Function minimization by conjugate gradients

By R. Fletcher and C. M. Reeves*

A quadratically convergent gradient method for locating an unconstrained local minimum of a
function of several variables is described. Particular advantages are its simplicity and its modest

demands on storage, space for only three vectors being required.

An ALGOL procedure is

presented, and the paper includes a discussion of results obtained by its use on various test functions.

The problem of locating an unconstrained local mini-
mum of a function of several variables is recognized as
important both in its own right and as a means of solving
sets of simultaneous non-linear algebraic equations.
Our concern is with functions defined numerically. In
particular we consider a function of n variables whose
value f(x) and gradient vector g(x) can be calculated at
any point x. We assume that in a neighbourhood of the
required minimum A, the function may be expanded in
the form

f(x) = f(h) + ¥(x — h)’A(x — h) + higher terms (1)

where A, the matrix of second-order partial derivatives,
is symmetric and positive definite.

Particularly attractive are iterative methods having
quadratic convergence, meaning that for quadratic
functions it is guaranteed that the minimum will be
located exactly, apart from rounding errors, within
some finite number of iterations, usually n. For general
functions, as the iterate approaches the minimum, the
function is more closely quadratic and so convergence
is more nearly assured. Furthermore, even in regions
remote from the minimum, such methods, by taking
account of the curvature of the function, are best able
to deal with complex situations such as the presence of a
long curving valley. The oscillatory behaviour charac-
teristic of methods such as steepest descents is thereby
avoided.

Virtually all iterative minimization procedures, whether
quadratically convergent or not, locate 4 as the limit of
a sequence Xy, X;, X, . . . where X, is an initial approxi-
mation to the position of the minimum, and where for
each i > 0, x;, is the position of the minimum of f(x)
with respect to variations along the line through x; in
some specified direction p;. Thus, for example, the
method of steepest descents uses the direction of the
negative gradient of f(x) at x;, and the method of alter-
nating directions uses cyclically the directions of the n
coordinate axes. Methods which calculate each new
direction of search as part of the iteration cycle are
inherently more powerful than those in which the
directions are assigned in advance, in that any accumu-
lated knowledge of the local behaviour of the function
can be taken into account. Setting g(x;) = g; for each i,

* Electronic Computing Laboratory, The University, Leeds 2.

149

the step from x; to x;, ; is determined by the relation
2
(3

’
gi+'Pi=0
where Xii1=X; + a;p;

for some scalar parameter «;.

Methods using conjugate directions

Let us consider the minimization by successive linear
searches of the quadratic function

S(x) = fh) + ¥x — h)y’A(x — h) @
for which the gradient is
g(x) = A(x — h). (5
By repeated use of equation (3), we have
Xn = Xj+1 ‘f‘nil %P (6)
i=j+1

for any j in 0<j<n— 1. It then follows from

equation (5) that

n—1
8= gj+1 + 2 «;Ap; (7
i=j+1
and therefore, using equation (2), that
n—1
gr:Pj = % a;p;iAp;. (8)
i=j+1
Now if the vectors pg, py, P2, - - - Pn_y are A-conjugate,
satisfying
pidp; =0 for i}, (€)2
then g.p; =0 (10)
and therefore, since pg, py, P2, - - - Pn—1 form a basis,
g, =0 11y
whence, by equation (5)
x, = h. (12)

This demonstrates that the method of successive
linear searches is quadratically convergent when using
any set of A-conjugate directions. The minimum is
located at the nth iteration, or earlier if in any particular
case the later values of «; should be zero.



Function minimization by conjugate gradients

Now we have stipulated that f(x) and its gradient are
defined numerically so that A is not explicitly available.
This naturally complicates the generation of a set of
A-conjugate directions. Various proposals have been
made. Shah, Buehler, and Kempthorne (1961) and
Powell (1962) make use of the geometric properties of a
quadratic surface. Similarly, Smith (1962) has reported
a method which only requires function values, and not
the gradients, to be calculated. This method and modi-
fications of it seem to be the best of the currently
available non-gradient procedures.

