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A nonlinear optimization algorithm is described that combines the best features of the method of feasible
directions and the generalized reduced gradient method. The algorithm uses the direction-finding subproblem
from the method of feasible directions to find a search direction that is equivalent to that of the generalized
reduced gradient method. but without the need to add a large number of slack variables associated with ine-
quality constraints. This leads to a core-efficient algorithm for the solution of optimization problems with a
large number of inequality constraints. Also, during the one-dimensional search, it is not necessary to separate
the design space into dependent and independent variables using the present method. The concept of infre-
quent gradient calculations is introduced as a means of gaining further optimization efficiency. Finally, it is
shown that, using the basic direction-finding algorithm contained in this method, the sensitivity of the opti-
mum design with respect to problem parameters can be obtained without the need for second derivatives or
Lagrange multipliers. The optimization algorithm and sensitivity analysis is demonstrated by numerical
example.

Nomenclature

Introduction
A wide variety of algorithms are available for solving the nonlinear programming problem of structural

synthesis. Of interest here are the so-called direct methods, particularly the method of feasible directions1,2 and the
generalized reduced gradient method.3-5 Each of these methods attempts to incorporate constraint information
directly into the optimization algorithm and, in a sense, follows the constraint boundaries to the optimum. 

The method of feasible directions has the features that it progresses rapidly to a near-optimum design and that it
requires only gradient information for the objective and active constraints at a given point in the optimization
process. The method has the disadvantages that it is prone to “zig-zag” between constraint boundaries and that it
usually does not achieve a precise optimum. 

The generalized reduced gradient method is an extension of the reduced gradient method for equality
constraints in order to deal with inequality constraints. This method usually converges rapidly to a precise optimum,
but has the disadvantage that a large number of slack variables are added to convert inequality constraints to
equivalent equality constraints. Also, the set of design variables is separated into independent and dependent subsets.

A = matrix containing gradients of active constraints 
bi = width of beam segment i 
B = matrix containing gradients of equality constraints 
c = half-height of beam segment 
C, D = sub-matrices of B 
F(X) = objective function 
gj(X) = inequality constraint 
GR = reduced gradient 
hi = height of beam segment i
hk(X) = equality constraint 
I = moment of inertia of beam segment
J = set of active constraints 
K = set of near-active constraints 

= number of equality constraints 
m = number of inequality constraints 
M = moment of beam segment 
n = number of design variables 
P = problem parameter 
S = search direction 

X = vector of design variables 
α = move parameter in the one-dimensional search 
β = objective in direction-finding subproblem 
δ = change or displacement 

= gradient operator 
θ = push-off factors 

Subscripts 
i = component of X or S 
j = inequality constraint number 
k = equality constraint number 

Superscripts 
-1 = inverse 
f = lower bound 
q = iteration number 
T = transpose 
u = upper bound 
* = optimum 

∇
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This leads to a large subproblem to be solved by Newton's method during the one dimensional search. This method
may be modified for storage efficiency at some expense in algorithmic difficulty. 

The purpose here is to describe a new optimization algorithm that incorporates the best features of the method
of feasible directions and the generalized reduced gradient method. We begin with a brief review of the present
algorithms and then extend this to create the new method. A convenient by-product of this method is the ability to
easily obtain sensitivity information about the optimum with respect to problem parameters, and this feature will also
be described. The optimization algorithm will be demonstrated by numerical example. 

The Method of Feasible Directions
The method of feasible directions solves the following inequality constrained optimization problem: find the

vector of design variables X, which will 

Minimize F(X) (1)

subject to 

(2)

(3)

Equality constraints are usually not included in this algorithm, although with some ingenuity, these may be included. 

The optimization process proceeds iteratively by the common update formula 

(4)

where q is the iteration number, Sq the vector search direction, and α* a scalar move parameter. Thus, the
optimization proceeds in two steps: first determine a “usable-feasible” search direction Sq, and then perform a one-
dimensional search in this direction to reduce the objective function as much as possible subject to the constraints. It
is assumed here that the initial design X0 is feasible (satisfies all constraints), but if this is not so, we can find a search
direction that will direct the design back to the feasible region.2 

The usable-feasible search direction is found by solving the following subproblem: 

Maximize β (5)

subject to

(6)

(7)

(8)

where  is the gradient operator and the rows of A contain the transpose of the gradients of the set J of currently

active constraints, [  within a specified tolerance for ]. The components of θ are referred to as push-

off factors, which push the design away from the currently active constraints. This allows us to move in this direction
some finite amount before moving into the infeasible region as a consequence of the curvature of the constraint
surfaces. 

