
Introduction to the FVM method:

Standard practices in general CFD

with applications to OpenFOAM

Online Training – Advanced session

February 2022

1

Copyright and disclaimer

This offering is not approved or endorsed by OpenCFD Limited, the producer of the

OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trademarks.

2

© 2014-2022 Wolf Dynamics.

All rights reserved. Unauthorized use, distribution or duplication is prohibited.

Contains proprietary and confidential information of Wolf Dynamics.

Wolf Dynamics makes no warranty, express or implied, about the completeness, accuracy,

reliability, suitability, or usefulness of the information disclosed in this training material. This

training material is intended to provide general information only. Any reliance the final user

place on this training material is therefore strictly at his/her own risk. Under no

circumstances and under no legal theory shall Wolf Dynamics be liable for any loss, damage

or injury, arising directly or indirectly from the use or misuse of the information contained in

this training material.

All trademarks are property of their owners.

Revision 1-2022

JG

Before we begin

On the training material

3

• This training is based on OpenFOAM 9.

• In the USB key/downloaded files you will find all the training material (tutorials, slides, and lectures notes).

• You can extract the training material wherever you want. From now on, this directory will become:

• $TM
(abbreviation of Training Material)

• To uncompress the tutorials go to the directory where you copied the training material ($TM) and then type in

the terminal,

• $> tar –zxvf file_name.tar.gz

• In the case directory of every single tutorial, you will find a few scripts with the extension .sh, namely,
run_all.sh, run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_all.sh

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Conventions used

4

• Text in Courier new font indicates Linux commands that should be typed literally by the user

in the terminal.

• Text in Courier new bold font indicates directories.

• Text in Courier new italic font indicates human readable files or ascii files.

• Text in Arial bold font indicates program elements such as variables, function names, classes,

statements and so on. It also indicates environment variables, and keywords. They also

highlight important information.

• Text in Arial underline in blue font indicates URLs and email addresses.

• This icon indicates a warning or a caution.

• This icon indicates a tip, suggestion, or a general note.

• This icon indicates a folder or directory.

• This icon indicates a human readable file (ascii file).

• This icon indicates that the figure is an animation (animated gif).

• These characters $> indicate that a Linux command should be typed literally by the user in the

terminal.

The following typographical conventions are used in this training material

Conventions used

5

1 #include <iostream>

2 using namespace std;

3

4 // main() is where program execution begins. It is the main function.

5 // Every program in c++ must have this main function declared

6

7 int main ()

8 {

9 cout << "Hello world"; //prints Hello world

10 return 0; //returns nothing

11 }

The following typographical conventions are used in this training material

• Large code listing, ascii files listing, and screen outputs can be written in a square box, as

follows:

• To improve readability, the text might be colored.

• The font can be Courier new or Arial bold.

• And when required, the line number will be shown.

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

6

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

7

CFD and Multiphysics simulations

What is CFD?

• Computational Fluid Dynamics (CFD), is the science of predicting fluid flow, heat and mass

transfer, chemical reactions, and related phenomena by using numerical methods and

computers.

• To predict these phenomena, CFD finds the approximate numerical solution of the governing

equations (conservation of mass, momentum, energy, and additional transport equations and

models).

• CFD is an ensemble of,

• Numerical methods.

• Computer science.

• Fluid dynamics.

• Scientific visualization.

• Engineering applications.

• And most recently machine learning is making its way.

8

CFD and Multiphysics simulations

Multiphysics simulations

• Multiphysics simulations (MS) are computer simulations that involve physical models or phenomena that can

be coupled together.

• MS consists in finding the approximate numerical solution of the governing equations (often PDEs).

• The physics involved can be fluid flow, heat transfer, mass transfer, stress/deformation, structural dynamics,

chemical kinetics, pharmacokinetics, biochemistry, electrostatics, electromagnetics, fire dynamics, aero-

acoustics, combustion, chemical reactions, finance, astronomy, and others, coupled in any combination.

• These disciplines can be solved in multiple dimensions (from 1D to 3D in steady or unsteady formulation),

ranging from the continuum level to the molecular level.

• I like to see CFD as a subset of Multiphysics simulations.

• Multiphysics simulations can include the following computational disciplines:

• Computational fluid dynamics → CFD

• Computational structural dynamics → CSD

• Computational heat transfer → CHT

• Computational electromagnetics → CEM

• Computational aero-acoustics → CAA

• Magneto hydrodynamics → MHD

• Fluid structure interaction → FSI

• Discrete particle methods → DPM

• And many more … 9

CFD and Multiphysics simulations

• In CFD/Multiphysics simulations there are many discretization approaches, just to name a few:

• Finite Difference Method → FDM

• Finite Element Method – Galerkin → G-FEM

• Finite Element Method – Discontinuous Galerkin → DG-FEM

• Finite Volume Method → FVM

• Immersed Boundary Method → IBM

• Lattice Boltzmann Method → LBM

• Spectral Element Methods → SEM

• Boundary Element Method → BEM

• Each method will find the approximate numerical solution of the governing equations

• The main difference among all methods is the way how they arrive to the system of discrete algebraic

equations.

• Hereafter, we are going to address the FVM method.

• Most of the commercial Multiphysics frameworks and CFD solvers are based on the FVM.

• Also, many open-source frameworks are based on the FVM.

• The popularity of the FVM relies on the fact that can be used with arbitrary control volumes, it is easy to

implement, and it enforces conservation in every single cell of the mesh (thus in the whole domain).

• OpenFOAM, SU2, code Saturn, CFX, FLUENT, Star-CCM, NUMECA, and CFD-ACE+ are all based on the

FVM.

10

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

11

Important concepts to remember

• Before starting this discussion, remember the following concepts as they will

answer many questions later.

• Let us recall linear interpolation.

• In reference to the figure below, to find the value of the quantity in f, using the known values

of in P and N, we can proceed as follows,

12

Important concepts to remember

• Before starting this discussion, remember the following concepts as they will

answer many questions later.

• Let us recall the Gauss theorem (also know as Divergence theorem or Ostrogradsky theorem),

where is a closed surface bounding the control volume and represents an

infinitesimal surface element with associated normal pointing outwards of the surface ,

and

• The Gauss or Divergence theorem simply states that the outward

flux of a vector field through a closed surface is equal to the

volume integral of the divergence over the region inside the

surface.

14

Important concepts to remember

• Before starting this discussion, remember the following concepts as they will

answer many questions later.

• Let us recall Taylor series expansions (TSE), they are used to define our profile assumptions, to

reconstruct cell centered variables to face center variables, to compute derivatives, to determine

truncation errors and so on.

• According to TSE, any continuous differentiable function

can be expressed as an infinite sum of terms that are

calculated from the values of the function derivatives at a

single point.

• For example, using TSE the node center E in the figure can

be approximated as,

• And the face center e can be approximated as,

15

Important concepts to remember

• During this discussion, we will use the general transport equation to explain the fundamentals of

the finite volume method.

• But have in mind that starting from the general transport equation we can write down the Navier-

Stokes equations (NSE). For example, by setting the variables to,

• We can obtain the continuity equation,

16

Important concepts to remember

• During this discussion, we will use the general transport equation to explain the fundamentals of

the finite volume method.

• We can obtain the momentum equations,

• But have in mind that starting from the general transport equation we can write down the Navier-

Stokes equations (NSE). For example, by setting the variables to,

17

Important concepts to remember

• During this discussion, we will use the general transport equation to explain the fundamentals of

the finite volume method.

• We can obtain the energy equation,

• But have in mind that starting from the general transport equation we can write down the Navier-

Stokes equations (NSE). For example, by setting the variables to,

18

Important concepts to remember

• Contrary to commercial CFD solvers, in OpenFOAM

there are no default values.

• It is up to the user to find those values.

• However, following good standard practices and knowing

a little bit the theory is a very good starting point.

• Our goal is to give you the best standard practices and

default values (ours) to be used with OpenFOAM.

19

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

20

21

• In this training, we will focus our eyes

to train our brain.

The Finite Volume Method: An overview

General transport equation and profile

assumptions

22

The Finite Volume Method: An overview

• Let us use the general transport equation as the starting point to explain the FVM,

• We want to solve the general transport equation for the transported quantity in a given

domain, with given boundary conditions BC and initial conditions IC.

• This is a second order equation. For good accuracy, it is necessary that the order of the

discretization is equal or higher than the order of the equation that is being discretized.

• By the way, starting from this equation we can write down the Navier-Stokes equations (NSE).

So everything we are going to address also applies to the NSE.

23

The Finite Volume Method: An overview

• Let us use the general transport equation as the starting point to explain the FVM,

• Hereafter we are going to assume that the discretization practice is at least second order

accurate in space and time.

• As consequence of the previous requirement, all dependent variables are assumed to vary

linearly around a point P in space and instant t in time,

Profile assumptions using Taylor expansions around point P (in space) and point t (in time)
24

The Finite Volume Method: An overview

Mesh data, geometrical information,

and variable arrangement

25

The Finite Volume Method: An overview

• Let us divide the solution domain into a finite number of arbitrary control volumes or cells, such

as the one illustrated below.

• Inside each control volume the solution is sought.

• We know all the geometrical information of all cells. That is, cell centers, face centers, cells

neighbors, face connectivity, cells volume, faces area, vectors connecting cells centers, and so

on.

• Let us see in detail all the required geometrical information.

26

The Finite Volume Method: An overview

• The control volume has a volume V and is constructed around point P, which is the centroid

of the control volume. Therefore, the notation .

• The volume V of all control volumes is known.

• The control volumes can be of any shape (e.g., tetrahedrons, hexes, prisms, pyramids,

dodecahedrons, and so on).

• The only requirement is that the elements need to be convex and the faces that made up the

control volume need to be planar.

27

The Finite Volume Method: An overview

• We also know the neighbors of the control volume or (following our notation).

• A face of can have more than one neighbor (non-conformal mesh)

• At this point, we know all the connectivity information, that is: P location, neighbors ’s of P,

faces connectivity, vertices location, and so on.

• Note that the volume of the control volumes needs to be higher than zero.

28

The Finite Volume Method: An overview

• The vector from the centroid P of to the centroid N of is named d.

• The location where the vector d intersects a face is .

• We know this information for all control volumes and all faces.

• We also know which control volumes are internal and which control volumes lie on the

boundaries.

29

The Finite Volume Method: An overview

• The control volume faces are labeled f, which also denotes the face center.

• The face area vector point outwards from the control volume, is located at the face centroid,

is normal to the face, and has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f is named Pf.

• Note that the vectors and Pf not necessarily are aligned.

• Same applies with the vector d (vector connecting P and N).

30

The Finite Volume Method: An overview

• In the control volume illustrated, the centroid P is given by

Second order approximations

• In the same way, the centroid of face f is given by

31

The Finite Volume Method: An overview

• Finally, we assume that the values of all variables are computed and stored in the centroid of the

control volume and that they are represented by a piecewise constant profile (the mean

value),

Second order approximations

• This is known as the collocated arrangement. Specifically, cell centered collocated arrangement.

• This is what is called in literature variable arrangement and mean value assumptions.

32

The Finite Volume Method: An overview

• Putting all together, it is a lot geometrical information that we need to track.

• A lot of overhead goes into the data book-keeping.

• At the end of the day, the FVM simply consist in conservation of the transported quantities and

interpolating information from cell centers to face centers.

Summary:

• The control volume has a volume V and is constructed

around point P, which is the centroid of the control volume.

Therefore, the notation .

• The vector from the centroid P of to the centroid N of

is named d.

• We also know all neighbors of the control volume

• The control volume faces are labeled f, which also denotes the

face center.

• The location where the vector d intersects a face is .

• The face area vector point outwards from the control

volume, is located at the face centroid, is normal to the face and

has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f is named Pf.

33

The Finite Volume Method: An overview

• Have in mind that there are different FVM formulations based on the variable arrangement (e.g.,

cell centered, node/vertex based).

• Hereafter we will address the cell centered collocated arrangement, which is the one

implemented in OpenFOAM and many commercial CFD software (e.g., Ansys Fluent and

StarCCM+).

• Remember, for good accuracy we want a method that is at least second order accurate (as the

equations we are solving are second order).

• All the previous approximations are at least second order accurate.

• So far, we have talked about geometric requirements of the FVM.

• Let us address interpolation from cell center to face center and computation of the face fluxes.

• But before moving on, let us mention something about one of the elephants in the room, mesh

quality.

34

The Finite Volume Method: An overview

• In CFD, the mesh is everything.

• As we will see later, the matrix coefficients of the

discretized system of algebraic equations depends on

the geometry quantities shown in the figure.

• Specifically, on the dot product of S (vector normal to

face passing by the face center) and d (vector

connecting two cell centers).

• This dependence on the dot product is due to

the fact that the coefficients contain the following term,

• For perfect cells (orthogonal meshes), the dot

product is equal to one (there is no deviation

between the vectors S and d).

• The more a cell deviates from its perfect shape, the

smaller the dot product becomes, and this results in

large values of the matrix coefficients which

increases the system stiffness.

• For very bad quality cells (e.g., very skew cells or

cells with zero volume), this vector product may

become zero, producing an undefined system

(throwing a division by zero error).
35

In the figure:

• S is the vector normal to face and anchored at the face center

• d is the vector connecting two cell centers.

• f is the vector from the cell center to the face center.

• If all these vectors are aligned, we are in the presence of a perfect

mesh. In practice, this does not happen very often.

The Finite Volume Method: An overview

• Different meshes and their respective matrix of coefficients.

• The quality of all meshes is excellent; however, the matrix of coefficients is different in all cases.

Orthogonal mesh (perfect mesh) Non-orthogonal mesh Unstructured triangular mesh

36

The Finite Volume Method: An overview

Gauss theorem and face fluxes computation

37

The Finite Volume Method: An overview

• Let us recall the Gauss or Divergence theorem,

• The Gauss or Divergence theorem simply states that

the outward flux of a vector field through a closed

surface is equal to the volume integral of the divergence

over the region inside the surface.

• This theorem is fundamental in the FVM, it is used to

convert the volume integrals appearing in the governing

equations into surface integrals.

38

where is a closed surface bounding the control volume and represents an

infinitesimal surface element with associated normal pointing outwards of the surface ,

and

The Finite Volume Method: An overview

• Let us use the Gauss theorem to convert the volume integrals into surface integrals,

• At this point the problem reduces to interpolating somehow

the cell centered values (known quantities) to the face

centers.

• Any deviation when interpolating the cell centered values to

the face centers (Di) is a source of error.
39

The Finite Volume Method: An overview

Convective, diffusive, gradients and source

terms approximations

40

The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,

yields to the following discrete equations for each term

Convective term:

where we have approximated the integrant

by means of the mid point rule, which is

second order accurate

By using Gauss theorem we convert

volume integrals into surface integrals

Gauss theorem:

41

The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,

yields to the following discrete equations for each term

Diffusive term:

where we have approximated the integrant

by means of the mid point rule, which is

second order accurate

By using Gauss theorem we convert

volume integrals into surface integrals

Gauss theorem:

42

The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,

yields to the following discrete equations for each term

Gradient term:

where we have approximated the centroid gradients by using the Gauss theorem.

This method is second order accurate and is known as Gauss cell-based.

Gauss theorem:

Note:

• There are more methods for gradients

computation, e.g., least squares, node-

based reconstruction, and so on.

• As there is some algebra involved, we

do not provide the demonstration.
43

The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,

yields to the following discrete equations for each term

Source term:

This approximation is exact if is either constant or varies linearly within the control

volume; otherwise is second order accurate.

Sc is the constant part of the source term and Sp is the non-linear part

Gauss theorem:

44

The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,

yields to the following discrete equations for each term

Convective term:

Diffusive term:

Source term:

Gradient term:

45

The Finite Volume Method: An overview

• And recall that all variables are computed and stored at the centroid of the control volumes.

• The face values appearing in the convective and diffusive fluxes have to be computed by

some form of interpolation from the centroid values of the control volumes at both sides of

face f.

• Using the previous equations to evaluate the general transport equation over all the control

volumes, we obtain the following semi-discrete equation

where is the convective flux

and is the diffusive flux.

46

The Finite Volume Method: An overview

Interpolation of the convective fluxes

47

The Finite Volume Method: An overview

Interpolation of the convective fluxes

• This type of interpolation scheme is known as linear interpolation or central differencing, and it is

second order accurate.

• However, it may generate oscillatory solutions (unbounded solutions).

• By looking the figure below, the face values appearing in the convective flux can be computed

as follows,

48

The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the convective flux can be computed

as follows,

• This type of interpolation scheme is known as upwind differencing, and it is first order accurate.

• This scheme is bounded (non-oscillatory) and diffusive.

Interpolation of the convective fluxes

49

The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the convective flux can be computed

as follows,

• This type of interpolation scheme is known as second order upwind differencing (SOU), linear

upwind differencing (LUD) or Beam-Warming (BW), and it is second order accurate.

• For highly convective flows or in the presence of strong gradients, this scheme is oscillatory

(unbounded).

Interpolation of the convective fluxes

50

• By adding a well-designed limiter function , we get a high resolution (second order

accurate), and bounded scheme. This is a TVD scheme.

• When the limiter detects strong gradients or changes in slope, it switches locally to low

resolution (upwind).

• The concept of the limiter function is based on monitoring the ratio of successive

gradients, e.g.,

The Finite Volume Method: An overview

Interpolation of the convective fluxes

• To prevent oscillations in the SOU, we add a limiter function , often referred to as flux or

gradient (slope) limiter.

51

The Finite Volume Method: An overview

TVD Schemes

52

The Finite Volume Method: An overview

• A TVD scheme, is a scheme that does not create new local undershoots and/or overshoots in

the solution or amplify existing extremes.

• In CFD we want stable, non-oscillatory, bounded, high order (HO) schemes. We want high

resolution schemes (HR), in other words, TVD schemes and at least second order accurate.

• The Sweby diagram (Sweby, 1984), gives the necessary and sufficient conditions for a scheme

to be TVD. In the figure, the grey area represents the admissible TVD region. However, not all

limiter functions are second order.

Interpolation of the convective fluxes – TVD schemes

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind
TVD REGION

53

The Finite Volume Method: An overview

Interpolation of the convective fluxes – TVD schemes

• The choice of the limiter function dictates the order of the scheme and its boundedness.

• High-resolution schemes fall in the blue area and low-resolution schemes fall in the grey area.

• The development of high-resolution schemes is one of the most remarkable achievements of the

history of CFD.

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind

54

The Finite Volume Method: An overview

• The drawback of the limiters is that they reduce the accuracy of the scheme locally to first order

(low-resolution scheme), when (sharp gradient, opposite slopes or zero gradient).

However, this is justified when it serves to suppress oscillations.

• The various limiters have different switching characteristics and are selected according to the

particular problem and solution scheme.

• No particular limiter has been found to work well for all problems, and a particular choice is

usually made on a trial-and-error basis.

Interpolation of the convective fluxes – TVD schemes

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind

55

The Finite Volume Method: An overview

• Sweby diagram and TVD limiters.

• The fact that some limiters are non differentiable, and some others are differentiable can have an influence on the solution

behavior (accuracy and convergence rate), specially when dealing with steady simulations.

Interpolation of the convective fluxes – TVD schemes

Limiter functions overlaid onto second-order TVD region
https://en.wikipedia.org/wiki/File:LimiterPlots1.png

This work is licensed under a Creative Commons License (CC BY-SA 3.0)

minmod (by Roe, 1986)

superbee (by Roe, 1986)

van Leer (by van Leer, 1974)

venkatakrishnan (by Venkatakrishnan. 1993)

N
o
n

 d
if
fe

re
n
ti
a
b
le

 l
im

it
e

rs

Differentiable limiter

Differentiable limiter

(except at r = 0)

57

The Finite Volume Method: An overview

TVD schemes in action – A numerical schemes

killer test case

59

The Finite Volume Method: An overview

• Let us see how the superbee, minmod and vanleer TVD schemes behave in a numerical

schemes killer test case:

• The oblique double step profile in a uniform vector field (pure convection).

• By the way, this problem has an exact solution.

Interpolation of the convective fluxes – TVD schemes

60

The Finite Volume Method: An overview

• Comparison of non-linear limiter functions.

• All the following TVD schemes are second order accurate. However, the Minmod is a little bit

more dissipative.

SuperBee - Compressive Minmod - Diffusive vanLeer - Smooth

Interpolation of the convective fluxes – Linear and non-linear limiter functions

61

The Finite Volume Method: An overview

• Comparison of linear limiters (upwind and linear upwind) and non-linear limiters (SuperBee).

• Recall that the linear upwind method is 2nd order, and that the upwind method is 1st order.

• The upwind method is extremely stable and non-oscillatory. However, it is highly diffusive.

• On the other side, the linear upwind method is accurate but oscillatory in the presence of strong

gradients.

• Remember, TVD methods switch locally to upwind when they detect strong gradients.

Upwind – 1st order Linear Upwind – 2nd order

Interpolation of the convective fluxes – Linear and non-linear limiter functions

SuperBee – TVD

62

The Finite Volume Method: An overview

• Let us see how the non-linear limiter functions compare.

Interpolation of the convective fluxes – Linear and non-linear limiter functions

63

The Finite Volume Method: An overview

• Let us see how the linear limiter functions compare.

Interpolation of the convective fluxes – Linear and non-linear limiter functions

64

The Finite Volume Method: An overview

• Let us see how the linear and non-linear limiter functions compare.

Interpolation of the convective fluxes – Linear and non-linear limiter functions

65

The Finite Volume Method: An overview

Interpolation of the convective fluxes –

Unstructured meshes

66

The Finite Volume Method: An overview

• All the high-order (HO) and high-resolution (HR) schemes we have seen so far, assume line

structure (figure A). In other words, they are formulated in structured meshes (orthogonal

meshes).

• In orthogonal meshes, the cell centers PP, P, and N are all aligned (colinear). Therefore,

constructing numerical stencils is relative straightforward.

• In unstructured meshes or when the cell centers are not colinear, the use of the previous

schemes is not straightforward as the cell center PP is not aligned with the vector connecting

cells P and N (figure B).

• High-order and high-resolution schemes for unstructured meshes are an area of active research

and new ideas continue to emerge.

Interpolation of the convective fluxes – Unstructured meshes

67

The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• In unstructured meshes, the face centered values are computed by using the following flux-

limited scheme,

68
Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”

• Notice that the formulation of the flux-limited scheme is the same as the one used when the cell

centers are colinear.

• The only difference is the way how the ratio of successive gradients is computed.

• One way to compute in unstructured meshes is by using the formulation presented in

reference [1],

The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• The sub-index notation used in the ratio of successive gradients [1] and in the general flux-

limited scheme for unstructured meshes, is illustrated in the figure below.

• Where D stands for downwind cell center and U for upwind cell center.

• Notice that we can use the same relations regardless of the flow direction.

• We only need to be sure to use the right indices.

69

U → Upwind

D → Downwind

Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”

The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• The ratio of successive gradients [1], can be derived as follows.

70
Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”

• First, let us add a virtual node U upstream of P (for F > 0), in such as way that the cell center P

splits the vector UN in half (a similar reasoning can be use for F < 0).

• Recall that when the cell centers are colinear, the ratio of successive gradients rf can be

computed as follows (for F > 0),

U → Upwind

D → Downwind

The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• Let us add and subtract to rf, such that,

71

• By using Taylor expansions, the term can be approximated as follows,

• And after some algebra, we obtain the following expression for rf,

U → Upwind

D → Downwind

The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• There are many ways to compute the ratio of successive gradients in unstructured meshes.

• We just presented one formulation [1].

• This is an area of active research where new ideas continue to emerge.

• Thanks to the treatment presented for unstructured meshes, we ended with a compact

numerical stencil very friendly for unstructured CFD solvers.

• At this point, you should have realized why computing accurate gradients is so important in

CFD.

• It is also possible to use the wide stencil used for collinear cells centers, but the reconstruction

of the value at the cell PP can be very cumbersome.

72
Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”

 For structured meshes or colinear cell centers – Wide stencil

For unstructured meshes – Compact stencil

The Finite Volume Method: An overview

• To summarize:

• A simple way to interpolate the convective fluxes in unstructured meshes is by redefining

HO and HR schemes in terms of gradients at the control volume center P and the face

center f.

• In unstructured meshes, the face centered values are computed using the same flux-limited

scheme as for structured meshes,

Interpolation of the convective fluxes – Unstructured meshes

73

• The main difference is the way how the ratio of successive gradients is computed.

• The limiter function remains the same as for structured meshes.

• That is, the Sweby diagram is the same.

• Notice that in this new formulation the cell PP does not appear anymore, we are using compact stencils.

• The problem now turns in the accurate evaluation of the gradients at the cell and face centers.

• So, as long as the computation of the gradients is second order accurate, it does not matter the way they are computed.