Probably the most powerful of the gradient methods
is Fletcher and Powell’s (1963) reformulation of a

procedure originated by Davidon (1959). In this the
A-conjugate directions p; are given by
pi= — H;8; (13)

where Hy, H,, H,, . . . is a sequence of symmetric positive
definite matrices. H, is arbitrary but is usually taken to
be the unit matrix. Subsequent members of the sequence
are generated by

pipi i H;yyiH;
PiAp; yiHy;

Yi=8i+1 — &i- (15)

It is shown that, as x; reaches h, so H; becomes 4~
Thus the method yields full information on the curvature
of the function f(x) at its minimum. This information
is, however, obtained at the price of providing storage
space for the matrix H, and time for its manipulation.
In many applications a method which is more economical
in operation and which merely locates the minimum
may be preferred.

Hi =H;+

(14)

where

The method of conjugate gradients

The method of conjugate gradients (Hestenes and
Stiefel, 1952) is an elegant n-step procedure for solving
a set of simultaneous linear equations having a sym-
‘metric positive definite matrix of coefficients. The
equivalence of that problem and the minimization of a
quadrative function f{(x) is clear from equations (4) and
(5). The condition for the gradient to vanish is seen to be

Ax=b (16)
b = Ah. 17)

In the solution of these equations, directions pg, py, . . .
are generated such that p;, ; is a linear combination of
—g&i+1 and pg, py, . .. p; such that the A-orthogonality
conditions (9) are satisfied. A full and lucid description
has been given by Beckman (1960). In the event many
of the coefficients are zero and the following simple
form results.

where

Piv1= — gi+1 + Bibi (18)
g
where Bi= v';%l (19)

150

This leads to the following general minimization
algorithm.

xo = arbitrary

8o = 8(Xo), Po = — &o
X;, 1 = position of minimum of f{(x) on the
line through x; in the direction p; (20)
8iv1=8Xx:i41)
ﬂi = g%+ 1/g,g
Piv1= — &i+1 + Bipi-

This process is guaranteed, apart from rounding
errors, to locate the minimum of any quadratic function
of n arguments in at most n iterations. For functions
which are not quadratic the process is iterative rather
than n-step, and a test for convergence is required. The
directions p; that are generated are those corresponding
to the current local quadratic approximation to the
function, and the rate of convergence depends upon
the response to changes in the local quadratic approxi-
mation from iteration to iteration. Thus in applying
the process (20) to general functions, four main points
require attention. These are the choice of x,, the
linear search to locate each x;,,, the overall rate of
convergence, and the final convergence criterion.

The choice of x,

For quadratic functions any choice of starting point
is in principle equally satisfactory. For general func-
tions the best that can reasonably be expected is that
the minimization process will lead as quickly as possible
to the bottom of whatever valley it starts in. In some
applications it is possible to detect when convergence
to an unwanted minimum has occurred, and some form
of extrication process is then desirable. Here we
merely note the importance of the choice of starting
point.

The linear search

In any practical application the time spent evaluating
the function and gradient at the various points required
may well dominate the time for the whole minimization
process. It is therefore desirable to limit the number of
such evaluations as much as possible.

Essentially the linear search problem is to determine
t,, such that

y(tm) =0 (21)

where W) = flxi + tp) (22)
and therefore

y'(0) = pig(x; + 1p). (23)

Thus y(f) and y’(+) are calculable for any ¢ and, in
particular, »(0) = f; and y’(0) = pig; < O are already
available.

The method adopted is that proposed by Davidon
and used also by Fletcher and Powell. The calculation
is in three stages; the first estimates the order of magni-



Function minimization by conjugate gradients

tude of ¢,,, the second establishes bounds on it, and the
third interpolates its value.

In the Davidon method it is shown that as H;
approaches A~1, so 7,, approaches unity, thus providing
an inherent scale in which to work. There is no com-
parable feature of the present method, and so we have
arbitrarily chosen a unit for ¢ which corresponds to a
displacement along p; of unit length in the x-space.
We supplement this with the requirement that there be
available an estimate, est, of the value of f(x) at the
unconstrained minimum. On the suppositions that
this is a correct estimate, that the unconstrained mini-
mum lies on the line x; + tp;, and that f(x) is quadratic,
we would obtain the value & for 7, where

k = 2(est — f))Ipig:-

In fact the unconstrained minimum will generally not
lie on the line, and so equation (24) will tend to over-
estimate ¢, We have therefore followed Fletcher and
Powell in taking as a tentative step length

h=k if0 <k <(p?) '3
= (p)~!/2 otherwise.