This direction-finding problem is linear in the decision variables Si, i= 1, n, and β, except for the quadratic
constraint of Eq. (8). However, this can be converted to a specia1 form of a linear programming problem and can be
efficiently solved.1 This subproblem is of a dimension equal to the number of active constraints plus one, making it
extremely efficient.6 

The geometric interpretation of the direction-finding process is shown in Fig: 1, where the usability condition of
Eq. (6) requires that the scalar product of the gradient of the objective function with the search direction be negative

gj X( ) 0≤ j 1 m,=

Xi Xi Xi
u≤ ≤

Xq Xq 1– α*Sq
+=

∇F X( )TS β 0≤+

AS βθ 0≤+

STS 1≤

∇
gj X( ) 0≤ j J∈
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and the feasibility condition of Eq. (7) requires that the scalar product of the gradient of each currently active
constraint with the search direction be negative. The push-off factors θj determine the amount by which the design is
pushed away from the constraint boundaries, and a value of unity will provide a search direction that roughly bisects
the usable-feasible sector.

Figure 1  Usable-feasible direction.

Having determined the search direction S, Eq. (4) is used to update the design as a function of α to reduce the
objective as much as possible, subject to the constraints. This is commonly done by polynomial interpolation,
although any number of one-dimensional search strategies may be used. 

The Generalized Reduced Gradient Method 
The generalized reduced gradient method solves the nonlinear constrained optimization problem: find the

vector of design variables X to 

Minimize F(X) (9)

subject to 

(10)

(11)

(12)

We first convert the inequality constraints to equality constraints by adding one non-negative slack variable to each
inequality, so

(13)

(14)

gj X( ) 0≤ j 1 m,=

hk X( ) 0= k 1,=

Xi
l Xi Xi

u≤ ≤ i 1 n,=

gj X( ) Xn j++ 0≤ j 1 m,=

Xn j+ 0≥ j 1 m,=
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Now, for convenience, we can write the problem in terms of equality constraints only as

Minimize F(X) (15)

subject to 

(16)

(17)

where it is understood that the upper bounds associated with the slack variables are set very large (infinite). 

Now, because we have m+  equality constraints, we can in principal define m+  dependent variables, with the
remaining n-  variables as independent variables. That is, we can partition the vector X as 

(18)

Now we minimize with respect to the independent variables XI and, for each proposed design, we solve Eq. (16)
subject to the side constraints of Eq. (17) using Newton's method. During the optimization, we need the gradient of
the objective with respect to the independent variables, subject to the condition that the equality constraints remain
satisfied (we wish to follow the constraint boundaries). This is referred to as the reduced gradient and is defined as 

(19)

where

(20)

and

(21)

and the subscripts I and D refer to independent and dependent variables, respectively. 

Equation (19) is the “reduced gradient” of the objective with respect to the independent variables XI and is used
to define the search direction S for use in Eq. (4). Now, when the independent variables XI are changed by the
amount dXI, the dependent variables are updated by 

(22)

hk X( ) 0= k 1 m +,=

Xi
l Xi Xi

u≤ ≤ i 1 n m+,=

X
XI

XD⎩ ⎭
⎨ ⎬
⎧ ⎫

=
n   independent variables–

m   dependent variables   +

GR ∇IF X( ) D 1– C[ ]
T
∇DF X( )–=

C

∇I
Th1 X( )

∇I
Th2 X( )

…
…

∇I
Thm + X( )

m +( ) n –( )×

=

D

∇D
T h1 X( )

∇D
T h2 X( )

…
…

∇D
T hm + X( )

m +( ) m +( )×

=

dXD D 1– h X( )– CdXI–[ ]=
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where h(X) is a vector containing the constraint values. The dependent variables are updated by adding dXD to the
previous XD values and the constraints are evaluated again, repeating-until all constraints are zero within a specified
tolerance. This is simply Newton's method for solving nonlinear simultaneous equations, except that the gradients are
not updated at each step. Also, special consideration must be made if one or more dependent variables approach their
side constraint, since this limits the one-dimensional search. 

