
Dynamic meshes in OpenFOAM:
Mesh morphing, overset meshes, sliding meshes, moving 

bodies, rigid body motion, and adaptive mesh refinement

1

Online Training – Advanced session

February 2022



Copyright and disclaimer

This offering is not approved or endorsed by OpenCFD Limited, the producer of the 

OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trademarks.

2

© 2014-2022 Wolf Dynamics. 

All rights reserved. Unauthorized use, distribution or duplication is prohibited.

Contains proprietary and confidential information of Wolf Dynamics.

Wolf Dynamics makes no warranty, express or implied, about the completeness, accuracy, 

reliability, suitability, or usefulness of the information disclosed in this training material.  This 

training material is intended to provide general information only. Any reliance the final user 

place on this training material is therefore strictly at his/her own risk.  Under no 

circumstances and under no legal theory shall Wolf Dynamics be liable for any loss, damage 

or injury, arising directly or indirectly from the use or misuse of the information contained in 

this training material.

All trademarks are property of their owners.

Revision 1-2022

JG



Before we begin

• This training is based on OpenFOAM 9 and OpenFOAM 2106 or newer (for overset meshes).

• In the USB key/downloaded files you will find all the training material (tutorials, slides, and lectures notes).

• You can extract the training material wherever you want. From now on, this directory will become:

• $TM 
(abbreviation of Training Material)

• To uncompress the tutorials go to the directory where you copied the training material ($TM) and then type in 

the terminal,

• $> tar –zxvf file_name.tar.gz

• In the case directory of every single tutorial, you will find a few scripts with the extension .sh, namely, 
run_all.sh, run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_all.sh 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.

On the training material

3



Conventions used

4

The following typographical conventions are used in this training material

• Text in Courier new font indicates Linux commands that should be typed literally by the user 

in the terminal.

• Text in Courier new bold font indicates directories.

• Text in Courier new italic font indicates human readable files or ascii files.

• Text in Arial bold font indicates program elements such as variables, function names, classes, 

statements and so on.  It also indicates environment variables, and keywords. They also 

highlight important information.

• Text in Arial underline in blue font indicates URLs and email addresses.

• This icon          indicates a warning or a caution.

• This icon          indicates a tip, suggestion, or a general note.

• This icon          indicates a folder or directory.

• This icon          indicates a human readable file (ascii file).

• This icon          indicates that the figure is an animation (animated gif).

• These characters $> indicate that a Linux command should be typed literally by the user in the 

terminal.



Conventions used

5

• To improve readability, the text might be colored.

• The font can be Courier new or Arial bold.

• And when required, the line number will be shown.

• Large code listing, ascii files listing, and screen outputs can be written in a square box, as 

follows:

1 #include <iostream>

2 using namespace std;

3

4 // main() is where program execution begins.  It is the main function.

5 // Every program in c++ must have this main function declared

6

7 int main ()

8 {

9 cout << "Hello world";   //prints Hello world

10 return 0; //returns nothing

11 }

The following typographical conventions are used in this training material



Roadmap

6

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



Roadmap

7

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



• Dynamic meshes are models that allows the mesh to change during a simulation.

• The changes of the mesh can be due to a prescribed motion, rigid body motion, fluid structure 

interaction or refinement/unrefinement.

• In practice, dynamic meshes are compatible with all physical models.

• But you should for check models compatibility and be aware of potential exceptions and 

limitations.

• Dynamic meshes can be used to:

• Morph the mesh to accommodate the body motion.

• Add remove new cells according to a criterion.

• Add/remove layers (layering).

• Sliding meshes.

• Interpolate the solution at matching patches.

• Compute the solution in overset meshes.

• Deform bodies.

• Fluid structure interaction (FSI).

What are dynamic meshes?

Introduction – What are dynamic meshes?

8



• In dynamic meshes (specifically when working with moving/deforming bodies), the integral form 

of the general transport equation is written as follows,

What are dynamic meshes?

Introduction – What are dynamic meshes?

9

Mesh velocity

• Also, the boundary condition of the moving/deforming walls takes into account the mesh velocity.

• In the FVM, we want to solve the general transport equation for the transported quantity        in a 

given domain, with given boundary conditions BC and initial conditions IC.  

• As you can see, the only difference with the standard general transport equation is the addition 

of the mesh velocity.

• The rest of the FVM formulation remains the same, except for a few considerations related to 

the moving mesh, as we will see.

NOTE: starting from this equation we can write down the Navier-Stokes equations (NSE). 



• In dynamic meshes (specifically when working with moving/deforming bodies), the integral form 

of the general transport equation is written as follows,

What are dynamic meshes?

Introduction – What are dynamic meshes?

10

Mesh velocity

• Notice that as the mesh changes in dynamic meshes, the volume dV is a function of time.

• This implies that the shape of the cells is changing in time.

• And this might introduce mesh quality problems and discretization issues.

Function of time

NOTE: remember, starting from this equation we can write down the Navier-Stokes equations (NSE). 



• The time derivative can be written as follows,

What are dynamic meshes?

Introduction – What are dynamic meshes?

11

• Where n and n+1 denote the respective quantity at the current and next time level.

• Therefore, it is important to choose a time-step that does not result in large volume changes 

between iterations.

Notice that we are using the first order 
backward difference formulation



• The (n+1) time level volume Vn+1 can be computed as follows (volume update),

What are dynamic meshes?

Introduction – What are dynamic meshes?

12

• In order to satisfy the grid conservation law GCL (also known as space conservation law and 

geometric conservation law), the volume time derivative dV/dt of the control volume can be 

computed as follows,

Where dV/dt is the volume time 
derivative of the control volume

Where the integrant has been 

approximated by means of the 
mid point rule

Summation among all faces f that make up the cell

Face area vector



• In order to satisfy the grid conservation law GCL (also known as space conservation law and 

geometric conservation law), the volume time derivative dV/dt of the control volume can be 

computed as follows,

What are dynamic meshes?

Introduction – What are dynamic meshes?

13

Where the integrant has been 

approximated by means of the 
mid point rule

Summation among all faces f that make up the cell

Face area vector

• The dot product                   on each control volume face is calculated as,

Volume swept out by the control volume 

face f over the time step 

• To avoid stability and accuracy problems due to cell quality (as the cells are changing in time), 

the time step should be chosen in such a way that it does not result in large volume changes 

between iterations.



A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

14

http://www.wolfdynamics.com/training/mphase/image2.gif http://www.wolfdynamics.com/training/mphase/image3.gif

Adaptive mesh refinement (AMR) – Three rising bubbles (VOF)

http://www.wolfdynamics.com/training/mphase/image2.gif
http://www.wolfdynamics.com/training/mphase/image3.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

15

Moving domain – Sloshing tank 

http://www.wolfdynamics.com/training/dynamicMeshes/sloshingCylinder.gif

http://www.wolfdynamics.com/training/dynamicMeshes/sloshingCylinder.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

16

Moving boundaries with mesh morphing – Wave maker (VOF)

http://www.wolfdynamics.com/training/dynamicMeshes/waveMaker.gif

http://www.wolfdynamics.com/training/dynamicMeshes/waveMaker.gif


A few examples of dynamic meshes in OpenFOAM

Introduction – What are dynamic meshes?

17

Mesh morphing – Different mesh smoothing methods

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion1 http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion2

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion1
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion2


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

18

Layering with mesh zones interface – Water impact

http://www.wolfdynamics.com/training/dynamicMeshes/layeringMesh.gif

http://www.wolfdynamics.com/training/dynamicMeshes/layeringMesh.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

19

www.wolfdynamics.com/training/mphase/image8.gif http://www.wolfdynamics.com/training/movingbodies/image13.gif

Sliding meshes – Continuous stirring tank reactor (CSTR)

http://www.wolfdynamics.com/training/mphase/image8.gif
http://www.wolfdynamics.com/training/movingbodies/image13.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

20

Sliding meshes with particles interaction

http://www.wolfdynamics.com/training/dynamicMeshes/sliding_particles.gif

http://www.wolfdynamics.com/training/dynamicMeshes/sliding_particles.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

21

Sliding meshes with relative motion and mesh morphing

http://www.wolfdynamics.com/training/dynamicMeshes/relativeMotion.gif

http://www.wolfdynamics.com/training/dynamicMeshes/relativeMotion.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

22

Mesh morphing and rigid body motion – Sea keeping (VOF))

http://www.wolfdynamics.com/training/dynamicMeshes/seakeeping.gif

http://www.wolfdynamics.com/training/dynamicMeshes/seakeeping.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

23

Surface patches deformation with mesh smoothing

http://www.wolfdynamics.com/training/dynamicMeshes/twisting_column.gif http://www.wolfdynamics.com/training/dynamicMeshes/fish_deforming.gif

http://www.wolfdynamics.com/training/dynamicMeshes/twisting_column.gif
http://www.wolfdynamics.com/training/dynamicMeshes/fish_deforming.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

24

Mesh morphing together with mesh remeshing and rigid body motion.

http://www.wolfdynamics.com/training/dynamicMeshes/falling2.gif

http://www.wolfdynamics.com/training/dynamicMeshes/falling1.gif

http://www.wolfdynamics.com/training/dynamicMeshes/falling2.gif
http://www.wolfdynamics.com/training/dynamicMeshes/falling1.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

25

Overset meshes – Multiple bodies

http://www.wolfdynamics.com/training/dynamicMeshes/overset1.gif

http://www.wolfdynamics.com/training/dynamicMeshes/overset2.gif

http://www.wolfdynamics.com/training/dynamicMeshes/overset1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/overset2.gif


A few examples of dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

26

Overset meshes – Overtaking car

http://www.wolfdynamics.com/training/dynamicMeshes/overtake1.gif http://www.wolfdynamics.com/training/dynamicMeshes/overtake2.gif

http://www.wolfdynamics.com/training/dynamicMeshes/overtake1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/overtake2.gif


• In OpenFOAM, all dynamic meshes capabilities are controlled by a single dictionary, the 
dynamicMeshDict dictionary, which is located in the directory constant.

• Several types of dynamic meshes can be simulated in OpenFOAM, we will address the following 

cases:

• Prescribed motion.

• Rigid body motion.

• Sliding meshes.

• Adaptive mesh refinement (AMR).

• Setting moving bodies simulations is not so different from setting cases with fixed meshes.

• The main difference is that if the body is moving, we must assign a motion type to a surface 

patch, a cell region, or the whole domain.

• If we are using AMR, we must choose the refinement criterion based in a scalar field.

Dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

27



Dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

28

• The dynamic meshes capabilities are selected in the dictionary 
constant/dynamicMeshDict.

• In OpenFOAM, there are several mesh motion solvers implemented, they deal with mesh motion 

displacement or mesh motion velocity. 

• To name a few mesh motion solvers: displacementLaplacian, 

displacementComponentLaplacian, displacementSBRStress, velocityLaplacian.

• In the case of prescribed motion of a boundary patch, the motion is assigned in the dictionary 
0/pointDisplacement (if you use a mesh motion solver based on the mesh displacement), 

or in the dictionary 0/pointMotionU (if you use a mesh motion solver based on the mesh 

velocity).



Dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

29

• The dynamic meshes capabilities are selected in the dictionary 
constant/dynamicMeshDict.

• In the case of rigid body motion, the motion is assigned in the dictionary 
0/pointDisplacement. 

• The boundary condition of the moving patch is of the type calculated.

• Also, the boundary type of the moving walls must be movingWallVelocity, this is set in the 
dictionary 0/U.

• Remember, you will need to adjust the numerics according to your physics.

• To use dynamic meshes capabilities, you will need to use solvers able to deal with dynamic 

meshes.  



Dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

30

• To find which solvers work with dynamic meshes, go to the solvers directory by typing sol in the 

command line interface.  Then type in the terminal:

• $> grep -r dynamicFvMesh.H

The solvers that include the header file dynamicFvMesh.H support dynamic meshes. 

• In OpenFOAM 9 (www.openfoam.org), the following solvers support dynamic meshes: 

• PDRFoam, buoyantReactingFoam, reactingFoam, rhoCentralFoam, 

rhoPimpleFoam, buoyantPimpleFoam, pimpleFoam, denseParticleFoam, 

particleFoam, rhoParticleFoam, cavitatingFoam, compressibleInterFoam, 

interFoam, interMixingFoam, mutlphaseEulerFoam, multiphaseInterFoam, 

potentialFreeSurfaceFoam

http://www.openfoam.org/


Dynamic meshes in OpenFOAM

Introduction – What are dynamic meshes?

31

• To find which solvers work with dynamic meshes, go to the solvers directory by typing sol in the 

command line interface.  Then type in the terminal:

• $> grep -r dynamicFvMesh.H

The solvers that include the header file dynamicFvMesh.H support dynamic meshes. 

• In OpenFOAM 2106 (www.openfoam.com), the following solvers support dynamic meshes: 

• overLaplacianDyMFoam, overPotentialFoam, PDRFoam, XiDyMFoam,

rhoCentralDyMFoam, overRhoPimpleDyMFoam, rhoPimpleFoam,

overRhoSimpleFoam, sonicDyMFoam, overBuoyantPimpleDyMFoam,      

solidFoam, overPimpleDyMFoam, pimpleFoam, overSimpleFoam,        

DPMDyMFoam, icoUncoupledKinematicParcelDyMFoam,       

reactingParcelFoam, sprayDyMFoam, uncoupledKinematicParcelDyMFoam, 

cavitatingDyMFoam, compressibleInterDyMFoam, 

compressibleInterIsoFoam, overCompressibleInterDyMFoam, 

icoReactingMultiphaseInterFoam, interCondensatingEvaporatingFoam, 

interFoam, interMixingFoam, overInterDyMFoam, interIsoFoam, 

interPhaseChangeDyMFoam, multiphaseInterFoam, 

potentialFreeSurfaceDyMFoam.

http://www.openfoam.com/


Dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

32

• You will find the source code of all the mesh motion libraries in the directories:

• OpenFOAM-9/src/dynamicFvMesh

• OpenFOAM-9/src/dynamicMesh

• OpenFOAM-9/src/fvMotionSolver

• OpenFOAM-9/src/rigidBodyDynamics

• OpenFOAM-9/src/rigidBodyMeshMotion

• OpenFOAM-9/src/rigidBodyState

• OpenFOAM-9/src/sixDoFRigidBodyMotion

• OpenFOAM-9/src/sixDoFRigidBodyState

• OpenFOAM-9/src/topoChangerFvMesh

• You will find the source code of the prescribed patch motions in the directory:

• OpenFOAM-9/src/fvMotionSolver/pointPatchFields/derived



Dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

33

• You will find the source code of the restraints/constraints of the rigid body motion solvers (6DoF 
and rigid body dynamics approaches) in the directory:

• OpenFOAM-9/src/sixDoFRigidBodyMotion/sixDoFRigidBodyMotion

• OpenFOAM-9/src/rigidBodyDynamics

• You will find the source code of the mesh diffusivity models in the directory:

• OpenFOAM-9/src/fvMotionSolver/motionDiffusivity

• You will find the source code of the mesh motion solvers in the directory

• OpenFOAM-9/src/fvMotionSolver/fvMotionSolvers

• If you are using version 2106, you will find the libraries in the same locations, but instead of the 
directory OpenFOAM-9, they will be in the directory OpenFOAM-v2106, that is:

• OpenFOAM-v2106/src/...



Dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

34

• Additionally, OpenFOAM gives you overset meshes capabilities.

• However, these capabilities are only available in the version developed by ESI-OpenCFD 

(www.openfoam.com).

• The latest version is v2112. You can find the releases notes in the following link: 

https://www.openfoam.com/news/main-news/openfoam-v2112

• You will find the source code of the overset library in the directory:

• OpenFOAM-v2112/src/overset

http://www.wolfdynamics.com/training/dynamicMeshes/overset3.gif

http://www.openfoam.com/
https://www.openfoam.com/news/main-news/openfoam-v2112
http://www.wolfdynamics.com/training/dynamicMeshes/overset3.gif


A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

35

• Dynamic meshes have tighter stability and accuracy requirements than static meshes.

• During simulations with moving bodies, the boundaries/mesh/domain will experience strong 

instantaneous accelerations, large displacements/deformations, and fluctuations in 

linear/angular velocities.  

• This requires the use of a robust and accurate numerics.

• During AMR simulations, the meshes will change, cells will become smaller and smaller (hence 

cell’s volume). Therefore, the CFL number will change from refinement level to refinement level. 

• Again, this requires the use of a robust and accurate numerics.

• It is extremely important to control the CFL number and be sure that it remains constant within 

the limits of stability.

• It is also recommended to always monitor the mesh quality when dealing with morphing meshes 

and adjust the numerical method accordingly.

• No need to say that dynamic meshes are intrinsically unsteady.

• However, you might get your way around using LTS (pseudo-transient simulations).

• Simulations with dynamics meshes are computationally expensive and very time consuming.



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

36

momentumPredictor yes;

nOuterCorrectors 2;

nCorrector 3;

nNonOrthogonalCorrectors 1;

correctPhi yes;

• Set to yes for high Reynolds flows, where 

convection dominates (default value is yes)

• You should do at least 1 corrector step 

(equivalent to PISO). 

• If you are dealing with moving bodies, LES 

simulations, or if the CFL number is higher 

than 1, do a minimum of 2 outer correctors.  

• For best results (specially with moving 

bodies), do at least 5 correctors.

• For the fvSolution dictionary:



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

37

momentumPredictor yes;

nOuterCorrectors 2;

nCorrector 3;

nNonOrthogonalCorrectors 1;

correctPhi yes;

• It is recommended to do at least 2 corrector 

steps.

• Use 3 or more corrector steps for highly 

transient flows or strongly coupled 

problems.

• This correction improves accuracy and 

stability. 

• It is recommended to do at least 1 corrector 

step.

• Increase the value to at least 2 for bad 

quality meshes.

• Increase the value to at least 2 if you expect 

large mesh deformations.

• For the fvSolution dictionary:



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

38

momentumPredictor yes;

nOuterCorrectors 2;

nCorrector 3;

nNonOrthogonalCorrectors 1;

correctPhi yes;

• Flux corrections to ensure continuity.

• Default value is yes.  

• Required during start-up, restart, mesh-

motion, etc., when non-conservative fluxes 

may adversely affect the solution. 

• This is particularly important for VoF and 

other multi-phase solvers in which non-

conservative fluxes cause unboundedness 

of the phase-fraction. 

• For the fvSolution dictionary:



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

39

momentumPredictor yes;

nOuterCorrectors 2;

nCorrector 3;

nNonOrthogonalCorrectors 1;

correctPhi no;

oversetAdjustPhi    no;

• For the fvSolution dictionary and if you are dealing with overset meshes:

• Set to yes for high Reynolds flows, where 

convection dominates (default value is yes)

• You should do at least 2 corrector step. 

• If you are dealing with moving bodies, LES 

simulations, or if the CFL number is higher 

than 1, do a minimum of 3 correctors.  

• For best results (specially with moving 

bodies), do at least 5 correctors.



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

40

momentumPredictor yes;

nOuterCorrectors 1;

nCorrector 3;

nNonOrthogonalCorrectors 1;

correctPhi no;

oversetAdjustPhi    no;

• For the fvSolution dictionary and if you are dealing with overset meshes:

• It is recommended to do at least 2 corrector 

steps.

• Use 3 or more corrector steps for highly 

transient flows or strongly coupled 

problems.

• This correction improves accuracy and 

stability. 

• It is recommended to do at least 1 corrector 

step.

• Increase the value to at least 2 for bad 

quality meshes.

• Increase the value to at least 2 if you expect 

large mesh deformations.



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

41

momentumPredictor yes;

nOuterCorrectors 1;

nCorrector 3;

nNonOrthogonalCorrectors 1;

correctPhi no;

oversetAdjustPhi    no;

• For the fvSolution dictionary and if you are dealing with overset meshes:

• Flux corrections to ensure continuity.

• In overset meshes the default value is no. 

• It is recommended to leave it always off 

(no) in overset meshes.

• Flux corrections in overset meshes. 

• Use with incompressible flows in closed 

domains and if you are experiencing 

pressure fluctuations. 

• Default value is no. 

• The benefits of this correction are not very 

clear.



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

42

• In OpenFOAM, there are two types of unsteady loops, standard PISO (non-iterative marching or NITA), and 

PIMPLE (PISO with iterative marching or ITA).

• When dealing with moving bodies or overset meshes, it is extremely recommended to use the PISO-ITA 

method (or PIMPLE) with at least five outer correctors.

PISO-ITA (iterative marching) - PIMPLEPISO-NITA (non-iterative marching)



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

43

• For good accuracy and stability use the Euler method 

with a CFL of 0.9 or less. 

• You can use backward or CrankNicolson but they are 

unbounded and might give stability problems.

• To stabilize the solution, you will need to use a 

CFL of 0.9 or less.

• For the fvSchemes dictionary (overset and body fitted meshes)

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 1;

grad(U)         cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)     Gauss linearUpwindV grad(U);

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• For stability, use slope limiters for gradients.  

• The leastSquares method is more accurate but a little 

bit oscillatory for bad quality meshes. 



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

44

• For the fvSchemes dictionary (overset and body fitted meshes)

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 1;

grad(U)         cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)     Gauss linearUpwind grad(U);

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• For good accuracy use at least second order accurate 

methods.  

• The second order upwind method is a good choice for 

the momentum term (stable and accurate). 

• For good quality meshes (non orthogonality less than 

70), use limited 1. 

• For industrial meshes with large orthogonality (more 

than 70), it is recommended to use limited 0.5.



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

45

• For the fvSchemes dictionary (overset and body fitted meshes)

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 1;

grad(U)         cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)     Gauss linearUpwindV grad(U);

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

Use same option as for laplacianSchemes

• This entry refers to the method used to interpolate 

values from cell centers to face centers. 

• It is unlikely that you will need to use something 

different from linear.



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

46

• As the mesh is changing in dynamic meshes, it is advisable to fix the CFL number.

• To ensure that we have a constant CFL number, or we do not exceed a given CFL value as the mesh 

changes, we can use adaptive time stepping (adjustableTimeStep).

• This option is set in the dictionary controlDict, and it is supported by all solvers with dynamic meshes 

capabilities.

...

...

...

adjustTimeStep  yes;

maxCo           1;

maxAlphaCo 0.5;

maxDeltaT       0.1;

...

...

...

Enable/disable adjustable time step.

Maximum allowable CFL number.

The solver will automatically adjust the 

time-step so it does not exceed this limit.

Maximum allowable time-step.

Maximum allowable CFL number for the 

volume fraction alpha. Only available when 

using multiphase solvers.



A short note on the numerics required for dynamic meshes in OpenFOAM 

Introduction – What are dynamic meshes?

47

• As the mesh is changing in dynamic meshes, it is advisable to fix the CFL number.

• However, it is better to fix the time-step in order to avoid oscillations introduced due to the adaptive time-

stepping.

• However, keeping the CFL number below one or close to a target value, is difficult as the mesh is changing.

...

...

...

adjustTimeStep  yes;

maxCo           1;

maxAlphaCo 0.5;

maxDeltaT       0.1;

...

...

...

Enable/disable adjustable time step.

Maximum allowable CFL number.

The solver will automatically adjust the 

time-step so it does not exceed this limit.

Maximum allowable time-step.

Maximum allowable CFL number for the 

volume fraction alpha. Only available when 

using multiphase solvers.



Roadmap

49

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



Adaptive mesh refinement in OpenFOAM

50

• Adaptive mesh refinement or AMR, consist in automatically refining the mesh according to a 

predefined criterion and given control parameters (refinement levels, unrefinement levels, 

expansion ratio and so on).

• AMR in OpenFOAM is compatible with all solvers supporting dynamic meshes capabilities.

• AMR in OpenFOAM is only supported for hexahedral meshes (it is fully 3D).

Passive scalar tracking using AMR

http://www.wolfdynamics.com/training/dynamicMeshes/amr3.gif

http://www.wolfdynamics.com/training/dynamicMeshes/amr3.gif


Adaptive mesh refinement in OpenFOAM

51

• If you need 2D AMR capabilities and/or more advanced AMR capabilities, such as, dynamic 

load balancing or multiple refinement criteria, you can install the library dynamicloadbalancing

developed by the Technical University Darmstadt.

• https://bitbucket.org/dynamicloadbalancing/dynamicloadbalancing

Passive scalar tracking using AMR

http://www.wolfdynamics.com/training/dynamicMeshes/amr3.gif

https://bitbucket.org/dynamicloadbalancing/dynamicloadbalancing
http://www.wolfdynamics.com/training/dynamicMeshes/amr3.gif


Adaptive mesh refinement in OpenFOAM

52

Maximum CFL = 0.5

http://www.wolfdynamics.com/training/dynamicMeshes/amr4.gif

Maximum CFL = 1.0

http://www.wolfdynamics.com/training/dynamicMeshes/amr5.gif

• When using AMR, it is particularly important to use an accurate and stable numerical method.

• If you use a method that it is unbounded and/or too diffusive (in space and time), the AMR 

approach will not be able to fully track the quantity of interest, and you may have 

overshoots/undershoots in your solution.

• The easiest way too control the time step in OpenFOAM as the mesh is refined, is by using the 

adjustableTimeStep option (available with the pimple family solvers) and a CFL lower than 0.8 

(we recommend a value of 0.5).

• AMR adds considerable overhead to the computations.

http://www.wolfdynamics.com/training/dynamicMeshes/amr4.gif
http://www.wolfdynamics.com/training/dynamicMeshes/amr5.gif


Adaptive mesh refinement in OpenFOAM

53

• At the following link, you can get a description of the latest developments related to the AMR 

library.

• https://github.com/OpenFOAM/OpenFOAM-9/commit/fe9de1c78368d013bf075fe8e35d6bec296c5eea

• These developments are related to OpenFOAM 9.

• There have been noticeable changes between OpenFOAM 8, OpenFOAM 9, and the developer 

version.

• According to the developers, in OpenFOAM 8 the AMR library was overrefining and too slow. 

• The developers tried to address the previous issues (and some other issues) in OpenFOAM 9.

• The new AMR library fixed some issues but also created new problems.  

• A classic case of trying to improve the computational speed at the cost of the solution 

accuracy.

• Then, in OpenFOAM dev, the developers are fixing many issues found in OpenFOAM 9.

• The developers also added a new improved AMR library in OpenFOAM dev, which likely will be 

introduced in the next official release of OpenFOAM.

• So, expect big changes in AMR in the next official release.

Some of the previous statements are the author’s personal opinion (J. Guerrero).

https://github.com/OpenFOAM/OpenFOAM-9/commit/fe9de1c78368d013bf075fe8e35d6bec296c5eea


Adaptive mesh refinement in OpenFOAM

54

• AMR simulation with different OpenFOAM versions.

• The results correspond to serial computations.

OpenFOAM 8

http://www.wolfdynamics.com/training/dynamicMeshes/OF8_serial.gif

OpenFOAM 9

http://www.wolfdynamics.com/training/dynamicMeshes/OF9_serial.gif

http://www.wolfdynamics.com/training/dynamicMeshes/OF8_serial.gif
http://www.wolfdynamics.com/training/dynamicMeshes/OF9_serial.gif


Adaptive mesh refinement in OpenFOAM

55

OpenFOAM 9

http://www.wolfdynamics.com/training/dynamicMeshes/OF9_serial.gif

OpenFOAM dev

http://www.wolfdynamics.com/training/dynamicMeshes/OFdev_serial.gif

• AMR simulation with different OpenFOAM versions.

• The results correspond to serial computations.

http://www.wolfdynamics.com/training/dynamicMeshes/OF9_serial.gif
http://www.wolfdynamics.com/training/dynamicMeshes/OFdev_serial.gif


Adaptive mesh refinement in OpenFOAM

56

OpenFOAM 9 – Serial

http://www.wolfdynamics.com/training/dynamicMeshes/OF9_serial.gif

OpenFOAM 9 – Parallel

http://www.wolfdynamics.com/training/dynamicMeshes/OFdev_parallel.gif

• AMR simulation with different OpenFOAM versions.