(24)

25

In the second stage y’ is examined at the points
t=0, h, 2h, 4h, . . .,a, b, where ¢ is doubled each time,
and where b is the first of these values at which either y’
is non-negative or y has not decreased. It then follows
that ¢,, is bounded in the interval a < t,, < b.

The third stage uses the cubic interpolation given by

Davidon. Defining
— y(b
=90 g 1 ye e
and w= (22 — y(@)y' () @7)
the estimate ¢, of ¢, is
. yb) +w—z
fe=b- (y'(b) — @ + )b —a. @9

If neither y(a) nor y(b) is less than y(¢,) then ¢, is
accepted as the estimate of 7,. Otherwise, according
as y’(t,) is positive or negative, the interpolation is
repeated over the sub-interval (a, t,) or (¢, b), respec-
tively. A single application of the interpolation formula
produces the exact value for 7, in the limit as f{x)
becomes quadratic in the neighbourhood of a local
minimum. Increased accuracy in the general case is
obtained only at the cost of further evaluations of f(x)
and its gradient. As the only region where the inter-
polation is likely to be inaccurate is that remote from
the minimum, it is uneconomic to require high accuracy
in this region. Numerical tests have shown that no
significant reduction in the number of iterations can be
achieved by using higher accuracy interpolation. From
the point of view of stability however, what must be
done is to ensure that the values f(x;) do form a
decreasing sequence. Hence the provision for repeating
the interpolation over smaller intervals.

151

The rate of convergence

Early experience in using the process on Rosenbrock’s
banana-shaped valley function (Table 1) led to successive
directions p; being so nearly parallel that the points x;
were scarcely separated. This made for very slow con-
vergence. It was also noted that the path of x swung
wide on the bend, raising fears that, had the calculation
been allowed to continue, the rate of convergence might
have been reduced further by a spiral approach to the
minimum. A modification of the basic process was
sought which would overcome such ill-effects with
anharmonic functions, and which would nevertheless
retain the quadratic convergence of the process when
applied to harmonic functions. The solution adopted
was to revert periodically to the steepest descent direction
—g in place of the customary p. Thus the whole pro-
cess is restarted from the current x, discarding all
previous experience, whether useful or erroneous, that
would normally be transmitted in the calculation of p.
The process remains quadratically convergent provided
that such restarts are not more frequent than every n
iterations. In practice we have modified the process in
this way every (n + 1) iterations with satisfactory
results. This period was suggested by analogy with the
use of the conjugate gradient method for solving linear
equations, where it is found that an additional iteration
is beneficial in compensating for the accumulation of
rounding errors in the first # iterations.

The convergence criterion

Clearly if any g2 vanishes the iterations must stop,
both to avoid division by zero in the next iteration and
because this is the formal requirement for x; to be at a
minimum. This condition is unlikely to be realized in
practice because of round-off errors. We therefore
continue the iterations until a complete cycle of (n + 1)
iterations, starting from a steepest descent search, pro-
duces no reduction in the value of the function. The
reader is invited to consider as an Awful Warning
against the uncritical acceptance of this criterion, the
effect of applying it in the minimization of the function
f(x) = $(x? + 4x2) using floating-point arithmetic.

In particular cases it may well be that some less
stringent criterion would be appropriate. Thus it might
be sufficient to continue the iterations until the change in
each argument throughout a cycle of (n + 1) iterations
was less than some assigned value. Such require-
ments could be implemented in the ALGOL procedure
that follows by suitable definition of the procedure
MONITOR referred to therein.

The ALGOL procedure

procedure FUMICOG (n, x, f, est, FUNCT, MONITOR,
CONVERGED);

value n, est;

real f, est; integer n; Boolean CONVERGED;

real array x; procedure FUNCT, MONITOR;



Function minimization by conjugate gradients

comment FUMICOG (FUnction MlInimization by
COnjugate Gradients) is a quadratically convergent pro-
cess for locating an unconstrained local minimum of a
Sfunction of n arguments. At entry x[1 : n] is an initial
approximation to the position of the required minimum
and est is an estimate, preferably but not essentially low
rather than high, of the corresponding function value. At
exit x and f are the location and value of the minimum.
The procedure statement

FUNCT (n, x, f, g)

calculates. the value and.gradient. vector at-x[1.: n] of the
Sfunction to be minimized, and assigns them to f and
gl : n]. The procedure MONITOR is activated once in
every iteration by means of the procedure statement

