Non-covalent interactions and how macromolecules fold

Dr Philip Fowler
First-year Biophysics course

1 Do we understand how proteins fold? Attractive forces (electrostatics).

2 More attractive forces. Repulsive forces. Torsion angles and the Ramachandran plot
$3 \quad$ Hydrogen bonds and water

4 The hydrophobic effect

5 Cooperativity of non-covalent interactions
$6 \quad$ Protein folding and misfolding

Non-covalent interactions and how macromolecules fold

Lecture 1: Do we understand how proteins fold? Attractive forces (electrostatics).

Dr Philip Fowler
Objective: \quad Briefly examine the protein folding problem
First-year Biophysics course

What force do two electrically charged particles experience?

What are the differences between the Coulombic force, the electrostatic potential energy, the electric field and the electrostatic potential?

How do we treat situations where the charges are surrounded by other atoms (a solvent)?
Look at some simple example from proteins

Summary: Proteins fold because they experience simple physical forces.

It is difficult to predict the structure (and therefore function) of a protein from its primary sequence
Electrostatics is the fundamental attractive force between atoms

Coulomb's Law, electrostatic potential energy, the electric field and the electrostatic potential allow us to characterise the interactions between permanent electrical point charges.

The dielectric constant of water is much higher than that of protein or other biological macromolecules

Practicalities

Handouts

The handouts may be slightly different to what is shown in the lectures.
The handouts will be put on WebLearn soon after each lecture both as PDFs and QuickTime movies (the animations and embedded movies will work in the latter). The electronic versions will be in colour.

Lectures

week 7: Tu 10, Th 10
Questions / Suggestions
week 8: M 10, Tu 10, Th 10, Fri 9

```
philip.fowler@bioch.ox.ac.uk
```

M, Tu: Sherrington LTT
Thu, Fri: Zoology LRB
Overlap with previous courses
Biological Chemistry: Structure and Properties of Proteins
Biophysical Chemistry: Quantum Mechanics, Thermodynamics
throughout the lectures I will refer to either scientific papers or the textbooks in case you want to read some more
if there is a only a reference to one of the textbooks it doesn't mean the others don't have anything to say on the subject!

name of journal

year

volume
first page

You can download the papers yourself* or you can look in the Mendeley group I've created.

What is Mendeley?
This is a free cloud-based reference management system. It works in browsers, on PCs, Macs, linux and also on iOS devices like iPhones etc. Once you have a free** account your paper database is automatically synced "with the cloud" on all your devices.

The other way of describing it is: "Facebook for Scientists" (you can even create an account using your Facebook login)
http://www.mendeley.com/groups/1095611/prelim-biophysics-non-covalent-interactions-and-protein-folding/

Or search for me and then look at my groups or search for key words in the group name. You can then "follow" the group or just take the references you want.

* as long as the computer has a University of Oxford IP address. In other words you won't be able to do this at home unless you have setup your computer to use the Oxford VPN. This requires a remote access password which you can generate online and is different to your SSO password. ** up to 500 Mb storage

Live Quizzes

- We will do some live quizzes during the lectures using a website called Socrative (our room will be "biophysics")
- We will do them in small groups, ideally pairs
- You will need a smartphone, tablet or laptop (can connect to webpages) connected to eduroam (using your OUCS Remote Access password) or OWL (using the Oxford VPN). Eduroam is better as once it is setup you don't need to do anything; for OWL you have to turn on the VPN each time.

http://beta.socrative.com
http://www.oucs.ox.ac.uk/network/wireless/services/eduroam/
http://www.oucs.ox.ac.uk/network/wireless/services/owl/

Principles of Physical Biochemistry Structure

Structure in Protein Chemistry

Proteins
Creighton
2nd ed

Physical Chemistry for Biochemists Price, Dwek, Ratcliffe and Wormald 3rd ed

Molecular Driving Forces
Dill and Bromberg
2nd ed

Physical Biology of the Cell
Phillips, Kondev \& Theriot
1st ed

Anfinsen (1957) showed that proteins fold reversibly

Fig. 2. Schematic representation of the reductive denaturation, in $8 M$ urea solution containing 2 -mercaptoethanol, of a disulfide-cross-linked protein. The conversion of the extended, denatured form to a randomly cross-linked, "scrambled" set of isomers is depicted at the lower right.