• We have found that in some cases (in particular when using interFoam), the refinement levels 

will be different (sometimes very different) depending on the parallel decomposition method  

and number of processors used (at least in OpenFOAM 8 and 9).

http://www.wolfdynamics.com/training/dynamicMeshes/OF9_serial.gif
http://www.wolfdynamics.com/training/dynamicMeshes/OFdev_parallel.gif


Adaptive mesh refinement in OpenFOAM

57

$TM/AMR_mesh/cavity3d

• Let us run the 3D driven cavity with AMR case.

• You will find this case in the directory:

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Adaptive mesh refinement in OpenFOAM

58

• Hereafter we will use the driven cavity case to introduce the AMR capabilities available in 

OpenFOAM.

• Remember, all dynamic mesh capabilities are controlled in the dictionary dynamicMeshDict, 

this dictionary is located in the directory constant.

• In this case, we will initialize a passive scalar which we will use as the base field for the AMR.

• It is important to mention that AMR works only with scalar fields and hexahedral meshes.

http://www.wolfdynamics.com/training/dynamicMeshes/amr1.gif http://www.wolfdynamics.com/training/dynamicMeshes/amr2.gif

3D driven cavity with AMR

http://www.wolfdynamics.com/training/dynamicMeshes/amr1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/amr2.gif


Adaptive mesh refinement in OpenFOAM

59

• Let us open the dynamicMeshDict dictionary. 

3D driven cavity with AMR

...

...

...

dynamicFvMesh   dynamicRefineFvMesh;

dynamicRefineFvMeshCoeffs

{

refineInterval  1;

field           T;

lowerRefineLevel 0.4;

upperRefineLevel 1;

unrefineLevel   10;

nBufferLayers   1;

maxRefinement   2;

maxCells        100000;

...

...

...

Library with AMR capabilities

How often refine/unrefine (time-step or iteration)

Quantity of interest

If field value < unrefineLevel unrefine

Refine the field between these two levels

Number of layer between refinement levels

Maximum refinement level (1 means no

refinement)

Stop refinement if the maximum number 

of cells is reached



Adaptive mesh refinement in OpenFOAM

60

• Let us open the dynamicMeshDict dictionary. 

3D driven cavity with AMR

...

...

...

dynamicFvMesh   dynamicRefineFvMesh;

dynamicRefineFvMeshCoeffs

{

refineInterval  1;

field           T;

lowerRefineLevel 0.4;

upperRefineLevel 1;

unrefineLevel   10;

nBufferLayers   1;

maxRefinement   2;

maxCells        100000;

...

...

...

Influence of unrefineLevel

unrefineLevel   10

http://www.wolfdynamics.com/training/dynamicMeshes/amr6.gif

unrefineLevel   -10

http://www.wolfdynamics.com/training/dynamicMeshes/amr6a.gif

• A large positive value (in 

reference to the maximum scale) 

will apply unrefinement to the 

refined cells.

• A large negative value (in 

reference to the minimum scale) 

will not apply unrefinement to the 

refined cells.

http://www.wolfdynamics.com/training/dynamicMeshes/amr6.gif
http://www.wolfdynamics.com/training/dynamicMeshes/amr6a.gif


Adaptive mesh refinement in OpenFOAM

61

• Let us open the dynamicMeshDict dictionary. 

3D driven cavity with AMR

...

...

...

correctFluxes

(

( phi U )

//( phi none )

//( alphaPhi none ) 

);

dumpLevel       true;

}

Write the refinement level as a scalar field

Flux field and corresponding velocity field. Fluxes 

on changed faces get recalculated by interpolating 

the velocity. 

Use 'none’ on surfaceScalarFields that do not need 

to be reinterpolated.



Adaptive mesh refinement in OpenFOAM

62

3D driven cavity with AMR

• This case is ready to run, we are going to work in parallel.

• To run the case, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh 

3. $> cp 0/T.org 0/T

4. $> setFields

5. $> decomposePar

6. $> mpirun -np 4 renumberMesh -parallel -overwrite | tee log.renumberMesh

7. $> mpirun -np 4 pimpleFoam -parallel | tee log.solver

8. $> paraFoam –builtin



Adaptive mesh refinement in OpenFOAM

63

3D driven cavity with AMR

• To reconstruct the parallel case, we proceed as follows:

1. $> reconstrucParMesh

2. $> reconstructPar

3. $> paraFoam

• In step 1, we reconstruct the refined mesh. 

• This step is compulsory in AMR as the number of cells and connectivity of the mesh have 

been changed.

• In step 2, we reconstruct the solution.

• In step 3, we can visualize the reconstructed solution (single processor).



Adaptive mesh refinement in OpenFOAM

64

• Starting form OpenFOAM 9, it is possible to do multi-region dynamic mesh 

refinement/unrefinement based on different scalar values.

• It is also possible to do dynamic mesh refinement/unrefinement based on different regions of 

the domain.

• More information at this link,

• https://github.com/OpenFOAM/OpenFOAM-9/commit/fe9de1c78368d013bf075fe8e35d6bec296c5eea

http://www.wolfdynamics.com/training/dynamicMeshes/OF9_multiregion_AMR.gif

3D driven cavity with AMR

Region 1
Refinement based on T

Region 2
Refinement based on p

T based refinement
2 levels

p based refinement
1 level

https://github.com/OpenFOAM/OpenFOAM-9/commit/fe9de1c78368d013bf075fe8e35d6bec296c5eea
http://www.wolfdynamics.com/training/dynamicMeshes/OF9_multiregion_AMR.gif


Adaptive mesh refinement in OpenFOAM

65

• Let us explore the dynamicMeshDict dictionary for multi-region refinement. 

3D driven cavity with AMR

...

...

...

dynamicFvMesh   dynamicRefineFvMesh;

refineInterval  1;

refinementRegions

{

}

nBufferLayers   1;

maxCells        100000;

correctFluxes

(

( phi none )

);

dumpLevel       true;

...

...

...

Library with AMR capabilities

Region based refinement sub-dictionaries

Note:

The options outside the refinementRegions block 

are the same as in the previous slides



Adaptive mesh refinement in OpenFOAM

66

• Let us explore the dynamicMeshDict dictionary for multi-region refinement. 

3D driven cavity with AMR

...

refinementRegions

{

region1

{

cellZone        refinementRegion1;

field           T;

lowerRefineLevel 0.1;

upperRefineLevel 1;

maxRefinement   2;

unrefineLevel   10;

}

region2

{

cellZone        refinementRegion2;

field           p;

lowerRefineLevel 0.5;

upperRefineLevel 100;

maxRefinement   1;

unrefineLevel   10;

}

}

...

Refinement/unrefinement options.

Same as in the previous case but now are based 

on a cellZone selection and different fields.

Refinement/unrefinement options.

Same as in the previous case but now are based 

on a cellZone selection and different fields.

cellZone selection created using topoSet.

cellZone selection created using topoSet.

Unique ser given name

Unique ser given name



Adaptive mesh refinement in OpenFOAM

67

• To create the cellZone used in the dynamicMeshDict dictionary, we use the utility topoSet that reads the 

dictionary topoSetDict. 

• The dictionary topoSetDict is located in the directory system, and the basic entries read are as follows,

3D driven cavity with AMR

...

actions

(

{

name    refinementRegion1;

type    cellZoneSet;

action  new;

source  boxToCell;

sourceInfo

{

box (-1 -1 -1) (0.5 1 1); 

}

}

{

name    refinementRegion2;

type    cellZoneSet;

action  new;

source  boxToCell;

sourceInfo

{

box (0.5 -1 -1) (1 1 1); 

}

}

);

...

Create a new set, using the cellZoneSet 

method, with the name refinementRegion1, 

using the selection method boxToCell, with the 

bounds defined in sourceInfo for the object box.

Create a new set, using the cellZoneSet 

method, with the name refinementRegion2, 

using the selection method boxToCell, with the 

bounds defined in sourceInfo for the object box.

Note:

You need to execute the command topoSet

before running the simulation



Roadmap

68

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



Sliding meshes in OpenFOAM

69

• In sliding meshes simulations, the solution is interpolated back-and-forth between topologically 

separated regions.

• The interpolation is done at the mesh interface. In OpenFOAM, this patch type is called 

arbitrary mesh interface or AMI.

• To reduce interpolation errors at the AMI patches, the meshes should be similar in the master 

and slave patches. 

Rotating domain

AMI interface Fix domain

http://www.wolfdynamics.com/training/movingbodies/image8.gif

Rotating patch

Master patch

Fix patch

Slave patch

http://www.wolfdynamics.com/training/movingbodies/image8.gif


Sliding meshes in OpenFOAM

70

Inner region (rotating mesh)

Impeller

http://www.wolfdynamics.com/training/meshing/image5.gif

• The different regions (i.e., fix and rotating), must be created at meshing time.

• The mesh can be generated using OpenFOAM meshing capabilities or any external mesher.

• Single and multiple rotating bodies are supported.

• Sliding meshes are compatible with all physical modeling capabilities implemented in 

OpenFOAM.

http://www.wolfdynamics.com/training/meshing/image5.gif


Sliding meshes in OpenFOAM

71

Sliding grids – Unsteady solver
http://www.wolfdynamics.com/training/movingbodies/image13.gif

MRF – Steady solver
http://www.wolfdynamics.com/training/movingbodies/image14.gif

• Sliding meshes are intrinsically unsteady.

• No need to say that in order to use sliding meshes you need axial symmetry.

• An alternative to sliding meshes is MRF (steady and unsteady).

• In the MRF approach, the mesh is fixed. The rotation is accounted by adding source terms to 

the region of interest.

• MRF solvers are mush faster than sliding meshes solvers.

http://www.wolfdynamics.com/training/movingbodies/image13.gif
http://www.wolfdynamics.com/training/movingbodies/image14.gif


Sliding meshes in OpenFOAM

72

$TM/sliding_MRF_meshes/CSTR/sliding_piso/

• Let us run the continuous stirring tank reactor case.

• You will find this case in the directory:

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Sliding meshes in OpenFOAM

73

CSTR – Continuous stirring tank reactor mesh

• Let us open the snappyHexMesh dictionary. 

• Explaining the whole dictionary is outside of the scope of this training, we will focus our attention in the 

section where we create the different zones (a cell zone and a face zone).

• Let us take a look at the castellatedMeshControls section of the dictionary snappyHexMeshDict. In this 

block we define the cellZone and faceZone, as follows,

castellatedMeshControls

{

...

...

...

//Surface based refinement

inner_volume

(

level (1 1);

cellZone cell_inner_volume;

faceZone face_inner_volume;

faceType internal;

cellZoneInside insidePoint;

insidePoint (50 0 100);

);

...

...

}

Using the surface inner_volume geometry (that 

was loaded in the geometry section of the 

snnapyHexMeshDict dictionary), we create a 

mesh zone that we will use at a later time to split 

the whole mesh in two regions.

Name of the cellZone.

Name of the faceZone.

Use an inner point to define location of the zone

Location of the insidePoint.

The point is located inside the surface 

inner_volume, therefore the new zone is created 

inside the surface selected.

Keep the new faces as internal (default option).



Sliding meshes in OpenFOAM

74

• At this point, we are going to work in parallel.

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> foamCleanPolymesh 

3. $> surfaceFeatures

4. $> blockMesh

5. $> decomposePar

6. $> mpirun -np 4 snappyHexMesh –parallel –overwrite

7. $> mpirun -np 4 checkMesh –parallel –latestTime

8. $> reconstructParMesh -constant

9. $> paraFoam

CSTR – Continuous stirring tank reactor mesh



Sliding meshes in OpenFOAM

75

CSTR – Continuous stirring tank reactor mesh

face_inner_volume cell_inner_volume

• Using paraFoam let us take a look at the newly created mesh, including the zones (face and 

cells).



Sliding meshes in OpenFOAM

76

CSTR – Continuous stirring tank reactor mesh

• To visualize the zones in paraFoam you will need to enable the option Include Zones

• Then select the mesh parts cell_inner_volume and face_inner_volume.

1. 2.



Sliding meshes in OpenFOAM

77

CSTR – Continuous stirring tank reactor mesh

• At this point and if you run checkMesh, you will get the following information:

• $> checkMesh

…

…

…

Checking topology…

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

UPPER triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).

…

…

…

• As you can see we only have one region, but we are interested in having two regions.

• Up to this point the mesh is valid to be used with the MRF approach.

• For sliding meshes, we still need to split the mesh in two or more regions.

• We will use the following utilities:

• createBaffles

• mergeOrSplitBaffles



Sliding meshes in OpenFOAM

78

CSTR – Continuous stirring tank reactor mesh

• The utility createBaffles, reads the dictionary createBafflesDict.

• With this utility we create the interface patches between the fix zone and the rotating zone.

baffles

{

rotating

{

type faceZone;

zoneName face_inner_volume;

patches

{

master

{

name AMI1;

type cyclicAMI;

matchTolerance 0.0001;

neighbourPatch AMI2;

transform none;

}

slave

{

name AMI2;

type cyclicAMI;

matchTolerance 0.0001;

neighbourPatch AMI1;

transform none;

}

}

}

}

Boundary condition 

for sliding grids

Boundary condition 

for sliding grids

Name of the baffle group (user defined)

Parameters for the master patch

Parameters for the slave patch

Name of the master patch (user defined)

Name of the slave patch (user defined)

Neighbour patch (slave patch or AMI2)

Neighbour patch (master patch or AMI1)

The master and slave patches 

share a common face

Face to use to construct the AMI patches. 

The name was defined in snappyHexMeshDict

Use faceZone



Sliding meshes in OpenFOAM

79

CSTR – Continuous stirring tank reactor mesh

• To create the two regions, we proceed as follows (notice that we are going to work in serial from 

now on):

1. $> createBaffles –overwrite

2. $> splitBaffles –overwrite

3. $> createPatch –overwrite

4. $> splitMeshRegions –makeCellZones –overwrite

5. $> splitMeshRegions –detectOnly

6. $> transformPoints ‘scale = (0.01 0.01 0.01)’

• Steps 3-6 are optional.



