48 seconds.

Two other common goodness-of-fit metrics are PRESS and R2.

Fitness[surface = poly2, metric = press]

Fitness[surface = poly2, metric = rsquared]

press for poly2: 1.87209

rsquared for poly2: 0.996222

PRESS gives an average for what the error would be at each data point, if that
point were not included in building the model. Values close to zero are more
desirable. The R2 metric measures the fraction of variance in the model that can
be attributed to the variance in the data. Values close to 1 are more desirable.

The plots of the data and/or knowledge of the underlying matrix inversion
algorithm may motivate us to try to fit a cubic polynomial to the data.

Load[name = timing_data, file = ’krigtimes_50to3000.spd’, n_predictors = 1,

n_responses = 2]

CreateAxes[name = test_axes, bounds = ’50 5000’]

CreateSample[name = test_timing_data, axes = test_axes, grid_points = (50)]

CreateSurface[name = poly3, data = timing_data, response = ’median5’,

type = polynomial, order = 3]

Evaluate[surface = poly3, data = test_timing_data]

Fitness[surface = poly3, data = timing_data, metric = mean_abs]

Fitness[surface = poly3, data = timing_data, metric = press]

Fitness[surface = poly3, data = timing_data, metric = rsquared]

Save[surface = poly3, file = ’cubic_poly_timing.txt’]

Save[data = test_timing_data, file = ’test_timing_data.txt’]

#mean_abs for poly3: 26.095

#press for poly3: 38.8014

#rsquared for poly3: 0

26

All of the metrics are worse; this raises some red flags. In particular, it is not
possible for the R2 value to be lower for a least-squares fit to a cubic polynomial
than for the corresponding quadratic.

The file TimingMatrixOp/timing poly3.txt shows the coefficients for the
model.

Polynomial

1 dimension(s)

3 order

0.10952408396481332 +

-0.00072681435666253696 x1 +

0 x1^2 +

0 x1^3

time = f̂(numpts) ≈ −0.0007x+ 0.1095

The cause of the problem is matrix ill-conditioning. The range of the problem
sizes is 50–3000, while the running times range from a fraction of a second up
to about 100 seconds. To address this problem, we scale the data so that data
fall in the range [0, 1].

CreateSurface[name = poly3, data = timing_data, type = polynomial,

order = 3, norm_scale = (’num_pts’)]

mean_abs for poly3: 0.10484

press for poly3: 0.197664

rsquared for poly3: 0.999956

Now all the metrics are improvements over the quadratic fit, which suggests
that the cubic-polynomial more accurately reflects the trends in the data. In the
absence of any additional information, we would likely use the cubic-polynomial
model to make predictions about running times.

Suppose there were computational resources available to generate a few more
data points. Running times for problem sizes of 3050–5000 points are given in
the file test times.txt. Now we can evaluate our quadratic and cubic models on
these new data and get a better comparison of their predictive capabilities.

LoadData[name = timing_data_3050, file = ’kriging_times_3050to5000.txt’]

Evaluate[surface = poly2, data = timing_data_3050]

Evaluate[surface = poly3, data = timing_data_3050]

Fitness[surface = poly2, metric = mean_abs, data = timing_data_3050]

Fitness[surface = poly3, metric = mean_abs, data = timing_data_3050]

mean_abs for poly2 on timing_data_3050: 48.9

mean_abs for poly3 on timing_data_3050: 1.03499

27

The predictions for the cubic-polynomial are impressive. For a problem size
of 5000, the true running time was 437 seconds and the prediction was 439
seconds.

28

6.2 SAT Scores

The data set in examples/TestScores/sat scores.spd give the average Scholas-
tic Achievement Test (SAT) scores, by state, for students during 1982 [17], [18].
The predictor variables for this study were the percentage of the high school
seniors taking the test, the median household income for the test takers, the
average number of years (in high school) of core courses taken (math, science,
English, etc.), the percentage of test takers attending public schools, the average
per capita expenditure of the state for education, and the median rank of the
test takers in their respective high school classes.

The script shown in Figure 6.2 shows commands that construct several pos-
sible models for the data. The constructed surfaces are saved to files for possible
future use. The PRESS statistic is computed for each model. The results of the
script suggest that the MARS model may have the best predictive capabilities
for this application.

