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Before we begin

On the training material
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• This training is based on OpenFOAM 9.

• In the USB key/downloaded files you will find all the training material (tutorials, slides, and lectures notes).

• You can extract the training material wherever you want. From now on, this directory will become:

• $TM 
(abbreviation of Training Material)

• To uncompress the tutorials go to the directory where you copied the training material ($TM) and then type in 

the terminal,

• $> tar –zxvf file_name.tar.gz

• In the case directory of every single tutorial, you will find a few scripts with the extension .sh, namely, 
run_all.sh, run_mesh.sh, run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_all.sh 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Conventions used
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• Text in Courier new font indicates Linux commands that should be typed literally by the user 

in the terminal.

• Text in Courier new bold font indicates directories.

• Text in Courier new italic font indicates human readable files or ascii files.

• Text in Arial bold font indicates program elements such as variables, function names, classes, 

statements and so on.  It also indicates environment variables, and keywords. They also 

highlight important information.

• Text in Arial underline in blue font indicates URLs and email addresses.

• This icon          indicates a warning or a caution.

• This icon          indicates a tip, suggestion, or a general note.

• This icon          indicates a folder or directory.

• This icon          indicates a human readable file (ascii file).

• This icon          indicates that the figure is an animation (animated gif).

• These characters $> indicate that a Linux command should be typed literally by the user in the 

terminal.

The following typographical conventions are used in this training material



Conventions used
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1 #include <iostream>

2 using namespace std;

3

4 // main() is where program execution begins.  It is the main function.

5 // Every program in c++ must have this main function declared

6

7 int main ()

8 {

9 cout << "Hello world";   //prints Hello world

10 return 0; //returns nothing

11 }

The following typographical conventions are used in this training material

• Large code listing, ascii files listing, and screen outputs can be written in a square box, as 

follows:

• To improve readability, the text might be colored.

• The font can be Courier new or Arial bold.

• And when required, the line number will be shown.
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CFD and Multiphysics simulations

What is CFD?

• Computational Fluid Dynamics (CFD), is the science of predicting fluid flow, heat and mass 

transfer, chemical reactions, and related phenomena by using numerical methods and 

computers.

• To predict these phenomena, CFD finds the approximate numerical solution of the governing 

equations (conservation of mass, momentum, energy, and additional transport equations and 

models).

• CFD is an ensemble of,

• Numerical methods.

• Computer science.

• Fluid dynamics.

• Scientific visualization.

• Engineering applications.

• And most recently machine learning is making its way.
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CFD and Multiphysics simulations

Multiphysics simulations 

• Multiphysics simulations (MS) are computer simulations that involve physical models or phenomena that can 

be coupled together.

• MS consists in finding the approximate numerical solution of the governing equations (often PDEs).

• The physics involved can be fluid flow, heat transfer, mass transfer, stress/deformation, structural dynamics, 

chemical kinetics, pharmacokinetics, biochemistry, electrostatics, electromagnetics, fire dynamics, aero-

acoustics, combustion, chemical reactions, finance, astronomy, and others, coupled in any combination.  

• These disciplines can be solved in multiple dimensions (from 1D to 3D in steady or unsteady formulation), 

ranging from the continuum level to the molecular level.  

• I like to see CFD as a subset of Multiphysics simulations.

• Multiphysics simulations can include the following computational disciplines:

• Computational fluid dynamics → CFD

• Computational structural dynamics → CSD

• Computational heat transfer → CHT

• Computational electromagnetics → CEM

• Computational aero-acoustics → CAA

• Magneto hydrodynamics → MHD

• Fluid structure interaction → FSI

• Discrete particle methods → DPM

• And many more … 9



CFD and Multiphysics simulations

• In CFD/Multiphysics simulations there are many discretization approaches, just to name a few:

• Finite Difference Method → FDM

• Finite Element Method – Galerkin → G-FEM 

• Finite Element Method – Discontinuous Galerkin → DG-FEM 

• Finite Volume Method → FVM

• Immersed Boundary Method → IBM

• Lattice Boltzmann Method → LBM 

• Spectral Element Methods → SEM

• Boundary Element Method → BEM

• Each method will find the approximate numerical solution of the governing equations

• The main difference among all methods is the way how they arrive to the system of discrete algebraic 

equations.

• Hereafter, we are going to address the FVM method.

• Most of the commercial Multiphysics frameworks and CFD solvers are based on the FVM.

• Also, many open-source frameworks are based on the FVM.

• The popularity of the FVM relies on the fact that can be used with arbitrary control volumes, it is easy to 

implement, and it enforces conservation in every single cell of the mesh (thus in the whole domain).

• OpenFOAM, SU2, code Saturn, CFX, FLUENT, Star-CCM, NUMECA, and CFD-ACE+ are all based on the 

FVM.

10
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Important concepts to remember

• Before starting this discussion, remember the following concepts as they will                     

answer many questions later.

• Let us recall linear interpolation. 

• In reference to the figure below, to find the value of the quantity       in f, using the known values 

of       in P and N, we can proceed as follows,
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Important concepts to remember

• Before starting this discussion, remember the following concepts as they will                     

answer many questions later.

• Let us recall the Gauss theorem (also know as Divergence theorem or Ostrogradsky theorem),

where           is a closed surface bounding the control volume         and           represents an 

infinitesimal surface element with associated normal       pointing outwards of the surface           , 

and

• The Gauss or Divergence theorem simply states that the outward 

flux of a vector field through a closed surface is equal to the 

volume integral of the divergence over the region inside the 

surface.
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Important concepts to remember

• Before starting this discussion, remember the following concepts as they will                     

answer many questions later.

• Let us recall Taylor series expansions (TSE), they are used to define our profile assumptions, to 

reconstruct cell centered variables to face center variables, to compute derivatives, to determine 

truncation errors and so on.

• According to TSE, any continuous differentiable function 

can be expressed as an infinite sum of terms that are 

calculated from the values of the function derivatives at a 

single point.

• For example, using TSE the node center E in the figure can 

be approximated as,

• And the face center e can be approximated as,
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Important concepts to remember

• During this discussion, we will use the general transport equation to explain the fundamentals of 

the finite volume method.

• But have in mind that starting from the general transport equation we can write down the Navier-

Stokes equations (NSE). For example, by setting the variables to,

• We can obtain the continuity equation,
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Important concepts to remember

• During this discussion, we will use the general transport equation to explain the fundamentals of 

the finite volume method.

• We can obtain the momentum equations,

• But have in mind that starting from the general transport equation we can write down the Navier-

Stokes equations (NSE). For example, by setting the variables to,
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Important concepts to remember

• During this discussion, we will use the general transport equation to explain the fundamentals of 

the finite volume method.

• We can obtain the energy equation,

• But have in mind that starting from the general transport equation we can write down the Navier-

Stokes equations (NSE). For example, by setting the variables to,
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Important concepts to remember

• Contrary to commercial CFD solvers, in OpenFOAM 

there are no default values.

• It is up to the user to find those values.

• However, following good standard practices and knowing 

a little bit the theory is a very good starting point.

• Our goal is to give you the best standard practices and 

default values (ours) to be used with OpenFOAM. 
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• In this training, we will focus our eyes 

to train our brain. 



The Finite Volume Method: An overview

General transport equation and profile 

assumptions

22



The Finite Volume Method: An overview

• Let us use the general transport equation as the starting point to explain the FVM,

• We want to solve the general transport equation for the transported quantity        in a given 

domain, with given boundary conditions BC and initial conditions IC.  

• This is a second order equation.  For good accuracy, it is necessary that the order of the 

discretization is equal or higher than the order of the equation that is being discretized.  

• By the way, starting from this equation we can write down the Navier-Stokes equations (NSE). 

So everything we are going to address also applies to the NSE.
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The Finite Volume Method: An overview

• Let us use the general transport equation as the starting point to explain the FVM,

• Hereafter we are going to assume that the discretization practice is at least second order 

accurate in space and time.

• As consequence of the previous requirement, all dependent variables are assumed to vary 

linearly around a point P in space and instant t in time,

Profile assumptions using Taylor expansions around point P (in space) and point t (in time)
24



The Finite Volume Method: An overview

Mesh data, geometrical information,                          

and variable arrangement
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The Finite Volume Method: An overview

• Let us divide the solution domain into a finite number of arbitrary control volumes or cells, such 

as the one illustrated below.

• Inside each control volume the solution is sought.

• We know all the geometrical information of all cells.  That is, cell centers, face centers, cells 

neighbors, face connectivity, cells volume, faces area, vectors connecting cells centers, and so 

on.

• Let us see in detail all the required geometrical information.
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The Finite Volume Method: An overview

• The control volume        has a volume V and is constructed around point P, which is the centroid 

of the control volume.  Therefore, the notation       . 

• The volume V of all control volumes is known. 

• The control volumes can be of any shape (e.g., tetrahedrons, hexes, prisms, pyramids, 

dodecahedrons, and so on). 

• The only requirement is that the elements need to be convex and the faces that made up the 

control volume need to be planar.
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The Finite Volume Method: An overview

• We also know the neighbors of the control volume or         (following our notation).

• A face of        can have more than one neighbor (non-conformal mesh)

• At this point, we know all the connectivity information, that is: P location, neighbors  ’s of P, 

faces connectivity, vertices location, and so on. 

• Note that the volume of the control volumes needs to be higher than zero.
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The Finite Volume Method: An overview

• The vector from the centroid P of          to the centroid N of         is named d. 

• The location where the vector d intersects a face is     .

• We know this information for all control volumes and all faces.

• We also know which control volumes are internal and which control volumes lie on the 

boundaries.
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The Finite Volume Method: An overview

• The control volume faces are labeled f, which also denotes the face center. 

• The face area vector        point outwards from the control volume, is located at the face centroid, 

is normal to the face, and has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f  is named Pf.

• Note that the vectors        and Pf not necessarily are aligned. 

• Same applies with the vector d (vector connecting P and N).
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The Finite Volume Method: An overview

• In the control volume illustrated, the centroid P is given by

Second order approximations
 

 

 

 

  

 

• In the same way, the centroid of face f is given by
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The Finite Volume Method: An overview

 

 

 

 

  

 

• Finally, we assume that the values of all variables are computed and stored in the centroid of the 

control volume         and that they are represented by a piecewise constant profile (the mean 

value), 

Second order approximations

• This is known as the collocated arrangement. Specifically, cell centered collocated arrangement.

• This is what is called in literature variable arrangement and mean value assumptions.
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The Finite Volume Method: An overview

• Putting all together, it is a lot geometrical information that we need to track.

• A lot of overhead goes into the data book-keeping.

• At the end of the day, the FVM simply consist in conservation of the transported quantities and 

interpolating information from cell centers to face centers.

Summary:

• The control volume        has a volume V and is constructed 

around point P, which is the centroid of the control volume.  

Therefore, the notation       . 

• The vector from the centroid P of          to the centroid N of          

is named d. 

• We also know all neighbors       of the control volume

• The control volume faces are labeled f, which also denotes the 

face center. 

• The location where the vector d intersects a face is     .

• The face area vector         point outwards from the control 

volume, is located at the face centroid, is normal to the face and 

has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f  is named Pf.
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The Finite Volume Method: An overview

• Have in mind that there are different FVM formulations based on the variable arrangement (e.g., 

cell centered, node/vertex based).

• Hereafter we will address the cell centered collocated arrangement, which is the one 

implemented in OpenFOAM and many commercial CFD software (e.g., Ansys Fluent and 

StarCCM+).

• Remember, for good accuracy we want a method that is at least second order accurate (as the 

equations we are solving are second order).

• All the previous approximations are at least second order accurate.

• So far, we have talked about geometric requirements of the FVM.

• Let us address interpolation from cell center to face center and computation of the face fluxes.

• But before moving on, let us mention something about one of the elephants in the room, mesh 

quality.
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The Finite Volume Method: An overview

• In CFD, the mesh is everything.

• As we will see later, the matrix coefficients of the 

discretized system of algebraic equations depends on 

the geometry quantities shown in the figure.

• Specifically, on the dot product of S (vector normal to 

face passing by the face center) and d (vector 

connecting two cell centers).

• This dependence on the dot product            is due to 

the fact that the coefficients contain the following term,

• For perfect cells (orthogonal meshes), the dot 

product is equal to one (there is no deviation 

between the vectors S and d).

• The more a cell deviates from its perfect shape, the 

smaller the dot product becomes, and this results in 

large values of the matrix coefficients which 

increases the system stiffness.

• For very bad quality cells (e.g., very skew cells or 

cells with zero volume), this vector product may 

become zero, producing an undefined system 

(throwing a division by zero error).
35

In the figure:

• S is the vector normal to face and anchored at the face center

• d is the vector connecting two cell centers.

• f is the vector from the cell center to the face center.

• If all these vectors are aligned, we are in the presence of a perfect 

mesh. In practice, this does not happen very often.



The Finite Volume Method: An overview

• Different meshes and their respective matrix of coefficients.

• The quality of all meshes is excellent; however, the matrix of coefficients is different in all cases.

Orthogonal mesh (perfect mesh) Non-orthogonal mesh Unstructured triangular mesh

36



The Finite Volume Method: An overview

Gauss theorem and face fluxes computation

37



The Finite Volume Method: An overview

• Let us recall the Gauss or Divergence theorem,

• The Gauss or Divergence theorem simply states that 

the outward flux of a vector field through a closed 

surface is equal to the volume integral of the divergence 

over the region inside the surface.

• This theorem is fundamental in the FVM, it is used to 

convert the volume integrals appearing in the governing 

equations into surface integrals.  

 

 

 

  

 

   

38

where           is a closed surface bounding the control volume         and           represents an 

infinitesimal surface element with associated normal       pointing outwards of the surface           , 

and



The Finite Volume Method: An overview

• Let us use the Gauss theorem to convert the volume integrals into surface integrals,

• At this point the problem reduces to interpolating somehow 

the cell centered values (known quantities) to the face 

centers.

• Any deviation when interpolating the cell centered values to 

the face centers (Di) is a source of error.
39



The Finite Volume Method: An overview

Convective, diffusive, gradients and source 

terms approximations
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The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Convective term:

where we have approximated the integrant 

by means of the mid point rule, which is 

second order accurate

By using Gauss theorem we convert 

volume integrals into surface integrals

Gauss theorem:
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The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Diffusive term:

where we have approximated the integrant 

by means of the mid point rule, which is 

second order accurate

By using Gauss theorem we convert 

volume integrals into surface integrals

Gauss theorem:
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The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Gradient term:

where we have approximated the centroid gradients by using the Gauss theorem.

This method is second order accurate and is known as Gauss cell-based.

Gauss theorem:

 

 

 

 

  

 

   

Note:

• There are more methods for gradients 

computation, e.g., least squares, node-

based reconstruction, and so on.

• As there is some algebra involved, we 

do not provide the demonstration.
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The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Source term:

This approximation is exact if        is either constant or varies linearly within the control 

volume; otherwise is second order accurate. 

Sc is the constant part of the source term and Sp is the non-linear part

Gauss theorem:
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The Finite Volume Method: An overview

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Convective term:

Diffusive term:

Source term:

Gradient term:
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The Finite Volume Method: An overview

• And recall that all variables are computed and stored at the centroid of the control volumes.  

• The face values appearing in the convective and diffusive fluxes have to be computed by 

some form of interpolation from the centroid values of the control volumes at both sides of 

face f.

• Using the previous equations to evaluate the general transport equation over all the control 

volumes, we obtain the following semi-discrete equation

where is the convective flux 

and                                     is the diffusive flux. 
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The Finite Volume Method: An overview

Interpolation of the convective fluxes

47



The Finite Volume Method: An overview

Interpolation of the convective fluxes

• This type of interpolation scheme is known as linear interpolation or central differencing, and it is 

second order accurate.  

• However, it may generate oscillatory solutions (unbounded solutions).

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,
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The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,

• This type of interpolation scheme is known as upwind differencing, and it is first order accurate.  

• This scheme is bounded (non-oscillatory) and diffusive.

Interpolation of the convective fluxes

49



The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,

• This type of interpolation scheme is known as second order upwind differencing (SOU), linear 

upwind differencing (LUD) or Beam-Warming (BW), and it is second order accurate.  

• For highly convective flows or in the presence of strong gradients, this scheme is oscillatory 

(unbounded).

Interpolation of the convective fluxes

50



• By adding a well-designed limiter function            , we get a high resolution (second order 

accurate), and bounded scheme.  This is a TVD scheme.

• When the limiter detects strong gradients or changes in slope, it switches locally to low 

resolution (upwind).

• The concept of the limiter function             is based on monitoring the ratio of successive 

gradients, e.g., 

The Finite Volume Method: An overview

Interpolation of the convective fluxes

• To prevent oscillations in the SOU, we add a limiter function            , often referred to as flux or 

gradient (slope) limiter.
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The Finite Volume Method: An overview

TVD Schemes
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The Finite Volume Method: An overview

• A TVD scheme, is a scheme that does not create new local undershoots and/or overshoots in 

the solution or amplify existing extremes. 

• In CFD we want stable, non-oscillatory, bounded, high order (HO) schemes. We want high 

resolution schemes (HR), in other words, TVD schemes and at least second order accurate.

• The Sweby diagram (Sweby, 1984), gives the necessary and sufficient conditions for a scheme 

to be TVD.  In the figure, the grey area represents the admissible TVD region.  However, not all 

limiter functions are second order. 

Interpolation of the convective fluxes – TVD schemes

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind
TVD REGION
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The Finite Volume Method: An overview

Interpolation of the convective fluxes – TVD schemes

• The choice of the limiter function             dictates the order of the scheme and its boundedness.

• High-resolution schemes fall in the blue area and low-resolution schemes fall in the grey area.

• The development of high-resolution schemes is one of the most remarkable achievements of the 

history of CFD.

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind
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The Finite Volume Method: An overview

• The drawback of the limiters is that they reduce the accuracy of the scheme locally to first order 

(low-resolution scheme), when             (sharp gradient, opposite slopes or zero gradient).  

However, this is justified when it serves to suppress oscillations.

• The various limiters have different switching characteristics and are selected according to the 

particular problem and solution scheme. 

• No particular limiter has been found to work well for all problems, and a particular choice is 

usually made on a trial-and-error basis.

Interpolation of the convective fluxes – TVD schemes

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind
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The Finite Volume Method: An overview

• Sweby diagram and TVD limiters.

• The fact that some limiters are non differentiable, and some others are differentiable can have an influence on the solution 

behavior (accuracy and convergence rate), specially when dealing with steady simulations.

Interpolation of the convective fluxes – TVD schemes

Limiter functions overlaid onto second-order TVD region
https://en.wikipedia.org/wiki/File:LimiterPlots1.png

This work is licensed under a Creative Commons License (CC BY-SA 3.0)
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The Finite Volume Method: An overview

TVD schemes in action – A numerical schemes 

killer test case
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The Finite Volume Method: An overview

• Let us see how the superbee, minmod and vanleer TVD schemes behave in a numerical 

schemes killer test case:

• The oblique double step profile in a uniform vector field (pure convection).

• By the way, this problem has an exact solution.

Interpolation of the convective fluxes – TVD schemes
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The Finite Volume Method: An overview

• Comparison of non-linear limiter functions.

• All the following TVD schemes are second order accurate. However, the Minmod is a little bit 

more dissipative.

SuperBee - Compressive Minmod - Diffusive vanLeer - Smooth

Interpolation of the convective fluxes – Linear and non-linear limiter functions
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The Finite Volume Method: An overview

• Comparison of linear limiters (upwind and linear upwind) and non-linear limiters (SuperBee).

• Recall that the linear upwind method is 2nd order, and that the upwind method is 1st order. 

• The upwind method is extremely stable and non-oscillatory. However, it is highly diffusive.

• On the other side, the linear upwind method is accurate but oscillatory in the presence of strong 

gradients.

• Remember, TVD methods switch locally to upwind when they detect strong gradients.

Upwind – 1st order Linear Upwind  – 2nd order

Interpolation of the convective fluxes – Linear and non-linear limiter functions

SuperBee – TVD
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The Finite Volume Method: An overview

• Let us see how the non-linear limiter functions compare. 

Interpolation of the convective fluxes – Linear and non-linear limiter functions
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The Finite Volume Method: An overview

• Let us see how the linear limiter functions compare. 

Interpolation of the convective fluxes – Linear and non-linear limiter functions
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The Finite Volume Method: An overview

• Let us see how the linear and non-linear limiter functions compare. 

Interpolation of the convective fluxes – Linear and non-linear limiter functions
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The Finite Volume Method: An overview

Interpolation of the convective fluxes –

Unstructured meshes
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The Finite Volume Method: An overview

• All the high-order (HO) and high-resolution (HR) schemes we have seen so far, assume line 

structure (figure A).  In other words, they are formulated in structured meshes (orthogonal 

meshes).

• In orthogonal meshes, the cell centers PP, P, and N are all aligned (colinear). Therefore, 

constructing numerical stencils is relative straightforward.

• In unstructured meshes or when the cell centers are not colinear, the use of the previous 

schemes is not straightforward as the cell center PP is not aligned with the vector connecting 

cells P and N (figure B).

• High-order and high-resolution schemes for unstructured meshes are an area of active research 

and new ideas continue to emerge.

Interpolation of the convective fluxes – Unstructured meshes
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The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• In unstructured meshes, the face centered values are computed by using the following flux-

limited scheme,

68
Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”

• Notice that the formulation of the flux-limited scheme is the same as the one used when the cell 

centers are colinear.

• The only difference is the way how the ratio of successive gradients        is computed.

• One way to compute        in unstructured meshes is by using the formulation presented in 

reference [1], 
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Interpolation of the convective fluxes – Unstructured meshes

• The sub-index notation used in the ratio of successive gradients         [1] and in the general flux-

limited scheme for unstructured meshes, is illustrated in the figure below.

• Where D stands for downwind cell center and U for upwind cell center.

• Notice that we can use the same relations regardless of the flow direction.

• We only need to be sure to use the right indices.
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U → Upwind

D → Downwind

Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”
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Interpolation of the convective fluxes – Unstructured meshes

• The ratio of successive gradients        [1], can be derived as follows.

70
Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”

• First, let us add a virtual node U upstream of P (for F > 0), in such as way that the cell center P

splits the vector UN in half (a similar reasoning can be use for F < 0).

• Recall that when the cell centers are colinear, the ratio of successive gradients rf can be 

computed as follows (for F > 0),

U → Upwind

D → Downwind
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Interpolation of the convective fluxes – Unstructured meshes

• Let us add and subtract        to rf, such that,
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• By using Taylor expansions, the term                   can be approximated as follows,

• And after some algebra, we obtain the following expression for rf,

U → Upwind

D → Downwind



The Finite Volume Method: An overview

Interpolation of the convective fluxes – Unstructured meshes

• There are many ways to compute the ratio of successive gradients in unstructured meshes. 

• We just presented one formulation [1].

• This is an area of active research where new ideas continue to emerge.

• Thanks to the treatment presented for unstructured meshes, we ended with a compact 

numerical stencil very friendly for unstructured CFD solvers.

• At this point, you should have realized why computing accurate gradients is so important in 

CFD.

• It is also possible to use the wide stencil used for collinear cells centers, but  the reconstruction 

of the value at the cell PP can be very cumbersome.
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Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”
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• To summarize:

• A simple way to interpolate the convective fluxes in unstructured meshes is by redefining 

HO and HR schemes in terms of gradients at the control volume center P and the face 

center f.

• In unstructured meshes, the face centered values are computed using the same flux-limited 

scheme as for structured meshes,

Interpolation of the convective fluxes – Unstructured meshes
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• The main difference is the way how the ratio of successive gradients          is computed.

• The limiter function               remains the same as for structured meshes.

