Supplementary Data: McHugh et al., 2022.

Rebecca E McHugh^{a,b}, John T Munnoch^a, Robyn E Braes^a, Iain J. W. McKean^{a,c}, Josephine Giard^a, Andrea Taladriz-Sender^c, Frederik Peschke^c, Glenn A Burley^c, Andrew J Roe^b, & Paul A Hoskisson^{a#}.

Biosynthesis of aurodox, a Type III secretion system inhibitor from *Streptomyces goldiniensis*.

^a Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 ORE, UK

^b Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK ^c Department of Pure and Applied Chemistry, University of Strathclyde, 252 Cathedral Street, Glasgow, G1 1BX.

Correspondence: paul.hoskisson@strath.ac.uk

Supplementary Tables: McHugh et al., 2022.

Table S1: Summary of biosynthetic gene clusters encoded by *S. goldiniensis* as predicted by antiSMASH.

Region	Туре	Region	Most similar	% similarity
1	T2PKS	32,278 - 104,355	Spore pigment	83
3	Lanthipeptide, lassopeptide	486,431 - 514,192	Citrulassin E (ripp)	100
4	Siderophore	2,159,777 - 2,170,184	NA	0
5	Terpene	2,487,747 - 2,508,882	Lipopeptide	4
6	NRPS, tfuA related	2,543,021 - 2,606,769	Diisonitrile antibiotic SF2768	66
7	Bacteriocin	2,705,875 - 2,716,826	NA	0
8	Terpene	2,777,350 - 2,799,499	Geosmin	0
9	NRPS-like	2,818,277 - 2,858,728	S56P1	11
10	NRPS-like, siderophore	3,085,338 - 3,126,119	Paulomycin	13
11	NRPS-like	3,541,716 - 3,582,164	Octacosamicin	12
12	Terpene	3,625,827 - 3,643,980	NA	0
13	Indole	4,158,688 - 4,181,228	Terfestatin	28
14	bacteriocin,bottromycin,NRPS,transAT-	4,213,370 - 4,484,508	Kirromycin	40
15	NRPS-like	4,599,349 - 4,657,342	Echosides	17
16	Terpene	4,783,720 - 4,802,511	NA	0
17	Linardin	5,046,397 - 5,067,017	Pentostatine	17
18	Siderophore	5,085,773 - 5,100,346	NA	0
19	NRPS, melanin	5,167,798 - 5,232,264	Scabichelin	100
20	Terpene	5,257,095 - 5,277,644	NA	0
21	NRPS, T1PKS	5,284,180 - 5,346,580	Herboxidiene	4
22	Terpene	5,480,336 - 5,505,711	Isorenieratene	100
23	T2PKS	5,770,343 - 5,856,353	Fluostatins	60
24	Lanthipeptide, bacteriocin	6,153,412 - 6,179,099	Informatipeptin	100
25	NRPS-like, T1PKS	6,410,852 - 6,457,973	Marineosin	45
26	Terpene	6,507,863 - 6,532,462	Hopene	100
27	Ectoine	6,852,064 - 6,861,735	Ectoine	100
28	Ladderane	6,937,157 - 6,978,500	Colabomycin	11
29	T3PKS, Terpene	7,764,486 - 7,805,661	Merochlorin	12
30	Melanin	8,189,939 - 8,200,406	Melanin	80
31	Siderophore	8,344,177 - 8,355,949	Desferrioxamine A	83
32	Ectoine	8,471,171 - 8,481,599	Ectoine	75
33	Terpene	9,170,031 - 9,191,797	NA	0
34	Bacteriocin	9,838,044 - 9,848,331	NA	0
35	Terpene	9,968,421 - 10,005,017	NA	0