Load[name = sat_scores, file = ’sat_scores.spd’, n_predictors = 6,

n_responses = 1]

CreateSurface[name = sat_poly1, data = sat_scores, type = polynomial, order = 1]

CreateSurface[name = sat_poly2, data = sat_scores, type = polynomial, order = 2]

CreateSurface[name = sat_kriging, data = sat_scores, type = kriging]

#CreateSurface[name = sat_mars, data = sat_scores, type = mars]

CreateSurface[name = sat_ann, data = sat_scores, type = ann]

#Save[surface = sat_poly1, file = ’sat_poly1.sps’]

#Save[surface = sat_poly2, file = ’sat_poly2.sps’]

#Save[surface = sat_kriging, file = ’sat_kriging.sps’]

#Save[surface = sat_mars, file = ’sat_mars.sps’]

#Save[surface = sat_ann, file = ’sat_ann.sps’]

Fitness[surface = sat_poly1, data = sat_scores, metric = press]

Fitness[surface = sat_poly2, data = sat_scores, metric = press]

Fitness[surface = sat_kriging, data = sat_scores, metric = press]

#Fitness[surface = sat_mars, data = sat_scores, metric = press]

Fitness[surface = sat_ann, data = sat_scores, metric = press]

Suppose that education policy makers in Wisconsin wish to use this data to
help them get an idea of how their students’ SAT scores might be influenced by
factors over which they might have some influcence e.g., average expenditure
per pupil or number of core courses taken in high school. (Certainly, they should
not place too much emphasis on the analysis of this data, since the predictor
variables themselves are summaries of many other variables with potentially
complicated interactions. Modeling of this data could be used as one of many
tools in a broader analysis.)

The data what ifs.spd include minor variations from the actual Wisconsin

29

data point: an increase in the number of core courses, changes in per pupil
spending, etc. The script sat scores2.spk reads in the MARS model that was
saved in the earlier script, and then evaluates the model on these specific query
points.

Load[name = what_ifs, file = ’what_ifs.spd’, n_predictors = 6, n_responses = 0]

Load[name = sat_mars, file = ’sat_mars.sps’]

Evaluate[surface = sat_mars, data = what_ifs, label = SAT_est]

Save[data = what_ifs, file = ’what_ifs_estimates.spd’]

30

6.3 Martian Topology

Figure 6.3 shows a script that uses both MARS and Kriging to fit data taken
from the surface of (the planet) Mars. The data were sampled from 25–26◦ N
latitude and 176–177◦ E longitude. The models are constructed using a sparse
training set and then analyzed for their accuracy on both the training set and
a more densely sampled test set. (Data courtesy of NASA.)

#Data courtesty of NASA

#Downloaded from http://pds-geosciences.wustl.edu/missions/mgs/megdr.html

#Accessed June 2006

Load[name = topo, file = ’n26e171.spd’, n_predictors = 2, n_responses = 1]

Load[name = dense_topo, file = ’n26e171dense.spd’, n_predictors = 2, n_responses = 1]

! echo data loaded

CreateSurface[name = topo_kriging, data = topo, type = kriging, correlations = (1.e3,1.e3)]

! echo created kriging

CreateSurface[name = topo_mars, data = topo, type = mars]

! echo created mars

Evaluate[surface = topo_kriging, data = dense_topo, response = ’kriging_est’]

! echo evaluated kriging

Evaluate[surface = topo_mars, data = dense_topo, response = ’mars_est’]

! echo evaluated mars

Save[data = dense_topo, file = ’n26e171dense_estimates.spd’]

! echo saved

Fitness[surface = topo_kriging, data = topo, metric = mean_scaled]

Fitness[surface = topo_mars, data = topo, metric = mean_scaled]

! echo fitness mean scaled

Fitness[surface = topo_kriging, data = topo, metric = max_scaled]

Fitness[surface = topo_mars, data = topo, metric = max_scaled]

! echo fitness max scaled

Fitness[surface = topo_kriging, data = topo, metric = rsquared]

Fitness[surface = topo_mars, data = topo, metric = rsquared]

! echo fitness rsquared

Fitness[surface = topo_kriging, metric = mean_scaled, data = dense_topo]

Fitness[surface = topo_mars, metric = mean_scaled, data = dense_topo]

! echo fitness mean scaled

Fitness[surface = topo_kriging, metric = max_scaled, data = dense_topo]

Fitness[surface = topo_mars, metric = max_scaled, data = dense_topo]

! echo fitness max scaled

Fitness[surface = topo_kriging, metric = rsquared, data = dense_topo]

Fitness[surface = topo_mars, metric = rsquared, data = dense_topo]

! echo fitness rsquared

31

6.4 Sampling Techniques

This example explores the interaction between sampling method (Monte Carlo,
Latin Hypercube, Orthogonal Array) and surface-fitting algorithm (Kriging and
MARS) on a commonly used test function, the Rosenbrock “banana” function.
Since this is one of Surfpack’s built-in test functions, large test data sets are
easily created and analyzed.

