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Multiple Objective Optimization with Vector Evaluated Genetic Algorithms

J. David Schaffer
Department of Electrical Engineering
Vanderbilt University
Nashville, TN 37235

ABSTRACT

Genetic algorithms (GA's) have been shown
to be capable of searching for optima in function
spaces which cause difficulties for gradient
techniques. This paper presents a method by which
the power of GA's can be applied to the
optimization of multiobjective functions.

1. Introduction

There is currently considerable interest in
optimization techniques capable of handling
multiple non-~commensurable objectives, Many
practical problems are of this type where, for
example, such factors as cost, safety and
performance must be taken into account.

A class of adaptive search procedures known
as genetic algorithms (GA's) have already been
shown to possess desireable properties [3,10] and
to out perform gradient techniques on some
problems, particularly those of high order, with
multiple peaks or with noise disturbance [4,5,6].
This paper describes an extension of the
traditional GA which allows the searching of
parameter spaces where multiple objectives are to
be optimized. The software system implementing
this procedure was called VEGA for Vector Evaluated
Genetic Algorithm.

The next section of this paper will
describe the basic GA and the vector extension.
Then some properties are described which might
logically be expected of this method, Some
preliminary experiments on some simple problems are
then presented to illuminate these properties and
finally, VEGA 1is compared to an established
multiobjective search technique on a set of more
formidable problems.

2. A Vector Genetic Algorithm

Unlike many other search techniques which
maintain a single "current best™ soclution and try
to improve it, a GA maintains a set of possible
solutions called a population. This population is
improved by a cyclic two-step process consisting of
a selection step (survival of the fittest) and a
recombination step (mating). Each cycle is usually
called a generation., More detailed descriptions of
these operations may be found in the literature
{3,4,5,6,10].
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The question addressed here 1is, how can
this process be applied to problems where fitness
is a vector and not a scalar? How might survival of
the fittest be implemented when there is more than
one way to be fit? We exclude scalarization
processes such as weighted sums or root mean square
by the assumption that the different dimensions of
the vector are non-commensurable.

When comparing vector quantities, the usual
concepts employed are those proposed by Pareto
{11,13]. For two vectors of the same size, the
equality, less-than and greater-than relations
require that these relations hold element by
element, Another relation, partially-less-than, is
defined as follows: vector X = {x1, x2, ... , xn}
is said to be partially-less-than vector Y = {y1,
Y2, «v. 5 yn} iff xi <= yi for all 1 and for st
least one value of i, xi ¢ yi., Assuming that minima
are sought, if X is partially-less-than Y, then Y
is said to be inferior to or dominated by X. The
objective of a search for minima in a vector-valued
space 1is, then, a search for the set of non-
inferior members, or the members not dominated by
any others, At least one member of this Pareto-
minimal set will dominate each vector outside the
set, but among themselves, none is dominated.

With these concepts in mind, a simple
vector survival of the fittest process was
implemented. The selection step in each generation
became a loop, each time through the loop the
appropriate fraction of the next generation was
selected on the basis of another element of the
fitness vector. This process, illustrated in figure
1, protects the survival of the best individuals on
each dimension of performance and, simultaneously,
provides the appropriate probabilities for multiple
selection of individuals who are better than
average on more than one dimension.

3. Some Anticipated Properties of VEGA

3.1 Multiple Solutions

One potential advantage of VEGA over other
optimization searches should now be clear. Since
the object of the search is a set of solutions, a
GA has a built-in advantage by working with a
population of test solutions. By comparing each
individual in a population to every other, those
who are dominated by any other/s can be flagged as
inferior. The set of non-inferior individuals in
each generation is the current best guess at the




ene
o

performance

L

[1fe] -~ Tn]

Generation(j:(///,/// parents

. 2

popsize

. st et e e ettt
select n . shuffle apply
subgroups N genetic
using each operators
dimension of
performance
in turn

Generation(t+l)

1

popsize

Figure 1. Schematic of VEGA Selection

Pareto-optimal (PO) set. By presenting a number of
non~inferior solutions, VEGA provides the user with
an idea of the tradeoffs required by his problem if
a single solution must be selected. It should be
noted that VEGA's view of non-inferiority is
strictly local; it is limited to the current
population. While a locally dominated individual is
also globally dominated, the converse is not
necessarily true. An individual who 1is non-
dominated in one generation may become dominated by
an individual who emerges in a later generation.

