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1 Introduction

Our aim is to develop a clusterability measure for scRNA-seq data. As we define more pre-
cisely in section (2.5), we consider clusterability to be the clustering quality that is optimally
achievable, given a certain amount of noise in the data. Clustering quality can only be assessed
quantitatively if the ground truth is known, which is strictly only the case for simulated data.
A clusterability measure must thus be able to reflect clustering quality without knowledge of
the ground truth. Such a measure would be highly useful, since it would allow us to detect the
presence of meaningful (non-random) variability, and thus determine the necessity to sub-cluster
measured data. For the development of this clusterability measure we will use concepts from
random matrix theory and perturbation theory. In short, we decompose the single-cell gene
expression matrix X̃ into a random matrix X, which contains technical and biological noise,
and a signal matrix P , which contains the expression profiles of different cell types or states.
Then, we apply perturbation theory, treating the signal matrix P as a low-rank perturbation
of the noise matrix X. Perturbation theory then allows us to calculate the angle between the
singular vectors of the measured single cell expression matrix X̃ and the corresponding singular
vectors of the unobserved signal matrix P . The cosine of this angle constitutes a useful cluster-
ability measure because a large value (small angle) indicates a high signal-to-noise ratio (and
thus high clusterability) and a small value (large angle) indicates a low signal-to-noise-ratio (and
thus low clusterability). We show empirically that this clusterability measure is a proxy for the
theoretically achievable adjusted rand index [Fig. 1d].
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In what follows, we first present our model of gene expression data (2.1) and introduce matrix
decomposition (2.2). Subsequently, we introduce the Marchenko-Pastur (MP) distribution (2.3),
which describes the eigenvalue spectrum of a random matrix and apply perturbation theory to
link the (unobserved) signal matrix to the spectrum of the measured expression matrix (2.4).
In section (2.5), we establish our notion of clusterability. In section (3.1), we describe the pre-
processing steps necessary for the application of the theory to single-cell RNAseq data. Then,
in section (3.2), we develop a method to remove the effect of nuisance variables (i.e. sources of
systematic, non-random variability that should not drive clustering.) The complete algorithm
can be found in section (3.3).

2 Phiclust

2.1 Model

Let X̃ ∈ RM×N be the measured single-cell expression matrix with M the number of genes
(rows) and N the number of cells (columns). We model the measurement X̃ as the sum of a
random noise matrix X ∈ RM×N and a ”signal” matrix P ∈ RM×N .

X̃ = X + P (1)

In our model, X contains both technical and biological noise. For example, if there was only one
cell type or cell state present in a data set, P would consist of identical columns. Note that we
only observe the matrix X̃ experimentally. We will show below, that we can make a statement
about the influence of the noise X on the signal P , without knowing X or P . To achieve that
we invert the logic of conventional models: instead of modeling the influence of random noise
on the signal, we consider the influence of a deterministic perturbation on a random matrix. All
results rely on matrix decomposition, which will be introduced next.

2.2 Matrix decomposition

2.2.1 Eigendecomposition

We first define the cell-cell correlation matrix. To that end, we assume that X̃ has been standard-
ized cell-wise (i.e. column-wise) to mean 0 and standard deviation 1. The cell-cell correlation
matrix C ∈ [−1, 1]N×N is then defined as:

C =
1

M − 1
X̃T X̃ (2)

The correlation matrix is a square and symmetric matrix which can hence, by the spectral
theorem, undergo eigendecomposition into the form

C = V ΣV T =

N∑
i=1

λiviv
T
i . (3)

V ∈ RN×N contains the eigenvectors vi of C in the columns and Σ ∈ RN×N is a diagonal matrix
containing the eigenvalues λi of C. If M < N , then C is a singular matrix and will contain at
least N −M eigenvalues equal to 0, which is an important consideration for the definition of the
Marchenko-Pastur distribution (see below).
In full analogy to the cell-cell correlation matrix we can define a gene-gene correlation matrix
Ĉ, now assuming that the expression matrix X̃ has been standardized gene-wise (row-wise) to
mean 0 and standard deviation 1:

Ĉ =
1

N − 1
X̃X̃T . (4)
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If M > N , then Ĉ is a singular matrix and will contain at least M −N eigenvalues equal to 0.
Therefore either C (if M < N) or Ĉ (if M > N) is a singular matrix (unless M = N) with at
least |N −M | eigenvalues equal to 0.