32

6.5 Computational Fluid Dynamics

33

Read in data

Load[name = cfd, file = ’cfd.spd’, n_predictors = 1,

n_responses = 1]

Create a test set with 27 points, evenly spaced .2 apart

CreateAxes[name = ax_1d, bounds = ’-4 1.2 ’]

CreateSample[name = test_data, axes = ax_1d, grid_points = (27),

labels = (x)]

CreateSurface[name = poly1_cfd, data = cfd, type = polynomial, order = 1]

CreateSurface[name = poly2_cfd, data = cfd, type = polynomial, order = 2]

CreateSurface[name = poly3_cfd, data = cfd, type = polynomial, order = 3]

CreateSurface[name = mars_cfd, data = cfd, type = mars]

CreateSurface[name = kriging_cfd, data = cfd, type = kriging]

CreateSurface[name = kriging_cfd_user_corr, data = cfd, type = kriging,

correlations = (1.0)]

CreateSurface[name = ann_cfd, data = cfd, type = ann]

Evaluate[surface = poly1_cfd, data = test_data, label = poly1]

Evaluate[surface = poly2_cfd, data = test_data, label = poly2]

Evaluate[surface = poly3_cfd, data = test_data, label = poly3]

Evaluate[surface = mars_cfd, data = test_data, label = mars]

Evaluate[surface = kriging_cfd, data = test_data, label = kriging]

Evaluate[surface = kriging_cfd_user_corr, data = test_data, label = krig_usr]

Evaluate[surface = ann_cfd, data = test_data, label = ann]

Save[data = test_data, file = ’test_data.spd’]

Fitness[surface = poly1_cfd, data = cfd, metric = press]

Fitness[surface = poly2_cfd, data = cfd, metric = press]

Fitness[surface = poly3_cfd, data = cfd, metric = press]

Fitness[surface = mars_cfd, data = cfd, metric = press]

Fitness[surface = kriging_cfd, data = cfd, metric = press]

Fitness[surface = kriging_cfd_user_corr, data = cfd, metric = press]

Fitness[surface = ann_cfd, data = cfd, metric = press]

Fitness[surface = poly1_cfd, data = cfd, metric = root_mean_squared]

Fitness[surface = poly2_cfd, data = cfd, metric = root_mean_squared]

Fitness[surface = poly3_cfd, data = cfd, metric = root_mean_squared]

Fitness[surface = mars_cfd, data = cfd, metric = root_mean_squared]

Fitness[surface = kriging_cfd, data = cfd, metric = root_mean_squared]

Fitness[surface = kriging_cfd_user_corr, data = cfd, metric = root_mean_squared]

Fitness[surface = ann_cfd, data = cfd, metric = root_mean_squared]

Fitness[surface = poly1_cfd, data = cfd, metric = rsquared]

Fitness[surface = poly2_cfd, data = cfd, metric = rsquared]

Fitness[surface = poly3_cfd, data = cfd, metric = rsquared]

34

6.6 Matlab Peaks Function

35

Read in data

Load[name = peaks_data, file = ’matlab_peaks.spd’, n_predictors = 2,

n_responses = 1]

Create a test set with 27 points, evenly spaced .2 apart

CreateAxes[name = ax_2d, bounds = ’-3 3 | -3 3 ’]

CreateSample[name = test_data, axes = ax_2d, grid_points = (13,13),

labels = (x1,x2)]

CreateSurface[name = poly1_peaks, data = peaks_data, type = polynomial, order = 1]

CreateSurface[name = poly2_peaks, data = peaks_data, type = polynomial, order = 2]

CreateSurface[name = poly3_peaks, data = peaks_data, type = polynomial, order = 3]

CreateSurface[name = kriging_peaks_global_corr, data = peaks_data, type = kriging, lower_bounds = (-3.0, -3.0), upper_bounds = (3.0, 3.0), optimization_method = global]

CreateSurface[name = kriging_peaks_local_corr, data = peaks_data, type = kriging, lower_bounds = (-3.0, -3.0), upper_bounds = (3.0, 3.0), optimization_method = local]