3.2 Possible Speciation

There is a potential problem with this
vector selection process. Survival pressure is
applied favoring extreme performance on at least
one dimension of performance. If a wutopian
individual (i.e. one who excels on all dimensions
of performance) exists, then he may be found by
genetic combinations of extreme parents, but for
many problems this utopian solution does not exist.
For these problems, the location of the Pareto-
optimal set or front is sought. This front will
contain some members with extreme performance on
each dimension and some with "middling" performance
on all dimensions. Frequently, these compromise
solutions are of most interest, but there may be
danger of their not surviving VEGA's selection
process. This might give rise to the evolution of
"species" within the population which excel on
different aspects of performance. This danger is
expected to be more severe for problems with a
concave PO front than for those with a convex one.
See figure 2,

Two methods for combating this potential
property of VEGA were conceived. One trick would be
to provide a heuristic selection preference for
non-dominated individuals in each generation. This
would provide extra protection for the "middling"
individuals.

Another, not necessarily exclusive,
approach would be to try to encourage crossbreeding
among the "species" by adding some mate selection
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heuristics. In a traditional GA, mates are selected
at random. On the assumption that utopian
individuals are more likely to result from
crossbreeding than inbreeding, such heuristics
might speed the search.

4. Preliminary Experiments

4.1 The Test Functions

In order to test the properties of VEGA
search, a set of three simple functions (fl, f2 &
£3) was selected.

Fl was a single-valued quadratic function
of three wvariables. (i.e. fl1(x1,x2,x3) = x1%%2 4
x2%%2 + x3%%2), This function was run to test
whether VEGA reverts to a traditional GA when the
performance vector has only one dimension.

F2 was a two-valued function o¢f one
variable (i.e. f21(x) = x%*%2; £f22(x) = (x-2)*%*2),
The initial random population for the search on
this function is illustrated in figure 3. In
addition to the locations of x, f21 and f22, this
figure also shows the dominated flag for each x (1
if dominated, 0 if not). The PO region is 0<=x<=2,

F3 was another two-valued function of one
variable, but with two disjoint PO regions 0<=x<=2
and 4<=x<=5,

4.2 Heuristics

In order to mitigate the anticipated loss
of "middling" individuals a heuristic was tested
which gave an extra selection preference to locally
non~dominated individuals. This preference took the
form of numeric adjustments to the performance
measures which were required by the selection
algorithm to sum to zero across the population.
Therefore, a small penalty was deducted from each
inferior individual and the sum of these penalties
was divided among the non-inferior individuals.

Experiments were also conducted to see if
the search for the PO front could be improved by
mate-selection heuristics which encouraged
crossbreeding. Inbreeding, in this context, means a
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Figure 2. A Concave and Convex Pareto-Optimal Front

mating  between two individuals whose  high
performance is on the same dimension, Two such
heuristics were tested, both attempting to improve
upon the performance of VEGA with random mating.
Random mating was implemented by shuffling the
population and mating pairs from the top, shown
as step three in figure 1. Each heuristic proceeded
by selecting a individual at random and then
selecting a mate whose distance in performance
space was maximum. Two distance measures were
tested, Euclidian distance and ‘'"improvement"
distance which was  computed ignoring those
dimensions on which the proposed mate performed
worse.

4.3 Results

All of these experiments were conducted
with populations of 30 individuals per dimension of
the performance vector, and crossover and mutation
rates of .95 and .0l respectively. This represents
a smaller population size and higher rates of
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Figure 3. F2 Generation Zero

application of the genetic operators than has been
traditional [3,5]). These setting were, however,
suggested by the work of Grefenstette [8].

On fl1, VEGA replicated a search previously
conducted on this function by a traditional GA [7]
when started with the same random seeds. Thus, VEGA
does appear to be a vector generalization of a
scalar GA.

Oon f£2, VEGA evolved the  population
illustrated in figure 4 in just three generations.
While not all the individuals are in the PO region
(0<=x<=2), those which are outside are known to be
dominated. This result, combined with similar
performance by VEGA on f3 yielded some confidence
in the soundness of the VEGA approach.