0	.			A A _1
Gene	I ype			
aurų	Other Gene	nypothetical protein	WULTISPECIES Streptomyces	94/107 (87%)
aurHll	Other gene	Hypothetical protein	Streptomyces globosus	225/259 (86%)
aurHIII	Other Gene	Hypothetical protein	Streptomyces sp. SM11	242/288 (84%)
aurAVII	Core Biosynthetic Gene	Non-ribosomal peptide synthetase	Streptomyces roseoverticillatus	887/1023 (86%)
aurM*	Additional Biosynthetic Gene	SAM dependant- O- Methyltransferase	Streptomyces roseoverticillatus	296/333 (88%)
aurCl	Core Biosynthetic Gene	S-malonyltransferase	Streptomyces roseoverticillatus	973/1076(90%)
aurOll	Additional Biosynthetic Gene	Cytochrome P450	Streptomyces sp. CB00455	344/401 (85%)
aurD	Other Gene	aspartate 1- decarboxylase	Streptomyces roseoverticillatus	129/137 (94%)
aurM	Additional Biosynthetic Gene	class I SAM-dependent O- methyltransferase	Streptomyces klenkii	301/319 (94%)
aurCll	Core Biosynthetic Gene	Acyltransferase domain- containing protein	Streptomyces sp. CB00455	383/440(87%)
aurX	Other Gene	Dieckmann Cyclase	Streptomyces globosus	231/259 (89%)
aurHIV	Other gene	Uncharacterized protein, DUF2087 family	Streptomyces sp. SM11	149/178 (83%)
aurN	Additional Biosynthetic Gene	crotonyl-CoA carboxylase/reductase	Streptomyces azureus	427/443 (96%)
aurT	Transport related gene	Major Facilitator SuperfamilyTransporter	Streptomyces klenkii	509/557 (91%)
aurHVI	Other Gene	Magnesium ATP-ase	Streptomyces sp. SM11	97/109 (88%)
aurAl	Core Biosynthetic Gene	Type 1 Polyketide Synthase	Streptomyces roseoverticillatus	2513/3129 (80%)
aurAll	Additional Biosynthetic Gene	SDR family NAD(P)- dependent	Streptomyces roseoverticillatus	1922/2361 (81%)
aurAIII	Additional Biosynthetic Gene	SDR family NAD(P)- dependent oxidoreductase	Streptomyces sp. AVP053U2	5416/6729 (80%)
aurAIV	Core Biosynthetic Gene	non-ribosomal peptide synthetase	Streptomyces roseoverticillatus	1350/1551 (87%)

 Table S2: Description of putative aurodox gene function and their closest BLASTp hit.

aurAV	Core Biosynthetic Gene	SDR family NAD(P)- dependent oxidoreductase	Streptomyces klenkii	3627/4506 (80%)
aurAVI	Additional Biosynthetic Gene	SDR family NAD(P)- dependent oxidoreductase	Streptomyces klenkii	1707/2018 (84%)
aurR	Regulatory Gene	TetR/AcrR family transcriptional regulator	MULTISPECIES Streptomyces	178/182 (97%)
aurOI	Additional Biosynthetic Gene	Cytochrome p450	Streptomyces viridosporus	390/406 (96%)
aurHVI	Other gene	Phytanoyl-coA Dioxygenase	Streptomyces viridosporus	267/278 (96%)

Table S3: List of Bacterial Strains used in this study.

Strain	Description	Genotype	Reference
Escherichia coli DH5 α	<i>E. coli</i> K12 derivative	huA2 (argF-lacZ)U169 phoA glnV44 80 (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	(1)
<i>E. coli</i> DH10β Top10	<i>E. coli</i> K12 derivative	mcrA, Δ (mrr-hsdRMS-mcrBC), Φ lacZ(del)M15, Δ lacX74, deoR, recA1, araD139, Δ (ara-leu)7697, galU, galK, rpsL(SmR), endA1, nupG	Invitrogen
<i>E. coli</i> BW21153	<i>E. coli</i> K12 derivative	lacl+ , rrnBT14, ΔlacZWJI6, hsdR514, ΔaraBADAH33, ΔrhaBADLD78	(2)
<i>E. coli</i> ET12567	<i>E. coli</i> K12 derivative	dam13::Tn9, dcm6, hsdM, hsdR, recF143, zij201::Tn10, galK2, galT22, ara14, lacY1, xylS, leuB6, thi-1, tonA31, rpsL136, hisG4, tsx78, mtli, glnV44, F	(3)
<i>E. coli</i> E2348/69	Wild type EPEC O127:H6	NA	(4)
Staphylococcus aureus ATCC43300	Methicillin- resistant Staph. aureus	Methicillin and oxacillin resistant Staphylococcus aureus strain used in susceptibility testing	ATCC 43300
Streptomyces goldiniensis ATCC 21386	Wild type, Aurodox- producing strain	Wild-type	ATCC 21386
Streptomyces collinus Tü 365	Wild type, Kirromycin- producing strain	Wild-type	Gift from Wolfgang Wolheben
Streptomyces coelicolor M1152	Streptomyces coelicolor 'superhost'	Δact Δred Δcpk Δcda rpoB(C1298T)	(5)
Streptomyces coelicolor M1152	pESAC-13A- Aur1	Aurodox cluster on PAC - AprR,	This study
Streptomyces coelicolor M1152	pESAC-13A- Aur1∆AurP1	Aurodox cluster on PAC - AprR,	This study
Streptomyces coelicolor M1152	pESAC-13A	A pESAC-13A AprR,	This study
Streptomyces collinus Tü 365	Wild type, Kirromycin- producing strain + <i>aurM</i> * from <i>S.</i> <i>goldiniensis</i>	Wild-type + pIJ6902_aurM*	This study