CreateSurface[name = kriging_peaks_multi_local_corr, data = peaks_data, type = kriging, lower_bounds = (-3.0, -3.0), upper_bounds = (3.0, 3.0), optimization_method = local, num_starts = 17]

CreateSurface[name = kriging_peaks_sampling_corr, data = peaks_data, type = kriging, lower_bounds = (-3.0, -3.0), upper_bounds = (3.0, 3.0), optimization_method = sampling, max_trials = 17]

CreateSurface[name = kriging_peaks_user_corr, data = peaks_data, type = kriging,

correlation_lengths = (0.335428, 2.68286), optimization_method = none] #these lengths are the ones found using global optimization with all 20 points, a linear trend, and -3.0 <= xr <= 3.0

CreateSurface[name = ann_peaks, data = peaks_data, type = ann]

Evaluate[surface = poly1_peaks, data = test_data, label = poly1]

Evaluate[surface = poly2_peaks, data = test_data, label = poly2]

Evaluate[surface = poly3_peaks, data = test_data, label = poly3]

Evaluate[surface = kriging_peaks_global_corr, data = test_data, label = kriging_global]

Evaluate[surface = kriging_peaks_local_corr, data = test_data, label = kriging_local]

Evaluate[surface = kriging_peaks_multi_local_corr, data = test_data, label = kriging_multi_local]

Evaluate[surface = kriging_peaks_sampling_corr, data = test_data, label = kriging_sampling]

Evaluate[surface = kriging_peaks_user_corr, data = test_data, label = krig_usr]

Evaluate[surface = ann_peaks, data = test_data, label = ann]

Save[data = test_data, file = ’test_data.spd’]

Fitness[surface = poly1_peaks, data = peaks_data, metric = press]

Fitness[surface = poly2_peaks, data = peaks_data, metric = press]

Fitness[surface = poly3_peaks, data = peaks_data, metric = press]

Fitness[surface = kriging_peaks_global_corr, data = peaks_data, metric = press]

Fitness[surface = kriging_peaks_local_corr, data = peaks_data, metric = press]

Fitness[surface = kriging_peaks_multi_local_corr, data = peaks_data, metric = press]

Fitness[surface = kriging_peaks_sampling_corr, data = peaks_data, metric = press]

Fitness[surface = kriging_peaks_user_corr, data = peaks_data, metric = press]

Fitness[surface = ann_peaks, data = peaks_data, metric = press]

Fitness[surface = poly1_peaks, data = peaks_data, metric = root_mean_squared]

Fitness[surface = poly2_peaks, data = peaks_data, metric = root_mean_squared]

Fitness[surface = poly3_peaks, data = peaks_data, metric = root_mean_squared]

Fitness[surface = kriging_peaks_global_corr, data = peaks_data, metric = root_mean_squared]

Fitness[surface = kriging_peaks_local_corr, data = peaks_data, metric = root_mean_squared]

Fitness[surface = kriging_peaks_multi_local_corr, data = peaks_data, metric = root_mean_squared]

Fitness[surface = kriging_peaks_sampling_corr, data = peaks_data, metric = root_mean_squared]

Fitness[surface = kriging_peaks_user_corr, data = peaks_data, metric = root_mean_squared]

Fitness[surface = ann_peaks, data = peaks_data, metric = root_mean_squared]

Fitness[surface = poly1_peaks, data = peaks_data, metric = rsquared]

Fitness[surface = poly2_peaks, data = peaks_data, metric = rsquared]

Fitness[surface = poly3_peaks, data = peaks_data, metric = rsquared]

36

6.7 Central Composite Design and Latin Hypercube Sam-
pling

Load[name = ccd, file = ’ccd_lhs_4d_42p.spd’, n_predictors = 4,

n_responses = 1]

CreateAxes[name = ax4d, bounds = ’0.5 1.5 | 1.5 4.5 | 0.7 1.0 | 0.7’]

CreateSample[name = test_data, axes = ax4d, grid_points = (11,11,11,1)]

CreateSurface[name = ccd_poly1, data = ccd, type = polynomial, order =1]

CreateSurface[name = ccd_poly2, data = ccd, type = polynomial, order =2]

CreateSurface[name = ccd_poly3, data = ccd, type = polynomial, order =3]

CreateSurface[name = ccd_kriging, data = ccd, type = kriging]

CreateSurface[name = ccd_ann, data = ccd, type = ann]

Evaluate[surface = ccd_poly1, data = test_data, label = poly1]

Evaluate[surface = ccd_poly2, data = test_data, label = poly2]

Evaluate[surface = ccd_poly3, data = test_data, label = poly3]