However, during these experiments, a
dangerous property of the heuristic selection
preference for non-dominated individuals was
discovered. It had a tendency to produce sudden
premature convergence of the population to a
suboptimal solution. This occurred when, in an
early generation, only one or two individuals
managed to be non-dominated. Then, the sum of the
dominated penalties was large and, when divided
among very few, gave them an overwhelming selection
advantage. This 1lead to subsequent generations
consisting only of offspring of a few parents with
too little genetic diversity. After this
observation, this heuristic was removed. VEGA has,
so far, not exhibited the anticipated less of the
"middling" individuals from the PO set. Perhaps
concave PO fronts are not a characteristic of many
practical problems.

The mate-selection heuristics faired no
better. Random mating proved superior to both of
them, This was an encouraging finding for two-
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valued problems, since the probability of
inbreeding with random mating decreases as the
number of dimensions of performance increases. All
subsequent experiments utilized neither of these
heuristics.

5. Comparison of VEGA with ARSO

Once some confidence was acquired that VEGA
was able to conduct a genetic search in spaces with
multiple objectives, it was desired to compare the
performance of VEGA with that of an established
technique for multiple objective search.

5.1 The ARSO Technique

For comparison purposes, the Adaptive
Random Search Optimization (ARSO) procedure,
pioneered by Beale [1,2], was selected. ARSO
requests a starting point in the parameter space to
be searched and proceeds to try to improve upon it
by randomly perturbing the parameters. Statistics
(mean & variance) are maintained for all
perturbations which produce improvements (defined
as a new solution which dominates the old one), and
these statistics are used to guide the future
perturbations. Random perturbation techniques have
been shown to solve a large class of optimization
problems faster than gradient techniques when the
number of parameters exceeds four, and furthermore,
the convergence time seems to increase only
linearly with this number. ARSO had already
exhibited high performance in problems of the sort
tested here.
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5.2 Some Methodological Problems

The comparison of two search procedures
presents some methodological problems which are
complicated when there are multiple objectives.
One approach is to run each procedure until the
solution is within some tolerance of a known
solution and then compare the computational effort.
This approach was rejected since the true solution
was not known for the test problems. It was desired
to compare the methods on problems whose solutions
were not known so as to include in the comparison,
the stopping criterion of each method. ARSO has a
threshold on the number of perturbations tried
without finding an improvement which forces a halt
to the search. VEGA has no such preset stopping
criterion and is stopped by the user when no
further improvement is evident.

Another approach is to run both procedures
for the same amount of computational effort and
then compare the quality of the solutions.
Comparing vector solutions is probably best done by
checking if any are dominated by those provided by
the other procedure. If not, then a tie must be
declared. This approach may be unfair since ARSO
reports only a single solution while VEGA may
report several.

The approach adopted was to run each
procedure to its natural stopping criterion. All
proposed non-dominated solutions were then compared
and, if any were found to be inferior, they were
rejected. (Included in this set were solutions
provided by Hartley [9] who used a variant of ARSO,
but solved the scalar problem of the equally
weighted sum of the errors on all dimensions.)
Then, the number of '"ultimately" non-dominated
solutions found by each procedure was plotted
against computational effort (number of function
evaluations).

5.3 The Test Functions

A set of three problems, drawn from the
domain of control engineering was contributed by a
colleague, Hartley [9]. All  involved the
simulation of a system with a different integration
operator for each of the system state variables.
The systems were of orders 2, 3 and 7 respectively.
The object of the search was an optimal set of
integrators, each characterized by three
parameters, making the dimensions of the parameter
search spaces 6, 9 and 21, respectively. The
performance measures were the rms error of the
simulated solution from a known solution, one for
each of the state variables making the dimensions
of the performance spaces 2, 3 and 7.

All searches were conducted using the same
GA parameters as were used for the preliminary
problems. The integrator parameter sets were gray
coded (see Schaffer(12] or Bethke(3]) to 12 bit
precision, making the binary search spaces
2EX(12%6) = 4.7 % 10%%21, 2%%(12%9) = 3.5 * 10%*32
and 2*%(12%%2]1) = 7.2 * 10%%75 for the three
systems, respectively.