2.2.2 Singular value decomposition

To decompose the (rectangular) expression matrix X̃ into noise and signal, we use singular value
decomposition:

X̃ =

N∑
i=1

γiuiv
T
i .

The vi’s are the right singular vectors of X̃ and correspond to the eigenvectors of the cell-cell
correlation matrix. We will call them cell singular vectors or singular vectors in the following.
The ui’s are the left singular vectors of X̃ and correspond to the eigenvectors of the gene-gene
correlation matrix, which we will call gene singular vectors. The singular values are denoted by
γi. The singular values of X̃ and the eigenvalues of the corresponding correlation matrix have a
known connection given by:

λi = γ2i .

2.3 Random Matrix Theory

The Marchenko-Pastur (MP) distribution is widely used to reveal nonrandom properties of
empirical correlation matrices in physics and finance [11, 12]. The MP distribution describes
the distribution of eigenvalues of a random correlation matrix in the asymptotic limit [17, 18,
35] (for N →∞ and M →∞, N

M < 1). The entries of the random matrix are arbitrary as long
as they are distributed identically and independently. scRNA-seq data are typically modeled
by a Poisson, a negative binomial or a zero-inflated negative binomial distribution, which are in
principle admissible in random matrix theory.

Theorem 1 (Marchenko-Pastur) ([17, 18, 35]) Let Y be a M ×N matrix with entries that
are independent identically distributed (i.i.d.), mean 0 and variance ν2 <∞. The corresponding
Wishart matrix is defined as W = 1

M Y
TY . For N → ∞, M → ∞ and 0 < c < 1, where c is

defined as N
M . The distribution of the eigenvalues λ of W is given by

µ(λ) =

√
(b− λ)(λ− a)

2πcλν2
dλ if a ≤ λ ≤ b

For c > 1 the distribution has an additional number of 0 eigenvalues:

µ(λ) =

√
(b− λ)(λ− a)

2πcλν2
1[a,b] + (1− 1

c
)δ0(λ)

with

a, b = ν2
[
1±
√
c
]2
.

δ0(λ) is the Dirac delta function, which is 1 if λ = 0 and 0 otherwise. For the correlation matrix
we obtain ν = 1 because the mean of all eigenvalues is 1.
This theorem places the eigenvalues of a random correlation matrix into a compact interval
between [a, b]. All eigenvalues of an empirical correlation matrix that fall within this interval
can be considered to be due to random noise. The presence of eigenvalues above this distribution
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indicates the existence of non-random structure in the data. An empirical (measured) correlation
matrix can therefore be decomposed into a random part Cr and a signal part Cs [18]:

C =
∑
λ≤b

λiviv
T
i +

∑
λ>b

λiviv
T
i = Cr + Cs

Cs contains the non-random and therefore biologically relevant correlations.

For the application of the MP distribution to an empirical correlation matrix we need to consider
that the eigenvalues of a correlation matrix always sum up to 1. Thus, if there are eigenvalues
above the MP distribution the bulk of the distribution (which is described by MP) will shift to
the left. To approximately account for this shift, we introduce a modified MP-distribution as
follows:

µ∗(λ) =
µ(λ)

α
,

a∗ = αa, b∗ = αb.

where α = 1− λmax
N and a∗ and b∗ replace a and b respectively.

We can formulate the MP distribution also for singular values, via a variable transform, and
obtain the following density:

dρ(γ) =

√
(b− γ2)(γ2 − a)

πγc
dγ if

√
a ≤ γ ≤

√
b (5)

In this case, all singular values that lie within the compact interval of [
√
a,
√
b] can be consid-

ered to arise from random noise and singular values above this threshold indicate deterministic
biological relevant signal. Thus, we can decompose the matrix X̃ into two parts:

X̃ =
∑
γ≤
√
b

γiuiv
T
i +

∑
γ>
√
b

γiuiv
T
i = X̃r + X̃s (6)

The first part X̃r is random noise, the second part X̃s contains relevant signal.