If the constraints are not too nonlinear, this method is quite efficient and, at the optimum, the binding
constraints are usually satisfied precisely by virtue of the constant Newton updating. Also, since the gradients of all
the constraints are available, a good initial estimate for α* in Eq. (4) can be made as that which will drive some slack
variable to zero. On the other hand, this method, at least in principal, requires gradients of all the constraints at each
iteration in the optimization, requires the addition of a large number of slack variables for problems of practical
interest, and requires the solution of a large set of nonlinear simultaneous equations at each step in the one-
dimensional search. 

The Present Feasible Directions Method 
A particularly attractive feature of the method of feasible directions is that gradients are required only for

constraints that are critical at any given time during the optimization, while the generalized reduced gradient method
has the attractive feature of precisely following the constraint boundaries from one vertex to the next, without the
need to move away from the constraints. In this section, we present an algorithm that has each of these features, but
does not require the large number of slack variables with the corresponding large matrix operations of the generalized
reduced gradient method. Also, for the usual case of inequality constraints, the algorithm is relatively simple as
compared to the generalized reduced gradient method. 

The geometric interpretation of the algorithm is seen in Fig. 2, which shows a two-variable design space with
two inequality constraints. At the current design point X0, constraint gl(X) is active. We now find a search direction

S1 that is tangent to the boundary of the critical constraint, as shown. This is easily accomplished by setting the push-
off factors to zero in Eq. (7) and solving for S as in the method of feasible directions. If more than one constraint are
active, the resulting search direction will reduce the objective function as much as possible by following the most
critical constraint as shown at Xl in Fig. 2, 

Figure 2  Search directions.



Page 6

An alternative but equivalent form of the direction-finding problem is 

Maximize (23)

(24)

(25)

where we have simply eliminated the intermediate variable β.7 

By finding the search direction using the method given here we have achieved several desirable goals. First, we
have not increased the dimensionality of the design problem by adding slack variables to the inequality constraints.
This is a major advantage in engineering problems because the number of inequality constraints is often very large
compared to the number of design variables. Second, we have created an algorithm for finding S that is designed
specifically for inequality constrained problems, again the most common engineering task. Third, we have required
only the gradients of the active constraint set J, thus reducing both computational effort and computer storage
requirements. In practice, this third feature will be modified somewhat in order to strike a balance between overall
design efficiency and computer storage. However, even then we will not require gradients of all constraints unless the
constraint set is small. 

Equality Constraints 

Because the algorithm for finding S is developed for inequality constrained problems, we must now consider
the special case where we also include equality constraints. Now we see a philosophical difference between this and
the generalized reduced gradient method, which was developed originally for equality constraints and then modified
to deal with inequality constraints. Of course, the equality constraints could be treated using a penalty function, but it
is usually preferable to deal with them directly in determining the search direction. Here, using the original reduced
gradient concept for equality constraints, we can include these in our formulation. 

Now because equality constraints are always active, the direction-finding problem becomes 

Maximize β (26)

subject to

(27)

(28)

(29)

(30)

where the rows of B contain the transpose of the gradients of the equality constraints. 

Now, for each equality constraint, we can choose one of the design variables (and the corresponding component
of S) as a dependent variable just as in the reduced gradient method. Thus, Eq. (29) is partitioned as 

(31)

where SI are independent variables, SD dependent variables, and C and D the corresponding sub-matrices of B. There
are  components in SD and they need not be the last  components. We partition the arrays this way only for
convenience. We now solve for SD in terms of SI, 

(32)

Now substitute this into Eqs. (27) and (28) and solve for the reduced set of components SI, just as for inequality
constraints. 