• That is, the Sweby diagram is the same.



• Notice that in this new formulation the cell PP does not appear anymore, we are using compact stencils.

• The problem now turns in the accurate evaluation of the gradients at the cell and face centers.  

• So, as long as the computation of the gradients is second order accurate, it does not matter the way they are computed.

• For example, the gradients at the cell centers can be computed using the Gauss method, and then interpolated to the face 

centers.

• At this point, we are only missing the reconstruction of the cell center gradients at the face centers, this is explained latter.

The Finite Volume Method: An overview

• To summarize:

• For example, using the gradient at the cell center P and the face center f, we can compute 

the face values as follows (upwind bias formulations),

Interpolation of the convective fluxes – Unstructured meshes
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Upwind  → 

Central difference  → 

Second order upwind differencing  → 

QUICK → 
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Interpolation of the convective fluxes – Unstructured meshes

• Another popular reconstruction technique is the Barth and Jespersen method [1]. Here, it is 

assumed that the solution is piecewise linearly distributed over the control volume. 

• According to the flow direction, the left or right state at the face f can be found using the 

following relations,

• In the previous relations,        denotes a limiter function at the face (gradient or slope limiter), 

which is used to avoid over and under shoots on the gradient computations.

• Popular limiter functions are: Minmod, Barth-Jespersen, Venkatakrishnan.

• This linear reconstruction is likely the most popular among the reconstruction methods, and it is 

implemented in most commercial CFD solvers.

Reference:

[1] Barth, T. J., Jespersen, D. C., “The Design and Application of Upwind Schemes on Unstructured Meshes”

if

if
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Interpolation of the convective fluxes – Unstructured meshes

• It worth mentioning that the slope limiter function and the flux limiter (as in TVD schemes), are 

related according to the following relationship [1],

• Where        is the flux limiter and       is the slope limiter function.

• It can be easily seen that the method of Barth and Jespersen [2] corresponds to a Taylor-series 

expansion around the face center.

• This linear reconstruction is formally second order accurate provided the gradient          is 

evaluated accurately.

• The superbee and Barth-Jespersen limiters are the most compressive and are known to turn 

smooth waves into square waves. 

• In multiple dimensions their overly compressive nature may lead to staircasing of discontinuities 

that are not aligned with the grid.

Reference:

[1] Spekreijse, S., “Multigrid Solution of Monotone Second-Order Discretizations of Hyperbolic Conservation Laws”

[2] Barth, T. J., Jespersen, D. C., “The Design and Application of Upwind Schemes on Unstructured Meshes” 78
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Interpolation of diffusive fluxes
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The Finite Volume Method: An overview

• By looking the figures below, the face values appearing in the diffusive flux in an orthogonal 

mesh can be computed as follows,

• This is a central difference approximation of the first order derivative. 

• This type of approximation is second order accurate.

Interpolation of diffusive fluxes in an orthogonal mesh
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• In reference to the figure below, recall that non-orthogonality is the angle between the vector S normal to the 

face f, and the vector d connecting the two cell centers P and N.

• In non-orthogonal meshes (meshes with a non-orthogonal angle), using a central difference approximation is 

not good enough.

• In non-orthogonal meshes, the problem relies in the fact that we want to compute the face gradients in the 

same direction as the vector d, but we cannot because d and S are not parallel.

• From the point of view of the formulation of the diffusive flux using the FVM, the gradient S normal to the face 

cannot be written purely in terms of a gradient in the direction d.

• Therefore, due to non-orthogonality, we need to use an approach different to central differences to 

approximate the face gradients. We need to add some kind of correction.

• In the figure below, the non-orthogonal angle is equal to 20°. 

• Now imagine how the cells will look like is the angle is more than 80° or more. You can also imagine angles 

greater than 90° or the critical angle where the cell volume is equal to zero, i.e., 90°.  

• Keeping non-orthogonality low is very important when generating the mesh.

Interpolation of diffusive fluxes in a non-orthogonal mesh
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• The non-orthogonal angle, gives rise to a secondary gradient T tangential at the face f.

• The gradient normal to the face (orthogonal contribution) can be approximated using central differences.

• The secondary gradient (non-orthogonal contribution) need to be computed somehow.

• From the figure and equation below, the face values appearing in the diffusive flux of a non-orthogonal mesh 

can be computed as a correction of the orthogonal contribution and the non-orthogonal contribution, as 

follows,

Interpolation of diffusive fluxes in a non-orthogonal mesh
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• This type of approximation is second order accurate but involves a larger truncation error.  

• It also uses a larger numerical stencil, which make it less stable.

where

Using T and d, we can now write the 

gradient S normal to the face f.
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• The literature is very rich when it comes to correcting the non-orthogonal contribution.

• This is an area of active research and new ideas continues to emerge.

• For more information about correction of diffusive fluxes in non-orthogonal meshes, the 

interested reader can refer to the following references [1-8].

• In reference [8], Jasak gives a geometric interpretation to different correction approaches found 

in literature. He gave to the approaches the following names,

• Minimum correction approach.

• Orthogonal correction approach.

• Over-relaxed approach.

• Of these approaches, the over-relaxed approach is the most widely used.

• The interested reader can peruse reference [3] for a review of different methods and a derivation 

of the algebra behind the afore mentioned geometrical interpretations.

Correction of diffusive fluxes in a non-orthogonal mesh
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[1] S. R. Mathur, J. Y. Murthy. A Pressure-Based Method for Unstructured Meshes. Numer. Heat Transfer, Vol. 31, 1997.

[2] L. Davidson. A Pressure Correction Method for Unstructured Meshes with Arbitrary Control Volumes. Int. J. Numer. Methods in Fluids. Vol. 22, 1996.

[3] I. Demirdzic. On the Discretization of the Diffusion Term in Finite-Volume Continuum Mechanics. Numerical Heat Transfer, Part B: Fundamentals. Vol. 68, 2015.

[4] J. H. Ferziger, M. Peric. Further discussion of numerical errors in CFD. Int. J. Numer. Methods in Fluids, Vol. 23, pp. 1263-1274, 1996.

[5] W. J. Minkowycz, E. M. Sparrow, J. Y. Murthy. Handbook of Numerical Heat Transfer. Chapter 1. John Wiley & Sons. 2000.

[6] H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics. Prentice Hall. 2000.

[7] J. Ferziger, M. Peric, R. Street. Computational Methods for Fluid. Springer. 2001.

[8] H. Jasak. Error analysis and estimation in the Finite Volume method with applications to fluid flows. PhD Thesis. Imperial College, London. 1996. 



The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the diffusive flux in a non-orthogonal 

mesh (40° in the image below) can be computed as follows.

• Using the over-relaxed approach, the diffusive fluxes can be corrected as,

Correction of diffusive fluxes in a non-orthogonal mesh
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Over-relaxed approach



The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the diffusive flux in a non-orthogonal 

mesh (40° in the image below) can be computed as follows.

• Using the minimum correction approach, the diffusive fluxes can be corrected as,

Correction of diffusive fluxes in a non-orthogonal mesh
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Minimum correction approach



The Finite Volume Method: An overview

• By looking the figure below, the face values appearing in the diffusive flux in a non-orthogonal 

mesh (40° in the image below) can be computed as follows.

• Using the orthogonal correction approach, the diffusive fluxes can be corrected as,

Correction of diffusive fluxes in a non-orthogonal mesh
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Orthogonal correction approach



The Finite Volume Method: An overview

• The secondary face gradients (non-orthogonal contribution) that arises from the discretization of 

the diffusive flux on non-orthogonal meshes, somehow need to be reconstructed from the cell 

center to the face center, this is explained in the next section.

Correction of diffusive fluxes in a non-orthogonal mesh

• Secondary gradient  due to mesh non-orthogonality.

• This gradient needs to be evaluated at the face center.

• It is clear that if the mesh is orthogonal, you do not need to do any correction. 

• Therefore, you can compute the gradients using centered differences (but this is the exception 

rather than the rule).

• When solving the NSE, non-orthogonality mainly affects the pressure equation, and in the case 

of compressible flows, it also affects the energy equation.

• Generally speaking, every equation where the Laplacian operator is present will be sensitive to 

mesh non-orthogonality.

• From the previous discussion, it is clear why we want to avoid large non-orthogonal angles.

Implicit part Explicit part
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Gradient computation at cell centers and  

gradient reconstruction at face centers
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The Finite Volume Method: An overview

Gradients computation at cell centers

• There are many methods for the computation of the cell centered gradients, e.g., least squares, 

Gauss cell-based, Gauss node-based, and so on.

• Using the Gauss cell-based method, the cell centered gradients can be computed as follows,

 

 

 

 

  

 

   

• This approximation is second order accurate given that the mesh quality is acceptable, and the 

volume of the cell is finite.

• In general, the least squares method tends to be more accurate.
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Gradients reconstruction at face centers

• Face gradients             arise from the discretization process of the convective and diffusive 

terms.

• These secondary gradients are due to non-orthogonality and skewness in the pressure and 

energy equations (or any equation containing the diffusion term).

• They also appear when computing the face quantities in unstructured meshes.

• Have in mind that there are many methods to reconstruct (or interpolate) the face gradients, this 

is an area of active research. 

• Hereafter we are going to show a few ways to do so.
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Gradients reconstruction at face centers

• The easiest way to reconstruct the face gradient             is by taking the average of the cell 

centered gradients             and            .

• However, this approach may be inaccurate in non-uniform, non-orthogonal and skew meshes 

(general unstructured meshes).
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The Finite Volume Method: An overview

Gradients reconstruction at face centers

• Another way to reconstruct the face gradient             is by using weighted interpolation of the cell 

centered quantities             and            .

• Again, this approach may be inaccurate in meshes with high degree of non-orthogonality and 

skewness.

where
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• Yet another approach more accurate than the previous ones is by reconstructing the cell 

centered quantities in such a way that they create a vector that is normal to the face and passes 

thru its center. 

• Starting from the cell centered quantities, the face gradients             can be reconstructed as 

follows:

• First, reconstruct the cell centered quantities at the points P* and N*, as follows,

The Finite Volume Method: An overview

Gradients reconstruction at face centers

• Then evaluate the face gradient along the vector dP*N* (which is normal to the face f), as 

follows (you can also use weighted interpolation),
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Gradients reconstruction at face centers

• In the previous formulation, recall that any cell centered quantity          can be reconstructed in a 

new location P* (within the cell volume), as follows,

• All the previous approximations are second order accurate in good quality meshes.

• Also, the use of non-orthogonal corrections suggests the adoption of an iterative method to 

compute better face gradient approximations.
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Gradients reconstruction at face centers

• As for cell centered variables, when 

reconstructing the gradients at the face centers it 

might happen that they become unbounded.

• So, to avoid over and under shoots on the 

gradient computations, we use gradient limiters 

(or slope limiters). 

• By avoiding over and under shoots we are 

enforcing the monotonicity principle.

• Gradient limiters increase the stability of the 

method but might add diffusion due to clipping.  

• The idea behind gradient limiters is similar to that 

of the limiters used in TVD schemes.

• For a more detailed discussion on gradient 

limiters,  the interested reader should review 

references [1-3].
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[1] C. Laney. Computational Gasdynamics. Cambridge University Press. 1998.

[2] C. Hirsh. Numerical Computation of Internal & External Flows. Butterwoth-Heinemann. 2007.

[3] J. Blazek. Computational Fluid Dynamics: Principles and Applications. Butterwoth-Heinemann. . 2015. 



The Finite Volume Method: An overview

Iterative approach to compute cell centered and 

face centered gradients 
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Iterative approach to compute cell centered and face centered gradients 

• From the discussion on interpolation of diffusive fluxes, we have seen that to compute the 

viscous fluxes on non-orthogonal meshes we need to know the face gradients.
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Implicit part Explicit part

• In this decomposition, the orthogonal contribution is treated implicitly (unknowns in the LHS), 

and the non-orthogonal contribution is treated explicitly (known or old values in the RHS).

• The secondary gradient in the diffusive fluxes (due to non-orthogonality), somehow needs to be 

computed and corrected, as discussed in the previous sections.

• The computation of the secondary gradient terms requires the knowledge of gradients at the cell 

centers.

• And the computation of the cell centered gradients requires the face values     , and to compute 

face values we need face gradients (at least in unstructured non-orthogonal meshes).

• This suggest the need of using an iterative approach for computing successively better 

approximations of the      values and the gradients at cell centers and face centers. 

where
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Iterative approach to compute cell centered and face centered gradients 

• One way to iteratively compute the cell centered and face centered gradients is as follows.

• For the computation of the cell centered gradients we can use, for example, the Gauss cell-

based method, which reads as follows, 
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• As a first approximation, the face value      can be computed as the average of the two cells 

values sharing the face so that,

• Once the derivative has been obtained using the Gauss cell-based method (or any other 

method), the initial approximation of the gradient at the face center may be successively 

improved by reconstructing it from the cell value using any of the approaches described in the 

previous section (gradients reconstruction at face centers).

• Remember there are many alternatives to compute the cell centered gradients, e.g., least 

squares, Gauss node-based, and so on. 

• The guys developing videos games and dealing with rendering have developed very advanced 

methods for gradients computation.
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Iterative approach to compute cell centered and face centered gradients 

• In the previous steps, we can add an improvement to the face values      computation.

• Once we have obtained the cell gradient, we can improve our initial approximation of the face 

average by reconstructing a new value from the cell center values, as follows,
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• At this point, it only rest iterate to obtain better approximations by looping.

• During each iteration, we can compute the face weighted average gradient using the cell 

gradient computed in the previous iteration and use these face values to compute new values  

of the gradients.

where

• In addition, the gradients can be limited to avoid overshoots and undershoots on the solution 

(monotonicity principle).

• This is just one method to deal with the computations of cell centered and face centered 

gradients.
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Iterative approach to compute cell centered and face centered gradients 

• By iteratively applying the previous steps, the accuracy of 

the face values and gradients can be improved.

• During each iteration, we can compute the face gradient 

using the cell gradient and then use these face values to 

compute the diffusive or convective fluxes.

• As you can see, increasing the number of iterations will 

improve gradients computations.

• In practice, two or three iterations are sufficient to obtain 

accurate gradients. 

• But depending on the physics involved, we might need to 

do more, or maybe less iterations.

• In general, it is recommended to do at least one iteration.

• By the way, the gradients computation is not only limited to 

the diffusive terms.

• Gradients are also required for the construction of higher-

order convection operators, as well as many physical 

models (e.g., turbulence models, multiphase models, non-

Newtonian viscosity models, and so on).

• Accurate, robust , and stable computation of gradients 

is extremely important in CFD.
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Effect of gradient limiters on solution accuracy 

and convergence to steady state

101



The Finite Volume Method: An overview

• The non-differentiable nature of some limiters can adversely affect convergence to steady state.

• In some cases, they are responsible for the stalled residuals even if the solution is converging.

• In some other cases, they can add a lot of numerical diffusion to the solution.

Effect of gradient limiters on solution accuracy and convergence to steady state

Computed drag for different limiter formulations, in order 

of increasing dissipation associated with the limiter.

Onera M6 Wing (Ma = 0.5, AOA = 3.06)

Reference:

M. Berger, M. Aftosmis, S. Murman, “Analysis of Slope 

Limiters on Irregular Grids”
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The Finite Volume Method: An overview

• Illustration of gradient limiters effect on the convergence to steady state of a sample case – Viscous flow over sphere at low 

Reynolds number (Steady simulation).

• The use of limiters (for gradients and fluxes) to obtain second-order TVD schemes is a powerful and robust approach. There are 

further issues to be considered, such as accuracy and convergence issues resulting from clipping, systems of equations, multiple

dimensions, unstructured meshes, higher-order time-marching methods and so on.

Reference:

K. Kitamura, E. Shima, “Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations”

Effect of gradient limiters on solution accuracy and convergence to steady state
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The Finite Volume Method: An overview

Mesh induced errors
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The Finite Volume Method: An overview

• In order to maintain second order accuracy, and to avoid unboundedness, we need to correct non-

orthogonality and skewness errors.

• The ideal case is to have an orthogonal and non skew mesh, but this is the exception rather than the rule.

• The best practice to minimize mesh induced errors is to generate good quality meshes.

Orthogonal and non skew mesh Non-orthogonal and non skew mesh

Orthogonal and skew mesh Non-orthogonal and skew mesh

Mesh induced errors
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The Finite Volume Method: An overview

Time discretization
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The Finite Volume Method: An overview

• Using the previous equations to evaluate the general transport equation over all the control 

volumes, we obtain the following semi-discrete equation,

• After spatial discretization, we can proceed with the time discretization.  By proceeding in 

this way, we are using the Method of Lines (MOL).

• The main advantage of the MOL method, is that it allows us to select numerical 

approximations of different accuracy for the spatial and time terms.  Each term can be 

treated differently to yield to different accuracies.

Time discretization

where is the convective flux and             is the diffusive 

flux. 
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The Finite Volume Method: An overview

• Now, we evaluate in time the semi-discrete general transport equation

• At this stage, we can use any time discretization scheme, e.g., Crank-Nicolson, Euler implicit, 

forward Euler, backward differencing, adams-bashforth, adams-moulton.

• It should be noted that the order of the time discretization of the transient term does not need to 

be the same as the order of the discretization of the spatial terms.  

• Each term can be treated differently to yield different accuracies.  

• So, as long as the individual terms are at least second order accurate, the overall accuracy will 

also be second order.

Time discretization
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The Finite Volume Method: An overview

Linear system solution – Crunching numbers
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The Finite Volume Method: An overview

in every control volume         of the domain, a system of linear algebraic equations (LAE) for the 

transported quantity       is assembled,

• After spatial and time discretization and by using equation

Linear system solution
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The Finite Volume Method: An overview

• In CFD, the fast and efficient solution of the following system is of paramount importance.

Linear system solution

Boundary conditions and source terms vectorMatrix of coefficients

Solution vector

• This system can be solved by using any iterative or direct method.  

• But in practice, iterative methods are used most of the times.

• An equation for each cell is assemble, where the contribution in the diagonal of A corresponds 

to ap, and the off-diagonal contribution corresponds to the neighboring elements anp (elements 

that shares a face with ap).

Equation for cell 1

Equation for cell P

Equation fir cell N 112
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• The matrix of coefficients A of the discretized system of algebraic equations                    mostly 

depends on the geometry quantities.

• Specifically, on the dot product of S (vector normal to face passing by the face center) and d

(vector connecting two cell centers), that is,

• This dependence on the dot product            is because the coefficients contain the following term,

Linear system solution

• For orthogonal meshes (perfect ones), the dot 

product is equal to one (there is no deviation 

between the vectors S and d).

• The more a cell deviates from its perfect shape, the 

smaller the dot product becomes, and this results in 

large values of the matrix coefficients which 

increases the system stiffness.

• For very bad quality cells (e.g., very skew cells or 

cells with zero volume), this vector product may 

become zero, producing an undefined system 

(throwing a division by zero error).

• One single bad quality cell can make the solution 

diverge.
114
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Linear system solution

• The matrices arising from the discretization of the governing equations are usually very large 

and sparse (they contain only a few non-zero elements).

• Banded sparse matrices tends to help convergence rate.

• In the figures below, the unknow quantity          is distributed along the diagonal.  

• The off-diagonal entries, represent the contribution of the neighboring cells 

Sparse matrix – Banded type

Typical of orthogonal meshes
Sparse matrix – Non-banded structure

Typical of general unstructured meshes 115
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Linear system solution

116

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the convergence 

rate will be. 

• Linear solvers can be accelerated by using matrix reordering techniques that make the 

matrices more diagonally dominant.

Matrix structure plot before reordering

Note:

This is the actual pressure matrix from an OpenFOAM model case

Matrix structure plot after reordering
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Linear system solution

• In CFD, it is extremely important that the matrix A is diagonally dominant.

• A matrix is diagonally dominant if in each row the sum of the off-diagonal coefficient magnitude 

is equal or smaller than the diagonal coefficient,

• Diagonal dominance is a very desirable feature for satisfying the boundedness criterion.

• To achieve diagonal dominance, we need large values of net coefficient (coefficients of the 

diagonal).

• This can be controlled by using under-relaxation, reducing the time-step, by assuring that any 

source term in the RHS is negative, and by having good quality meshes.

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion.

• And at least one i,
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Linear system solution

• If a matrix is diagonally dominant, it also satisfy the Scarborough criterion [1].

[1] James Blaine Scarborough (1958). Numerical Mathematical Analysis. Johns Hopkins Press.

• The satisfaction of this criterion ensures that the equations will converge by at least one iterative method.

• This is a sufficient condition, not a necessary one.  This means that we can get convergence, even if, at times, 

we violate this criterion.

• For example, if Scarborough criterion is not satisfied then Gauss–Seidel method iterative procedure is not 

guaranteed to converge to a solution.

• The finite volume method uses this criterion to set some basic discretization rules related to obtaining a 

convergent solution, implementing boundary conditions, and adding source terms. 

• When linearizing the source terms, they must be negative, so when they are added to ap in the 

LHS, they help increasing the diagonal dominance.

• All coefficients in the LHS and RHS of the linear system should have the same sign (essential 

requirement for boundedness).

• If the boundedness requirement is not satisfied, it is possible that the solution does not converge at 

all, or if it does, the solution is oscillatory (contains wiggles).

118



The Finite Volume Method: An overview

Linear system solution

Matrix of coefficients

Solution vector Boundary conditions and source terms

• After assembly the linear system, the solver will spend a great amount of time solving it.

• This system is solved using iterative solvers, where the algorithm starts from an initial guess 

and keeps iteration until reaching the desired convergence criterion.

• Basically, iterative solvers incrementally reduce the error, until reaching a given residual r

(absolute or relative tolerance),

• The convergence rate of iterative solvers greatly depends on the matrix of coefficients A. 119
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Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• is the initial guess used to start the iterative method. 

• Iteration 0 defines the initial residual, and greatly influence the convergence rate.  

• You can use any value at iteration 0, but usually is a good choice to take the previous solution 

vector. 

• Remember, the closest you are to the actual solution, the faster the convergence rate will be. 120



The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• If the following condition is fulfilled, the linear solver will stop iterating and will advance to the 

next time-step. 

• This condition defines the final residual, where r is the tolerance or convergence criterion 

(defined by the user). 121



The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• By working in an iterative way, every single iteration           is a better approximation of the 

previous iteration

• Sometimes the linear solver might stop iterating because it has reached the maximum number 

of iterations, you should be careful of this because we are talking of unconverged iterations.

• Also, it is recommended to do at least one iteration as it helps at linearizing the equations. 122



The Finite Volume Method: An overview

Linear system solution

• To get a better idea of how iterative methods work, and what are initial residuals and final 

residuals, let us take another look at a residual plot. 

• It is clear that if the initial residual                  is the same as the final residual                                  

(we are converging in one iteration), we can say that we have reached a steady solution (this 

does not happen very often).

• Every iterative linear solver has different properties.  Also, depending on the matrix type 

(symmetric or asymmetric), they might have different convergence rates.
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The Finite Volume Method: An overview

Linear system solution

• Visualization of the pressure coefficient matrix A coming from a CFD simulation. 

• Notice that in this case the matrix has a banded diagonal structure and is symmetric.

• In this case linear solvers perform extremely well.

Boundary conditions and source termsMatrix of coefficients

Solution vector
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The Finite Volume Method: An overview

Multigrid and Newton-Krylov linear solvers – Some remarks

• The development of multigrid (MG) solvers (GAMG in OpenFOAM), together with the 

development of high-resolution TVD schemes and parallel computing, are among the most 

remarkable achievements of the history of CFD.

• Most of the time using MG linear solver is fine (for symmetric matrices).  

