# **Online Supplemental Material**

Article title: Side by side? Vascular plant, invertebrate and microorganism distribution patterns along an alpine to nival elevation gradient

Manuela Winkler, Paul Illmer, Pascal Querner, Barbara M. Fischer, Katrin Hofmann, Andrea Lamprecht, Nadine Praeg, Johannes Schied, Klaus Steinbauer, Harald Pauli

Correspondence: Harald Pauli

GLORIA Coordination, Austrian Academy of Sciences, Institute for Interdisciplinary Mountain Research & University of Natural Resources and Life Sciences Vienna. Center for Global Change and Sustainability, Silbergasse 30/3, 1190 Vienna, Austria. Email: harald.pauli@oeaw.ac.at, tel.: +431476599140

Article acceptance date: 4 April 2018

### Contents

#### **Supplemental figures**

| Fig. S1 Correlation between thermic vegetation indicator and temperature sum                                                            | 2        |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|
| Fig. S2 Pairplot of correlations between elevation and ecological variables                                                             | 3        |
| Fig. S3 (a to h) Abundance of vascular plants along elevational and ecological gradients                                                | 4        |
| Fig. S4 (a to f) Abundance of animal and microbial group compared to vascular plant abundance along ecological soil parameter gradients | 5        |
| Fig. S5 (a to h) Diversity of vascular plants along elevational and ecological gradients                                                | 12       |
| Fig. S6 (a to f) Diversity of animal groups compared to vascular plant species richness along ecologic soil parameter gradients         | al<br>13 |

#### **Supplemental tables**

| <b>Table S1</b> Raw data of (a) species richness (b) abundance and (c) species lists of plant and arthropodgroups along the elevational gradient                                                         | 15 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Table S2</b> (a to h) Predictors of generalized linear (mixed-effects) models comparing patterns ofabundance of plant, animal and microbial groups along elevational and ecological gradients         | 28 |
| <b>Table S3</b> (a to h) Predictors of generalized linear (mixed-effects) models comparing patterns ofdiversity of plant and animal groups along elevational and ecological gradients                    | 33 |
| <b>Table S4</b> (a to b) Predictors of linear (mixed-effects) models comparing patterns of Shannon indicesof plant and animal groups along the elevational and the thermic vegetation indicator gradient | 36 |
| References                                                                                                                                                                                               | 36 |

### **Supplemental figures**



**Fig. S1** Correlation between thermic vegetation indicator and temperature sum on Mount Schrankogel. The thermic indicator per plot was calculated as the mean altitudinal rank (1 = subnivalnival, 2 = alpine-subnival, 3 = alpine, 4 = treeline-alpine species) weighted with the respective species' cover (after Gottfried et al. 2012). The shown thermic vegetation indicator values are means from five plots in the vicinity of each logger. Temperature sums represent annual mean values of hourly measurements from soil temperature loggers (n=6) summed up above a threshold of 3 °C in the period 01.08.2013 – 31.07.2014. The correlation was significant (linear model; p =0.003; R<sup>2</sup> =0.915).



**Fig. S2** Pairplot of correlations between elevation and ecological variables thermic vegetation indicator (T), soil moisture indicator (F), maximum water holding capacity (W), organic matter (O), C content (C), and N content (N). In the upper panel R<sup>2</sup> of Spearman correlations and in the lower panel scatterplots with a Lowess smooth are shown.



**Fig. S3**: Abundance of vascular plants along the (**a**) elevational, (**b**) thermic vegetation indicator, (**c**) soil moisture Landolt indicator value, (**d**) maximum water holding capacity, (**e**) soil organic matter content, (**f**) soil C content, (**g**) soil N content, and (**h**) soil pH gradient. Values are means ± standard error of raw data.

Fig. S4 Abundance of animal and microbial group compared to vascular plant abundance along the

- (a) soil moisture Landolt indicator value,
- (b) maximum water holding capacity,
- (c) soil organic matter content,
- (d) soil C content,
- (e) soil N content, and
- (f) soil pH gradients.

Values are means ± standard error of raw data. Vascular plant abundance (percent cover) is illustrated in each subplot in grey. Significant deviations of the abundance patterns of animal and microbial groups from that of plants are indicated with asterisks (significance levels: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001; penalized quasi-likelihood models with a Poisson distribution; main text, Table 2).







Fig. S4b



Fig. S4c















**Fig. S5** Diversity of vascular plants along the (**a**) elevational, (**b**) thermic vegetation indicator, (**c**) soil moisture Landolt indicator value, (**d**) maximum water holding capacity, (**e**) soil organic matter content, (**f**) soil C content, (**g**) soil N content, and (**h**) soil pH gradient. Values are means ± standard error of raw data.