∇F X( )TS–

AS 0≤

STS 1≤

∇F X( )TS β 0≤+

AS βθ 0≤+

BS 0=

STS 1≤

BS C    D[ ]
SI

SD⎩ ⎭
⎨ ⎬
⎧ ⎫

0= =

SD D 1– CSI–=
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This leads to the direction-finding problem in terms of SI alone, 

Maximize β (33)

subject to

(34)

(35)

(36)

Having solved for the components SI Eq. (32) can now be used to retrieve the remaining components SD. In the event
that we have only equality constraints, the vector multiplying SI in Eq. (34) is the same as the reduced gradient in the
generalized reduced gradient method. 

Choosing the Dependent Variables 

If equality constraints exist,  dependent variables must be chosen in order to solve Eq. (32). We then solve the
direction-finding problem of Eqs. (33-36) for the components of SI. Now, while we may be somewhat arbitrary in
choosing the dependent variables, we must insure that the sub matrix D is non-singular. This is easily accomplished
by using the Gauss elimination with pivot search. Thus, beginning with the first row, we search for the column with
the coefficient of the greatest magnitude and pivot on this, the corresponding design variable becoming a dependent
variable. If any row has all zeros, the corresponding constraint is dropped from the active set since this constraint is
not independent. We eliminate that row and continue with the elimination process until we have a dependent variable
associated with each equality constraint. In this way we have a convenient means of dealing with the linear
dependence of the constraints and of choosing the dependent variables to insure the matrix operations are as well
conditioned as possible. 

The One-Dimensional Search 

The one-dimensional search is now performed in a manner similar to the generalized reduced gradient method,
but without the need to separate the design variables into dependent and independent sets. 

The first estimate for α* is a critical part of the one dimensional search. Here the generalized reduced gradient
method has the advantage that the smallest a which will drive a currently positive slack variable to zero can be
estimated. This is equivalent to finding the a that will drive a currently inactive constraint to zero. The calculation of
the proposed α requires the gradient of inactive constraints, information that is not available in the present method.
However, if we modify our philosophy so that we evaluate the gradients of some subset K of nearly active
constraints, where usually K << m, we can obtain the desired information. Now we can estimate the a that will drive
some new constraint to zero from 

(37)

But

(38)

so the move parameter that will drive gj(X) to zero is estimated as 

(39)

We now choose the smallest αj from Eqs. (39) as our proposed move and the one-dimensional search proceeds from
here. 

∇IF X( ) D 1– C[ ]
T
∇DF X( )–

⎩ ⎭
⎨ ⎬
⎧ ⎫

T

SI β 0≤+

AI ADD 1– C–[ ]SI βθ 0≤+

SI
TSI 1≤

gj X( ) αdgj X( ) dα⁄ 0= = j K,∈ j J∉

dgj X( ) dα⁄ ∇gj X( )TS= any j

αj gj X( ) ∇gj X( )TS[ ]⁄–= j K,∈ j J∉
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Now consider the one-dimensional search from X0 in direction SI in Fig. 2. Using the generalized reduced
gradient method, we would define X1 as the dependent variable and, for each α, we would shift the design parallel to

the X1 axis using Newton's method to give g1(X0 + αS1) = 0 by Eq. (22). In the present method, we seek to-change

both X1 and X2 from their proposed value of X0 + αS1 to be the minimum distance back to the constraint(s). That is,
knowing the value of g1(X), we wish to find the minimum perturbation δX to drive g1(X) to zero. This requires the
solution of the following suboptimization problem: 

Minimize (40)

subject to

(41)

where the rows of matrix A contain the transpose of the gradients of the currently active set of constraints (both
equality and inequality) and G contains the values of the constraints at X = X0+αS1. This problem is solved by the
use of the Kuhn-Tucker conditions to give 

(42)

The design vector X is now updated by adding δX to it and the constraints are evaluated again, repeating until all
critical constraints are sufficiently close to zero. Note that this is similar to the use of Newton's method in the
generalized reduced gradient algorithm, but that now all design variables are perturbed the minimal amount needed
to return to the constraint boundary. This avoids the need to pick dependent variables and also reduces the ill-
conditioning associated with constraint boundaries with large curvatures. The dimension of the AAT matrix is also
relatively small, being equal to the number of currently active constraints. 