Evaluate[surface = ccd_kriging, data = test_data, label = kriging]

Evaluate[surface = ccd_ann, data = test_data, label = ann]

Save[data = test_data, file = ’test_data.spd’]

Fitness[surface = ccd_poly1, data = ccd, metric = rsquared]

Fitness[surface = ccd_poly2, data = ccd, metric = rsquared]

Fitness[surface = ccd_poly3, data = ccd, metric = rsquared]

Fitness[surface = ccd_poly1, data = ccd, metric = root_mean_squared]

Fitness[surface = ccd_poly2, data = ccd, metric = root_mean_squared]

Fitness[surface = ccd_poly3, data = ccd, metric = root_mean_squared]

Fitness[surface = ccd_kriging, data = ccd, metric = root_mean_squared]

Fitness[surface = ccd_ann, data = ccd, metric = root_mean_squared]

Fitness[surface = ccd_poly1, data = ccd, metric = press]

Fitness[surface = ccd_poly2, data = ccd, metric = press]

Fitness[surface = ccd_poly3, data = ccd, metric = press]

Fitness[surface = ccd_kriging, data = ccd, metric = press]

Fitness[surface = ccd_ann, data = ccd, metric = press]

7 Troubleshooting

List of error messages with probable causes and suggestions for resolving them.

7.0.1 Bad surface name in file

When a surface object is read in from a file, the first item listed should be the
name of the surface type (Polynomial, Kriging, etc.) Check to make sure that

37

the file being read in is indeed a surface file and that it has a valid type identifier.

7.0.2 Cannot add another response: the number of new response
values does not match the size of the physical data set.

This happens when some of the points in a data set have been designated as
”excluded.” A list of new response values cannot be added in this state, because
if the currently excluded points were to be included again, they would not have
a needed value for the new response. Future releases will support multi-response
data setsin which values for some responses may be missing.

To circumvent this problem, activate all points prior to adding a response,
or copy the active points into a new SurfData object, and add the response to
the new set.

7.0.3 Cannot add response because there are no data points

The SurfData object to which an attempt is being made to add response data
contains no data points. The number of points in the data set should correspond
to the number of new response values being added.

7.0.4 Cannot compute euclidean distance. Vectors have different
sizes.

When computing the distance between two vectors, v1 and v2, make sure that
v1.size() == v2.size().

7.0.5 Cannot create surface with zero dimensionality

A query has been made to Polynomial::minPointsRequired in which the dimen-
sionality of the data set has been declared to be zero. All data sets must have
dimensionality of at least one.

7.0.6 Cannot set response index on NULL data

A response index argument has been passed to a Surface object for which the
data set has not yet been specified. First, specify the data set, using either
the constructor or the setData method. Then call the config method with an
response index Arg object that specifies which response value will be used to
create the surface.

7.0.7 Cannot specify both data and surface.

The Save command can be used to write either a data object or a surface object
to a file, but not both. Specify one or the other. If both a surface and a data
set need to be saved, use two Save commands.

38

7.0.8 Data variable not found in symbol table

The variable name given for the data argument in a CreateSurface, Fitness,
or Evaluate command was not found in the symbol table. Make sure that the
data object of that name was previously loaded from a file or created using a
GridPoints or MonteCarloSample command. Check for misspellings.

7.0.9 Data unacceptable: there is no data.

An attempt was made to create a Surface object without specifying any data.
Pass data into the Surface object through the constructor or through the setData
method before invoking createModel.

7.0.10 Axes variable not found in symbol table.

The variable name given for the axes argument in a GridPoints or MonteCar-
loSample command was not found in the symbol table. Make sure that the
axes object of that name was previously loaded from a file or created using a
CreateAxes command. Check for misspellings.

7.0.11 Dimensionality of data needed to determine number of re-
quired samples.

This error occurs when a request is made to know the minimum number of
required sample for some surfaces before the dimensionality of the data is de-
termined. In many cases the required number of points is a function of the arity
of the data.

7.0.12 Dimension mismatch: conmin seed and data dimensionality.

By default the correlation parameters for Kriging are computed using doing a
maximum likelihood estimation. If a seed for the optimization is specified, it
should be a tuple with the same dimensionality as the data set.

7.0.13 Dimension mismatch: correlations and data dimensionality

Kriging expects one correlation value per dimension in the data set.

7.0.14 Dim mismatch in SurfData::setFLabels

The wrong number of labels was given for the data set. These labels are only
for the response variables. Use setXLabels to specify tags for the predictor
variables.

