a s . (7
Freie Universi

Flow Equation Methods for

Many-Body Localisation

Steven J. Thomson
Dahlem Center for Complex Quantum Systems
Freie Universitat Berlin

Funded by
the European Union

. | @PhysicsSteve
Marie Sktodowska-Curie @EBQM_

Grant Agreement No.101031489




What is (Single-Particle) Localisation?

Extended wavefunction

In a disorder-free system, A\ AN\ AN

wavefunctions are extended

In a disordered system,

wavefunctions are localised
No thermalisation!

Localisation is an interference Localized wavefunction
effect
Anderson localisation

Aspect & Inguscio, Physics Today 35 (2009)




What is (Single-Particle) Localisation?

In a disorder-free system,
wavefunctions are extended

In a disordered system,

wavefunctions are localised
No thermalisation!

Localisation is an interference
effect
Anderson localisation

Fragile, easily destroyed!
(e.g. by temperature, coupling to an Direction of
environment, many-body interactions...?) propagation

Localized wavefunction

« Orisit..?
Aspect & Inguscio, Physics Today 35 (2009)




Many-Body Localisation (MBL)

In a nutshell, MBL is Anderson localisation + interactions
Not a ground state property: eigenstates at any energy
density can be localised

Most numerical work on MBL focuses on the

disordered XXZ model in 1D:

S [T(SESE + SYSY, | + J.SP8E) + hiS?]

7

(with h; € [, W])

Many strange properties: logarithmic (slow) growth
of entanglement entropy with time, long ‘memory’
of initial conditions...

PRL 109, 017202 (2012)
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Local Integrals of Motion

« Almost all observed features can be explained using the “l-bit” model
(“l-bits” are localised bits, also known as Local Integrals of Motion or LIOMs)

H: E hiT,L-Z—f- E JijTZ'ZTJ'-Z—I— E JijkaTfTé
7 17

ijk

Huse et al., PRB 90, 174202 (2014), Serbyn et al., PRB 90, 174302 (2014), Ros et al., Nuc. Phys. B 891, 420 (2015)
where the coefficients J;; ~decay exponentially with distance ~ exp(|i — j|/€&]

« This ‘toy model’ is related to the microscopic XXZ
model by a (quasi-local) unitary transform:

H=UlHU 7 =USU'

« But how to compute this in practice?




Diagonalising a many-body problem

Let’s say we want to diagonalise a Hamiltonian H = Hy + V' where H, contains
the diagonal terms, and V contains the off-diagonal terms.

We want to use a unitary transform to try to obtain the [-bit diagonal form.

Try a Schrieffer-Wolff transform:

~

H=e"He > =H+I[S H]+ ..

« To leading order, can diagonalise H by choosing S such that [S,H] = -V
« ..but higher-order terms complicate things and prevent this transform from
being exact

« Key idea: instead of one ‘large’ unitary transform, let’s make infinitely many
infinitely small transforms.




The Flow Equation Method

« Build the full transform using a series of infinitesimal unitary transforms:
= Parameterise transform by a fictitious flow time denoted |

H(I =) (e e Yol H (I — 00) = H

= [=0 is the initial microscopic basis, and | — = is the diagonal basis
= Apply infinitesimal unitary transform:

H(I+dl) = edln(l)q_[(l)e—dln(l)
= H(l) + din(l), H(D)]

(where 7(1) is a generator to be chosen later)

* Flow of Hamiltonian given by:

dH
= In0), HD)]




A Toy Example

« For non-interacting spinless fermions in a disordered potential:

1
H=Ho+V = Z hiCl—LCz‘ + 5 Z Jz’(CICiH + CIHCi)




A Toy Example

For non-interacting spinless fermions in a disordered potential:

H(l) =

Ho(!

Zh ccz—l— Z‘]ZJ cc]+ccz)

Z#J

With Wegner’s choice* of generator 17 = [Ho, V'], the flow equations are:

dH
dl

[7777_[] —

HHOnV]vH]

hi)? + Z Sl (Pl — g — hj)) (C;'rcj + C;Ci)
k

* See e.g. F. Wegner, Ann. Phys. 506, 77 (1994), S. Kehrein, The Flow Equation Approach to Many-Particle Systems (2007)




A Toy Example

« For non-interacting spinless fermions in a disordered potential:

H(l) = Hol(l Zh ccz—l— Z‘]ZJ cc]+ccz)
Z#J

«  With Wegner’s choice* of generatorn = [Hq, V| , the flow equations are:

ST
dh;
dl

—Jij(hs — h;)® = > JiwJrj(2he — hi — hy)
k

= 2J7% (h; — hy) Jij (1) ~ e~ =ha)" 1.5 (0)