Initially Infeasible Designs 

If an initial design X0 is specified such that one or more constraints are violated, our first priority is to find a
feasible design. We begin by treating all violated constraints as if they are inequality constraints. Any active
constraints are treated as before. Now the direction-finding problem is modified by disregarding the usability
requirement of Eq. (34) and making this a part of the objective.2 That is, the direction-finding problem is solved: 

Maximize (43)

subject to

(44)

(45)

Here, we set the values of the push-off factors 8 corresponding to the violated constraints to a large positive value,
say 50, or preferably to a value dependent on the degree of constraint violation.2 The resulting search direction will
drive the design back toward the feasible region with as little increase in the objective function as possible. 

Having determined the search direction, we search to overcome the constraint violations associated with the
inequality constraints but do not necessarily stop at the constraint boundary. During the search we use Eq. (42) to
drive the equality constraints to zero so, ideally, at the end of the one-dimensional search, the equality constraints are
satisfied precisely and the inequality constraints are at least satisfied. In practice, this may require several iterations,
such that during each search the infeasibility is reduced as much as possible. This is because the problem may be so
nonlinear that the constraint violations cannot be overcome in one iteration. 

1
2
---δXTδX

AδX G+ 0=

δX AT AAT[ ]
1–
G–=

∇I X( ) D 1– C[ ]
T
∇DF X( )–

⎩ ⎭
⎨ ⎬
⎧ ⎫

T

SI– β+

AI ADD 1– C–[ ]SI βθ 0≤+

SI
TSI 1≤
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Infrequent Gradient Calculations 

In many design problems, gradient computations are expensive, especially if this information is calculated by
finite difference methods. However, recognizing that the gradients usually do not change rapidly, we may wish to
calculate gradients only every few iterations. It might be noted that this assumption is implicit in both the generalized
reduced gradient method and the present method when the dependent variables are updated during the one-
dimensional search, because the gradients with respect to the dependent variables are held constant. 

Now, because we are evaluating gradients of both active and near-active constraints, we usually have the
needed in-formation even though the active constraint set changes from one iteration to the next. Thus, we evaluate
new gradients only when 1) a new constraint for which we do not have the gradient becomes active, 2) Eq. (42) does
not converge, or 3) a constraint function changes by an amount substantially different than that predicted based on the
gradient. These last two cases indicate that the constraints are quite nonlinear or that the design has changed
substantially and thus the gradients need to be updated. 

This technique of infrequent gradient calculations is not unique to the present method and is in fact not best
suited here because we are using the gradients in the one-dimensional search subproblem of Eq. (42). In general, this
technique should be considered in other optimization algorithms where precise equality of the constraints is not
critical, for example, the method of feasible directions. 

Sensitivity of the Optimum Design 
It is sometimes desirable to determine the sensitivity of the optimum design with respect to one or more

problem parameters. For example, we may wish to estimate what effect a specified increase in loads will have on the
optimum structure. Also, this information is useful in system synthesis, whereby the components are optimized
independently while accounting for their interaction via a set of global variables. 

The usual approach here is to begin with the Kuhn-Tucker conditions and to differentiate to estimate the needed
sensitivity information.8-10 This approach requires evaluation of the second derivatives with respect to the
independent variables as well as the Lagrange multipliers at the optimum. A set of simultaneous equations are solved
for the rate of change of the design variables and Lagrange multipliers. This is then used to evaluate the total
derivative with respect to the problem parameter. While this approach has been demonstrated to be effective, it has
the disadvantage of requiring second derivatives, an often costly computation, especially in the general case where
analytic derivatives are not readily available. 

Here we consider a way to obtain sensitivity information using first derivatives only, based on the concept of a
feasible direction. Consider the optimum design X* at which all equality constraints are satisfied and some subset J

of inequality constraints is active, . Assume now that we wish to know the sensitivity of

the optimum F(X*) with respect to some new parameter P. This is easily found by treating P as an independent design
variable and adding it to the set of variables X as 

(46)

We now solve the direction-finding problem of Eqs. (23-25) in the n+1design space and, if we have equality
constraints, we modify this using Eq. (32) as before. We omit the usability condition of Eq. (27) or (34) because we
must allow for the possibility that the objective function will increase. In other words, we can use Eqs. (43-45) with
the push-off factors set to zero to solve this problem. Having found the “optimum search direction,” the resulting n +
I location of S contains the rate of change of the parameter P with respect-to α. That is, from Eq. (4), 