**Fig. S6a-d** Diversity of animal groups compared to vascular plant species richness along the (**a**) soil moisture Landolt indicator value, (**b**) maximum water holding capacity, (**c**) soil organic matter content, and (**d**) soil C content gradients. Values are means ± standard error of raw data. Vascular plant species richness is illustrated in each subplot in grey. Significant deviations of the diversity patterns of animal groups from that of plants are indicated with asterisks (significance levels: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001; penalized quasi-likelihood models with a Poisson distribution; main text, Table 3).



**Fig. S6e,f** Diversity of animal groups compared to vascular plant species richness along the (**e**) soil N content and (**f**) soil pH gradients. Values are means ± standard error of raw data. Vascular plant species richness is illustrated in each subplot in grey. Significant deviations of the diversity patterns of animal groups from that of plants are indicated with asterisks (significance levels: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001; penalized quasi-likelihood models with a Poisson distribution; main text, Table 3).

## Supplemental tables

**Table S1** Raw data of (**a**) species richness (**b**) abundance and (c) species list of vascular plants (abundance measure = plant cover in %), beetles, spiders, springtails on the surface, springtails in the soil, oribatid mites (abundance measure for arthropods = number of individuals), bacteria, archaea and Methanocella (abundance measure for prokaryota = number of 16S rRNA copies; species richness not available) along an altitudinal gradient (2700-3400 m) on Mt. Schrankogel, Tyrol, Austria.

| (Table S1a) |           | Species richness |          |          |          |          |          |          |  |  |  |
|-------------|-----------|------------------|----------|----------|----------|----------|----------|----------|--|--|--|
| Group       | Elevation | Sample 1         | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7 |  |  |  |
| Plants      | 2700      | 23               | 29       | 12       | 14       | 10       | n.a.     | n.a.     |  |  |  |
|             | 2800      | 20               | 17       | 18       | 22       | 26       | n.a.     | n.a.     |  |  |  |
|             | 2900      | 18               | 14       | 13       | 18       | 15       | n.a.     | n.a.     |  |  |  |
|             | 3000      | 17               | 18       | 14       | 13       | 14       | n.a.     | n.a.     |  |  |  |
|             | 3100      | 10               | 6        | 8        | 3        | 2        | n.a.     | n.a.     |  |  |  |
|             | 3200      | 5                | 2        | 0        | 1        | 0        | n.a.     | n.a.     |  |  |  |
|             | 3300      | 2                | 3        | 1        | 2        | 2        | n.a.     | n.a.     |  |  |  |
|             | 3400      | 1                | 1        | 1        | 1        | 1        | n.a.     | n.a.     |  |  |  |
| Beetles     | 2700      | 0                | 4        | 5        | 4        | 3        | 2        | 5        |  |  |  |
|             | 2800      | 6                | 2        | 2        | 8        | 7        | 5        | 10       |  |  |  |
|             | 2900      | 2                | 1        | 2        | 2        | 1        | 5        | 1        |  |  |  |
|             | 3000      | 3                | 4        | 0        | 3        | 3        | 0        | n.a.     |  |  |  |
|             | 3100      | 0                | 1        | 0        | 1        | 1        | n.a.     | n.a.     |  |  |  |
|             | 3200      | 0                | 1        | 0        | 1        | 0        | 0        | 0        |  |  |  |
|             | 3300      | 0                | 1        | 0        | 0        | 0        | 1        | 0        |  |  |  |
|             | 3400      | 0                | 0        | 0        | 0        | 0        | 0        | 0        |  |  |  |
| Spiders     | 2700      | 3                | 4        | 5        | 6        | 6        | 4        | 4        |  |  |  |
|             | 2800      | 5                | 2        | 2        | 5        | 5        | 4        | 3        |  |  |  |
|             | 2900      | 2                | 3        | 5        | 3        | 5        | 8        | 5        |  |  |  |
|             | 3000      | 2                | 2        | 1        | 2        | 4        | 4        | n.a.     |  |  |  |
|             | 3100      | 1                | 1        | 1        | 0        | 0        | n.a.     | n.a.     |  |  |  |
|             | 3200      | 0                | 1        | 3        | 1        | 0        | 1        | 0        |  |  |  |
|             | 3300      | 0                | 0        | 0        | 1        | 0        | 2        | 1        |  |  |  |
|             | 3400      | 0                | 1        | 1        | 1        | 1        | 0        | 0        |  |  |  |