MONITOR (n, x, f, g, p, gg, count, i, EXIT)

where gg is the square of the length of g, count = 1,2, . ..
is the index of the current cycle of (n -+ 1) iterations, and
i=0,1,2,..., nis the iteration index within the current
cycle. On leaving FUMICOG normally, CONVERGED
is true, but if required MONITOR can break off the
iterations by sending control to the label EXIT and then
CONVERGED will be set false. A discussion of the uses
of procedures such as MONITOR has been given by
Rutishauser (1961). ;

begin real gg, old f, old gg, beta; integer count, i, r;
real array g, p[l : n];

real procedure dot (a, b);

real array a, b;

comment dot is the scalar product of the vectors

aandb;

begin real s; integer j; s := 0;
forj :=1step 1 untilndo s := s+a[j]1xb[j];
dot ;= s

end of dot;

Start: CONVERGED := true;

FUNCT (n, x, f, 8);

for count := 1, count + 1 while f < old f do

begin old f .= f;

for i := O step 1 until n do

begin gg := dot (g, g); if gg = 0 then go to finish;

if i = O then begin for r := 1 step 1 until # do

plr] := —glr] end
else begin beta := gg | old gg;
for r := 1 step 1 until n do

plr] := —glr] + beta x plr]
end;

MONITOR (n, x, f, g, p, g8, count, i, EXIT);

linear search: :
begin real ya, va, yb, vb, ve, pp, h, k, w, z, t;
yb := f; vb := dot (g, p); pp := dot (p, p);
if vb > O then go to skip;
k :=2 X (est — f) [ vb;

152

scale:h := if k>0and k T 2 X pp <1 then k
else 1/sqrt(pp);

B

extrapolate: ya := yb; va := vb;

for r := 1 step 1 until n do

x[r] := x[r] + h X p[r];
FUNCT (n, x, f, 2);
yb :=f; vb := dot (g, p) ;
if vb <0 and yb < ya then

begin 4 := k := h + k;

go to extrapolate end;

t:=0;

z:=3 X (ya — yb)/h + va + vb,
w = sqrt (z T2 — va X vb);
k:=hx(Wb+w—2)/(vb—va+2x w);
for r := 1 step 1 until n do
x[r] := x[r] + (¢ — k) X plr];

FUNCT (n, x, f, g);
if f> ya or f> yb then

begin vc := dot (g, p);

if vc < 0 then begin ya := f;

interpolate:

va ;= vc;
h:=k;
t := hend
else begin yb := f;
vb 1= vc;
h:=h—k;
t :=0end;

go to interpolate
end;

skip: end of linear search;

old gg := gg;
end of inner loop controlled by i,
end of outer loop controlled by count;
go to finish;
EXIT: CONVERGED := false;
finish: end of FUMICOG;

Numerical results and conclusions

Limited trials of the procedure have been carried out
by means of the ALGOL compilers for the Pegasus
and KDF9 computers, the latter through the generosity
of I.C.1. Ltd.

Table 1 gives results for Rosenbrock’s banana-shaped
valley (see Rosenbrock, 1960) in two dimensions,

SCer, x3) = 100(x, — x})? + (1 — x)?

starting from the point (x,, x,) = (—1:2,1:0). Column

A corresponds to the basic iteration without the restart

procedure. Column B shows the effect of continuing

the linear search iterations to higher accuracy, namely
until

(g'p)?

g’p?

This criterion requires the angle between g;, ; and p; to

< 10-6,



Function minimization by conjugate gradients

Table 1
Results for banana-shaped valley

ITERATION A B ¢
X1 x2 X1 X2 X1 x2 f
0 —1-200 1-:000 | —1-200 1-000 | —1-200 1-000 24-200
3 —0-631 0-324 | —0-784 0-556 | —0-631 0-324 3-199
6 —0-460 0-119 | —0-520 0-182 | —0-425 0-124 2-353
9 —0-299 —0-017 | —0-348 0-018 | —0-171 —0-045 1-921
12 —0-172 —0-086 | —0-215 —0-067 0-139 —0-023 0-920
15 —0:063 —0-119 | —0-102 —0-109 0-510 0-214 0-453
18 0-035 —0-127 | —0-000 —0-124 0-681 0-433 0-193
21 0-130 —0-116 0-:096 —0-119 0-846 0-698 0-053
24 0-225 —0-085 0-193 —0-094 0-989 0-980 8 x 10
27 0-325 —0-033 0:294 —0-047 1-000 1-000 1 x 108
30 0-434 0-048 0-403 0-028
differ from the theoretical 90° by not more than Table 2

