Supplementary Material

Ligand-based Discovery of New Potential acetylcholinesterase inhibitors for Alzheimer's disease treatment

Y. Cañizares-Carmenate,^{a†} N-H. Nam,^{b†} R. Díaz-Amador,^c N.T. Thuan,^b P.T.P. Dung,^b F.

Torrens,^d H. Pham-The,^b F. Perez-Gimenez^e and J.A. Castillo-Garit^{e,f,*}

Table of Contents

Section S1. Preparation of the dataset	2
Section S2. Molecular descriptors	
Section S3. SVM models (kernel selection)	

Section S1. Preparation of the dataset

In this study, we used a freely available dataset downloaded from the ChEMBL database [1]. The dataset was curated from ChEMBL database, following this steps:

- (1) Since May 20th 2020 we started collecting the data from ChEMBL database. In the Bioassay search, we used keyword "Acetylcholinesterase inhibitor". The original output includes 28,304 cases with bioactivity expressed as Ki, IC₅₀, %Inh... (very heterogeneous). We then only extracted compounds with IC₅₀ measurements.
- (2) We the discarded compounds with inconclusive data (>, <, ≥, ≥) and those with blank data. This step results in 12,806 cases.
- (3) Regarding the experimental conditions, we only selected compounds tested on single protein in vitro assay with organism mentioned as homo sapiens (human protein). Then only 3117 compounds satisfied our queries.
- (4) By comparing molecular weight and manual structure similarity inspection, we found 539 duplicated compounds.
- (5) Salts and metal complexes were detected and discarded. After this step, only 2142 compounds were kept.
- (6) Compounds detected by ChEMBL as "outside typical range" và "Potential transcription error" according to Data Validity module, we only obtained 1975 compounds which is the final number of data curated.

The dataset is finally composed by 1975 compounds of great structural diversity and with reported values of IC₅₀ enzyme inhibition against AChE.

Section S2. Molecular descriptors

Descriptor	Definition	Descriptor Type	
nArCONHR	number of secondary amides (aromatic)	Functional group countsBasic descriptors	
nS	number of Sulfur atoms	Constitutional indicesBasic descriptors	
nR12	number of 12-membered rings	Ring descriptorsBasic descriptors	
P_VSA_s_1	P_VSA-like on I-state, bin 1	P_VSA-like descriptorsIntrinsic State	
nCs	number of total secondary C(sp3)	(sp3) Functional group countsBasic descriptors	
nR10	number of 10-membered rings	Ring descriptorsBasic descriptors	
nR=Ct	number of aliphatic tertiary C(sp2)	tiary C(sp2) Functional group countsBasic descriptors	
nHM	number of heavy atoms	Constitutional indicesBasic descriptors	
nHM	number of heavy atoms	Constitutional indicesBasic descriptors	
nCrs	number of ring secondary C(sp3)	Functional group countsBasic descriptors	

Table S1. Descriptors used in the Piecewise model

Table S2. Des	riptors used in the SVM model (RBF kernel)	

Table S2. Descriptors used in the SVM model (RBF kernel)			
Descriptor	Definition	Descriptor Type	
nCs	number of total secondary C(sp3)	Functional group countsBasic descriptors	
GGI7	topological charge index of order 7	2D autocorrelationsTopological charge autocorrelations	
SpMax2_Bhs	largest eigenvalue n. 2 of Burden matrix weighted by I-state	Burden eigenvaluesLargest eigenvalues	
SpMin1_Bhs	smallest eigenvalue n. 1 of Burden matrix weighted by I-state	Burden eigenvaluesSmallest eigenvalue	
nR12	number of 12-membered rings	Ring descriptorsBasic descriptors	
SIC3	Structural Information Content index (neighborhood symmetry of 3-order)	Information indicesIndices of neighborhood symmetry	
totalcharge	total charge	Constitutional indicesBasic descriptors	
nP	number of Phosphorous atoms	Constitutional indicesBasic descriptors	
nArCOOR	number of esters (aromatic)	Functional group countsBasic descriptors	
P_VSA_s_3	P_VSA-like on I-state, bin 3	P_VSA-like descriptorsIntrinsic State	
DBI	Dragon branching index	Topological indicesVertex degree-based indices	
GATS3i	Geary autocorrelation of lag 3 weighted by ionization potential	2D autocorrelationsGeary autocorrelations	

Section S3. SVM models (kernel selection)

	Training			
		Observed		
		1	-1	
cted	1	826	0	
Predicted	-1	661	0	
Se: 1 Sp: 0 Pr: 0.5554 Acc: 0.5555				

Table S3	. Results	using	SVM	linear	kernel.
----------	-----------	-------	-----	--------	---------

	Test		
		Obse	erved
		1	-1
cted	1	273	0
Predicted	-1	215	0
	Se: 1		
	Sp: 0		
	Pr: 0.5594		
	Acc: 0.5	5594	

Table S4. Results using SVM quadratic kernel.

	Training		
		Obs	erved
		1	-1
cted	1	826	0
Predicted	-1	661	0
	Se: 1		
	Sp: 0		
	Pr: 0.5554		
	Acc: 0.5555		

Table S5. Results using SVM cubic kernel.

	Training			
		Observed		
		1	-1	
cted	1	826	0	
Predicted	-1	659	2	
Se: 1 Sp: 0.003 Pr: 0.5562 Acc: 0.5598				

	Test		
	Observed		
		1	-1
cted	1	273	0
Predicted	-1	215	0
	Se: 1		
	Sp: 0		
	Pr: 0.5594		
	Acc: 0.5594		

	Test			
		Observed		
		1	-1	
cted	1	272	1	
Predicted	-1	215	0	
	Se: 0.9903 Sp: 0 Pr: 0.5585 Acc: 0.5574			

References

[1] D. Mendez, A. Gaulton, A.P. Bento, J. Chambers, M. De Veij, E. Félix, María P. Magariños, Juan F. Mosquera, P. Mutowo, M. Nowotka, M. Gordillo-Marañón, F. Hunter, L. Junco, G. Mugumbate, M. Rodriguez-Lopez, F. Atkinson, N. Bosc, Chris J. Radoux, A. Segura-Cabrera, A. Hersey, and Andrew R. Leach, *ChEMBL: towards direct deposition of bioassay data*, Nucleic Acids Research 47 (2019), pp. D930-D940.