Sliding meshes in OpenFOAM

80

CSTR – Continuous stirring tank reactor mesh

• So, what did we do?

• Step 1: 

• Splits the mesh in regions using the baffles (faceZone), created during the meshing 

stage.  

• We also create the cyclicAMI patches AMI1 and AMI2.

• At this point we have two regions and one zone. However, the two regions are stich 

together via the patches AMI1 and AMI2.

• Step 2: topologically split the patches AMI1 and AMI2. As we removed the link between 

AMI1 and AMI2, the regions are free to move.

• Step 3 (optional): gets rid of zero faced patches if hey exist.  These are the patches 

remaining from the base mesh, as they are empty, we do not need them. 

• Step 4 (optional): 

• Splits mesh into multiple zones. It will create automatically the sets and zones. 

• At this point we have two regions and two zones.

• Step 5 (optional): just to show the regions and names.

• Step 6 (optional): scales the mesh.



Sliding meshes in OpenFOAM

81

CSTR – Continuous stirring tank reactor mesh

…

…

…

Checking topology…

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

UPPER triangular ordering OK.

Face vertices OK.

*Number of regions: 2

The mesh has multiple regions which are not connected by any face.

<<Writing region information to ”0/cellToRegion”

<<Writing region 0 with 136187 cells to cellSet region0

<<Writing region 1 with 67682 cells to cellSet region1

…

…

…

• At this point and if you run checkMesh, you will get the following information:

• $> checkMesh

• As you can see, we now have two regions.

• At this point the mesh is ready to use.

• You can visualize the mesh (with all the sets and zones) using paraFoam.

Regions name



Sliding meshes in OpenFOAM

82

CSTR – Continuous stirring tank reactor mesh

• At this point the mesh is ready to use using the sliding meshes approach.  You can visualize the 
mesh using paraFoam.

• If you use checkMesh, it will report that there are two regions.

• In the dictionary constant/dynamicsMeshDict we set which region will move and the 

rotation parameters.

• To preview the region motion, in the terminal type:

• $> moveDynamicMesh

• To preview the region motion and check the quality of the AMI interfaces, in the terminal type:

• $> moveDynamicMesh -checkAMI -noFunctionObjects

• In our YouTube channel you can find an step-by-step video explaining this case. 



Sliding meshes in OpenFOAM

83

CSTR – Continuous stirring tank reactor mesh

Inner region and arbitrary mesh 

interface (AMI patches)

Impeller

type movingWallVelocity;

value uniform (0 0 0);

Shaft

type rotatingWallVelocity;

origin (0 0 0);

axis (0 0 1);

omega constant 12.566370;

value uniform (0 0 0);

dynamicFvMesh   dynamicMotionSolverFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

motionSolver solidBody;

cellZone        cell_inner_volume;

solidBodyMotionFunction  rotatingMotion;

origin    (0 0 0);

axis      (0 0 1);

omega constant 12.566370;   

constant/dynamicMeshDict – For sliding meshes

Motion libraries

Solver for single body. For multiple bodies use 

the solver multiSolidBodyMotionSolver

Rotating zone selection

Motion type.

Omega is given in rad/s



Sliding meshes in OpenFOAM

84

CSTR – Continuous stirring tank reactor mesh

constant/dynamicMeshDict – For sliding meshes constant/MRFProperties – For MRF approach

Inner region and arbitrary mesh 

interface 

Impeller

type movingWallVelocity;

value uniform (0 0 0);

Shaft

type rotatingWallVelocity;

origin (0 0 0);

axis (0 0 1);

omega constant 12.566370;

value uniform (0 0 0);

dynamicFvMesh   dynamicMotionSolverFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

motionSolver solidBody;

cellZone        cell_inner_volume;

solidBodyMotionFunction  rotatingMotion;

origin    (0 0 0);

axis      (0 0 1);

omega     constant 12.566370;   

cellZone    cell_inner_volume;

active      yes;

// Fixed patches (by default they move’ with the MRF zone)

nonRotatingPatches ();

origin    (0 0 0);

axis      (0 0 1);

omega     constant 12.566370; 



Sliding meshes in OpenFOAM

85

CSTR – Continuous stirring tank reactor mesh

• The command moveDynamicMesh –checkAMI 

will print on screen the quality of the AMI interfaces 

for every time step.

• Ideally, you should get the AMI patches weights as 

close as possible to one.

• Weight values close to one will guarantee a good 

interpolation between the AMI patches.

http://www.wolfdynamics.com/training/movingbodies/image9.gif

AMI1 patch weights

AMI2 patch weights

Number of faces in 
the AMI patches

Name of the AMI patch Name of the AMI patch…

…

…

Calculating AMI weights between owner patch: AMI1 and neighbour patch: AMI2

AMI: Creating addressing and weights between 2476 source faces and 2476 target faces

AMI: Patch source sum(weights) min/max/average = 0.94746705, 1.0067199, 0.99994232

AMI: Patch target sum(weights) min/max/average = 0.94746692, 1.0004497, 0.99980782

…

…

…

http://www.wolfdynamics.com/training/movingbodies/image9.gif


Sliding meshes in OpenFOAM

86

CSTR – Continuous stirring tank reactor mesh

• Additionally, to this case, in the directory $TM/sliding_MRF_meshes/CSTR/, you will find 

additional cases dealing with MRF and importing a mesh from an external mesher.

• ./fluent_mesh – Importing a mesh from fluent

• ./case1 – Zones/regions already defined

• ./case2 – No zones/regions defined, it requires topological modifications

• ./MRF_piso – Unsteady MRF approach 

• ./MRF_simple – Steady MRF approach 

• ./sliding_piso – Sliding meshes approach



Sliding meshes in OpenFOAM

87

CSTR – Continuous stirring tank reactor with two impellers

• And of course, it is possible to put several regions into motion (sliding meshes).

• Remember, for a single zone you can use the solver solidBody. 

• For multiple regions, you will need to use the solver multiSolidBodyMotionSolver.

• You will need to create the cellZones and the AMI patches.

• The solver multiSolidBodyMotionSolver lets you use a single cellZone or multiple cellZone, 

so it is more general.

impeller2

movingWallVelocity

(rotating patch)

impeller1

movingWallVelocity

(rotating patch)

shaft1

rotatingWallVelocity

(fixed patch)

shaft2 

rotatingWallVelocity

(fixed patch)

http://www.wolfdynamics.com/training/dynamicMeshes/sliding1.gif

http://www.wolfdynamics.com/training/dynamicMeshes/sliding1.gif


Sliding meshes in OpenFOAM

88

CSTR – Continuous stirring tank reactor with two impellers

dynamicFvMesh   dynamicMotionSolverFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

motionSolver multiSolidBodyMotionSolver;

multiSolidBodyMotionSolverCoeffs

{

cell_inner_volume1

{

solidBodyMotionFunction  rotatingMotion;

rotatingMotionCoeffs

{

origin        (0 0 0);

axis          (0 0 1);

omega         constant 6.283185; //360 deg/s

}

}

cell_inner_volume2

{

solidBodyMotionFunction  rotatingMotion;

rotatingMotionCoeffs

{

origin        (0 0 0);

axis          (0 0 1);

omega         constant 6.283185; //360 deg/s

}

}

}

cell_inner_volume1

cell_inner_volume2

Solver for multiple zones

cellZone – created at meshing time

cellZone – created at meshing time

cellZone motion parameters

cellZone motion parameters

You will this  tutorial in the directory 
$TM/sliding_MRF_meshes/CSTR_twoImpellers

• For multiple regions, the dictionary dynamicsMeshDict looks like as follows:

Zones entries



Roadmap

89

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



Morphing meshes in OpenFOAM

91

Moving boundary

Oscillating cylinder – Prescribed motion

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion3.gif

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion4.gif

• The motion can be one of the predefined functions 

in OpenFOAM or an input table containing the 

body’s linear displacement and angular 

displacement in function of time.

• Mesh morphing is also known as mesh diffusion 

and mesh smoothing technique.

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion3.gif
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion4.gif


Morphing meshes in OpenFOAM

92

Oscillating cylinder – Prescribed motion

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion5.gif http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion6.gif

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion7.gif http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion8.gif

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion5.gif
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion6.gif
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion7.gif
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion8.gif


Morphing meshes in OpenFOAM

93

Oscillating cylinders – Prescribed motion with multiple bodies

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion9.gif http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion10.gif

• With morphing meshes, large displacements with large time-steps (hence large CFL number), will likely result 

in low quality meshes or invalid meshes.

• The time-step must be chosen in such a way that it allows for a smooth mesh motion diffusion in the domain.

• When using mesh morphing, the solver will report the mesh quality. 

• Remember to always check the mesh quality while the simulation is running, and it the case of low quality 

meshes, stop the simulation and fix the problems.

http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion9.gif
http://www.wolfdynamics.com/training/dynamicMeshes/meshMotion10.gif


94

$TM/morphing_mesh/1_oscillatingCylinder/meshMotion

• Let us run the oscillating cylinder case.

• You will find this case in the directory:

Morphing meshes in OpenFOAM

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Morphing meshes in OpenFOAM

95

Oscillating cylinder – Prescribed motion

• In the dictionary constant/dynamicMeshDict we select the mesh morphing method and the 

boundary patch that it is moving.

• There are many mesh morphing methods implemented in OpenFOAM. 

• Remember, to know all options available just misspelled something.

• Mesh morphing is based in diffusing or propagating the mesh deformation all over the domain.

• You will need to find the best method for your case.  

• But in general, the setup used in this case works fine most of the times.

dynamicFvMesh      dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

motionSolver displacementLaplacian;

displacementLaplacianCoeffs 

{

diffusivity       inverseDistance (cylinder);

}

Patch name – Can add multiple patches, e.g., (body1 body2)

M
e

th
o

d
 c

o
e

ff
ic

ie
n
ts

Mesh diffusion method – Many options available

Solver for mesh motion 

method. Based on solving the 

cell-centre Laplacian for the 

motion displacement.

Many options available.

Motion library

Mesh motion library



Morphing meshes in OpenFOAM

96

Oscillating cylinder – Prescribed motion

• Effect of different diffusivity methods (mesh morphing).

solver            displacementLaplacian;

diffusivity inverseDistance (cylinder);

solver            displacementLaplacian;

diffusivity inverseVolume (cylinder);

solver            displacementLaplacian;

diffusivity quadratic inverseDistance (cylinder);

solver            displacementLaplacian;

diffusivity exponential 0.6 inverseDistance (cylinder);



Morphing meshes in OpenFOAM

97

Oscillating cylinder – Prescribed motion

• In the dictionary 0/pointDisplacement we select the prescribed body motion.

• In this case we are using oscillatingDisplacement for the cylinder patch.

• Each method has different input values. In this case it is required to define the amplitude and the 

angular velocity in rad/s.

• If the patch is not moving, we assign to it a fixedValue boundary conditions.

in

{

type            fixedValue;

value           uniform (0 0 0);

}

cylinder

{

type            oscillatingDisplacement;

amplitude       ( 0 1 0 );

omega           6.28318;

value           uniform ( 0 0 0 );

}

Dummy value for paraview

This is a fixed patch

Built-in motion functions 

Many options available.

Input values related to 

motion assigned to the body

Patch name – Different patches can have different prescribed motions



Morphing meshes in OpenFOAM

98

Oscillating cylinder – Prescribed motion

• If the patch is moving, we need to use the boundary condition movingWallVelocity.

• This is done in the dictionary 0/U.

cylinder

{

type            movingWallVelocity;

value           uniform (0 0 0);

}

• And as usual, you will need to adjust the numerics according to your physics.

• In this case we need to solve the new fields cellDisplacement and diffusivity, which are 

related to the mesh motion and morphing.

• In the dictionary fvSolution, you will need to add a linear solver for the field 

cellDisplacement.

• In the dictionary fvSchemes, you will need to add the discretization schemes related to the 

mesh morphing diffusion method laplacian(diffusivity, cellDisplacement). You can use the 

default discretization method (e.g., Gauss linear limited 1.0).



Morphing meshes in OpenFOAM

99

Oscillating cylinder – Prescribed motion

• At this point, we are ready to run the simulation. 

• Before running the simulation, you can check the mesh motion.  

• During this check, you can use large time-steps as we re not computing the solution, we are only interested in 

checking the motion.

• To check the mesh motion, type in the terminal:

1. $> moveDynamicMesh -noFunctionObjects

• We leave to the reader to play around with the different options for mesh motion method, mesh diffusion 

method, and prescribed mesh motion.

Solver types:

displacementComponentLaplacian

displacementInterpolation

displacementLaplacian

displacementLayeredMotion

displacementLinearMotion

displacementSBRStress

multiSolidBodyMotionSolver

solidBody

velocityComponentLaplacian

velocityLaplacian

Mesh diffusivity methods:

directional

file

inverseDistance

inverseFaceDistance

inversePointDistance

inverseVolume

motionDirectional

uniform

Patches prescribed motions:

angularOscillatingDisplacement

angularOscillatingVelocity

oscillatingDisplacement

oscillatingVelocity

surfaceDisplacement

surfaceSlipDisplacement

timeVaryingMappedFixedValue

uniformInterpolatedDisplacement

waveDisplacement



Morphing meshes in OpenFOAM

101

Oscillating cylinder – Prescribed motion

• In the directory $TM/morphing_mesh/oscillatingCylinder/, you will find additional 

cases dealing with moving bodies and mesh morphing.

• ./solution1 – Moving body using a predefined displacement function.

• ./solution2 – Moving body using a tabular input. 

• The tabular input reads linear displacement and angular rotation in function of time. 

• Tabular inputs are the most flexible way to use complex motions. 

• To use tabular inputs, we must use the solidBodyMotionDisplacement prescribe 

patch motion boundary condition, together with the sixDoFMotion function.

• Then, by using an input table (function1 object), we can assign the linear 

displacement and angular displacement in function of time.