• For example, the gradients at the cell centers can be computed using the Gauss method, and then interpolated to the face

centers.

• At this point, we are only missing the reconstruction of the cell center gradients at the face centers, this is explained latter.

The Finite Volume Method: An overview

• To summarize:

• For example, using the gradient at the cell center P and the face center f, we can compute

the face values as follows (upwind bias formulations),

Interpolation of the convective fluxes – Unstructured meshes

74

Upwind →

Central difference →

Second order upwind differencing →

QUICK →

The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• Another popular reconstruction technique is the Barth and Jespersen method [1]. Here, it is

assumed that the solution is piecewise linearly distributed over the control volume.

• According to the flow direction, the left or right state at the face f can be found using the

following relations,

• In the previous relations, denotes a limiter function at the face (gradient or slope limiter),

which is used to avoid over and under shoots on the gradient computations.

• Popular limiter functions are: Minmod, Barth-Jespersen, Venkatakrishnan.

• This linear reconstruction is likely the most popular among the reconstruction methods, and it is

implemented in most commercial CFD solvers.

Reference:

[1] Barth, T. J., Jespersen, D. C., “The Design and Application of Upwind Schemes on Unstructured Meshes”

if

if

77

The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• It worth mentioning that the slope limiter function and the flux limiter (as in TVD schemes), are

related according to the following relationship [1],

• Where is the flux limiter and is the slope limiter function.

• It can be easily seen that the method of Barth and Jespersen [2] corresponds to a Taylor-series

expansion around the face center.

• This linear reconstruction is formally second order accurate provided the gradient is

evaluated accurately.

• The superbee and Barth-Jespersen limiters are the most compressive and are known to turn

smooth waves into square waves.

• In multiple dimensions their overly compressive nature may lead to staircasing of discontinuities

that are not aligned with the grid.

Reference:

[1] Spekreijse, S., “Multigrid Solution of Monotone Second-Order Discretizations of Hyperbolic Conservation Laws”

[2] Barth, T. J., Jespersen, D. C., “The Design and Application of Upwind Schemes on Unstructured Meshes” 78

The Finite Volume Method: An overview

Interpolation of diffusive fluxes

79

The Finite Volume Method: An overview

• By looking the figures below, the face values appearing in the diffusive flux in an orthogonal

mesh can be computed as follows,

• This is a central difference approximation of the first order derivative.

• This type of approximation is second order accurate.

Interpolation of diffusive fluxes in an orthogonal mesh

80

The Finite Volume Method: An overview

• In reference to the figure below, recall that non-orthogonality is the angle between the vector S normal to the

face f, and the vector d connecting the two cell centers P and N.

• In non-orthogonal meshes (meshes with a non-orthogonal angle), using a central difference approximation is

not good enough.

• In non-orthogonal meshes, the problem relies in the fact that we want to compute the face gradients in the

same direction as the vector d, but we cannot because d and S are not parallel.

• From the point of view of the formulation of the diffusive flux using the FVM, the gradient S normal to the face

cannot be written purely in terms of a gradient in the direction d.

• Therefore, due to non-orthogonality, we need to use an approach different to central differences to

approximate the face gradients. We need to add some kind of correction.

• In the figure below, the non-orthogonal angle is equal to 20°.

• Now imagine how the cells will look like is the angle is more than 80° or more. You can also imagine angles

greater than 90° or the critical angle where the cell volume is equal to zero, i.e., 90°.

• Keeping non-orthogonality low is very important when generating the mesh.

Interpolation of diffusive fluxes in a non-orthogonal mesh

81

The Finite Volume Method: An overview

• The non-orthogonal angle, gives rise to a secondary gradient T tangential at the face f.

• The gradient normal to the face (orthogonal contribution) can be approximated using central differences.

• The secondary gradient (non-orthogonal contribution) need to be computed somehow.

• From the figure and equation below, the face values appearing in the diffusive flux of a non-orthogonal mesh

can be computed as a correction of the orthogonal contribution and the non-orthogonal contribution, as

follows,

Interpolation of diffusive fluxes in a non-orthogonal mesh

82

• This type of approximation is second order accurate but involves a larger truncation error.

• It also uses a larger numerical stencil, which make it less stable.

where

Using T and d, we can now write the

gradient S normal to the face f.

The Finite Volume Method: An overview

• The literature is very rich when it comes to correcting the non-orthogonal contribution.

• This is an area of active research and new ideas continues to emerge.

• For more information about correction of diffusive fluxes in non-orthogonal meshes, the

interested reader can refer to the following references [1-8].

• In reference [8], Jasak gives a geometric interpretation to different correction approaches found

in literature. He gave to the approaches the following names,

• Minimum correction approach.

• Orthogonal correction approach.

• Over-relaxed approach.

• Of these approaches, the over-relaxed approach is the most widely used.

• The interested reader can peruse reference [3] for a review of different methods and a derivation

of the algebra behind the afore mentioned geometrical interpretations.

Correction of diffusive fluxes in a non-orthogonal mesh

83

[1] S. R. Mathur, J. Y. Murthy. A Pressure-Based Method for Unstructured Meshes. Numer. Heat Transfer, Vol. 31, 1997.

[2] L. Davidson. A Pressure Correction Method for Unstructured Meshes with Arbitrary Control Volumes. Int. J. Numer. Methods in Fluids. Vol. 22, 1996.

[3] I. Demirdzic. On the Discretization of the Diffusion Term in Finite-Volume Continuum Mechanics. Numerical Heat Transfer, Part B: Fundamentals. Vol. 68, 2015.

[4] J. H. Ferziger, M. Peric. Further discussion of numerical errors in CFD. Int. J. Numer. Methods in Fluids, Vol. 23, pp. 1263-1274, 1996.

[5] W. J. Minkowycz, E. M. Sparrow, J. Y. Murthy. Handbook of Numerical Heat Transfer. Chapter 1. John Wiley & Sons. 2000.

[6] H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics. Prentice Hall. 2000.

[7] J. Ferziger, M. Peric, R. Street. Computational Methods for Fluid. Springer. 2001.

[8] H. Jasak. Error analysis and estimation in the Finite Volume method with applications to fluid flows. PhD Thesis. Imperial College, London. 1996.

The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the diffusive flux in a non-orthogonal

mesh (40° in the image below) can be computed as follows.

• Using the over-relaxed approach, the diffusive fluxes can be corrected as,

Correction of diffusive fluxes in a non-orthogonal mesh

84

Over-relaxed approach

The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the diffusive flux in a non-orthogonal

mesh (40° in the image below) can be computed as follows.

• Using the minimum correction approach, the diffusive fluxes can be corrected as,

Correction of diffusive fluxes in a non-orthogonal mesh

85

Minimum correction approach

The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the diffusive flux in a non-orthogonal

mesh (40° in the image below) can be computed as follows.

• Using the orthogonal correction approach, the diffusive fluxes can be corrected as,

Correction of diffusive fluxes in a non-orthogonal mesh

86

Orthogonal correction approach

The Finite Volume Method: An overview

• The secondary face gradients (non-orthogonal contribution) that arises from the discretization of

the diffusive flux on non-orthogonal meshes, somehow need to be reconstructed from the cell

center to the face center, this is explained in the next section.

Correction of diffusive fluxes in a non-orthogonal mesh

• Secondary gradient due to mesh non-orthogonality.

• This gradient needs to be evaluated at the face center.

• It is clear that if the mesh is orthogonal, you do not need to do any correction.

• Therefore, you can compute the gradients using centered differences (but this is the exception

rather than the rule).

• When solving the NSE, non-orthogonality mainly affects the pressure equation, and in the case

of compressible flows, it also affects the energy equation.

• Generally speaking, every equation where the Laplacian operator is present will be sensitive to

mesh non-orthogonality.

• From the previous discussion, it is clear why we want to avoid large non-orthogonal angles.

Implicit part Explicit part

87

The Finite Volume Method: An overview

Gradient computation at cell centers and

gradient reconstruction at face centers

88

The Finite Volume Method: An overview

Gradients computation at cell centers

• There are many methods for the computation of the cell centered gradients, e.g., least squares,

Gauss cell-based, Gauss node-based, and so on.

• Using the Gauss cell-based method, the cell centered gradients can be computed as follows,

• This approximation is second order accurate given that the mesh quality is acceptable, and the

volume of the cell is finite.

• In general, the least squares method tends to be more accurate.

89

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• Face gradients arise from the discretization process of the convective and diffusive

terms.

• These secondary gradients are due to non-orthogonality and skewness in the pressure and

energy equations (or any equation containing the diffusion term).

• They also appear when computing the face quantities in unstructured meshes.

• Have in mind that there are many methods to reconstruct (or interpolate) the face gradients, this

is an area of active research.

• Hereafter we are going to show a few ways to do so.

90

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• The easiest way to reconstruct the face gradient is by taking the average of the cell

centered gradients and .

• However, this approach may be inaccurate in non-uniform, non-orthogonal and skew meshes

(general unstructured meshes).

91

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• Another way to reconstruct the face gradient is by using weighted interpolation of the cell

centered quantities and .

• Again, this approach may be inaccurate in meshes with high degree of non-orthogonality and

skewness.

where

92

• Yet another approach more accurate than the previous ones is by reconstructing the cell

centered quantities in such a way that they create a vector that is normal to the face and passes

thru its center.

• Starting from the cell centered quantities, the face gradients can be reconstructed as

follows:

• First, reconstruct the cell centered quantities at the points P* and N*, as follows,

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• Then evaluate the face gradient along the vector dP*N* (which is normal to the face f), as

follows (you can also use weighted interpolation),

93

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• In the previous formulation, recall that any cell centered quantity can be reconstructed in a

new location P* (within the cell volume), as follows,

• All the previous approximations are second order accurate in good quality meshes.

• Also, the use of non-orthogonal corrections suggests the adoption of an iterative method to

compute better face gradient approximations.

94

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• As for cell centered variables, when

reconstructing the gradients at the face centers it

might happen that they become unbounded.

• So, to avoid over and under shoots on the

gradient computations, we use gradient limiters

(or slope limiters).

• By avoiding over and under shoots we are

enforcing the monotonicity principle.

• Gradient limiters increase the stability of the

method but might add diffusion due to clipping.

• The idea behind gradient limiters is similar to that

of the limiters used in TVD schemes.

• For a more detailed discussion on gradient

limiters, the interested reader should review

references [1-3].

95

[1] C. Laney. Computational Gasdynamics. Cambridge University Press. 1998.

[2] C. Hirsh. Numerical Computation of Internal & External Flows. Butterwoth-Heinemann. 2007.

[3] J. Blazek. Computational Fluid Dynamics: Principles and Applications. Butterwoth-Heinemann. . 2015.

The Finite Volume Method: An overview

Iterative approach to compute cell centered and

face centered gradients

96

The Finite Volume Method: An overview

Iterative approach to compute cell centered and face centered gradients

• From the discussion on interpolation of diffusive fluxes, we have seen that to compute the

viscous fluxes on non-orthogonal meshes we need to know the face gradients.

97

Implicit part Explicit part

• In this decomposition, the orthogonal contribution is treated implicitly (unknowns in the LHS),

and the non-orthogonal contribution is treated explicitly (known or old values in the RHS).

• The secondary gradient in the diffusive fluxes (due to non-orthogonality), somehow needs to be

computed and corrected, as discussed in the previous sections.

• The computation of the secondary gradient terms requires the knowledge of gradients at the cell

centers.

• And the computation of the cell centered gradients requires the face values , and to compute

face values we need face gradients (at least in unstructured non-orthogonal meshes).

• This suggest the need of using an iterative approach for computing successively better

approximations of the values and the gradients at cell centers and face centers.

where

The Finite Volume Method: An overview

Iterative approach to compute cell centered and face centered gradients

• One way to iteratively compute the cell centered and face centered gradients is as follows.

• For the computation of the cell centered gradients we can use, for example, the Gauss cell-

based method, which reads as follows,

98

• As a first approximation, the face value can be computed as the average of the two cells

values sharing the face so that,

• Once the derivative has been obtained using the Gauss cell-based method (or any other

method), the initial approximation of the gradient at the face center may be successively

improved by reconstructing it from the cell value using any of the approaches described in the

previous section (gradients reconstruction at face centers).

• Remember there are many alternatives to compute the cell centered gradients, e.g., least

squares, Gauss node-based, and so on.

• The guys developing videos games and dealing with rendering have developed very advanced

methods for gradients computation.

The Finite Volume Method: An overview

Iterative approach to compute cell centered and face centered gradients

• In the previous steps, we can add an improvement to the face values computation.

• Once we have obtained the cell gradient, we can improve our initial approximation of the face

average by reconstructing a new value from the cell center values, as follows,

99

• At this point, it only rest iterate to obtain better approximations by looping.

• During each iteration, we can compute the face weighted average gradient using the cell

gradient computed in the previous iteration and use these face values to compute new values

of the gradients.

where

• In addition, the gradients can be limited to avoid overshoots and undershoots on the solution

(monotonicity principle).

• This is just one method to deal with the computations of cell centered and face centered

gradients.

The Finite Volume Method: An overview

Iterative approach to compute cell centered and face centered gradients

• By iteratively applying the previous steps, the accuracy of

the face values and gradients can be improved.

• During each iteration, we can compute the face gradient

using the cell gradient and then use these face values to

compute the diffusive or convective fluxes.

• As you can see, increasing the number of iterations will

improve gradients computations.

• In practice, two or three iterations are sufficient to obtain

accurate gradients.

• But depending on the physics involved, we might need to

do more, or maybe less iterations.

• In general, it is recommended to do at least one iteration.

• By the way, the gradients computation is not only limited to

the diffusive terms.

• Gradients are also required for the construction of higher-

order convection operators, as well as many physical

models (e.g., turbulence models, multiphase models, non-

Newtonian viscosity models, and so on).

• Accurate, robust , and stable computation of gradients

is extremely important in CFD.

100

The Finite Volume Method: An overview

Effect of gradient limiters on solution accuracy

and convergence to steady state

101

The Finite Volume Method: An overview

• The non-differentiable nature of some limiters can adversely affect convergence to steady state.

• In some cases, they are responsible for the stalled residuals even if the solution is converging.

• In some other cases, they can add a lot of numerical diffusion to the solution.

Effect of gradient limiters on solution accuracy and convergence to steady state

Computed drag for different limiter formulations, in order

of increasing dissipation associated with the limiter.

Onera M6 Wing (Ma = 0.5, AOA = 3.06)

Reference:

M. Berger, M. Aftosmis, S. Murman, “Analysis of Slope

Limiters on Irregular Grids”

S
ta

lle
d
 r

e
s
id

u
a
l

M
o
n
o
to

n
ic

 c
o
n
v
e
rg

e
n
c
e

102

The Finite Volume Method: An overview

• Illustration of gradient limiters effect on the convergence to steady state of a sample case – Viscous flow over sphere at low

Reynolds number (Steady simulation).

• The use of limiters (for gradients and fluxes) to obtain second-order TVD schemes is a powerful and robust approach. There are

further issues to be considered, such as accuracy and convergence issues resulting from clipping, systems of equations, multiple

dimensions, unstructured meshes, higher-order time-marching methods and so on.

Reference:

K. Kitamura, E. Shima, “Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations”

Effect of gradient limiters on solution accuracy and convergence to steady state

103

The Finite Volume Method: An overview

Mesh induced errors

104

The Finite Volume Method: An overview

• In order to maintain second order accuracy, and to avoid unboundedness, we need to correct non-

orthogonality and skewness errors.

• The ideal case is to have an orthogonal and non skew mesh, but this is the exception rather than the rule.

• The best practice to minimize mesh induced errors is to generate good quality meshes.

Orthogonal and non skew mesh Non-orthogonal and non skew mesh

Orthogonal and skew mesh Non-orthogonal and skew mesh

Mesh induced errors

105

The Finite Volume Method: An overview

Time discretization

106

The Finite Volume Method: An overview

• Using the previous equations to evaluate the general transport equation over all the control

volumes, we obtain the following semi-discrete equation,

• After spatial discretization, we can proceed with the time discretization. By proceeding in

this way, we are using the Method of Lines (MOL).

• The main advantage of the MOL method, is that it allows us to select numerical

approximations of different accuracy for the spatial and time terms. Each term can be

treated differently to yield to different accuracies.

Time discretization

where is the convective flux and is the diffusive

flux.

108

The Finite Volume Method: An overview

• Now, we evaluate in time the semi-discrete general transport equation

• At this stage, we can use any time discretization scheme, e.g., Crank-Nicolson, Euler implicit,

forward Euler, backward differencing, adams-bashforth, adams-moulton.

• It should be noted that the order of the time discretization of the transient term does not need to

be the same as the order of the discretization of the spatial terms.

• Each term can be treated differently to yield different accuracies.

• So, as long as the individual terms are at least second order accurate, the overall accuracy will

also be second order.

Time discretization

109

The Finite Volume Method: An overview

Linear system solution – Crunching numbers

110

The Finite Volume Method: An overview

in every control volume of the domain, a system of linear algebraic equations (LAE) for the

transported quantity is assembled,

• After spatial and time discretization and by using equation

Linear system solution

111

The Finite Volume Method: An overview

• In CFD, the fast and efficient solution of the following system is of paramount importance.

Linear system solution

Boundary conditions and source terms vectorMatrix of coefficients

Solution vector

• This system can be solved by using any iterative or direct method.

• But in practice, iterative methods are used most of the times.

• An equation for each cell is assemble, where the contribution in the diagonal of A corresponds

to ap, and the off-diagonal contribution corresponds to the neighboring elements anp (elements

that shares a face with ap).

Equation for cell 1

Equation for cell P

Equation fir cell N 112

The Finite Volume Method: An overview

• The matrix of coefficients A of the discretized system of algebraic equations mostly

depends on the geometry quantities.

• Specifically, on the dot product of S (vector normal to face passing by the face center) and d

(vector connecting two cell centers), that is,

• This dependence on the dot product is because the coefficients contain the following term,

Linear system solution

• For orthogonal meshes (perfect ones), the dot

product is equal to one (there is no deviation

between the vectors S and d).

• The more a cell deviates from its perfect shape, the

smaller the dot product becomes, and this results in

large values of the matrix coefficients which

increases the system stiffness.

• For very bad quality cells (e.g., very skew cells or

cells with zero volume), this vector product may

become zero, producing an undefined system

(throwing a division by zero error).

• One single bad quality cell can make the solution

diverge.
114

The Finite Volume Method: An overview

Linear system solution

• The matrices arising from the discretization of the governing equations are usually very large

and sparse (they contain only a few non-zero elements).

• Banded sparse matrices tends to help convergence rate.

• In the figures below, the unknow quantity is distributed along the diagonal.

• The off-diagonal entries, represent the contribution of the neighboring cells

Sparse matrix – Banded type

Typical of orthogonal meshes
Sparse matrix – Non-banded structure

Typical of general unstructured meshes 115

The Finite Volume Method: An overview

Linear system solution

116

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the convergence

rate will be.

• Linear solvers can be accelerated by using matrix reordering techniques that make the

matrices more diagonally dominant.

Matrix structure plot before reordering

Note:

This is the actual pressure matrix from an OpenFOAM model case

Matrix structure plot after reordering

The Finite Volume Method: An overview

Linear system solution

• In CFD, it is extremely important that the matrix A is diagonally dominant.

• A matrix is diagonally dominant if in each row the sum of the off-diagonal coefficient magnitude

is equal or smaller than the diagonal coefficient,

• Diagonal dominance is a very desirable feature for satisfying the boundedness criterion.

• To achieve diagonal dominance, we need large values of net coefficient (coefficients of the

diagonal).

• This can be controlled by using under-relaxation, reducing the time-step, by assuring that any

source term in the RHS is negative, and by having good quality meshes.

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion.

• And at least one i,

117

The Finite Volume Method: An overview

Linear system solution

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion [1].

[1] James Blaine Scarborough (1958). Numerical Mathematical Analysis. Johns Hopkins Press.

• The satisfaction of this criterion ensures that the equations will converge by at least one iterative method.

• This is a sufficient condition, not a necessary one. This means that we can get convergence, even if, at times,

we violate this criterion.

• For example, if Scarborough criterion is not satisfied then Gauss–Seidel method iterative procedure is not

guaranteed to converge to a solution.

• The finite volume method uses this criterion to set some basic discretization rules related to obtaining a

convergent solution, implementing boundary conditions, and adding source terms.

• When linearizing the source terms, they must be negative, so when they are added to ap in the

LHS, they help increasing the diagonal dominance.

• All coefficients in the LHS and RHS of the linear system should have the same sign (essential

requirement for boundedness).

• If the boundedness requirement is not satisfied, it is possible that the solution does not converge at

all, or if it does, the solution is oscillatory (contains wiggles).

118

The Finite Volume Method: An overview

Linear system solution

Matrix of coefficients

Solution vector Boundary conditions and source terms

• After assembly the linear system, the solver will spend a great amount of time solving it.

• This system is solved using iterative solvers, where the algorithm starts from an initial guess

and keeps iteration until reaching the desired convergence criterion.

• Basically, iterative solvers incrementally reduce the error, until reaching a given residual r

(absolute or relative tolerance),

• The convergence rate of iterative solvers greatly depends on the matrix of coefficients A. 119

The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final

residuals, let us take another look at a residual plot.

• is the initial guess used to start the iterative method.

• Iteration 0 defines the initial residual, and greatly influence the convergence rate.

• You can use any value at iteration 0, but usually is a good choice to take the previous solution

vector.

• Remember, the closest you are to the actual solution, the faster the convergence rate will be. 120

The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final

residuals, let us take another look at a residual plot.

• If the following condition is fulfilled, the linear solver will stop iterating and will advance to the

next time-step.

• This condition defines the final residual, where r is the tolerance or convergence criterion

(defined by the user). 121

The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final

residuals, let us take another look at a residual plot.

• By working in an iterative way, every single iteration is a better approximation of the

previous iteration

• Sometimes the linear solver might stop iterating because it has reached the maximum number

of iterations, you should be careful of this because we are talking of unconverged iterations.

• Also, it is recommended to do at least one iteration as it helps at linearizing the equations. 122

The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final

residuals, let us take another look at a residual plot.

• It is clear that if the initial residual is the same as the final residual

(we are converging in one iteration), we can say that we have reached a steady solution (this

does not happen very often).

• Every iterative linear solver has different properties. Also, depending on the matrix type

(symmetric or asymmetric), they might have different convergence rates.
123

The Finite Volume Method: An overview

Linear system solution

• Visualization of the pressure coefficient matrix A coming from a CFD simulation.

• Notice that in this case the matrix has a banded diagonal structure and is symmetric.

• In this case linear solvers perform extremely well.

Boundary conditions and source termsMatrix of coefficients

Solution vector

124

The Finite Volume Method: An overview

Multigrid and Newton-Krylov linear solvers – Some remarks

• The development of multigrid (MG) solvers (GAMG in OpenFOAM), together with the

development of high-resolution TVD schemes and parallel computing, are among the most

remarkable achievements of the history of CFD.

• Most of the time using MG linear solver is fine (for symmetric matrices).

• However, if you observe that the MG linear solver is taking too long to converge or is converging

in more than 100 iterations, it is better to use a Newton-Krylov linear solver (e.g., preconditioned

conjugate gradient or PCG in OpenFOAM).

• Particularly, we have found that the GAMG linear solver in OpenFOAM does not perform very

well when you scale your computations to more than 1000 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms the GAMG.

• But again, this is problem and hardware dependent.

• As you can see, you need to always monitor your simulations (stick to the screen for a while).

Otherwise, you might end-up using a solver that is performing poorly (slow convergence rate),

and this translate in increased computational time and costs.

126

The Finite Volume Method: An overview

So, what does an unstructured FVM solver do?

127

The Finite Volume Method: An overview

So, what does an unstructured FVM solver do?

• It simply discretizes in space and time the governing equations in arbitrary polyhedral control

volumes over the whole domain.

• Assembling in this way a large set of linear algebraic equations (LAE).

• It then solves this system of LAE to find the solution of the transported quantities.

• The FVM method basically converts the problem of calculus (surface and volume integrals) to

that of linear algebra (solution of linear systems).

128

The Finite Volume Method: An overview

So, what does an unstructured FVM solver do?

• In the FVM method, the following information must be readily available to the solver:

• The mesh.

• Boundary conditions and initials conditions.

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc.

• Physical models, such as turbulence, mass transfer, etc.

• How to discretize in space each term of the governing equations (diffusive, convective,

gradient and source terms).

• How to discretize in time the obtained semi-discrete governing equations.

• How to solve the linear system of equations (crunching numbers).

• Set runtime parameters and general instructions on how to run the case (such as time step,

under-relaxation factors, and maximum CFL number).

• Additionally, we may set monitors for post-processing.

• Every CFD solver will have a different way to ask for this information.

