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On the closure coefficients
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• The coefficients used in the turbulence models do not come out of thin air.

• They have been calibrated using experiments, numerical simulations, or empirical correlations.

• During this calibration process, many assumptions are taken that sometimes might not be very 

realistic.

• Such as, local equilibrium, local isotropy, two-dimensional flow, fully developed flow, and 

so on.

• Optimization methods, data driven simulations, and machine learning is also being used to 

calibrate these coefficients.

• Notice that we called then coefficients and not constants. 

• They certainly can be adjusted.
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• Let us review the              turbulence model, 

• With the following closure coefficients,

• And auxiliary relationships,

• This model uses the following relation for the kinematic eddy viscosity,



On the closure coefficients

4

• Talking about canonical or simplified solutions, the RANS equations for a two-dimensional 

boundary layer (or pure shear flow) can be written as follows,

• Where the following assumptions were taken,

• Under certain conditions, these equations provide high quality solutions of turbulent flows that 

can be used to validate models and calibrate coefficients.
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• Let us address how to calibrate the eddy viscosity coefficient         which is used in the following 

eddy viscosity relation,

• As we have seen, this equation is used in two-equation models.

• In the              model, the coefficient        is equal to 0.09.

• This coefficient also appears in the               model, but it is called        instead.

• This coefficient can be calibrated using the approximation of the two-dimensional shear layer 

flow.

• That is, we are dealing with a simple pure shear flow, a big simplification.

• Additionally, let us assume local equilibrium and local isotropy,

• Which is not entirely true, as this quantities are not entirely in equilibrium, even in shear flows.

References:

S. Pope. Turbulent Flows, Cambridge University Press, 2000.

P. Bernard, J. Wallace. Turbulent Flow. Analysis, Measurement, and Prediction. Wiley. 2002.
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• Using the Boussinesq hypothesis to derive         , 

• If production is equal to dissipation, i.e.,             , we obtain, 

• Combining the two previous equations, so we drop the derivative, we obtain,
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• Together with the following relationship (that we obtained in the previous slide), 

• Finally, using the following relation of eddy viscosity,

• We obtain the following relation to estimate the eddy viscosity coefficient        , 

This quantity can be measured using DNS or experiments

It represents the ratio of the shear Reynolds stress to turbulent kinetic energy
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• For simple shear flows the quantities    ,   ,                                        , can be measured.              

• From these results, it can be seen that the eddy viscosity coefficient         is approximately 

equal to 0.09

• This is where DNS and canonical flows come in handy.

J. Kim, P. Moin, R. Moser. Turbulence statistics in fully 

developed channel flow at low Reynolds number. 1987. 

M. Rogers, R. Moser. Direct  simulation of a self-similar 

turbulent mixing layer. 1994. 
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• The calibrated eddy viscosity coefficient         can be expressed as,

• Sometimes in the literature you will find,

• Where the ratio of the Reynolds stress to turbulent kinetic energy, i.e.,      , is often referred to 

as Bradshaw’s constant [1], and sometimes as to Townsend’s constant [2].

References:

[1] P. Bradshaw, D. Ferriss, N. Atwell. Calculation of Boundary Layer Development Using the Turbulent Energy Equation. 1967.

[2] A. Townsend. The Structure  of Turbulent Shear Flow. 1976.
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• Calibration of the coefficient        .

• This constant can be calibrated using the hypothesis of decaying homogenous turbulence.

• In this type of flow the mean velocity and mean velocity gradients are equal to zero (huge 

simplification). 

• Therefore, the governing equations can be expressed as follows,

• Using experimental data and looking for power law solutions, an expression for         is obtained 

as a function of a decay exponent.  

• Fitting experimental data, the decay coefficient n can be obtained.

• As can be seen, depending on the data, the value of the coefficient         will vary.

• Values ranging from 1.5 to 2.2 are often found in the literature.

References:

S. Pope. Turbulent Flows, Cambridge University Press, 2000.

P. Durbin, B. Petterson-Reif. Statistical Theory and Modeling for Turbulent Flow. Wiley. 2011.
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• Let us address the coefficient      , its calibration is also related to experimental data.

• In this case we use the assumption of homogenous shear flow.

• Therefore, the governing equations can be expressed as follows,

• Combining these equation we can find the following relationship,

• By using growth rates of homogenous sheared turbulence (for the spreading rate in a plane 

mixing layer), we can find the coefficient       .