Christian Anfinsen
Nobel Prize in Chemistry
(1972)

Ribonuclease A
(in the right order - see Lecture 5)

Proteins fold and form compact structures in vivo

Anfinsen's dogma / thermodynamic hypothesis:

"The native conformation is determined by the totality of interatomic interactions and hence by the amino acid sequence, in a given environment."
proteins fold to a unique tertiary structure under physiological conditions
(this is dynamic (moves) (e.g. 'breathes'))

snapshots of this structure (usually at very low temperatures) can be obtained by Xray crystallography

NMR often produces ensembles (collections) of structures that are all consistent with the experimental data

Why is structure important?

...some proteins can misfold causing disease

Taking Anfinsen too far: a common misconception

"How does the amino acid sequence of a protein specify its 3D structure?"
-Stryer, 4th edition, pg 417
"..the information needed to fold a macromolecule into its native 3D structure is contained within its sequence."

-van Holde, 2nd edition, pg 107

These descriptions are misleading...
..don't confuse these two!

Instead:
The primary sequence of a protein is encoded by DNA.

The protein experiences physical forces that cause it to fold into its native state.

The protein folding problem

these lectures: Can we understand the physics that cause proteins to fold and adopt complex,
protein structure prediction: Can we predict the native state (structure) of a protein from its primary sequence?
protein folding problem: Can we predict how a protein folds from its primary sequence into its native state?

The Levinthal paradox

Anfinsen's dogma / "The native conformation is determined by the totality of interatomic thermodynamic hypothesis: interactions and hence by the amino acid sequence, in a given environment."

How does a protein find its native state?
Assume it samples all conformations and chooses the one with the lowest (free) energy

Calculation

If we have a protein with n residues and
...each residue has 2 torsion angles ϕ and ψ
...assume ϕ and ψ can each exist in 1 of in 3 stable conformations

Then the number of conformations is

$$
3^{2 n} \approx 10^{n}
$$

If we have a 100 residue protein and assume it takes 100 fs to convert between each conformation then the protein will fold in

$$
10^{100} \times 10^{-13} \mathrm{~s}=10^{87} \mathrm{~s}=10^{79} \text { years }
$$

This is not possible (most proteins fold in ms - s)

Small differences in sequence can lead to large differences in structure and function

3-a helix fold with albumin-binding epitope
α / β fold with $\lg G$ epitope

both have 56 residues:
49 residues (88%) are identical 7 residues (88%) are different
...the reverse can also be true. Large differences in sequence may only lead to small differences in structure and function.

It is the free energy that determines whether a reaction proceeds*

Gibb's free energy
(i.e. constant temperature and pressure)

* we are ignoring the possibility of a large kinetic barrier here

The fundamental classical* attractive force is electrostatics

[^0]
Simple Electrostatics

since we usually deal with "chemical" charges e.g. we think of Na^{+}as having a charge of +1 when it really each $\mathrm{Na}+$ ion has a charge of $+1 e$

Coulomb's Law assumes point charges

Force on q_{2} due to q_{1} (q_{1} experiences an equal and opposite force)

permittivity of free space

$$
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~m}^{-2} \mathrm{~N}^{-1}\left(\mathrm{~F} \mathrm{~m}^{-1}\right)
$$

$$
F(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2} e^{2}}{r^{2}} \underbrace{}_{\text {elementary charge (C) }}
$$

Sign conventions

Like charges repel

$$
F(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}
$$

$F(r)$ is positive and therefore is directed with r for q_{2}
(remember q_{l} experiences an equal and opposite force and therefore this is directed against r)

Unlike charges attract

$F(r)$ is negative and therefore is directed against r for q_{2}
(remember q_{l} experiences an equal and opposite force and therefore this is directed with r)

Electrostatic potential energy

Consider the change in energy in bringing a charge q_{2} from infinity to a distance r away from q_{l}

we know what the force at each separation r is, but how is the force related to the change in potential energy?

$$
\begin{aligned}
& \Delta U=\int_{\infty}^{r}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} d r \\
& \Delta U=\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}\right]_{\infty}^{r} \\
& \Delta U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}
\end{aligned}
$$