• However, if you observe that the MG linear solver is taking too long to converge or is converging 

in more than 100 iterations, it is better to use a Newton-Krylov linear solver (e.g., preconditioned 

conjugate gradient or PCG in OpenFOAM).

• Particularly, we have found that the GAMG linear solver in OpenFOAM does not perform very 

well when you scale your computations to more than 1000 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms the GAMG. 

• But again, this is problem and hardware dependent. 

• As you can see, you need to always monitor your simulations (stick to the screen for a while). 

Otherwise, you might end-up using a solver that is performing poorly (slow convergence rate), 

and this translate in increased computational time and costs.
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The Finite Volume Method: An overview

So, what does an unstructured FVM solver do?
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The Finite Volume Method: An overview

So, what does an unstructured FVM solver do?

• It simply discretizes in space and time the governing equations in arbitrary polyhedral control 

volumes over the whole domain.  

• Assembling in this way a large set of linear algebraic equations (LAE).

• It then solves this system of LAE to find the solution of the transported quantities. 

• The FVM method basically converts the problem of calculus (surface and volume integrals) to 

that of linear algebra (solution of linear systems).
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The Finite Volume Method: An overview

So, what does an unstructured FVM solver do?

• In the FVM method, the following information must be readily available to the solver:

• The mesh.

• Boundary conditions and initials conditions. 

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. 

• Physical models, such as turbulence, mass transfer, etc. 

• How to discretize in space each term of the governing equations (diffusive, convective, 

gradient and source terms). 

• How to discretize in time the obtained semi-discrete governing equations. 

• How to solve the linear system of equations (crunching numbers). 

• Set runtime parameters and general instructions on how to run the case (such as time step, 

under-relaxation factors, and maximum CFL number). 

• Additionally, we may set monitors for post-processing.  

• Every CFD solver will have a different way to ask for this information. 

• Some of them use a GUI (e.g., Fluent, StarCCM+, CFX, NUMECA), and others interacts via ascii 

files using the command line interface (e.g., OpenFOAM).
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Navier-Stokes equations and pressure-velocity coupling

• To solve the Navier-Stokes equations we need to use a solution approach able to deal with the 

nonlinearities of the governing equations and with the coupled set of equations.

Additional equations deriving from models, such as, volume fraction, 

chemical reactions, turbulence modeling, combustion, multi-species, 

thermodynamics, and so on.
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Navier-Stokes equations and pressure-velocity coupling

• Many numerical methods exist to solve the Navier-Stokes equations, just to name a few:

• Pressure-correction methods (Predictor-Corrector type).

• SIMPLE, SIMPLEC, SIMPLER, PISO.

• Projection methods.

• Fractional step (operator splitting), MAC, SOLA.

• Density-based methods and preconditioned solvers.

• Riemann solvers, ROE, HLLC, AUSM+, ENO, WENO.

• Artificial compressibility methods.

• Artificial viscosity methods.

• Methods Based on Derived Variables

• Stream Function-Vorticity

• Vorticity-Velocity Method
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Navier-Stokes equations and pressure-velocity coupling

• We are going to briefly review the following two types of approaches for solving the NSE:

• Pressure-based approach (predictor-corrector).

• Density-based approach.

• Historically speaking, the pressure-based approach was developed for low-speed 

incompressible flows, while the density-based approach was mainly developed for high-speed 

compressible flows.

• However, both methods have been extended and reformulated to solve and operate for a wide 

range of flow conditions beyond their original intent.
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Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach

• Two pressure-based solution methods are generally available, namely:

• Segregated method.

• Coupled method.

• Pressure-based methods are intrinsically implicit.

• They are the default option in most of CFD solvers.

• In the pressure-based approach the velocity field is obtained from the momentum equations. 

The pressure is obtained by solving the pressure-Poisson equation. There is some 

mathematical manipulation involved.

• In the segregated algorithm, the individual governing equations for the primitive variables are 

solved one after another.

• The  coupled approach solves the continuity, momentum, and energy equation simultaneously, 

that is, coupled together. 

• Conversely to the pressure-based approach, there is no mathematical manipulation 

of the governing equations.
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• Then, by taking the divergence of the momentum equation and setting                      , we obtain,

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Pressure equation derivation

• The pressure equation is derived starting from the momentum equation,

• Then, the final form of the pressure equation is as follows,

where
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• Notice that the continuity is enforced when deriving the pressure equation and in all boundaries 

of the domain.



• The previous equations are solved in a given domain, with boundary conditions BCs, and initial 

condition ICs.

• In this set of equations, continuity                     is enforced while deriving the pressure equation 

(referred to as pressure-Poisson equation) and in all boundaries of the domain.

• We use these equations because in the original incompressible Naiver-Stokes equations, 

pressure does not appear in the continuity equation, so is not possible to link the equations.

• Therefore, we derive an alternative set of equations where pressure appears (albeit in the form 

of a gradient and large pressure gradients may cause stability and accuracy problems). 

• So now we can use the velocity obtained in the momentum equation (momentum predictor 

step) to compute the pressure using the pressure-Poisson equation (pressure corrector step), 

and then correct the velocity with the new pressure value (momentum corrector step). 

• This is referred to as pressure-velocity coupling (P-V coupling).

Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Pressure equation derivation

• In the pressure-based approach, the actual equations that are being solved are,
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where

This system of equations is 

equivalent to the original 

Navier-Stokes equations.



Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Segregated method

• In the pressure-based approach the velocity field is obtained from the momentum equations.

• In the pressure-based approach the pressure field is extracted by solving a pressure or 

pressure correction equation which is obtained by manipulating continuity and momentum 

equations. 

• If it is required, the energy equation is solved.

• Then, equations for other scalars such as turbulence, volume fraction, chemical species, etc., 

are solved.

• The solution process keeps iterating over the entire set of governing equations until the solution 

converges to a given criterion or the user decides to stop the simulation.

• In this approach, each governing equation while being solved, is decoupled or segregated from 

other equations, hence its name. 

• The segregated algorithm is memory-efficient, since the discretized equations need only be 

stored in the memory one at a time.

• However, the solution convergence is relatively slow (in comparison to coupled solvers) as the 

equations are solved one at a time.
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• As we have seen, mesh non-orthogonality introduces secondary gradients into the pressure 

equation (the term              in the equation below).
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Pressure-based approach – Segregated method

• To reduce any error introduced by secondary 

gradients, we need to correct the pressure 

equation for non-orthogonality.  

• That is, we solve for pressure and then we 

correct it, obtaining in this way better 

approximations.

• After correcting momentum with the previous 

pressure value, we can substitute the new 

value in the pressure equation and solve 

again (additional passes through pressure 

and momentum corrector equations).

• By looping in this way we gain more stability 

and accuracy by getting better 

approximations.

where

Navier-Stokes equations and pressure-velocity coupling



Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Segregated method

Each iteration consists of the steps illustrated in the figure and 

outlined below:

1. Update fluid properties (for example, density, viscosity, 

specific heat, turbulent viscosity, and so on) based on the 

initial conditions or current solution.

2. Solve the momentum equations, one after another, using 

the recently updated values of pressure and face mass 

fluxes.

3. Solve the pressure correction equation using the recently 

obtained velocity field and the mass-flux.

4. Correct face mass fluxes, pressure, and the velocity field 

using the pressure correction obtained from Step 3.

5. Solve the energy equation using the current values of the 

solution variables.

6. Solve additional transport equations, such as turbulent 

quantities, volume fraction, species, and so on), using the 

current values of the solution variables.

7. Check for the convergence of the equations.

These steps are continued until the convergence criterion is 

met or the user decides to stop the simulation.
Check convergence STOP

Solve additional transport equations 
(turbulence, volume fraction, multi-

species, and so on)

Solve energy equation

Update mass flow, pressure and 
velocity

Solve pressure-correction equation

Solve in a segregated way 
 
 
 

update properties

YesNo

140



Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Segregated method

• To achieve pressure-velocity coupling using segregated solvers there are several methods 

available.  To name a few:

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• SIMPLER (SIMPLE Revised)

• PISO (Pressure Implicit with Splitting Operators)

• All the aforementioned methods are based on the predictor-corrector approach.

• Each one have different properties, options and loop in slightly different ways.

• But at the end of the day, all of them will iterative until reaching the convergence criterion.
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Navier-Stokes equations and pressure-velocity coupling

Pressure-velocity coupling using 

the SIMPLE method

Check convergence STOP

Solve additional transport equations

Correct pressure and velocities 
p = p* + p'  
u = u* + u' 
v = v* + v' 

w = w* + w'

Initial guess p*, u*, v*, w*

YesNo

Solve Poisson equation for the 
pressure correction p'

Compute intermediate velocities 
(divergent free)  

u*, v*, w*

p* = p 
u* = u 
v* = v 
w* = w

Check convergence STOP

Solve additional transport equations

Correct pressure and velocities 
p** = p* + p'  
u** = u* + u' 
v** = v* + v' 

w** = w* + w'

Initial guess p*, u*, v*, w*

YesNo

Solve Poisson equation for the 
pressure correction p'

Compute intermediate velocities 
(divergent free)  

u*, v*, w*

p* = p 
u* = u 
v* = v 
w* = w

Solve second pressure correction 
equation p''

Correct pressure and velocities 
p*** = p** + p''  
u*** = u** + u'' 
v*** = v** + v'' 

w*** = w** + w''

p = p*** 
u = u*** 
v = v*** 
w = w***

Pressure-velocity coupling using 

the PISO method
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Navier-Stokes equations and pressure-velocity coupling

A few remarks about the SIMPLE and PISO methods 

• The SIMPLE method [1] was initially developed in the 1970s for steady state flows and 

extended later to unsteady flows with iterative marching at each time-step.

• In the SIMPLE method, under-relaxation must be used for stability reasons.  This means that 

many iterations are required.

• Also, in the SIMPLE method the under-relaxation factors (URF) need to be tuned according to 

the application.

• For time dependent flows, iterative marching is necessary at each time-step, making the 

SIMPLE method inefficient.

• The PISO method [2] was developed in the early 1980s for steady and unsteady flows, and to 

address some of the drawbacks of the SIMPLE method.

• The PISO method is very efficient for unsteady flows since there is no need for iterative 

marching at each time-step.

• In the PISO method, the pressure field is free from continuity errors after the second corrector. 

Therefore, two correctors are normally sufficient.
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Navier-Stokes equations and pressure-velocity coupling

A few remarks about the SIMPLE and PISO methods 

• The PISO method often needs more than two correctors when large pressure gradients exist.

• The PISO method is stable for CFL numbers much greater than 1, and it does not need 

adjustable under-relaxation parameters.

• The SIMPLE and PISO methods are both implicit.  

• Both methods were initially developed for staggered grids, but now they can be used with 

collocated meshes (standard practice in most modern CFD solvers).

• In the SIMPLE and PISO methods, to avoid the pressure-velocity decoupling that occurs when 

using collocated meshes, the cell-face velocity value is computed using Rhie-Chow 

interpolation [1].

• For unsteady problems, the PISO method is much faster than the SIMPLE method.

• For steady problems, both methods shows similar convergence rates. However, the SIMPLE is 

less computational expensive.  

• The drawback of the SIMPLE method for steady simulations is that the URF are problem 

dependent.
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Navier-Stokes equations and pressure-velocity coupling

• SIMPLE

• S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and 

momentum transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, 

15, 1787-1806 (1972).

• SIMPLE-C

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for 

predicting incompressible fluid flows”, Numer. Heat Transfer, 7, 147-163 (1984).

• SIMPLE-R
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• R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-
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On the origins of the SIMPLE and PISO methods
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Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Coupled method

• The pressure-based coupled algorithm solves a coupled system of equations comprising the 

momentum equations and the pressure-based continuity equation.

• The remaining equations are solved in a decoupled fashion as in the segregated algorithm.

• Since the momentum and continuity equations are solved in a closely coupled manner, the rate 

of convergence significantly improves when compared to the segregated algorithm. 

• However, compared to the segregated algorithm the memory requirements are larger by at least 

2 to 3 times.

• As memory requirements are very high, they are not very efficient for unsteady computations.
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Navier-Stokes equations and pressure-velocity coupling

Pressure-based approach – Coupled method

Each iteration consists of the steps illustrated in the figure and 

outlined below:

1. Update fluid properties (for example, density, viscosity, 

specific heat) including turbulent viscosity based on the 

initial conditions or current solution.

2. Solve the momentum equations and pressure-correction 

equation in a coupled manner.

3. Correct face mass fluxes, pressure, and the velocity field 

using the pressure correction obtained from Step 2.

4. Solve the energy equation using the current values of the 

solution variables.

5. Solve additional transport equations, such as turbulent 

quantities, volume fraction, species, and so on), using the 

current values of the solution variables.

6. Check for the convergence of the equations.

These steps are continued until the convergence criterion is 

met or the user decides to stop the simulation.

Check convergence STOP

Solve additional transport equations 
(turbulence, volume fraction, multi-

species, and so on)

Solve energy equation

Update mass flow

Solve simultaneously momentum 
equations and pressure correction 

equation

update properties

YesNo
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Navier-Stokes equations and pressure-velocity coupling

Density-based approach

• The density-based approach solves the continuity, momentum, and energy equation 

simultaneously, that is, coupled together.

• Conversely to the pressure-based approach, there is no mathematical manipulation on the 

governing equations.

• Pressure is obtained through an equation of state. 

• Governing equations for additional scalars are solved afterward and sequentially, that is, 

segregated from one another and from the coupled set.

• The density-based solvers are recommended when there is a strong coupling between density, 

energy, momentum, and/or species.

• Because the governing equations are non-linear and coupled, several iterations of the solution 

loop must be performed before a converged solution is obtained. 

• In the density-based solution method, you can solve the coupled system of equations using 

either an explicit formulation or an implicit formulation. 

• Typical solution methods used in the density-based approach are:

• ROE, AUSM+, HLLC
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Navier-Stokes equations and pressure-velocity coupling

Check convergence STOP

Solve simultaneously continuity, 
momentum, and energy equations

update properties

YesNo

Solve in a segregated way additional 
transport equations, such as: 

turbulence,  
volume fraction,  

multi-species, 
chemical reactions, 

 and so on.

Each iteration consists of the steps illustrated in the figure and 

outlined below:

1. Update fluid properties (for example, density, viscosity, 

specific heat) including turbulent viscosity based on the 

initial conditions or current solution.

2. Solve the continuity, momentum and energy equations in 

a coupled manner.

3. Solve additional transport equations, such as turbulent 

quantities, volume fraction, species, and so on), using the 

current values of the solution variables.

4. Check for the convergence of the equations.

These steps are continued until the convergence criterion is 

met or the user decides to stop the simulation.

Density-based approach
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• The CFL number is a measure of how much information (   ) traverses a computational grid cell 

(        ) in a given time-step (       ).

• The CFL number is a necessary condition to guarantee the stability of the numerical scheme.

• But not all numerical schemes have the same stability requirements.  

• By doing a linear stability study, we can find the stability requirements of each numerical 

scheme (but this is out of the scope of this lecture). 

On the CFL number

• First of all, what is the CFL or Courant number?

• In one dimension, the CFL number is defined as,
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On the CFL number

• Let us talk about the CFL number condition (which is related to the CFL number).

• The CFL number condition is the maximum allowable CFL number a numerical scheme can 

use.

• For the N dimensional case, the CFL number condition becomes,

• To get a better idea of the importance of the CFL number condition, let us talk about explicit and 

implicit methods. 

• Explicit and implicit methods are approaches used for obtaining the approximate numerical 

solution of time-dependent ODEs and PDEs.

• Explicit and implicit methods have different stability requirements.

• Also, the implementation details are different.
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On the CFL number

Explicit methods

• For a given variable, the unknown value in each 

cell is computed using a relation that includes 

only existing values. 

• Therefore, each unknown will appear in only 

one equation in the system and the equations 

for the unknown value in each cell can be 

solved one at a time to give the unknown 

quantities.

• In the figure, N is the current time level. We do 

not know the solution in this level.

• N – 1 is the previous time level, where we know 

the solution in all control volumes.

• For a given variable, the unknown value in each 

cell is computed using a relation that includes 

both existing and unknown values from 

neighboring cells. 

• Therefore, each unknown will appear in more 

than one equation in the system, and these 

equations must be solved simultaneously to 

give the unknown quantities.

• In the figure, N is the current time level. We do 

not know the solution in this level.

• N – 1 is the previous time level, where we know 

the solution in all control volumes.

Implicit methods
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On the CFL number

Explicit methods

• Explicit methods are conditionally stable. 

• They have a constraint on the maximum 

allowable CFL number (CFL number condition).

• If you choose a CFL number larger than the 

maximum allowable by the explicit method, your 

numerical solution will become unstable, and it 

will diverge.

• Usually, the maximum allowable CFL number is 

limited to 1.0.  

• Some explicit methods have a CFL condition 

of 0.5, and some of them can go up to 2.0

• In OpenFOAM you will find explicit solvers (last 

time we checked there was only one solver).

• Implicit numerical methods are unconditionally 

stable. 

• In other words, they are not constrained to the 

CFL number condition.

• However, the fact that you are using a numerical 

method that is unconditionally stable, does not 

mean that you can choose a time step of any 

size.

• The time-step must be chosen in such a way 

that it resolves the time-dependent features, 

and it maintains the solver stability.

• When we use implicit methods, we need to 

assemble a large system of equations.

• The memory requirements of implicit methods 

are much higher than those of explicit methods.

• In OpenFOAM, most of the solvers are implicit. 

Implicit methods
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On the CFL number

Some facts of explicit and implicit methods

• Explicit methods are extremely accurate, but they have terrible time steps constraints.

• For the same CFL number, the time-step of explicit methods is usually an order of magnitude 

lower than the time-step required for implicit methods.

• This means that they are approximately ten times slower than implicit methods.

• The memory requirements of explicit are really low and they are extremely easy to parallelize.

• Explicit methods perform really well in GPUs.

• Also, explicit methods are extremely fast (clock time per iteration), and easy to implement

• In order to arrive to a converged solution, you will need to perform a lot of iterations.  This is 

mainly related to the time step constraint. 

• If you are interested in using large time steps (large CFL number) you will need to use implicit 

methods.  
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On the CFL number

Some facts of explicit and implicit methods

• Due to the fact that implicit methods let you use large time steps; you can arrive to a converge 

solution much faster than with explicit methods.

• Also, implicit methods tend to be more stable than explicit methods.

• It is highly advisable that you choose a time step in such a way that it resolves the time scales.

• If you use large time steps with implicit methods, it is likely that you will need to increase the cell 

count in order to maintain the accuracy of the solution, and this translates in an increased 

computational cost.

• In our personal experience, we have been able to go up to a CFL = 5.0 while maintaining the 

accuracy and without increasing too much the computational cost.

• But as we are often interested in the unsteadiness of the solution, we usually use a CFL number 

in the order of 1.0
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On the CFL number

• I like to see the CFL number as follows,

The CFL number for dummies

• It is an indication of the amount of information that 

propagates through one cell (or many cells), in one time-

step.

• By the way, and this is extremely important, the CFL condition is a necessary condition for 

stability (and hence convergence).  

• But it is not always sufficient to guarantee stability.

• Other properties of the discretization schemes that you should observe are: conservationess, 

boundedness, transportiveness, and accuracy.

• The CFL number is not a magical number!
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Unsteady and steady simulations

• Nearly all flows in nature and industrial applications are unsteady (also known as transient or 

time-dependent).

• If you are dealing with turbulence (almost every scenario), you need to take into account the 

unsteadiness inherent of turbulent flows.

• And if you are dealing with multiphase flows, you need to take into account the multiscale 

nature of such flows, which makes multiphase flows intrinsically unsteady.

• Unsteadiness is due to:

• Instabilities.

• Non-equilibrium initial conditions.

• Time-dependent boundary conditions.

• Source terms.

• Chemical reactions.

• Moving or deforming bodies.

• Turbulence.

• Buoyancy.

• Convection.

• Multiple phases
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Unsteady and steady simulations

• A few examples of unsteady applications:

• Internal and external aerodynamics.

• Shock wake interaction.

• Hydrodynamics, sea keeping, free surface, waves.

• Multiphase flows.

• Turbomachinery.

• Moving and deforming bodies.

• Fluid-structure interaction.

• Vortex-induced vibrations.

• Unsteady heat transfer.

• HVAC.

• Aero-vibro-acoustics.

• And many more…
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Unsteady and steady simulations

• A few examples of unsteady applications:

Multiphase flow
www.wolfdynamics.com/wiki/FVM_uns/ani3.gif

Vortex shedding
www.wolfdynamics.com/wiki/FVM_uns/ani1.gif

Buoyant flow
www.wolfdynamics.com/wiki/FVM_uns/ani2.gif
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Unsteady and steady simulations

• A few examples of unsteady applications:

Turbulent flows - SRS
www.wolfdynamics.com/wiki/FVM_uns/ani4.gif

Sliding grids – Continuous stirred tank 

reactor
www.wolfdynamics.com/wiki/FVM_uns/ani5.gif

Marine applications - Sea keeping
www.wolfdynamics.com/wiki/FVM_uns/ani6.gif
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Unsteady and steady simulations

How to run unsteady simulations using a general CFD solver?

• Select the time discretization scheme.

• Set the time step. 

• Remember, the time-step must be chosen in such a way that it resolves the time-dependent 

features and maintains solver stability.

• Set the tolerance (absolute and/or relative) of the linear solvers.

• If it applies, monitor the CFL number. 

• Monitor the stability and boundedness of the solution.

• Monitor a quantity of interest.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.  

• Reducing the time-step will make the coefficient matrix more diagonally dominant.
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Unsteady and steady simulations

• Remember, when running unsteady simulations, the time-step must be chosen in such a way 

that it resolves the time-dependent features and maintains solver stability.

When you use large time steps you do 

not resolve well the physics

By using a smaller time step you 

resolve better the physics and you gain 

stability

How to choose the time-step in unsteady simulations and monitor the solution
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Unsteady and steady simulations

• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.

Monitoring and sampling unsteady simulations
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Unsteady and steady simulations

Monitoring and sampling unsteady simulations

• Remember to choose wisely where to do the sampling.
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Unsteady and steady simulations

• When you run unsteady simulations, flow variables can stop changing with time.  When this 

happens, we say we have arrived at a steady state.

• Remember this is the exception rather than the rule.

• If you use a steady solver, you will arrive to the same solution (maybe not), in much less 

iterations.

I am running an unsteady simulations and the QOI does not change
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Unsteady and steady simulations

What about steady simulations?

• First of all, steady simulations are a big simplification of reality. 

• Steady simulations are a trick used by CFDers to get fast outcomes with results that might be 

very questionable. 

• As mentioned before, most of the flows you will encounter are unsteady.

• In steady simulations we made two assumptions:

• We ignore unsteady fluctuations.  That is, we neglect the time derivative in the 

governing equations.

• We perform time or iterative averaging when dealing with stationary turbulence 

(RANS modeling)

• The advantage of steady simulations are:

• They require low computational resources. 

• They give fast outcomes. 

• They are easy to post-process and analyze. We usually take a lot at the last saved 

solution.
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Unsteady and steady simulations

What about steady simulations?

• To run steady simulations using a general CFD solver, you need to use the appropriate solver 

and set the discretization scheme to deal with a steady simulation.

• As you are not solving the time derivative, you do not need to set the time step.  However, you 

need to tell to the CFD solver how many iterations you would like to run.

• You can also set the residual controls.  If you do not set the residual controls, the simulation will 

run until reaching the maximum number of iterations.

• As there is no time derivative (the time step is infinite), there must be a way to control the 

iterative marching in steady simulations. This is done by adjusting the under-relaxation factors 

(URF).  