• Some of them use a GUI (e.g., Fluent, StarCCM+, CFX, NUMECA), and others interacts via ascii

files using the command line interface (e.g., OpenFOAM).

129

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

130

Navier-Stokes equations and pressure-velocity coupling

• To solve the Navier-Stokes equations we need to use a solution approach able to deal with the

nonlinearities of the governing equations and with the coupled set of equations.

Additional equations deriving from models, such as, volume fraction,

chemical reactions, turbulence modeling, combustion, multi-species,

thermodynamics, and so on.

131

Navier-Stokes equations and pressure-velocity coupling

• Many numerical methods exist to solve the Navier-Stokes equations, just to name a few:

• Pressure-correction methods (Predictor-Corrector type).

• SIMPLE, SIMPLEC, SIMPLER, PISO.

• Projection methods.

• Fractional step (operator splitting), MAC, SOLA.

• Density-based methods and preconditioned solvers.

• Riemann solvers, ROE, HLLC, AUSM+, ENO, WENO.

• Artificial compressibility methods.

• Artificial viscosity methods.

• Methods Based on Derived Variables

• Stream Function-Vorticity

• Vorticity-Velocity Method

133

Navier-Stokes equations and pressure-velocity coupling

• We are going to briefly review the following two types of approaches for solving the NSE:

• Pressure-based approach (predictor-corrector).

• Density-based approach.

• Historically speaking, the pressure-based approach was developed for low-speed

incompressible flows, while the density-based approach was mainly developed for high-speed

compressible flows.

• However, both methods have been extended and reformulated to solve and operate for a wide

range of flow conditions beyond their original intent.

134

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach

• Two pressure-based solution methods are generally available, namely:

• Segregated method.

• Coupled method.

• Pressure-based methods are intrinsically implicit.

• They are the default option in most of CFD solvers.

• In the pressure-based approach the velocity field is obtained from the momentum equations.

The pressure is obtained by solving the pressure-Poisson equation. There is some

mathematical manipulation involved.

• In the segregated algorithm, the individual governing equations for the primitive variables are

solved one after another.

• The coupled approach solves the continuity, momentum, and energy equation simultaneously,

that is, coupled together.

• Conversely to the pressure-based approach, there is no mathematical manipulation

of the governing equations.

135

• Then, by taking the divergence of the momentum equation and setting , we obtain,

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Pressure equation derivation

• The pressure equation is derived starting from the momentum equation,

• Then, the final form of the pressure equation is as follows,

where

136

• Notice that the continuity is enforced when deriving the pressure equation and in all boundaries

of the domain.

• The previous equations are solved in a given domain, with boundary conditions BCs, and initial

condition ICs.

• In this set of equations, continuity is enforced while deriving the pressure equation

(referred to as pressure-Poisson equation) and in all boundaries of the domain.

• We use these equations because in the original incompressible Naiver-Stokes equations,

pressure does not appear in the continuity equation, so is not possible to link the equations.

• Therefore, we derive an alternative set of equations where pressure appears (albeit in the form

of a gradient and large pressure gradients may cause stability and accuracy problems).

• So now we can use the velocity obtained in the momentum equation (momentum predictor

step) to compute the pressure using the pressure-Poisson equation (pressure corrector step),

and then correct the velocity with the new pressure value (momentum corrector step).

• This is referred to as pressure-velocity coupling (P-V coupling).

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Pressure equation derivation

• In the pressure-based approach, the actual equations that are being solved are,

137

where

This system of equations is

equivalent to the original

Navier-Stokes equations.

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Segregated method

• In the pressure-based approach the velocity field is obtained from the momentum equations.

• In the pressure-based approach the pressure field is extracted by solving a pressure or

pressure correction equation which is obtained by manipulating continuity and momentum

equations.

• If it is required, the energy equation is solved.

• Then, equations for other scalars such as turbulence, volume fraction, chemical species, etc.,

are solved.

• The solution process keeps iterating over the entire set of governing equations until the solution

converges to a given criterion or the user decides to stop the simulation.

• In this approach, each governing equation while being solved, is decoupled or segregated from

other equations, hence its name.

• The segregated algorithm is memory-efficient, since the discretized equations need only be

stored in the memory one at a time.

• However, the solution convergence is relatively slow (in comparison to coupled solvers) as the

equations are solved one at a time.

138

• As we have seen, mesh non-orthogonality introduces secondary gradients into the pressure

equation (the term in the equation below).

139

Pressure-based approach – Segregated method

• To reduce any error introduced by secondary

gradients, we need to correct the pressure

equation for non-orthogonality.

• That is, we solve for pressure and then we

correct it, obtaining in this way better

approximations.

• After correcting momentum with the previous

pressure value, we can substitute the new

value in the pressure equation and solve

again (additional passes through pressure

and momentum corrector equations).

• By looping in this way we gain more stability

and accuracy by getting better

approximations.

where

Navier-Stokes equations and pressure-velocity coupling

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Segregated method

Each iteration consists of the steps illustrated in the figure and

outlined below:

1. Update fluid properties (for example, density, viscosity,

specific heat, turbulent viscosity, and so on) based on the

initial conditions or current solution.

2. Solve the momentum equations, one after another, using

the recently updated values of pressure and face mass

fluxes.

3. Solve the pressure correction equation using the recently

obtained velocity field and the mass-flux.

4. Correct face mass fluxes, pressure, and the velocity field

using the pressure correction obtained from Step 3.

5. Solve the energy equation using the current values of the

solution variables.

6. Solve additional transport equations, such as turbulent

quantities, volume fraction, species, and so on), using the

current values of the solution variables.

7. Check for the convergence of the equations.

These steps are continued until the convergence criterion is

met or the user decides to stop the simulation.
Check convergence STOP

Solve additional transport equations
(turbulence, volume fraction, multi-

species, and so on)

Solve energy equation

Update mass flow, pressure and
velocity

Solve pressure-correction equation

Solve in a segregated way

update properties

YesNo

140

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Segregated method

• To achieve pressure-velocity coupling using segregated solvers there are several methods

available. To name a few:

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• SIMPLER (SIMPLE Revised)

• PISO (Pressure Implicit with Splitting Operators)

• All the aforementioned methods are based on the predictor-corrector approach.

• Each one have different properties, options and loop in slightly different ways.

• But at the end of the day, all of them will iterative until reaching the convergence criterion.

141

Navier-Stokes equations and pressure-velocity coupling

Pressure-velocity coupling using

the SIMPLE method

Check convergence STOP

Solve additional transport equations

Correct pressure and velocities
p = p* + p'
u = u* + u'
v = v* + v'

w = w* + w'

Initial guess p*, u*, v*, w*

YesNo

Solve Poisson equation for the
pressure correction p'

Compute intermediate velocities
(divergent free)

u*, v*, w*

p* = p
u* = u
v* = v
w* = w

Check convergence STOP

Solve additional transport equations

Correct pressure and velocities
p** = p* + p'
u** = u* + u'
v** = v* + v'

w** = w* + w'

Initial guess p*, u*, v*, w*

YesNo

Solve Poisson equation for the
pressure correction p'

Compute intermediate velocities
(divergent free)

u*, v*, w*

p* = p
u* = u
v* = v
w* = w

Solve second pressure correction
equation p''

Correct pressure and velocities
p*** = p** + p''
u*** = u** + u''
v*** = v** + v''

w*** = w** + w''

p = p***
u = u***
v = v***
w = w***

Pressure-velocity coupling using

the PISO method

142

Navier-Stokes equations and pressure-velocity coupling

A few remarks about the SIMPLE and PISO methods

• The SIMPLE method [1] was initially developed in the 1970s for steady state flows and

extended later to unsteady flows with iterative marching at each time-step.

• In the SIMPLE method, under-relaxation must be used for stability reasons. This means that

many iterations are required.

• Also, in the SIMPLE method the under-relaxation factors (URF) need to be tuned according to

the application.

• For time dependent flows, iterative marching is necessary at each time-step, making the

SIMPLE method inefficient.

• The PISO method [2] was developed in the early 1980s for steady and unsteady flows, and to

address some of the drawbacks of the SIMPLE method.

• The PISO method is very efficient for unsteady flows since there is no need for iterative

marching at each time-step.

• In the PISO method, the pressure field is free from continuity errors after the second corrector.

Therefore, two correctors are normally sufficient.

144

References:

[1] S. V. Patankar. D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, Int. J. Heat Mass

Transfer, 15, 1787-1806 (1972).

[2] R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-splitting”, J. Comput. Phys., 62, 40-65 (1985).

Navier-Stokes equations and pressure-velocity coupling

A few remarks about the SIMPLE and PISO methods

• The PISO method often needs more than two correctors when large pressure gradients exist.

• The PISO method is stable for CFL numbers much greater than 1, and it does not need

adjustable under-relaxation parameters.

• The SIMPLE and PISO methods are both implicit.

• Both methods were initially developed for staggered grids, but now they can be used with

collocated meshes (standard practice in most modern CFD solvers).

• In the SIMPLE and PISO methods, to avoid the pressure-velocity decoupling that occurs when

using collocated meshes, the cell-face velocity value is computed using Rhie-Chow

interpolation [1].

• For unsteady problems, the PISO method is much faster than the SIMPLE method.

• For steady problems, both methods shows similar convergence rates. However, the SIMPLE is

less computational expensive.

• The drawback of the SIMPLE method for steady simulations is that the URF are problem

dependent.

145
References:

[1] C. M. Rhie, W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA Journal, Vol. 21, 1525-1532 (1983).

Navier-Stokes equations and pressure-velocity coupling

• SIMPLE

• S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and

momentum transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer,

15, 1787-1806 (1972).

• SIMPLE-C

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for

predicting incompressible fluid flows”, Numer. Heat Transfer, 7, 147-163 (1984).

• SIMPLE-R

• S.V. Patankar, “A calculation procedure for two dimensional elliptic situations”,

Numerical Heat Transfer, Vol. 14, pp. 409-425 (1984).

• PISO

• R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-

splitting”, J. Comput. Phys., 62, 40-65 (1985).

• Rhie-Chow interpolation

• C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with

trailing edge separation”, AIAA Journal, Vol. 21, 1525-1532 (1983).

On the origins of the SIMPLE and PISO methods

146

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Coupled method

• The pressure-based coupled algorithm solves a coupled system of equations comprising the

momentum equations and the pressure-based continuity equation.

• The remaining equations are solved in a decoupled fashion as in the segregated algorithm.

• Since the momentum and continuity equations are solved in a closely coupled manner, the rate

of convergence significantly improves when compared to the segregated algorithm.

• However, compared to the segregated algorithm the memory requirements are larger by at least

2 to 3 times.

• As memory requirements are very high, they are not very efficient for unsteady computations.

147

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Coupled method

Each iteration consists of the steps illustrated in the figure and

outlined below:

1. Update fluid properties (for example, density, viscosity,

specific heat) including turbulent viscosity based on the

initial conditions or current solution.

2. Solve the momentum equations and pressure-correction

equation in a coupled manner.

3. Correct face mass fluxes, pressure, and the velocity field

using the pressure correction obtained from Step 2.

4. Solve the energy equation using the current values of the

solution variables.

5. Solve additional transport equations, such as turbulent

quantities, volume fraction, species, and so on), using the

current values of the solution variables.

6. Check for the convergence of the equations.

These steps are continued until the convergence criterion is

met or the user decides to stop the simulation.

Check convergence STOP

Solve additional transport equations
(turbulence, volume fraction, multi-

species, and so on)

Solve energy equation

Update mass flow

Solve simultaneously momentum
equations and pressure correction

equation

update properties

YesNo

148

Navier-Stokes equations and pressure-velocity coupling

Density-based approach

• The density-based approach solves the continuity, momentum, and energy equation

simultaneously, that is, coupled together.

• Conversely to the pressure-based approach, there is no mathematical manipulation on the

governing equations.

• Pressure is obtained through an equation of state.

• Governing equations for additional scalars are solved afterward and sequentially, that is,

segregated from one another and from the coupled set.

• The density-based solvers are recommended when there is a strong coupling between density,

energy, momentum, and/or species.

• Because the governing equations are non-linear and coupled, several iterations of the solution

loop must be performed before a converged solution is obtained.

• In the density-based solution method, you can solve the coupled system of equations using

either an explicit formulation or an implicit formulation.

• Typical solution methods used in the density-based approach are:

• ROE, AUSM+, HLLC

149

Navier-Stokes equations and pressure-velocity coupling

Check convergence STOP

Solve simultaneously continuity,
momentum, and energy equations

update properties

YesNo

Solve in a segregated way additional
transport equations, such as:

turbulence,
volume fraction,

multi-species,
chemical reactions,

 and so on.

Each iteration consists of the steps illustrated in the figure and

outlined below:

1. Update fluid properties (for example, density, viscosity,

specific heat) including turbulent viscosity based on the

initial conditions or current solution.

2. Solve the continuity, momentum and energy equations in

a coupled manner.

3. Solve additional transport equations, such as turbulent

quantities, volume fraction, species, and so on), using the

current values of the solution variables.

4. Check for the convergence of the equations.

These steps are continued until the convergence criterion is

met or the user decides to stop the simulation.

Density-based approach

150

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

151

• The CFL number is a measure of how much information () traverses a computational grid cell

() in a given time-step ().

• The CFL number is a necessary condition to guarantee the stability of the numerical scheme.

• But not all numerical schemes have the same stability requirements.

• By doing a linear stability study, we can find the stability requirements of each numerical

scheme (but this is out of the scope of this lecture).

On the CFL number

• First of all, what is the CFL or Courant number?

• In one dimension, the CFL number is defined as,

152

On the CFL number

• Let us talk about the CFL number condition (which is related to the CFL number).

• The CFL number condition is the maximum allowable CFL number a numerical scheme can

use.

• For the N dimensional case, the CFL number condition becomes,

• To get a better idea of the importance of the CFL number condition, let us talk about explicit and

implicit methods.

• Explicit and implicit methods are approaches used for obtaining the approximate numerical

solution of time-dependent ODEs and PDEs.

• Explicit and implicit methods have different stability requirements.

• Also, the implementation details are different.

153

On the CFL number

Explicit methods

• For a given variable, the unknown value in each

cell is computed using a relation that includes

only existing values.

• Therefore, each unknown will appear in only

one equation in the system and the equations

for the unknown value in each cell can be

solved one at a time to give the unknown

quantities.

• In the figure, N is the current time level. We do

not know the solution in this level.

• N – 1 is the previous time level, where we know

the solution in all control volumes.

• For a given variable, the unknown value in each

cell is computed using a relation that includes

both existing and unknown values from

neighboring cells.

• Therefore, each unknown will appear in more

than one equation in the system, and these

equations must be solved simultaneously to

give the unknown quantities.

• In the figure, N is the current time level. We do

not know the solution in this level.

• N – 1 is the previous time level, where we know

the solution in all control volumes.

Implicit methods

154

On the CFL number

Explicit methods

• Explicit methods are conditionally stable.

• They have a constraint on the maximum

allowable CFL number (CFL number condition).

• If you choose a CFL number larger than the

maximum allowable by the explicit method, your

numerical solution will become unstable, and it

will diverge.

• Usually, the maximum allowable CFL number is

limited to 1.0.

• Some explicit methods have a CFL condition

of 0.5, and some of them can go up to 2.0

• In OpenFOAM you will find explicit solvers (last

time we checked there was only one solver).

• Implicit numerical methods are unconditionally

stable.

• In other words, they are not constrained to the

CFL number condition.

• However, the fact that you are using a numerical

method that is unconditionally stable, does not

mean that you can choose a time step of any

size.

• The time-step must be chosen in such a way

that it resolves the time-dependent features,

and it maintains the solver stability.

• When we use implicit methods, we need to

assemble a large system of equations.

• The memory requirements of implicit methods

are much higher than those of explicit methods.

• In OpenFOAM, most of the solvers are implicit.

Implicit methods

155

On the CFL number

Some facts of explicit and implicit methods

• Explicit methods are extremely accurate, but they have terrible time steps constraints.

• For the same CFL number, the time-step of explicit methods is usually an order of magnitude

lower than the time-step required for implicit methods.

• This means that they are approximately ten times slower than implicit methods.

• The memory requirements of explicit are really low and they are extremely easy to parallelize.

• Explicit methods perform really well in GPUs.

• Also, explicit methods are extremely fast (clock time per iteration), and easy to implement

• In order to arrive to a converged solution, you will need to perform a lot of iterations. This is

mainly related to the time step constraint.

• If you are interested in using large time steps (large CFL number) you will need to use implicit

methods.

156

On the CFL number

Some facts of explicit and implicit methods

• Due to the fact that implicit methods let you use large time steps; you can arrive to a converge

solution much faster than with explicit methods.

• Also, implicit methods tend to be more stable than explicit methods.

• It is highly advisable that you choose a time step in such a way that it resolves the time scales.

• If you use large time steps with implicit methods, it is likely that you will need to increase the cell

count in order to maintain the accuracy of the solution, and this translates in an increased

computational cost.

• In our personal experience, we have been able to go up to a CFL = 5.0 while maintaining the

accuracy and without increasing too much the computational cost.

• But as we are often interested in the unsteadiness of the solution, we usually use a CFL number

in the order of 1.0

157

On the CFL number

• I like to see the CFL number as follows,

The CFL number for dummies

• It is an indication of the amount of information that

propagates through one cell (or many cells), in one time-

step.

• By the way, and this is extremely important, the CFL condition is a necessary condition for

stability (and hence convergence).

• But it is not always sufficient to guarantee stability.

• Other properties of the discretization schemes that you should observe are: conservationess,

boundedness, transportiveness, and accuracy.

• The CFL number is not a magical number!

158

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

159

Unsteady and steady simulations

• Nearly all flows in nature and industrial applications are unsteady (also known as transient or

time-dependent).

• If you are dealing with turbulence (almost every scenario), you need to take into account the

unsteadiness inherent of turbulent flows.

• And if you are dealing with multiphase flows, you need to take into account the multiscale

nature of such flows, which makes multiphase flows intrinsically unsteady.

• Unsteadiness is due to:

• Instabilities.

• Non-equilibrium initial conditions.

• Time-dependent boundary conditions.

• Source terms.

• Chemical reactions.

• Moving or deforming bodies.

• Turbulence.

• Buoyancy.

• Convection.

• Multiple phases

161

Unsteady and steady simulations

• A few examples of unsteady applications:

• Internal and external aerodynamics.

• Shock wake interaction.

• Hydrodynamics, sea keeping, free surface, waves.

• Multiphase flows.

• Turbomachinery.

• Moving and deforming bodies.

• Fluid-structure interaction.

• Vortex-induced vibrations.

• Unsteady heat transfer.

• HVAC.

• Aero-vibro-acoustics.

• And many more…

162

Unsteady and steady simulations

• A few examples of unsteady applications:

Multiphase flow
www.wolfdynamics.com/wiki/FVM_uns/ani3.gif

Vortex shedding
www.wolfdynamics.com/wiki/FVM_uns/ani1.gif

Buoyant flow
www.wolfdynamics.com/wiki/FVM_uns/ani2.gif

163

http://www.wolfdynamics.com/wiki/FVM_uns/ani3.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani2.gif

Unsteady and steady simulations

• A few examples of unsteady applications:

Turbulent flows - SRS
www.wolfdynamics.com/wiki/FVM_uns/ani4.gif

Sliding grids – Continuous stirred tank

reactor
www.wolfdynamics.com/wiki/FVM_uns/ani5.gif

Marine applications - Sea keeping
www.wolfdynamics.com/wiki/FVM_uns/ani6.gif

164

http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani6.gif

Unsteady and steady simulations

How to run unsteady simulations using a general CFD solver?

• Select the time discretization scheme.

• Set the time step.

• Remember, the time-step must be chosen in such a way that it resolves the time-dependent

features and maintains solver stability.

• Set the tolerance (absolute and/or relative) of the linear solvers.

• If it applies, monitor the CFL number.

• Monitor the stability and boundedness of the solution.

• Monitor a quantity of interest.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.

• Reducing the time-step will make the coefficient matrix more diagonally dominant.

165

Unsteady and steady simulations

• Remember, when running unsteady simulations, the time-step must be chosen in such a way

that it resolves the time-dependent features and maintains solver stability.

When you use large time steps you do

not resolve well the physics

By using a smaller time step you

resolve better the physics and you gain

stability

How to choose the time-step in unsteady simulations and monitor the solution

166

Unsteady and steady simulations

• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.

Monitoring and sampling unsteady simulations

167

Unsteady and steady simulations

Monitoring and sampling unsteady simulations

• Remember to choose wisely where to do the sampling.

168

Unsteady and steady simulations

• When you run unsteady simulations, flow variables can stop changing with time. When this

happens, we say we have arrived at a steady state.

• Remember this is the exception rather than the rule.

• If you use a steady solver, you will arrive to the same solution (maybe not), in much less

iterations.

I am running an unsteady simulations and the QOI does not change

169

Unsteady and steady simulations

What about steady simulations?

• First of all, steady simulations are a big simplification of reality.

• Steady simulations are a trick used by CFDers to get fast outcomes with results that might be

very questionable.

• As mentioned before, most of the flows you will encounter are unsteady.

• In steady simulations we made two assumptions:

• We ignore unsteady fluctuations. That is, we neglect the time derivative in the

governing equations.

• We perform time or iterative averaging when dealing with stationary turbulence

(RANS modeling)

• The advantage of steady simulations are:

• They require low computational resources.

• They give fast outcomes.

• They are easy to post-process and analyze. We usually take a lot at the last saved

solution.

170

Unsteady and steady simulations

What about steady simulations?

• To run steady simulations using a general CFD solver, you need to use the appropriate solver

and set the discretization scheme to deal with a steady simulation.

• As you are not solving the time derivative, you do not need to set the time step. However, you

need to tell to the CFD solver how many iterations you would like to run.

• You can also set the residual controls. If you do not set the residual controls, the simulation will

run until reaching the maximum number of iterations.

• As there is no time derivative (the time step is infinite), there must be a way to control the

iterative marching in steady simulations. This is done by adjusting the under-relaxation factors

(URF).

• Under-relaxation works by limiting the amount which a variable changes from one iteration to

the next, either by modifying the solution matrix and source (implicit under-relaxation) prior to

solving for a field or by modifying the field directly (explicit under-relaxation).

• In other words, under-relaxation will make the coefficient matrix more diagonally dominant.

171

• If we are using under-relaxation.

• Under-relaxation is a feature typical of steady solvers using the SIMPLE family of methods.

• Many times, steady simulations diverge because of wrongly chosen URF.

• In CFD, under-relaxation can implicit or explicit.

Unsteady and steady simulations

• You also need to set the under-relaxation factors (URF).

• The under-relaxation factors control the change of the variable .

What about steady simulations?

172

Unsteady and steady simulations

• In explicit under-relaxation we relax the field variable,

What about steady simulations?

• In implicit under-relaxation we relax the discretized algebraic equation variable,

• Choosing the right under-relaxation factors (URF) is equivalent to choosing the right time step.

• You can relate URF to the CFL number as follows,

• A large CFL number is equivalent to small URF.
173

Unsteady and steady simulations

What about steady simulations?

0 1

relaxationFactors

Velocity

• Selecting the under-relaxation factors, it is kind of equivalent to selecting the right time step.

• The under-relaxation factors are bounded between 0 and 1.

Stability

175

Unsteady and steady simulations

What about steady simulations?

• Finding the right under-relaxation factors involved experience and a lot of trial and error.

• Choosing the wrong under-relaxation factors can stall the convergence or give you

oscillatory/noisy convergence rate (residuals and monitored quantities).

• Generally speaking, is not recommended to reduce implicit under-relaxation factors to values

below 0.5 as it can stalled the convergence rate, add an oscillatory behavior or it will take much

longer to convergence.

• If you hit the 0.5 mark when using implicit under-relaxation factors, it is better to stabilize the

solution in a different way (increase viscosity, ramp boundary conditions, use upwind, increase

corrections and so on).

• Instead, explicit under-relaxation factors can be reduced to as low as 0.1 and still obtain

convergence in a reasonable number of iterations.

• It is recommended to use the values mentioned in literature (referred to as industry standard).

176

Unsteady and steady simulations

• An optimum choice of under-relaxation factors is one that is small enough to ensure stable

computation but large enough to move the iterative process forward quickly.

• Different methods (SIMPLE, SIMPLEC, SIMPLER), have different URF requirements.

• These are the under-relaxation factors commonly used with SIMPLE and SIMPLEC methods

(industry standard),

What about steady simulations?

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right under-relaxation factors involved experience and a lot of trial and error.

SIMPLE

p → 0.3

U → 0.7

k → 0.7

omega → 0.7

epsilon → 0.7

177

SIMPLEC

p → 1.0

U → 0.9

k → 0.9

omega → 0.9

epsilon → 0.9

Unsteady and steady simulations

• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an

unsteady simulation.