Electrostatic potential energy ... cont

Potential energy of two charges separated by a distance r

$$
\Delta U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}
$$

This is an energy so the units are Joules (J)
For proteins this is usually quoted as $\mathrm{kJ} \mathrm{mol}^{-1}$ or $\mathrm{kcal} \mathrm{mol}^{-1}$ ($1 \mathrm{~kJ}=1000 \mathrm{~J}, 1 \mathrm{cal}=4.18 \mathrm{~J}$)

Like we did earlier we can write it in terms of "chemical" charges. This helps us to remember that we cannot forget the elementary charge, e

$$
\begin{gathered}
\Delta U=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2} e^{2}}{r} \quad \text { where } \quad q_{i}=Q_{i} e \\
F(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \frac{\Delta U=\int_{\infty}^{r}-F d r}{\rightleftarrows F(r)=-\frac{d U}{d r}}
\end{gathered}
$$

Example: a Na^{+}ion and a Cl^{-}ion

$\mathrm{Na}^{+} \mathrm{Cl}$

$$
\Delta U=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2} e^{2}}{r}
$$

$$
F(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2} e^{2}}{r^{2}}
$$

$$
\Delta U=8.988 \times 10^{9} \times \frac{1 \times-1 \times\left(1.6 \times 10^{-19}\right)^{2}}{2.76 \times 10^{-10}}
$$

$$
F=8.988 \times 10^{9} \times \frac{1 \times-1 \times\left(1.6 \times 10^{-19}\right)^{2}}{\left(2.76 \times 10^{-10}\right)^{2}}
$$

$$
\Delta U=-8.34 \times 10^{-19} \mathrm{~J}
$$

$$
F=-3.02 \times 10^{-\mathrm{Q}} \mathrm{~N}
$$

$$
\Delta U=-8.34 \times 10^{-19} \times N_{A} \quad \mathrm{~J} \mathrm{~mol}^{-1}
$$

Avogradro's number

$$
F=-3.02 \mathrm{pN}
$$

$$
\Delta U=-502 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

negative i.e. for q_{2} directed against r i.e. this is attractive
negative therefore preferred

We can calculate the potential energy of and force on two isolated stationary charges

$$
\frac{1}{4 \times \pi \times 8.854 \times 10^{-12}}=8.988 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}
$$

The electrostatic force is a vector

now the force is a vector quantity and so is written $\mathbf{F}(\mathbf{r})$
this is a unit vector (i.e. has length

1) directed along \mathbf{r}

Consider how a small positive charge would move

test charge
(i.e. does not exert a force on q_{1})
arrows indicate how the probe would move

probe would be radially repelled from another positive charge

probe would be radially attracted towards a negative charge

The electric field strength due to q_{l} is the force that would be exerted on a positive test charge if it were placed at \mathbf{r}
since the test charge does not itself

$$
\mathbf{E}=\frac{\mathbf{F}}{q} \quad \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r^{2}} \hat{\mathbf{r}}
$$

exert a force, \mathbf{E} is strictly defined as:

$$
\mathbf{E}=\lim _{q \rightarrow 0} \frac{\mathbf{F}}{q}
$$

units of $\mathrm{N} \mathrm{C}^{-1}$ or $\mathrm{V} \mathrm{m}^{-1}$ (equivalent SI units)

Electric field when $q_{1}=+q$ and $q_{2}=-q$

Since \mathbf{E} is a vector you can add the electric fields due to two separate charges

What would the electric field look like for two charges with the same sign?

What is the work done in moving the test charge to a point \mathbf{A} ?

by analogy with the electrostatic force and the electrostatic potential energy

$\begin{aligned} & \text { if } \quad \mathbf{E}= \frac{\mathbf{F}}{q} \quad \text { then } \Phi=\frac{\Delta U}{q} \\ & \\ & \text { electrostatic potential } \\ & \Phi=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r}\end{aligned}$
units V or $\mathrm{J} \mathrm{C}^{-1}$ (equivalent SI units)
the electrostatic potential is the work done that would be
 done in bringing a test charge from infinity to a distance r away from a charge q_{1}
positions at which the positive test charge
has the same energy (electric potential)

How are all these quantities related?

electrostatic force

$$
\left.\mathbf{F}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \quad \text { (units } \mathrm{N}\right)
$$

the electrostatic force on q_{2} due to q_{1}
a vector but can also write as a scalar since we know the direction the force is pointing

$$
\left.F(r)=-\frac{d U}{d r} \right\rvert\, \quad \Delta U=\int_{\infty}^{r}-F d r
$$

electrostatic potential energy

$$
\left.\Delta U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} \quad \text { (units } \mathrm{J} \text { or } \mathrm{N} \mathrm{~m}^{-1}\right)
$$

the work done in moving charge q_{2} from infinity to be a distance r away from charge q_{l}
electric field strength