* See e.g. F. Wegner, Ann. Phys. 506, 77 (1994), S. Kehrein, The Flow Equation Approach to Many-Particle Systems (2007)




Interacting Fermions

Specify to a model of interacting fermions (equivalent to XXZ spin chain):

1
H = Z h@'CICi S §J0 Z(CICH—l + cLlci) + Ag aniﬂ

(]

Under the action of the flow equation method, the Hamiltonian becomes diagonal
in the single-particle basis and takes the following form:

H = E hzﬁz—l— E Awﬁzﬁj—l— z L\i;ﬁﬁ'%jlbk—l—...
7 1] L aa2

* Problem: generates (many...) new couplings

Solution: truncate the running Hamiltonian
« Restricts us to either the strong disorder or weak interaction limit
« Expect to describe the MBL phase well

(Alternatively, implement exactly on small systems: PRL 119, 075701 (2017))



The Flow Equation Method

« Introduce graphical notation for a generic interacting (fermionic) Hamiltonian:

H = Z”H(Z) + 3 Hiom

kqlm

2) 4
ZH( el i Cj L+ Z H]E:qgm : cchclcm :
kqlm

n=[Ho, V] = [H(z),V@)] + [H(4),V(2)] + [H(z),V(4)] +

« Commutators can be computed by sum of all one-point contractions, e.g.:

[H@), V(z)] = (Hm)vm) 1/;;2)%(2))
ijk




The Flow Equation Method

« Introduce graphical notation for a generic interacting (fermionic) Hamiltonian:

« The same goes for higher-order commutators:

J k4 (] 17 |4 k 1| k4 J iJ k q
l l [ [ l l [ l

«  Why? Systematic extension to higher orders, efficient to compute using modern
parallel processing techniques (GPUs!), friendlier ‘tensor network’-like notation.




Aubry-André-Harper Model (1D)

1
H = Z hZ'Cl-LCi -+ §J0 Z(CICH_l -+ c;fﬂcz-) + AO aniﬂ

1

* Instead of random disorder, use a quasiperiodic potential:

‘ h; = W cos(2mi/¢ + ) ‘

where ¢ is some irrational number and 6 is a random global phase




Aubry-André-Harper Model (1D)

1

1
H = Z hicjci -+ §<]0 Z(C,}LCH_l -+ c;rﬂc@-) + AO aniﬂ

* Instead of random disorder, use a quasiperiodic potential:

‘ h; = W cos(2mi/¢ + ) ‘

where ¢ is some irrational number and 6 is a random global phase
* Non-interacting system: phase transition at W/J=2

Delocalised phase W/J=2 Localised phase
@—<—< @ >—>—>

(At critical point, energy spectrum is a Cantor set - only example | know of a system exhibiting level attraction...!)




Interacting Aubry-André-Harper Model (1D)

Compute the [-bit interactions: H = Z fzmi + Z Aijﬁ,mj
i ij

W/J = 1.00
W/J =120
W/J =140
W/J =1.60
W/J =1.80
W/.J = 2.00
W/J =220
W/J = 2.40
W/J = 2.60
W/J = 2.80
W/J =3.00




Interacting Aubry-André-Harper Model (1D)

« Compute the [-bit interactions: H = Z fzmi + Z Aijﬁ,mj
i ij

W/J =1.00
W/J =120
W/J =140
W/J = 1.60
W/J =1.80
W/J =2.00
W/J =220
W/J =240
W/J = 2.60
W/J = 2.80
W/J =3.00

« Strange ‘dips’ atj = 2, 3, 5, 8, 13, 21, 34...2
» Fibonacci numbers!
» Comes from choice of incommensurate potential: here the golden ratio
> Physical reason: resonances for all p, g where p/q ~ O
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W/J = 1.00
W/J =120
W/J =140
W/J = 1.60
W/J = 1.80
W/J = 2.00
W/J =220
W/J = 2.40
W/J = 2.60
W/J = 2.80
W/J =3.00




Evidence for a phase transition

We can also directly compute the [-bits:

Igoll(lien rlalti(;

20

bronze ratio
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Z%k tngng 4 Z

J#k

JF£kVI#£Em
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ey ckclcm D

; silver ratio | |

20
J

W/J = 1.00
W/J =120
W/J =140
W/J =160
W/J =180
W/J =2.00
W/J =220
W/J = 2.40
W/J =2.60
W/J =2.80
W/J = 3.00




Evidence for a phase transition

We can also directly compute the [-bits:

Za(l 1y +Z[3J(k c]c Z%k imgng 4+ Z (Z)lm cTckclcm....