• Remember, steady simulations are not time accurate, therefore we can not use them to

compute time statistics or compute the shedding frequency

Steady simulations vs. Unsteady simulations

179

Unsteady and steady simulations

• It is also possible to use under-relaxation factors with unsteady solvers.

• You should be careful not to use too low URF with unsteady solvers because you might loose time accuracy.

• You can use large URF (close to one) or the industry standard URF with unsteady solvers.

• If you use low values (less than 0.5 for all variables), it is recommended to run a time convergence test to

determine if you are losing time accuracy.

• The unsteady solution without URF must match the unsteady solution with URF, otherwise your solution is not

time-accurate.

• When you use URF with unsteady solvers you increase the diagonal dominance of the linear system.

Therefore, they improve the stability of unsteady solvers.

Under-relaxation factors and unsteady solvers

180

SIMPLE

p → 0.3

U → 0.7

k → 0.7

omega → 0.7

epsilon → 0.7

SIMPLEC

p → 1

U → 0.9

k → 0.9

omega → 0.9

epsilon → 0.9

SIMPLE – SIMPLEC – PIMPLE

p → 0.7 (0.3 IN SIMPLE)

U → 0.7

k → 0.7

omega → 0.7

epsilon → 0.7

Industry standard URF Recommended URF

Note: use these guidelines with unsteady solvers

Unsteady and steady simulations

Unsteady or steady solver?

181

Unsteady and steady simulations

Hairpin vortices - Hemisphere
www.wolfdynamics.com/wiki/hairpin_vortices/uns_or_ste.gif

Unsteady or steady solver?

182

http://www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani2.gif

Unsteady and steady simulations

Unsteady or steady solver?

• Steady simulations are not time accurate, hence we can not use them to

compute timel statistics or compute the shedding frequency.

• Generally speaking, and in the absence of highly unsteady flows, steady

simulations should give a result that is close to the mean solution of an

unsteady simulation.

• Be careful when post-processing steady simulations, the animations you

obtain does not represent time scales, they only show you how the

solution change from iteration to iteration.

• When post-processing steady simulations, you should use the last saved

iteration.

• You can also compute the average of a series of iterations.

• Unsteady simulation are time-accurate.

• They capture the unsteadiness of the flow (time scales).

• You can use these simulations to compute shedding frequency or

other time scales

• Post-processing unsteady simulations can be difficult and time-

consuming.

• When you post-process unsteady simulations, you access all the

time-steps saved.

• You can also compute the average of a series of time-steps.

• Remember, you need to define an adequate saving frequency and

time-step.

• You can use steady simulations to initialize unsteady simulations.

Steady simulation
www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani1.gif

Unsteady simulation
www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif

183

http://www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani1.gif
http://www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif

Unsteady and steady simulations

Unsteady or steady solver?

Steady simulation Unsteady simulation

• Steady simulations are not time accurate, hence we can not use them

to compute time statistics or compute the shedding frequency.

• Generally speaking, and in the absence of highly unsteady

phenomena, steady simulations should give a result that is close to

the mean solution of an unsteady simulation.

• Steady simulations are a very good starting point for unsteady

simulations.

• Unsteady simulations are time-accurate.

• They capture the unsteadiness of the flow (time scales).

• You can use these simulations to compute shedding frequency, but

remember, you need to define an adequate saving frequency and

time-step.

• Numerical diffusion can give you the impression that you have arrived

at a steady state.

184

Unsteady and steady simulations

Unsteady or steady solver?

Coarse mesh Fine mesh

• As the accuracy is better in the fine mesh, it manages to capture the

shedding frequency.

• Due to numerical diffusion (under-resolve time and/or spatial

scales), it is not possible to use this solution to conduct a

time seriesl analysis of the solution.

185

Unsteady and steady simulations

Unsteady or steady solver?

Unsteady simulation residualsSteady simulation residuals

186

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

187

Understanding the residuals

• To demonstrate how to interpret the residuals, let us use the flow around a cylinder case at

different Reynolds number.

• We will work with a Reynolds number equal to 20 (steady) and 200 (unsteady).

Unsteady behavior – Vortex shedding

Notice that to accelerate the convergence rate we are using non-uniform initialization

www.wolfdynamics.com/training/fvm/FVM_uns1.gif

Steady behavior – No flow separation

The initial unsteadiness is due to the non-uniform initialization

www.wolfdynamics.com/training/fvm/FVM_ste1.gif

Monitored quantity of interest – Drag coefficient Monitored quantity of interest – Drag coefficient 188

http://www.wolfdynamics.com/training/fvm/FVM_uns1.gif
http://www.wolfdynamics.com/training/fvm/FVM_ste1.gif

Understanding the residuals

• Before talking about residuals, let us clarify something.

• When we talk about iterations in unsteady simulations, we are talking about the time-step or

outer-iterations.

1. To arrive to this physical time

2. We iterate this many times

189

Understanding the residuals

• And we iterate inside each time-step (or outer-iteration), until reaching the linear solver

tolerance or maximum number of iterations.

190

Understanding the residuals

• This is a typical residual plot for an unsteady simulation.

191

Understanding the residuals

• This is a typical residual plot for an unsteady simulation.

• In this case, the fact that the initial residuals are not decreasing is not an indication that the solution is

diverging. Most likely this behavior is due to unsteadiness.

• However, the final residuals should reach the predefined tolerance criterion (linear solvers).

• Remember, residuals are not a direct indication that you are converging to the right solution.

• It is better to monitor a quantity of interest.

• No need to say that you should get physically realistic values.

• You should also monitor stability.

• To monitor the stability of the solution, you can check the minimum and maximum values of the field variables.

• If you have bounded quantities, check that you do not have over-shoots or under-shoots.

192

Understanding the residuals

• This is the residual plot of an unsteady

solution that has reached a steady-state

behavior.

• Notice that after a couple of thousands

iterations the initial residuals and final

residuals are the same.

• We are plotting the residuals against

iterations (or time-steps or outer-iterations).

• And this is the plot of the number of inner-

iterations against the number of outer-

iterations (time-steps).

• Notice that after 2000 time-steps, the

solution arrives to the convergence

criterion (linear solvers).

• It is important to do at least one iteration.

• Most CFD solvers will let you choose the

minimum and maximum number of

iterations (in the linear solvers).

193

Understanding the residuals

• Let us study the residual plot of an

unsteady solution (or flow), using a steady

solver.

• Notice that we are making the distinction

between steady solver and unsteady

solution.

• Here the initial residuals are not falling

(stalled convergence). This is an indication

of an unsteady solution or the wrong

numerics.

• Let us study the residual plot of an steady

solution (or flow), using a steady solver.

• In this case, the initial residuals are falling

below the convergence criterion

(monolithic convergence), hence we have

reached a steady-state.

• In comparison to unsteady solvers, steady

solvers require less iterations to arrive to a

converge solution, if they arrive.

194

Understanding the residuals

• For a steady flow (low Reynolds number), let us compare an integral quantity computed using a

steady solver and the same quantity computed using an unsteady solver

• As we can see, both quantities are roughly speaking the same.

• In comparison to unsteady solvers, steady solvers require less iterations to arrive to a converge

solution (if they arrive).

• Unsteady solvers need to run for longer times in order to get an average solution.

195

Understanding the residuals

• For an unsteady flow (high Reynolds number), let us compare an integral quantity computed

using a steady solver and the same quantity computed using an unsteady solver

• As we can see, the outcomes are very different.

• When the flow is unsteady, steady solvers do not capture well the mean solution.

• On the other hand, unsteady solver captures well the unsteadiness.

• Remember, unsteady solution can be averaged.

196

Understanding the residuals

• Finally, let us compare the residuals of a

first order and a second order numerical

scheme.

• This is the residual plot of an unsteady

simulation.

• Both methods are converging to the

desired tolerance.

• Also, the fact that the residuals drop faster

using a first order methods, does not mean

that they are better.

• This is the plot of the number of inner-

iterations against the number of outer-

iterations (time-steps).

• As you can see, the first order method is

less computationally expensive.

• However, the fact that the first order

method converges faster and is less

computationally expensive, it does not

mean it is better.

197

Understanding the residuals

• However, the fact that the first order method converge faster and is less computationally

expensive, it does not mean it is better.

• As you can see, first order methods highly under-predict the quantity of interest.

• In this case, the first order method takes more time to onset the instability (as they are highly

diffusive).

198

Understanding the residuals

• This is the output of all residuals for the

unsteady case (Reynolds number equal to

200)

• This is the output of all residuals for the

steady case (Reynolds number equal to

20).

• The jumps are due to the changes in

tolerance introduced while running the

simulation.

199

Understanding the residuals

• This is the output of the inner-iterations

against the outer-iterations for the unsteady

case (Reynolds number equal to 200).

• This is the output of the inner-residual

against the outer-residuals for the steady

case (Reynolds number equal to 20).

200

Understanding the residuals

• This is the output of the aerodynamic

coefficients for the unsteady case

(Reynolds number equal to 200).

• This is the output of the aerodynamic

coefficients for the steady case (Reynolds

number equal to 20).

201

Understanding the residuals

• Some gradient/slope limiters can adversely affect convergence rate towards steady state (this

behavior has been extensively documented).

• In some cases, the residuals get stalled (or flattened) even if you keep the solution running for

long times, and even if you evidence that a monitored quantity of interest is converging.

• Stalled residuals are mainly due to unsteadiness or the effect of gradient limiters.

• This behavior (which is mainly annoying), can be remediated by changing the gradient limiter or

switching to an unsteady solver.

• In some cases, this behavior can add some numerical diffusion to the solution.

Stalled residuals and effect of gradient limiters on convergence rate

Stalled residuals

Monotonic convergence

202

Understanding the residuals

203

Support slides:

• Under relaxation-factors.

• Steady and unsteady simulations.

• Solution of the linear system and

preconditioning

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

204

Boundary conditions and initial conditions

• First of all, when we use a CFD solver to find the approximate solution of the governing

equations, we are solving an Initial Boundary Value Problem (IBVP).

• In an IBVP, we need to impose appropriate boundary conditions and initial conditions.

• Boundary conditions are a required component of the numerical method, they tell the solver

what is going on at the boundaries of the domain.

• You can think of boundary conditions as source terms.

• Initial conditions are also a required component of the numerical method, they define the initial

state of the problem, and from this initial guess we start to iterate.

• No need to say that the boundary conditions and initial conditions need to be physically realistic.

On the initial boundary value problem (IBVP)

205

Boundary conditions and initial conditions

A few words about boundary conditions

• Boundary conditions (BC) can be divided into three fundamental mathematical types:

• Dirichlet boundary conditions: when we use this BC, we prescribe the value of a

variable at the boundary.

• Neumann boundary conditions: when we use this BC, we prescribe the gradient normal

to the boundary.

• Robin Boundary conditions: this BC is a mixed of Dirichlet boundary conditions and

Neumann boundary.

• You can use any of these three boundary conditions in any general CFD solver, OpenFOAM

included.

206

Boundary conditions and initial conditions

A few words about boundary conditions

• During this discussion, the semantics is not important, that depends of how you want to call the

BCs or how they are named in the solver, i.e., in, inlet, inflow, velocity inlet, incoming flow and

so on.

• Defining boundary conditions involves:

• Finding the location of the boundary condition in the domain.

• Determining the boundary condition type.

• Giving the required physical information.

• The choice of the boundary conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available at the boundary condition location.

• Numerical considerations.

• And most important, you need to understand the physics involved.

207

Boundary conditions and initial conditions

• To define boundary conditions, you need to know the location of the boundaries (where they are

in your mesh).

• You also need to supply the information at the boundaries.

• Last but not least important, you must know the physics involved.

A few words about boundary conditions

208

Boundary conditions and initial conditions

• Initial conditions (IC) can be divided into two groups:

• Uniform initial conditions.

• Non-uniform initial conditions.

• For non-uniform IC, the value used can be obtained from:

• Another simulation, including a solution with different grid resolution.

• A potential solver.

• Experimental results.

• A mathematical function

• Reduced order models.

A few words about initial conditions

209

Boundary conditions and initial conditions

• Defining initial conditions involves:

• Finding the location of the initial condition in the domain.

• Determining the initial condition type.

• Giving the required physical information.

• The choice of the initial conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available.

• Numerical considerations.

• And most important, you need to understand the physics involved.

A few words about initial conditions

210

Boundary conditions and initial conditions

• For initial conditions, you need to supply the initial information or initial state of your problem.

• This information can be a uniform value or a non-uniform value.

• You can apply the initial conditions to the whole domain or separated zones of the domain.

• Last but not least important, you must know the physics involved.

A few words about initial conditions

211

Boundary conditions and initial conditions

• Inlets and outlets boundary conditions:

• Inlets are for regions where inflow is expected; however, inlets might support outflow when

a velocity profile is specified.

• Pressure boundary conditions do not allow outflow at the inlets.

• Velocity specified inlets work better with incompressible flows.

• Pressure and mass flow inlets are suitable for compressible and incompressible flows.

• Same concepts apply to outlets, which are regions where outflow is expected.

212

Boundary conditions and initial conditions

• Zero gradient and backflow boundary conditions:

• Zero gradient boundary conditions extrapolates the values from the domain. They require

no information.

• Zero gradient boundary conditions can be used at inlets, outlets, and walls.

• Backflow boundary conditions provide a generic outflow/inflow condition, with specified

inflow/outflow for the case of backflow.

• In the case of a backflow outlet, when the flux is positive (out of domain) it applies a

Neumann boundary condition (zero gradient), and when the flux is negative (into of

domain), it applies a Dirichlet boundary condition (fixed value).

• Same concept applies to backflow inlets.

213

Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• Some combinations of boundary conditions are very stable, and some are less reliable.

• And some combinations of boundary conditions are unreliable, e.g.,

• Inlet velocity at the inlet and pressure zero gradient at the outlet. This combination

should be avoided because the static pressure level is not fixed.

• Qualitatively speaking, the results are very different.

• This simulation will eventually crash.

BCs 1. Inlet velocity and fixed outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC1.gif

BCs 2. Inlet velocity and zero gradient outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC2.gif

214

http://www.wolfdynamics.com/wiki/BC/aniBC1.gif
http://www.wolfdynamics.com/wiki/BC/aniBC2.gif

Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• If you only rely on a QOI and the residuals, you will not see any major difference between

the two cases with different outlet pressure boundary condition.

• This is very misleading.

• However, when you visualize the solution, you will realize that something is wrong. This is

a case where pretty pictures can be used to troubleshoot the solution.

• Quantitative speaking, the results are very similar.

• However, this simulation will eventually crash.

Residual plot for pressure Quantity of interest – Force coefficient on the body

215

Boundary conditions and initial conditions

• Symmetry boundary conditions:

• Symmetry boundary conditions are a big simplification of the problem. However, they help

to reduce mesh cell count.

• Have in mind that symmetry boundary conditions only apply to planar faces.

• To use symmetry boundary conditions, both the geometry and the flow field must be

symmetric.

• Mathematically speaking, setting a symmetry boundary condition is equivalent to:

• Zero normal velocity at the symmetry plane and zero normal gradients of all variables

at the symmetry plane.

• Physically speaking, they are equivalent to slip walls.

216

Boundary conditions and initial conditions

• Location of the outlet boundary condition:

• Place outlet boundary conditions as far as possible from recirculation zones or backflow

conditions, by doing this you increase the stability.

• Remember, backflow conditions requires special treatment.

Possible backflow
Far enough so the flow can be

considered fully developed
Might be OK

217

Boundary conditions and initial conditions

218

• Domain dimensions (when the dimensions are not known):

• If you do not have any constrain in the domain dimensions, you can use as a general guideline the

dimensions illustrated in the figure below, where L is a reference length (in this case, L is the wing chord).

• The values illustrated in the figure are on the conservative side, but if you want to play safe, multiply the

values by two or three.

• Always verify that there are no significant gradients normal to any of the boundary patches. If there are,

you should consider increasing the domain dimensions.

Boundary conditions and initial conditions

• Boundary conditions and initial conditions need to be physically realistic.

• Poorly defined boundary conditions can have a significant impact on your solution.

• Initial conditions are as important as the boundary conditions.

• A good initial condition can improve the stability and convergence rate.

• On the other hand, unphysical initial conditions can slow down the convergence rate or can cause

divergence.

• And in some situations, can lead to a different solution. Very misleading.

• You need to define boundary conditions and initials conditions for every single variable you are

solving.

• Setting the right boundary conditions is extremely important.

• But have in mind that you need to understand the physics in order to set the right boundary

conditions.

• Do not force the flow at the outlet, use a zero normal gradient for all flow variables and fix the

pressure level.

• The solver extrapolates the required information from the interior.

A few considerations and guidelines

219

Boundary conditions and initial conditions

• Be careful with backward flow at the outlets (flow coming back to the domain) and backward flow

at inlets (reflection waves), they required special treatment.

• If possible, select inflow and outflow boundary conditions such that the flow either goes in or out

normal to the boundaries.

• At outlets, use zero gradient boundary conditions only with incompressible flows and when you

are sure that the flow is fully developed.

• Remember, do not use zero gradient for the pressure.

• Outlets that discharge to the atmosphere can use a static pressure boundary condition.

• This is interpreted as the static pressure of the environment into which the flow exhausts.

• Generally speaking, it is better to set the mass flow or total pressure at the outlet.

• Inlets that take flow into the domain from the atmosphere can use a total pressure boundary

condition (e.g., open window).

• Mass flow inlets produce a uniform velocity profile at the inlet.

A few considerations and guidelines

220

Boundary conditions and initial conditions

• Pressure specified boundary conditions at inlets allow a natural velocity profile to develop.

• The required values of the boundary conditions and initial conditions depend on the equations

you are solving, and physical models used, e.g.,

• For incompressible and laminar flows, you will need to set only the velocity and pressure.

• If you are solving a turbulent compressible flow you will need to set velocity, pressure,

temperature and the turbulent variables.

• For multiphase flows you will need to set the primitives variables for each phase. You will

also need to initialize the phases.

• If you are doing turbulent combustion or chemical reactions, you will need to define the

species, reactions and turbulent variables.

• Minimize grid skewness, non-orthogonality, growth rate, and aspect ratio near the boundaries.

You do not want to introduce diffusion errors early in the simulation, especially close to the inlets.

• Try to avoid large gradients in the direction normal to the boundaries and near inlets and outlets.

That is to say, put your boundaries far away from where things are happening.

A few considerations and guidelines

221

Roadmap

1. CFD and Multiphysics simulations

2. Important concepts to remember

3. The Finite Volume Method: An overview

4. Navier-Stokes equations and pressure-velocity coupling

5. On the CFL number

6. Unsteady and steady simulations

7. Understanding the residuals

8. Boundary conditions and initial conditions

9. The FVM in OpenFOAM: some implementation details and

computational pointers

10. Best standard practices – General guidelines

11. Final remarks

223

The FVM in OpenFOAM

• We just addressed the theorical background of the FVM method.

• We have seen that a lot of sophistication goes into mesh data bookkeeping, especially for

unstructured meshes.

• We know that there are many space and time discretization schemes.

• We also know that at the end of the day we want a solution that is at least second order accurate.

• Also, as we are solving an initial boundary value problem (IBVP), we need to give boundary

conditions and initial conditions (that needs to be realistic).

• Then, somehow OpenFOAM assemblies a matrix of coefficients.

• And then it will crunch numbers using the linear solvers.

• So, the big question is: what does OpenFOAM do? And where can I choose the different options?

• We are going to review the whole process in this section.

224

The FVM in OpenFOAM

So, what does OpenFOAM do?

• It simply discretizes in space and time the governing equations in arbitrary unstructured meshes.

• Assembling in this way a large set of linear algebraic equations (LAE).

• It then solves this system of LAE using iterative linear solvers to find the solution of the

transported quantities.

• Therefore, we need to give to OpenFOAM the following information:

• Discretization of the solution domain or the mesh. This information is contained in the
directory constant/polyMesh

• Boundary conditions and initials conditions. This information is contained in the directory 0

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. This
information is contained in the directory constant

• Physics involved, such as turbulence modeling, mass transfer, source terms, etc. This
information is contained in the directories constant and/or system

• How to discretize in space each term of the governing equations (diffusive, convective,
gradient and source terms). This information is set in the system/fvSchemes dictionary.

225

The FVM in OpenFOAM

So, what does OpenFOAM do?

• It simply discretizes in space and time the governing equations in arbitrary unstructured meshes.

• Assembling in this way a large set of linear algebraic equations (LAE).

• It then solves this system of LAE using iterative linear solvers to find the solution of the

transported quantities.

• Therefore, we need to give to OpenFOAM the following information:

• How to discretize in time the semi-discrete governing equations. This information is set in
the system/fvSchemes dictionary.

• How to solve the linear system of linear algebraic equations (crunch numbers). This
information is set in the system/fvSolution dictionary.

• Set runtime parameters and general instructions on how to run the case (such as time step
and maximum CFL number). This information is set in the system/controlDict

dictionary.

• Additionally, we may set sampling and monitors for post-processing. This information is set
in the system/fvSchemes dictionary or in the sampling dictionaries located in the directory

system/

226

The FVM in OpenFOAM

Are there default options in OpenFOAM?

• When you use commercial CFD applications, they will use the best possible options or default

options (stable and accurate).

• Even if you choose the wrong options, the solver will do some black magic to stabilize the

solution and get the best results.

• In OpenFOAM, such default options do not exist.

• It is to the user to choose the best options based on the theory.

• Therefore, it is important to understand the theory.

• Hereafter, we are going to give you what we think are the best options.

• Which are based on what is found in commercial software, extensive validation, and experience.

• A small warning, do not take the options in the tutorials that come with OpenFOAM as the default

or best options.

• If you go through the tutorials, you will realize that some of them uses upwind or do not do any

kind of correction.

• Remember, those tutorials are there just to show you how to setup a case.

227

The FVM in OpenFOAM

Discretization methods

228

The FVM in OpenFOAM

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

Where do we set all the discretization schemes in OpenFOAM?

• The fvSchemes dictionary contains the information related to

the discretization schemes for the different terms appearing in

the governing equations.

• The discretization schemes can be chosen in a term-by-term

basis.

• The keyword ddtSchemes refers to the time discretization.

• The keyword gradSchemes refers to the gradient term

discretization.

• The keyword divSchemes refers to the convective terms

discretization.

• The keyword laplacianSchemes refers to the Laplacian

terms discretization.

• The keyword interpolationSchemes refers to the method

used to interpolate values from cell centers to face centers. It

is unlikely that you will need to use something different from

linear.

• The keyword snGradSchemes refers to the discretization of

the surface normal gradients evaluated at the faces.

• Remember, if you want to know the options available for each

keyword you can use the banana method.

229

The FVM in OpenFOAM

Time discretization schemes

• These are the time discretization schemes available in OpenFOAM:

• backward

• bounded

• CoEuler

• CrankNicolson

• Euler

• localEuler

• SLTS

• steadyState

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes

230

The FVM in OpenFOAM

Time discretization schemes

• These are the time discretization schemes that you will use most of the times:

• steadyState: for steady state simulations (implicit/explicit).

• Euler: time dependent first order (implicit/explicit), bounded.

• backward: time dependent second order (implicit), bounded/unbounded.

• CrankNicolson: time dependent second order (implicit), bounded/unbounded.

• First order methods are bounded and stable, but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.

• If you keep the CFL less than one when using the Euler method, numerical diffusion is not that

much.

232

The FVM in OpenFOAM

Time discretization schemes

• The Crank-Nicolson method as it is implemented in OpenFOAM, uses a blending factor.

ddtSchemes

{

default CrankNicolson ;

}

• Setting to 0 is equivalent to running a pure Euler scheme (robust but first order accurate).

• By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate but

oscillatory, formally second order accurate).

• If you set the blending factor to 0.5, you get something in between first order accuracy and

second order accuracy, or in other words, you get the best of both worlds.

• A blending factor of 0.7-0.9 is safe to use for most applications (stable and accurate).

233

The FVM in OpenFOAM

Convective terms discretization schemes

• There are many convective terms discretization schemes available in OpenFOAM (more than 50

last time we checked).

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/interpolation/surfaceInterpolation

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linearUpwindV: second order accurate, bounded, formulation for vector fields.

• linear: second order accurate, unbounded.

• vanLeer: TVD, second order accurate, bounded.

• Minmod: TVD, second order accurate, bounded (alternative to vanLeer).

• limitedLinear: second order accurate, unbounded, but more stable than pure linear.

Recommended for LES simulations (kind of similar to the Fromm method).

• LUST: blended 75% linear and 25% linearUpwind scheme.

• First order methods are bounded and stable but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution. 234

The FVM in OpenFOAM

Convective terms discretization schemes

• When you use linearUpwind and LUST for div(phi,U), you need to tell OpenFOAM how to

compute the velocity gradient or grad(U),

gradSchemes

{

grad(U) cellMDLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

}

• Same applies for scalars (e.g., k, epsilon, omega, T, e, h) or other vector fields.