• Under-relaxation works by limiting the amount which a variable changes from one iteration to 

the next, either by modifying the solution matrix and source (implicit under-relaxation) prior to 

solving for a field or by modifying the field directly (explicit under-relaxation).

• In other words, under-relaxation will make the coefficient matrix more diagonally dominant.
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• If                we are using under-relaxation. 

• Under-relaxation is a feature typical of steady solvers using the SIMPLE family of methods.

• Many times, steady simulations diverge because of wrongly chosen URF.

• In CFD, under-relaxation can implicit or explicit.

Unsteady and steady simulations

• You also need to set the under-relaxation factors (URF).  

• The under-relaxation factors control the change of the variable     .

What about steady simulations?
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Unsteady and steady simulations

• In explicit under-relaxation we relax the field variable,

What about steady simulations?

• In implicit under-relaxation we relax the discretized algebraic equation variable,

• Choosing the right under-relaxation factors (URF) is equivalent to choosing the right time step.

• You can relate URF to the CFL number as follows, 

• A large CFL number is equivalent to small URF.
173



Unsteady and steady simulations

What about steady simulations?

0 1

relaxationFactors

Velocity

• Selecting the under-relaxation factors, it is kind of equivalent to selecting the right time step.

• The under-relaxation factors are bounded between 0 and 1.

Stability
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Unsteady and steady simulations

What about steady simulations?

• Finding the right under-relaxation factors involved experience and a lot of trial and error.

• Choosing the wrong under-relaxation factors can stall the convergence or give you 

oscillatory/noisy convergence rate (residuals and monitored quantities).

• Generally speaking, is not recommended to reduce implicit under-relaxation factors to values 

below 0.5 as it can stalled the convergence rate, add an oscillatory behavior or it will take much 

longer to convergence.

• If you hit the 0.5 mark when using implicit under-relaxation factors, it is better to stabilize the 

solution in a different way (increase viscosity, ramp boundary conditions, use upwind, increase 

corrections and so on).

• Instead, explicit under-relaxation factors can be reduced to as low as 0.1 and still obtain 

convergence in a reasonable number of iterations.

• It is recommended to use the values mentioned in literature (referred to as industry standard).
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Unsteady and steady simulations

• An optimum choice of under-relaxation factors is one that is small enough to ensure stable 

computation but large enough to move the iterative process forward quickly.

• Different methods (SIMPLE, SIMPLEC, SIMPLER), have different URF requirements.

• These are the under-relaxation factors commonly used with SIMPLE and SIMPLEC methods 

(industry standard),

What about steady simulations?

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right under-relaxation factors involved experience and a lot of trial and error.

SIMPLE

p           →  0.3

U           →  0.7

k           →  0.7

omega       →  0.7

epsilon       →  0.7
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SIMPLEC

p           →  1.0

U           →  0.9

k           →  0.9

omega       →  0.9

epsilon       →  0.9



Unsteady and steady simulations

• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved 

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an 

unsteady simulation.

• Remember, steady simulations are not time accurate, therefore we can not use them to 

compute time statistics or compute the shedding frequency

Steady simulations vs. Unsteady simulations
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Unsteady and steady simulations

• It is also possible to use under-relaxation factors with unsteady solvers.

• You should be careful not to use too low URF with unsteady solvers because you might loose time accuracy.

• You can use large URF (close to one) or the industry standard URF with unsteady solvers.

• If you use low values (less than 0.5 for all variables), it is recommended to run a time convergence test to 

determine if you are losing time accuracy.

• The unsteady solution without URF must match the unsteady solution with URF, otherwise your solution is not 

time-accurate.

• When you use URF with unsteady solvers you increase the diagonal dominance of the linear system. 

Therefore, they improve the stability of unsteady solvers.

Under-relaxation factors and unsteady solvers
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SIMPLE

p →  0.3

U    →  0.7

k →  0.7 

omega →  0.7

epsilon →  0.7

SIMPLEC

p →  1

U    →  0.9

k →  0.9

omega →  0.9

epsilon →  0.9

SIMPLE – SIMPLEC – PIMPLE

p → 0.7 (0.3 IN SIMPLE)

U    →  0.7

k →  0.7

omega →  0.7

epsilon →  0.7

Industry standard URF Recommended URF

Note: use these guidelines with unsteady solvers



Unsteady and steady simulations

Unsteady or steady solver?
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Unsteady and steady simulations

Hairpin vortices - Hemisphere
www.wolfdynamics.com/wiki/hairpin_vortices/uns_or_ste.gif

Unsteady or steady solver?
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Unsteady and steady simulations

Unsteady or steady solver?

• Steady simulations are not time accurate, hence we can not use them to 

compute timel statistics or compute the shedding frequency. 

• Generally speaking, and in the absence of highly unsteady flows, steady 

simulations should give a result that is close to the mean solution of an 

unsteady simulation.

• Be careful when post-processing steady simulations, the animations you 

obtain does not represent time scales, they only show you how the 

solution change from iteration to iteration.

• When post-processing steady simulations, you should use the last saved 

iteration.

• You can also compute the average of a series of iterations.

• Unsteady simulation are time-accurate.

• They capture the unsteadiness of the flow (time scales).

• You can use these simulations to compute shedding frequency or 

other time scales

• Post-processing unsteady simulations can be difficult and time-

consuming.

• When you post-process unsteady simulations, you access all the 

time-steps saved.

• You can also compute the average of a series of time-steps.

• Remember, you need to define an adequate saving frequency and 

time-step.

• You can use steady simulations to initialize unsteady simulations.

Steady simulation
www.wolfdynamics.com/wiki/hairpin_vortices/ste/ani1.gif

Unsteady simulation
www.wolfdynamics.com/wiki/hairpin_vortices/uns0/ani_smallcfl.gif
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Unsteady and steady simulations

Unsteady or steady solver?

Steady simulation Unsteady simulation

• Steady simulations are not time accurate, hence we can not use them 

to compute time statistics or compute the shedding frequency. 

• Generally speaking, and in the absence of highly unsteady 

phenomena, steady simulations should give a result that is close to 

the mean solution of an unsteady simulation.

• Steady simulations are a very good starting point for unsteady 

simulations.

• Unsteady simulations are time-accurate.

• They capture the unsteadiness of the flow (time scales).

• You can use these simulations to compute shedding frequency, but 

remember, you need to define an adequate saving frequency and 

time-step.

• Numerical diffusion can give you the impression that you have arrived 

at a steady state.

184



Unsteady and steady simulations

Unsteady or steady solver?

Coarse mesh Fine mesh

• As the accuracy is better in the fine mesh, it manages to capture the 

shedding frequency.

• Due to numerical diffusion (under-resolve time and/or spatial 

scales), it is not possible to use this solution to conduct a 

time seriesl analysis of the solution.
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Unsteady and steady simulations

Unsteady or steady solver?

Unsteady simulation residualsSteady simulation residuals
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Understanding the residuals

• To demonstrate how to interpret the residuals, let us use the flow around a cylinder case at 

different Reynolds number.

• We will work with a Reynolds number equal to 20 (steady) and 200 (unsteady).

Unsteady behavior – Vortex shedding

Notice that to accelerate the convergence rate we are using non-uniform initialization

www.wolfdynamics.com/training/fvm/FVM_uns1.gif

Steady behavior – No flow separation 

The initial unsteadiness is due to the non-uniform initialization

www.wolfdynamics.com/training/fvm/FVM_ste1.gif

Monitored quantity of interest – Drag coefficient Monitored quantity of interest – Drag coefficient 188
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Understanding the residuals

• Before talking about residuals, let us clarify something.

• When we talk about iterations in unsteady simulations, we are talking about the time-step or 

outer-iterations.

1. To arrive to this physical time

2. We iterate this many times
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Understanding the residuals

• And we iterate inside each time-step (or outer-iteration), until reaching the linear solver 

tolerance or maximum number of iterations.
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Understanding the residuals

• This is a typical residual plot for an unsteady simulation.
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Understanding the residuals

• This is a typical residual plot for an unsteady simulation.

• In this case, the fact that the initial residuals are not decreasing is not an indication that the solution is 

diverging. Most likely this behavior is due to unsteadiness.

• However, the final residuals should reach the predefined tolerance criterion (linear solvers).

• Remember, residuals are not a direct indication that you are converging to the right solution.

• It is better to monitor a quantity of interest.

• No need to say that you should get physically realistic values.

• You should also monitor stability.

• To monitor the stability of the solution, you can check the minimum and maximum values of the field variables.

• If you have bounded quantities, check that you do not have over-shoots or under-shoots. 
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Understanding the residuals

• This is the residual plot of an unsteady 

solution that has reached a steady-state 

behavior.

• Notice that after a couple of thousands 

iterations the initial residuals and final 

residuals are the same.

• We are plotting the residuals against 

iterations (or time-steps or outer-iterations).

• And this is the plot of the number of inner-

iterations against the number of outer-

iterations (time-steps).

• Notice that after 2000 time-steps, the 

solution arrives to the convergence 

criterion (linear solvers).

• It is important to do at least one iteration.

• Most CFD solvers will let you choose the 

minimum and maximum number of 

iterations (in the linear solvers).
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Understanding the residuals

• Let us study the residual plot of an 

unsteady solution (or flow), using a steady 

solver.

• Notice that we are making the distinction 

between steady solver and unsteady 

solution.

• Here the initial residuals are not falling 

(stalled convergence).  This is an indication 

of an unsteady solution or the wrong 

numerics.

• Let us study the residual plot of an steady 

solution (or flow), using a steady solver.

• In this case, the initial residuals are falling 

below the convergence criterion 

(monolithic convergence), hence we have 

reached a steady-state.

• In comparison to unsteady solvers, steady 

solvers require less iterations to arrive to a 

converge solution, if they arrive.
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Understanding the residuals

• For a steady flow (low Reynolds number), let us compare an integral quantity computed using a 

steady solver and the same quantity computed using an unsteady solver 

• As we can see, both quantities are roughly speaking the same.

• In comparison to unsteady solvers, steady solvers require less iterations to arrive to a converge 

solution (if they arrive).

• Unsteady solvers need to run for longer times in order to get an average solution.
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Understanding the residuals

• For an unsteady flow (high Reynolds number), let us compare an integral quantity computed 

using a steady solver and the same quantity computed using an unsteady solver 

• As we can see, the outcomes are very different.

• When the flow is unsteady, steady solvers do not capture well the mean solution.

• On the other hand, unsteady solver captures well the unsteadiness. 

• Remember, unsteady solution can be averaged.

196



Understanding the residuals

• Finally, let us compare the residuals of a 

first order and a second order numerical 

scheme.

• This is the residual plot of an unsteady 

simulation. 

• Both methods are converging to the 

desired tolerance.

• Also, the fact that the residuals drop faster 

using a first order methods, does not mean 

that they are better.

• This is the plot of the number of inner-

iterations against the number of outer-

iterations (time-steps).

• As you can see, the first order method is 

less computationally expensive.

• However, the fact that the first order 

method converges faster and is less 

computationally expensive, it does not 

mean it is better.

197



Understanding the residuals

• However, the fact that the first order method converge faster and is less computationally 

expensive, it does not mean it is better.

• As you can see, first order methods highly under-predict the quantity of interest. 

• In this case, the first order method takes more time to onset the instability (as they are highly 

diffusive).
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Understanding the residuals

• This is the output of all residuals for the 

unsteady case (Reynolds number equal to 

200)

• This is the output of all residuals for the 

steady case (Reynolds number equal to 

20).

• The jumps are due to the changes in 

tolerance introduced while running the 

simulation.
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Understanding the residuals

• This is the output of the inner-iterations 

against the outer-iterations for the unsteady 

case (Reynolds number equal to 200).

• This is the output of the inner-residual 

against the outer-residuals for the steady 

case (Reynolds number equal to 20).
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Understanding the residuals

• This is the output of the aerodynamic 

coefficients for the unsteady case 

(Reynolds number equal to 200).

• This is the output of the aerodynamic 

coefficients for the steady case (Reynolds 

number equal to 20).
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Understanding the residuals

• Some gradient/slope limiters can adversely affect convergence rate towards steady state (this 

behavior has been extensively documented).

• In some cases, the residuals get stalled (or flattened) even if you keep the solution running for 

long times, and even if you evidence that a monitored quantity of interest is converging.

• Stalled residuals are mainly due to unsteadiness or the effect of gradient limiters.

• This behavior (which is mainly annoying), can be remediated by changing the gradient limiter or 

switching to an unsteady solver.

• In some cases, this behavior can add some numerical diffusion to the solution.

Stalled residuals and effect of gradient limiters on convergence rate

Stalled residuals

Monotonic convergence
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Understanding the residuals
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• Steady and unsteady simulations.

• Solution of the linear system and 

preconditioning
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Boundary conditions and initial conditions

• First of all, when we use a CFD solver to find the approximate solution of the governing 

equations, we are solving an Initial Boundary Value Problem (IBVP).

• In an IBVP, we need to impose appropriate boundary conditions and initial conditions.

• Boundary conditions are a required component of the numerical method, they tell the solver 

what is going on at the boundaries of the domain.  

• You can think of boundary conditions as source terms.

• Initial conditions are also a required component of the numerical method, they define the initial 

state of the problem, and from this initial guess we start to iterate.

• No need to say that the boundary conditions and initial conditions need to be physically realistic.

On the initial boundary value problem (IBVP)
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Boundary conditions and initial conditions

A few words about boundary conditions

• Boundary conditions (BC) can be divided into three fundamental mathematical types:

• Dirichlet boundary conditions: when we use this BC, we prescribe the value of a 

variable at the boundary.

• Neumann boundary conditions: when we use this BC, we prescribe the gradient normal 

to the boundary.

• Robin Boundary conditions: this BC is a mixed of Dirichlet boundary conditions and 

Neumann boundary.

• You can use any of these three boundary conditions in any general CFD solver, OpenFOAM 

included.  
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Boundary conditions and initial conditions

A few words about boundary conditions

• During this discussion, the semantics is not important, that depends of how you want to call the 

BCs or how they are named in the solver, i.e., in, inlet, inflow, velocity inlet, incoming flow and 

so on.

• Defining boundary conditions involves:

• Finding the location of the boundary condition in the domain.

• Determining the boundary condition type.

• Giving the required physical information.

• The choice of the boundary conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available at the boundary condition location.

• Numerical considerations.

• And most important, you need to understand the physics involved.
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Boundary conditions and initial conditions

• To define boundary conditions, you need to know the location of the boundaries (where they are 

in your mesh).

• You also need to supply the information at the boundaries.

• Last but not least important, you must know the physics involved.

A few words about boundary conditions
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Boundary conditions and initial conditions

• Initial conditions (IC) can be divided into two groups:

• Uniform initial conditions.

• Non-uniform initial conditions.

• For non-uniform IC, the value used can be obtained from:

• Another simulation, including a solution with different grid resolution.

• A potential solver.

• Experimental results.

• A mathematical function 

• Reduced order models.

A few words about initial conditions
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Boundary conditions and initial conditions

• Defining initial conditions involves:

• Finding the location of the initial condition in the domain.

• Determining the initial condition type.

• Giving the required physical information.

• The choice of the initial conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available.

• Numerical considerations.

• And most important, you need to understand the physics involved.

A few words about initial conditions
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Boundary conditions and initial conditions

• For initial conditions, you need to supply the initial information or initial state of your problem.  

• This information can be a uniform value or a non-uniform value.

• You can apply the initial conditions to the whole domain or separated zones of the domain.

• Last but not least important, you must know the physics involved.

A few words about initial conditions
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Boundary conditions and initial conditions

• Inlets and outlets boundary conditions:

• Inlets are for regions where inflow is expected; however, inlets might support outflow when 

a velocity profile is specified.

• Pressure boundary conditions do not allow outflow at the inlets.

• Velocity specified inlets work better with incompressible flows.

• Pressure and mass flow inlets are suitable for compressible and incompressible flows.

• Same concepts apply to outlets, which are regions where outflow is expected.
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Boundary conditions and initial conditions

• Zero gradient and backflow boundary conditions:

• Zero gradient boundary conditions extrapolates the values from the domain.  They require 

no information.  

• Zero gradient boundary conditions can be used at inlets, outlets, and walls.

• Backflow boundary conditions provide a generic outflow/inflow condition, with specified 

inflow/outflow for the case of backflow. 

• In the case of a backflow outlet, when the flux is positive (out of domain) it applies a 

Neumann boundary condition (zero gradient), and when the flux is negative (into of 

domain), it applies a Dirichlet boundary condition (fixed value).

• Same concept applies to backflow inlets.
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Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• Some combinations of boundary conditions are very stable, and some are less reliable.

• And some combinations of boundary conditions are unreliable, e.g.,

• Inlet velocity at the inlet and pressure zero gradient at the outlet. This combination 

should be avoided because the static pressure level is not fixed.

• Qualitatively speaking, the results are very different.  

• This simulation will eventually crash.

BCs 1. Inlet velocity and fixed outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC1.gif

BCs 2. Inlet velocity and zero gradient outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC2.gif
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Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• If you only rely on a QOI and the residuals, you will not see any major difference between 

the two cases with different outlet pressure boundary condition. 

• This is very misleading.

• However, when you visualize the solution, you will realize that something is wrong.  This is 

a case where pretty pictures can be used to troubleshoot the solution.

• Quantitative speaking, the results are very similar.  

• However, this simulation will eventually crash.

Residual plot for pressure Quantity of interest – Force coefficient on the body
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Boundary conditions and initial conditions

• Symmetry boundary conditions:

• Symmetry boundary conditions are a big simplification of the problem. However, they help 

to reduce mesh cell count.

• Have in mind that symmetry boundary conditions only apply to planar faces.

• To use symmetry boundary conditions, both the geometry and the flow field must be 

symmetric.

• Mathematically speaking, setting a symmetry boundary condition is equivalent to:

• Zero normal velocity at the symmetry plane and zero normal gradients of all variables 

at the symmetry plane.

• Physically speaking, they are equivalent to slip walls.
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Boundary conditions and initial conditions

• Location of the outlet boundary condition:

• Place outlet boundary conditions as far as possible from recirculation zones or backflow 

conditions, by doing this you increase the stability.

• Remember, backflow conditions requires special treatment.

Possible backflow
Far enough so the flow can be 

considered fully developed
Might be OK

217



Boundary conditions and initial conditions

218

• Domain dimensions (when the dimensions are not known):

• If you do not have any constrain in the domain dimensions, you can use as a general guideline the 

dimensions illustrated in the figure below, where L is a reference length (in this case, L is the wing chord). 

• The values illustrated in the figure are on the conservative side, but if you want to play safe, multiply the 

values by two or three.

• Always verify that there are no significant gradients normal to any of the boundary patches.  If there are, 

you should consider increasing the domain dimensions.



Boundary conditions and initial conditions

• Boundary conditions and initial conditions need to be physically realistic.

• Poorly defined boundary conditions can have a significant impact on your solution.

• Initial conditions are as important as the boundary conditions. 

• A good initial condition can improve the stability and convergence rate. 

• On the other hand, unphysical initial conditions can slow down the convergence rate or can cause 

divergence.

• And in some situations, can lead to a different solution. Very misleading.

• You need to define boundary conditions and initials conditions for every single variable you are 

solving.

• Setting the right boundary conditions is extremely important.

• But have in mind that you need to understand the physics in order to set the right boundary 

conditions.

• Do not force the flow at the outlet, use a zero normal gradient for all flow variables and fix the 

pressure level.  

• The solver extrapolates the required information from the interior.

A few considerations and guidelines
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Boundary conditions and initial conditions

• Be careful with backward flow at the outlets (flow coming back to the domain) and backward flow 

at inlets (reflection waves), they required special treatment.

• If possible, select inflow and outflow boundary conditions such that the flow either goes in or out 

normal to the boundaries.

• At outlets, use zero gradient boundary conditions only with incompressible flows and when you 

are sure that the flow is fully developed.

• Remember, do not use zero gradient for the pressure.

• Outlets that discharge to the atmosphere can use a static pressure boundary condition. 

• This is interpreted as the static pressure of the environment into which the flow exhausts.

• Generally speaking, it is better to set the mass flow or total pressure at the outlet.

• Inlets that take flow into the domain from the atmosphere can use a total pressure boundary 

condition (e.g., open window).

• Mass flow inlets produce a uniform velocity profile at the inlet.

A few considerations and guidelines
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Boundary conditions and initial conditions

• Pressure specified boundary conditions at inlets allow a natural velocity profile to develop.

• The required values of the boundary conditions and initial conditions depend on the equations 

you are solving, and physical models used, e.g.,

• For incompressible and laminar flows, you will need to set only the velocity and pressure.

• If you are solving a turbulent compressible flow you will need to set velocity, pressure, 

temperature and the turbulent variables.

• For multiphase flows you will need to set the primitives variables for each phase.  You will 

also need to initialize the phases.

• If you are doing turbulent combustion or chemical reactions, you will need to define the 

species, reactions and turbulent variables.

• Minimize grid skewness, non-orthogonality, growth rate, and aspect ratio near the boundaries.  

You do not want to introduce diffusion errors early in the simulation, especially close to the inlets.

• Try to avoid large gradients in the direction normal to the boundaries and near inlets and outlets.  

That is to say, put your boundaries far away from where things are happening.

A few considerations and guidelines
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The FVM in OpenFOAM 

• We just addressed the theorical background of the FVM method.

• We have seen that a lot of sophistication goes into mesh data bookkeeping, especially for 

unstructured meshes.

• We know that there are many space and time discretization schemes.

• We also know that at the end of the day we want a solution that is at least second order accurate.

• Also, as we are solving  an initial boundary value problem (IBVP), we need to give boundary 

conditions and initial conditions (that needs to be realistic).

• Then, somehow OpenFOAM assemblies a matrix of coefficients.

• And then it will crunch numbers using the linear solvers.

• So, the big question is: what does OpenFOAM do? And where can I choose the different options?

• We are going to review the whole process in this section.
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So, what does OpenFOAM do?

• It simply discretizes in space and time the governing equations in arbitrary unstructured meshes.

• Assembling in this way a large set of linear algebraic equations (LAE).

• It then solves this system of LAE using iterative linear solvers to find the solution of the 

transported quantities. 

• Therefore, we need to give to OpenFOAM the following information:

• Discretization of the solution domain or the mesh. This information is contained in the 
directory constant/polyMesh

• Boundary conditions and initials conditions. This information is contained in the directory 0

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. This 
information is contained in the directory constant

• Physics involved, such as turbulence modeling, mass transfer, source terms, etc. This 
information is contained in the directories constant and/or system

• How to discretize in space each term of the governing equations (diffusive, convective, 
gradient and source terms).  This information is set in the system/fvSchemes dictionary.
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So, what does OpenFOAM do?

• It simply discretizes in space and time the governing equations in arbitrary unstructured meshes.

• Assembling in this way a large set of linear algebraic equations (LAE).

• It then solves this system of LAE using iterative linear solvers to find the solution of the 

transported quantities. 

• Therefore, we need to give to OpenFOAM the following information:

• How to discretize in time the semi-discrete governing equations. This information is set in 
the system/fvSchemes dictionary.

• How to solve the linear system of linear algebraic equations (crunch numbers). This 
information is set in the system/fvSolution dictionary.

• Set runtime parameters and general instructions on how to run the case (such as time step 
and maximum CFL number). This information is set in the system/controlDict

dictionary.

• Additionally, we may set sampling and monitors for post-processing. This information is set 
in the system/fvSchemes dictionary or in the sampling dictionaries located in the directory 

system/
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Are there default options in OpenFOAM?

• When you use commercial CFD applications, they will use the best possible options or default 

options (stable and accurate).