The MP theorem holds strictly only in the asymptotic limit, but provides a very good approxi-
mation for big enough N and M . For finite dimensions, there is however a non-zero probability
that a random i.i.d matrix has eigenvalues above the MP distribution. That probability is
described by the Tracy-Widom (TW) distribution.

Theorem 2 (Tracy-Widom) ([35]) For empirical correlation matrices of size N ×N of i.i.d.
random variables with a finite fourth moment, the distance between the upper edge of the spectrum
of the MP distribution b and the largest eigenvalue λmax converges towards the Tracy-Widom
distribution

Prob
(
λmax ≤ b+ γN−2/3u

)
= F1(u),

where γ in this case is given by γ =
√
c b2/3.

F1(u) is the TW distribution, the probability distribution of the re-scaled eigenvalues of a ran-
dom Hermitian matrix. We are interested in the type-1 distribution which holds for Gaussian
orthogonal ensembles [14]. The distribution function can not be explicitly stated but relies on
numerical approximations.
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The TW distribution can be formulated, as well, for the singular values via the variable trans-
form:

Prob

(
γmax ≤

√
b+ γN−2/3u

)
= F1(u), (7)

Since we always work with finite matrices in practice, we use the TW distribution to discriminate
between singular values that belong to noise and signal, respectively. Specifically, we use u = 1
as a cutoff, so that F1(1) ≈ 0.95. In other words, there is a probability of 0.05 that a singular

value bigger than
√
b+ γN−2/3 is observed, if the matrix is entirely random. If N is very low,

the MP distribution is not a good approximation anymore. For N < 50, we create an empirical
distribution of noise-related singular values, by permuting the entries of the measured expression
matrix X̃. For each permutation we calculate the singular values and note the largest singular
value. The 95th quantile of the distribution of the largest singular values across permutations is
then taken to be the cutoff between singular values stemming from noise and signal respectively.

To discriminate random from non-random matrix components we can also look at the singular
vectors [13]. Singular vectors that correspond to random components are ”de-localized” and
their elements have the following distribution:

f(ψ) = (1− ψ2)
N−3

2

If N is large, this distribution can be estimated by a Gaussian distribution with mean zero and
variance 1

N .

f(ψ) ∼ N√
2π
e
−Nψ2

2 (8)

In order to distinguish localized from de-localized singular vectors, we can therefore assess the
normality of the singular vectors. In our implementation we use a Shapiro-Wilk test. We assign
singular vectors that obtain a p-value < 0.01 or are associated to singular values far from the
bulk (the highest 50% of signal singular values) to real variability above the MP distribution.

2.4 Perturbation theory

As explained above, we model the observed expression matrix X̃ as a random matrix X per-
turbed by a deterministic signal matrix P . There is an important difference between the per-
turbation matrix P in equation 1 and the matrix X̃s in equation 6. X̃s does contain biologically
relevant information, but is still influenced by the effects of random noise, whereas the matrix P
consists of the pure signal without any added noise. The only case where these two matrices are
identical is when the singular vectors of the noise matrix X and the perturbation matrix P are
linearly independent, which is rarely the case. It is thus not possible to recover the unobserved,
noise-free signal matrix by using those singular vectors that are associated with the highest
singular values.

While it is not possible to reconstruct the signal matrix from measured data, perturbation
theory [16] establishes a simple relationship between the singular value of the observed expres-
sion matrix X̃ and those of the signal matrix P . P is assumed to have finite rank r. Its singular
value decomposition is thus:

P =
r∑
i=1

θiuiv
T
i , where r � N,M

For scRNA-seq data, we only have to consider singular values θi > 0, which means that X̃
potentially has singular values above the MP distribution. Thus, we only need to consider the
largest singular values of X̃.
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Theorem 3 (Largest Singular Value for MP) ([16]) The r largest singular values γi(X̃)
of the M × N perturbed matrix X̃ exhibit the following behaviour as M,N → ∞ and N

M → c:
For each fixed 1 ≤ i ≤ r,

γi(X̃)
a.s.→


√

(1+θ2i )(c+θ2i )
θ2i

if i ≤ r and θi > c1/4,

b otherwise
(9)

Moreover, for each fixed i > r, we have that γi

(
X̃n

)
a.s.−→ b.

