Source: Heravi, M.M., Ayati, A., Daraie, M., Tanhaei, B., Bamoharram, F. F., Sillanpaa, M. (2016), H₃PMo₁₂O₄₀ immobilized chitosan/Fe₃O₄ as a novel efficient, green and recyclable nanocatalyst in the synthesis of pyrano-pyrazole derivatives, Journal of Journal of the Iranian Chemical Society, 13(12), doi: 10.1007/s13738-016-0949-0

H₃PMo₁₂O₄₀ immobilized chitosan/Fe₃O₄ as a novel efficient, green and recyclable nanocatalyst in the synthesis of pyranopyrazole derivatives

Majid M. Heravi¹, Ali Ayati, Mansoureh Daraie, Bahareh Tanhaei, Fatemeh F. Bamoharram, Mika Sillanpaa

Abstract

A novel nanomagnetic composite heteropolyacid immobilized chitosan/Fe3O4 was prepared via a facile one-pot synthetic approach. This magnetically recoverable nanocatalyst, H3PMo12O40/chitosan/Fe3O4 (PMo/chit/Fe3O4), was fully characterized by XRD, FTIR, SEM and EDX analysis methods. A rapid, efficient and the chemoselective synthesis of different pyrano-pyrazole derivatives was achieved in excellent yields via a one-pot four-component reaction in the presence of catalytic amount of PMo/Chit/Fe3O4.

Keywords

Green chemistry, Heterogeneous catalysis, Heteropolyacids, Magnetic catalyst, MCRs, Multicomponent reaction, One-pot reactions, Pyrano-pyrazoles.

¹ Department of Chemistry, Faculty of Physics & Chemistry Alzahra University, Vanak, Tehran, Iran.