• Even if you choose the wrong options, the solver will do some black magic to stabilize the 

solution and get the best results.

• In OpenFOAM, such default options do not exist.  

• It is to the user to choose the best options based on the theory. 

• Therefore, it is important to understand the theory.

• Hereafter, we are going to give you what we think are the best options. 

• Which are based on what is found in commercial software, extensive validation, and experience.

• A small warning, do not take the options in the tutorials that come with OpenFOAM as the default 

or best options.  

• If you go through the tutorials, you will realize that some of them uses upwind or do not do any 

kind of correction.  

• Remember, those tutorials are there just to show you how to setup a case.
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Discretization methods
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ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

Where do we set all the discretization schemes in OpenFOAM?

• The fvSchemes dictionary contains the information related to 

the discretization schemes for the different terms appearing in 

the governing equations.

• The discretization schemes can be chosen in a term-by-term 

basis.

• The keyword ddtSchemes refers to the time discretization.

• The keyword gradSchemes refers to the gradient term 

discretization.

• The keyword divSchemes refers to the convective terms 

discretization.

• The keyword laplacianSchemes refers to the Laplacian 

terms  discretization.

• The keyword interpolationSchemes refers to the method 

used to interpolate values from cell centers to face centers. It 

is unlikely that you will need to use something different from 

linear.

• The keyword snGradSchemes refers to the discretization of 

the surface normal gradients evaluated at the faces.

• Remember, if you want to know the options available for each 

keyword you can use the banana method.
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Time discretization schemes

• These are the time discretization schemes available in OpenFOAM:

• backward

• bounded

• CoEuler

• CrankNicolson

• Euler

• localEuler

• SLTS

• steadyState

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes
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Time discretization schemes

• These are the time discretization schemes that you will use most of the times:

• steadyState: for steady state simulations (implicit/explicit).

• Euler: time dependent first order (implicit/explicit), bounded.

• backward: time dependent second order (implicit), bounded/unbounded.

• CrankNicolson: time dependent second order (implicit), bounded/unbounded.

• First order methods are bounded and stable, but diffusive. 

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.

• If you keep the CFL less than one when using the Euler method, numerical diffusion is not that 

much.
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Time discretization schemes

• The Crank-Nicolson method as it is implemented in OpenFOAM, uses a blending factor. 

ddtSchemes

{

default        CrankNicolson       ;

}

• Setting        to 0 is equivalent to running a pure Euler scheme (robust but first order accurate). 

• By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate but 

oscillatory, formally second order accurate).  

• If you set the blending factor to 0.5, you get something in between first order accuracy and 

second order accuracy, or in other words, you get the best of both worlds.

• A blending factor of 0.7-0.9 is safe to use for most applications (stable and accurate).
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Convective terms discretization schemes

• There are many convective terms discretization schemes available in OpenFOAM (more than 50 

last time we checked). 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/interpolation/surfaceInterpolation

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linearUpwindV: second order accurate, bounded, formulation for vector fields.

• linear: second order accurate, unbounded. 

• vanLeer: TVD, second order accurate, bounded.

• Minmod: TVD, second order accurate, bounded (alternative to vanLeer).

• limitedLinear: second order accurate, unbounded, but more stable than pure linear. 

Recommended for LES simulations (kind of similar to the Fromm method).

• LUST: blended 75% linear and 25% linearUpwind scheme.

• First order methods are bounded and stable but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution. 234
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Convective terms discretization schemes

• When you use linearUpwind and LUST for div(phi,U), you need to tell OpenFOAM how to 

compute the velocity gradient or grad(U),

gradSchemes

{

grad(U) cellMDLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

}

• Same applies for scalars (e.g., k, epsilon, omega, T, e, h) or other vector fields.
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Gradient terms discretization schemes

• These are the gradient discretization schemes available in OpenFOAM:

• edgeCellsLeastSquares

• fourth

• Gauss

• leastSquares

• pointCellsLeastSquares

• All of them are at least second order accurate.

• Some of the gradient discretization methods will require information on how to interpolate the 

cell-centered value to the face-center, e.g.,

• You will find the source code in the following directory:​

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes

grad(U) Gauss linear;

Gradient computation method

Cell-center to face-center interpolation methodCompute the gradient of this field variable,

e.g., U, p, T, alpha, k, omega, and so on
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Gradient terms discretization schemes

• These are the gradient limiter schemes available in OpenFOAM:

• cellLimited

• cellMDLimited

• faceLimited

• faceMDLimited

• Gradient limiters will avoid over and under shoots on the gradient computations. This increases 

the stability of the method but will add diffusion due to clipping.  

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes
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Gradient terms discretization schemes

• Additionally, you have the option to change the gradient limiter method. 

• The following options are available:

• The default method is the minmod.

• You can use the cubic or Venkatakrishnan method only with the cellLimited option.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGr

adSchemes/cellLimitedGrad/gradientLimiters

• cubic

• minmod

• Venkatakrishnan

239



The FVM in OpenFOAM 

Gradient terms discretization schemes

• Additionally, you have the option to change the gradient limiter method. 

• The following options are available:

• To use the cubic method, you need to define the following keyword: 

• cellLimited<cubic>

• To use the Venkatakrishnan method you need to define the following keyword:

• cellLimited<Venkatakrishnan>

• Recall that the cubic and Venkatakrishnan are differentiable limiters, whereas the minmod is 

non-differentiable.

• cubic

• minmod

• Venkatakrishnan
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Gradient terms discretization schemes

• These are the gradient discretization schemes that you will use most of the times:

• Gauss   +   interpolation method

• Gauss linear (Gauss cell-based)

• Gauss pointLinear (Gauss node-based)

• leastSquares (no interpolation method information required)

• These are the gradient limiter schemes that you will use most of the times:

• cellLimited or cellMDLimited

• All of the gradient discretization schemes are at least second order accurate.

• It is recommended not to add too aggressive limiters to all field variables.

• Most of the times is fine to add limiters only for velocity (U) and the turbulent quantities (k, 

omega, epsilon, and so on).

• Avoid adding aggressive limiters to pressure (p), temperature (T), internal energy (e), volume-of-

fraction (alpha), interface curvature (nHat); as they may add too much numerical diffusion.

• If you add too aggressive limiters to all field variables you will add numerical diffusion due to 

clipping, smear the solution, or stalled the residuals (in steady simulations).
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Gradient terms discretization schemes

• According to their diffusivity, the gradient limiter schemes available in OpenFOAM are classified 

as follows:

cellMDLimited

cellLimited

faceMDLimited

faceLimited

• Cell limiters will limit cell-to-cell values.

• Face limiters will limit cell-to-face values.

• The multi-directional (or multi-dimensional) limiters (cellMDLimited and faceMDLimited), will 

apply the limiter in each face direction separately (that is, only in the unbounded direction).

• The standard limiters (cellLimited and faceLimited), will apply the limiter to all components of 

the gradient.

• The default method is the Minmod.

Less diffusive

More diffusive

Note: for smooth field variation, 

cell limiting may provide less 

numerical dissipation on meshes 

with skewed cells.
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Gradient terms discretization schemes

• Limiting direction:

• Cell-to-cell direction limiting,

• Cell-to-face direction limiting,

• Cell based limiters will limit cell-to-cell values. That is, in the direction dPN.

• Face based limiters will limit cell-to-face values. That is, in the direction dPf.

• The more skewed the mesh is, the bigger the different between these methods.

• In good quality meshes both limiters will give 2nd order accuracy. However, in highly skewed 

meshes the face limiters might give 1st order accuracy.

• The method should be selected based in accuracy, smooth field variation, and the need of 

unnecessary limiting. 243
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Gradient terms discretization schemes

• The gradient limiter implementation in OpenFOAM, uses a blending factor      . 

gradSchemes

{

default        cellMDLimited Gauss linear        ;

}

• Setting       to 0 is equivalent to turning off the gradient limiter. You gain accuracy but the solution 

might become unbounded.

• By setting the blending factor equal to 1 the limiter is always on. You gain stability but you give 

up accuracy (due to gradient clipping).

• If you set the blending factor to 0.5, you get the best of both worlds.

• You can use limiters with all gradient discretization schemes.

It can be any method

Gradient limiter scheme
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Laplacian terms discretization schemes

• These are the Laplacian terms discretization schemes available in OpenFOAM:

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/snGradSchemes

• corrected

• faceCorrected

• limited

• linearFit

• orthogonal

• quadraticFit

• uncorrected
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Laplacian terms discretization schemes

• These are the Laplacian terms discretization schemes that you will use most of the times:

• orthogonal: mainly limited for hexahedral meshes 

with no grading (a perfect mesh). Second order 

accurate, bounded on perfect meshes, without non-

orthogonal corrections.

• corrected: for meshes with grading and non-

orthogonality. Second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• limited: for meshes with grading and non-

orthogonality. Second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• uncorrected: usually limited to hexahedral meshes 

with very low non-orthogonality. Second order 

accurate, without non-orthogonal corrections. Stable 

but more diffusive than the limited and corrected 

methods.

Can be computed using the over-relaxed approach

Can be computed using the over-relaxed approach
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Laplacian terms discretization schemes

• According to the mesh, the Laplacian discretization can be chosen as follows:

Perfect orthogonal mesh with no strectching

laplacianSchemes → orthogonal

Orthogonal mesh with strectching

laplacianSchemes → limited 1 or corrected

Mesh with some degree of non-orthogonality (low to medium)

laplacianSchemes → limited 1 to limited 0.5

General unstructured meshes

laplacianSchemes → limited 0.5 248
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• Setting       to 1 is equivalent to using the corrected method. 

• The computation of the Laplacian on the non-orthogonal mesh depends on the orthogonal 

contribution (implicit contribution), and on the non-orthogonal contribution (explicit 

contribution).

• You gain accuracy, but the solution might become unbounded.

• This is approach is recommended for meshes with non-orthogonality less than 70 degrees.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• Setting       to 0 is equivalent to using the uncorrected method. 

• The computation of the Laplacian on the non-orthogonal mesh depends only on the 

orthogonal contribution.

• You give up accuracy with the potential benefit of gaining some stability.

• This is approach is recommended for very good quality meshes. 

• That is, meshes with non-orthogonality less than 60 degrees.

• Rarely you will use this approach.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• By setting       to 0.5 you will get the best of both worlds. 

• The computation of the Laplacian on the non-orthogonal mesh depends on the orthogonal 

contribution (implicit contribution), and on the non-orthogonal contribution (explicit 

contribution).

• However, the non-orthogonal contribution is limited so that it does not exceed the 

orthogonal part. 

• The limiting is proportional to the blending coefficient used.

• You give up accuracy but gain stability.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• Final guidelines:

• For meshes with non-orthogonality less than 70, you can set the blending factor to 1.

• For meshes with non-orthogonality between 70 and 85, you can set the blending factor to 0.5

• This is the method recommended for industrial unstructured meshes.

• For meshes with non-orthogonality more than 85, it is better to get a better mesh.  

• But if you want to use that mesh, you can set the blending factor between 0.333 and 0.5.

• You should also increase the number of non-orthogonal corrections.

• If you are doing LES or DES simulations, use a blending factor of 1.

• This means that you need good meshes.

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

253

• Just to make it clear, the blending factor       is used to avoid the non-orthogonal contribution 

exceeding the orthogonal part, that is, 

Implicit contribution Explicit contribution

non-orthogonal contribution  ≤  orthogonal contribution

• And recall that by using the over-relaxed approach, the Laplacian term (or diffusive flux) is 

computed (and corrected) as follows,
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Laplacian terms discretization schemes

254

• Just to make it clear, the blending factor       is used to avoid the non-orthogonal contribution 

exceeding the orthogonal part, that is, non-orthogonal contribution ≤ orthogonal contribution.

The blending factor works as a limiter acting on this term (non-orthogonal contribution)

• Then, the amount of correction applied to the non-orthogonal contribution is proportional to the 

blending coefficient        used in the limited approach.

Implicit contribution Explicit contribution
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Laplacian terms discretization schemes
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• On the need of limiting the non-orthogonal contribution.

• In meshes with large non-orthogonality, the explicit term can lead to unboundedness and 

eventually divergence.

• To avoid unboundedness, a limiting is applied so that the non-orthogonal contribution never 

exceeds the orthogonal contribution.

• This limiting is local, similar to the treatment done for the connective terms when using 

slope limiters and TVD schemes.

• The explicit contribution is added to the RHS of the linear system (source term), so if this 

term becomes too large it will lead to convergence problems.

• If the non-orthogonal contribution is large, it becomes harder to guarantee diagonal 

dominance of the matrix of coefficient; therefore, the Scarborough criterion might not be 

satisfied.

The blending factor works as a limiter acting on this term (non-orthogonal contribution)

Implicit contribution Explicit contribution
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Laplacian terms discretization schemes

• It is unlikely that you will need to use something different from linear to interpolate the diffusion 

coefficient.

• If that situation arises (e.g., if you are dealing with CHT where you have different diffusion 

coefficients in each region), the following options are valid:

• cubic

• harmonic

• linear

• midPoint

• pointLinear

• reverseLinear

laplacianSchemes

{

default        Gauss linear limited          ;

}

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 

• The limited method uses a blending factor      . 
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Laplacian terms discretization schemes

• The surface normal gradients terms usually use the same method as the one chosen for the 

Laplacian terms.

• For instance, if you are using the limited 1 method for the Laplacian terms, you can use the 

same method for snGradSchemes:

laplacianSchemes

{

default        Gauss linear limited 1;

}

snGradSchemes

{

default        limited 1;

}
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What method should I use?
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Recommended setup for most cases

ddtSchemes

{

default CrankNicolson 0;   //0-0.333

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwindV grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• This setup is recommended for most of                                 

the cases.

• It is very similar to the default method you will find in 

commercial solvers.

• In overall, this setup is second order accurate and fully 

bounded.

• According to the quality of your mesh, you will need to 

change the blending factor of the laplacianSchemes and 

snGradSchemes keywords.

• To keep time diffusion to a minimum, use a CFL number 

less than 2, and preferably below 1.

• If during the simulation the turbulence quantities become 

unbounded, you can safely change the discretization 

scheme to upwind.  After all, turbulence is diffusion.

• For gradient discretization the leastSquares method is 

more accurate. But we have found that it is a little bit 

oscillatory in tetrahedral meshes.
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Recommended setup for most cases

ddtSchemes

{

default Euler;   //0-0.333

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwind grad(U);

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• And if the previous setup is                                    

becoming a little bit oscillatory,                                     

you can try this variant.

• In overall, this setup still is second order accurate and fully 

bounded, except for the turbulence terms.

• However, this is not a big problem because turbulence is a 

diffusive process.

• To keep time diffusion to a minimum, use a CFL number 

less than 2, and preferably below 1.
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A very accurate but oscillatory numerics

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss leastSquares;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

div(phi,omega) Gauss linear;

div(phi,k) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use this 

method.

• In overall, this setup is second order accurate but 

oscillatory.

• Use this setup with LES simulations or laminar flows with 

no complex physics.

• Use this method with good quality meshes.

• According to the quality of your mesh, you will need to 

change the blending factor of the laplacianSchemes and 

snGradSchemes keywords.
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An accurate and a little bit more stable numerics

ddtSchemes

{

default CrankNicolson 0.7;

}

gradSchemes

{

default cellMDLimited Gauss linear 0.5;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

div(phi,omega) Gauss limitedLinear 1;

div(phi,k) Gauss limitedLinear 1;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use this 

method.

• In overall, this setup is second order accurate.

• In the presence of strong gradients, it might oscillate a little 

bit.

• This setup is recommended for cases with no complex 

physics.

• Use this method with good quality meshes.

• According to the quality of your mesh, you will need to 

change the blending factor of the laplacianSchemes and 

snGradSchemes keywords.
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Still accurate (but starting to become diffusive) numerics

ddtSchemes

{

default CrankNicolson 0.333

}

gradSchemes

{

default cellLimited Gauss linear 0.333;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwindV grad(U);

div(phi,omega) Gauss linearUpwind   default;

div(phi,k) Gauss linearUpwind   default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• In overall, this setup is second order accurate.

• It is more diffusive than the previous one.

• This setup is partially bounded, we re using gradient 

limiters only for U.

• Here, we are giving up accuracy to gain stability.

• According to the quality of your mesh, you will need to 

change the blending factor of the laplacianSchemes and 

snGradSchemes keywords.
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A very stable but too diffusive numerics

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• If you are looking for extra stability, you can use this 

method.

• This setup is very stable but too diffusive.

• This setup is first order in space and time.

• You can use this setup to start the solution in the presence 

of bad quality meshes or strong discontinuities.

• Remember, you can start using a first order method and 

then switch to a second order method.

• According to the quality of your mesh, you will need to 

change the blending factor of the laplacianSchemes and 

snGradSchemes keywords.

• You can use this method for troubleshooting. If the solution 

diverges, you better check boundary conditions, physical 

properties, and so on.

• Start robustly, end with accuracy.
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Pressure velocity coupling

SIMPLE and PISO loops
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• In OpenFOAM, you will find segregated pressure-based solvers.

• The following methods are available: 

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• PISO (Pressure Implicit with Splitting Operators)

• Additionally, you will find something called PIMPLE, which is a hybrid between SIMPLE and 

PISO.  

• Also known as iterative PISO or PISO-ITA.

• The PISO-ITA formulation can give you more accuracy and stability when using very large time-

steps, pseudo-transient simulations, or when dealing with complex physics.

• The standard PISO, is also know as PISO-NITA or non-iterative PISO.
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• In OpenFOAM, the PISO and PIMPLE methods are formulated for unsteady simulations.

• Whereas the SIMPLE and SIMPLEC methods are formulated for steady simulations.

• If conserving time is not a priority, you can use the PIMPLE method in pseudo transient mode. 

• The pseudo transient PIMPLE method is more stable than the SIMPLE method, but it has a 

higher computational cost.

• Depending on the method and solver you are using, you will need to define a specific sub-
dictionary in the dictionary file fvSolution.

• For instance, if you are using the PISO method, you will need to specify the PISO sub-

dictionary.

• And depending on the method, each sub-dictionary will have different entries.

• You will find the solvers in the following directory:

• $WM_PROJECT_DIR/applications/solvers
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• As already seen, the SIMPLE and PISO methods are used to deal with the coupling of the 

pressure and velocity equations (P-V coupling).

• In the original governing equations, the continuity and momentum equations are decoupled, 

that is, there is no direct pressure link.

• Therefore, we need to use some mathematical tricks to deal with this decoupling.

• In the SIMPLE and PISO methods, we mathematically manipulate the starting equations, so the 

pressure now appears in both equations.

• In this way there is a direct link between the governing equations.

• It is worth stressing that the manipulated equations are equivalent to the original equations. 

• There is no loss of generality.

• When using the SIMPLE and PISO methods, we use the velocity obtained in the momentum 

equation to compute the pressure using the newly derived pressure equation, and then correct 

the velocity with the new pressure value.
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• SIMPLE

• S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum 

transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, 15, 1787-1806 

(1972).

• SIMPLEC or SIMPLE consistent

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for 

predicting incompressible fluid flows”, Numerical Heat Transfer, 7, 147-163 (1984).

• PISO

• R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-splitting”, J. 

Comput. Phys., 62, 40-65 (1985).

On the origins of the methods – Useful references
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• PIMPLE

• Unknown origins outside OpenFOAM ecosystem (we are referring to the semantics).

• It is equivalent to PISO with outer iterations (iterative time-advancement of the solution).

• Useful reference (besides PISO reference):

• I. E. Barton, “Comparison of SIMPLE and PISO-type algorithms for transient flows, Int. 

J. Numerical methods in fluids, 26,459-483 (1998).

• P. Oliveira and R. I. Issa, “An improved piso algorithm for the computation of 

buoyancy-driven flows”, Numerical Heat Transfer, 40, 473-493 (2001).

• Rhie-Chow interpolation

• C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with 

trailing edge separation”, AIAA Journal, Vol. 21, 1525-1532 (1983).
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Equations used in the SIMPLE and PISO loops

• Then, by taking the divergence of the momentum equation and setting                       , we 

obtain,

• The pressure equation is derived starting from the momentum equation,

• Then, the final form of the pressure equation is as follows,

where
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Equations used in the SIMPLE and PISO loops
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• In the pressure-based approach, the actual equations that are being solved are,

where

This system of equations is 

equivalent to the original 

Navier-Stokes equations.

• The previous equations are solved in a given domain, with boundary conditions BCs, and initial 

condition ICs.

• In this set of equations, continuity                     is enforced while deriving the pressure equation 

(referred to as pressure-Poisson equation) and in all boundaries of the domain.

• We use these equations because in the original incompressible Naiver-Stokes equations, 

pressure does not appear in the continuity equation, so is not possible to link the equations.

• Therefore, we derive an alternative set of equations where pressure appears (albeit in the form 

of a gradient and large pressure gradients may cause stability and accuracy problems). 

• So now we can use the velocity obtained in the momentum equation (momentum predictor 

step) to compute the pressure using the pressure-Poisson equation (pressure corrector step), 

and then correct the velocity with the new pressure value (momentum corrector step). 

• This is referred to as pressure-velocity coupling (P-V coupling).
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• The equations used in the loops implemented in OpenFOAM are divided by A.

• The matrix A contains the diagonal coefficients of the momentum equations corresponding to 

the SIMPLE or PISO loops.  

• By dividing by A, makes the equations more convergent.

• In the momentum equation, add and subtract the term AU,

• Then, divide by A, take divergence and apply

Equations used in OpenFOAM SIMPLE and PISO loops
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• Then, the pressure equation is expressed as follows (pay attention that is divided by A),

• The momentum corrector (also divided by A), is expressed as follows,

• Notice that the momentum corrector equation is obtained from equation,

Equations used in OpenFOAM SIMPLE and PISO loops
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• As we already know, mesh non-orthogonality 

introduces secondary gradients into the pressure 

equation (the term               in the equation).

• To reduce any error introduced by secondary 

gradients, we need to correct the pressure equation.  

• That is, we solve for pressure and then we correct it, 

obtaining in this way better approximations.

• This is controlled using the 

nNonOrthogonalCorrectors keyword.

• After correcting U (momentum corrector), we can 

substitute the new value in the pressure equation 

and solve again.

• This is controlled by the keyword nCorrectors (total 

passes through pressure and momentum corrector 

equations).

• Notice that mesh non-orthogonality and skewness 

also introduces secondary gradients in the energy 

equation,               . 

• The energy equation tends to be more sensitive to 

secondary gradients than the pressure equation.  

Therefore, is recommended to do more corrections.

The FVM in OpenFOAM 

Equations used in OpenFOAM SIMPLE and PISO loops
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The SIMPLE sub-dictionary

SIMPLE

{

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the SIMPLE pressure-velocity coupling method.

• The SIMPLE method only makes one correction. 

• An additional correction to account for mesh non-orthogonality is available when using the 

SIMPLE method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 
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The SIMPLE sub-dictionary

• You can use the optional keyword consistent to enable or disable the SIMPLEC method. 

• This option is disable by default.

• In the SIMPLEC method, the cost per iteration is marginally higher but the convergence rate is 

better so the number of iterations can be reduced.

• The SIMPLEC method relaxes the pressure in a consistent manner and additional relaxation of 

the pressure is not generally necessary. 

• In addition, convergence of the p-U system is better and still is reliable with less aggressive 

relaxation of the momentum equation.

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors    1;

}
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The SIMPLE sub-dictionary

• These are the typical (or industry standard) under-relaxation factors for the SIMPLE and 

SIMPLEC methods.  

