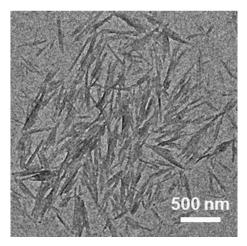
Supporting Information

Nanocomposite Hybrid Biomass Hydrogels as Flexible Strain Sensors with Self-Healing Ability in Harsh Environments


Qichao Fan, Yu Nie, Qing Sun, Wenxiang Wang, Liangjiu Bai,^{*} Hou Chen,^{*} Lixia Yang, Huawei Yang, Donglei Wei

School of Chemistry and Materials Science, Ludong University; Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province; Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

Corresponding authors:

Liangjiu Bai, *E-mail: bailiangjiu@ldu.edu.cn

Hou Chen, *E-mail: chenhou@ldu.edu.cn

Figure S1. TEM image of CNCs (the length and diameter of CNCs were estimated from at least 100 samples and the data was shown as mean \pm standard deviation).

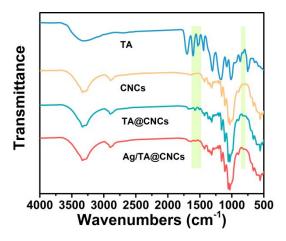
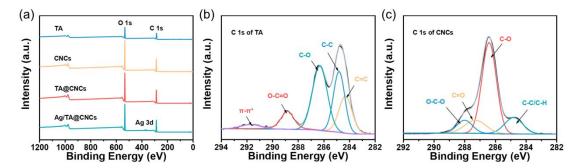



Figure S2. FT-IR spectra of TA, CNCs, TA@CNCs, and Ag/TA@CNCs.

Figure S3. (a) XPS survey spectra of TA, CNCs, TA@CNCs, and Ag/TA@CNCs. C 1s high-resolution XPS spectra of (b) TA and (c) CNCs.

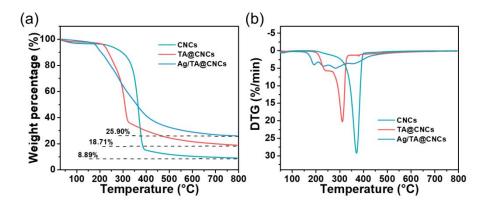
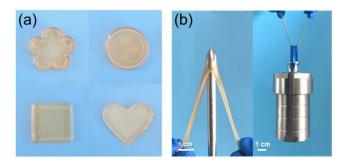
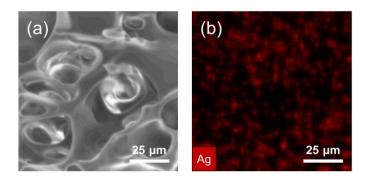
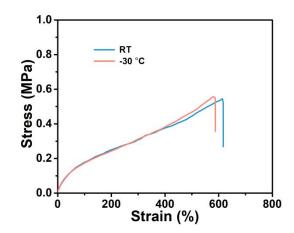
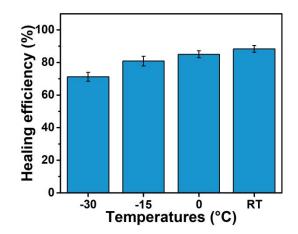




Figure S4. (a) TGA and (b) DTG curves of CNCs, TA@CNCs, and Ag/TA@CNCs.

Figure S5. (a) Optical photographs of hydrogels in various shapes. (b) Performance tests of hydrogels with stretching and loading.

Figure S6. EDS elemental mapping of gel- $C_{0.2}L_{40}$: (a) SEM cross-sectional image and (b) Ag element distribution map.