5.4 Results

While the true system behavior was assumed
known, the object of the search was for optimal
integrators for the simulations, and these were not
known. Thus the problem of when to stop searching
had to be faced. To illustrate, a scatter plot of
performance of the initial random generation for

the second order system is shown in figure 5.
Figure 6 shows that considerable improvement had
been achieved in three generations. Figure 7 shows
the leading edge of the population after 49
generations. Note that the axes have been expanded
three orders of magnitude. After running VEGA to
generation 110 no substantial increase in
performance was evident. See figure 8. There are
however, several more points on what appears to be
the PO front. Thus, a decision to stop such a
search must be a judgement call based on a belief
that the PO front has been located and that further
search effort would be wasted.

The experiences were similar for the third
and seventh order systems, but scatter plots for
these high order systems could not be drawn.

Before proceding to the comparison of VEGA
with ARSO, it may be instructive to illustrate one
of the ARSO searches in the second order system
problem. Figure 9 traces the improvements in the
solution found by ARSO and is presented on the same
axes scales wused for figures 5 to 8. ARSO found a
solution which was  judged ‘"ultimately" non-
dominated in 607 evaluations. ARSO's stopping
criterion halts if no improvement is located after
1000  consecutive evaluations and so this run
continued until 1607 evaluations and halted.

A second run of ARSO was initiated with one
of the two non-dominated individuals from the
initial population generated by VEGA. This run
halted after about 1300 evaluations, but its
solution was inferior. VEGA, on the other hand,
did not locate its first "ultimately" non-dominated
solution until 2621 evaluations and by 6000 it had
found eight. These results are shown in figure 10.
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The tentative conclusion from these runs 1is that
ARSO is fast, but may get trapped on local extrema.
VEGA is slower, but more robust.

Four searches were made on the 3rd order
system, two with VEGA and two with ARSO. VEGA was
initiated with a random population for one run and
given a whole population of clones of Hartley's
solution for the other. ARSO was started with a
reasonable starting point analogous to the starting
point that lead to success on the 2nd order
problem, and also the Hartley solution. The results
of these tests are presented in figure 11. ARSO
again found a good solution in under 2000
evaluations on its first run. When given a PO
solution, it could only try for 1000 evaluations to
improve it and then halt. VEGA found a non-
dominated solution quite early in its search (415
evaluations), but because it was not sufficiently
extreme on any one dimension of performance, it did
not survive into future generations. More good
solutions emerged later with VEGA having five after
10000 evaluations. VEGA, unlike ARSO, when given a
PO solution, quickly located many variants of it.

The same four searches were run on the 7th
order system. This time neither VEGA nor ARSO
located any solutions which were not dominated by
the Hartley solution. Hartley had wused his
knowledge of the problem to start his search at a
close-to-PO  point, but both VEGA and ARSO were
started without this prior knowledge. The stopping
criteria for ARSO had been relaxed to lengthen the
search and a variance parameter had also been
relaxed so as to broaden the search, but after
almost 12000 evaluations no non-dominated solutions
had been found. Its best solution at that time was

70.00

$0.00 6C. 0C
i i f 3

N0.00

rms error 2
3]0.00

20.0C

10.C0

1

o T T T T T i)
g8.00 10.00 20.00 3In.Go NO. 00 50.00 &0.00
rms error |

Figure 9. Trace of ARSO Search, Second Order System

98

also known to be unstable. VEGA searched for almost
36000 evaluations without locating any solutions
not dominated by Hartley's, however many of them
were stable. Again, when told where to look, VEGA
generated many more PO solutions.

The tentative conclusion, then, seems to
have been supported by the higher order searches.

6. Discussion

The major finding of this research was that
vectorization of performance feedback and the
selection process of a GA can be successfully done.
This opens the domain of multiobjective
optimization problems to the already established
power of genetic search.

Heuristic modifications of the traditional
method to give selection preference to non-
dominated members of a population and to try to
improve on random mating proved to be inferior to
the traditional method. The possibility that VEGA
may have a weakness in the central region of a
concave PO front cannot be eliminated, but
empirical evidence to date suggests that it may not
be serious.