This theorem establishes a functional relationship between the largest singular values γi of the
measured expression matrix and the singular values θi of the signal matrix P . Note that if θi is
smaller than or equal to c

1
4 , the corresponding γi will be equal to b, which is the upper limit of

the MP distribution. In other words, if the perturbation (signal) is too small, the singular value
spectrum of the observed expression matrix X̃ will be just the MP distribution and hence, no
meaningful signal can be extracted.

From the above formula we are able to calculate the singular values of the perturbation matrix
P . These are the values that describe the actual variances of the signal matrix without any
contribution of the noise. This is achieved by calculating the inverse function

θi(γi)
a.s.−→


√

2c

γ2i−(c+1)−
√

(γ2i−(c+1))2−4c
if γi > b,

c
1
4 otherwise

(10)

2.4.1 Phiclust

Next, we want to establish how the singular vectors of X̃ depend on the perturbation P . In
section 2.3 it is described that the elements of the singular vectors will follow a Gaussian distribu-
tion for a random matrix and large N . The elements of the singular vectors of the perturbation
P are deterministic and correspond to biological variance. The following theorem describes the
scalar product between the singular vector of the perturbation P and the perturbed matrix X̃.

Theorem 4 (Norm of Projection of Largest Singular Vectors for MP) ([16]) Let ṽ the
right unit singular vectors of X̃. Then, the norm of projection of the right singular vector is
given by

|〈ṽi, vi〉|2
a.s.−→

 1− c(1+θ2i )
θ2i (θ2i+c)

if θi ≥ c1/4

0 otherwise
(11)

This theorem shows the same qualitative behavior as equation 9. If the singular value θi of the
perturbation matrix is below the threshold of c

1
4 , the scalar product is zero, indicating that the

perturbed matrix X̃ has no relationship to the perturbation P . In other words, no relevant
signal can be extracted. In the other limit, when the scalar product goes to 1, the singular
vectors of the perturbation P are perfectly aligned with the singular vectors of the perturbed
matrix X̃. Thus, random noise has a negligible influence on the signal.

The scalar product given by |〈ṽi, vi〉|2 is identical to the squared cosine of the angle between the
vectors:

φclust = cos(α)2 =

(
ṽ · v
‖v‖ ‖ṽ‖

)2

= (ṽ · v)2 = |〈ṽi, vi〉|2.
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This holds because the singular vectors are assumed to have norm 1.

We propose φclust (phiclust) as a measure of clusterability in scRNA-seq data. If, for a given
cluster, there are no values above the MP distribution the signal of the perturbation matrix P
can not be recognized any more and phiclust will be zero. If there are singular values above the
MP distribution, phiclust evaluates how closely related the singular vectors of the expression
matrix X̃ are to those of the perturbation matrix P .
We obtain a value of phiclust for each singular value that can be found above the MP distri-
bution. Each of them indicates the signal-to-noise ratio for the variance that the corresponding
singular vector explains. Thus, the more singular values are above the MP distribution, the
more variances can be found in the data and it can be interpreted as proportional to the number
of clusters. In the definition of phiclust, we have decided to use the maximum of all angles, thus
indicating the maximal clusterability that can be achieved from clustering.

2.4.2 G-phiclust

In accordance with the above definition of phiclust (2.4.1), we can also define the clusterability,
or signal-to-noise ratio, for the gene space. The following theorem describes the equation.

Theorem 5 (Norm of Projection of Largest Singular Vectors for MP) ([16]) Let ũ be
the left unit singular vectors of X̃. Then, the norm of projection of the left singular vector by

|〈ũi, ui〉|2
a.s.−→

 1− (c+θ2i )
θ2i (θ2i+1)

if θi ≥ c1/4

0 otherwise
(12)

For the gene singular vector, φgclust (g-phiclust) indicates how closely the variance among genes
is related to the original variance in the perturbation matrix P . For each singular vector, the
variance-driving genes correspond to those with the highest absolute loading in the corresponding
gene singular vector. Cells with high positive or negative entries in the singular vector have high
expression of genes with large positive or negative entries in the corresponding gene singular
vector, respectively. This relationship is not a replacement for the calculation of differentially
expressed genes, but merely indicates the genes that drive the variance across cells for each
singular vector. Based on the value of g-phiclust, it is possible to evaluate how accurate the
determination of differentially expressed genes will be. With a low signal-to-noise ratio, it is
more likely to obtain genes differentially expressed that can be attributed to noise. As well as
for phiclust, we obtain several angles, one for each singular value above the MP distribution.
Thus, genes driving the variances in gene singular vectors with a higher g-phiclust are more
accurate. We decided, to be consistent, to define g-phiclust as the highest squared cosine of the
angle.