• Remember the under-relaxation factors are problem dependent.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

relaxationFactors

{

fields

{

p 0.9;

}

equations

{

p 0.9;

U    0.9;

k 0.9; 

omega 0.9;

}

}

SIMPLE SIMPLEC

Usually there is no need 

to under-relax pressure; 

however, it is advisable.
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The SIMPLE sub-dictionary

• If you are planning to use the SIMPLEC

method, we recommend you use under-

relaxation factors that are little bit smaller that 

the commonly recommended values.

• If during the simulation you still have some 

stability problems, try to reduce all the values 

to 0.5.

• Remember the under-relaxation factors are 

problem dependent.

• It is also recommended to start the simulation 

with low values (about 0.5), and then increase 

the values slowly up to 0.7 or 0.9 (for faster 

convergence).

• For complex physics or when the solution 

diverges with no reason, set all URF values to 

0.7 or even lower.

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

p 0.7;

U    0.7;

k 0.7; 

omega 0.7;

}

}

SIMPLEC
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The SIMPLE sub-dictionary

• The SIMPLE and SIMPLEC methods require the definition of under-relaxation factors (URF).

• The URF control the change of the field variables from iteration to iteration.

• If you do not define URF they will be switch-off, therefore, you will not use under-relaxation and is 

likely that the solution will diverge.

• In OpenFOAM, setting the URF values equal to 1 is not equivalent to turning them off. 

• URF values equal to one will make the linear system more diagonally dominant.

• To know what field variables can be under-relaxed, go to the solver directory or model directory 

(e.g., turbulence models), and type in the terminal:

• $> grep -rn "relax()" 

• All variables reported by this command requires the definition of under-relaxation factors.

• So far we have addressed the SIMPLE method. Have in mind that you can also use URF with the 

PISO and PIMPLE methods.

• However, if time accuracy is important to you, set all URF equal to 1 or add URF that are not too 

low (usually industry standard values are fine). 

• If you under-relax transient solvers, it is strongly recommended to conduct a time convergence 

study by using different URF and time-steps values to be sure that you are not losing time 

accuracy.
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The SIMPLE loop in OpenFOAM

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);
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The PISO sub-dictionary

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the PISO pressure-velocity coupling method.

• The PISO method requires at least one correction (nCorrectors). 

• For good accuracy and stability (specially in unstructured meshes), it is recommended to use at 

least 2 nCorrectors. 

• An additional correction to account for mesh non-orthogonality is available when using the PISO 

method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 
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The PISO sub-dictionary

PISO

{

momentumPredictor yes;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• You can use the optional keyword momentumPredictor to enable or disable the momentum 

predictor step. 

• The momentum predictor (momentumPredictor) helps in stabilizing the solution as it computes 

better approximations for the velocity. 

• It is clear that this will add an extra computational cost, which most of the times is negligible. 

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows.

• Flows with high Reynolds number (Re > 10000) or with large Peclet numbers (Pe > 10). 

• If you are working with low Reynolds flows or creeping flows, it is recommended to turn it off.
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The PISO sub-dictionary

PISO

{

momentumPredictor yes;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• Note that when you enable the option momentumPredictor, you will need to define the linear 

solvers for the variables .*Final (we are using regex notation).

• You need to set the extra *.Final linear solvers for all transported variables except pressure.

• The pressure pFinal linear solver needs to be defined always.

• In our experience, the benefits of the momentumPredictor in unsteady solvers are not quite 

clear.  

• And in particular if you are using the PISO-ITA approach.

• If you are using the PISO-NITA approach, we recommend you use this option at the beginning of 

the simulation and then turn it off.

• Remember to always monitor he solution for oscillations when doing these modifications   

on-the-fly.
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fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PISO loop in OpenFOAM

(PISO with non-iterative marching – NITA – )

This is an excerpt of the actual source code of 

the solver

• It is recommended to switch-off the momentum predictor option for creeping flows or 

low convection flows (low Peclet number).

• If you enable this option in creeping flows or low convection flows, it is recommended 

to do at least two nCorrectors.
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The PIMPLE sub-dictionary

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution. It controls the options related to the PIMPLE 

pressure-velocity coupling method.

• The PIMPLE method works very similar to the PISO method. 

• In fact, setting the keyword nOuterCorrectors to 1 is equivalent to running using the PISO method. 

• The keyword nOuterCorrectors controls a loop outside the PISO loop.

• To gain more stability, especially when using large time-steps or when dealing with complex physics 

(combustion, chemical reactions, shock waves, and so on), you can use more outer correctors 

(nOuterCorrectors). 

• Usually between 2 and 5 corrections for computational efficiency. 

• Have in mind that increasing the number of nOterCorrectors will highly increase the computational cost.
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The PIMPLE sub-dictionary

• You can use the optional keyword momentumPredictor to enable or disable the momentum predictor step. 

• The momentum predictor (momentumPredictor) helps in stabilizing the solution as it computes better 

approximations for the velocity. 

• It is clear that this will add an extra computational cost, which most of the times is negligible. 

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows.

• Flows with high Reynolds number (Re > 10000) or with large Peclet numbers (Pe > 10). 

• If you are working with low Reynolds flows or creeping flows, it is recommended to turn it off.

• If you enable this option when working with low Reynolds flow or creeping flows, it is recommended to do at 

least two nCorrectors.
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{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PIMPLE sub-dictionary

• Note that when you enable the option momentumPredictor, you will need to define the linear solvers for the 

variables .*Final (we are using regex notation).

• You need to set the extra *.Final linear solvers for all transported variables except pressure.

• The pressure pFinal linear solver needs to be defined always.

• In our experience, the benefits of switching-off the momentumPredictor in unsteady solvers are not quite clear.  

• And in particular if you are using the PISO-ITA approach (PIMPLE in OpenFOAM).

• With the PIMPLE family of solver, we recommended to always switch it on and to do at least two 

nOuterCorrectors.
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PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 2;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PIMPLE sub-dictionary

• You can use under-relaxation factors (URF) with the PISO family of solvers, namely,

• PISO-NITA and PISO-ITA (PIMPLE in OpenFOAM). 

• By using URF, you will gain more stability in time dependent solutions (as they control the amount of change of 

field variables within the time-step).

• However, if you use too low URF values, your solution might not be time-accurate anymore.

• You can use the same or larger URF values as those for steady simulation.

• We recommend to always use URF factors.

• In particular, if you are using the PIMPLE family of solvers with large CFL numbers (large time-steps).
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{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PIMPLE sub-dictionary

• You can use the following guidelines to define the URF with the PIMPLE family of solvers:
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relaxationFactors

{

//Nothing in here

}

• URF switch-off.

relaxationFactors

{

fields

{

“.*” 1.0;

}

equations

{

“.*” 1.0;

}

}

• URF set to ensure diagonally dominance.

• The wildcard .* will apply the URF factors 

to all fields (including .*Final).
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The PIMPLE sub-dictionary

• You can use the following guidelines to define the URF with the PIMPLE family of solvers:
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relaxationFactors

{

fields

{

“p.*” 0.3;

}

equations

{

“U.*”    0.7;

“k.*” 0.7; 

“omega.*” 0.7;

}

}

• Recommended URF values with the 

PIMPLE method (SIMPLE formulation).

• The wildcard .* will apply the URF factors 

to all fields (including .*Final).

relaxationFactors

{

fields

{

“p.*” 0.7;

}

equations

{

“p.*” 0.7;

“U.*”    0.7;

“k.*” 0.7; 

“omega.*” 0.7;

}

}

• Recommended URF values with the 

PIMPLE method (SIMPLEC formulation).

• The wildcard .* will apply the URF factors 

to all fields (including .*Final).
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The PIMPLE sub-dictionary

• You can use the following guidelines to define the URF with the PIMPLE family of solvers:
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relaxationFactors

{

fields

{

p 0.7;

pFinal 1.0;

}

equations

{

U    0.7;

UFinal    1.0;

k    0.7;

kFinal    1.0;

omega    0.7;

omegaFinal    1.0;

}

}

• You can also apply the URF in a selective way.

• That is, you can use different URF for the intermediate 

field variables (i.e., p, U, and so on) and the final field 

variables (i.e., pFinal, UFinal, and so on).

• It is not compulsory to use URF with transient 

solvers.

• Nonetheless, using URF with transient solvers will 

improve stability as they increase diagonal 

dominance.  

• Remember, if you use too low URF you will lose time 

accuracy.

• Therefore, it is strongly recommended to conduct a 

time convergence study by using different URF and 

time-steps values.

• In general, we recommend to set all URF equal to 1 

(to improve stability) or using  the industry standard 

(for extra stability).
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fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PIMPLE loop in OpenFOAM

(PISO with iterative marching – ITA – )

This is an excerpt of the actual source code of 

the solver

• It is recommended to switch-off the momentum predictor option for creeping flows or 

low convection flows (low Peclet number).

• If you enable this option in creeping flows or low convection flows, it is recommended 

to do at least two nCorrectors.
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Comparison of PISO with non-iterative time-advancement (PISO-NITA) against                        

PISO with Iterative time-advancement (PISO-ITA) 

298PISO-NITA PISO-ITA (PIMPLE in OpenFOAM)

• The main difference between both methods is the outer loop present in the PISO-ITA.

• This outer loop gives more stability and allow the use of very large time-steps (CFL numbers).

• The recommended CFL number of the PISO-NITA is below 2 (for good accuracy and stability).
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Linear solvers – Crunching numbers
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• To get a better idea of how iterative methods work, and what are initial residuals and final residuals, let us take another look at a 

residual plot. 

• is the initial guess used to start the iterative solver.

• If the following condition is fulfilled                              (where r is the convergence criterion or tolerance), the linear solver will 

stop iterating and will advance to the next time-step.

• By working in an iterative way, every single iteration           is a better approximation of the previous iteration         .

Linear solvers
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• To get a better idea of how iterative methods work, and what are initial residuals and final residuals, let us take another look at a 

residual plot. 

• Remember, you can also do many correctors within a single time-step.

• Sometimes the linear solver might stop before reaching the predefined convergence criterion because it has reached the 

maximum number of iterations, you should be careful of this because we are talking about unconverged iterations.

Linear solvers
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• The equation solvers, tolerances, and algorithms are controlled 
from the sub-dictionary solvers located in the fvSolution

dictionary file. 

• In the dictionary file fvSolution, and depending on the 

solver you are using you will find the additional sub-

dictionaries PISO, PIMPLE, and SIMPLE, which will be 

described later.

• In this dictionary is where we are telling OpenFOAM how to 

crunch numbers.

• The solvers sub-dictionary specifies each linear-solver that is 

used for each equation being solved. 

• If you forget to define a linear-solver, OpenFOAM will let you 

know what are you missing.

• The syntax for each entry within the solvers sub-dictionary 

uses a keyword that is the word relating to the variable being 

solved in the particular equation and the options related to the 

linear-solver.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers
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• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC preconditioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0.  

• To solve the velocity field (U) we are using the PBiCGStab

method with the DILU preconditoner, an absolute tolerance

equal to  1e-08 and a relative tolerance relTol equal to 0. 

• The linear solvers will iterative until reaching any of the 

tolerance values set by the user or reaching a maximum value 

of iterations (optional entry). 

• FYI, solving for the velocity is relatively inexpensive, whereas 

solving for the pressure is expensive.

• The pressure equation is particularly important as it governs 

mass conservation.

• If you do not solve the equations accurately enough (tolerance), 

the physics might be wrong. 

• Selection of the tolerance is of paramount importance.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers
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• The linear solvers distinguish between symmetric matrices and 

asymmetric matrices. 

• The symmetry of the matrix depends on the structure of the 

equation being solved. 

• Pressure is a symmetric matrix and velocity is an asymmetric 

matrix.

• If you use the wrong linear solver, OpenFOAM will complain and 

will let you know what options are valid.

• In the following error screen, we are using a symmetric solver 

for an asymmetric matrix,

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PCG;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers

–> FOAM FATAL IO ERROR :

Unknown asymmetric matrix solver PCG

Valid asymmetric matrix solvers are :

4 

( 

BICCG 

GAMG 

P

smoothSolver 

) 
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers

• The linear solvers are iterative, i.e., they are based on reducing 

the equation residual over a succession of solutions. 

• The residual is a measure of the error in the solution so that the 

smaller it is, the more accurate the solution. 

• More precisely, the residual is evaluated by substituting the 

current solution into the equation and taking the magnitude of 

the difference between the left- and right-hand sides (L2-norm).

• It is also normalized to make it independent of the scale of the 

problem being analyzed. 
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCG;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

minIter 3;

maxIter 100;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers

• Before solving an equation for a particular field, the initial 

residual is evaluated based on the current values of the field.

• After each solver iteration the residual is re-evaluated. The 

solver stops if either of the following conditions are reached: 

• The residual falls below the solver tolerance, tolerance. 

• The ratio of current to initial residuals falls below the 

solver relative tolerance, relTol.

• The number of iterations exceeds a maximum number of 

iterations, maxIter. 

• The solver tolerance should represent the level at which the 

residual is small enough that the solution can be deemed 

sufficiently accurate. 

• The keyword maxIter is optional and the default value is 1000.

• The user can also define the minimum number of iterations 

using the keyword minIter. This keyword is optional, and the 

default value is 0.
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Linear solvers

• These are the linear solvers available in OpenFOAM:

• GAMG  

• PBiCG  

• PBiCGStab

• PBiCICG

• PBiCCCG 

• PCICG

• PCG 

• smoothSolver

• diagonalSolver

→   Multigrid solver

→   Newton-Krylov solver

→   Newton-Krylov solver

→   Newton-Krylov solver – Coupled (only for asymmetric matrices)

→   Newton-Krylov solver – Coupled (only for asymmetric matrices)

→   Newton-Krylov solver

→ Newton-Krylov solver

→ Relaxation iterative solver

→ Explicit solver (back substitution)

• You will find the source code of the linear solvers in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/solvers

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/LduMatrix/Solvers
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Linear solvers

• These are the preconditioners available in OpenFOAM:

• diagonal

• DIC

• DILU

• FDIC

• GAMG

• noPrecondtioner

• The preconditoners are mainly used in conjunction with the conjugate gradient solvers (Newton-

Krylov solvers), and it is highly advisable to use them as they accelerate the solution.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/preconditioners

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/LduMatrix/Preconditioners
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Linear solvers

• These are the smooth solvers (or relaxation solvers) available in OpenFOAM:

• DIC

• DICGaussSeidel

• DILU

• DILUGaussSeidel

• FDIC

• GaussSeidel

• nonBlockingGaussSeidel

• symGaussSeidel

• The smooth solvers (smoothSolver) require the smoother (actual solver) to be specified.

• When using the smooth solvers, the user can optionally specify the number of sweeps by using 

the nSweeps keyword.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/smoothers

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/LduMatrix/Smoothers
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Linear solvers

• As you can see, when it comes to linear solvers there are many options and combinations 

available in OpenFOAM.

• When it comes to choosing the linear solvers, there is no written theory.  

• It is problem and hardware dependent (type of the mesh, physics involved, processor cache 

memory, network connectivity, partitioning method, and so on).

• Most of the times using the GAMG method (geometric-algebraic multi-grid), is the best choice 

for symmetric matrices (e.g., pressure).

• The GAMG method should converge fast (less than 100 iterations). If it is taking more iterations, 

try to change the some of the solver options (pre-sweeps, post-sweeps, agglomeration, and so 

on).

• And if it is taking too long or it is unstable, use the PCG solver (Newton-Krylov) with a good 

preconditioner.

• When running with many cores (more than 1000), using the PCG might be a better choice.
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Linear solvers

• For asymmetric matrices, the PBiCGStab method with DILU preconditioner is a good choice.

• The smoothSolver solver with smoother GaussSeidel, also performs very well.

• If the PBiCGStab method with DILU preconditioner mysteriously crashed with an error related 

to the preconditioner, use the smoothSolver or change the preconditioner.

• But in general, the PBiCGStab solver should be faster than the smoothSolver  solver.

• Remember, asymmetric matrices are assembled from the velocity (U), and the transported 

quantities (k, omega, epsilon, e, T, and so on).

• Usually, computing the velocity and the transported quantities is inexpensive and fast, so it is a 

good idea to use a tight tolerance (1e-8) for these fields.

• The diagonal solver is used for back-substitution, for instance, when computing density using 

the equation of state (we know p, h, e and T).
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Linear solvers

• A few comments on the linear solver residuals.

• Residuals are not a direct indication that you are converging to the right solution.

• The first time-steps the solution might not converge, this is acceptable.

• Also, you might need to use a smaller time-step during the first iterations to maintain solver 

stability.

• If the solution is not converging, try to reduce the time-step size.

• Also, it is highly advisable to do at least one iteration (minIter keyword), but we 

recommend to do at least 3 iterations.

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5) Residuals
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Linear solvers

• So how do we set the tolerances?

• The pressure equation (symmetric matrix) is particularly important, so we should resolve it 

accurately. Solving the pressure equation is the expensive part of the whole iterative process.

• For the pressure equation you can start the simulation with a tolerance equal to 1e-6 and relTol

equal to 0.01.  After a while you change these values to 1e-6 and 0.0, respectively.

• If the solver is too slow, you can change the convergence criterion to 1e-4 and relTol equal to 

0.05.  You usually will do this during the first iterations.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

}

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance Tight tolerance
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Linear solvers

• For the velocity field (U) and the transported quantities (asymmetric matrices), you can use the 

following criterion.

• Solving for these variables is relatively inexpensive, so you can start right away with a tight 

tolerance.

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.01;

}

Loose tolerance

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.0;

}

Tight tolerance
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Linear solvers

• It is also a good idea to set the minimum number of iterations (minIter) to 3.

• If your solver is doing too many iterations, you can set the maximum number of iterations 

(maxIter).  

• But be careful, if the solver reaches the maximum number of iterations it will stop, we are talking 

about unconverged iterations.

• Setting the maximum number of iterations is especially useful during the first time-steps where 

the linear solver takes longer to converge.

• You can set minIter and maxIter in all symmetric and asymmetric linear solvers.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

minIter 3;

maxIter 100;

}
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Linear solvers

• For the velocity field (U), the default option is the conventional segregated linear solver.  That is, 

you first solve for velocity component X, then velocity component Y, and finally velocity 

component Z.

• You can get some improvement in terms of stability and turn around time by using the coupled 

matrix solver for vectors and tensors, i.e., if you are solving the velocity field, you solve all the 

velocity components at once.

• To select the coupled solver, you need to set the solver type to coupled. 

• In the coupled matrix solver, you set tolerance as a vector (absolute and relative).

U

{

type            coupled;

solver          PBiCCCG;

preconditioner  DILU;

tolerance       (1e-08 1e-08 1e-08);

relTol          (0 0 0);

minIter 3;

}
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Linear solvers

• When you use the PISO or PIMPLE method, you need to set the tolerance for the pressure final 

corrector step, that is, pFinal.

• By proceeding in this way, you can put all the computational effort only in the last corrector step 

(pFinal).  For example, you can use the following solver and tolerance criterion for all the 

intermediate corrector steps (p), then in the final corrector step (pFinal) you tight the solver 

tolerance.

• Have in mind that the pressure equation is particularly important, so we should resolve it 

accurately. 

• We recommend to use a tight tolerance for the intermediate and final corrector steps of the 

pressure linear solvers (p and pFinal).

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

}

pFinal

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance for p for intermediate 

corrector steps (p)

Tight tolerance for final corrector step 

(pFinal)
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Linear solvers

Courant Number mean: 0.10556573 max: 0.65793603

deltaT = 0.00097959184

Time = 10

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.0024649332, Final residual = 2.3403547e-09, No Iterations 4

DILUPBiCG:  Solving for Uy, Initial residual = 0.0044355904, Final residual = 1.8966277e-09, No Iterations 4

DILUPBiCG:  Solving for Uz, Initial residual = 0.010100894, Final residual = 1.4724403e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.018497918, Final residual = 0.00058090899, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00058090857, Final residual = 2.5748489e-05, No Iterations 5

time step continuity errors : sum local = 1.2367812e-09, global = 2.8865505e-11, cumulative = 1.057806e-08

GAMG:  Solving for p, Initial residual = 0.00076032002, Final residual = 2.3965621e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 2.3961044e-05, Final residual = 6.3151172e-06, No Iterations 2

time step continuity errors : sum local = 3.0345314e-10, global = -3.0075104e-12, cumulative = 1.0575052e-08

DILUPBiCG:  Solving for omega, Initial residual = 0.00073937735, Final residual = 1.2839908e-10, No Iterations 4

DILUPBiCG:  Solving for k, Initial residual = 0.0018291502, Final residual = 8.5494234e-09, No Iterations 3

ExecutionTime = 29544.18 s  ClockTime = 29600 s

pFinal

p

p

• When you use the PISO or PIMPLE method, you need to set the tolerance for the pressure final 

corrector step, that is, pFinal.

• By proceeding in this way, you can put all the computational effort only in the last corrector step 

(pFinal). 

• For all the intermediate corrector steps (p), you can use a more relaxed convergence criterion.

• If you proceed in this way, it is recommended to do at least 2 corrector steps (nCorrectors).

1

2

nCorrectors
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Linear solvers

• If the momentumPredictor is enabled (by default in most solvers), you will need to set the 

tolerance for the final corrector step of the rest of the transported variables.

• Namely UFinal, kFinal, omegaFinal, hFinal, and so on. 

• By proceeding in this way, you can put all the computational effort only in the last corrector step 

(.*Final). 

• For all the intermediate corrector steps, you can use a more relaxed convergence criterion.

• Have in mind that solving these variables is relatively inexpensive, so you can start right away 

with a tight tolerance.

U

{

solver           PBiCGStab;

preconditioner DILU;   

tolerance        1e-6;

relTol          0.01;

}

UFinal

{

solver           PBiCGStab;

preconditioner DILU;   

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance for p for intermediate 

corrector steps (U)

Tight tolerance for final corrector step 

(UFinal)

319



The FVM in OpenFOAM 

Linear solvers

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the convergence 

rate will be. 

• So, it is highly advisable to use the utility renumberMesh before running the simulation.

• $> renumberMesh -overwrite

• The utility renumberMesh can dramatically increase the speed of the linear solvers, specially 

during the initial iterations.

• You will find the source code and the master dictionary in the following directory:

• $WM_PROJECT_DIR/applications/utilities/mesh/manipulation/renumberMe

sh
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Linear solvers

Matrix structure plot before reordering Matrix structure plot after reordering

Note:

This is the actual pressure matrix from an OpenFOAM model case

• The idea behind reordering is to make the matrix more diagonally dominant, therefore, speeding 

up the iterative solver.

321



The FVM in OpenFOAM 

Linear solvers

• Cells ordering before (left figure) and after (right figure) using renumberMesh. The colors represent the 

position of neighbor cells in the matrix.

• In the left figure the cells in each block are close together but each block is separated.  The linear solver will 

perform poorly in this case.

• In the right figure the cells are all neighbors in the sparse matrix, the matrix is very diagonal.  The linear solver 

will perform very well in this case.

3D straight pipe mesh using an O-grid topology
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On the multigrid solvers

• The development of multigrid solvers (GAMG in OpenFOAM), together with the development of 

high-resolution TVD schemes and parallel computing, are among the most remarkable 

achievements of the history of CFD.

• Most of the time using the GAMG linear solver is fine.  However, if you see that the linear solver 

is taking too long to converge or is converging in more than 100 iterations, it is better to use the 

PCG linear solver.

• Particularly, we have found that the GAMG linear solver in OpenFOAM does not perform very 

well when you scale your computations to more than 500 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms the GAMG. 

• But again, this is problem and hardware dependent. 

• As you can see, you need to always monitor your simulations (stick to the screen for a while). 