235

The FVM in OpenFOAM

Gradient terms discretization schemes

• These are the gradient discretization schemes available in OpenFOAM:

• edgeCellsLeastSquares

• fourth

• Gauss

• leastSquares

• pointCellsLeastSquares

• All of them are at least second order accurate.

• Some of the gradient discretization methods will require information on how to interpolate the

cell-centered value to the face-center, e.g.,

• You will find the source code in the following directory:​

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes

grad(U) Gauss linear;

Gradient computation method

Cell-center to face-center interpolation methodCompute the gradient of this field variable,

e.g., U, p, T, alpha, k, omega, and so on

236

The FVM in OpenFOAM

Gradient terms discretization schemes

• These are the gradient limiter schemes available in OpenFOAM:

• cellLimited

• cellMDLimited

• faceLimited

• faceMDLimited

• Gradient limiters will avoid over and under shoots on the gradient computations. This increases

the stability of the method but will add diffusion due to clipping.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes

238

The FVM in OpenFOAM

Gradient terms discretization schemes

• Additionally, you have the option to change the gradient limiter method.

• The following options are available:

• The default method is the minmod.

• You can use the cubic or Venkatakrishnan method only with the cellLimited option.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGr

adSchemes/cellLimitedGrad/gradientLimiters

• cubic

• minmod

• Venkatakrishnan

239

The FVM in OpenFOAM

Gradient terms discretization schemes

• Additionally, you have the option to change the gradient limiter method.

• The following options are available:

• To use the cubic method, you need to define the following keyword:

• cellLimited<cubic>

• To use the Venkatakrishnan method you need to define the following keyword:

• cellLimited<Venkatakrishnan>

• Recall that the cubic and Venkatakrishnan are differentiable limiters, whereas the minmod is

non-differentiable.

• cubic

• minmod

• Venkatakrishnan

240

The FVM in OpenFOAM

Gradient terms discretization schemes

• These are the gradient discretization schemes that you will use most of the times:

• Gauss + interpolation method

• Gauss linear (Gauss cell-based)

• Gauss pointLinear (Gauss node-based)

• leastSquares (no interpolation method information required)

• These are the gradient limiter schemes that you will use most of the times:

• cellLimited or cellMDLimited

• All of the gradient discretization schemes are at least second order accurate.

• It is recommended not to add too aggressive limiters to all field variables.

• Most of the times is fine to add limiters only for velocity (U) and the turbulent quantities (k,

omega, epsilon, and so on).

• Avoid adding aggressive limiters to pressure (p), temperature (T), internal energy (e), volume-of-

fraction (alpha), interface curvature (nHat); as they may add too much numerical diffusion.

• If you add too aggressive limiters to all field variables you will add numerical diffusion due to

clipping, smear the solution, or stalled the residuals (in steady simulations).

241

The FVM in OpenFOAM

Gradient terms discretization schemes

• According to their diffusivity, the gradient limiter schemes available in OpenFOAM are classified

as follows:

cellMDLimited

cellLimited

faceMDLimited

faceLimited

• Cell limiters will limit cell-to-cell values.

• Face limiters will limit cell-to-face values.

• The multi-directional (or multi-dimensional) limiters (cellMDLimited and faceMDLimited), will

apply the limiter in each face direction separately (that is, only in the unbounded direction).

• The standard limiters (cellLimited and faceLimited), will apply the limiter to all components of

the gradient.

• The default method is the Minmod.

Less diffusive

More diffusive

Note: for smooth field variation,

cell limiting may provide less

numerical dissipation on meshes

with skewed cells.

242

The FVM in OpenFOAM

Gradient terms discretization schemes

• Limiting direction:

• Cell-to-cell direction limiting,

• Cell-to-face direction limiting,

• Cell based limiters will limit cell-to-cell values. That is, in the direction dPN.

• Face based limiters will limit cell-to-face values. That is, in the direction dPf.

• The more skewed the mesh is, the bigger the different between these methods.

• In good quality meshes both limiters will give 2nd order accuracy. However, in highly skewed

meshes the face limiters might give 1st order accuracy.

• The method should be selected based in accuracy, smooth field variation, and the need of

unnecessary limiting. 243

The FVM in OpenFOAM

Gradient terms discretization schemes

• The gradient limiter implementation in OpenFOAM, uses a blending factor .

gradSchemes

{

default cellMDLimited Gauss linear ;

}

• Setting to 0 is equivalent to turning off the gradient limiter. You gain accuracy but the solution

might become unbounded.

• By setting the blending factor equal to 1 the limiter is always on. You gain stability but you give

up accuracy (due to gradient clipping).

• If you set the blending factor to 0.5, you get the best of both worlds.

• You can use limiters with all gradient discretization schemes.

It can be any method

Gradient limiter scheme

245

The FVM in OpenFOAM

Laplacian terms discretization schemes

• These are the Laplacian terms discretization schemes available in OpenFOAM:

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/snGradSchemes

• corrected

• faceCorrected

• limited

• linearFit

• orthogonal

• quadraticFit

• uncorrected

246

The FVM in OpenFOAM

Laplacian terms discretization schemes

• These are the Laplacian terms discretization schemes that you will use most of the times:

• orthogonal: mainly limited for hexahedral meshes

with no grading (a perfect mesh). Second order

accurate, bounded on perfect meshes, without non-

orthogonal corrections.

• corrected: for meshes with grading and non-

orthogonality. Second order accurate, bounded

depending on the quality of the mesh, with non-

orthogonal corrections.

• limited: for meshes with grading and non-

orthogonality. Second order accurate, bounded

depending on the quality of the mesh, with non-

orthogonal corrections.

• uncorrected: usually limited to hexahedral meshes

with very low non-orthogonality. Second order

accurate, without non-orthogonal corrections. Stable

but more diffusive than the limited and corrected

methods.

Can be computed using the over-relaxed approach

Can be computed using the over-relaxed approach
247

The FVM in OpenFOAM

Laplacian terms discretization schemes

• According to the mesh, the Laplacian discretization can be chosen as follows:

Perfect orthogonal mesh with no strectching

laplacianSchemes → orthogonal

Orthogonal mesh with strectching

laplacianSchemes → limited 1 or corrected

Mesh with some degree of non-orthogonality (low to medium)

laplacianSchemes → limited 1 to limited 0.5

General unstructured meshes

laplacianSchemes → limited 0.5 248

The FVM in OpenFOAM

Laplacian terms discretization schemes

• The limited method uses a blending factor .

laplacianSchemes

{

default Gauss linear limited ;

}

• Setting to 1 is equivalent to using the corrected method.

• The computation of the Laplacian on the non-orthogonal mesh depends on the orthogonal

contribution (implicit contribution), and on the non-orthogonal contribution (explicit

contribution).

• You gain accuracy, but the solution might become unbounded.

• This is approach is recommended for meshes with non-orthogonality less than 70 degrees.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization

249

The FVM in OpenFOAM

Laplacian terms discretization schemes

• The limited method uses a blending factor .

laplacianSchemes

{

default Gauss linear limited ;

}

• Setting to 0 is equivalent to using the uncorrected method.

• The computation of the Laplacian on the non-orthogonal mesh depends only on the

orthogonal contribution.

• You give up accuracy with the potential benefit of gaining some stability.

• This is approach is recommended for very good quality meshes.

• That is, meshes with non-orthogonality less than 60 degrees.

• Rarely you will use this approach.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization

250

The FVM in OpenFOAM

Laplacian terms discretization schemes

• The limited method uses a blending factor .

laplacianSchemes

{

default Gauss linear limited ;

}

• By setting to 0.5 you will get the best of both worlds.

• The computation of the Laplacian on the non-orthogonal mesh depends on the orthogonal

contribution (implicit contribution), and on the non-orthogonal contribution (explicit

contribution).

• However, the non-orthogonal contribution is limited so that it does not exceed the

orthogonal part.

• The limiting is proportional to the blending coefficient used.

• You give up accuracy but gain stability.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization

251

The FVM in OpenFOAM

Laplacian terms discretization schemes

• The limited method uses a blending factor .

laplacianSchemes

{

default Gauss linear limited ;

}

• Final guidelines:

• For meshes with non-orthogonality less than 70, you can set the blending factor to 1.

• For meshes with non-orthogonality between 70 and 85, you can set the blending factor to 0.5

• This is the method recommended for industrial unstructured meshes.

• For meshes with non-orthogonality more than 85, it is better to get a better mesh.

• But if you want to use that mesh, you can set the blending factor between 0.333 and 0.5.

• You should also increase the number of non-orthogonal corrections.

• If you are doing LES or DES simulations, use a blending factor of 1.

• This means that you need good meshes.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization

252

The FVM in OpenFOAM

Laplacian terms discretization schemes

253

• Just to make it clear, the blending factor is used to avoid the non-orthogonal contribution

exceeding the orthogonal part, that is,

Implicit contribution Explicit contribution

non-orthogonal contribution ≤ orthogonal contribution

• And recall that by using the over-relaxed approach, the Laplacian term (or diffusive flux) is

computed (and corrected) as follows,

The FVM in OpenFOAM

Laplacian terms discretization schemes

254

• Just to make it clear, the blending factor is used to avoid the non-orthogonal contribution

exceeding the orthogonal part, that is, non-orthogonal contribution ≤ orthogonal contribution.

The blending factor works as a limiter acting on this term (non-orthogonal contribution)

• Then, the amount of correction applied to the non-orthogonal contribution is proportional to the

blending coefficient used in the limited approach.

Implicit contribution Explicit contribution

The FVM in OpenFOAM

Laplacian terms discretization schemes

255

• On the need of limiting the non-orthogonal contribution.

• In meshes with large non-orthogonality, the explicit term can lead to unboundedness and

eventually divergence.

• To avoid unboundedness, a limiting is applied so that the non-orthogonal contribution never

exceeds the orthogonal contribution.

• This limiting is local, similar to the treatment done for the connective terms when using

slope limiters and TVD schemes.

• The explicit contribution is added to the RHS of the linear system (source term), so if this

term becomes too large it will lead to convergence problems.

• If the non-orthogonal contribution is large, it becomes harder to guarantee diagonal

dominance of the matrix of coefficient; therefore, the Scarborough criterion might not be

satisfied.

The blending factor works as a limiter acting on this term (non-orthogonal contribution)

Implicit contribution Explicit contribution

The FVM in OpenFOAM

Laplacian terms discretization schemes

• It is unlikely that you will need to use something different from linear to interpolate the diffusion

coefficient.

• If that situation arises (e.g., if you are dealing with CHT where you have different diffusion

coefficients in each region), the following options are valid:

• cubic

• harmonic

• linear

• midPoint

• pointLinear

• reverseLinear

laplacianSchemes

{

default Gauss linear limited ;

}

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization

• The limited method uses a blending factor .

256

The FVM in OpenFOAM

Laplacian terms discretization schemes

• The surface normal gradients terms usually use the same method as the one chosen for the

Laplacian terms.

• For instance, if you are using the limited 1 method for the Laplacian terms, you can use the

same method for snGradSchemes:

laplacianSchemes

{

default Gauss linear limited 1;

}

snGradSchemes

{

default limited 1;

}

258

The FVM in OpenFOAM

What method should I use?

259

The FVM in OpenFOAM

Recommended setup for most cases

ddtSchemes

{

default CrankNicolson 0; //0-0.333

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwindV grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• This setup is recommended for most of

the cases.

• It is very similar to the default method you will find in

commercial solvers.

• In overall, this setup is second order accurate and fully

bounded.

• According to the quality of your mesh, you will need to

change the blending factor of the laplacianSchemes and

snGradSchemes keywords.

• To keep time diffusion to a minimum, use a CFL number

less than 2, and preferably below 1.

• If during the simulation the turbulence quantities become

unbounded, you can safely change the discretization

scheme to upwind. After all, turbulence is diffusion.

• For gradient discretization the leastSquares method is

more accurate. But we have found that it is a little bit

oscillatory in tetrahedral meshes.

260

The FVM in OpenFOAM

Recommended setup for most cases

ddtSchemes

{

default Euler; //0-0.333

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwind grad(U);

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• And if the previous setup is

becoming a little bit oscillatory,

you can try this variant.

• In overall, this setup still is second order accurate and fully

bounded, except for the turbulence terms.

• However, this is not a big problem because turbulence is a

diffusive process.

• To keep time diffusion to a minimum, use a CFL number

less than 2, and preferably below 1.

261

The FVM in OpenFOAM

A very accurate but oscillatory numerics

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss leastSquares;

}

divSchemes

{

default none;

div(phi,U) Gauss linear;

div(phi,omega) Gauss linear;

div(phi,k) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use this

method.

• In overall, this setup is second order accurate but

oscillatory.

• Use this setup with LES simulations or laminar flows with

no complex physics.

• Use this method with good quality meshes.

• According to the quality of your mesh, you will need to

change the blending factor of the laplacianSchemes and

snGradSchemes keywords.

262

The FVM in OpenFOAM

An accurate and a little bit more stable numerics

ddtSchemes

{

default CrankNicolson 0.7;

}

gradSchemes

{

default cellMDLimited Gauss linear 0.5;

}

divSchemes

{

default none;

div(phi,U) Gauss linear;

div(phi,omega) Gauss limitedLinear 1;

div(phi,k) Gauss limitedLinear 1;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use this

method.

• In overall, this setup is second order accurate.

• In the presence of strong gradients, it might oscillate a little

bit.

• This setup is recommended for cases with no complex

physics.

• Use this method with good quality meshes.

• According to the quality of your mesh, you will need to

change the blending factor of the laplacianSchemes and

snGradSchemes keywords.

263

The FVM in OpenFOAM

Still accurate (but starting to become diffusive) numerics

ddtSchemes

{

default CrankNicolson 0.333

}

gradSchemes

{

default cellLimited Gauss linear 0.333;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwindV grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• In overall, this setup is second order accurate.

• It is more diffusive than the previous one.

• This setup is partially bounded, we re using gradient

limiters only for U.

• Here, we are giving up accuracy to gain stability.

• According to the quality of your mesh, you will need to

change the blending factor of the laplacianSchemes and

snGradSchemes keywords.

264

The FVM in OpenFOAM

A very stable but too diffusive numerics

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• If you are looking for extra stability, you can use this

method.

• This setup is very stable but too diffusive.

• This setup is first order in space and time.

• You can use this setup to start the solution in the presence

of bad quality meshes or strong discontinuities.

• Remember, you can start using a first order method and

then switch to a second order method.

• According to the quality of your mesh, you will need to

change the blending factor of the laplacianSchemes and

snGradSchemes keywords.

• You can use this method for troubleshooting. If the solution

diverges, you better check boundary conditions, physical

properties, and so on.

• Start robustly, end with accuracy.

265

The FVM in OpenFOAM

Pressure velocity coupling

SIMPLE and PISO loops

267

The FVM in OpenFOAM

• In OpenFOAM, you will find segregated pressure-based solvers.

• The following methods are available:

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• PISO (Pressure Implicit with Splitting Operators)

• Additionally, you will find something called PIMPLE, which is a hybrid between SIMPLE and

PISO.

• Also known as iterative PISO or PISO-ITA.

• The PISO-ITA formulation can give you more accuracy and stability when using very large time-

steps, pseudo-transient simulations, or when dealing with complex physics.

• The standard PISO, is also know as PISO-NITA or non-iterative PISO.

268

The FVM in OpenFOAM

• In OpenFOAM, the PISO and PIMPLE methods are formulated for unsteady simulations.

• Whereas the SIMPLE and SIMPLEC methods are formulated for steady simulations.

• If conserving time is not a priority, you can use the PIMPLE method in pseudo transient mode.

• The pseudo transient PIMPLE method is more stable than the SIMPLE method, but it has a

higher computational cost.

• Depending on the method and solver you are using, you will need to define a specific sub-
dictionary in the dictionary file fvSolution.

• For instance, if you are using the PISO method, you will need to specify the PISO sub-

dictionary.

• And depending on the method, each sub-dictionary will have different entries.

• You will find the solvers in the following directory:

• $WM_PROJECT_DIR/applications/solvers

269

The FVM in OpenFOAM

• As already seen, the SIMPLE and PISO methods are used to deal with the coupling of the

pressure and velocity equations (P-V coupling).

• In the original governing equations, the continuity and momentum equations are decoupled,

that is, there is no direct pressure link.

• Therefore, we need to use some mathematical tricks to deal with this decoupling.

• In the SIMPLE and PISO methods, we mathematically manipulate the starting equations, so the

pressure now appears in both equations.

• In this way there is a direct link between the governing equations.

• It is worth stressing that the manipulated equations are equivalent to the original equations.

• There is no loss of generality.

• When using the SIMPLE and PISO methods, we use the velocity obtained in the momentum

equation to compute the pressure using the newly derived pressure equation, and then correct

the velocity with the new pressure value.

270

The FVM in OpenFOAM

• SIMPLE

• S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum

transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, 15, 1787-1806

(1972).

• SIMPLEC or SIMPLE consistent

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for

predicting incompressible fluid flows”, Numerical Heat Transfer, 7, 147-163 (1984).

• PISO

• R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-splitting”, J.

Comput. Phys., 62, 40-65 (1985).

On the origins of the methods – Useful references

271

The FVM in OpenFOAM

• PIMPLE

• Unknown origins outside OpenFOAM ecosystem (we are referring to the semantics).

• It is equivalent to PISO with outer iterations (iterative time-advancement of the solution).

• Useful reference (besides PISO reference):

• I. E. Barton, “Comparison of SIMPLE and PISO-type algorithms for transient flows, Int.

J. Numerical methods in fluids, 26,459-483 (1998).

• P. Oliveira and R. I. Issa, “An improved piso algorithm for the computation of

buoyancy-driven flows”, Numerical Heat Transfer, 40, 473-493 (2001).

• Rhie-Chow interpolation

• C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with

trailing edge separation”, AIAA Journal, Vol. 21, 1525-1532 (1983).

272

On the origins of the methods – Useful references

The FVM in OpenFOAM

Equations used in the SIMPLE and PISO loops

• Then, by taking the divergence of the momentum equation and setting , we

obtain,

• The pressure equation is derived starting from the momentum equation,

• Then, the final form of the pressure equation is as follows,

where

273

The FVM in OpenFOAM

Equations used in the SIMPLE and PISO loops

274

• In the pressure-based approach, the actual equations that are being solved are,

where

This system of equations is

equivalent to the original

Navier-Stokes equations.

• The previous equations are solved in a given domain, with boundary conditions BCs, and initial

condition ICs.

• In this set of equations, continuity is enforced while deriving the pressure equation

(referred to as pressure-Poisson equation) and in all boundaries of the domain.

• We use these equations because in the original incompressible Naiver-Stokes equations,

pressure does not appear in the continuity equation, so is not possible to link the equations.

• Therefore, we derive an alternative set of equations where pressure appears (albeit in the form

of a gradient and large pressure gradients may cause stability and accuracy problems).

• So now we can use the velocity obtained in the momentum equation (momentum predictor

step) to compute the pressure using the pressure-Poisson equation (pressure corrector step),

and then correct the velocity with the new pressure value (momentum corrector step).

• This is referred to as pressure-velocity coupling (P-V coupling).

The FVM in OpenFOAM

• The equations used in the loops implemented in OpenFOAM are divided by A.

• The matrix A contains the diagonal coefficients of the momentum equations corresponding to

the SIMPLE or PISO loops.

• By dividing by A, makes the equations more convergent.

• In the momentum equation, add and subtract the term AU,

• Then, divide by A, take divergence and apply

Equations used in OpenFOAM SIMPLE and PISO loops

275

The FVM in OpenFOAM

• Then, the pressure equation is expressed as follows (pay attention that is divided by A),

• The momentum corrector (also divided by A), is expressed as follows,

• Notice that the momentum corrector equation is obtained from equation,

Equations used in OpenFOAM SIMPLE and PISO loops

276

• As we already know, mesh non-orthogonality

introduces secondary gradients into the pressure

equation (the term in the equation).

• To reduce any error introduced by secondary

gradients, we need to correct the pressure equation.

• That is, we solve for pressure and then we correct it,

obtaining in this way better approximations.

• This is controlled using the

nNonOrthogonalCorrectors keyword.

• After correcting U (momentum corrector), we can

substitute the new value in the pressure equation

and solve again.

• This is controlled by the keyword nCorrectors (total

passes through pressure and momentum corrector

equations).

• Notice that mesh non-orthogonality and skewness

also introduces secondary gradients in the energy

equation, .

• The energy equation tends to be more sensitive to

secondary gradients than the pressure equation.

Therefore, is recommended to do more corrections.

The FVM in OpenFOAM

Equations used in OpenFOAM SIMPLE and PISO loops

278

The FVM in OpenFOAM

The SIMPLE sub-dictionary

SIMPLE

{

nNonOrthogonalCorrectors 1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the SIMPLE pressure-velocity coupling method.

• The SIMPLE method only makes one correction.

• An additional correction to account for mesh non-orthogonality is available when using the

SIMPLE method. The number of non-orthogonal correctors is specified by the

nNonOrthogonalCorrectors keyword.

• The number of non-orthogonal correctors is chosen according to the mesh quality.

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction.

279

The FVM in OpenFOAM

The SIMPLE sub-dictionary

• You can use the optional keyword consistent to enable or disable the SIMPLEC method.

• This option is disable by default.

• In the SIMPLEC method, the cost per iteration is marginally higher but the convergence rate is

better so the number of iterations can be reduced.

• The SIMPLEC method relaxes the pressure in a consistent manner and additional relaxation of

the pressure is not generally necessary.

• In addition, convergence of the p-U system is better and still is reliable with less aggressive

relaxation of the momentum equation.

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors 1;

}

280

The FVM in OpenFOAM

The SIMPLE sub-dictionary

• These are the typical (or industry standard) under-relaxation factors for the SIMPLE and

SIMPLEC methods.

• Remember the under-relaxation factors are problem dependent.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U 0.7;

k 0.7;

omega 0.7;

}

}

relaxationFactors

{

fields

{

p 0.9;

}

equations

{

p 0.9;

U 0.9;

k 0.9;

omega 0.9;

}

}

SIMPLE SIMPLEC

Usually there is no need

to under-relax pressure;

however, it is advisable.

281

The FVM in OpenFOAM

The SIMPLE sub-dictionary

• If you are planning to use the SIMPLEC

method, we recommend you use under-

relaxation factors that are little bit smaller that

the commonly recommended values.

• If during the simulation you still have some

stability problems, try to reduce all the values

to 0.5.

• Remember the under-relaxation factors are

problem dependent.

• It is also recommended to start the simulation

with low values (about 0.5), and then increase

the values slowly up to 0.7 or 0.9 (for faster

convergence).

• For complex physics or when the solution

diverges with no reason, set all URF values to

0.7 or even lower.

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

p 0.7;

U 0.7;

k 0.7;

omega 0.7;

}

}

SIMPLEC

282

The FVM in OpenFOAM

The SIMPLE sub-dictionary

• The SIMPLE and SIMPLEC methods require the definition of under-relaxation factors (URF).

• The URF control the change of the field variables from iteration to iteration.

• If you do not define URF they will be switch-off, therefore, you will not use under-relaxation and is

likely that the solution will diverge.

• In OpenFOAM, setting the URF values equal to 1 is not equivalent to turning them off.

• URF values equal to one will make the linear system more diagonally dominant.

• To know what field variables can be under-relaxed, go to the solver directory or model directory

(e.g., turbulence models), and type in the terminal:

• $> grep -rn "relax()"

• All variables reported by this command requires the definition of under-relaxation factors.

• So far we have addressed the SIMPLE method. Have in mind that you can also use URF with the

PISO and PIMPLE methods.

• However, if time accuracy is important to you, set all URF equal to 1 or add URF that are not too

low (usually industry standard values are fine).

• If you under-relax transient solvers, it is strongly recommended to conduct a time convergence

study by using different URF and time-steps values to be sure that you are not losing time

accuracy.
283

The FVM in OpenFOAM

The SIMPLE loop in OpenFOAM

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

284

This is an excerpt of the actual source code of

the solver

The FVM in OpenFOAM

The PISO sub-dictionary

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the PISO pressure-velocity coupling method.

• The PISO method requires at least one correction (nCorrectors).

• For good accuracy and stability (specially in unstructured meshes), it is recommended to use at

least 2 nCorrectors.

• An additional correction to account for mesh non-orthogonality is available when using the PISO

method. The number of non-orthogonal correctors is specified by the

nNonOrthogonalCorrectors keyword.

• The number of non-orthogonal correctors is chosen according to the mesh quality.

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction.

285

The FVM in OpenFOAM

The PISO sub-dictionary

PISO

{

momentumPredictor yes;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

• You can use the optional keyword momentumPredictor to enable or disable the momentum

predictor step.

