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What is a representation?



What is a representation?

Apples

Oranges



A representation is a measure

• Shows that a certain part of the brain contains 
information about a variable


• That information can potentially be read out by 
some downstream process

Kriegeskorte and Diedrichsen, Ann. Rev. Neur. 2019



How is representational 
analysis useful?

• It can potentially constrain 
process models of the brain  
(e.g. visual hierarchy)


• It provides explanations at a 
relevant scale  
(e.g. in terms of the atoms 
of interaction with the world 
- representations of objects)



The brain is a highly complex, non-
linear, dynamical system.


It deals with an informationally, but 
also structurally, rich world with a 
rich repertoire of behaviours.


Information processing is highly 
contextual => Inferred 
representations are a function of the 
experiment performed.

The information a neuroscientist reads out from a piece of cortex 
might not be read out by the rest of the brain, making the inferred 
representation generally uninteresting. 

(co-varying variables, e.g. animacy in V1)

Issues with representations

Gilbert and Li, Nat. Rev. Neur. 2013; Jonas and Kording, PLOS Comp. Bio. 2017



What are the alternatives?
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Major technical advances are revolutionizing our ability 
to observe and manipulate brains at a large scale and to 
quantify complex behaviors1,2. How should we use this 

data to develop models of the brain? When the classical framework 
for systems neuroscience was developed, we could only record from 
small sets of neurons. In this framework, a researcher observes neu-
ral activity, develops a theory of what individual neurons compute, 
then assembles a circuit-level theory of how the neurons combine 
their operations. This approach has worked well for simple com-
putations. For example, we know how central pattern generators 
control rhythmic movements3, how the vestibulo-ocular reflex pro-
motes gaze stabilization4 and how the retina computes motion5. But 
can this classical framework scale up to recordings of thousands 
of neurons and all of the behaviors that we may wish to account 

for? Arguably, we have not had as much success with the classical 
approach in large neural circuits that perform a multitude of func-
tions, like the neocortex or hippocampus. In such circuits, research-
ers often find neurons with response properties that are difficult to 
summarize in a succinct manner6,7.

The limitations of the classical framework suggest that new 
approaches are needed to take advantage of experimental advances. 
A promising framework is emerging from the interactions between 
neuroscience and artificial intelligence (AI)8–10. The rise of deep 
learning as a leading machine-learning method invites us to revisit 
artificial neural networks (ANNs). At their core, ANNs model 
neural computation using simplified units that loosely mimic the 
integration and activation properties of real neurons11. Units are 
implemented with varying degrees of abstraction, ranging from 

A deep learning framework for neuroscience
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Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. 
Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In artifi-
cial neural networks, the three components specified by design are the objective functions, the learning rules and the architec-
tures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components 
have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue 
that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-
based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective 
on systems neuroscience will help to generate more rapid progress.
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Study cognition in terms of objectives (tasks), architectures, 
and learning.


Representations are just an outcome of that. 

However, most representations are not interpretable => 
shortcoming of the current direction of the field? (e.g. 
modelling primate V4)

Bashivan, Kar, and DiCarlo, Science 2019 



“Good” representations as a task?

If you have many (complex) tasks, having good 
representations can help in transfer and few-shot learning


Creating low-dimensional representations might be a 
useful auxiliary task (e.g. predicting how a scene would 
look might help in constructing useful representations for 
a motor control task)

Eslami et al., Science 2018; https://ruder.io/transfer-learning/



Neural 

responses

Process models

Tasks

Representations 
as outcomes

Representations 
as goals

The usefulness of representations

Current major focus 
 of the field



Discussion points
1. Do we agree upon the definition of a representation?


2. Just how serious are the issues with representations that we 
mentioned?


3. What should we do? Parallel development of goal-oriented 
process models and characterizing neural representations?


1. Or do the two frameworks have two different goals, and 
cannot interact?


1. What is the example of a complete loop of interaction?


2. What questions might lead to such a loop?
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