7.0.15 Dim mismatch in SurfData::setXLabels

The wrong number of labels was given for the data set. These labels are only
for the predictor variables. Use setFLabels to specify tags for the response
variables.

39

7.0.16 End of file reached unexpectedly.

When reading data in from a file, there were fewer points than expected in the
file or fewer values for a particular point than were expected. Please check the
data file.

7.0.17 Error in dgglse

The info flag to the LAPACK routine dgglse returned a non-zero value. See the
LAPACK documentation for details. The dgglse routine is used in conjunction
with constrained least-squares solves in the PolynomialSurface class.

7.0.18 Cannot add response because physical set size is different
than logical set size.

Before adding another response, clear excluded points or create a new data set
by using the SurfData::copyActive method. This inconvenience will be resolved
in future releases.

7.0.19 Cannot write SurfData object to stream. No active data
points.

Clear the excluded data points before writing the data to a file.

7.0.20 Data unacceptable: this surface requires....

The various data-fitting algorithms have their own requirements for how many
points are necessary to compute an approximation. Use the numPointsRequired
method to find how many points are required. Note that this is only the min-
imum number of points for the algorithm to perform its computations. The
number of points needed to get a model that gives useful predictions may be
much, much greater. Quantifying these needs is the subject of current research.

7.0.21 Error in SurfData::addPoint. Points in this data set have....

The collection of points in a SurfData object must all have the same number
of predictor variables. Currently, they must also have the same set of response
variables, although this requirement will be relaxed in future releases.

7.0.22 Error in SurfData::sanityCheck....

Surfpack has discovered a mismatch in the dimensionality of at least two data
points in a single SurfData object. This error can be caused by the modification
of individual SurfPoint objects (through external handles) after they have been
added to a SurfData object. While there are legitimate uses of external handles
to a SurfData object’s data points, care must be taken to avoid this kind of
inconsistency.

40

7.0.23 Requested ... max index

A data point was requested from a SurfData object, but the index given is equal
to or greater than the number of points in the set. Remember that if there are
n points, the indices from those points are 0, 1, . . . , n− 1.

7.0.24 Exception caught and rethrown in SurfPoint::readText

7.0.25 Exception rethrown in SurfPoint::readBinary

An unknown error occured while reading a file. Check the integrity of your
data.

7.0.26 Expected: . . . found: . . .

The name found in a surface file is inconsistent with the type of Surface object
that is being create from the file. Check the file contents and object constructor.

7.0.27 Expected ‘f ’ or ‘v’ on line

The first line of an axes object should be the number of dimensions desired in
theresulting data set. Each line after the first should either give a minimum,
maximum, and number of raster points for one dimension, or it should give a
fixed valuefor a dimension, which all points in the set will share. Lines with
fixed values should begin with the flag ‘f’; all others should begin with ‘v’ (for
‘variable’).

7.0.28 Index . . . specified, but there are zero. . .

Either a request has been made for a data point in a data set where there
are no active points, or a request has been made for a non-existent response
variable. Remember the if there are n response variables, they are indexed from
0 to n−1. When requesting data points from a SurfData object, remember that
some points may be inactive (excluded), which would reduce the maximum valid
index.

7.0.29 In Surface::checkData: No data was passed in

Data for a surface may be specified in the constructor of a Surface object, or us-
ing the setData method. If neither of these things occurs before the createModel
method is invoked (either directly or indirectly), this error could result.

7.0.30 Integer overflow: number of terms exceeds maximum integer

There are too many terms in the regression model. Use a lower-order polynomial
to fit the data or project the data into a lower-dimensional space.

41

7.0.31 Must know data arity to use uniform correlation value.

Kriging allows for the specification that the same correlation parameter should
be used for each dimension, but the number of dimensions must be known in
advance. Specify the data for the KrigingSurface object before invoking this
method.

7.0.32 Expected on this line. . .

The number of predictor and/or response variables on some line in the data file
does not match the specified number(s) for the file. Check the format of the
file.

7.0.33 No axes argument specified.

A GridPoints or MonteCarloSample command was given, but no axes variable
was specified. The axes variable must be created in a previous command. It
specifies the (hypercube) boundaries for the data set, and in the case of the
GridPoints command, the number of raster points per dimension.

7.0.34 No data argument specified.

A data argument is required for the CreateSurface and Evaluate commands.
The data object must have been created (and named) previously in a LoadData,
GridPoints, or MonteCarloSample command.