• The momentum predictor (momentumPredictor) helps in stabilizing the solution as it computes

better approximations for the velocity.

• It is clear that this will add an extra computational cost, which most of the times is negligible.

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows.

• Flows with high Reynolds number (Re > 10000) or with large Peclet numbers (Pe > 10).

• If you are working with low Reynolds flows or creeping flows, it is recommended to turn it off.

286

The FVM in OpenFOAM

The PISO sub-dictionary

PISO

{

momentumPredictor yes;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

• Note that when you enable the option momentumPredictor, you will need to define the linear

solvers for the variables .*Final (we are using regex notation).

• You need to set the extra *.Final linear solvers for all transported variables except pressure.

• The pressure pFinal linear solver needs to be defined always.

• In our experience, the benefits of the momentumPredictor in unsteady solvers are not quite

clear.

• And in particular if you are using the PISO-ITA approach.

• If you are using the PISO-NITA approach, we recommend you use this option at the beginning of

the simulation and then turn it off.

• Remember to always monitor he solution for oscillations when doing these modifications

on-the-fly.

287

The FVM in OpenFOAM

288

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PISO loop in OpenFOAM

(PISO with non-iterative marching – NITA –)

This is an excerpt of the actual source code of

the solver

• It is recommended to switch-off the momentum predictor option for creeping flows or

low convection flows (low Peclet number).

• If you enable this option in creeping flows or low convection flows, it is recommended

to do at least two nCorrectors.

The FVM in OpenFOAM

The PIMPLE sub-dictionary

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

• This sub-dictionary is located in the dictionary file fvSolution. It controls the options related to the PIMPLE

pressure-velocity coupling method.

• The PIMPLE method works very similar to the PISO method.

• In fact, setting the keyword nOuterCorrectors to 1 is equivalent to running using the PISO method.

• The keyword nOuterCorrectors controls a loop outside the PISO loop.

• To gain more stability, especially when using large time-steps or when dealing with complex physics

(combustion, chemical reactions, shock waves, and so on), you can use more outer correctors

(nOuterCorrectors).

• Usually between 2 and 5 corrections for computational efficiency.

• Have in mind that increasing the number of nOterCorrectors will highly increase the computational cost.

289

The FVM in OpenFOAM

The PIMPLE sub-dictionary

• You can use the optional keyword momentumPredictor to enable or disable the momentum predictor step.

• The momentum predictor (momentumPredictor) helps in stabilizing the solution as it computes better

approximations for the velocity.

• It is clear that this will add an extra computational cost, which most of the times is negligible.

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows.

• Flows with high Reynolds number (Re > 10000) or with large Peclet numbers (Pe > 10).

• If you are working with low Reynolds flows or creeping flows, it is recommended to turn it off.

• If you enable this option when working with low Reynolds flow or creeping flows, it is recommended to do at

least two nCorrectors.

290

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

The FVM in OpenFOAM

The PIMPLE sub-dictionary

• Note that when you enable the option momentumPredictor, you will need to define the linear solvers for the

variables .*Final (we are using regex notation).

• You need to set the extra *.Final linear solvers for all transported variables except pressure.

• The pressure pFinal linear solver needs to be defined always.

• In our experience, the benefits of switching-off the momentumPredictor in unsteady solvers are not quite clear.

• And in particular if you are using the PISO-ITA approach (PIMPLE in OpenFOAM).

• With the PIMPLE family of solver, we recommended to always switch it on and to do at least two

nOuterCorrectors.

291

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 2;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

The FVM in OpenFOAM

The PIMPLE sub-dictionary

• You can use under-relaxation factors (URF) with the PISO family of solvers, namely,

• PISO-NITA and PISO-ITA (PIMPLE in OpenFOAM).

• By using URF, you will gain more stability in time dependent solutions (as they control the amount of change of

field variables within the time-step).

• However, if you use too low URF values, your solution might not be time-accurate anymore.

• You can use the same or larger URF values as those for steady simulation.

• We recommend to always use URF factors.

• In particular, if you are using the PIMPLE family of solvers with large CFL numbers (large time-steps).

292

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

The FVM in OpenFOAM

The PIMPLE sub-dictionary

• You can use the following guidelines to define the URF with the PIMPLE family of solvers:

293

relaxationFactors

{

//Nothing in here

}

• URF switch-off.

relaxationFactors

{

fields

{

“.*” 1.0;

}

equations

{

“.*” 1.0;

}

}

• URF set to ensure diagonally dominance.

• The wildcard .* will apply the URF factors

to all fields (including .*Final).

The FVM in OpenFOAM

The PIMPLE sub-dictionary

• You can use the following guidelines to define the URF with the PIMPLE family of solvers:

294

relaxationFactors

{

fields

{

“p.*” 0.3;

}

equations

{

“U.*” 0.7;

“k.*” 0.7;

“omega.*” 0.7;

}

}

• Recommended URF values with the

PIMPLE method (SIMPLE formulation).

• The wildcard .* will apply the URF factors

to all fields (including .*Final).

relaxationFactors

{

fields

{

“p.*” 0.7;

}

equations

{

“p.*” 0.7;

“U.*” 0.7;

“k.*” 0.7;

“omega.*” 0.7;

}

}

• Recommended URF values with the

PIMPLE method (SIMPLEC formulation).

• The wildcard .* will apply the URF factors

to all fields (including .*Final).

The FVM in OpenFOAM

The PIMPLE sub-dictionary

• You can use the following guidelines to define the URF with the PIMPLE family of solvers:

295

relaxationFactors

{

fields

{

p 0.7;

pFinal 1.0;

}

equations

{

U 0.7;

UFinal 1.0;

k 0.7;

kFinal 1.0;

omega 0.7;

omegaFinal 1.0;

}

}

• You can also apply the URF in a selective way.

• That is, you can use different URF for the intermediate

field variables (i.e., p, U, and so on) and the final field

variables (i.e., pFinal, UFinal, and so on).

• It is not compulsory to use URF with transient

solvers.

• Nonetheless, using URF with transient solvers will

improve stability as they increase diagonal

dominance.

• Remember, if you use too low URF you will lose time

accuracy.

• Therefore, it is strongly recommended to conduct a

time convergence study by using different URF and

time-steps values.

• In general, we recommend to set all URF equal to 1

(to improve stability) or using the industry standard

(for extra stability).

The FVM in OpenFOAM

296

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PIMPLE loop in OpenFOAM

(PISO with iterative marching – ITA –)

This is an excerpt of the actual source code of

the solver

• It is recommended to switch-off the momentum predictor option for creeping flows or

low convection flows (low Peclet number).

• If you enable this option in creeping flows or low convection flows, it is recommended

to do at least two nCorrectors.

The FVM in OpenFOAM

Comparison of PISO with non-iterative time-advancement (PISO-NITA) against

PISO with Iterative time-advancement (PISO-ITA)

298PISO-NITA PISO-ITA (PIMPLE in OpenFOAM)

• The main difference between both methods is the outer loop present in the PISO-ITA.

• This outer loop gives more stability and allow the use of very large time-steps (CFL numbers).

• The recommended CFL number of the PISO-NITA is below 2 (for good accuracy and stability).

The FVM in OpenFOAM

Linear solvers – Crunching numbers

299

The FVM in OpenFOAM

• To get a better idea of how iterative methods work, and what are initial residuals and final residuals, let us take another look at a

residual plot.

• is the initial guess used to start the iterative solver.

• If the following condition is fulfilled (where r is the convergence criterion or tolerance), the linear solver will

stop iterating and will advance to the next time-step.

• By working in an iterative way, every single iteration is a better approximation of the previous iteration .

Linear solvers

300

The FVM in OpenFOAM

• To get a better idea of how iterative methods work, and what are initial residuals and final residuals, let us take another look at a

residual plot.

• Remember, you can also do many correctors within a single time-step.

• Sometimes the linear solver might stop before reaching the predefined convergence criterion because it has reached the

maximum number of iterations, you should be careful of this because we are talking about unconverged iterations.

Linear solvers

301

The FVM in OpenFOAM

• The equation solvers, tolerances, and algorithms are controlled
from the sub-dictionary solvers located in the fvSolution

dictionary file.

• In the dictionary file fvSolution, and depending on the

solver you are using you will find the additional sub-

dictionaries PISO, PIMPLE, and SIMPLE, which will be

described later.

• In this dictionary is where we are telling OpenFOAM how to

crunch numbers.

• The solvers sub-dictionary specifies each linear-solver that is

used for each equation being solved.

• If you forget to define a linear-solver, OpenFOAM will let you

know what are you missing.

• The syntax for each entry within the solvers sub-dictionary

uses a keyword that is the word relating to the variable being

solved in the particular equation and the options related to the

linear-solver.

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-08;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

Linear solvers

302

The FVM in OpenFOAM

• In this generic case, to solve the pressure (p) we are using the

PCG method with the DIC preconditioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0.

• The entry pFinal refers to the final pressure correction (notice

that we are using macro syntax), and we are using a relative

tolerance relTol equal to 0.

• To solve the velocity field (U) we are using the PBiCGStab

method with the DILU preconditoner, an absolute tolerance

equal to 1e-08 and a relative tolerance relTol equal to 0.

• The linear solvers will iterative until reaching any of the

tolerance values set by the user or reaching a maximum value

of iterations (optional entry).

• FYI, solving for the velocity is relatively inexpensive, whereas

solving for the pressure is expensive.

• The pressure equation is particularly important as it governs

mass conservation.

• If you do not solve the equations accurately enough (tolerance),

the physics might be wrong.

• Selection of the tolerance is of paramount importance.

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-08;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

Linear solvers

303

The FVM in OpenFOAM

• The linear solvers distinguish between symmetric matrices and

asymmetric matrices.

• The symmetry of the matrix depends on the structure of the

equation being solved.

• Pressure is a symmetric matrix and velocity is an asymmetric

matrix.

• If you use the wrong linear solver, OpenFOAM will complain and

will let you know what options are valid.

• In the following error screen, we are using a symmetric solver

for an asymmetric matrix,

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

U

{

solver PCG;

preconditioner DILU;

tolerance 1e-08;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

Linear solvers

–> FOAM FATAL IO ERROR :

Unknown asymmetric matrix solver PCG

Valid asymmetric matrix solvers are :

4

(

BICCG

GAMG

P

smoothSolver

)
304

The FVM in OpenFOAM

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-08;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

Linear solvers

• The linear solvers are iterative, i.e., they are based on reducing

the equation residual over a succession of solutions.

• The residual is a measure of the error in the solution so that the

smaller it is, the more accurate the solution.

• More precisely, the residual is evaluated by substituting the

current solution into the equation and taking the magnitude of

the difference between the left- and right-hand sides (L2-norm).

• It is also normalized to make it independent of the scale of the

problem being analyzed.

305

The FVM in OpenFOAM

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

U

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-08;

relTol 0;

minIter 3;

maxIter 100;

}

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

Linear solvers

• Before solving an equation for a particular field, the initial

residual is evaluated based on the current values of the field.

• After each solver iteration the residual is re-evaluated. The

solver stops if either of the following conditions are reached:

• The residual falls below the solver tolerance, tolerance.

• The ratio of current to initial residuals falls below the

solver relative tolerance, relTol.

• The number of iterations exceeds a maximum number of

iterations, maxIter.

• The solver tolerance should represent the level at which the

residual is small enough that the solution can be deemed

sufficiently accurate.

• The keyword maxIter is optional and the default value is 1000.

• The user can also define the minimum number of iterations

using the keyword minIter. This keyword is optional, and the

default value is 0.

306

The FVM in OpenFOAM

Linear solvers

• These are the linear solvers available in OpenFOAM:

• GAMG

• PBiCG

• PBiCGStab

• PBiCICG

• PBiCCCG

• PCICG

• PCG

• smoothSolver

• diagonalSolver

→ Multigrid solver

→ Newton-Krylov solver

→ Newton-Krylov solver

→ Newton-Krylov solver – Coupled (only for asymmetric matrices)

→ Newton-Krylov solver – Coupled (only for asymmetric matrices)

→ Newton-Krylov solver

→ Newton-Krylov solver

→ Relaxation iterative solver

→ Explicit solver (back substitution)

• You will find the source code of the linear solvers in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/solvers

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/LduMatrix/Solvers

307

The FVM in OpenFOAM

Linear solvers

• These are the preconditioners available in OpenFOAM:

• diagonal

• DIC

• DILU

• FDIC

• GAMG

• noPrecondtioner

• The preconditoners are mainly used in conjunction with the conjugate gradient solvers (Newton-

Krylov solvers), and it is highly advisable to use them as they accelerate the solution.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/preconditioners

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/LduMatrix/Preconditioners

308

The FVM in OpenFOAM

Linear solvers

• These are the smooth solvers (or relaxation solvers) available in OpenFOAM:

• DIC

• DICGaussSeidel

• DILU

• DILUGaussSeidel

• FDIC

• GaussSeidel

• nonBlockingGaussSeidel

• symGaussSeidel

• The smooth solvers (smoothSolver) require the smoother (actual solver) to be specified.

• When using the smooth solvers, the user can optionally specify the number of sweeps by using

the nSweeps keyword.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/smoothers

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/LduMatrix/Smoothers

309

The FVM in OpenFOAM

Linear solvers

• As you can see, when it comes to linear solvers there are many options and combinations

available in OpenFOAM.

• When it comes to choosing the linear solvers, there is no written theory.

• It is problem and hardware dependent (type of the mesh, physics involved, processor cache

memory, network connectivity, partitioning method, and so on).

• Most of the times using the GAMG method (geometric-algebraic multi-grid), is the best choice

for symmetric matrices (e.g., pressure).

• The GAMG method should converge fast (less than 100 iterations). If it is taking more iterations,

try to change the some of the solver options (pre-sweeps, post-sweeps, agglomeration, and so

on).

• And if it is taking too long or it is unstable, use the PCG solver (Newton-Krylov) with a good

preconditioner.

• When running with many cores (more than 1000), using the PCG might be a better choice.

310

The FVM in OpenFOAM

Linear solvers

• For asymmetric matrices, the PBiCGStab method with DILU preconditioner is a good choice.

• The smoothSolver solver with smoother GaussSeidel, also performs very well.

• If the PBiCGStab method with DILU preconditioner mysteriously crashed with an error related

to the preconditioner, use the smoothSolver or change the preconditioner.

• But in general, the PBiCGStab solver should be faster than the smoothSolver solver.

• Remember, asymmetric matrices are assembled from the velocity (U), and the transported

quantities (k, omega, epsilon, e, T, and so on).

• Usually, computing the velocity and the transported quantities is inexpensive and fast, so it is a

good idea to use a tight tolerance (1e-8) for these fields.

• The diagonal solver is used for back-substitution, for instance, when computing density using

the equation of state (we know p, h, e and T).

311

The FVM in OpenFOAM

Linear solvers

• A few comments on the linear solver residuals.

• Residuals are not a direct indication that you are converging to the right solution.

• The first time-steps the solution might not converge, this is acceptable.

• Also, you might need to use a smaller time-step during the first iterations to maintain solver

stability.

• If the solution is not converging, try to reduce the time-step size.

• Also, it is highly advisable to do at least one iteration (minIter keyword), but we

recommend to do at least 3 iterations.

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver: Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver: Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG: Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5) Residuals

312

The FVM in OpenFOAM

Linear solvers

• So how do we set the tolerances?

• The pressure equation (symmetric matrix) is particularly important, so we should resolve it

accurately. Solving the pressure equation is the expensive part of the whole iterative process.

• For the pressure equation you can start the simulation with a tolerance equal to 1e-6 and relTol

equal to 0.01. After a while you change these values to 1e-6 and 0.0, respectively.

• If the solver is too slow, you can change the convergence criterion to 1e-4 and relTol equal to

0.05. You usually will do this during the first iterations.

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.01;

}

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.0;

}

Loose tolerance Tight tolerance

313

The FVM in OpenFOAM

Linear solvers

• For the velocity field (U) and the transported quantities (asymmetric matrices), you can use the

following criterion.

• Solving for these variables is relatively inexpensive, so you can start right away with a tight

tolerance.

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-8;

relTol 0.01;

}

Loose tolerance

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-8;

relTol 0.0;

}

Tight tolerance

314

The FVM in OpenFOAM

Linear solvers

• It is also a good idea to set the minimum number of iterations (minIter) to 3.

• If your solver is doing too many iterations, you can set the maximum number of iterations

(maxIter).

• But be careful, if the solver reaches the maximum number of iterations it will stop, we are talking

about unconverged iterations.

• Setting the maximum number of iterations is especially useful during the first time-steps where

the linear solver takes longer to converge.

• You can set minIter and maxIter in all symmetric and asymmetric linear solvers.

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.01;

minIter 3;

maxIter 100;

}

315

The FVM in OpenFOAM

Linear solvers

• For the velocity field (U), the default option is the conventional segregated linear solver. That is,

you first solve for velocity component X, then velocity component Y, and finally velocity

component Z.

• You can get some improvement in terms of stability and turn around time by using the coupled

matrix solver for vectors and tensors, i.e., if you are solving the velocity field, you solve all the

velocity components at once.

• To select the coupled solver, you need to set the solver type to coupled.

• In the coupled matrix solver, you set tolerance as a vector (absolute and relative).

U

{

type coupled;

solver PBiCCCG;

preconditioner DILU;

tolerance (1e-08 1e-08 1e-08);

relTol (0 0 0);

minIter 3;

}

316

The FVM in OpenFOAM

Linear solvers

• When you use the PISO or PIMPLE method, you need to set the tolerance for the pressure final

corrector step, that is, pFinal.

• By proceeding in this way, you can put all the computational effort only in the last corrector step

(pFinal). For example, you can use the following solver and tolerance criterion for all the

intermediate corrector steps (p), then in the final corrector step (pFinal) you tight the solver

tolerance.

• Have in mind that the pressure equation is particularly important, so we should resolve it

accurately.

• We recommend to use a tight tolerance for the intermediate and final corrector steps of the

pressure linear solvers (p and pFinal).

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.01;

}

pFinal

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.0;

}

Loose tolerance for p for intermediate

corrector steps (p)

Tight tolerance for final corrector step

(pFinal)

317

The FVM in OpenFOAM

Linear solvers

Courant Number mean: 0.10556573 max: 0.65793603

deltaT = 0.00097959184

Time = 10

PIMPLE: iteration 1

DILUPBiCG: Solving for Ux, Initial residual = 0.0024649332, Final residual = 2.3403547e-09, No Iterations 4

DILUPBiCG: Solving for Uy, Initial residual = 0.0044355904, Final residual = 1.8966277e-09, No Iterations 4

DILUPBiCG: Solving for Uz, Initial residual = 0.010100894, Final residual = 1.4724403e-09, No Iterations 4

GAMG: Solving for p, Initial residual = 0.018497918, Final residual = 0.00058090899, No Iterations 3

GAMG: Solving for p, Initial residual = 0.00058090857, Final residual = 2.5748489e-05, No Iterations 5

time step continuity errors : sum local = 1.2367812e-09, global = 2.8865505e-11, cumulative = 1.057806e-08

GAMG: Solving for p, Initial residual = 0.00076032002, Final residual = 2.3965621e-05, No Iterations 3

GAMG: Solving for p, Initial residual = 2.3961044e-05, Final residual = 6.3151172e-06, No Iterations 2

time step continuity errors : sum local = 3.0345314e-10, global = -3.0075104e-12, cumulative = 1.0575052e-08

DILUPBiCG: Solving for omega, Initial residual = 0.00073937735, Final residual = 1.2839908e-10, No Iterations 4

DILUPBiCG: Solving for k, Initial residual = 0.0018291502, Final residual = 8.5494234e-09, No Iterations 3

ExecutionTime = 29544.18 s ClockTime = 29600 s

pFinal

p

p

• When you use the PISO or PIMPLE method, you need to set the tolerance for the pressure final

corrector step, that is, pFinal.

• By proceeding in this way, you can put all the computational effort only in the last corrector step

(pFinal).

• For all the intermediate corrector steps (p), you can use a more relaxed convergence criterion.

• If you proceed in this way, it is recommended to do at least 2 corrector steps (nCorrectors).

1

2

nCorrectors

318

The FVM in OpenFOAM

Linear solvers

• If the momentumPredictor is enabled (by default in most solvers), you will need to set the

tolerance for the final corrector step of the rest of the transported variables.

• Namely UFinal, kFinal, omegaFinal, hFinal, and so on.

• By proceeding in this way, you can put all the computational effort only in the last corrector step

(.*Final).

• For all the intermediate corrector steps, you can use a more relaxed convergence criterion.

• Have in mind that solving these variables is relatively inexpensive, so you can start right away

with a tight tolerance.

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-6;

relTol 0.01;

}

UFinal

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-6;

relTol 0.0;

}

Loose tolerance for p for intermediate

corrector steps (U)

Tight tolerance for final corrector step

(UFinal)

319

The FVM in OpenFOAM

Linear solvers

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the convergence

rate will be.

• So, it is highly advisable to use the utility renumberMesh before running the simulation.

• $> renumberMesh -overwrite

• The utility renumberMesh can dramatically increase the speed of the linear solvers, specially

during the initial iterations.

• You will find the source code and the master dictionary in the following directory:

• $WM_PROJECT_DIR/applications/utilities/mesh/manipulation/renumberMe

sh

320

The FVM in OpenFOAM

Linear solvers

Matrix structure plot before reordering Matrix structure plot after reordering

Note:

This is the actual pressure matrix from an OpenFOAM model case

• The idea behind reordering is to make the matrix more diagonally dominant, therefore, speeding

up the iterative solver.

321

The FVM in OpenFOAM

Linear solvers

• Cells ordering before (left figure) and after (right figure) using renumberMesh. The colors represent the

position of neighbor cells in the matrix.

• In the left figure the cells in each block are close together but each block is separated. The linear solver will

perform poorly in this case.

• In the right figure the cells are all neighbors in the sparse matrix, the matrix is very diagonal. The linear solver

will perform very well in this case.

3D straight pipe mesh using an O-grid topology

322

The FVM in OpenFOAM

On the multigrid solvers

• The development of multigrid solvers (GAMG in OpenFOAM), together with the development of

high-resolution TVD schemes and parallel computing, are among the most remarkable

achievements of the history of CFD.

• Most of the time using the GAMG linear solver is fine. However, if you see that the linear solver

is taking too long to converge or is converging in more than 100 iterations, it is better to use the

PCG linear solver.

• Particularly, we have found that the GAMG linear solver in OpenFOAM does not perform very

well when you scale your computations to more than 500 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms the GAMG.

• But again, this is problem and hardware dependent.

• As you can see, you need to always monitor your simulations (stick to the screen for a while).

Otherwise, you might end-up using a solver that is performing poorly. And this translate in

increased computational time and costs.

323

The FVM in OpenFOAM

On the multigrid solvers tolerances

• If you go for the GAMG linear solver for symmetric matrices (e.g., pressure), the following

tolerances are acceptable for most of the cases.

p

{

solver GAMG;

tolerance 1e-6;

relTol 0.01;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels 1;

minIter 3;

}

pFinal

{

solver GAMG;

tolerance 1e-6;

relTol 0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels 1;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

NOTE:

The GAMG parameters are not optimized, that is up to you.

Most of the times is safe to use the default parameters.

325

The FVM in OpenFOAM

On the solvers tolerances for symmetric matrices

• If you do not use the GAMG solver for symmetric matrices (e.g., pressure), you can use the

PCG solver with the DIC preconditioner and the following tolerances,

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.01;

minIter 3;

}

pFinal

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.0;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

• Again, the choice of the solver and preconditioner/smoother is problem and hardware

dependent.

326

The FVM in OpenFOAM

On the solvers tolerances for symmetric matrices

• Yet another efficient linear solver for pressure is the following.

p

{

solver PCG;

preconditioner

{

preconditioner GAMG;

tolerance 1e-06;

relTol 0;

}

tolerance 1e-6;

relTol 0.01;

minIter 3;

}

pFinal

{

solver PCG;

preconditioner

{

preconditioner GAMG;

tolerance 1e-06;

relTol 0;

}

tolerance 1e-6;

relTol 0.01;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

• In this case, the preconditioner is using the GAMG method with the default parameters, which

might not be the optimal ones.

• Again, the choice of the solver and preconditioner/smoother is problem and hardware

dependent.

• Most of the times, this is our choice of linear solver or pressure.
327

The FVM in OpenFOAM

• Most of the times solving asymmetric matrices is inexpensive (U, k, omega, and so on).

Therefore, you can start right away with a tight tolerance.

• You can use either of the following linear solvers.

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-8;

relTol 0.0;

minIter 3;

}

Tight tolerance

U

{

solver smoothSolver;

preconditioner GaussSeidel;

tolerance 1e-8;

relTol 0.0;

minIter 3;

}

Tight tolerance

On the solvers tolerances for asymmetric matrices

• Again, the choice of the solver and preconditioner/smoother is problem and hardware

dependent.