(47)

Nor for a specified change δP we have

(48)

where α* can be either positive or negative. The rate of change of the optimum objective is now 

(49)

gj X*( ) 0= j J∈

Xn 1+ P=

PNEW POLD α dP dα⁄[ ]+ αSn 1+= =

α* δP Sn 1+⁄=

dF X*( ) dα⁄ ∇F X*( )
T

S=
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and the change in objective for a specified change δP is 

(50)

Alternatively, the sensitivity of F(X*) with respect to P is 

(51)

The corresponding changes in the optimum design variables are found from Eq. (4) as 

(52)

Thus, using first derivatives only, we have found the change in the objective as well as the corresponding change in
X. to maintain optimality. It has been assumed here that P will be changed in the direction of reduced objective
function. If this is not so, the total derivative calculated here may not be correct because the derivative can be
discontinuous at X. This can be dealt with by specifying the sign on Sn+1 as an additional constraint on the problem. 

This method gives the optimum sensitivity based on the assumption that no new constraints immediately
become critical. However, the methods of Ref. 10 can now be used to determine the limits such that some new
constraint is encountered. Also, we can calculate the sensitivity to a proposed change in several parameters simply by
adding them all to the X vector and solving the optimum direction-finding problem. For example, having optimized a
structure with respect to its member variables, we may find the best way to change the geometry by including the set
of geometric variables in the direction-finding problem. This has been used elsewhere as an effective means of
configuration optimization11-12 and is directly expanded to general system synthesis. Therefore, this may be
considered a system synthesis technique in which we now change the system parameters and estimate the required
change of the component parameters. If more precision is needed, we may actually change the system variables and
re-optimize with respect to the component variables.13 Thus, the concept of a feasible direction is seen to have
significant ramifications in multilevel optimum design. 

Design Example 
The cantilevered beam shown in Fig. 3 provides a simple example to demonstrate the optimization algorithm.

Figure 3  Cantilevered Beam

δF X*( ) δP
Sn 1+
-------------∇F X*( )

T
S=

dF X*( )
dP

------------------ 1
Sn 1+
-------------∇F X*( )

T
S=

δX* α*S δP
Sn 1+
-------------S= =
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The beam is divided into five equal length segments as shown. The objective is to minimize material volume and the
design variables are the height and width of the sections, for a total of 10 design variables. Constraints include stress
limits at the left end of each segment, maximum displacement ·at the tip, geometric limits on the height-to-width
ratio, and side constraints on the height and width. The design task is thus written as 

Minimize (53)

subject to

(54)

(55)

(56)

(57)

(58)

This is a comparatively difficult problem for algorithms such as the method of feasible directions because the
optimum design is fully constrained, accentuating any zig-zagging tendency. 

This problem was solved four times and the results are given in Table 1. Case I corresponds to the present
method with infrequent gradient calculations. Case 2 is for the present method, where the gradients are computed at
each iteration. Case 3 is for the generalized reduced gradient method and case 4 is the result obtained using the
method of feasible directions contained in the CONMIN program.14 

Table 1 Comparison of results

V Libihi
i 1=

5

∑=

σi
Mici

Ii
----------- 14 kN/cm2≤= i 1 5,=

hi 20bi 0≤– i 1 5,=

δ 0.5 cm≤

1.0 bi 15.0≤ ≤ i 1 5,=

2.0 1.0( ) hi 150.0≤ ≤ i 1 5,=

Parameter
Initial
value

Calculated optimum

Case 1 Case 2 Case 3 Case 4

b1 5.00 2.194 2.194 2.194 2.195

b2 5.00 2.205 2.205 2.205 2.205

b3 5.00 2.524 2.524 2.524 2.524

b4 5.00 2.778 2.778 2.778 2.781

b5 5.00 2.992 2.992 2.992 2.994

h1 40.00 43.87 43.87 43.87 43.90

h2 40.00 44.09 44.09 44.09 44.11

h3 40.00 50.47 50.47 50.47 50.47

h4 40.00 55.55 55.57 55.55 55.62

h5 40.00 59.84 59.84 59.84 59.87

V 100,000 65,412 65,430 65,414 65,493

Function evaluations 132 182 251 297
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At the optimum, the stress constraints of Eqs. (54) are critical for i = 2 and 5, the height-to-width ratio constraints of
Eqs. (55) are all critical, and the displacement constraint of Eq. (56) is critical.