Morphing meshes in OpenFOAM

102

What about if my mesh is static?

• If a solver supporting dynamic meshes (e.g., pimpleFoam, interFoam, rhoPimpleFoam) 

finds the dictionary file constant/dynamicMeshDict, it will parse it and use the dynamic 

meshes definition declared.

• If your mesh is static, you can erase the dictionary file constant/dynamicMeshDict, and the 

solver will assume that the mesh is neither moving nor changing.

• Alternatively, you can leave the dictionary file constant/dynamicMeshDict, and modify it as 

follows, so your mesh is static,

FoamFile

{

format      ascii;

class       dictionary;

object      motionProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dynamicFvMesh      staticFvMesh;

// ************************************************************************* //

Library for static meshes



103

$TM/morphing_mesh/2_fallingObject/mesh1

• Let us run the falling-floating body case – Rigid body motion

• You will find this case in the directory:

Morphing meshes in OpenFOAM

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Morphing meshes in OpenFOAM

104

Falling-floating body – Rigid body motion

http://www.wolfdynamics.com/training/dynamicMeshes/dof1.gif

http://www.wolfdynamics.com/training/dynamicMeshes/dof2.gif

    

    

   

    

    

    

    

   

    

    

                           

 
o
  

  
e
rt
ic
a
l 
p
o
s
ti
o
n
  
m
 

 ime  s 

  erset mes     o    ertical position

  

    

    

    

    

 

   

   

                           

 
o
  

  
e
rt
ic
a
l 
 
e
lo
c
it
y
  
m
 s
 

 ime  s 

  erset mes     o    ertical  elocity

http://www.wolfdynamics.com/training/dynamicMeshes/dof1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/dof2.gif


Morphing meshes in OpenFOAM

105

Falling-floating body – Rigid body motion

• As for prescribed motion, in rigid body motion the mesh morphing is based in diffusing or propagating the 

mesh deformation all over the domain.

• In the dictionary constant/dynamicMeshDict we select the mesh morphing library and rigid body motion 

library.

• The rigid motion solver will compute the response of the body to external forces.

• In the dictionary constant/dynamicMeshDict we define all the inputs required by the rigid motion solver. 

• In this case we are using the dynamic motion library sixDoFRigidBodyMotion, this library works with a single 

body. 

• To work with multiple bodies, you will need to use the library rigidBodyMotion. We will use this library during 

the overset tutorials.

dynamicFvMesh       dynamicMotionSolverFvMesh;

motionSolverLibs    ("libsixDoFRigidBodyMotion.so");

motionSolver sixDoFRigidBodyMotion;

sixDoFRigidBodyMotionCoeffs

{

…

…

…
}

M
e

th
o

d
 c

o
e

ff
ic

ie
n
ts

Mesh motion library

Rigid body Motion 

library

Solver for mesh motion 

method

Rigid body motion solver inputs



Morphing meshes in OpenFOAM

106

Falling-floating body – Rigid body motion

• The dictionary constant/dynamicMeshDict (continuation).

sixDoFRigidBodyMotionCoeffs

{

patches         (floatingObject);

innerDistance   0.1;

outerDistance   0.4;

//velocity (0 0 1)

centreOfMass    (0.5 0.5 0.63);

mass            3;

momentOfInertia (0.08 0.08 0.1);

report          on;

…

…

outerDistance

Physical properties of 

the body

Report on screen position of the body

Mesh deformation limits. 

The mesh will not be deformed in the fringe located within 

innerDistance and outerDistance (distance normal to the wall)

Moving patch

innerDistance

Set it to zero if you do not want to 

apply mesh morphing to the inner 

region

This define the initial velocity of the 

body the default value is (0 0 0).

This entry is optional



Morphing meshes in OpenFOAM

107

Falling-floating body – Rigid body motion

• The dictionary constant/dynamicMeshDict (continuation).

sixDoFRigidBodyMotionCoeffs

{

…

…

…

accelerationRelaxation 0.7;

accelerationDamping 1.0;

solver

{

type Newmark;

}

…

…

…

Rigid body motion solver used to solve the 

ODE governing the motion of the body. 

Many options available.

Relaxation factor used to stabilize the rigid body motion 

solver.

For no relaxation set it to 1. Typical values are  

between 0.9-0.3

Damping factor used only if you are interested in 

reaching an equilibrium (trim) condition.

For no damping set it to 1.0. 

Use with caution it will severely damp the forces acting 

on the body.



Morphing meshes in OpenFOAM

108

Falling-floating body – Rigid body motion

• The dictionary constant/dynamicMeshDict (continuation).

constraints

{

fixedAxis

{

sixDoFRigidBodyMotionConstraint axis;

axis (0 1 0);

}

fixedLine

{

sixDoFRigidBodyMotionConstraint line;

centreOfRotation (0.5 0.5 0.5);

direction (0 0 1);

}

}

restraints

{

}

}

Motion constraints

If you do not  give any 

constraint, the body is free 

to move in all directions.

If you assign a constraint, 

the body is free to move in 

the specified direction

Body restraints

Restraints can be used to 

damp the acceleration of the 

body.

In this case, we are not 

using restraints



Morphing meshes in OpenFOAM

109

Falling-floating body – Rigid body motion

• In the dictionary 0/pointDisplacement we select the body motion.

• For rigid body motion, the body motion is computed by the solver, therefore, we use the 

boundary condition calculated.

floatingObject

{

type            calculated;

value           uniform (0 0 0);

}

• And as the patch is moving, we need to use the boundary condition movingWallVelocity.

• This is done in the dictionary 0/U.

floatingObject

{

type            movingWallVelocity;

value           uniform (0 0 0);

}



Morphing meshes in OpenFOAM

110

Falling-floating body – Rigid body motion

• And as usual, you will need to adjust the numerics according to your physics.

• In the case directory, you will also find the script extractData.  This script can be used to 

extract the position of the body during the simulation. 

• In order to use the extractData script, you will need to save the log file of the simulation.

• At this point, we are ready to run the simulation. 

• Remember, in the case directory you will find the scripts run_mesh.sh, run_solver.sh and 

run_all.sh, you can use these scripts to run the case automatically. To run all the steps, type 

in the terminal:

• $> sh run_all.sh

• You will find the instructions of how to run the cases in the file README.FIRST located             

in the case directory.



Morphing meshes in OpenFOAM

111

Falling-floating body – Rigid body motion

• In this case and because the body is experiencing large displacements, the mesh will become 

too distorted.

• Still the overall quality is acceptable, but it might be better to address this issue.

• To tackle this problem, it is possible to use mesh morphing with remeshing.

• That is, when the quality of the mesh is too low, you can stop the simulation, get the position of 

the body, remesh the domain, map the solution and keep computing.

• It is also recommended to reduce the number of interpolated solutions, so the errors introduced 

when restarting the simulation are reduced.

http://www.wolfdynamics.com/training/dynamicMeshes/dof1.gif http://www.wolfdynamics.com/training/dynamicMeshes/dof3.gif

http://www.wolfdynamics.com/training/dynamicMeshes/dof1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/dof3.gif


Morphing meshes in OpenFOAM

112

Falling-floating body – Rigid body motion

• Mesh morphing with remeshing requires manual work and craftmanship, as the user should 

intervene when the mesh quality is deemed low or when problems are identified.

• The steps are as follow:

• Start the simulation and continuously monitor the solution.

• Stop the simulation when the mesh quality is deemed low.

• Extract body position and body dynamics.

• Remesh the domain using the extracted body.

• Map the solution of the previous mesh into the new mesh.

• Restart the simulation using the extracted body dynamics.

Initial position. Low mesh quality – Stop the simulation –

Get body position and body dynamics.

Remesh the domian– Map solution – Apply 

body Dynamics – Continue the simulation.



Morphing meshes in OpenFOAM

113

Falling-floating body – Rigid body motion

• Mesh morphing with remeshing workflow.

1. Start the simulation

2. Stop the simulation at t = 0.2. Extract body 

position and body dynamics.

3. Remesh the domain, map the solution, apply 

body dynamics, restart the simulation

It is recommended to reduce the number of interpolated solutions so the 

errors introduced when restarting the simulation are reduced.

http://www.wolfdynamics.com/training/dynamicMeshes/dof3.gif

http://www.wolfdynamics.com/training/dynamicMeshes/dof3.gif


Morphing meshes in OpenFOAM

115

Falling-floating body – Rigid body motion

• This is maybe the best approach to deal with large deformations, but it requires careful 

parametrization and case setup.

• You will find this case ready to run in the directory: 
$TM/morphing_mesh/fallingObject_remeshSHM/mesh2

No remesh

http://www.wolfdynamics.com/training/dynamicMeshes/dof2.gif

Remesh

http://www.wolfdynamics.com/training/dynamicMeshes/dof4.gif

http://www.wolfdynamics.com/training/dynamicMeshes/dof2.gif
http://www.wolfdynamics.com/training/dynamicMeshes/dof4.gif


Roadmap

116

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



Moving meshes in OpenFOAM

117

Moving meshes/domain – Sloshing tank

http://www.wolfdynamics.com/training/dynamicMeshes/sloshing1.gif http://www.wolfdynamics.com/training/dynamicMeshes/sloshing2.gif

• In this kind of simulations, we aim at moving the whole domain.

• These simulations are particularly useful  when dealing with sloshing tanks cases.

• As for prescribed motion, we need to assign the solid body motion to the whole domain.

• As usual, in the dictionary constant/dynamicMeshDict we select the solid body motion 

library and prescribed motion.

http://www.wolfdynamics.com/training/dynamicMeshes/sloshing1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/sloshing2.gif


Moving meshes in OpenFOAM

118

Moving meshes/domain – Sloshing tank

Oscillating rotating

http://www.wolfdynamics.com/training/dynamicMeshes/motion1.gif

Oscillating linear

http://www.wolfdynamics.com/training/dynamicMeshes/motion2.gif

Combination of oscillating rotating and oscillating linear

http://www.wolfdynamics.com/training/dynamicMeshes/motion3.gif

Arbitrary motion using a tabular input

http://www.wolfdynamics.com/training/dynamicMeshes/motion4.gif

Solid body – Different prescribed motions

http://www.wolfdynamics.com/training/dynamicMeshes/motion1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/motion2.gif
http://www.wolfdynamics.com/training/dynamicMeshes/motion3.gif
http://www.wolfdynamics.com/training/dynamicMeshes/motion4.gif


119

$TM/moving_mesh/sloshing_tank_baffles/baffles_multimotion/

• Let us run the sloshing tank case.

• You will find this case in the directory:

Moving meshes in OpenFOAM

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Moving meshes in OpenFOAM

120

• Contrary to morphing meshes, in these simulations we do not morph the mesh, we only move 

the domain (similar to what we did in sliding meshes).

• In the dictionary constant/dynamicMeshDict we select the mesh motion libraries and 

prescribed motions.

• In the solidBodyMotionFunction entry you can define a singe motion.  But using multiMotion

is more general as it let you choose multiple prescribed motions. 

• Remember, to know all options available just misspelled something.

dynamicFvMesh       dynamicMotionSolverFvMesh;

motionSolver    solidBody;

solidBodyMotionFunction multiMotion;

…

…

…

Mesh motion library

Solid body Motion library – Use it to move the whole domain

Prescribed motion for the solid body. 

Many options available.

In this case we are using multi-motion, 

which let you set multiple prescribed 

motions.
Definition of 

prescribed motions

Sloshing tank



Moving meshes in OpenFOAM

121

• Definition of multiple prescribed motions using the multiMotion solid body function.

motion1

{

solidBodyMotionFunction oscillatingRotatingMotion;

oscillatingRotatingMotionCoeffs

{

origin           (0.25 0.25 0.25);

amplitude (0 0 60);

omega  3.14159;    

}

}

motion2

{

solidBodyMotionFunction oscillatingLinearMotion;

oscillatingLinearMotionCoeffs

{

amplitude (0.25 0 0);

omega  3.14159;    

}

}

Prescribed motion

Prescribed motion

User given name (used to enumerate the prescribed motions)

User given name (used to enumerate the prescribed motions)

Input values related to 

motion assigned to the 

body.  Amplitude in meters 

and omega in rad/s.

Input values related to 

motion assigned to the 

body. Amplitude in degrees 

and omega in rad/s.

Sloshing tank



Moving meshes in OpenFOAM

122

• As all the walls are moving, we need to use the boundary condition movingWallVelocity.

• This is done in the dictionary 0/U.

cylinder

{

type            movingWallVelocity;

value           uniform (0 0 0);

}

• And as usual, remember to adjust the numerics according to your physics.

• At this point, we are ready to run the simulation. 

• Remember, in the case directory you will find the scripts run_mesh.sh, run_solver.sh and 

run_all.sh, you can use these scripts to run the case automatically. To run all the steps, type 

in the terminal:

• $> sh run_all.sh

• To check the mesh motion, type in the terminal:

• $> moveDynamicMesh -noFunctionObjects

• You will find the instructions of how to run the cases in the file README.FIRST located             

in the case directory.

Sloshing tank



Moving meshes in OpenFOAM

123

• At this point, we are ready to run the simulation. 

• You will find the instructions of how to run the cases in the file README.FIRST located in the case directory.

• Before running the simulation, you can check the mesh motion.  

• During this check, you can use large time-steps as we re not computing the solution, we are only interested in 

checking the motion.

• To check the mesh motion, type in the terminal:

1. $> moveDynamicMesh -noFunctionObjects

• We leave to the reader to play around with the different options for solidBodyMotionFunction.

solidBodyMotionFunction motion types:

axisRotationMotion

linearMotion

multiMotion

oscillatingLinearMotion 

oscillatingRotatingMotion

rotatingMotion

SDA

sixDoFMotion

solidBodyMotionFunction

Sloshing tank



Moving meshes in OpenFOAM

124

• Remember, when bodies/patches are moving you need to assign to all the                              

moving walls the movingWallVelocity boundary condition.

• This boundary condition will add the mesh velocity.

• In this example, you can clearly see the difference in the solution when we use and when we do 

not use the boundary condition movingWallVelocity. 