2.4.3 Uncertainty of phiclust

The theory presented above holds as the expected value in the infinite limit, however we do not
know about the variations within the finite limit. To address this, we constructed a confidence
interval for the values of phiclust using the following sampling approach. The basic idea is to
approximate the signal matrix P and add new realizations of the noise matrix by sampling from
a random distribution. The standard deviation is then constructed from the values of phiclust
calculated for this ensemble of sampled matrices.
First, the matrix X̃ is pre-processed as described in section 3.1. By applying the MP distribution,
we then determine the singular values associated with signal and noise. We decompose the
simulated or measured expression matrix X̃ into a noise matrix Xr and a matrix Xs that
contains deterministic structure (see equation 6).
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Then, we estimate the first two moments of Xr, which due to the pre-processing of the measured
expression matrix are equal to a mean of 0 and a standard deviation of 1. It is thus possible,
given the universality property of the MP distribution, to sample a new noise matrix X with
the same two first moments (mean = 0 and variance = 1) from a normal distribution.
To approximate the perturbation matrix, we use the singular values λi of Xs to calculate the
expected singular values θi of the perturbation matrix based on equation 10. We replace the
singular values λi of the matrix Xs with those of the perturbation matrix θi and call it P s.
In this way we have created a perturbation matrix with the expected singular values θi and
unit singular vectors. Note that P s contains noise and is thus different from the signal matrix
P . Luckily, low rank-perturbation theory is independent of the exact distribution of the signal
singular vectors.
Together, we obtain a sample measurement matrix (Step 1):

X̃∗ = X + P s.

We next calculate the values phiclust of X̃∗ (Step 2). By sampling new values for the noise
matrix X several times (∼ 50), and repeating step 1 and 2, we are now able to estimate the
influence of random variations, in finite limits, on the additive perturbation and thus on phiclust.
We can subsequently calculate the upper φupclust and lower φdownclust standard deviation as follows.
Let k be the number of values above the original value φ∗clust and N the total number of sampled
values then

φupclust =

 1

k − 1

∑
φ∗clust≥φclust

(φ∗clust − φclust)2
1/2

(13)

φdownclust =

 1

N − k − 1

∑
φ∗clust<φclust

(φ∗clust − φclust)2
1/2

(14)

are the upper and lower boundaries of the interval.

2.5 Clusterability

2.5.1 Assessing clustering quality

We use two different methods to assess clustering quality, the adjusted rand index (ARI) and
the silhouette coefficient.
Assuming two partitions, A and B, of a set of N cells, the rand index is defined as [20]:

RI(A,B) =
N11 +N00(

N
2

) ,

where N11 is the number of pairs of elements that are in the same cluster in A and in the same
cluster in B. N00 is the number of pairs of elements that are in a different cluster in A and in
a different cluster in B. The rand index takes values between 0 and 1, where 0 indicates the
complete lack of agreement between the partitions and 1 would indicate identical partitions.
Even a random clustering of elements produces a non-zero rand index. The ARI is defined in
such a way, that its value is on average 0 for a pair of partitions with randomly permuted cluster
labels. A positive ARI thus indicates that partitions agree more than expected to happen by
random chance. Let partition A have KA clusters of sizes ai and partition B have KB clusters
of sizes bj , then the adjusted rand index is defined as:

ARI(A,B) =
RI(A,B)− E[RI(A,B)]

1.0− E[RI(A,B)]
=

(
N
2

)∑KAKB
k,m=1

(
nkm
2

)
−
∑KA

m=1

(
ak
2

)∑KB
m=1

(
bm
2

)
1
2

(
N
2

) [∑KA
k=1

(
ak
2

)∑KB
m=1

(
bm
2

)]
−
∑KA

k=1

(
ak
2

)∑KB
m=1

(
bm
2

)
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For synthetic data, we take a high ARI between a clustering and the ground truth partition to
indicate a clustering of high quality.