Otherwise, you might end-up using a solver that is performing poorly.  And this translate in 

increased computational time and costs.
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On the multigrid solvers tolerances

• If you go for the GAMG linear solver for symmetric matrices (e.g., pressure), the following 

tolerances are acceptable for most of the cases.

p

{

solver           GAMG;

tolerance        1e-6;

relTol          0.01;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

pFinal

{

solver           GAMG;

tolerance        1e-6;

relTol          0;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

NOTE:

The GAMG parameters are not optimized, that is up to you. 

Most of the times is safe to use the default parameters.
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On the solvers tolerances for symmetric matrices

• If you do not use the GAMG solver for symmetric matrices (e.g., pressure), you can use the 

PCG solver with the DIC preconditioner and the following tolerances,

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

minIter 3;

}

pFinal

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

• Again, the choice of the solver and preconditioner/smoother is problem and hardware 

dependent. 
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On the solvers tolerances for symmetric matrices

• Yet another efficient linear solver for pressure is the following.

p

{

solver           PCG;

preconditioner

{

preconditioner  GAMG;

tolerance           1e-06;

relTol                  0;

}

tolerance        1e-6;

relTol          0.01;

minIter 3;

}

pFinal

{

solver           PCG;

preconditioner

{

preconditioner  GAMG;

tolerance           1e-06;

relTol                  0;

}

tolerance        1e-6;

relTol          0.01;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

• In this case, the preconditioner is using the GAMG method with the default parameters, which 

might not be the optimal ones. 

• Again, the choice of the solver and preconditioner/smoother is problem and hardware 

dependent. 

• Most of the times, this is our choice of linear solver or pressure.
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• Most of the times solving asymmetric matrices is inexpensive (U, k, omega, and so on). 

Therefore, you can start right away with a tight tolerance.

• You can use either of the following linear solvers.

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.0;

minIter 3;

}

Tight tolerance

U

{

solver           smoothSolver;

preconditioner GaussSeidel;

tolerance        1e-8;

relTol          0.0;

minIter 3;

}

Tight tolerance

On the solvers tolerances for asymmetric matrices

• Again, the choice of the solver and preconditioner/smoother is problem and hardware 

dependent. 
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Linear solvers tolerances – Steady simulations

• The previous tolerances are fine for unsteady solvers.

• For extremely coupled problems you might need to have tighter tolerances.

• You can use the same tolerances for steady solvers. 

• However, it might be a good idea to use tighter tolerances.

• You can also set the convergence controls based on residuals of fields. The controls are 
specified in the residualControls sub-dictionary of the dictionary file fvSolution. 

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

Residual control for every 

field variable you are solving

329



The FVM in OpenFOAM 

331

Linear solvers benchmarking study of a       

model case



The FVM in OpenFOAM 

Linear solvers benchmarking of a model case

• In the following benchmarking study, we will use the incompressible solver icoFoam, and the 

compressible solver rhoPimpleFoam.

• icoFoam is a transient solver for incompressible, laminar flow of Newtonian fluids.

• rhoPimpleFoam is a transient solver for laminar or turbulent flow of compressible fluids 

for HVAC and similar applications.

• The physics to be addressed is that of a laminar flow in a 3D straight pipe.

• For this benchmarking study, we will use several combinations of linear solvers and 

preconditioners.

• As you can see, this very simple physics can have very different performance using different 

linear solvers.

• Also, to accelerate the convergence rate we will renumber the mesh (reduce sparsity). 

• To renumber the mesh, we will use the utility renumberMesh.
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Linear solvers benchmarking of a model case

Case Linear solver for P Preconditioner or smoother MR Time QOI

IC1 PCG FDIC NO 278 2.8265539

IC2 smoothSolver symGaussSeidel NO 2070 2.8271198

IC3 ICCG GAMG NO 255 2.8265538

IC4 GAMG GaussSeidel NO 1471 2.8265538

IC5 PCG GAMG-GaussSeidel NO 302 2.8265538

IC6 GAMG GaussSeidel YES 438 2.8265539

IC7 PCG FDIC YES 213 2.8265535

IC8 PCG GAMG-GaussSeidel YES 283 2.8265538

IC9 ICCG GAMG YES 261 2.8265538

IC10 PCG DIC NO 244 2.8265539

IC11 PCG FDIC NO 138 2.1934228

Solver used = icoFoam – Incompressible case

MR = matrix reordering (renumberMesh)

QOI = quantity of interest. In this case the maximum velocity at the outlet (m/s)

TIME = clock time (seconds)

Remember to monitor a QOI to 

verify the goodness of the solution
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Linear solvers benchmarking of a model case

MR = matrix reordering (renumberMesh)

QOI = quantity of interest. In this case the maximum velocity at the outlet (m/s)

TIME = clock time (seconds)

Case Linear solver for P Preconditioner or smoother MR Time QOI

C1 PCG FDIC NO 214 2.8271341

C2 GAMG GaussSeidel NO 895 2.8271357

C3 ICCG GAMG YES 562 2.8271357

Case Linear solver for P Preconditioner or smoother MR Time QOI

IC1 PCG FDIC NO 278 2.8265539

IC4 GAMG GaussSeidel NO 1471 2.8265538

IC9 ICCG GAMG YES 261 2.8265538

Solver used = icoFoam

Solver used = rhoPimpleFoam
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• In cases IC1-IC10, we used the following tolerances for p,

tolerance        1e-6;

relTol          0.01;

pFinal

{

$p;

tolerance        1e-6;

relTol          0;

}

• And for pFinal we used the following solver and tolerances,

Linear solvers benchmarking of a model case
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• In IC11 (which is the fastest case), we used the following tolerances for p,

tolerance        1e-6;

relTol          0.01;

maxIter 1;

Linear solvers benchmarking of a model case
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pFinal

{

$p;

tolerance        1e-6;

relTol          0;

}

• And for pFinal we used the following solver and tolerances,
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• Notice that in case IC11 by setting the maximum number of iterations (maxIter) for p and 

pFinal, we managed to accelerated the iterative process. 

• However, we were also forcing the linear solver not to converge.

• As you can see, the solver converged to the wrong solution. 

• A good advice (and totally free), always monitor a quantity of interest (QOI) and do not to rely 

only on the residuals.

• In this simple case, you can see the importance of setting the proper tolerances.

• We can also see that some linear solvers perform better than others. This is problem and 

hardware dependent.

• Also, by using the utility renumberMesh, we managed to speed-up the iterative process. 

• This is evident for the GAMG solver, where the speed-up was about 3 times. For the other 

solvers the speed-up was negligible.

Linear solvers benchmarking of a model case
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Linear solvers benchmarking of a model case

• Let us compare the pressure drop obtained with icoFoam and rhoPimpleFoam.

• At the end of the day, both solvers should give us very similar results.

• Remember, in icoFoam we work with relative pressure. 

• After adding the reference pressure (101325 Pa) to the output pressure (pressure density or 

pressure divided density), we obtain the following results (which are not very encouraging).
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• Let us compare the pressure drop obtained with icoFoam and rhoPimpleFoam.

• However, after correcting the output pressure by multiplying the pressure by the reference 

density, we get the following results (a perfect match).

• Remember, the pressure output of the incompressible solvers is the pressure divided by the 

reference density (pressure density), that is,

Linear solvers benchmarking of a model case

Velocity profile at the outletPressure drop along the pipe axis
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Unsteady and steady Simulations
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How to run unsteady simulations in OpenFOAM?

• Select the time step. The time-step must be chosen in such a way that it resolves the time-dependent features 

and maintains solver stability.

• Select the time discretization scheme.

• Set the tolerance (absolute and/or relative) of the linear solvers.

• Monitor the CFL number. 

• Monitor the stability and boundedness of the solution.

• Monitor a quantity of interest.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.  

• In the controlDict dictionary you need to set runtime parameters and general instructions on how to run the 

case (such as time step and maximum CFL number).   You also set the saving frequency.

• In the fvSchemes dictionary you need to set the time discretization scheme.

• In the fvSolution dictionary you need to set the linear solvers.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method used (e.g., PISO
or PIMPLE), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  The functionObjects are used to 

do sampling, probing and co-processing while the simulation is running.
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• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. Most of the entries are self-explanatory.

• This generic case starts from time 0 (startTime), and it will run 

up to 10 seconds (endTime). 

• It will write the solution every 0.1 seconds (writeInterval) of 

simulation time (runTime). 

• The time step of the simulation is 0.0001 seconds (deltaT). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (yes), we can 

modify all these entries while we are running the simulation.

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;
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startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• In this generic case, the solver supports adjustable time-step 

(adjustTimeStep).

• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number (maxCo) 

or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• Remember, the first time-step of the simulation is done using the 

value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step in 

order to let the solver scale-up the time-step size.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

• If you are planning to use large time steps (CFL much higher 

than 1), it is recommended to do at least 3 correctors steps 

(nCorrectors) in PISO/PIMPLE loop, and at least 2 outer 

correctors in the PIMPLE loop.

343



The FVM in OpenFOAM 

How to run unsteady simulations in OpenFOAM?

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl adjustableRunTime;

writeInterval   0.1; 

purgeWrite     0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• A word of caution about adjustable time-step (adjustTimeStep).

• This option will automatically adjust the time step to achieve the 

maximum desired courant number (maxCo) or time-step size 

(maxDeltaT). 

• If the maxDeltaT condition is not reached, the solver will adapt 

the time-step to achieve the target maxCo, and as the time-step 

is not fixed this might introduce spurious oscillations in the 

solution.

• It is recommended to use this option at the beginning of the 

simulation and as soon as the solution stabilizes try fixed the 

time-step.

• Also, try to avoid using adjustable time step together with the 

option adjustableRunTime.

• The option adjustableRunTime will adjust the time-step to save 

the solution at the precise write intervals, and this might 

introduce numerical oscillations due to the fact that the time-step 

is changing.

• Also, the fact that you are using an adaptive time-step can have 

a negative effect when doing signal analysis.
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ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case we are using the backward method for time 

discretization (ddtSchemes). 

• This scheme is second order accurate but oscillatory. 

• The parameters can be changed on-the-fly.
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

“U.*”

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PIMPLE

{

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC precondtioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0.  

• To solve U and UFinal (U.* using regex), we are using the 

smoothSolver method with an absolute tolerance equal to 1e-

08 and a relative tolerance relTol equal to 0. 

• The solvers will iterative until reaching any of the tolerance 

values set by the user or reaching a maximum value of 

iterations (optional entry). 

• FYI, solving for the velocity is relatively inexpensive, whereas 

solving for the pressure is expensive.
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

“U.*”

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PIMPLE

{

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• The fvSolution dictionary also contains the PIMPLE and 

PISO sub-dictionaries.

• The PIMPLE sub-dictionary contains entries related to the 

pressure-velocity coupling method (the PIMPLE method).

• Setting the keyword nOuterCorrectors to 1 is equivalent to 

running using the PISO method.

• Remember, you need to do at least one PISO loop 

(nCorrectors).

• To gain more stability, especially when using large time-steps, 

you can use more outer correctors (nOuterCorrectors).

• Adding corrections increase the computational cost 

(nOuterCorrectors and nCorrectors). 

• In this generic case, we are using 1 outer correctors 

(nOuterCorrectors), 2 inner correctors or PISO correctors 

(nCorrectors), and 1 correction due to non-orthogonality 

(nNonOrthogonalCorrectors). 

• If you are using large time steps (CFL much higher than 1), it is 

recommended to do at least 3 correctors steps (nCorrectors) in 

PISO/PIMPLE loop.
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• If you use the PISO method for pressure-velocity coupling, you 

will need to define the PISO sub-dictionary.

• In this generic case we are doing two PISO corrections and one 

orthogonal correction.

• You need to do at least one PISO loop (nCorrectors).

• If you are planning to use large time steps (CFL much higher 

than 1), it is recommended to do at least 3 correctors steps 

(nCorrectors) in PISO/PIMPLE loop, and at least 2 outer 

correctors in the PIMPLE loop.
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• Remember, when running unsteady simulations, the time-step must be chosen in such a way 

that it resolves the time-dependent features and maintains solver stability.

When you use large time steps you do 

not resolve well the physics

By using a smaller time step you 

resolve better the physics and you gain 

stability
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• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.
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What about steady simulations?

• First of all, steady simulations are a big simplification of reality. 

• Steady simulations is a trick used by CFDers to get fast outcomes with results that might be 

even more questionable. 

• Remember, most of the flows you will encounter are unsteady so be careful of this hypothesis.

• In steady simulations, we made two assumptions:

• We ignore unsteady fluctuations.  That is, we neglect the time derivative in the governing 

equations.

• We perform time averaging when dealing with stationary turbulence (RANS modeling)

• The advantage of steady simulations is that they require low computational resources, give fast 

outputs, and are easier to post-process and analyze.

• To do so, you need to use the appropriate solver and use the right discretization scheme.
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What about steady simulations?

• As you are not solving the time derivative, you do not need to set the time step.  

• However, you need to tell OpenFOAM  how many iterations you would like to run.

• You can also set the residual controls (residualControl), in the fvSolution dictionary file.

• You set the residualControl in the SIMPLE sub-dictionary.

• If you do not set the residual controls, OpenFOAM will run until reaching the maximum number 

of iterations (endTime).

• You also will need to set the under-relaxation factor (relaxationFactors).

• The iterative marching in steady solvers is controlled using under-relaxation factors.
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• If                we are using under-relaxation. 

• Under-relaxation is a feature typical of steady solvers using the SIMPLE method.

• If you do not set the under-relaxation factors, OpenFOAM will use the default hard-wired values 

(1.0 for all field variables or no under-relaxation). 

• The under-relaxation factors are bounded between 0 and 1.

• Selecting the under-relaxation factors, it is kind of equivalent to selecting the right time step.

• You also need to set the under-relaxation factors.  

• The under-relaxation factors control the change of the variable     .

The FVM in OpenFOAM 

What about steady simulations?
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• Under-relaxation can be implicit (equation in OpenFOAM) or explicit (field in OpenFOAM).

The FVM in OpenFOAM 

What about steady simulations?
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Implicit URF Explicit URF

• You can relate URF to the CFL number as follows, 

• A small CFL number is equivalent to small URF.
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How to run steady simulations in OpenFOAM?

• In the controlDict dictionary you need to set runtime parameters and general instructions on 

how to run the case (such as the number of iterations to run). 

• Remember to set also the saving frequency.

• In the fvSchemes dictionary you need to set the time discretization scheme, for steady 

simulations it must be steadyState.

• In the fvSolution dictionary you need to set the linear solvers, under-relaxation factors, and 

residual controls.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method 
used (e.g., SIMPLE or SIMPLEC), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  

• The functionObjects are used to do sampling, probing and co-processing while the simulation 

is running.
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• The under-relaxation factors (URF) control the change of the variable    .

p           0.3;

U           0.7;

k           0.7;

omega       0.7;

• Under-relaxation is a feature typical of steady solvers using the SIMPLE family of methods.

• These are the URF commonly used with SIMPLE and SIMPLEC (industry standard),

p           1;    

U           0.9;

k           0.9;

omega       0.9;

SIMPLE SIMPLEC

Pressure Usually does not require under-relaxing

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right URF involved experience and some trial and error.

• Selecting the URF it is kind of equivalent to selecting the right time step.

• Many times, steady simulations diverge because of wrongly chosen URF.
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startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10000;

deltaT          1;

writeControl    runTime;

writeInterval   100; 

purgeWrite      10;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. Most of the entries are self-explanatory.

• As we are doing a steady simulation, let us talk about iterations 

instead of time (seconds).

• This generic case starts from iteration 0 (startTime), and it will 

run up to 10000 iterations (endTime). 

• It will write the solution every 100 iterations (writeInterval) of 

simulation time (runTime). 

• It will advance the solution one iteration at a time (deltaT). 

• It will keep the last 10 saved solutions (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (true), we can 

modify all these entries while we are running the simulation.
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ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)     bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case and as we are interested in using a steady 

solver, we are using the steadyState method for time 

discretization (ddtSchemes). 

• It is not a good idea to switch between steady and unsteady 

schemes on-the-fly.

• For steady state cases, the bounded form can be applied to the 

divSchemes, in this case, div(phi,U) bounded Gauss linear.

• This adds a linearized, implicit source contribution to the 

transport equation of the form,

• This term removes a component proportional to the continuity 

error. 

• This acts as a convergence aid to tend towards a bounded 

solution as the calculation proceeds. 

• At convergence, this term becomes zero and does not 

contribute to the final solution. 358
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ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)     bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The keyword bounded in the divergence discretization 

schemes, seems to be related to an attempt to recast the non-

conservative formulation of the equations without enforcing the 

divergence-free condition.

• The bounded scheme targets the material derivative of the 

governing equations.

• When using the bounded scheme, we are actually solving the 

following form of the equations,
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ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)     bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The use of the bounded scheme, it is a recommendation.

• In our personal experience, using the bounded scheme 

sometimes helps.

• In particular when dealing with compressible flows or complex 

physical modeling.

• Sometimes bounding some quantities can lead to convergence 

problems (very problem dependent).

• The bounded scheme is a mathematical trick that not always 

helps.

• From the physical point of view, the extra term added when 

using the bounded scheme, has no support or justification.

• You can find more information at the following link,
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC preconditioner, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• To solve U we are using the smoothSolver method with an 

absolute tolerance equal to 1e-08 and a relative tolerance 

relTol equal to 0. 

• The solvers will iterative until reaching any of the tolerance 

values set by the user or reaching a maximum value of 

iterations (optional entry). 
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

• The fvSolution dictionary also contains the SIMPLE sub-

dictionary .

• The SIMPLE sub-dictionary contains entries related to the 

pressure-velocity coupling method (the SIMPLE method).

• Increasing the number of nNonOrthogonalCorrectors 

corrections will add more stability but at a higher computational 

cost.

• Remember, nNonOrthogonalCorrectors is used to improve 

the gradient computation due to mesh quality.

• In this generic case, we are doing 2 corrections due to non-

orthogonality (nNonOrthogonalCorrectors). 

• The SIMPLE sub-dictionary also contains convergence controls 

based on residuals of fields. The controls are specified in the 

residualControls sub-dictionary. 

• The user needs to specify a tolerance for one or more solved 

fields and when the residual for every field falls below the 

corresponding residual, the simulation terminates. 

• If you do not set the residualControls, the solver will iterate 

until reaching the maximum number of iterations set in the 
controlDict dictionary.

362



The FVM in OpenFOAM 

How to run steady simulations in OpenFOAM?

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

}

}

• The fvSolution dictionary also contains the 

relaxationFactors sub-dictionary. 

• The relaxationFactors sub-dictionary which controls under-

relaxation, is a technique used for improving stability when using 

steady solvers.

• Under-relaxation works by limiting the amount which a variable 

changes from one iteration to the next, either by modifying the 

solution matrix and source (equations keyword) prior to solving 

for a field or by modifying the field directly (fields keyword).

• An optimum choice of under-relaxation factors is one that is 

small enough to ensure stable computation but large enough to 

move the iterative process forward quickly.
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• Typical under-relaxation factors for the SIMPLE and SIMPLEC methods in OpenFOAM.  

• Remember the under-relaxation factors are problem dependent.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

relaxationFactors

{

fields

{

p 0.9;

}

equations

{

p 0.9;

U    0.9;

k 0.9; 

omega 0.9;

}

}

SIMPLE SIMPLEC

Explicit under-relaxation

Implicit under-relaxation
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• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved 

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an 

unsteady simulation.

• Remember, steady simulations are not time accurate, therefore we can not use them to 

compute time statistics or compute the shedding frequency

Steady simulations vs. Unsteady simulations
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How to control the CFL number
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application     pimpleFoam;

startFrom       latestTime;

startTime       0;

stopAt          endTime;

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1;

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off;

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• You can control the CFL number by changing the mesh cell 

size or changing the time-step size. 

• The easiest way is by changing the time-step size.

• If you refine the mesh, and you would like to have the same 

CFL number as the base mesh, you will need to decrease the 

time-step size.

• On the other side, if you coarse the mesh and you would like 

to have the same CFL number as the base mesh, you will 

need to increase the time-step size.

• The keyword deltaT controls the time-step size of the 

simulation (0.0001 seconds in this generic case).

• If you use a solver that supports adjustable time-step 

(adjustTimeStep), you can set the maximum CFL number 

and maximum allowable time-step using the keywords 

maxCo and maxDeltaT, respectively. 

How to control the CFL number
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• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number 

(maxCo) or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• To use these features, you need to turn-on the option 

adjustTimeStep.

• Remember, the first time-step of the simulation is done using 

the value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step 

in order to let the solver scale-up the time-step size.

• If you want to change the values on-the-fly, you need to turn-

on the option runTimeModifiable.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

How to control the CFL number

application     pimpleFoam;

startFrom       latestTime;

startTime       0;

stopAt          endTime;

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1;

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off;

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;
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The output screen

Courant Number mean: 0.10863988 max: 0.73950028

deltaT = 0.001

Time = 30.000289542261612

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.003190933, Final residual = 1.0207483e-09, No Iterations 5

DILUPBiCG:  Solving for Uy, Initial residual = 0.0049140114, Final residual = 8.5790109e-10, No Iterations 5

DILUPBiCG:  Solving for Uz, Initial residual = 0.010705877, Final residual = 3.5464756e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.024334674, Final residual = 0.0005180308, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00051825089, Final residual = 1.6415538e-05, No Iterations 5

time step continuity errors : sum local = 8.768064e-10, global = 9.8389717e-11, cumulative = -2.6474162e-07

GAMG:  Solving for p, Initial residual = 0.00087813032, Final residual = 1.6222017e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 1.6217958e-05, Final residual = 6.4475277e-06, No Iterations 1

time step continuity errors : sum local = 3.4456296e-10, global = 2.6009599e-12, cumulative = -2.6473902e-07

ExecutionTime = 33091.06 s  ClockTime = 33214 s

fieldMinMax domainminandmax output:

min(p) = -0.59404715 at location (-0.019 0.02082288 0.072) on processor 1

max(p) = 0.18373302 at location (-0.02083962 -0.003 -0.136) on processor 1

min(U) = (0.29583255 -0.4833922 -0.0048229716) at location (-0.02259661 -0.02082288 -0.072) on processor 0

max(U) = (0.59710937 0.32913292 0.020043679) at location (0.11338793 -0.03267608 0.12) on processor 3

min(nut) = 1.6594481e-10 at location (0.009 -0.02 0.024) on processor 0

max(nut) = 0.00014588174 at location (-0.02083962 0.019 0.072) on processor 1

yPlus yplus output:

patch square y+ : min = 0.44603573, max = 6.3894913, average = 2.6323389

writing field yPlus

Courant number (mean and maximum values)

Current time-step

Simulation time

CPU time and wall clock

• This is the output screen of a solver supporting the option adjustTimeStep.

• In this case maxCo is equal 2 and maxDeltaT is equal to 0.001.  

• Notice that the solver reached the maximum allowable maxDeltaT.

One PIMPLE iteration (outer loop), this is equivalent to PISO
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The FVM in OpenFOAM 

Comparison of different time-step size (CFL number) for a model problem.

Linear upwind in space – cellMDLimited Gauss linear – Euler in time – 100 cells 
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The FVM in OpenFOAM 

Comparison of different mesh sizes for a model problem.

Linear upwind in space – cellMDLimited Gauss linear – Euler in time
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Best standard practices – General guidelines

• The absolute best practice in CFD is to get a good quality mesh.

• Remember, the mesh is everything in CFD.

• The default quality metrics hardwired in OpenFOAM are fine.

Max. non-orthogonality = 80

Maximum skewness = 8

• Remember, you will need to adjust the numerical method to take into account the mesh quality.

• If you can not keep the mesh quality metrics to your predefined values, it is better to get a 

better mesh instead of trying to get a solution by adjusting the numerics.