sin~! (1073) ~ 0-06°. It is seen that the slow conver-

gence persists. Column C corresponds to the form of Results for helical valley

the procedure given in the previous Section, incor-
porating restarts. The function value was reduced to ITERATION X1 X2 X3 f
1 x 10-% in 27 iterations. This compares with the i
18 iterations quoted by Fletcher and Powell for the 0 —1-000 0-000 0-000 | 2-500 103
Davidon method. 4 —0-091 0-932 2:696 | 7-831

Table 2 gives results for Fletcher and Powell’s helical 8 0-497 0-942 1-736 | 3-444
valley in three dimensions, 12 0-577 0-861 1-595 | 2-797

e %2 x) = 100[Gxs — 108 +(r — 17] + 3 % | 096 | 0438 | 0696 | 0-858
where x; = r cos 278 and x, = rsin 2#0. The starting 24 1-005 0-218 0-311 | 0-261
point was (x;, x, x3) = (— 1,0, 0) and only the region 28 1-008 | 0-075 | 0-112 | 0-030
—2% < 6 < % was considered. The function value was 32 1-001 0-004 0-008 |3 x10-*
reduced to 6 X 10~° in 36 iterations, which compares 36 1-000 |—10-3 —10-5] 6 x 10~°
with Fletcher and Powell’s value of 7 x 108 after 18
iterations.

The Davidon method is evidently superior in terms
of the number of iterations for convergence. However, for calculating a new direction of search, the simplicity
the Davidon iteration is much more complicated, and of the present method gives it an advantage. Further-
a comparison of running times will depend critically more, the present method requires storage for only three
both upon n, the number of arguments, and upon the vectors, and so in problems where n is large may be
time required for each evaluation of the function and preferred to the Davidon method which requires space
its gradient. If this time is comparable with that required for the matrix H.
References

BeckMaN, F. S. (1960). “The solution of linear equations by the conjugate gradient method” in Mathematical Methods for
Digital Computers, Ralston, A., and Wilf, H. S. (Eds.), Wiley.
Davipon, W. C. (1959). “Variable metric method for minimisation,” A.E.C. Research and Development Report ANL-5990

(Rev.).

FLETCHER, R., and PoweLL, M. J. D. (1963). “A rapidly convergent descent method for minimization,” The Computer Journal,
Vol. 6, p. 163.

HesTenEes, M. R., and STiEreL, E. (1952). ““Methods of conjugate gradients for solving linear systems,” J. Res. N.B.S., Vol. 49,
p. 409.

PoweLL, M. J. D. (1962). “‘An iterative method for finding stationary values of a function of several variables,” The Computer
Journal, Vol. 5, p. 147.

ROSENBROCK, H. H. (1960). ““An automatic method for finding the greatest or the least value of a function,” The Computer
Journal, Vol. 3, p. 175.

F 153



Function minimization by conjugate gradients

RuTisHAUSER, H. (1961).
Goodman, R. (Ed.), Pergamon Press.

“Interference with an ALGOL procedure” in Annual Review in Automatic Programming, Vol. 2,

SHAH, B. V., BUEHLER, R. J., and KEMPTHORNE, O. (1961). “The method of parallel tangents (Partan) for finding an optimum,”

Office of Naval Research Report, NR-042-207 (No. 2).

Smith, C. S. (1962). ““The automatic computation of maximum likelihood estimates,”” N.C.B. Scientific Department Report,

S.C. 846/MR /40.

Book review: ALGOL on the KDF9

ALGOL 60 Implementation, by B. RANDELL and L. J. RUSSELL,
1964; 418 pages. (London: Academic Press Inc., 84s.)

The authors’ intention in writing this book is to present a full
description of their implementation of ALGOL 60 on the
English Electric KDF9 computer. This aim has been most
admirably fulfilled, both in the general description of the
methods they have used, and in the detailed flow charts from
which their programs were coded.