328

The FVM in OpenFOAM

Linear solvers tolerances – Steady simulations

• The previous tolerances are fine for unsteady solvers.

• For extremely coupled problems you might need to have tighter tolerances.

• You can use the same tolerances for steady solvers.

• However, it might be a good idea to use tighter tolerances.

• You can also set the convergence controls based on residuals of fields. The controls are
specified in the residualControls sub-dictionary of the dictionary file fvSolution.

SIMPLE

{

nNonOrthogonalCorrectors 2;

residualControl

{

p 1e-4;

U 1e-4;

}

}

Residual control for every

field variable you are solving

329

The FVM in OpenFOAM

331

Linear solvers benchmarking study of a

model case

The FVM in OpenFOAM

Linear solvers benchmarking of a model case

• In the following benchmarking study, we will use the incompressible solver icoFoam, and the

compressible solver rhoPimpleFoam.

• icoFoam is a transient solver for incompressible, laminar flow of Newtonian fluids.

• rhoPimpleFoam is a transient solver for laminar or turbulent flow of compressible fluids

for HVAC and similar applications.

• The physics to be addressed is that of a laminar flow in a 3D straight pipe.

• For this benchmarking study, we will use several combinations of linear solvers and

preconditioners.

• As you can see, this very simple physics can have very different performance using different

linear solvers.

• Also, to accelerate the convergence rate we will renumber the mesh (reduce sparsity).

• To renumber the mesh, we will use the utility renumberMesh.

332

The FVM in OpenFOAM

Linear solvers benchmarking of a model case

Case Linear solver for P Preconditioner or smoother MR Time QOI

IC1 PCG FDIC NO 278 2.8265539

IC2 smoothSolver symGaussSeidel NO 2070 2.8271198

IC3 ICCG GAMG NO 255 2.8265538

IC4 GAMG GaussSeidel NO 1471 2.8265538

IC5 PCG GAMG-GaussSeidel NO 302 2.8265538

IC6 GAMG GaussSeidel YES 438 2.8265539

IC7 PCG FDIC YES 213 2.8265535

IC8 PCG GAMG-GaussSeidel YES 283 2.8265538

IC9 ICCG GAMG YES 261 2.8265538

IC10 PCG DIC NO 244 2.8265539

IC11 PCG FDIC NO 138 2.1934228

Solver used = icoFoam – Incompressible case

MR = matrix reordering (renumberMesh)

QOI = quantity of interest. In this case the maximum velocity at the outlet (m/s)

TIME = clock time (seconds)

Remember to monitor a QOI to

verify the goodness of the solution
333

The FVM in OpenFOAM

Linear solvers benchmarking of a model case

MR = matrix reordering (renumberMesh)

QOI = quantity of interest. In this case the maximum velocity at the outlet (m/s)

TIME = clock time (seconds)

Case Linear solver for P Preconditioner or smoother MR Time QOI

C1 PCG FDIC NO 214 2.8271341

C2 GAMG GaussSeidel NO 895 2.8271357

C3 ICCG GAMG YES 562 2.8271357

Case Linear solver for P Preconditioner or smoother MR Time QOI

IC1 PCG FDIC NO 278 2.8265539

IC4 GAMG GaussSeidel NO 1471 2.8265538

IC9 ICCG GAMG YES 261 2.8265538

Solver used = icoFoam

Solver used = rhoPimpleFoam

334

The FVM in OpenFOAM

• In cases IC1-IC10, we used the following tolerances for p,

tolerance 1e-6;

relTol 0.01;

pFinal

{

$p;

tolerance 1e-6;

relTol 0;

}

• And for pFinal we used the following solver and tolerances,

Linear solvers benchmarking of a model case

335

The FVM in OpenFOAM

• In IC11 (which is the fastest case), we used the following tolerances for p,

tolerance 1e-6;

relTol 0.01;

maxIter 1;

Linear solvers benchmarking of a model case

336

pFinal

{

$p;

tolerance 1e-6;

relTol 0;

}

• And for pFinal we used the following solver and tolerances,

The FVM in OpenFOAM

• Notice that in case IC11 by setting the maximum number of iterations (maxIter) for p and

pFinal, we managed to accelerated the iterative process.

• However, we were also forcing the linear solver not to converge.

• As you can see, the solver converged to the wrong solution.

• A good advice (and totally free), always monitor a quantity of interest (QOI) and do not to rely

only on the residuals.

• In this simple case, you can see the importance of setting the proper tolerances.

• We can also see that some linear solvers perform better than others. This is problem and

hardware dependent.

• Also, by using the utility renumberMesh, we managed to speed-up the iterative process.

• This is evident for the GAMG solver, where the speed-up was about 3 times. For the other

solvers the speed-up was negligible.

Linear solvers benchmarking of a model case

337

The FVM in OpenFOAM

Linear solvers benchmarking of a model case

• Let us compare the pressure drop obtained with icoFoam and rhoPimpleFoam.

• At the end of the day, both solvers should give us very similar results.

• Remember, in icoFoam we work with relative pressure.

• After adding the reference pressure (101325 Pa) to the output pressure (pressure density or

pressure divided density), we obtain the following results (which are not very encouraging).

338

The FVM in OpenFOAM

• Let us compare the pressure drop obtained with icoFoam and rhoPimpleFoam.

• However, after correcting the output pressure by multiplying the pressure by the reference

density, we get the following results (a perfect match).

• Remember, the pressure output of the incompressible solvers is the pressure divided by the

reference density (pressure density), that is,

Linear solvers benchmarking of a model case

Velocity profile at the outletPressure drop along the pipe axis
339

The FVM in OpenFOAM

Unsteady and steady Simulations

340

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

• Select the time step. The time-step must be chosen in such a way that it resolves the time-dependent features

and maintains solver stability.

• Select the time discretization scheme.

• Set the tolerance (absolute and/or relative) of the linear solvers.

• Monitor the CFL number.

• Monitor the stability and boundedness of the solution.

• Monitor a quantity of interest.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.

• In the controlDict dictionary you need to set runtime parameters and general instructions on how to run the

case (such as time step and maximum CFL number). You also set the saving frequency.

• In the fvSchemes dictionary you need to set the time discretization scheme.

• In the fvSolution dictionary you need to set the linear solvers.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method used (e.g., PISO
or PIMPLE), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary. The functionObjects are used to

do sampling, probing and co-processing while the simulation is running.
341

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

• The controlDict dictionary contains runtime simulation

controls, such as, start time, end time, time step, saving

frequency and so on. Most of the entries are self-explanatory.

• This generic case starts from time 0 (startTime), and it will run

up to 10 seconds (endTime).

• It will write the solution every 0.1 seconds (writeInterval) of

simulation time (runTime).

• The time step of the simulation is 0.0001 seconds (deltaT).

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a

precision of 8 digits (writePrecision).

• And as the option runTimeModifiable is on (yes), we can

modify all these entries while we are running the simulation.

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.0001;

writeControl runTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 2.0;

maxDeltaT 0.001;

342

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.0001;

writeControl runTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 2.0;

maxDeltaT 0.001;

• In this generic case, the solver supports adjustable time-step

(adjustTimeStep).

• The option adjustTimeStep will automatically adjust the time

step to achieve the maximum desired courant number (maxCo)

or time-step size (maxDeltaT).

• When any of these conditions is reached, the solver will stop

scaling the time-step size.

• Remember, the first time-step of the simulation is done using the

value defined with the keyword deltaT and then it is

automatically scaled (up or down), to achieve the desired

maximum values (maxCo and maxDeltaT).

• It is recommended to start the simulation with a low time-step in

order to let the solver scale-up the time-step size.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying

the source code.

• If you are planning to use large time steps (CFL much higher

than 1), it is recommended to do at least 3 correctors steps

(nCorrectors) in PISO/PIMPLE loop, and at least 2 outer

correctors in the PIMPLE loop.

343

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.0001;

writeControl adjustableRunTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 2.0;

maxDeltaT 0.001;

• A word of caution about adjustable time-step (adjustTimeStep).

• This option will automatically adjust the time step to achieve the

maximum desired courant number (maxCo) or time-step size

(maxDeltaT).

• If the maxDeltaT condition is not reached, the solver will adapt

the time-step to achieve the target maxCo, and as the time-step

is not fixed this might introduce spurious oscillations in the

solution.

• It is recommended to use this option at the beginning of the

simulation and as soon as the solution stabilizes try fixed the

time-step.

• Also, try to avoid using adjustable time step together with the

option adjustableRunTime.

• The option adjustableRunTime will adjust the time-step to save

the solution at the precise write intervals, and this might

introduce numerical oscillations due to the fact that the time-step

is changing.

• Also, the fact that you are using an adaptive time-step can have

a negative effect when doing signal analysis.

344

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to

time discretization and spatial discretization schemes.

• In this generic case we are using the backward method for time

discretization (ddtSchemes).

• This scheme is second order accurate but oscillatory.

• The parameters can be changed on-the-fly.

345

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

“U.*”

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-08;

relTol 0;

}

}

PIMPLE

{

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

• The fvSolution dictionary contains the instructions of how to

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the

parameters can be changed on-the-fly.

• In this generic case, to solve the pressure (p) we are using the

PCG method with the DIC precondtioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0.

• The entry pFinal refers to the final pressure correction (notice

that we are using macro syntax), and we are using a relative

tolerance relTol equal to 0.

• To solve U and UFinal (U.* using regex), we are using the

smoothSolver method with an absolute tolerance equal to 1e-

08 and a relative tolerance relTol equal to 0.

• The solvers will iterative until reaching any of the tolerance

values set by the user or reaching a maximum value of

iterations (optional entry).

• FYI, solving for the velocity is relatively inexpensive, whereas

solving for the pressure is expensive.

346

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

“U.*”

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-08;

relTol 0;

}

}

PIMPLE

{

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

• The fvSolution dictionary also contains the PIMPLE and

PISO sub-dictionaries.

• The PIMPLE sub-dictionary contains entries related to the

pressure-velocity coupling method (the PIMPLE method).

• Setting the keyword nOuterCorrectors to 1 is equivalent to

running using the PISO method.

• Remember, you need to do at least one PISO loop

(nCorrectors).

• To gain more stability, especially when using large time-steps,

you can use more outer correctors (nOuterCorrectors).

• Adding corrections increase the computational cost

(nOuterCorrectors and nCorrectors).

• In this generic case, we are using 1 outer correctors

(nOuterCorrectors), 2 inner correctors or PISO correctors

(nCorrectors), and 1 correction due to non-orthogonality

(nNonOrthogonalCorrectors).

• If you are using large time steps (CFL much higher than 1), it is

recommended to do at least 3 correctors steps (nCorrectors) in

PISO/PIMPLE loop.

347

The FVM in OpenFOAM

How to run unsteady simulations in OpenFOAM?

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

pFinal

{

$p;

relTol 0;

}

U

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-08;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nNonOrthogonalCorrectors 1;

}

• If you use the PISO method for pressure-velocity coupling, you

will need to define the PISO sub-dictionary.

• In this generic case we are doing two PISO corrections and one

orthogonal correction.

• You need to do at least one PISO loop (nCorrectors).

• If you are planning to use large time steps (CFL much higher

than 1), it is recommended to do at least 3 correctors steps

(nCorrectors) in PISO/PIMPLE loop, and at least 2 outer

correctors in the PIMPLE loop.

348

The FVM in OpenFOAM

• Remember, when running unsteady simulations, the time-step must be chosen in such a way

that it resolves the time-dependent features and maintains solver stability.

When you use large time steps you do

not resolve well the physics

By using a smaller time step you

resolve better the physics and you gain

stability

349

The FVM in OpenFOAM

• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.

350

The FVM in OpenFOAM

What about steady simulations?

• First of all, steady simulations are a big simplification of reality.

• Steady simulations is a trick used by CFDers to get fast outcomes with results that might be

even more questionable.

• Remember, most of the flows you will encounter are unsteady so be careful of this hypothesis.

• In steady simulations, we made two assumptions:

• We ignore unsteady fluctuations. That is, we neglect the time derivative in the governing

equations.

• We perform time averaging when dealing with stationary turbulence (RANS modeling)

• The advantage of steady simulations is that they require low computational resources, give fast

outputs, and are easier to post-process and analyze.

• To do so, you need to use the appropriate solver and use the right discretization scheme.

351

The FVM in OpenFOAM

What about steady simulations?

• As you are not solving the time derivative, you do not need to set the time step.

• However, you need to tell OpenFOAM how many iterations you would like to run.

• You can also set the residual controls (residualControl), in the fvSolution dictionary file.

• You set the residualControl in the SIMPLE sub-dictionary.

• If you do not set the residual controls, OpenFOAM will run until reaching the maximum number

of iterations (endTime).

• You also will need to set the under-relaxation factor (relaxationFactors).

• The iterative marching in steady solvers is controlled using under-relaxation factors.

352

• If we are using under-relaxation.

• Under-relaxation is a feature typical of steady solvers using the SIMPLE method.

• If you do not set the under-relaxation factors, OpenFOAM will use the default hard-wired values

(1.0 for all field variables or no under-relaxation).

• The under-relaxation factors are bounded between 0 and 1.

• Selecting the under-relaxation factors, it is kind of equivalent to selecting the right time step.

• You also need to set the under-relaxation factors.

• The under-relaxation factors control the change of the variable .

The FVM in OpenFOAM

What about steady simulations?

353

• Under-relaxation can be implicit (equation in OpenFOAM) or explicit (field in OpenFOAM).

The FVM in OpenFOAM

What about steady simulations?

354

Implicit URF Explicit URF

• You can relate URF to the CFL number as follows,

• A small CFL number is equivalent to small URF.

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

• In the controlDict dictionary you need to set runtime parameters and general instructions on

how to run the case (such as the number of iterations to run).

• Remember to set also the saving frequency.

• In the fvSchemes dictionary you need to set the time discretization scheme, for steady

simulations it must be steadyState.

• In the fvSolution dictionary you need to set the linear solvers, under-relaxation factors, and

residual controls.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method
used (e.g., SIMPLE or SIMPLEC), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.

• The functionObjects are used to do sampling, probing and co-processing while the simulation

is running.

355

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

356

• The under-relaxation factors (URF) control the change of the variable .

p 0.3;

U 0.7;

k 0.7;

omega 0.7;

• Under-relaxation is a feature typical of steady solvers using the SIMPLE family of methods.

• These are the URF commonly used with SIMPLE and SIMPLEC (industry standard),

p 1;

U 0.9;

k 0.9;

omega 0.9;

SIMPLE SIMPLEC

Pressure Usually does not require under-relaxing

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right URF involved experience and some trial and error.

• Selecting the URF it is kind of equivalent to selecting the right time step.

• Many times, steady simulations diverge because of wrongly chosen URF.

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10000;

deltaT 1;

writeControl runTime;

writeInterval 100;

purgeWrite 10;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

• The controlDict dictionary contains runtime simulation

controls, such as, start time, end time, time step, saving

frequency and so on. Most of the entries are self-explanatory.

• As we are doing a steady simulation, let us talk about iterations

instead of time (seconds).

• This generic case starts from iteration 0 (startTime), and it will

run up to 10000 iterations (endTime).

• It will write the solution every 100 iterations (writeInterval) of

simulation time (runTime).

• It will advance the solution one iteration at a time (deltaT).

• It will keep the last 10 saved solutions (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a

precision of 8 digits (writePrecision).

• And as the option runTimeModifiable is on (true), we can

modify all these entries while we are running the simulation.

357

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to

time discretization and spatial discretization schemes.

• In this generic case and as we are interested in using a steady

solver, we are using the steadyState method for time

discretization (ddtSchemes).

• It is not a good idea to switch between steady and unsteady

schemes on-the-fly.

• For steady state cases, the bounded form can be applied to the

divSchemes, in this case, div(phi,U) bounded Gauss linear.

• This adds a linearized, implicit source contribution to the

transport equation of the form,

• This term removes a component proportional to the continuity

error.

• This acts as a convergence aid to tend towards a bounded

solution as the calculation proceeds.

• At convergence, this term becomes zero and does not

contribute to the final solution. 358

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The keyword bounded in the divergence discretization

schemes, seems to be related to an attempt to recast the non-

conservative formulation of the equations without enforcing the

divergence-free condition.

• The bounded scheme targets the material derivative of the

governing equations.

• When using the bounded scheme, we are actually solving the

following form of the equations,

359

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The use of the bounded scheme, it is a recommendation.

• In our personal experience, using the bounded scheme

sometimes helps.

• In particular when dealing with compressible flows or complex

physical modeling.

• Sometimes bounding some quantities can lead to convergence

problems (very problem dependent).

• The bounded scheme is a mathematical trick that not always

helps.

• From the physical point of view, the extra term added when

using the bounded scheme, has no support or justification.

• You can find more information at the following link,

360

• https://openfoam.org/release/2-2-0/numerics-boundedness/

• https://www.openfoam.com/documentation/guides/latest/doc/guide-

schemes-divergence.html#sec-schemes-divergence-special-cases-

steady-state

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

U

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-08;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 2;

residualControl

{

p 1e-4;

U 1e-4;

}

}

• The fvSolution dictionary contains the instructions of how to

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the

parameters can be changed on-the-fly.

• In this generic case, to solve the pressure (p) we are using the

PCG method with the DIC preconditioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0.

• To solve U we are using the smoothSolver method with an

absolute tolerance equal to 1e-08 and a relative tolerance

relTol equal to 0.

• The solvers will iterative until reaching any of the tolerance

values set by the user or reaching a maximum value of

iterations (optional entry).

361

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

U

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-08;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 2;

residualControl

{

p 1e-4;

U 1e-4;

}

}

• The fvSolution dictionary also contains the SIMPLE sub-

dictionary .

• The SIMPLE sub-dictionary contains entries related to the

pressure-velocity coupling method (the SIMPLE method).

• Increasing the number of nNonOrthogonalCorrectors

corrections will add more stability but at a higher computational

cost.

• Remember, nNonOrthogonalCorrectors is used to improve

the gradient computation due to mesh quality.

• In this generic case, we are doing 2 corrections due to non-

orthogonality (nNonOrthogonalCorrectors).

• The SIMPLE sub-dictionary also contains convergence controls

based on residuals of fields. The controls are specified in the

residualControls sub-dictionary.

• The user needs to specify a tolerance for one or more solved

fields and when the residual for every field falls below the

corresponding residual, the simulation terminates.

• If you do not set the residualControls, the solver will iterate

until reaching the maximum number of iterations set in the
controlDict dictionary.

362

The FVM in OpenFOAM

How to run steady simulations in OpenFOAM?

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U 0.7;

}

}

• The fvSolution dictionary also contains the

relaxationFactors sub-dictionary.

• The relaxationFactors sub-dictionary which controls under-

relaxation, is a technique used for improving stability when using

steady solvers.

• Under-relaxation works by limiting the amount which a variable

changes from one iteration to the next, either by modifying the

solution matrix and source (equations keyword) prior to solving

for a field or by modifying the field directly (fields keyword).

• An optimum choice of under-relaxation factors is one that is

small enough to ensure stable computation but large enough to

move the iterative process forward quickly.

363

The FVM in OpenFOAM

• Typical under-relaxation factors for the SIMPLE and SIMPLEC methods in OpenFOAM.

• Remember the under-relaxation factors are problem dependent.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U 0.7;

k 0.7;

omega 0.7;

}

}

relaxationFactors

{

fields

{

p 0.9;

}

equations

{

p 0.9;

U 0.9;

k 0.9;

omega 0.9;

}

}

SIMPLE SIMPLEC

Explicit under-relaxation

Implicit under-relaxation

364

How to run steady simulations in OpenFOAM?

The FVM in OpenFOAM

• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an

unsteady simulation.

• Remember, steady simulations are not time accurate, therefore we can not use them to

compute time statistics or compute the shedding frequency

Steady simulations vs. Unsteady simulations

366

Steady solution QOI unsteady solution QOI

The FVM in OpenFOAM

How to control the CFL number

367

The FVM in OpenFOAM

application pimpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.0001;

writeControl runTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 2.0;

maxDeltaT 0.001;

• You can control the CFL number by changing the mesh cell

size or changing the time-step size.

• The easiest way is by changing the time-step size.

• If you refine the mesh, and you would like to have the same

CFL number as the base mesh, you will need to decrease the

time-step size.

• On the other side, if you coarse the mesh and you would like

to have the same CFL number as the base mesh, you will

need to increase the time-step size.

• The keyword deltaT controls the time-step size of the

simulation (0.0001 seconds in this generic case).

• If you use a solver that supports adjustable time-step

(adjustTimeStep), you can set the maximum CFL number

and maximum allowable time-step using the keywords

maxCo and maxDeltaT, respectively.

How to control the CFL number

368

The FVM in OpenFOAM

• The option adjustTimeStep will automatically adjust the time

step to achieve the maximum desired courant number

(maxCo) or time-step size (maxDeltaT).

• When any of these conditions is reached, the solver will stop

scaling the time-step size.

• To use these features, you need to turn-on the option

adjustTimeStep.

• Remember, the first time-step of the simulation is done using

the value defined with the keyword deltaT and then it is

automatically scaled (up or down), to achieve the desired

maximum values (maxCo and maxDeltaT).

• It is recommended to start the simulation with a low time-step

in order to let the solver scale-up the time-step size.

• If you want to change the values on-the-fly, you need to turn-

on the option runTimeModifiable.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying

the source code.

How to control the CFL number

application pimpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.0001;

writeControl runTime;

writeInterval 0.1;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 2.0;

maxDeltaT 0.001;

369

The FVM in OpenFOAM

The output screen

Courant Number mean: 0.10863988 max: 0.73950028

deltaT = 0.001

Time = 30.000289542261612

PIMPLE: iteration 1

DILUPBiCG: Solving for Ux, Initial residual = 0.003190933, Final residual = 1.0207483e-09, No Iterations 5

DILUPBiCG: Solving for Uy, Initial residual = 0.0049140114, Final residual = 8.5790109e-10, No Iterations 5

DILUPBiCG: Solving for Uz, Initial residual = 0.010705877, Final residual = 3.5464756e-09, No Iterations 4

GAMG: Solving for p, Initial residual = 0.024334674, Final residual = 0.0005180308, No Iterations 3

GAMG: Solving for p, Initial residual = 0.00051825089, Final residual = 1.6415538e-05, No Iterations 5

time step continuity errors : sum local = 8.768064e-10, global = 9.8389717e-11, cumulative = -2.6474162e-07

GAMG: Solving for p, Initial residual = 0.00087813032, Final residual = 1.6222017e-05, No Iterations 3

GAMG: Solving for p, Initial residual = 1.6217958e-05, Final residual = 6.4475277e-06, No Iterations 1

time step continuity errors : sum local = 3.4456296e-10, global = 2.6009599e-12, cumulative = -2.6473902e-07

ExecutionTime = 33091.06 s ClockTime = 33214 s

fieldMinMax domainminandmax output:

min(p) = -0.59404715 at location (-0.019 0.02082288 0.072) on processor 1

max(p) = 0.18373302 at location (-0.02083962 -0.003 -0.136) on processor 1

min(U) = (0.29583255 -0.4833922 -0.0048229716) at location (-0.02259661 -0.02082288 -0.072) on processor 0

max(U) = (0.59710937 0.32913292 0.020043679) at location (0.11338793 -0.03267608 0.12) on processor 3

min(nut) = 1.6594481e-10 at location (0.009 -0.02 0.024) on processor 0

max(nut) = 0.00014588174 at location (-0.02083962 0.019 0.072) on processor 1

yPlus yplus output:

patch square y+ : min = 0.44603573, max = 6.3894913, average = 2.6323389

writing field yPlus

Courant number (mean and maximum values)

Current time-step

Simulation time

CPU time and wall clock

• This is the output screen of a solver supporting the option adjustTimeStep.

• In this case maxCo is equal 2 and maxDeltaT is equal to 0.001.

• Notice that the solver reached the maximum allowable maxDeltaT.

One PIMPLE iteration (outer loop), this is equivalent to PISO

370

The FVM in OpenFOAM

Comparison of different time-step size (CFL number) for a model problem.

Linear upwind in space – cellMDLimited Gauss linear – Euler in time – 100 cells

371

The FVM in OpenFOAM

Comparison of different mesh sizes for a model problem.

Linear upwind in space – cellMDLimited Gauss linear – Euler in time

372

Roadmap

1. CFD and Multiphysics simulations

2. The Finite Volume Method: An overview

3. Navier-Stokes equations and pressure-velocity coupling

4. On the CFL number

5. Unsteady and steady simulations

6. Understanding the residuals

7. Boundary conditions and initial conditions

8. The FVM in OpenFOAM: some implementation details and

computational pointers

9. Best standard practices – General guidelines

10. Final remarks

373

Best standard practices – General guidelines

• The absolute best practice in CFD is to get a good quality mesh.