• But if you think that they are too conservative, you can rely in the following metrics,

Max. non-orthogonality = 70

Maximum skewness = 4
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Best standard practices – General guidelines

• Regarding the SIMPLE loop, you can use the following parameters.

• For good quality meshes it is recommended to do at least one non-orthogonal correction.

• For meshes with a non-orthogonality up to the predefined maximum value you can do 3 non-

orthogonal corrections.

• Also, it is strongly recommended to use the consistent formulation (SIMPLEC).

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors    3;

}

Enabled/disabled 

consistent formulation of 

the SIMPLE loop
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Best standard practices – General guidelines

• It is recommended to use the following under-relaxation factors (URF) with the SIMPLE loop.

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.6; 

omega 0.6;

}

}

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

SIMPLE SIMPLEC

• Usually there is no need to under-relax pressure in the SIMPLEC loop; however, it is advisable.

• You can also use URF with the PIMPLE family of solvers.

• Notice that our recommended values are a more conservative that the ones you will find in the 

literature

• If you working with compressible solvers, do not forget to under-relax the thermodynamic 

variables (h, e, rho, T, and so on) 376



Best standard practices – General guidelines

• If you do not define the URF factors in the SIMPLE sub-dictionary, no URF will be used 

(disabled).

• If you define the URF equal to 1, under-relaxation will be enabled.

• It is important to define all the URF used by the solver and models involved, if you do not define 

them, they will be disabled (and it is likely that the solution will diverge).

• To know the URF used by the solver, just look for the word relax in the source code (solvers 

and model libraries).

• If you are using compressible solvers, remember to under-relax density (rho).

• It is a good practice to start the solution using low URF and increase then slowly, one term at a 

time.
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Best standard practices – General guidelines

• It is not compulsory to use URF with transient solvers.

• Nonetheless, using URF with transient solvers will improve stability as they increase diagonal dominance.  

• Have in mind that if you use too low URF you will lose time accuracy and add numerical diffusion to the 

solution.

• Therefore, it is strongly recommended to conduct a time convergence study by using different URF and time-

steps values (using prototype cases).

• With transient solvers, we recommend setting all URF equal to 1 or 0.9 (to improve stability).

• You can also use  the industry standard values (for extra stability). 

• The following URF setups for transient solvers, will improve stability without tampering time accuracy:
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relaxationFactors

{

fields

{

“.*” 1.0;

}

equations

{

“.*” 1.0;

}

}

relaxationFactors

{

fields

{

“p.*” 0.3;

}

equations

{

“U.*”    0.7;

“k.*” 0.7; 

“omega.*” 0.7;

}

}

relaxationFactors

{

fields

{

“p.*” 0.7;

}

equations

{

“p.*” 0.7;

“U.*”    0.7;

“k.*” 0.7; 

“omega.*” 0.7;

}

}

URF to ensure diagonal dominance URF for PIMPLE-SIMPLE formulation URF for PIMPLE-SIMPLEC formulation



Best standard practices – General guidelines

• Regarding the PISO loop, you can use the following parameters.

• For good quality meshes it is recommended to do at least one non-orthogonal correction.

• For meshes with a non-orthogonality up to the predefined maximum value you can do 2-3 non-

orthogonal corrections.

• For good accuracy and stability, it is recommended to use al least 2 nCorrectors.  

• However, we recommend to do at least 3 corrections, specially if you are using unstructured 

meshes (with some degree skewness and non-orthogonality) and you are dealing with complex 

physics.

• When dealing with complex physics, you can use the optional keyword momentumPredictor to 

enable or disable the momentum predictor step.

• The momentum predictor helps in stabilizing the solution as it computes better approximations 

for the velocity. 

• However, the benefits of this correction are not quite clear.

PISO

{

momentumPredictor yes;

nCorrectors    3;

nNonOrthogonalCorrectors    1;

}
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PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 2;

nCorrectors    3;

nNonOrthogonalCorrectors    1;

}

• For unsteady problems with very complex physics, you can use the PIMPLE loop.

• The PIMPLE method works very similar to the PISO method. In fact, setting the keyword 

nOuterCorrectors to 1 is equivalent to running using the PISO method. 

• To gain more stability and accuracy, you will need to increase the number outer corrections in 

the loop (nOuterCorrectors). Have in mind that this will highly increase the computational cost.

• The PIMPLE method is very stable when using large time-steps or doing pseudo-transient 

simulation.

• It is also recommended to add under-relaxation to gain more stability.

• The following parameters will give a very robust and accurate loop that you can use with 

complex physics, while being time accurate.

Best standard practices – General guidelines
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relaxationFactors

{

fields

{

“.*” 0.7;    //SIMPLEC URF

}

}



Best standard practices – General guidelines

• In OpenFOAM, the PISO and PIMPLE methods are formulated for unsteady simulations.

• Whereas the SIMPLE and SIMPLEC methods are formulated for steady simulations.

• If conserving time is not a priority, you can use the PIMPLE method in pseudo transient mode. 

• The pseudo transient PIMPLE method is more stable than the SIMPLE method, but it has a 

higher computational cost.

• Depending on the method and solver you are using, you will need to define a specific sub-
dictionary in the dictionary file fvSolution.

• For instance, if you are using the PISO method, you will need to specify the PISO sub-

dictionary.

• And depending on the method, each sub-dictionary will have different entries.

• If you are conducting steady simulations, we recommend to use the PISO or PIMPLE method 

with local-time-stepping (LTS).  

• This method is more stable than the SIMPLE loop for steady solvers.

• However, this accuracy comes with the price of a higher computational cost and the burden of 

choosing the optimal pseudo time-step parameters (damping and smoothing).
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• In practice, for gradient computation the leastSquares method is more accurate than the Gauss

method.

• However, we have found that the leastSquares method tends to be more oscillatory on 

tetrahedral meshes.  

• To avoid over and under shoots on the gradient computations, it is recommended to always use 

limiters. 

• However, do not add limiters to all variables as doing so might add to much diffusion or might 

smear the solution. 

• For example, it is not recommended to add very aggressive limiters to pressure (p), volume-of-

fraction (alpha), and interface curvature (nHat).

• We recommend to use the following limiters for velocity (U), and the transported turbulent 

quantities (k, omega, epsilon, nut, and so on),

cellLimited leastSquares 1.0;

or

cellLimited Gauss linear 1.0;
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• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linear: second order accurate, unbounded. 

• A good TVD scheme (vanLeer or Minmod): TVD, second order accurate, bounded.

• limitedLinear: second order accurate, unbounded, but more stable than pure linear. 

Recommended for LES simulations (kind of similar to the Fromm method).

• So, you can start using a first order method and then switch to second order accuracy.

• If at any point of the simulation you see oscillations, you can switch to first order and stabilize 

the solution.

• You can also stabilize the solution by increasing the viscosity.

• Start with robustness and end with accuracy.
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• Remember, the discretization schemes of the diffusive terms are highly related to the mesh 

quality.

• So, for good quality meshes you can use the following method,

Gauss linear limited  1;

• For industrial meshes or meshes where you can not maintain the predefined best quality, you 

can use the following method,

Gauss linear limited  0.5;

• Remember, to enable non-orthogonal corrections you will need to do at least one correction 

(nNonOrthogonalCorrectors). 

• However, we recommend to do at least 3 non-orthogonal corrections when the mesh non-

orthogonal quality is more than 60.
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• The fact that we are using an implicit solver (unconditionally stable), does not mean that we can 

choose a time step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features and it 

maintain the solver stability.

• In our personal experience, we have been able to go up to a CFL = 5.0 while maintaining the 

accuracy. But to achieve this we had to increase the number of corrector steps and tighten the 

convergence criteria; and this translates into a higher computational cost.

• We have managed to run with CFL numbers up to 200, but this highly reduces the accuracy of 

the solution. Also, it is quite difficult to maintain the stability of the solver.

• If you are interested in the unsteadiness of the solution, it is recommended to use a CFL number 

not larger than 2.0, and if accuracy is the goal (e.g., predicting forces), definitively use a CFL 

less than 1.0.

• Remember, a smaller time-step may be needed during the first iterations to maintain solver 

stability. 

• Have in mind that the initial time-steps may take longer to converge, do not be alarmed of this 

behavior, it is perfectly normal.
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Best standard practices – General guidelines

• If you use the first order Euler scheme, try to use a CFL number less than 2.0 and preferably in 

the order of 1.0-0.8, this is in order to keep time diffusion to a minimum.  

• In order to speed up the computation and if you are not interested in the initial transient, you can 

start using a large time-step (high CFL).

• When you are ready to sample the quantity of interest, reduce the time-step to get a CFL less 

than one and let the simulation run for a while before doing any sampling.  

• Our recommendation is to always monitor your solution, and preferably use the PIMPLE family 

of solvers with high under-relaxation values (more than 0.7).

• When using the PIMPLE or PISO solver (with maximum CFL feature enable), the solver will use 
as a time-step for the first iteration the value set by the keyword deltaT in the controlDict

dictionary.  

• So, if you set a high value, is likely that the solver will explode.

• Our advice is to set a low deltaT and then let the solver gradually adjust the time-step until the 

desired maximum CFL is reached.

• In multiscale problems (e.g., multiphase flows), it is not recommended to use adjustable time-

step. It is strongly recommended to fix the tie-step.
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• Some fancy high-resolution numerical schemes (such as the vanLeer, vanAlbada, superbee, 

MUSCL, OSPRE – cool names no – ), are hard to start.  

• So, it is better to begin with a small time-step and increase it gradually.  

• And by small time-step we mean a time-step that will give you a CFL about 0.1 - 0.3.

• It you do not know what time discretization scheme to use, go for the Crank-Nicolson.

ddtSchemes

{

default CrankNicolson       ;

}

• Setting       equal to 0 is equivalent to running a pure Euler scheme (robust but first order 

accurate).  

• By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate but 

oscillatory, formally second order accurate).  

• Most of the time, a value of 0.7 is a good compromise.
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• The linear solvers are defined in the fvSolution dictionary.  

• You will need to define a solver for each variable you are solving.

• Remember, the solvers can be modified on the fly.

• The GAMG solver (generalized geometric-algebraic multigrid solver), can often be the optimal 

choice for solving the pressure equation. However, we have found that when using more than 

1000 processors is better to use Newton-Krylov type solvers.

• The selection of the linear solvers is hardware and problem dependent. 

• Sometimes the GAMG is a good choice, and sometimes the PCG or PBiCGStab is a better 

choice.

• Remember, if you use Newton-Krylov type solver, you also need to choose a good 

preconditioner, which again, is problem and hardware dependent.

• It is often a good idea to set the minimum number of iterations (minIter), we like to do at least 3 

iterations (for symmetric and asymmetric matrices).

• The utility renumberMesh can dramatically increase the speed of the linear solvers, specially 

during the initial iterations.
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Best standard practices – General guidelines

• Remember, residuals are not a direct indication that you are converging to the right solution. It 

is always a good idea t also monitor a quantity of interest.

• The first time-steps the solution might not converge, this is acceptable.

• Also, you might need to use a smaller time-step during the first iterations to maintain solver 

stability.

• If the solution is not converging, try to reduce the time-step size.

• So how do we set the tolerances?

• The pressure equation is particularly important, so we should resolve it accurately. Solving the 

pressure equation is the expensive part of the whole iterative process.

• For the pressure equation (symmetric matrix), you can start the simulation with a tolerance

equal to 1e-6 and relTol equal to 0.01.  After a while you change these values to 1e-6 and 0.0, 

respectively.

• If the linear solver is taking too much time, you can change the convergence criterion to 1e-4 

and relTol equal to 0.05.  You usually will do this during the first iterations.

• For the velocity field (U) and the transported quantities (asymmetric matrices), you can use an 

absolute tolerance equal to 1e-8 and relative tolerance equal to 0. Solving for these variables is 

relatively inexpensive, so you can start right away with a tight tolerance
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• We usually start by using a not so tight convergence criterion and as the simulation runs, we can 

tight the convergence criterion.

• By proceeding in this way, you can put all the computational effort only in last corrector step 

(.*Final).

• For all the intermediate corrector steps, you can use a more relaxed convergence criterion.

• For example, you can use the following solver and tolerance criterion for all the intermediate 

corrector steps (p), then in the final corrector step (pFinal) you tight the solver tolerance.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-4;

relTol          0.05;

}

Loose tolerance for p

pFinal

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Tight tolerance for pFinal
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momentumPredictor yes;

nOuterCorrectors 1;

nCorrector 3;

nNonOrthogonalCorrectors 1;

turbOnFinalIterOnly false;

Set to yes for high Reynolds flows, where 

convection dominates (default value is yes)

Recommended to use at least 3 correctors. 

It improves accuracy and stability. Use 4 or 

more for highly transient flows or strongly 

coupled problems.

Recommend to use at least 1 corrector (even in 

good quality meshes). Increase the value for 

bad quality meshes.

Recommended value is 1 (equivalent to PISO). 

Increase to improve the stability of second 

order time discretization schemes (LES, 

complex physics, combustion). Increase for 

strongly coupled problems.

Flag to indicate whether to solve the turbulence 

on the final pimple iteration only.  For SRS 

simulations the recommended value is false 

(the default value is true)

• Some additional comments about the fvSolution dictionary.
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“alpha.*”

{

MULESCorr       yes;

nAlphaSubCycles 1;

nAlphaCorr 2;

nLimiterIter 10;

alphaApplyPrevCorr yes;

…

}

Turn on/off semi-implicit MULES

Number of VOF corrections. 

Use 2-3 for slowly varying flows. 

Use 3 or more for highly transient, high Reynolds, 

high CFL number flows.

For semi-implicit MULES use 1 or 2 if you are 

using large time-steps. Use 3 or more for explicit 

MULES.

Number of iterations to calculate the MULES 

limiter. Use 3-5 if CFL number is less than 3. Use 

5-10 if CFL number is more than 3.

Use previous time corrector as initial estimate.  

Set to yes for slowly varying flows.  Set to no for 

highly transient flows.

• The semi-implicit MULES offers significant speed-up and stability over the explicit MULES

• Some additional comments about the fvSolution dictionary.

• These options are related to multiphase solvers.

Field name of the volume of fraction or phase
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• If you are doing LES or DES, remember that these models are intrinsically 3D and unsteady. 

• In LES you should choose your time-step in such a way to get a CFL of less than 1 and 

preferably of about 0.5 for LES. 

• DES simulations can use larger CFL values (up to 5 for reasonable accuracy).

• If you are doing RANS, it is perfectly fine to use upwind to discretize the turbulence closure 

equations.  After all, turbulence is a dissipative process. However, some authors may disagree 

with this, make your own conclusions.

• On the other hand, if you are doing LES you should keep numerical diffusion to the minimum, so 

you should use second order methods.

• LES methods can be sensitive to mesh element type; it is highly recommended to use 

hexahedral meshes.

• Avoid the use of adaptive time-stepping and adaptive save intervals, as they may introduce 

oscillations in your solution.

• Many times, RANS simulation can mysteriously explode, if this is your case, try reducing the 

URF of the turbulent quantities to something around 0.5 or even less.
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• Determining when the solution is converged can be difficult, especially if you are new to CFD. 

• Solutions can be considered converged when the flow field and scalar fields are no longer 

changing, but usually this is not the case for unsteady flows.  

• Most flows in nature and industrial applications are highly unsteady.

• The fact that the initial residuals are not falling in a monotonic way, is not an indication of a 

problem. This is just telling you that the solution is unsteady.

• The final residuals will reach the tolerance criterion in each iteration, but the flow field may be 

continuously changing from instant to instant.

• In order to properly assess convergence, it is also recommended to monitor a physical quantity. 

• If this physical quantity does not change in time, you may say that the solution is converge.  

• But be careful, it can be the case that the monitored quantity exhibit a random oscillatory 

behavior or a periodic oscillatory behavior. 

• In the former case you are in the presence of a highly unsteady and turbulent flow 

with no periodic behavior.

• In latter case, you may say that you have reached a converged periodic unsteady 

solution.  
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• Remember, for unsteady flows you will need to analyze/sample the solution in a given time 

window. Do not take the last saved solution as the final answer.

• If your goal is predicting forces (e.g., drag prediction), you should monitor the forces and use 

them as your convergence criterion.

• The convergence depends on the mesh quality, so a good quality mesh means faster 

convergence and accurate solution.

• In general, overall mass balance should be satisfied.  

• Remember, the method is conservative.  What goes in, goes out (unless you have source 

terms).

• However, the method is not bounded, so to avoid spurious oscillations remember to use limiters.

• Residuals are not your solution. Low residuals do not automatically mean a correct solution, and 

high residuals do not automatically mean a wrong solution.

• Initial residuals are often higher with higher order discretization schemes than with first order 

discretization. That does not mean that the first order solution is better.

• Always ensure proper convergence before using a solution. A not converged solution can be 

misleading when interpreting the results.

397



Best standard practices – General guidelines

• We highly recommend to always monitor the minimum and maximum values of the field 

variables.

• For us this is the best indication of stability and accuracy.  

• If at one point of the simulation velocity is higher that the speed of light (believe us, that can 

happen), you know that something is wrong.  

• And believe us, with upwind you can get solutions at velocities higher that the speed of light.

• You can also see an oscillatory behavior of the minimum and maximum values of the monitored 

quantity.  This is also an indication that something is going bananas.

• For some variables (e.g., volume fraction), the method must be bounded.  

• This means that the values should not exceed some predefined minimum or maximum value 

(usually 0 and 1).

• So, if your solution is oscillating, you can switch to upwind (first order accuracy), stabilize the 

solution, and then go back to second order accuracy.

• However, it is not guaranteed that this trick will always work.
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ddtSchemes

{

default CrankNicolson 0;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwind  grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• For most cases, we recommend the following 

discretization method.

• It is very similar to the default method you will find in 

commercial solvers.

• In overall, this setup is second order accurate and 

fully bounded.

• According to the quality of your mesh, you will need 

to change the blending factor of the 

laplacianSchemes and snGradSchemes

keywords.

• To time diffusion to a minimum, use a CFL number 

less than 2.

• If during the simulation the turbulence quantities 

become unbounded, you can safely change the 

discretization scheme to upwind. 

• For gradient discretization the leastSquares

method is more accurate. But we have found that it 

is a little bit oscillatory in tetrahedral meshes.
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• If your simulation is mysteriously crashing, you can 

use the following discretization method.

• This setup is very stable but too diffusive.

• It is first order in space and time.

• Use this discretization method together with the 

PISO method, set nCorrectors 5, and  

nNonOrthogonalCorrectors 3.

• Also, be sure to use a high value of viscosity.

• Use Newton-Krylov type linear solvers (do not use 

multigrid), and set the minimum number of iterations 

to 5 for all variables.

• Use a CFL number in the order of 0.5.

• If your simulation continues to crash using this 

method, you better check your boundary conditions, 

physical properties, or the physical models involved. 

• Maybe there is something incompatible in your 

setup.

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}
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Final remarks

• Some kind of conclusion,

• Good mesh – good results.

• Start robustly and end with accuracy.

• Stability, accuracy and boundedness, play 

by these terms and you will succeed.

• Do not sacrifice accuracy and stability over 

computing speed.
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That was only the tip of the iceberg

Now the rest is on you



Final remarks

• There is vast amount of literature in the field of FVM/CFD and numerical analysis. We will give you some of our 

favorite references, which are closed related to what you will find in OpenFOAM.  

• The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With 

OpenFOAM and Matlab

F. Moukalled, L. Mangani, M. Darwish. 2015, Springer-Verlag

• Finite Volume Methods for Hyperbolic Problems 

R. Leveque. 2002, Cambridge University Press

• Computational Gasdynamics 

C. Laney. 1998, Cambridge University Press

• Computational Techniques for Multiphase Flows 

G. H. Yeoh, J. Tu. 2009, Butterworth-Heinemann

• An Introduction to Computational Fluid Dynamics                                

H. K. Versteeg, W. Malalasekera. 2007, Prentice Hall

• Computational Fluid Dynamics: Principles and Applications             

J. Blazek. 2015, Butterwoth-Heinemann. 

• Computational Methods for Fluid Dynamics                                      

J. H. Ferziger, M. Peric. 2001, Springer

• Numerical Heat Transfer and Fluid Flow

S. Patankar. 1980, Taylor & Francis

• Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods                        

S. Mazumder. 2015, Academic Press.

• Iterative Methods for Sparse Linear Systems 

Y. Saad. 2003, SIAM.

Some FVM/CFD references
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Final remarks

• There is vast amount of literature in the field of FVM/CFD and numerical analysis. We will give you some of our 

favorite references, which are closed related to what you will find in OpenFOAM.  

• Matrix analysis and applied linear algebra 

C. D. Meyer. 2010, SIAM.

• A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts

M. Peric. PhD Thesis. 1985. Imperial College, London

• Error analysis and estimation in the Finite Volume method with applications to fluid flows

H. Jasak. PhD Thesis. 1996. Imperial College, London

• Computational fluid dynamics of dispersed two-phase flows at high phase fractions       

H. Rusche. PhD Thesis. 2002. Imperial College, London

• High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws

P. K. Sweby. SIAM Journal on Numerical Analysis, Vol. 21, No. 5, pp. 995-1011, 1984.

• A Pressure-Based Method for Unstructured Meshes                               

S. R. Mathur, J. Y. Murthy. Numer. Heat Transfer, Vol. 31, pp. 195-216, 1997.

• A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic 

flows        

S. V. Patankar, D. B. Spalding. Int. J. Heat Mass Transfer, 15, pp. 1787-1806, 1972.

• Solution of the implicitly discretized fluid flow equations by operator-splitting            

R. I. Issa. J. Comput. Phys., 62, pp. 40-65, 1985.

• Further discussion of numerical errors in CFD                                                                                

J. H. Ferziger, M. Peric. Int. J. Numer. Methods in Fluids, Vol. 23, pp. 1263-1274, 1996.

• Limiters for Unstructured Higher-Order Accurate Solutions of the Euler Equations                       

K.Michalak, C. Ollivier-Gooch. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2008.

Some FVM/CFD references
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Final remarks

• ERCOFTAC best practice guidelines (aerospace CFD, automotive CFD, turbomachinery CFD, 

electronic cooling CFD, heat transfer).

• NAFEMS best practice guidelines.

• MARNET CFD best practice guidelines for marine applications of CFD.

• NPARC alliance CFD verification and validation archive.

• NASA Turbulence Modeling Resource.

• ERCOFTAC classic collection database for validation and verification.

• NASA CFL3D documentation and validation cases.

• Documentation of commercial CFD solver (e.g., Ansys Fluent, Ansys CFX, Star-CCM+, 

NUMECA, and so on).

• Verification and validation in computational science and engineering

P. J. Roache, Hermosa Publishers

• Verification and Validation in Scientific Computing                                                                 

W. L. Oberkampf , C. J. Roy, Cambridge University Press.

CFD best practices guidelines
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• We hope you have found this training useful and we hope to see you in one of our advanced 

training sessions:

• OpenFOAM® – Multiphase flows

• OpenFOAM® – Naval applications

• OpenFOAM® – Turbulence Modeling

• OpenFOAM® – Compressible flows, heat transfer, and conjugate heat transfer

• OpenFOAM® – Advanced meshing

• DAKOTA – Optimization methods and code coupling

• Python – Programming, data visualization, and exploratory data analysis

• Python and R – Data science and big data

• ParaView – Advanced scientific visualization and python scripting

• And many more available on request

• Besides consulting services, we also offer ‘Mentoring Days’ which are days of one-on-one 

coaching and mentoring on your specific problem.

• For more information, ask your trainer, or visit our website

http://www.wolfdynamics.com/

Thank you for your attention
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