Another useful measure for clustering quality is the silhouette coefficient. Let a(i) be the mean
distance from point i to all other data points in the same cluster and b(i) be the mean distance
from point i to all other points from different clusters, then the silhouette coefficient is defined
as [8]:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
.

For the calculation of the distance, we consider the euclidean distance metric in the space spanned
by the singular vectors that are associated with singular values above the MP distribution of the
expression matrix X̃ (see 2.3). The final silhouette coefficient is taken as the mean value over
all data points. For the calculation of the silhouette coefficient we use the cluster R package (V
2.1.0).

2.5.2 Theoretically achievable clustering quality

A perfect clustering would coincide with the ground truth and obtain an ARI of 1. Here we
argue that such a perfect clustering is in general not achievable, if there is noise in the data. In
other words there is always a finite Bayes error rate (also called irreducible error) for assigning
cells to the appropriate cluster. To construct a Bayes classifier, which achieves the minimal
error rate, we need to know the ground truth partition. Hence, we use simulated data. For
each ground truth cluster, we fit a multidimensional Gaussian to the elements of the singular
vectors of the expression matrix X̃ that correspond to the cells in the respective cluster (see
Additional file 1: Fig. S3a). We only consider singular vectors with singular values above
the MP distribution. For the fit we use the mclust R package (V 5.4.6). We then construct
a classifier by assigning a cell to the cluster for which it has the highest value of the fitted
Gaussian distribution. This corresponds to the best clustering one can achieve if the ground
truth partition is known. We define the theoretically achievable adjusted rand index (tARI) as
the ARI between this best achievable clustering and the ground truth partition. Similarly, we
define the theoretically achievable silhouette coefficient (tSIL) as the silhouette coefficient of the
best achievable clustering. Since we use the fitted Gaussian distributions instead of the actual
(unknown) distribution of singular vector elements, the constructed classifier only approximates
the Bayes classifier. However, we confirmed empirically, that the tARI defined above is an upper
bound for all tested clustering methods, which comprises the currently most popular tools used
for single-cell RNA-seq data [Additional file 1: Fig. S3 b, c].
The tARI embodies our notion of clusterability. We define high clusterability as a low Bayes
error rate for cluster assignments, which corresponds to a high tARI. We show empirically that
our clusterability measure is a proxy of the tARI and thus a way to assess clusterability without
knowing the ground truth [Fig. 1d].

3 Application to single-cell RNA-seq data

3.1 Preprocessing of scRNA-seq data

In the following the necessary preprocessing steps for the application of the clusterability mea-
sure for scRNA-seq data are described.

Transcriptome Mode
The largest eigenvalue λ1 of an expression matrix is typically much larger than all the other
singular values and its corresponding singular vector has entries of equal sign, which often have
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similar magnitude (of order 1√
N

, which is the ideal value in the perfectly homogeneous case).

This singular vector reflects a general, global trend in the data. This structure has been observed
for many empirical data matrices. (In time series analysis of the stock market, this singular vec-
tor is called the ”market mode” since it corresponds to a trend that is common across many
stocks [18]). Here, we refer to this singular vector as ”transcriptome mode” since it reflects a
trend that is shared across the whole transcriptome (see Additional file 1: Fig. S2 a-d). In
order to reduce the influence of this singular value on the calculation of the MP fit, we center
the expression matrix X̃ gene-wise. As a result, the singular value of the transcriptome mode
will be reduced to a value close to 0.

Normalization
The efficiency of the capture of transcripts and their conversion to cDNA is known to be highly
variable between cells. Hence, single-cell gene expression data is usually normalized cell-wise.
We have tested several normalization methods but none of them seemed sufficient to remove
all technical variability in the data. Thus, in section 3.2 we describe a method to reduce these
effects for our clusterability measure phiclust. Nevertheless, we normalize the expression to the
total counts per cell and subsequently log-transform to stabilize the variance.