• As you can see, if we do not use the boundary condition movingWallVelocity for all moving 

walls the solution does not look that good.

Moving walls with movingWallVelocity boundary condition
http://www.wolfdynamics.com/training/dynamicMeshes/sloshing1.gif

Moving walls with fixedvalue boundary condition
http://www.wolfdynamics.com/training/dynamicMeshes/sloshing3_badbc.gif

Sloshing tank

http://www.wolfdynamics.com/training/dynamicMeshes/sloshing1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/sloshing3_badbc.gif


Roadmap

125

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



126

Overset meshes in OpenFOAM

• From this point on, we will use OpenFOAM ESI version.

• The tutorials work with OpenFOAM v2106 or newer.



A few preliminary remarks about overset meshes

127

Overset meshes in OpenFOAM

• By using overset meshes, simulations involving complex motion (prescribed, 

6DOF, or FSI) of single or multiple bodies that were extremely difficult or 

impossible to simulate using traditional moving meshes methods (mesh 

morphing, layering, or remeshing), are now tractable.

• If you are working with unstructured meshes and there are no moving bodies, it 

makes no sense paying the extra computational cost inherent to overset meshes.

• Have in mind that overset meshes can add numerical diffusion to the solution, 

not to mention that the interpolation is non-conservative. 

• Do not take overset meshes as a silver bullet. Simulations using overset meshes 

require careful planning and expertise.



Overset mesh example in OpenFOAM

128

Rigid body motion with multiple bodies and VOF

http://www.wolfdynamics.com/training/dynamicMeshes/floating_overset1.gif

http://www.wolfdynamics.com/training/dynamicMeshes/floating_overset2.gif

Overset meshes in OpenFOAM

http://www.wolfdynamics.com/training/dynamicMeshes/floating_overset1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/floating_overset2.gif


Overset mesh example in OpenFOAM

129

Store separation – Rigid body motion 

Overset meshes in OpenFOAM

http://www.wolfdynamics.com//wiki/of_conf2019/f15.gif http://www.wolfdynamics.com//wiki/of_conf2019/f17.gif

http://www.wolfdynamics.com/wiki/of_conf2019/f15.gif
http://www.wolfdynamics.com/wiki/of_conf2019/f17.gif


Overset mesh example in OpenFOAM

130

Space shuttle – Booster release – Prescribed motion 

Overset meshes in OpenFOAM

http://www.wolfdynamics.com//wiki/of_conf2019/f19.gif http://www.wolfdynamics.com//wiki/of_conf2019/f20.gif

Component mesh 1 Component mesh 2 Component mesh 3

http://www.wolfdynamics.com/wiki/of_conf2019/f19.gif
http://www.wolfdynamics.com/wiki/of_conf2019/f20.gif


Overset mesh example in OpenFOAM

131

Overset meshes in OpenFOAM

Ahmed body – Overtaking simulation

http://www.wolfdynamics.com/training/movingbodies/ahmed1.gif http://www.wolfdynamics.com/training/movingbodies/ahmed2.gif

http://www.wolfdynamics.com/training/movingbodies/ahmed1.gif
http://www.wolfdynamics.com/training/movingbodies/ahmed2.gif


Overview of overset meshes – Development timeline

Overset meshes in OpenFOAM

• The overset meshes (OM) method consists in 

generating a set of component meshes (CM) 

that cover the domain and overlap where they 

meet.

• Domain connectivity between the CM is 

obtained through proper interpolation in the 

overlapping areas.

• The CM can be structured or unstructured.

• In the CFD community, the OM method has 

been in use since the early 1980’s.

• It was then, and it is now recognized as an 

attractive approach for treating problems with 

moving bodies and complex geometries (think 

structured meshes/solvers).

• OM are also known as overlapping grids, 

overset composite grids, composite 

overlapping meshes, chimera meshes, 

patches grids, composite grids.

132

1.  Component meshes (CM) – The CM are generated separately. 

2.  Hole cutting – Identification of unused points.

3.  Identification of valid interpolation points (this is a valid mesh).

4.  Optimized overset mesh – Mesh set with the minimum overlap region.



Overview of overset meshes – Development timeline

Overset meshes in OpenFOAM

• If the CM are moving, overset connectivity 

information, such as interpolation stencils 

and unused points regions (Chimera 

holes), is recomputed each time-step.

• The motion of the CM may be a user 

defined function, may obey the Newton-

Euler equations for the case of rigid body 

motion or may be the boundary nodes 

displacement in response to the stresses 

exerted by the fluid pressure for the case 

of FSI problems.

• OM can easily handle multiple bodies 

undergoing relative motion. 

• They can even handle collisions.

• Overset meshes guarantees high quality 

meshes even for very large displacements.

133

• Moving overset mesh. 

• The interpolation stencil and Chimera holes are recomputed every time-step.

• The illustrated overset mesh corresponds to a mesh set with the minimum 

overlap between component meshes.

• But sets with larger overlap regions can be used as well.



Overview of overset meshes – Development timeline

Overset meshes in OpenFOAM

134

1980

1990

2000

2010

C
o

m
p

le
x
 g

e
o

m
e
tr

ie
s
 w

it
h

 s
tr

u
c
tu

re
d

 m
e
s
h

e
s
/s

o
lv

e
rs

C
o

m
p

le
x
 m

o
v

in
g

 b
o

d
ie

s

U
n

s
tr

u
c
tu

re
d

 m
e
s
h

e
s

P
e
rv

a
s
iv

e
 u

s
e

Overset symposium

Dragon grids (Kao, Liou, Zheng)

AMR

Study of interpolation conservation issues 

(Berger among many)

2020

DES-LES
In

c
re

a
s
e
d

 c
o

m
p

u
ti

n
g

 p
o

w
e
r 

a
n

d
 i

m
p

ro
v

e
m

e
n

t 
in

 a
lg

o
ri

th
m

s

C
o
m

m
e

rc
ia

l 
s
o

lv
e

rs
 –

L
a

rg
e

 s
c
a

le
 c

o
m

p
u

ti
n

g

?

• Maybe the first use of overlapping grids was reported by 

Volkov in the late 1960’s. 

• The method was further developed and promoted by 

Starius and Kreiss in the late 1970’s.

• It was formally introduced into the CFD community in the 

early 1980’s by the pioneering work of Benek, Buning, 

Dougherty, Meakin, Steger, Suhs.

• Since the 1990’s it has been heavily used to deal with 

complex geometries and moving bodies (Benek, Boger, 

Bunning, Chan, Chesshire, Dougherty, Gomez, Henshaw, 

Meakin, Noack, Petersson, Rogers, Steger, Suhs, among 

many).

• Since 2000’s, the use of overset meshes with unstructured 

meshes gained popularity.

• From 2010’s most commercial CFD solvers and many 

open-source simulation frameworks use overset meshes.

• Symposium on Overset Composite Grids and Solution 

Technology (http://oversetgridsymposium.org/). 

• Biyearly event.

• First edition took place in 1992 – NASA Ames 

Research Center, California.

• Next edition: 2020 – NASA Langley, Virginia.



Overview of overset meshes – Development timeline

Overset meshes in OpenFOAM

135

Space shuttle 
Figure credit: P. Buning, W. Chan,      

R. Gomez, S. Pandya.

Copyright on the images is held by the 

contributors. Apart from Fair Use, 

permission must be sought for any 

other purpose.

V-22 Osprey 
Figure credit: W. Chan, R. Meakin,    

W. Wissink.

Copyright on the images is held by the 

contributors. Apart from Fair Use, 

permission must be sought for any 

other purpose.

• Overset meshes are used to solve the most challenging moving bodies problems.



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• The process of assembling overset meshes in OpenFOAM is very straightforward.

• Four basic steps are involved:

1. Generate component meshes and merge them together (done by the user).

2. Define overset patches (done by the user).

3. Assign zones (done by the user).

4. Compute stencils and assign cell type (done by the overset library).

• These steps are common for every CFD solver that uses overset meshes.

• The difference is the tools and methods used to merge meshes, assign zones, define grid 

priorities, compute stencils, and diagnosing the overset assembly.

• Let us illustrated these steps using an overset set with three component meshes. For this, we 

will use the classical cylinder case (Re = 200).

136



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• Step 1 → Generate component meshes and merge them together (done by the user).

137

• The cell type can be any of the cells 

supported by OpenFOAM.

• The meshes can be 2D and 3D.

• The meshes can be generated using 

any meshing utility (OpenFOAM or 

third-party library).

Component mesh 1 → all

Component mesh 2 → refinementZone

Component mesh 3 → cylinder

• Each CM is considered an individual case; therefore, they are 

generated in different directories.

• To assemble an overset mesh, you need to generate each CM

in separated directories.

• Then, you merge them together using the utility 

mergeMeshes.

• You merge the meshes in a single directory. In this case, the 

component meshes cylinder and refinementZone are 

merged in the directory all. 

• Notice that the directory all also contains a mesh (background 

mesh in this case).

cylinder refinementZone

all

mergeMeshes



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• Step 2 → Define overset patches (done by the user). 

138zoneID 2

zoneID 2

zoneID 1

zoneID 0

Overset patches (white lines)

zoneID 0

zoneID 1

• The overset patches are defined by the 

user.

• They have the same name (defined by 

the user when generating the CM).

• And they are grouped together 

automatically when merging meshes.

• Overset patches can intersect each 

other.

• They can also intersect other patches 

(walls).

• However, walls cannot intersect other 

walls (no collisions) or go out of the 

domain (escape).



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• Step 3 → Assign zones (done by the user).

139zoneID 2

zoneID 2

zoneID 1

zoneID 0zoneID 0

zoneID 1

• A zone identification index (zoneID) is 

assigned to each component mesh 

after they have been merged.

• It is recommended to assign zoneID 0 

to the background mesh (all in this 

case).

• The background mesh usually is the 

mesh that is not moving, the mesh with 

inlet and outlet patches, or the mesh 

that does not have overset patches.

• The zoneID index is used to establish 

the grid priorities.



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• Step 4 → Compute stencils and assign cell type (done by the overset library).

140

Hole

Interpolated

Calculated

Interpolation fringe and hole cells 

(computed by the library)

Cell type Cell type index

Hole 2

Interpolated 1

Calculated 0

• The overset patches of each CM are 

defined by the user.

• The interpolation fringe close to the walls 

and the hole cells are computed 

automatically by the overset library.

• The cell types are defined as follows: hole 

cells (the solution is not computed), 

interpolated cells (the solution is 

interpolated from mesh-to-mesh), and 

calculated cells (the solution is computed).

• The interpolated cells can be classified as 

acceptors (receive information) and donors

(send information).

• The donor cells can be interpolated

or calculated cells.

Interpolation boundary conditions 

(defined by the user)



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• Step 4 → Compute stencils and assign cell type (done by the overset library).

141

Wireframe visualization – All CMs Wireframe visualization (refinementZone and cylinder CM)

Wireframe visualization (cylinder CM)Contour visualization with transparency – All CMs

Hole

Interpolated

Calculated

• Cells dimension close to interpolated cells 

should be of the same size to minimize 

interpolation errors.

• When computing the solution, an overset 

interpolation method must be chosen.

• Options available: 

• cellVolumeWeight

• inverseDistance

• trackingInverseDistance

• leastSquares (recommended by us)

User defined

Computed by the solver

(hole and interpolated cells)



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• About the order of operations when merging meshes.

• In theory, it does not matter the order of the merge operations.

• At the end, all CM should be merged into a single directory.

• In this case, the CM cylinder and refinementZone are merged into the CM all.

• The zoneID is assigned after merging the meshes.

• It is highly recommended that the oversetPatch be the first one in the boundary file.

142

First merge operation → cylinder + all Second merge operation → refinementZone + previous merged mesh



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

• About the zoneID priority (or grid priority).

143

zoneID 2

zoneID 1

zoneID 0

Hole

Interpolated

Calculated

Cylinder wall

• The zoneID defines the order of the hole cutting 

operations on the component meshes. 

• High zoneID values, means high priority.  That is, 

that CM will cut or imprint lower priority levels.

• In this case, the cylinder mesh has a zoneID

equal to 2, the refinementZone mesh has a 

zoneID equal to 1, and the all mesh 

(background) has a zoneID equal to 0.

• Therefore, the cylinder mesh (the wall) will cut 

meshes refinementZone and all, the mesh 

refinementZone will cut the mesh all (if there are 

walls), and so on.

• Different grid priorities will give you different 

overset assemblies and interpolation stencils, this 

must be carefully planned.

• Remember, the Chimera holes are computed 

using walls, so if there are no walls, there are no 

holes.



The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

144

• Multiple bodies undergoing relative motion – Cell types (cellTypes) and zones identification (zoneID).

• The cell types are recomputed every time-step.

http://www.wolfdynamics.com//wiki/of_conf2019/f3.gifhttp://www.wolfdynamics.com//wiki/of_conf2019/f4.gif

cellTypes Index

Hole 2

Interpolated 1

Calculated 0

• In this case, the order of the zoneID or 

grid priorities does not make any 

difference as the cylinders CM are 

identical.

• But if the cylinders CM were different, the 

grid priorities will result in different 

chimera holes and interpolation stencils.

• The selection of the grid priorities should 

be planned in advanced. High grid priority 

means that the CM will cut or imprint lower 

priority grids.

http://www.wolfdynamics.com/wiki/of_conf2019/f3.gif
http://www.wolfdynamics.com/wiki/of_conf2019/f4.gif


The grammar of overset meshes in OpenFOAM

Overset meshes in OpenFOAM

145

• Overset meshes simulation workflow in OpenFOAM

Step 1 – Generate  and merge component 

meshes

Done by the user

Step 2 – Define overset patches

Done by the user

Step 3 – Assign zones (grid priorities) 

Done by the user

Step 4 – Compute stencils, assign cell type, 

interpolate solution

Done by the solver 

Set numerics for overset meshes (overset 

interpolation type, solution method, CFL 

number, discretization schemes, corrections, 

and so on)

Done by the user

Compute and monitor the solution

Done by the solver 

Postprocessing (which is more tedious that 

working with single meshes)

Done by the user

http://www.wolfdynamics.com/training/dynamicMeshes/overset5.gif

O
v
e
rs

e
t m

e
s
h

e
s
 a

s
s
e
m

b
ly

C
o

m
p

u
te

 s
o

lu
tio

n
, m

o
n

ito
rin

g
, p

o
s

t-p
ro

c
e
s
s
in

g

http://www.wolfdynamics.com/training/dynamicMeshes/overset5.gif


Case setup in the overset framework

Overset meshes in OpenFOAM

$PTOFC/overset/2D/1_cylinder_fixed

• Fixed 2D cylinder with overset meshes

• Let us run this case to see the typical workflow when using 

overset mesh. Go to the directory:

147

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Case setup in the overset framework

Overset meshes in OpenFOAM

• In the overset framework, a crucial (and mandatory) step is to create zones for handling the 

different component meshes.  This is done using the field zoneID.