7.0.35 No error metric of that type in this class.

Not all metrics are supported by all methods. Consider using an alternate metric
or extending Surfpack to support the desired metric.

7.0.36 No existing surface variable specified.

The Fitness command requires the name of a Surface object that has already
been created by a LoadSurface or CreateSurface command.

7.0.37 No filename specified.

All of the Load and Save commands require a valid file name to be given. In all
cases, the name of the appropriate argument is ‘file’.

7.0.38 No fitness metric specified.

The Fitness command requires the specification of a metric. See section xx for
a discussion of supported metrics. See section xx for an explanation of how
to extend Surfpack with a new metric. In arguments to the Fitness command,
names of metrics should not be quoted.

42

7.0.39 No name argument specified.

The LoadData, LoadSurface, CreateAxes, CreateSurface, GridPoints, and Mon-
teCarloSample all create new objects that are to be stored in the symbol table
for future reference. Each command requires a name argument that gives a
designation to the new entity.

7.0.40 No surface or data argument specified.

The Save command expects either a surface argument or a data argument (but
not both). Check for misspellings.

7.0.41 No surface type specified.

The CreateSurface command requires a type argument to specify which algo-
rithm should be used to approximate the data: polynomial, kriging, mars, ann,
or rbf. See section xx for an explanation of these algorithms.

7.0.42 Not enough data to compute PRESS.

If a Surface object is created using the minimum number of required samples,
then the PRESS error metric may not be computed. PRESS creates the n
additional models using the same algorithm, but excluding one of the given
points each time and then predicting the value of that point after the model has
been created. However, if leaving one point out causes the amount of available
data to fall below what is required, there is no way to compute the metric.

7.0.43 Out of range in SurfPoint

The ith dimension was requested, but the data has i or fewer dimensions. Re-
member that if the data has n dimensions, they are indexed from 0 to n− 1.

7.0.44 Size of set of excluded points exceeds size of SurfPoint set

Some of the indices passed in to setExcludedPoints must either be out of the
range of acceptable indices for the data set, or duplicatations of other excluded
points.

7.0.45 Surface variable not found in symbol table

The variable name given for the surface argument in a Fitness or Evaluate
command was not found in the symbol table. Make sure that the surface object
of that name was previously loaded from a file or created using a LoadSurface
or CreateSurface command. Check for misspellings.

43

7.0.46 There are no response values associated with this point

A response value has been requested for a data point for which there are no
responses. If the data were read in from a file, check to make sure the contents
of the file are as expected.

7.0.47 This Rval class does not have such a value

This error generally means that the type of an argument in a Surfpack command
was different than what was expected. Common mistakes are using quoted string
literals where unquoted identifiers are expected (or vice versa), or specifying a
single item when a tuple (a parenthesized list of values) is expected.

7.0.48 Unrecognized filename extension. Use .sd or .txt

7.0.49 Unrecognized filename extension. Use .srf or .txt

Surfpack uses file extensions to determine the formatting of information that is
read from or written to files. Currently all Data and Surface files should have
a txt extension. Future releases will support a binary format for both data and
surfaces. The binary formats will be more compact and will provide better I/O
performance for large data sets.

A Surfpack Syntax Summary

TODO: Briefly explain the types of arguments: integer, real, identifier, string,
list, etc. In the status column, R means required and O means optional. Status
designations that span multiple rows signify that these arguments are mutually
exclusive.

44

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorenson,
Lapack user’s guide (1999).

[2] A. A. Giunta, L. Watson, A comparison of approximation modeling tech-
niques: polynomial versus interpolating models, in: Proceedings of the
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analy-
sis and Optimization, St. Louis, MO, 1998, pp. 392–404.

[3] V. J. Romero, L. P. Swiler, A. A. Giunta, Construction of response sur-
faces based on progressiv-lattice-sampling experimental designs, Structural
Safety 26 (2) (2004) 201–219.

[4] J. R. Koehler, A. B. Owen, Computer experiments, Handbook of Statistics
13 (1996) 261–308.

[5] N. A. Cressie, Statistics for Spatial Data, John Wiley and Sons, New York,
1993.

[6] G. Matheron, The theory of regionalized variables and its applications, Les
Cahiers du Centre de morphologie mathématique de Fontainebleau, École
national supérieure des mines, 1971.
URL http://books.google.com/books?id=TGhGAAAAYAAJ

[7] T. Gneiting, M. Genton, P. Guttorp, Geostatistical space-time models,
stationarity, separability and full symmetry, in: B. Finkenstadt, L. Held,
V. Isham (Eds.), Statistical Methods for Spatio-Temporal Systems, Boca
Raton: Chapman & Hall/CRC, 2007, Ch. 4, pp. 151–172.