Gene distribution
Gene expression is typically modelled by a Poisson, negative binomial or zero inflated negative
binomial distribution. However, the parameters of these distributions differ between genes, this
violates the assumptions of the MP theorem, where all values are sampled from the same distri-
bution. In practice, gene-wise standardization to a mean of 0 and standard deviation of 1 mostly
circumvents this problem. Additionally, we have observed that there is a bias resulting from
variations in cells. These biases are as well reduced by standardising the cells to a mean of 0
and standard deviation of 1 (see Additional file 1: Fig. S2 c,d). This is equivalent to calculating
the eigenvalues and vectors of a correlation matrix instead of a covariance matrix.

Zero inflation
Another factor to be considered is the large amount of zero values in scRNA-seq data. These
zeros might be on the one hand due to technical artefacts (low efficiency, dropout) or simply due
to low, stochastic gene expression. After performing the above mentioned preprocessing steps we
mostly do not observe deviations from the MP distribution. However, this is a known problem
discussed within the framework of sparsity induced singular values. For single cell RNA-seq data
an extensive analysis has been performed in [13], where the authors observe deviations from the
MP distribution caused by sparsity. The authors suggest the exclusion of outlier genes that can
be identified through the fit of the MP distribution. For phiclust we do not use this prepro-
cessing step, however we do exclude genes that have a high expression in only a few number of
cells.

3.2 Regressing out unwanted sources of variability (Confounder Regression)

scRNA-seq data suffers from several sources of technical variability that can obscure or even
be mistaken for relevant biological signal. One of the most important of these is the variable
efficiency of mRNA capture and cDNA conversion. The total number of detected transcripts
per cell is typically taken as a proxy of this efficiency. There are also biological processes that
can cause unwanted signal. Most cells are stressed due to the tissue dissociation necessary for
single-cell library preparation. The percentage of expression coming from mitochondrial genes
or the expression of marker genes for stress can be used to estimate the level of stress. Different
metabolic states of cells might be reflected in the level of ribosomal gene expression and many
genes fluctuate with the cell cycle. Here, we seek to establish a method to remove any effect of
these nuisance variables on the clusterability measure.
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We model the signal matrix P as a sum of relevant signal B and unwanted signal due to nuisance
variables Y . Inspired by published approaches to expression data normalization [22, 25], we
model the influence of Y by linear regression. This is a valid approach because the regression
is performed on the singular vectors of X̃, which contain Gaussian distributed noise. Given the
singular value decomposition of X̃ and singular vectors ṽi,

ṽi = βZ, with β ∈ Rk (15)

where Z ∈ RN×k is a matrix of covariates, such as the total counts per cell, with k the number
of covariates and N the number of cells. Each covariate is normalized to a length of 1 such
that the range agrees with the range of the singular vectors. The amount of variance explained
by the nuisance parameters is then given by the value of the adjusted R squared (R2

adj) of this
linear regression. Since the eigenvalues of the cell-cell correlation matrix can be interpreted as
the amount of variance explained, we reduce the eigenvalues λi by λ̃i = (1−R2

adj)λi. In the next

step, we calculate adjusted singular values by γ̃i =
√
λ̃i and use these adjusted singular values

γ̃i for the consecutive steps in the calculation of the clusterability measure.
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3.3 Algorithm

The procedure to obtain the clusterability measure involves the following steps:

1. Preprocess the single cell expression matrix as described in section 3.1:

(a) Normalization

(b) Log-transformation

(c) Standardization gene-wise

(d) Standardization cell-wise

2. Calculate the singular value decomposition of the gene expression matrix X̃.

3. Fit the MP distribution to the singular values (equation 5).

4. Determine singular values/vectors that correspond to non-random variability using the
Tracy-Widom distribution (equation 7) or the Shapiro-Wilk test (equation 8), respectively.

5. Adjust the singular values for effects of nuisance variables by linear regression (equation
15).

6. Calculate the singular values θi of the signal matrix P using the inverse of equation 9,
given by 10.

7. Calculate the projections of the singular vectors of the expression matrix X̃ on the corre-
sponding singular vector of the signal matrix P with equations 11 for the singular vectors
and 12 for the gene singular vectors.

8. The clusterability measure is the largest of the projections for the singular vectors obtained
in the previous step.
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