• To create the zones and assign the field zoneID to each zone, we use the topoSet and 

setFields utilities:

• topoSet: creates a cellSet for each component mesh.

• setFields: assigns to the cellSet the proper value of zoneID

• The zoneID field is also useful for postprocessing overset meshes.

• It is recommended to set the coarsest level to zoneID = 0 (according to developers).

• In overset meshes, when initializing the zoneID field, it is recommended to do it independently 

from other fields (e.g., alpha.water), as you may experience problems with the initialization.

zoneID = 0

zoneID = 1

148



Case setup in the overset framework

Overset meshes in OpenFOAM

• The new patch type overset is used for patches involved in the overset interpolation.

• It can be assigned at meshing time (e.g., in blockMeshDict).

• If you import a third-party mesh, it is possible to manually edit the type in the boundary file 

(located in the constant/polyMesh directory).

• The overset patches should precede the other patches in the boundary file, that is, it should be 

the first in the list (as recommended by the developers).

149



Case setup in the overset framework

Overset meshes in OpenFOAM

boundaryField

{

#includeEtc "caseDicts/setConstraintTypes"

yourOversetPatchName

{

type overset;

value $internalField;

}

...

...

...

• You also need to assign the overset patch type to the boundary patches in the boundary 
conditions files located in the 0 folder (i.e., U, p, k, omega, epsilon, nut, alpha.water, 

zoneID, and so on).

This entry is optional.  It is 

used to automatically assign 

base type patches(e.g. empty, 

symmetry)

Specification of overset patch type

Dummy value for paraview. 

Be careful to made the distinction between scalar 

and vector fields

150



Case setup in the overset framework

Overset meshes in OpenFOAM

boundaryField

{

#includeEtc "caseDicts/setConstraintTypes"

yourOversetPatchName

{

patchType overset;

type zeroGradient;

}

...

...

...

• In the pointDisplacement dictionary, things are a bit different:

This entry is optional.  It is 

used to automatically assign 

base type patches(e.g. empty, 

symmetry)

151

patchType keyword instead of type

type to be assigned is zeroGradient



Running parallel cases in the overset framework

Overset meshes in OpenFOAM

• According to the developers, when using overset mesh it is suggested to choose the 

hierarchical or simple decomposition methods instead of scotch:

• This should give a faster and more robust solution.

numberOfSubdomains 4;

method hierarchical;

coeffs

{

n (2 2 1);

}

Decomposition matrix

152



dynamicMeshDict in the overset framework

Overset meshes in OpenFOAM

dynamicFvMesh dynamicOversetFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

solver displacementLaplacian;

displacementLaplacianCoeffs

{

diffusivity uniform 1;

}

dynamicOversetFvMeshCoeffs

{

}

• In the overset framework, the dynamicMeshDict is always required, even if the meshes are 

not moving.

• For static meshes (fixed bodies), this dictionary is defined as follows:

153

Specification of the overset class

Dummy definition of a mesh motion method.  

This method is doing nothing as it has not been 

assigned to a patch or body.

Advanced options related to the overset library.

This sub-dictionary can also be used with 

moving bodies.  In this case the entry is empty.



dynamicMeshDict in the overset framework

Overset meshes in OpenFOAM

dynamicFvMesh dynamicOversetFvMesh;

solver multiSolidBodyMotionSolver;

multiSolidBodyMotionSolverCoeffs

{

movingZone

{

solidBodyMotionFunction linearMotion;

velocity (1 0 0);

}

}

• For cases with moving bodies, generally you can use the same dictionaries entries used with 

mesh morphing.

• The main difference is that we need to use the dynamicOversetFvMesh library instead of 

dynamicMotionSolverFvMesh.

• For example, to assign a prescribed motion:

154

Specification of the overset class

Prescribed motion.

Defined in the same was as 

for morphing meshes



dynamicMeshDict in the overset framework

Overset meshes in OpenFOAM

dynamicFvMesh dynamicOversetFvMesh;

motionSolverLibs ("librigidBodyMeshMotion.so");

motionSolver rigidBodyMotion;

… 

… 

… 

155

Specification of the overset class

• For cases with moving bodies, generally you can use the same dictionaries entries used with 

mesh morphing.

• The main difference is that we need to use the dynamicOversetFvMesh library instead of 

dynamicMotionSolverFvMesh.

• For example, to use rigid body motion:



Postprocessing in ParaView

Overset meshes in OpenFOAM

• Visualization of a mesh and solution in ParaView is similar but somehow tricker compared to 

body fitted mesh cases.

• When launching paraFoam, all the meshes will appear as merged.

• In order to visualize separately each component mesh, you can use the Threshold filter 

applied on the variable zoneID with the corresponding assigned value,

e.g., 0 for background, 1 for first inner/moving mesh, 2 for another moving mesh, and so on

• In this way, you can hide/show each mesh layer at your choice.

zoneID = 0

zoneID = 1

156



Postprocessing in ParaView

Overset meshes in OpenFOAM

• The variable cellTypes gives information on the role of the cell in the overset treatment. 

• The cellTypes values are: 0 → calculated, 1 →  interpolated, 2 → masked (not used). 

cellTypes = 0 (calculated)

cellTypes = 1 (interpolated)

cellTypes = 2 (masked)

Background mesh
157



Postprocessing in ParaView

Overset meshes in OpenFOAM

Inner mesh
158

cellTypes = 0 (calculated)

cellTypes = 1 (interpolated)

cellTypes = 2 (masked)

• The variable cellTypes gives information on the role of the cell in the overset treatment. 

• The cellTypes values are: 0 → calculated, 1 →  interpolated, 2 → masked (not used). 



Postprocessing in ParaView

Overset meshes in OpenFOAM

Background mesh (without masked cells) + component mesh 159

• The variable cellTypes gives information on the role of the cell in the overset treatment. 

• The cellTypes values are: 0 → calculated, 1 →  interpolated, 2 → masked (not used).

• Thresholding on this quantity let us remove background cells in holes, for the sake of 

visualization, so that the final result looks like:



160

$PTOFC/dynamicMeshes/overset_mesh/2D/2_flapping_airfoil

Overset meshes in OpenFOAM

• Flapping airfoil – Prescribed motion with overset meshes

• Let us run this case. Go to the directory:

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Flapping airfoil – Prescribed motion with overset mesh

Flapping airfoil undergoing prescribed heaving and pitching motion.
http://www.wolfdynamics.com/training/dynamicMeshes/overset4.gif

161

Overset meshes in OpenFOAM

http://www.wolfdynamics.com/training/dynamicMeshes/overset4.gif


Flapping airfoil – Prescribed motion with overset mesh

• In the same case directory, you will find two versions of this tutorial:

• foil_shmmesh: mesh generated with blockMesh + snappyHexMesh

• foil_fluentmesh: mesh generated using an external mesher (ansys mesher and the 

mesh saved in ansys fluent format)

• Remember, in all cases the overset mesh is created by merging different meshes created 

separately.

• In this case, we also use the trasformPoints utility to shift the inner mesh (this is needed for 

providing the initial kinematic condition of the airfoil).

162

Overset meshes in OpenFOAM



Flapping airfoil – Prescribed motion with overset mesh

dynamicFvMesh       dynamicOversetFvMesh;

dynamicOversetFvMeshCoeffs

{

}

solver          multiSolidBodyMotionSolver;

… 

… 

… 

• In the dictionary constant/dynamicMeshDict we specify the motion library, along with the 

assignment of the overset class to the dynamic mesh treatment.

• Here we use the multiSolidBodyMotionSolver which handles multiple moving objects (so that 

we could add a second flapping airfoil, for instance).

• The related source code can be found here:

dynamicMesh/motionSolvers/displacement/solidBody/solidBodyMotionFunctions

Mesh motion library for prescribed 

motion of multiple zones

163

Specification of the overset class

Overset meshes in OpenFOAM



Flapping airfoil – Prescribed motion with overset mesh

…

multiSolidBodyMotionSolverCoeffs

{

movingZone

{

solidBodyMotionFunction tabulated6DoFMotion;

CofG         (0.33 -0.5 0);

timeDataFileName "$FOAM_CASE/constant/6DoF.dat";

}

}

Name of zone to put in motion (it was created 

using the utility topoSet)

164

• Each moving object has to be associated with a zone (created with topoSet), to which we can 

assign a number of different kinds of motion laws.

• In this case, we employ the tabulated6DoFMotion class that can be used for arbitrary motions, 

providing an input text file in the case directory.

• Details on how to generate this input file containing oscillating motion can be found in the 
gen6DoF directory.

• Data appearing in the file 6DoF.dat are (ordering by column): 

time; (translation along x, along y, along z); (rotation around x, around y, around z).

Initial position of the center of gravity, with 

respect to which rotation is performed

Input file for tabulated motion

Overset meshes in OpenFOAM



Flapping airfoil – Prescribed motion with overset mesh

• At this point, we are ready to run the simulation.

• We will use the solver overPimpleDyMFoam. 

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.

• Before running the simulation, you can check the mesh motion.  

• During this check, you can use large time-steps as we are not going to compute the solution, we 

are only interested in checking the motion.

• To check the mesh motion, type in the terminal:

1. $> moveDynamicMesh -noFunctionObjects

165

Overset meshes in OpenFOAM



166

• VIV of two cylinders – Rigid body motion with overset meshes

• Let us run this case. Go to the directory:

$PTOFC/dynamicMeshes/overset_mesh/2D/3_twoCylinders_VIV

Overset meshes in OpenFOAM

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



VIV of two cylinders – Rigid body motion with overset meshes

167

Overset meshes in OpenFOAM

http://www.wolfdynamics.com/training/dynamicMeshes/viv1.gif

http://www.wolfdynamics.com/training/dynamicMeshes/viv2.gif

http://www.wolfdynamics.com/training/dynamicMeshes/viv1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/viv2.gif


VIV of two cylinders – Rigid body motion with overset meshes

• In this tutorial, the meshes will be created using blockMesh (for the background mesh) and 

extrudeMesh (for the inner meshes).

• Then we will use the utility trasformPoints to translate the second cylinder mesh a given 

distance with respect to the first cylinder.

• The three meshes  will be then merge together using mergeMeshes twice.

• Finally, three values of zoneID will be assigned using the utility setFields (zoneID 0 = 

background, zoneID 1 = cylinder1, zoneID 2 = cylinder2).

168

Overset meshes in OpenFOAM



VIV of two cylinders – Rigid body motion with overset meshes

dynamicFvMesh dynamicOversetFvMesh;

motionSolverLibs ("librigidBodyMeshMotion.so");

motionSolver          rigidBodyMotion;

… 

… 

… 

• In this case, both cylinders obey to rigid body dynamics. 

• In the dictionary constant/dynamicMeshDict we thus need to select a solver library able to 

handle multiple rigid bodies.

• As in the previous case, we need to assign the dynamicOversetFvMesh entry to 

dynamicFvMesh.

• Hence, we choose the rigidBodyMotion solver that fits to our goal.

Mesh motion library for rigid body 

motion (allowing multiple and/or 

connected bodies)

169

Specification of the overset class

Overset meshes in OpenFOAM



VIV of two cylinders – Rigid body motion with overset meshes

bodies

{

cylinder1

{

type rigidBody;

parent root;

… 

… 

… 

}

cylinder2

{

type rigidBody;

parent root;

… 

… 

… 

} 

• Properties of each body are assigned in the corresponding part of the dictionary.

170

First cylinder

Second cylinder

• Let us see which are the main parameters to set with this kind of rigid body motion solver.

Overset meshes in OpenFOAM



• The rigidBodyMeshMotion library handles the dynamics of multiple rigid bodies.

• If you already were familiar the sixDoFRigidBodyMotion library, you will find many analogies 

and few but major differences, the most important ones being the possibility of handling multiple 

bodies.

• The user can define one or multiple bodies. In case of multiple bodies, kinematic joints between 

them can be specified as well.

• The rigid motion solver will compute the response of the body (or the system of multiple and 

connected bodies) to external forces.

• In general, you will use this solver if you are dealing with for mesh-motion of multiple articulated 

rigid-bodies with joints, restraints and external forces.

• You will find the source code of the rigidBodyMeshMotion library in the directory:

• OpenFOAM-v2012/src/rigidBodyDynamics

• OpenFOAM-v2012/src/rigidBodyMeshMotion

• The location is the same for versions 2-12 and 8.

171

Overset meshes in OpenFOAM

The rigidBodyMeshMotion library



The rigidBodyMeshMotion library

dynamicFvMesh dynamicOversetFvMesh;

motionSolverLibs    ("librigidBodyMeshMotion.so");

solver              rigidBodyMotion;

…

…

…

• The dictionary constant/dynamicMeshDict contains the selection of the dynamic mesh 

library and rigid body motion library to be used.

• Here, we also define all the inputs required by the rigid motion solver. 

Solver for mesh motion method

Motion library – Rigid 

body motion

Specification of the overset class

172

Overset meshes in OpenFOAM



The rigidBodyMeshMotion library

bodies

{

cylinder

{

type            rigidBody;

parent          root;

patches         (cylinder);

innerDistance   100;

outerDistance   101;

centreOfMass    (0.0 0.0 0.0);

mass            5;

inertia (1 0 0 1 0 1);

transform       (1 0 0 0 1 0 0 0 1) (2 2 0);

report          on;

solver

{

type Newmark;

}

…

Quantity intended in local coordinate system, it is used for transposing 

the moment of inertia and not to initialize the position of the body

Report on screen position of the body

Rigid body motion solver

Mesh deformation limits when using morphing. Still to be assigned, 

we put high values so that this will not be active.