[8] C. Berg, J. Mateu, E. Porcu, The dagum family of isotropic correlation
functions, Bernoulli 14 (4) (2008) 1134–1149.

[9] G. Davis, M. Morris, Six factors which affect the condition number of ma-
trices associated with kriging, Mathematical geology 29 (5) (1997) 669–683.

[10] J. Martin, Computational improvements to estimating kriging metamodel
parameters, Journal of Mechanical Design 131 (2009) 084501.

[11] G. Rennen, Subset selection from large datasets for kriging modeling, Struc-
tural and Multidisciplinary Optimization 38 (6) (2009) 545–569.

[12] M. Eldred, B. Adams, D. Gay, L. Swiler, K. Haskell, W. Bohnhoff,
J. Eddy, W. Hart, J. Watson, J. Griffin, P. Hough, T. Kolda, P. Williams,
M. Martinez-Canales, Dakota version 4.1 users manual, Sandia Technical
Report SAND2006-6337, Sandia National Laboratories, Albuquerque, NM
(2007).
URL http://dakota.sandia.gov/licensing/release/Users4.1.pdf

45

[13] D. C. Zimmerman, Genetic algorithms for navigating expensive and com-
plex design spaces, Tech. Rep. AO-7736 CA 02, Sandia National Labora-
tories (1996).

[14] J. Friedman, Multivariate adaptive regression splines, Annals of Statistics
19 (1) (1991) 1–141.

[15] M. J. L. Orr, Introduction to radial basis function networks, Tech. rep.,
University of Edinburgh, Edinburgh, Scotland (1996).

[16] A. Nealen, A short-as-possible introduction to the least squares, weighted
least squares, and moving least squares methods for scattered data approx-
imation and interpolation, Tech. rep., Discrete Geometric Modeling Group,
Technishe Universitaet, Berlin, Germany (2004).

[17] B. Powell, L. C. Steelman, Variations in state sat performance: Meaningful
or misleading?, Harvard Educational Review 54 (4) (1984) 389–412.

[18] F. L. Ramsey, D. W. Schafer, The Statistical Sleuth: A Course in Methods
of Data Analysis, Duxbury, Pacific Grove, CA, 2002.

46

Command Argument Type Description

CreateAxes

name R identifier unique name for new axes object
bounds

R
string min/max range pairs for each dimension

file string name of .axb file containing min/max range pairs for
each dimension

labels O identifier list names for predictor variables in new data object

CreateSample

name R identifier unique name for new data object
axes R identifier existing axes object to be used

grid points
R

integer list number of points along each dimension in grid
size integer number of random samples to draw

test functions O identifier list names of built-in test functions

CreateSurface

name R identifier unique name for new surface object
type R identifier surface-fitting algorithm: polynomial, mars,

kriging, ann
data R identifier existing data object from which to create new

surface object
response

O
identifier name of response variable to be used

response index integer index of response variable to be used
log scale O string list names of variables to be scaled logarithmically
norm scale O string list names of variables to be normalized to [0,1]

Evaluate
surface R identifer existing surface to be evaluated
data R identifier existing data to evaluate
label O string name for new response variable

Fitness

surface R identifier existing surface to be analyzed
metric R identifier goodness-of-fit metric to be used
data O identifier existing data object to be used to evaluate fitness

response
O

identifier response variable to be used as “true” function value
response index integer index of response variable to be used

Load

name R identifier unique name for data object
file R string data file (.spd) or surface file (.sps)

n predictors R integer number of predictor variables per point (for data

load only)
n responses R integer number of response variables per point (for data load

only)

Save
data

R
identifier existing data object

surface identifier existing surface object
file R string filename for data/surface to be saved

47

Surface Type Argument Status Type Description
Polynomial order O integer maximum order of regression terms

Mars
max bases O integer maximum number of basis functions

max interactions O integer maximum number of interactions between variables
per basis

interpolation O identifier type of splines used: linear or cubic

Kriging
correlations O real list correlation paramter for each variable

uniform correlation O real uniform correlation value for all variables
conmin seed O real list starting values maximum likelihood estimation of

correlations

ANN
norm bound O real Does anyone know what this is?
svd factor O real Does anyone know what this is?

fraction withheld O real fraction of data to be excluded from training set

48