Jj#k J#k J#kVI#EM

Define two ratios which measure the quadratic and quartic ‘weights’
respectively:

> 10 + Y 165217
[n]2
ij |A§2|2 + ijpq | (;c)pq|2
B

fa=

fa=

Delocalised phase: f,/f, = 0
Localized phase: f,/f, = 0




Evidence for a phase transition

We can also directly compute the [-bits:

Z%k tning Z klm cckczrcm....
Jj#k J#kVIEmM

W, =2.40 £ 0.02
v=243+0.21

—1 0
W-WwW.r1/v
FpeLt

W, =2.40 £ 0.09
v=242+0.37




Summary

Local Integrals of Motion:
* Numerically construct LIOMs in d=1,2,3
« Evidence for phase transition
Dynamics:
» Method can be used to compute quench dynamics
« Imbalance, correlation functions, etc... eur. phys. 1. 893 22)

Periodic drive:
» Extension to Floquet systems
» Periodic drive = synthetic extra dimension
» Floquet LIOMs!

Future directions:
O Hubbard model (in progress...!)
o  Wannier-Stark localisation (in progress...!)
o  Drive + disorder = time crystals...?
o  Unitary transforms for MPOs

IOg [A” ] med

o

[T mn- "4

i{l‘,

25
Phys Rev. B 97, 060201 (2018)

W, =240+£0.02
v=243x£0.21

-1 0 1
W-Werljv arXiv:2110.02906
W,

2.5

30
i — 7l sciPost Phys. 11, 028 (2021)




When does ETH fail?

« The Eigenstate Thermalisation Hypothesis fails in certain cases:
« Integrable systems have an extensive number of conserved quantities which
prevent the system from thermalising

Disordered systems can spontaneously fail to thermalise, even if they are
non-integrable

Extended

« A case which is both disordered and integrable:
o Anderson Localisation
o Non-interacting quantum systems in d<3 are
localised by any finite concentration of
disorder (in d=3 there is a transition)

Quasi-extended

Physics Today 62, 8, 24 (2009)




Flow of the coefficients




A Toy Example




Flow Invariant

IQ — TY[HZ]




Relative error

ED FE
En B En

arXiv:2110.02906v 1




Re lative e rro r arXiv:2110.02906v2, coming soon!

(Preliminary result, more data to come)

Improved convergence
ED FFE Better accuracy
E n E n

ED
) n




What about 2-point contractions?
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Decay of £bit couplings in 1D

-0-0-90-0-90-0-0-90-0-0-9-
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reps = 100

SJT & M. Schiré, PRB 97, 060201(R) (2018)
[cf. L. Rademaker et al. Ann. Phys. 529, 1600322 (2017)]




Decay of £bit couplings in 2D
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SJT & M. Schiré, PRB 97, 060201(R) (2018)
[cf. T. Wahl et al., Nature Physics 15, 164 (2019)]




Decay of £bit couplings in 2D

- ingsin 2
Ho=D b+ 5 ) A
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ort of the F£bits

Igollcllen rlaltic;

silver ratio | !
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W/.J = 1.00
W/J =120
W/.J = 1.40
W/J = 1.60
W/J =1.80
W/.J = 2.00
W/J =220
W/.J = 2.40
W/J = 2.60
W/.J =2.80
W/.J = 3.00




ort of the F£bits
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W/J =1.00
W/J =1.20
W/J = 1.40
W/J = 1.60
W/J =180
W/.J =2.00
W/J =220
W/J =240
W/.J =2.60
W/J =2.80
W/.J =3.00




Finite-size Scaling for Phase Transition

W, =2.40 £ 0.02
v=243+£0.21

W, =2.40+£0.09
v =242+ 0.37




CPU-GPU Speed Comparisons




Long-Range Couplings

« Let’s make things a bit more interesting:

=  We start again from an interacting model, this time with long-range couplings

H = Z hicjci -+ Z JijCl-LCj + % Z Aijnmj
i ij 2

the couplings randomly from distributions with standard deviations:

Jo

gJ

il

OA

i —3jl°

* In the non-interacting case, this is known as the Power-Law Random Banded Matrix
model, and has an Anderson localisation transition at o = ¢
« With short-range interactions in d=1, transition at a =~ 1.2 PRE 85, 050102 (2012)
When o, f — oo this model is many-body localised.

* Do long-range couplings destroy MBL?




Long-Range Couplings

Power-law hopping Power-law interactions

Phys. Rev. Research 2, 043368 (2020)

Upper panels: [-bit interactions in the diagonal basis
Lower panels: real-space support of [-bits in the microscopic (physical) basis




Non-equilibrium Dynamics

. Transform the operator into the same basis as the Hamiltonian, time-evolve, then
transform back again.

e_ZHTﬁieZHT

H(—o0) | B

How
equations

.
exact solution

see, e.g., Hackl & Kehrein, J. Phys: Cond Mat 21, 1 (2008)




Quench Dynamics

0.30
0.25
0.20
0.15
0.10
0.05
0.00

L = 64, reps = 500
SJT & M. Schiro, PRB 97, 060201(R) (2018)




Quench Dynamics

Starting from a charge density wave state (010101...) we can time-evolve the

system and compute the imbalance: z() = %Z(_Uimi(m
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» MBL survives the presence of long-range interactions!