 Table S4:
 Summary of Plasmids/BACs used in this study.

Plasmid name	Description	Resistance	Reference
pESAC-13A	Bacterial Artificial Chromosome, ΦC31 integrase, lacZ,	Apramycin, Carbenicillin	(6)
pESAC-13A- Aur1	Bacterial Artificial Chromosome, Φ C31 integrase, triple positive clone for aurodox cluster	Apramycin	This study
pESAC-13A- Aur1∆AurP1	Bacterial Artificial Chromosome, Φ C31 integrase, triple positive clone for aurodox cluster, Δ aurP1	Apramycin, Hygromycin	This study
PIJ6902	ΦC31 integrase containing vector with Thiostrepton resistance and a MCS containing and upstream thiostrepton inducible promoter	Apramycin, Thiostrepton	(7)
PIJ6902_aurM*	ΦC31 integrase, AurM* expression vector	Apramycin, Thiostrepton	This study
PIJ10790	λ -RED (gam, bet, exo), cat, araC, rep101ts	Chloramphenicol	(8)
PIJ10700	Re-direct template	Hygromycin	(8)

 Table S5: List of Oligonucleotides used in this study.

Primer name	Sequence	Tm (^o C)
ClusterCheckA F	GAGCTACCAACTCTTTTCC	50.9
ClusterCheckA R	CCGCGGATGACCGCGTGGACGTGA	69.2
ClusterCheckB F	CATCGGCAGCCTCTTCTCCGC	63.7
ClusterCheckB R	CGGCTCATGCCGGAAGTCTCCCGA	66.8
ClusterCheckC F	TTCCGCTCCCTGGATCGGCAT	66.7
ClusterCheckC R	AGCACTGAACGCCGGCACGGAAGA	67
MTGibson F	ATTCGAGCTCGGTACGGATGGAAATCCTCAAGCTCGCC	70.9
Methyltransferase_Gib	GTCAGAGAAGGGAGCGGACATCAGGAGGCACGCAGGGA	71.8
PIJ6902MT_check F	GAGATCGGCGTCGTACAT	54.3
PIJ6902MT_check R	GAGCTACCAACTCTTTTTCC	50.9
RedirectPKS1 F	TTCCATGCCGCGATTCCGGCCGGACCGTGTGTCCGCATGATTCCGGGGACC GTCGA	76.5
RedirectPKS1 R	GAACGAGCGCGCGGGGGGGCGCGTGAGGAAGGACCGGGTTATGTAGGCTGGA GCTGCTT	76.2
Hyg_F	GTGACACAAGAATCCCTGTTACTTCTC	62.7
Hyf_R	CTCGAACACCTCGAAGTCCAGGAA	65.9
PKSredirectcheckF	GGCCTGATCATGCGGTTGGGCGCT	69.5
PKSredirectcheckR	TGGAGGACATCCGGCGCT	66

Supplementary Figures: McHugh et al., 2022.

Figure S1: Pulse field gel electrophoresis for confirmation of PAC insert size. PAC1 (1-4J) were digested with BamHI and subjected to PFGE. Insert sizes was 160 kb. Image was supplied and PFGE was carried out by Bio S & T.

AvrII (64,668)

Figure S2: PAC map of pESAC-13A_Aur1 [pAur1] (9). The PAC was completely sequenced via Illumina MiSeq sequencing provided by Novogene (*Supp_File. pAur1*). Vector encodes ¢C31 integrase, ampicillin resistance gene (replaced by gDNA at BamHI sites during PAC construction) and apramycin resistance gene. Genes encoded in the amber region represent putative aurodox genes which were also confirmed through PCR, genes in the blue genes represent predicted bottromycin genes which flank aurodox-encoding genes in the native producer, *S. goldiniensis*. Genes in the lilac region encode miscellaneous proteins with no obvious association specialised metabolite production.