• Remember, the mesh is everything in CFD.

• The default quality metrics hardwired in OpenFOAM are fine.

Max. non-orthogonality = 80

Maximum skewness = 8

• Remember, you will need to adjust the numerical method to take into account the mesh quality.

• If you can not keep the mesh quality metrics to your predefined values, it is better to get a

better mesh instead of trying to get a solution by adjusting the numerics.

• But if you think that they are too conservative, you can rely in the following metrics,

Max. non-orthogonality = 70

Maximum skewness = 4

374

Best standard practices – General guidelines

• Regarding the SIMPLE loop, you can use the following parameters.

• For good quality meshes it is recommended to do at least one non-orthogonal correction.

• For meshes with a non-orthogonality up to the predefined maximum value you can do 3 non-

orthogonal corrections.

• Also, it is strongly recommended to use the consistent formulation (SIMPLEC).

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors 3;

}

Enabled/disabled

consistent formulation of

the SIMPLE loop

375

Best standard practices – General guidelines

• It is recommended to use the following under-relaxation factors (URF) with the SIMPLE loop.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U 0.7;

k 0.6;

omega 0.6;

}

}

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

U 0.7;

k 0.7;

omega 0.7;

}

}

SIMPLE SIMPLEC

• Usually there is no need to under-relax pressure in the SIMPLEC loop; however, it is advisable.

• You can also use URF with the PIMPLE family of solvers.

• Notice that our recommended values are a more conservative that the ones you will find in the

literature

• If you working with compressible solvers, do not forget to under-relax the thermodynamic

variables (h, e, rho, T, and so on) 376

Best standard practices – General guidelines

• If you do not define the URF factors in the SIMPLE sub-dictionary, no URF will be used

(disabled).

• If you define the URF equal to 1, under-relaxation will be enabled.

• It is important to define all the URF used by the solver and models involved, if you do not define

them, they will be disabled (and it is likely that the solution will diverge).

• To know the URF used by the solver, just look for the word relax in the source code (solvers

and model libraries).

• If you are using compressible solvers, remember to under-relax density (rho).

• It is a good practice to start the solution using low URF and increase then slowly, one term at a

time.
377

Best standard practices – General guidelines

• It is not compulsory to use URF with transient solvers.

• Nonetheless, using URF with transient solvers will improve stability as they increase diagonal dominance.

• Have in mind that if you use too low URF you will lose time accuracy and add numerical diffusion to the

solution.

• Therefore, it is strongly recommended to conduct a time convergence study by using different URF and time-

steps values (using prototype cases).

• With transient solvers, we recommend setting all URF equal to 1 or 0.9 (to improve stability).

• You can also use the industry standard values (for extra stability).

• The following URF setups for transient solvers, will improve stability without tampering time accuracy:

378

relaxationFactors

{

fields

{

“.*” 1.0;

}

equations

{

“.*” 1.0;

}

}

relaxationFactors

{

fields

{

“p.*” 0.3;

}

equations

{

“U.*” 0.7;

“k.*” 0.7;

“omega.*” 0.7;

}

}

relaxationFactors

{

fields

{

“p.*” 0.7;

}

equations

{

“p.*” 0.7;

“U.*” 0.7;

“k.*” 0.7;

“omega.*” 0.7;

}

}

URF to ensure diagonal dominance URF for PIMPLE-SIMPLE formulation URF for PIMPLE-SIMPLEC formulation

Best standard practices – General guidelines

• Regarding the PISO loop, you can use the following parameters.

• For good quality meshes it is recommended to do at least one non-orthogonal correction.

• For meshes with a non-orthogonality up to the predefined maximum value you can do 2-3 non-

orthogonal corrections.

• For good accuracy and stability, it is recommended to use al least 2 nCorrectors.

• However, we recommend to do at least 3 corrections, specially if you are using unstructured

meshes (with some degree skewness and non-orthogonality) and you are dealing with complex

physics.

• When dealing with complex physics, you can use the optional keyword momentumPredictor to

enable or disable the momentum predictor step.

• The momentum predictor helps in stabilizing the solution as it computes better approximations

for the velocity.

• However, the benefits of this correction are not quite clear.

PISO

{

momentumPredictor yes;

nCorrectors 3;

nNonOrthogonalCorrectors 1;

}
379

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 2;

nCorrectors 3;

nNonOrthogonalCorrectors 1;

}

• For unsteady problems with very complex physics, you can use the PIMPLE loop.

• The PIMPLE method works very similar to the PISO method. In fact, setting the keyword

nOuterCorrectors to 1 is equivalent to running using the PISO method.

• To gain more stability and accuracy, you will need to increase the number outer corrections in

the loop (nOuterCorrectors). Have in mind that this will highly increase the computational cost.

• The PIMPLE method is very stable when using large time-steps or doing pseudo-transient

simulation.

• It is also recommended to add under-relaxation to gain more stability.

• The following parameters will give a very robust and accurate loop that you can use with

complex physics, while being time accurate.

Best standard practices – General guidelines

380

relaxationFactors

{

fields

{

“.*” 0.7; //SIMPLEC URF

}

}

Best standard practices – General guidelines

• In OpenFOAM, the PISO and PIMPLE methods are formulated for unsteady simulations.

• Whereas the SIMPLE and SIMPLEC methods are formulated for steady simulations.

• If conserving time is not a priority, you can use the PIMPLE method in pseudo transient mode.

• The pseudo transient PIMPLE method is more stable than the SIMPLE method, but it has a

higher computational cost.

• Depending on the method and solver you are using, you will need to define a specific sub-
dictionary in the dictionary file fvSolution.

• For instance, if you are using the PISO method, you will need to specify the PISO sub-

dictionary.

• And depending on the method, each sub-dictionary will have different entries.

• If you are conducting steady simulations, we recommend to use the PISO or PIMPLE method

with local-time-stepping (LTS).

• This method is more stable than the SIMPLE loop for steady solvers.

• However, this accuracy comes with the price of a higher computational cost and the burden of

choosing the optimal pseudo time-step parameters (damping and smoothing).

383

Best standard practices – General guidelines

• In practice, for gradient computation the leastSquares method is more accurate than the Gauss

method.

• However, we have found that the leastSquares method tends to be more oscillatory on

tetrahedral meshes.

• To avoid over and under shoots on the gradient computations, it is recommended to always use

limiters.

• However, do not add limiters to all variables as doing so might add to much diffusion or might

smear the solution.

• For example, it is not recommended to add very aggressive limiters to pressure (p), volume-of-

fraction (alpha), and interface curvature (nHat).

• We recommend to use the following limiters for velocity (U), and the transported turbulent

quantities (k, omega, epsilon, nut, and so on),

cellLimited leastSquares 1.0;

or

cellLimited Gauss linear 1.0;

384

Best standard practices – General guidelines

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linear: second order accurate, unbounded.

• A good TVD scheme (vanLeer or Minmod): TVD, second order accurate, bounded.

• limitedLinear: second order accurate, unbounded, but more stable than pure linear.

Recommended for LES simulations (kind of similar to the Fromm method).

• So, you can start using a first order method and then switch to second order accuracy.

• If at any point of the simulation you see oscillations, you can switch to first order and stabilize

the solution.

• You can also stabilize the solution by increasing the viscosity.

• Start with robustness and end with accuracy.

385

Best standard practices – General guidelines

• Remember, the discretization schemes of the diffusive terms are highly related to the mesh

quality.

• So, for good quality meshes you can use the following method,

Gauss linear limited 1;

• For industrial meshes or meshes where you can not maintain the predefined best quality, you

can use the following method,

Gauss linear limited 0.5;

• Remember, to enable non-orthogonal corrections you will need to do at least one correction

(nNonOrthogonalCorrectors).

• However, we recommend to do at least 3 non-orthogonal corrections when the mesh non-

orthogonal quality is more than 60.

386

Best standard practices – General guidelines

• The fact that we are using an implicit solver (unconditionally stable), does not mean that we can

choose a time step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features and it

maintain the solver stability.

• In our personal experience, we have been able to go up to a CFL = 5.0 while maintaining the

accuracy. But to achieve this we had to increase the number of corrector steps and tighten the

convergence criteria; and this translates into a higher computational cost.

• We have managed to run with CFL numbers up to 200, but this highly reduces the accuracy of

the solution. Also, it is quite difficult to maintain the stability of the solver.

• If you are interested in the unsteadiness of the solution, it is recommended to use a CFL number

not larger than 2.0, and if accuracy is the goal (e.g., predicting forces), definitively use a CFL

less than 1.0.

• Remember, a smaller time-step may be needed during the first iterations to maintain solver

stability.

• Have in mind that the initial time-steps may take longer to converge, do not be alarmed of this

behavior, it is perfectly normal.

387

Best standard practices – General guidelines

• If you use the first order Euler scheme, try to use a CFL number less than 2.0 and preferably in

the order of 1.0-0.8, this is in order to keep time diffusion to a minimum.

• In order to speed up the computation and if you are not interested in the initial transient, you can

start using a large time-step (high CFL).

• When you are ready to sample the quantity of interest, reduce the time-step to get a CFL less

than one and let the simulation run for a while before doing any sampling.

• Our recommendation is to always monitor your solution, and preferably use the PIMPLE family

of solvers with high under-relaxation values (more than 0.7).

• When using the PIMPLE or PISO solver (with maximum CFL feature enable), the solver will use
as a time-step for the first iteration the value set by the keyword deltaT in the controlDict

dictionary.

• So, if you set a high value, is likely that the solver will explode.

• Our advice is to set a low deltaT and then let the solver gradually adjust the time-step until the

desired maximum CFL is reached.

• In multiscale problems (e.g., multiphase flows), it is not recommended to use adjustable time-

step. It is strongly recommended to fix the tie-step.

388

Best standard practices – General guidelines

• Some fancy high-resolution numerical schemes (such as the vanLeer, vanAlbada, superbee,

MUSCL, OSPRE – cool names no –), are hard to start.

• So, it is better to begin with a small time-step and increase it gradually.

• And by small time-step we mean a time-step that will give you a CFL about 0.1 - 0.3.

• It you do not know what time discretization scheme to use, go for the Crank-Nicolson.

ddtSchemes

{

default CrankNicolson ;

}

• Setting equal to 0 is equivalent to running a pure Euler scheme (robust but first order

accurate).

• By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate but

oscillatory, formally second order accurate).

• Most of the time, a value of 0.7 is a good compromise.

389

Best standard practices – General guidelines

• The linear solvers are defined in the fvSolution dictionary.

• You will need to define a solver for each variable you are solving.

• Remember, the solvers can be modified on the fly.

• The GAMG solver (generalized geometric-algebraic multigrid solver), can often be the optimal

choice for solving the pressure equation. However, we have found that when using more than

1000 processors is better to use Newton-Krylov type solvers.

• The selection of the linear solvers is hardware and problem dependent.

• Sometimes the GAMG is a good choice, and sometimes the PCG or PBiCGStab is a better

choice.

• Remember, if you use Newton-Krylov type solver, you also need to choose a good

preconditioner, which again, is problem and hardware dependent.

• It is often a good idea to set the minimum number of iterations (minIter), we like to do at least 3

iterations (for symmetric and asymmetric matrices).

• The utility renumberMesh can dramatically increase the speed of the linear solvers, specially

during the initial iterations.

390

Best standard practices – General guidelines

• Remember, residuals are not a direct indication that you are converging to the right solution. It

is always a good idea t also monitor a quantity of interest.

• The first time-steps the solution might not converge, this is acceptable.

• Also, you might need to use a smaller time-step during the first iterations to maintain solver

stability.

• If the solution is not converging, try to reduce the time-step size.

• So how do we set the tolerances?

• The pressure equation is particularly important, so we should resolve it accurately. Solving the

pressure equation is the expensive part of the whole iterative process.

• For the pressure equation (symmetric matrix), you can start the simulation with a tolerance

equal to 1e-6 and relTol equal to 0.01. After a while you change these values to 1e-6 and 0.0,

respectively.

• If the linear solver is taking too much time, you can change the convergence criterion to 1e-4

and relTol equal to 0.05. You usually will do this during the first iterations.

• For the velocity field (U) and the transported quantities (asymmetric matrices), you can use an

absolute tolerance equal to 1e-8 and relative tolerance equal to 0. Solving for these variables is

relatively inexpensive, so you can start right away with a tight tolerance

391

Best standard practices – General guidelines

• We usually start by using a not so tight convergence criterion and as the simulation runs, we can

tight the convergence criterion.

• By proceeding in this way, you can put all the computational effort only in last corrector step

(.*Final).

• For all the intermediate corrector steps, you can use a more relaxed convergence criterion.

• For example, you can use the following solver and tolerance criterion for all the intermediate

corrector steps (p), then in the final corrector step (pFinal) you tight the solver tolerance.

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-4;

relTol 0.05;

}

Loose tolerance for p

pFinal

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.0;

}

Tight tolerance for pFinal

392

Best standard practices – General guidelines

momentumPredictor yes;

nOuterCorrectors 1;

nCorrector 3;

nNonOrthogonalCorrectors 1;

turbOnFinalIterOnly false;

Set to yes for high Reynolds flows, where

convection dominates (default value is yes)

Recommended to use at least 3 correctors.

It improves accuracy and stability. Use 4 or

more for highly transient flows or strongly

coupled problems.

Recommend to use at least 1 corrector (even in

good quality meshes). Increase the value for

bad quality meshes.

Recommended value is 1 (equivalent to PISO).

Increase to improve the stability of second

order time discretization schemes (LES,

complex physics, combustion). Increase for

strongly coupled problems.

Flag to indicate whether to solve the turbulence

on the final pimple iteration only. For SRS

simulations the recommended value is false

(the default value is true)

• Some additional comments about the fvSolution dictionary.

393

Best standard practices – General guidelines

“alpha.*”

{

MULESCorr yes;

nAlphaSubCycles 1;

nAlphaCorr 2;

nLimiterIter 10;

alphaApplyPrevCorr yes;

…

}

Turn on/off semi-implicit MULES

Number of VOF corrections.

Use 2-3 for slowly varying flows.

Use 3 or more for highly transient, high Reynolds,

high CFL number flows.

For semi-implicit MULES use 1 or 2 if you are

using large time-steps. Use 3 or more for explicit

MULES.

Number of iterations to calculate the MULES

limiter. Use 3-5 if CFL number is less than 3. Use

5-10 if CFL number is more than 3.

Use previous time corrector as initial estimate.

Set to yes for slowly varying flows. Set to no for

highly transient flows.

• The semi-implicit MULES offers significant speed-up and stability over the explicit MULES

• Some additional comments about the fvSolution dictionary.

• These options are related to multiphase solvers.

Field name of the volume of fraction or phase

394

Best standard practices – General guidelines

• If you are doing LES or DES, remember that these models are intrinsically 3D and unsteady.

• In LES you should choose your time-step in such a way to get a CFL of less than 1 and

preferably of about 0.5 for LES.

• DES simulations can use larger CFL values (up to 5 for reasonable accuracy).

• If you are doing RANS, it is perfectly fine to use upwind to discretize the turbulence closure

equations. After all, turbulence is a dissipative process. However, some authors may disagree

with this, make your own conclusions.

• On the other hand, if you are doing LES you should keep numerical diffusion to the minimum, so

you should use second order methods.

• LES methods can be sensitive to mesh element type; it is highly recommended to use

hexahedral meshes.

• Avoid the use of adaptive time-stepping and adaptive save intervals, as they may introduce

oscillations in your solution.

• Many times, RANS simulation can mysteriously explode, if this is your case, try reducing the

URF of the turbulent quantities to something around 0.5 or even less.

395

Best standard practices – General guidelines

• Determining when the solution is converged can be difficult, especially if you are new to CFD.

• Solutions can be considered converged when the flow field and scalar fields are no longer

changing, but usually this is not the case for unsteady flows.

• Most flows in nature and industrial applications are highly unsteady.

• The fact that the initial residuals are not falling in a monotonic way, is not an indication of a

problem. This is just telling you that the solution is unsteady.

• The final residuals will reach the tolerance criterion in each iteration, but the flow field may be

continuously changing from instant to instant.

• In order to properly assess convergence, it is also recommended to monitor a physical quantity.

• If this physical quantity does not change in time, you may say that the solution is converge.

• But be careful, it can be the case that the monitored quantity exhibit a random oscillatory

behavior or a periodic oscillatory behavior.

• In the former case you are in the presence of a highly unsteady and turbulent flow

with no periodic behavior.

• In latter case, you may say that you have reached a converged periodic unsteady

solution.

396

Best standard practices – General guidelines

• Remember, for unsteady flows you will need to analyze/sample the solution in a given time

window. Do not take the last saved solution as the final answer.

• If your goal is predicting forces (e.g., drag prediction), you should monitor the forces and use

them as your convergence criterion.

• The convergence depends on the mesh quality, so a good quality mesh means faster

convergence and accurate solution.

• In general, overall mass balance should be satisfied.

• Remember, the method is conservative. What goes in, goes out (unless you have source

terms).

• However, the method is not bounded, so to avoid spurious oscillations remember to use limiters.

• Residuals are not your solution. Low residuals do not automatically mean a correct solution, and

high residuals do not automatically mean a wrong solution.

• Initial residuals are often higher with higher order discretization schemes than with first order

discretization. That does not mean that the first order solution is better.

• Always ensure proper convergence before using a solution. A not converged solution can be

misleading when interpreting the results.

397

Best standard practices – General guidelines

• We highly recommend to always monitor the minimum and maximum values of the field

variables.

• For us this is the best indication of stability and accuracy.

• If at one point of the simulation velocity is higher that the speed of light (believe us, that can

happen), you know that something is wrong.

• And believe us, with upwind you can get solutions at velocities higher that the speed of light.

• You can also see an oscillatory behavior of the minimum and maximum values of the monitored

quantity. This is also an indication that something is going bananas.

• For some variables (e.g., volume fraction), the method must be bounded.

• This means that the values should not exceed some predefined minimum or maximum value

(usually 0 and 1).

• So, if your solution is oscillating, you can switch to upwind (first order accuracy), stabilize the

solution, and then go back to second order accuracy.

• However, it is not guaranteed that this trick will always work.

398

Best standard practices – General guidelines

ddtSchemes

{

default CrankNicolson 0;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwind grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• For most cases, we recommend the following

discretization method.

• It is very similar to the default method you will find in

commercial solvers.

• In overall, this setup is second order accurate and

fully bounded.

• According to the quality of your mesh, you will need

to change the blending factor of the

laplacianSchemes and snGradSchemes

keywords.

• To time diffusion to a minimum, use a CFL number

less than 2.

• If during the simulation the turbulence quantities

become unbounded, you can safely change the

discretization scheme to upwind.

• For gradient discretization the leastSquares

method is more accurate. But we have found that it

is a little bit oscillatory in tetrahedral meshes.

399

Best standard practices – General guidelines

• If your simulation is mysteriously crashing, you can

use the following discretization method.

• This setup is very stable but too diffusive.

• It is first order in space and time.

• Use this discretization method together with the

PISO method, set nCorrectors 5, and

nNonOrthogonalCorrectors 3.

• Also, be sure to use a high value of viscosity.

• Use Newton-Krylov type linear solvers (do not use

multigrid), and set the minimum number of iterations

to 5 for all variables.

• Use a CFL number in the order of 0.5.

• If your simulation continues to crash using this

method, you better check your boundary conditions,

physical properties, or the physical models involved.

• Maybe there is something incompatible in your

setup.

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U) Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

400

Roadmap

1. CFD and Multiphysics simulations

2. The Finite Volume Method: An overview

3. Navier-Stokes equations and pressure-velocity coupling

4. On the CFL number

5. Unsteady and steady simulations

6. Understanding the residuals

7. Boundary conditions and initial conditions

8. The FVM in OpenFOAM: some implementation details and

computational pointers

9. Best standard practices – General guidelines

10. Final remarks

401

Final remarks

• Some kind of conclusion,

• Good mesh – good results.

• Start robustly and end with accuracy.

• Stability, accuracy and boundedness, play

by these terms and you will succeed.

• Do not sacrifice accuracy and stability over

computing speed.

402

Final remarks

403

That was only the tip of the iceberg

Now the rest is on you

Final remarks

• There is vast amount of literature in the field of FVM/CFD and numerical analysis. We will give you some of our

favorite references, which are closed related to what you will find in OpenFOAM.

• The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With

OpenFOAM and Matlab

F. Moukalled, L. Mangani, M. Darwish. 2015, Springer-Verlag

• Finite Volume Methods for Hyperbolic Problems

R. Leveque. 2002, Cambridge University Press

• Computational Gasdynamics

C. Laney. 1998, Cambridge University Press

• Computational Techniques for Multiphase Flows

G. H. Yeoh, J. Tu. 2009, Butterworth-Heinemann

• An Introduction to Computational Fluid Dynamics

H. K. Versteeg, W. Malalasekera. 2007, Prentice Hall

• Computational Fluid Dynamics: Principles and Applications

J. Blazek. 2015, Butterwoth-Heinemann.

• Computational Methods for Fluid Dynamics

J. H. Ferziger, M. Peric. 2001, Springer

• Numerical Heat Transfer and Fluid Flow

S. Patankar. 1980, Taylor & Francis

• Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods

S. Mazumder. 2015, Academic Press.

• Iterative Methods for Sparse Linear Systems

Y. Saad. 2003, SIAM.

Some FVM/CFD references

405

Final remarks

• There is vast amount of literature in the field of FVM/CFD and numerical analysis. We will give you some of our

favorite references, which are closed related to what you will find in OpenFOAM.

• Matrix analysis and applied linear algebra

C. D. Meyer. 2010, SIAM.

• A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts

M. Peric. PhD Thesis. 1985. Imperial College, London

• Error analysis and estimation in the Finite Volume method with applications to fluid flows

H. Jasak. PhD Thesis. 1996. Imperial College, London

• Computational fluid dynamics of dispersed two-phase flows at high phase fractions

H. Rusche. PhD Thesis. 2002. Imperial College, London

• High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws

P. K. Sweby. SIAM Journal on Numerical Analysis, Vol. 21, No. 5, pp. 995-1011, 1984.

• A Pressure-Based Method for Unstructured Meshes

S. R. Mathur, J. Y. Murthy. Numer. Heat Transfer, Vol. 31, pp. 195-216, 1997.

• A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic

flows

S. V. Patankar, D. B. Spalding. Int. J. Heat Mass Transfer, 15, pp. 1787-1806, 1972.

• Solution of the implicitly discretized fluid flow equations by operator-splitting

R. I. Issa. J. Comput. Phys., 62, pp. 40-65, 1985.

• Further discussion of numerical errors in CFD

J. H. Ferziger, M. Peric. Int. J. Numer. Methods in Fluids, Vol. 23, pp. 1263-1274, 1996.

• Limiters for Unstructured Higher-Order Accurate Solutions of the Euler Equations

K.Michalak, C. Ollivier-Gooch. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2008.

Some FVM/CFD references

406

Final remarks

• ERCOFTAC best practice guidelines (aerospace CFD, automotive CFD, turbomachinery CFD,

electronic cooling CFD, heat transfer).

• NAFEMS best practice guidelines.

• MARNET CFD best practice guidelines for marine applications of CFD.

• NPARC alliance CFD verification and validation archive.

• NASA Turbulence Modeling Resource.

• ERCOFTAC classic collection database for validation and verification.

• NASA CFL3D documentation and validation cases.

• Documentation of commercial CFD solver (e.g., Ansys Fluent, Ansys CFX, Star-CCM+,

NUMECA, and so on).

• Verification and validation in computational science and engineering

P. J. Roache, Hermosa Publishers

• Verification and Validation in Scientific Computing

W. L. Oberkampf , C. J. Roy, Cambridge University Press.

CFD best practices guidelines

407

• We hope you have found this training useful and we hope to see you in one of our advanced

training sessions:

• OpenFOAM® – Multiphase flows

• OpenFOAM® – Naval applications

• OpenFOAM® – Turbulence Modeling

• OpenFOAM® – Compressible flows, heat transfer, and conjugate heat transfer

• OpenFOAM® – Advanced meshing

• DAKOTA – Optimization methods and code coupling

• Python – Programming, data visualization, and exploratory data analysis

• Python and R – Data science and big data

• ParaView – Advanced scientific visualization and python scripting

• And many more available on request

• Besides consulting services, we also offer ‘Mentoring Days’ which are days of one-on-one

coaching and mentoring on your specific problem.

• For more information, ask your trainer, or visit our website

http://www.wolfdynamics.com/

Thank you for your attention

408

http://www.wolfdynamics.com/

409

guerrero@wolfdynamics.com

www.wolfdynamics.com
Let’s connect

	part1.pdf
	part2.pdf