All gradient information was calculated by finite difference, and the number of function evaluations listed in
Table 1 includes those used for the calculating gradients. As seen from the table, the present method provides a
precise optimum and also requires the fewest function evaluations, although each method provides acceptable results
from an engineering viewpoint. 

Sensitivity Example 
For the design example just considered, we now wish to estimate the effect that changing the allowable stress

will have on the optimum design. To do this, we add the allowable stress to the vector of optimum design variables
and solve the direction-finding problem. Using the optimum design given as case I in Table 1, the gradient of the
objective function and the resulting “optimum search direction” are given in Table 2. Using Eq. (49), 

(59)

The results given in Table 2 as cases I and 2 correspond to a 10,070 and 20,070 increase, respectively, in the
allowable stress, where column a is the projected value of the design variables and column b contains the calculated
values of the· design variables when the beam is re-optimized using this allowable stress. The values of a· shown in
the table are calculated using 

Table 2 Sensitivity of the optimum

Eq. (48) and Eqs. (50) and (52) are used to estimate the corresponding new values of the objective function and
design variables, respectively. The design improvement is overestimated by 5% in case I and by 15% is case 2, while
the predicted value of the objective function is in error by well under 1% in case I and by slightly more than 1% for
case 2. 

dF X*( ) dα⁄ 842.6–=

Parameter S

Case 1 Case 2

a b a b

b1 4,386.2 0.0081 2.222 2.259 2.251 2.276

b2 4,408.6 -0.0060 2.183 2.135 2.162 2.140

b3 5,046.1 -0.0236 2.439 2.445 2.355 2.372

b4 5,553.6 -0.0259 2.685 2.691 2.592 2.610

b5 5,988.6 -0.0279 2.892 2.898 2.792 2.812

h1 2,19.31 0.1612 44.45 45.19 45.02 45.52

h2 2,20.42 -0.1197 43.66 42.70 43.24 42.80

h3 2,52.31 -0.4714 48.79 48.89 47.11 47.44

h4 2,77.69 -0.5189 53.70 53.81 51.85 52.21

h5 2,99.18 -0.5589 57.84 57.97 55.85 56.24

σ 0.00 0.3922 15.40 15.40 16.80 16.80

α* 3.569 7.139

δV -3008 -2866 -6015 -5215

V 62,421 62,564 59,415 60,215

∇V



Page 13

Summary 
An efficient optimization algorithm based on the method of feasible directions has been presented. This method

has the same advantages of rapid convergence rate as the generalized reduced gradient method, but without the
addition of slack variables and resulting unwieldy matrix operations. Also, except when equality constraints are
present,· it is not necessary to separate the design variables into independent and dependent sets. Initial experience
with the algorithm is encouraging and refinements can be expected. The concepts contained in this algorithm have
been shown to provide a convenient means of obtaining sensitivity of the optimum design with respect to problem
parameters. 

While the method given here is considered to be a powerful optimization algorithm, it is recognized that this is
only one tool and is not ideal for all applications. For example, if the constraint surfaces are highly nonlinear, the
subproblem may not converge during the one-dimensional search. Also, if the analysis is itself iterative, the method
can be expected to perform poorly, again as a result of an inability to achieve convergence in the one-dimensional
search subproblem. Finally, for convex problems, the method moves into the infeasible region, relying on the
subproblem to return the design to the constraint boundaries. In many aeroelastic- and controls-related problems, this
feature can create designs that cannot be analyzed, whereas an interior penalty function method or a conventional
feasible directions method may provide a better sequence of designs. 

In conclusion, the method given here is considered to be a powerful, core-efficient algorithm combining the
best features of the method of feasible directions and the generalized reduced gradient method. For design
optimization where function and gradient evaluation is costly, this algorithm is considered to be a good candidate to
reduce the cost of optimization. 
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