Figure S3: Screening of pESAC-13A PAC library for triple positive aurodox clones. (I) Map of aurodox gene cluster indicating target regions for PCR amplification during PAC screening. (Oligonucleotide primers can be found in **Supp Table S5**) (II) Agarose gel electrophoresis showing design of primers for Bio S & T screening and validation of their results. PCR products are 580, 512 and 863 bp respectively. Sequencing of amplicons from eurofins was used to confirm PCR products matched the putative aurodox cluster (III) Identification of two triple positive clones for putative aurodox encoding cluster, agarose gel electrophoresis carried out by Bio S and T (IV) PCR (primers can be found in **Supp Table S5**) and agarose gel electrophoresis confirmation that PACs derived from Bio S & T screening were positive for the aurodox cluster.

Figure S4: LC-MS analysis of fermentation extracts demonstrating pAur confers production of aurodox. *S. coelicolor* M1152 + pESAC-13A (Empty vector control) and *S. coelicolor* M1152 + pAurl. (A) Total ion chromatogram from analysis of *S. coelicolor* M1152 + pESAC-13A (Empty vector control) with no significant peaks corresponding to aurodox. (B) Total ion chromatogram from analysis of *S. coelicolor* M1152 + pAurl, peak corresponding to aurodox (~ 7.2 minutes) is indicated by red text, negative scan mode MS peaks are shown, with 793 m/z peak corresponding to aurodox anion.

Figure S5: LCMS analysis of *S. collinus* + plJ6902AurM* versus empty vector control. Extracts were generated through standard fermentation and extraction protocol. (A) Total Ion Chromatogram of extracts from *S.collinus* + plJ6902, kirromycin peak (retention time 7.0 minutes) is indicated with a green arrow. (B) HPLC trace showing signal intensity from kirromycin associated peak. (C) Mass Spectrometry analysis of 7.0 min retention time peak, peak with m/z ratio of 795 (kirromycin) is indicated with a green arrow. (D) Total Ion Chromatogram of extract from *S. collinus* + plJ6902AurM with kirromycin peak indicated with a green arrow. (E) Mass Spectrometry analysis of 7.0 min retention time peak, peak with m/z ratio of 7.0 min retention time peak, peak analysis of 7.0 min retention time peak, peak with a green arrow analysis of 7.0 min retention time peak, peak with m/z ratio of 795 (kirromycin) is indicated with a green arrow. (E) Mass Spectrometry analysis of 7.0 min retention time peak, peak with m/z ratio of 795 (kirromycin) is indicated with a green arrow (F) HPLC trace showing signal intensity from kirromycin associated peak (green arrow) and aurodox associated peak (red arrow). (G) Mass Spectrometry analysis of 7.1 minute retention time aurodox peak signal with m/z ratio of 793 corresponding to aurodox is indicated with a red arrow.

References

1. Grant SG, Jessee J, Bloom FR, Hanahan D. 1990. Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. Proc National Acad Sci 87:4645–4649.

2. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc National Acad Sci 97:6640–6645.

3. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T. 1992. Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68.

4. Campellone KG, Robbins D, Leong JM. 2004. EspFU Is a Translocated EHEC Effector that Interacts with Tir and N-WASP and Promotes Nck-Independent Actin Assembly. Dev Cell 7:217–228.

5. Gomez-Escribano JP, Bibb MJ. 2012. *Streptomyces coelicolor* as an expression host for heterologous gene clusters. Methods Enzymol 517:279–300.

6. Sosio M, Giusino F, Cappellano C, Bossi E, Puglia AM, Donadio S. 2000. Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 18:343–345.

7. Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih C, Kao CM, Buttner MJ, Cohen SN. 2005. Cross-regulation among disparate antibiotic biosynthetic pathways of *Streptomyces coelicolor*. Molecular Microbiology 58:1276–1287.

8. Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proceedings of the National Academy of Sciences of the United States of America 100:1541–6.

9. Sosio M, Bossi E, Donadio S. 2001. Assembly of large genomic segments in artificial chromosomes by homologous recombination in *Escherichia coli*. Nucleic Acids Res 29:e37–e37.