Dvnamical Phase Dia

ergodic

24 32 48 72 96

L

Phys. Rev. Research 2, 043368 (2020)

8 =0.0

a =20

24 32 48 72 96

L




Time-Dependent Hamiltonians

« The flow equation method can be formally extended to time-
dependent Hamiltonians by using a time-dependent unitary transform
to simplify the Schrodinger equation 0;|v(t)) = H(t)|¥(t)):

[9(2))
10| (t))

« End up with a partial differential equation in 2 variables - difficult!

O H(l,t) = [n(l,t), H(l,t)] + i0:n(l, 1)




A Very Brief Introduction to Floguet Theory

Periodically driven system have time-dependent Hamiltonians
which satisfy H(t) = H(t + T') where T is the drive period
Floquet’s theorem, analagous to Bloch’s theorem in solid-state,
says that there is a complete set of solutions of the time-
dependent Schrodinger equation known as ‘Floquet eigenstates’

o () = et/ My (1))

These states satisfy:

[Ya(t +T)) = [Ya(t)) and  (H(t) —10;) [Ya(t)) = €altha(t))

The main object of interest is no longer the Hamiltonian, but the
Floquet evolution operator:

K = (H(t) - i0;)




Extended Floquet Hilbert Space

» Since the Floquet modes are periodic, we can expand them in
terms of Fourier harmonics at integer multiples of their
fundamental frequency:

a(D) = 3 D™ = 3" [0l @ o,

where o,, is a creation operator in ‘frequency space’

This allows us to rewrite the problem of finding the Floquet modes
into a conventional eigenvalue problem in a higher-dimensional
space, where we want to diagonalise the following object:

K=H®t)—id;=>» H"®0,+1Qwh

n




n n n 0
(b) Ki = K0, (0) Kjj) = K800

DIAGONAL, BUT STILL TIME-INDEPENDENT, BUT
TIME-DEPENDENT CONTAINS OFF-DIAGONAL TERMS

|
0
(d) Kz(jn) = K\ 00,00,
DIAGONAL AND TIME-INDEPENDENT!




Example: The Driven Anderson Model

« As an example, let’s take the Anderson model with periodic drive:

Zh c; cz+G ZJO (c Cit1 +cj+1cz>

 The Floquet evolution operator becomes:

Z(Zh ccﬁ—ZJ(H) Te )®0n+1®wn

Y = S 6o,
ZJ(”) inwt ZJ(”) e




Example: The Driven Anderson Model

« As an example, let’s take the Anderson model with periodic drive:

Zh c; cz+G ZJO (c Cit1 +cj+1cz>

 The Floquet evolution operator becomes:

[Zh(o) el @1 4+1®wh

Oﬂ‘—ZZh( )c C@®0”+ZZ‘]( )c iCj Q onp

n#0 1 n

arXiv:2009.03186




Example: The Driven Anderson Model

* Choose the most challenging form of drive we can find:

Sty hicle, if T/4 <t < 3T/4
H(t) = L—1 T + )
> ic1 Jolciciy1 + ¢ ¢ ), otherwise

o discontinuous drive: infinitely many Fourier components!
o have to truncate the expansion in terms of harmonics
o only keep N, harmonics of the drive







Accuracy Check: Quasienergies

« We can quantify the accuracy versus both frequency and number of
harmonics by computing the relative error:
FE

ED _
(8%

€ €

w/W =0.1
w/W =03
w/W = 0.4
w/W = 0.5
w/W = 0.6
w/W =08

« High accuracy at all frequencies if enough harmonics retained!




Floquet |-bits

 We can put together everything we’ve seen so far and compute the
Floguet integrals of motion for a weakly interacting driven system:

K=Hr®1+1Qwh




Dissipative Flow Equations

Lorenzo Rosso, Fernando lemini, Marco Schiro, Leonardo Mazza, SciPost Phys. 9, 091 (2020)

« Start from a Markovian Lindblad Master equation:

) .
PO = L0 =4, PO+ 3 L,p 0L~ {1 p(0)}

* Goal is to diagonalize the Lindbladian with a transform given by:

LUO)=S)LSKE)™?! S() =T, exp [ f e n(e’)de’]

0

» Results in flow equation of the form:

dcee)
7 =[n(£),L)]