The general technique of implementation was based on the
work of E. W. Dijkstra and J. A. Zonneveld, who wrote the
first ALGOL 60 translator for the X1 computer at the Mathe-
matical Centre, Amsterdam. The translator is built up of a
number of routines, each of which processes one of the de-
limiters of the language. Each routine ends with a transfer of
control to the basic input routine, which reads in and assembles
the source text as far as the next delimiter, and passes control
to the corresponding delimiter routine to process it. Many of
the delimiter routines make use of a global stack for the stor-
age of information which will be needed later by another
routine. The stack mechanism is admirably suited for dealing
with recursively structured languages such as ALGOL, in
which expressions, and even statements, may be bracketed one
inside the other to any depth. However, the method chosen
for specifying the use of a stack seems rather clumsy, since all
operations of pushing information down on the stack and
restoring it again when required have been inserted as explicit
instructions in the flow charts. A more elegant way of using
a stack is to write the translator as a set of procedures which
can call each other and even themselves in a recursive manner;
in this case, the whole of the stack administration is incor-
porated behind the scenes in the procedure entry and exit
mechanism. In a recursively organized translator, each pro-
cedure can be designed to process the whole of an ALGOL
syntactic entity, rather than a single delimiter. This makes it
possible to abolish many of the markers which otherwise have
to be set, stacked, unstacked and tested in order to establish
context in the source program. Since the ALGOL language
recognizes the usefulness of recursion, it seems a pity that an
ALGOL translator should deny itself the benefits which it
makes available to others.

The implementation of an advanced programming language
involves a great deal more than translating it, since a consider-
able amount of book-keeping must remain to be done at run-
time; and the specification of control routines to perform this
task is a major part of the implementation. The division of
labour between the translator and the control routines is one
of the most characteristic features of any system. The
authors have chosen to simplify the task of the translator as
much as possible, and to place a correspondingly heavy bur-
den on the control routines. In fact, the object program pro-
duced by the translator is not even framed in the KDF9
machine code at all, but in a sort of idealized machine code,
specially suited to the needs of ALGOL; and the control rou-
tines have the job of interpreting this code at run-time in order

154

to execute the program. The main justification for this use of
interpretation is that the system is designed for use in program
testing. It is therefore most important that the translation
process should be as fast as possible, since the programs are
likely to be altered every time that they are run. in addition,
interpretation makes it possible to include some extremely
powerful facilities for diagnostic printout at run-time.

As far as the reader of the book is concerned, the use of the
idealized machine code is of great benefit, in that the descrip-
tion is almost entirely computer independent, and in no way
involves the particular idiosyncrasies of the KDF9 machine
code. This will be of particular interest to prospective im-
plementors of ALGOL, who may wish to use the same flow
charts on a different computer, as has already been done on
three other machines, Deuce, Pegasus and ACE. However,
as the authors point out, the use of interpretation involves a
very severe penalty in efficiency at run-time, which is likely to
be tolerated only during program checkout; and it is expected
that a fully tested program will be retranslated by a more com-
plex compiler into KDF9 machine code. In the absence of
such an alternative compiler, the prospective implementor
would be well advised to produce object programs in the
machine code of the computer on which he is working.

The presentation of the idealized machine code will also be
of great interest to prospective designers of future machine
codes, for it points clearly the direction in which they must
orient their design. It is becoming more obvious that the
power of modern computers cannot be fully exploited with-
out the use of advanced symbolic programming languages;
yet at present, the use of these languages involves a consider-
able expense, either in a lengthy process of optimization, or
in the inefficiency of object program. It is therefore a matter
of urgent practical economics that computer designers should
pay close attention to the needs of implementors and users of
symbolic programming languages.

An even greater contribution is the clear and detailed
manner in which the authors explain the nature of the prob-
lems they encountered, and the way in which they tackled
them. The book should be read with the utmost intcrest by
all programmers who are concerned with the development and
use of automatic programming languages, and, in particular,
those who have not themselves had the opportunity of im-
plementing such a language. For the benefit of this class
of reader, the book includes a brief but competent survey of
other published techniques, and a comprehensive bibliography.

The authors must be highly praised for the delightful clarity
of their English prose. The writing of the book has obviously
been a pure labour of love, and the effort and care which has
been expended on it at least equals that spent on the programs
which it describes. In spite of the immense wealth of detail,
the main thread of the description isalwayskepttothefore;and
as an exercise in the documentation of a complex algorithm,
a standard has been set that will not readily be equalled.

C. A.R. HOARE.