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} \quad\left(\text { units } \mathrm{N}^{-1} \text { or } \mathrm{V} \mathrm{~m}^{-1}\right)
$$

the electrostatic force a test charge would feel due to q_{l}

How is the electric field strength related to the electrostatic potential?
electrostatic potential

$$
\left.\Phi=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r} \quad \text { (units } \mathrm{J} \mathrm{C}^{-1} \text { or } \mathrm{V}\right)
$$

Multiple charges

It is much easier to calculate the electrostatic potential energy at any point in space than to calculate the electrostatic forces due to each charge and then adding them vectorially.

To calculate the total potential energy we add the potential energies for each pair of interactions:

$$
\Delta U=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{2} q_{3}}{r_{23}}+\frac{q_{1} q_{3}}{r_{13}}\right]
$$

For N electrical charges:

$$
\Delta U=\sum_{i=1}^{N} \sum_{j<i} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{i} q_{j}}{r_{i j}}
$$

sum over all charges $\mathrm{i}=1$... N

Dielectrics

the slightly negatively charged oxygens point towards the positive charge

water molecules themselves feel forces due to the two charges and as a result align between the two charges this has the net effect of reducing the Coulombic force that q_{2} experiences due to q_{1}

How much it is reduced depends on two factors:

1. How easily can an applied electric field induce a separation of charge in the molecules of the medium (induction effect)
2. How easily can the molecules of the medium move to minimise the electrostatic force they experience? (orientation effect)

Dielectrics

The dielectric constant

Options:

1. Calculate the forces between ALL molecules (microscopic approach)

This is difficult since there are many waters and they also move in response to the force so you would have to iterate the calculation and take an average
2. Introduce a dimensionless factor that takes into account the behaviour of the medium in which the charges exist (macroscopic approach)

$$
F(r)=-\frac{1}{4 \pi \varepsilon \varepsilon_{0}} \frac{q^{2}}{r^{2}}
$$

For a vacuum $\varepsilon=1$

For everything else $\varepsilon>1$
i.e. all media reduce the electrostatic forces and
ε is the dielectric constant of the medium (it has no units)
electrostatic interaction energies

Typical values of dielectric constants

Reducing all the forces between the charges and the medium (e.g. the individual waters) to a dielectric constant assumes that:
the medium is homogenous
the electric charges are embedded deep within the medium

$$
F(r)=\frac{1}{4 \pi \varepsilon \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}
$$

the charges are far apart

The large difference in the dielectric constants between the interior of a protein, a lipid bilayer and in water is very important for the behaviour of proteins and other biological macromolecules

The peptide bond

the peptide bond is planar
we can represent the atoms as having partial charges
as a first approximation these are $\sim \pm 0.4 e$

Example

$$
\begin{aligned}
\Delta U & =\frac{1}{4 \pi \varepsilon \varepsilon_{0}}\left(\frac{q_{H} q_{O}}{r_{H O}}+\frac{q_{H} q_{C}}{r_{H C}}+\frac{q_{N} q_{O}}{r_{N O}}+\frac{q_{N} q_{C}}{r_{N C}}\right) \\
\Delta U & =-10.4 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

$$
\Delta U=-6.2 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(we have assumed $\varepsilon=1$)

How do you think this would vary if the $\mathrm{C}=\mathrm{O}$ group were tilted by an angle θ ?
even though the net electrical changes is zero, there is still a net interaction between the two groups

Notice how the magnitudes of the interactions between each pair is large but when added together almost cancel one another out. e.g.

$$
\Delta U_{H O}=-47.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Lecture 1: Summary

Proteins fold because they experience simple physical forces.

extended or unfolded structure

It is difficult to predict the structure (and therefore function) of a protein from its primary sequence

Coulomb's Law, electrostatic potential energy, the electric field and the electrostatic potential allow us to characterise the interactions between permanent electrical point charges.

The dielectric constant of water is much higher than that of protein or other biological macromolecules

[^0]: * i.e. none of the descriptions we shall use involve quantum mechanics