• Values ranging from 1.2 to 2.0 are often found in the literature.

References:

S. Pope. Turbulent Flows, Cambridge University Press, 2000.

P. Durbin, B. Petterson-Reif. Statistical Theory and Modeling for Turbulent Flow. Wiley. 2011.
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• Let us address the coefficient     .

• This closure coefficient acts like an effective Prandtl number for dissipation diffusion and is 

specified to ensure the correct log-law slope of       .

• Using the previous coefficients, the value of       can be found using the following relationship,

• This is the equation used by Jones and Launder (see references) to determine the value of the 

coefficient     .

• The original value obtained by Jones and Launder is equal to 1.3.

• Values ranging from 1.2 to 1.5 are often found in the literature.

• Notice that this relation can also be used to derive the value of the Karman constant       by 

adjusting the value of the coefficients to produce a particular value of     .

• This implies the use of data fitting or optimization methods.

References:

W. Jones, B. Launder. The prediction of laminarization with a two equation model of turbulence. Int. J. Heat Mass Transfer 15, 301–314. 1972.

P. Durbin, B. Petterson-Reif. Statistical Theory and Modeling for Turbulent Flow. Wiley. 2011.
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• Let us look back at the relationship for      presented in the previous slide.

• That relationship was obtained by manipulating the solvable dissipation rate equation and 

using some additional relations and assumptions.

• By rearranging the relationship, we obtain the following equation,

• Using the standard coefficients of the              model,

• In the left-hand side of the previous condition, we obtain a value of 1.11, showing that this 

constraint is reasonably well satisfied.

• Which suggests that some kind of optimization method or data drive approach could be used to 

calibrate all these coefficients.

• In fact, machine learning methods are being used to calibrate turbulence models.

References:

S. Pope. Turbulent Flows, Cambridge University Press, 2000.

R. Bernard. Turbulent Fluid Flow. Wiley. 2019.
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• Finally, let us address the coefficient      .

• This term affect the effective diffusivity in the TKE equation.

• Generally speaking, there is no consensus within the turbulence community about the value of 

this coefficient.

• Different values can be used depending on the set of experimental data available.

• In most cases this coefficient is assumed to be one. 

• In fact, we have assumed that the value of this coefficient is one.

• Values ranging from 0.8 to 1.2 are often found in the literature.
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• Some observations of the effect of changing the closure coefficients in the standard      

turbulence model,

Coefficient Value Result of Increasing Value

0.09 More mixing, more shear, greater change in pressure 

1.44 Less mixing, lower shear, smaller change in pressure 

1.92 More mixing, more shear, greater change in pressure

1.0 Less mixing (Prandtl-Schmidt number)

1.3 Less mixing (Turbulent Prandtl number)

• These observation can also be use with other variants of the             turbulence models.

• Use with care as these are rough observations.



• If you are interested in the Wilcox 1988               turbulence model,

• All the coefficients used in all turbulence models, undergo a similar calibration process.

• We briefly discussed how to calibrate the coefficients; the interest reader can refer to the 

original references of the turbulence models for a detailed description of the calibration of all 

coefficients.

• If you are interested in the standard               turbulence model, these are the original 

references,
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[1] B. E. Launder, D. B. Spalding. The Numerical Computation of Turbulent 

Flows. Computer Methods in Applied Mechanics and Engineering. 1974.

[2] B. E. Launder, B. I. Sharma. Application of the Energy-Dissipation Model of Turbulence 

to the Calculation of Flow Near a Spinning Disc. Letters in Heat and Mass Transfer. 1974.

[1] D. C. Wilcox. Reassessment of the Scale-Determining Equation for Advanced 

Turbulence Models. AIAA Journal, 1988.

[2] D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, 2010.

• Plus, many additional cross-references.
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At this point cynics might protest: 

“This is pure empiricism! How can an entirely fictional equation, plucked out of thin 

air, and forced, through the judicious choice of some arbitrary coefficients, to 

reproduce one or two laboratory results, possibly hope to anticipate the evolution 

of a wide range of flows?” 

The extraordinary thing, however, is that, by and large, it works reasonably well, at 

least much better than it ought to. So perhaps there is more to

than meets the eye. Perhaps there is some underlying rationale for this equation. It 

turns out that there is.

P. Davidson [1]

References:

[1] P. Davidson. Turbulence. An Introduction for Scientists and Engineers. Oxford University Press. 2015.