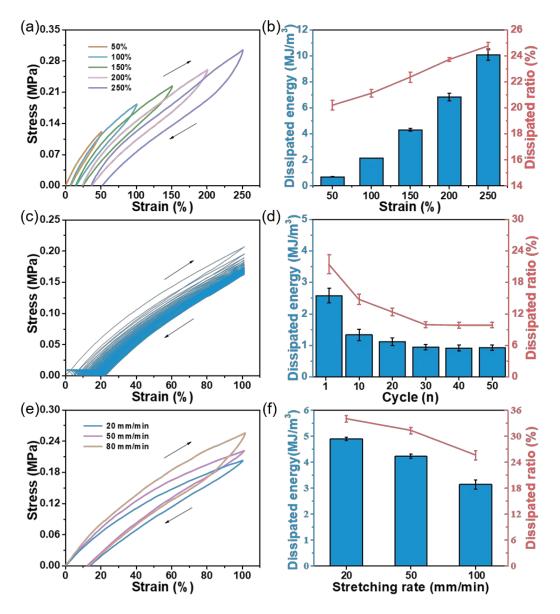

Figure S7. Stress-strain curves of gel- $C_{0.2}L_{40}$ at room temperature and -30 °C.

Table S1. The mechanical properties and self-healing efficiency of different hydrogel samples (the maximum stress, maximum strain, and self-healing efficiency of the samples were tested at least three times and the data was shown as mean \pm standard deviation).

Samples	Max stress	Max strain	Self-healing efficiency
	(MPa)	(%)	(%)
gel-C ₀ L ₄₀	0.45±0.03	613.2±17.0	71.4±4.6
gel-C _{0.1} L ₄₀	0.55±0.02	594.8±9.0	83.5±3.3
gel-C _{0.2} L ₄₀	0.69±0.01	557.5±12.2	88.3±5.0
gel-C _{0.3} L ₄₀	0.60±0.03	547.2±13.6	86.8±2.5
gel-CNCs _{0.2} L ₄₀	0.51±0.03	630.3±20.8	80.5±5.5
gel-TA@CNCs _{0.2} L ₄₀	0.68±0.02	564.3±15.6	88.6±3.6

Figure S8. Self-healing efficiency of gel- $C_{0.2}L_{40}$ at -30 °C, -15 °C, 0 °C, and room temperature.

Figure S9. (a-b) Loading–unloading tests of gel- $C_{0.2}L_{40}$ under different strain of 50%, 100%, 150%, 200%, and 250%. (c-d) Fifty successive cyclic loading-unloading tests of gel- $C_{0.2}L_{40}$ at 100% strain. (e-f) Loading–unloading tests of gel- $C_{0.2}L_{40}$ under different tensile rates of 20, 50, and 80 mm/min.

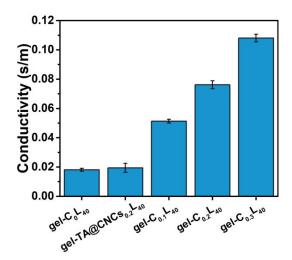


Figure S10. Conductivity of gel- C_0L_{40} , gel-TA@CNCs_{0.2}L₄₀, gel- $C_{0.1}L_{40}$, gel- $C_{0.2}L_{40}$ and gel- $C_{0.3}L_{40}$.

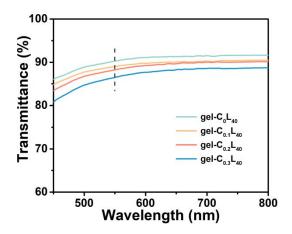


Figure S11. UV-vis transmittance of the gel- C_0L_{40} , gel- $C_{0.1}L_{40}$, gel- $C_{0.2}L_{40}$, and gel- $C_{0.3}L_{40}$ (thickness: 1 mm).

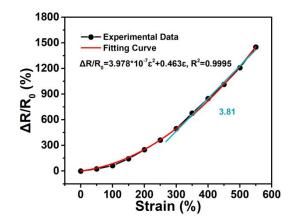


Figure S12. The line-fitting GF factor curves of gel-TA@CNCs_{0.2}.

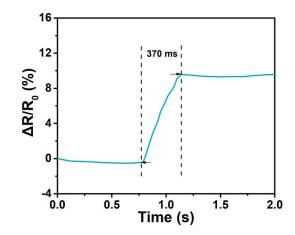


Figure S13. The response time curve of the gel-TA@CNCs $_{0.2}$.