The comparisons of VEGA with ARSO contain
no small amount of 'apples versus oranges.' The
methods differ in the number of solutions presented
and in the way their searches are normally halted.
However, both contain stochastic elements, both
conduct multidimensional search and both are halted
when no further improvement is apparent. Both may
be started with random information, or may take
advantage of prior knowledge the user possesses
about his search space. In the comparison runs VEGA
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was given several times more computational effort
than was ARSO, due largely to differences in the
methods for stopping each search.

The general conclusion of the comparison
was that ARSO is capable of very quickly locating
solutions to complex multidimensional problems, but
its preforimance may be less robust than VEGA's.
VEGA, on the other hand, takes longer to locate the
good regions of complex search spaces, but seems to
be able to do so more reliably. This conclusion is
not dissimilar to previous results from comparison
of scalar genetic search with gradient techniques
(5,6].

Finally, a simple method has been conceived
which may improve both VEGA and ARSO. By
maintaining a data structure "“off to the side"
containing all non-dominated solutions encountered
in the search, VEGA would be protected against the
loss of good but not extreme individuals, as
occurred in the search on the 3rd order problem.
Similarly, ARSO would then have the power to report
a number of solutions instead of  only one.
Furthermore, by monitoring the adding and
subtracting of members to this set, both techniques
might be given a more rational stopping criterion.
Work on this addition to both methods will commence
in the near future.
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Abstract

Premature convergence is a common problem in
Genetic Algorithms. This paper deals with
inhibiting premature convergence by the use of
adaptive selection methods. Two new measures
for the prediction of convergence are presented
and their accuracy tested. Various selection
methods are described, experimentally tested and
compared.

1. Introduction

In Genetic Algorithms, it is obviously desirable
to achleve an optimal solution for the particular
function being evaluated. However, it is not
necessary or desirable for the entire population to
converge to a single genotype.  Rather the
population needs to be diverse, so that a
continuation of the search is possible. The loss of
an allele indicates a restriction on the explorable
search space.  Since the full nature of the
function being evaluated is not known, such a
restriction may prevent the optimal solution from
ever being discovered. If convergence occurs too
rapidly, then valuable information developed in
part of the population is often lost. This paper
deals with the control of rapid convergence.

Three measures are typically used to compare
genetic algorithms.  They are:  the Online
Per formance, the average of all individuals that
have been generated; the Offline Performance,
the average of the Best Individuals from each
generation; and the Best Individual, the best
individual that has been generated. We attempt
to optimize functions and therefore use the Best
Individual measure for comparison. In order to
improve this measure, we promote diversity
within the population and control rapid
convergence. Increased diversity detrimentally
affects the Online Performance measure and
inhibited convergence detrimentally affects the
Offline Performance measure. Improving these
two performance measures is not in the scope of
this paper.
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Methods for the prediction of a rapid
convergence are the topics of section 2. Section 3
will describe various algorithms with which to
slow down convergence, and section 4 will present
their results. A conclusion section will follow the
results.

2. Prediction of Rapid
Convergence
There are two different aspects to the control of
rapid convergence. First, how can one tell that it
has occurred and second, how can one predict
when 1t will occur.

Recognizing rapid convergence after it has
occurred is rather straightforward. By its very
meaning, a rapid convergence will result in a
dramatic rise in the number of lost and converged
alleles. A lost allele occurs whenever the entire
population has the same value for a particular
gene. Thus subsequent search with that gene is
impossible. A converged allele, as defined by
DelJong [1], is a gene for which at least 95% of
the population has the same value. However, the
effects of rapid convergence are not limited to
only those alleles which are indicated by these
measures. A rapid take over of the population
will cause all genes bo suddenly lose much of their
variance. We define bias as the average percent
convergence of each gene. Thus for binary genes,
this value will range between 50, for a completely
uniform distribution (in which for each gene there
are as many individuals with a one as a zero) and
100, for a totally converged population (in which
each gene has converged to a one or a zero). The
bias mcasurc provides an indication of the entire
population’s development without the
disadvantage of a threshold, such as the one
suggested by DelJong to indicale a converged
allele. A threshold does not indicate the amount
by which individuals exceed 1t or the number of
individuals which fall just short. We can
therefore monitor the sudden jumps in the lost,
converged or bias values to determine when a
rapid convergence has occurred.
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