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Representations:
Useful, useless or harmful?

Giacomo Aldegheri and Sushrut Thorat



What is a representation?
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A representation is a measure

e Shows that a certain part of the brain contains
information about a variable

* That information can potentially be read out by
some downstream process

Kriegeskorte and Diedrichsen, Ann. Rev. Neur. 2019



How IS representational
analysis useful?
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Issues with representations

The brain is a highly complex, non-
linear, dynamical system.

It deals with an informationally, but
also structurally, rich world with a
rich repertoire of behaviours.

Information processing is highly
contextual => Inferred
representations are a function of the
experiment performed.

The information a neuroscientist reads out from a piece of cortex
might not be read out by the rest of the brain, making the inferred
representation generally uninteresting.

(co-varying variables, e.g. animacy in V1)

Gilbert and Li, Nat. Rev. Neur. 2013; Jonas and Kording, PLOS Comp. Bio. 2017



What are the alternatives?

A deep learning framework for neuroscience

Blake A. Richards'?3442* Timothy P. Lillicrap ©>%42, Philippe Beaudoin’, Yoshua Bengio42,

Rafal Bogacz®, Amelia Christensen™, Claudia Clopath®©", Rui Ponte Costa'?"*, Archy de Berker’,
Surya Ganguli*®®, Colleen J. Gillon®'%", Danijar Hafner®8° Adam Kepecs?°,

Nikolaus Kriegeskorte?'??, Peter Latham©23, Grace W. Lindsay?*?%, Kenneth D. Miller®2224.25,
Richard Naud ©2%%7, Christopher C. Pack?, Panayiota Poirazi© 28, Pieter Roelfsema®?°,

Jodo Sacramento??, Andrew Saxe?®', Benjamin Scellier'®, Anna C. Schapiro©32, Walter Senn®,

Greg Wayne®, Daniel Yamins333435 Friedemann Zenke3®¢*, Joel Zylberberg*383°, Denis Therien® 742
and Konrad P. Kording © 4404142

Study cognition in terms of objectives (tasks), architectures,
and learning.

Representations are just an outcome of that.

However, most representations are not interpretable =>
shortcoming of the current direction of the field? (e.g.
modelling primate V4)

Bashivan, Kar, and DiCarlo, Science 2019



“Good” representations as a task?

Sample
N AN

If you have many (complex) tasks, having good
representations can help in transfer and few-shot learning

Creating low-dimensional representations might be a
useful auxiliary task (e.g. predicting how a scene would
look might help in constructing useful representations for

a motor control task)

Eslami et al., Science 2018; https://ruder.io/transfer-learning/



The usefulness of representations

Representations

Tasks —
as goals

\ Process models /

Neural
responses

Representations
as outcomes

Current major focus
of the field



Discussion points

Do we agree upon the definition of a representation?

. Just how serious are the issues with representations that we
mentioned?

. What should we do? Parallel development of goal-oriented
process models and characterizing neural representations?

1. Or do the two frameworks have two different goals, and
cannot interact?

1. What is the example of a complete loop of interaction?

2. What questions might lead to such a loop?



Supplementary info



Spatial activity patterns

Neuronal locations L and
activity profiles U

N\,

Activity-profile distribution

Activity profiles U or all moments
of activity-profile distribution

Representational geometry

2" moment G of activity profiles or
representational distance matrix D

Particular linear decoders
e.g., for a pair of stimuli (i, j), yielding
representational distance D ;

Kreigeskorte and Diedrichsen, Ann. Rev. Neur. 2019
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Gilbert and Li, Nat. Rev. Neur. 2013
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Objective functions Architectures
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Richards et al., Nat. Neuro. 2019



Observation 1

B Neural scene
representation
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