• The dictionary constant/dynamicMeshDict (continuation).

173

Moving patch

Parent body

Other types are: cuboid, sphere, masslessBody, compositeBody

Tensor of rotation for initial orientation

and initial position of the center of rotation

Intended as the inertia tensor with respect to the origin 

Overset meshes in OpenFOAM

You can find the theory behind this library in the following reference: 

R. Featherstone. Rigid body dynamics algorithms. Springer, 2008.



The rigidBodyMeshMotion library

… 

… 

… 

joint

{

type            composite;

joints

(

{

type Px;

}

{

type Rz;

}

);

}

Motion DoFs, e.g.:

Px -> translation along x

Py -> translation along y

…

Rz -> rotation around z

• The dictionary constant/dynamicMeshDict (continuation).

174

Overset meshes in OpenFOAM

• The source code of the joints and restrains is located in the directory

• OpenFOAM-2012/src/sixDoFRigidBodyMotion/rigidBodyDynamics

You can find the theory behind this library in the following reference: 

R. Featherstone. Rigid body dynamics algorithms. Springer, 2008.



The rigidBodyMeshMotion library

… 

… 

… 

restraints

{

spring1

{

type linearSpring;

refAttachmentPt (0 0 0);

anchor          (1 1 0);

stiffness       5.0;

damping         0.0;

restLength      1.0;

body cylinder;

}

}

Body restraints can be used 

to apply springs or dampers 

on the body.

• The dictionary constant/dynamicMeshDict (continuation).

175

in global CS

in local CS

Overset meshes in OpenFOAM

• The source code of the joints and restrains is located in the directory

• OpenFOAM-2012/src/sixDoFRigidBodyMotion/rigidBodyDynamics

You can find the theory behind this library in the following reference: 

R. Featherstone. Rigid body dynamics algorithms. Springer, 2008.



The rigidBodyMeshMotion library

• In the dictionary 0/pointDisplacement we select the body motion.

• For rigid body motion, the body motion is computed by the solver, therefore, we use the 

boundary condition calculated.

cylinder1

{

type            calculated;

}

• As all the walls are moving, we need to use the boundary condition movingWallVelocity.

• This is done in the dictionary 0/U.

cylinder1

{

type            movingWallVelocity;

value           uniform (0 0 0);

}

176

Overset meshes in OpenFOAM



VIV of two cylinders – Rigid body motion with overset meshes

• At this point, we are ready to run the simulation.

• We will use the solver overPimpleDyMFoam.  

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.

• Remember to adjust the numerics according to your physics.

• Also, have in mind that it is not possible to use the utility moveDynamicMesh with rigid body 

motion, as the motion depends on the forces, which have not been computed yet.

177

Overset meshes in OpenFOAM



178

• Floating body – Rigid body motion with overset meshes

• Let us run this case. Go to the directory:

$PTOFC/dynamicMeshes/overset_mesh/3D/1_fallingbody_6DOF

Overset meshes in OpenFOAM

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and type the 

commands in the terminal. In this way, you will get used with the command line interface and OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional comments.



Floating body – Rigid body motion with overset meshes

179

Overset meshes in OpenFOAM

Morphing meshes – Body fitted mesh

http://www.wolfdynamics.com/training/dynamicMeshes/dof1.gif

Overset meshes

http://www.wolfdynamics.com/training/dynamicMeshes/overset_rbm1.gif

http://www.wolfdynamics.com/training/dynamicMeshes/dof1.gif
http://www.wolfdynamics.com/training/dynamicMeshes/overset_rbm1.gif


Floating body – Rigid body motion with overset meshes

180

Overset meshes in OpenFOAM

Overset meshes – Water surface visualization

http://www.wolfdynamics.com/training/dynamicMeshes/overset_rbm2.gif

Morphing meshes – Body fitted mesh – Water surface visualization

http://www.wolfdynamics.com/training/dynamicMeshes/dof2.gif

http://www.wolfdynamics.com/training/dynamicMeshes/overset_rbm2.gif
http://www.wolfdynamics.com/training/dynamicMeshes/dof2.gif


Floating body – Rigid body motion with overset meshes

181

Overset meshes in OpenFOAM

• Comparison of the body dynamics using three different approaches to deal with the rigid body 

motion.

CofG z position vs. Time CofG y position vs. Time CofG x position vs. Time

CofG z linear velocity vs. Time CofG angular velocity about axis y vs. Time CofG position in the plane y-z vs. Time



Floating body – Rigid body motion with overset meshes

dynamicFvMesh dynamicOversetFvMesh;

motionSolverLibs ("libsixDoFRigidBodyMotion.so");

solver sixDoFRigidBodyMotion;

… 

… 
… 

• At this point, we can see how the setup of this case in the overset version is rather similar to that 

using mesh morphing.

• In the dictionary constant/dynamicMeshDict, the only difference is in the selection of the 

dynamic mesh solver.

Library for rigid body motion

Selection of solver for rigid body motion

Specification of overset case

182

Overset meshes in OpenFOAM



Floating body – Rigid body motion with overset meshes

• In the dictionary 0/pointDisplacement we select the body motion.

• For rigid body motion, the body motion is computed by the solver, therefore, we use the 

boundary condition calculated.

floatingObject

{

type            calculated;

value           uniform (0 0 0);

}

• As all the walls are moving, we need to use the boundary condition movingWallVelocity.

• This is done in the dictionary 0/U.

floatingObject

{

type            movingWallVelocity;

value           uniform (0 0 0);

}

183

Overset meshes in OpenFOAM



Floating body – Rigid body motion with overset meshes

… 

… 
… 

boundary

(

sides

{

type overset;

faces

(

(0 3 2 1)

(2 6 5 1)

(1 5 4 0)

(3 7 6 2)

(0 4 7 3)

(4 5 6 7)

);

}

… 

… 
… 

• Also, remember that during the mesh creation, we need to assign correctly the overset patches. 

• In this case, these are the six faces of the external boundary of the inner mesh, and the 
specification is provided in the dictionary blockMeshDict.

184

Overset meshes in OpenFOAM



• And as usual, you will need to adjust the numerics according to your physics.

• In the case directory, you will find the script extractData.  

• This script can be used to extract the position of the body during the simulation. 

• In order to use the extractData script, you will need to save the log file of the simulation.

• At this point, we are ready to run the simulation. 

• We will use the solver overInterDyMFoam.

• You will find the instructions of how to run the cases in the file README.FIRST located in the 

case directory.

185

Overset meshes in OpenFOAM

Floating body – Rigid body motion with overset meshes



Roadmap

187

1. Introduction – What are dynamic meshes?

2. Adaptive mesh refinement in OpenFOAM

3. Sliding meshes in OpenFOAM

4. Morphing meshes in OpenFOAM

5. Moving meshes in OpenFOAM

6. Overset meshes in OpenFOAM

7. Final remarks – General guidelines



Final remarks – General guidelines

• When dealing with prescribed motions, before running the solver test the mesh motion by running the utility 
moveDynamicMesh. If there are functionObjects in the controlDict dictionary, remember to use the 

option –noFunctionObjects, so you do not execute them.

• If you are dealing with rigid body motion, it is not possible to use the utility moveDynamicMesh as the motion 

depends on the forces, which have not been computed yet.

• When walls are moving, remember to always use the movingWallVelocity boundary condition.

• To check the mesh courant number, add the entry checkMeshCourantNo yes. You can add this option to the 
PIMPLE sub-dictionary in the fvSolution dictionary.

• For moving bodies, you can use the option moveMeshOuterCorrectors yes to gain more stability.  This will 

update the mesh every single outer iteration of the PIMPLE loop (with iterative marching enabled). You add 
this option in the PIMPLE sub-dictionary of the fvSolution dictionary.

• The motion library solidBodyMotionFunction specifies the choice of prescribed motion, the source code is 
located in the directory: OpenFOAM-9/src/dynamicMesh/motionSolvers/displacement/solidBody 

• The following options of prescribed motions are available:

Dynamic/Overset meshes guidelines and tips

188

• axisRotationMotion

• linearMotion

• multiMotion

• oscillatingLinearMotion

• oscillatingRotatingMotion

• rotatingMotion

• SDA

• sixDoFMotion



Final remarks – General guidelines

• Remember, you can specify a variable as an input table. So, for example, if you want to specify omega or 

velocity as a function of time, you can proceed as follows,

Dynamic/Overset meshes guidelines and tips

189

omega table

(

(0      0)

(0.5 1)

(1.0 5)

)

velocity table

(

(0       (0 0 0) )

(0.5 (1 0 0) )

(1.0 (5 0 0) )

)

• Moving bodies simulations are intrinsically unsteady, however, it is possible to reach a steady solution if you 

are interested in finding a trim (equilibrium) condition.  In these cases, use the LTS method (local time 

stepping) for time discretization.

• When dealing with dynamic meshes and using any of the dynamic mesh methods studied, a robust and 

accurate numerical setup is required. 

• Also, as the bodies usually experienced strong accelerations, it is recommended to keep the CFL number 

below one in order to avoid spurious oscillations.

• For time discretization, the Euler method is preferred over the backwards and CrankNicolson schemes as they 

may give spurious oscillations with moving meshes.

• If you are not interested in capturing the initial transient, it is recommended to start moving bodies simulations 

from a previously converged steady simulation (fixed body).



Final remarks – General guidelines

• Overset solvers are only available in the OpenFOAM version supported by ESI-OpenCFD.  The following 

solvers are available:

• overPotentialFoam, overLaplacianDyMFoam, overSimpleFoam, overPimpleDyMFoam, 

overRhoSimpleFoam, overRhoPimpleDyMFoam, overInterDyMFoam

• In order to use the overset solvers, you will need to add the library liboverset.so to the controlDict

dictionary.

• In overset meshes, when initializing the zoneID field, it is recommended to do it independently from other 
fields. That is, use two different setFields dictionaries. 

• Also, the order of the zoneID is important.  It is recommended to assign the zoneID 0 to the background mesh 

(usually the mesh that it is not moving or the mesh holding the external boundary conditions).

• When working with overset meshes, the GAMG solver is not supported for pressure.  Use PCG or PBiCGStab

instead.

• For turbulence modeling in overset meshes, the meshWave method is not supported for wall distance 

calculation. Poisson and advectionDiffusion are supported.

• If you are running steady simulation with overset meshes, use tighter under-relaxation factors (for SIMPLE and 

SIMPLEC).

Dynamic/Overset meshes guidelines and tips

190



Final remarks – General guidelines

• The overset interpolation method is set in the fvSchemes dictionary, the following methods are available (they 

all are non-conservative):

• cellVolumeWeight – First order accurate. Fast. It has problems with hole detection.

• inverDistance – Second order accurate. Bounded. Computationally expensive.

• leastSquares – Second order accurate. Might become unbounded. Computationally expensive. Good 

accuracy.

• To print detailed information about the interpolation in overset meshes, you can add the following entry to the 
controlDict dictionary:

Dynamic/Overset meshes guidelines and tips

191

DebugSwitches

{

overset 1;

}

• In overset meshes, it is highly recommended to use the hierarchical decomposition method when running in 

parallel.

• In overset meshes, cell size close to the overset patch should be of the same size to minimize interpolation 

errors.



Final remarks – General guidelines

• It is recommended to use explicit interpolation for the turbulence variables (k, omega, epsilon, nut and so on), 
and the volume of fraction field (alpha.*).  This is done in the fvSchemes dictionary as follows:

Dynamic/Overset meshes guidelines and tips

192

oversetInterpolationRequired

{

k;

omega;

alpha.water;

}

• If the oversetInterpolationRequired entry is empty, means full implicit interpolation of all fields.

• When running transient simulations with overset meshes, use the Euler method with a CFL number below 1, 

as backwards and CrankNicolson schemes may give spurious oscillations.

• In overset meshes, the time-step must be small enough to accommodate for a sequential change of the cell 

type from blocked to interpolated and then calculated.  Therefore, the mesh motion CFL number should be 

kept ideally below 1.

• In overset meshes, there should be at least 5 or more cells between body patches in order to construct a good 

interpolation stencil. Cells next to a patch are blocking the flow and cells next to the overset patch are used to 

interpolate the solution.

• Place the overset interface appropriately, preferably where the field variables do not change much.  Avoid 

strong pressure gradient at the overset patches.



Final remarks – General guidelines

• We may sound like a broken record on this, but when dealing with dynamic meshes a robust numerical setup 

is required. 

• Use iterative marching for the P-V coupling (PIMPLE in OpenFOAM) and perform at least two outer iterations. 

• For best results, do at least five outer iterations (in our personal experience).

Dynamic/Overset meshes guidelines and tips

193

PISO with iterative marching (ITA) – PIMPLEPISO with non-iterative marching (NITA)



Thank you for your attention

• We hope you have found this training useful and we hope to see you in one of our advanced 

training sessions:

• OpenFOAM® – Multiphase flows

• OpenFOAM® – Naval applications

• OpenFOAM® – Turbulence Modeling

• OpenFOAM® – Compressible flows, heat transfer, and conjugate heat transfer

• OpenFOAM® – Advanced meshing

• DAKOTA – Optimization methods and code coupling

• Python – Programming, data visualization, and exploratory data analysis

• Python and R – Data science and big data

• ParaView – Advanced scientific visualization and python scripting

• And many more available on request

• Besides consulting services, we also offer ‘Mentoring Days’ which are days of one-on-one 

coaching and mentoring on your specific problem.

• For more information, ask your trainer, or visit our website

http://www.wolfdynamics.com/

195

http://www.wolfdynamics.com/


196

guerrero@wolfdynamics.com

www.wolfdynamics.com
Let’s connect


	part1.pdf
	part2.pdf
	part3.pdf
	part4.pdf