| (Table S1a) cont.   |           | Species richness |          |          |          |          |          |          |  |  |  |  |
|---------------------|-----------|------------------|----------|----------|----------|----------|----------|----------|--|--|--|--|
| Group               | Elevation | Sample 1         | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7 |  |  |  |  |
| Springtails surface | 2700      | 6                | 6        | 7        | 8        | 6        | 5        | 6        |  |  |  |  |
|                     | 2800      | 8                | 8        | 7        | 8        | 4        | 5        | 7        |  |  |  |  |
|                     | 2900      | 9                | 7        | 10       | 8        | 9        | 7        | 5        |  |  |  |  |
|                     | 3000      | 7                | 6        | 7        | 6        | 8        | 7        | n.a.     |  |  |  |  |
|                     | 3100      | 9                | 8        | 9        | 7        | 10       | n.a.     | n.a.     |  |  |  |  |
|                     | 3200      | 7                | 7        | 5        | 5        | 5        | 6        | 6        |  |  |  |  |
|                     | 3300      | 6                | 3        | 5        | 5        | 4        | 5        | 6        |  |  |  |  |
|                     | 3400      | 7                | 7        | 8        | 7        | 5        | 6        | 6        |  |  |  |  |
| Springtails soil    | 2700      | 2                | 4        | 7        | 5        | 3        | 3        | 2        |  |  |  |  |
|                     | 2800      | 2                | 2        | 2        | 2        | 3        | 3        | 2        |  |  |  |  |
|                     | 2900      | 2                | 2        | 4        | 3        | 3        | 3        | 2        |  |  |  |  |
|                     | 3000      | 3                | 4        | 4        | 3        | 3        | 3        | 5        |  |  |  |  |
|                     | 3100      | 6                | 3        | 6        | 2        | 2        | 5        | 4        |  |  |  |  |
|                     | 3200      | 1                | 3        | 1        | 4        | 5        | 5        | 4        |  |  |  |  |
|                     | 3300      | 4                | 6        | 3        | 5        | 2        | 5        | 5        |  |  |  |  |
|                     | 3400      | 3                | 2        | 3        | 2        | 3        | 2        | n.a.     |  |  |  |  |
| Oribatid mites      | 2700      | 12               | 14       | 8        | 6        | 7        | 6        | 9        |  |  |  |  |
|                     | 2800      | 4                | 1        | 4        | 8        | 3        | 10       | 6        |  |  |  |  |
|                     | 2900      | 5                | 4        | 9        | 5        | 11       | 13       | 9        |  |  |  |  |
|                     | 3000      | 11               | 6        | 7        | 6        | 6        | 2        | 5        |  |  |  |  |
|                     | 3100      | 10               | 10       | 9        | 8        | 9        | 5        | 4        |  |  |  |  |
|                     | 3200      | 0                | 0        | 0        | 1        | 1        | 1        | 0        |  |  |  |  |
|                     | 3300      | 0                | 0        | 1        | 2        | 0        | 1        | 0        |  |  |  |  |
|                     | 3400      | 0                | 0        | 0        | 0        | 1        | 0        | n.a.     |  |  |  |  |

| (Table S1b) |           |          |          |          | Abundance |          |          |          |
|-------------|-----------|----------|----------|----------|-----------|----------|----------|----------|
| Group       | Elevation | Sample 1 | Sample 2 | Sample 3 | Sample 4  | Sample 5 | Sample 6 | Sample 7 |
| Plants      | 2700      | 82.9     | 80.6     | 50       | 53        | 50       | n.a.     | n.a.     |
|             | 2800      | 81       | 64       | 71.2     | 68.4      | 36.9     | n.a.     | n.a.     |
|             | 2900      | 30       | 50       | 67       | 50        | 64       | n.a.     | n.a.     |
|             | 3000      | 10       | 23       | 61       | 55        | 60       | n.a.     | n.a.     |
|             | 3100      | 11       | 4.5      | 34       | 15        | 1.7      | n.a.     | n.a.     |
|             | 3200      | 2.8      | 1.1      | 0        | 0.005     | 0        | n.a.     | n.a.     |
|             | 3300      | 0.6      | 0.7      | 0.25     | 0         | 1        | n.a.     | n.a.     |
|             | 3400      | 1.18     | 1        | 0.3      | 0.8       | 1.8      | n.a.     | n.a.     |
| Beetles     | 2700      | 0        | 5        | 7        | 5         | 4        | 2        | 10       |
|             | 2800      | 32       | 3        | 2        | 10        | 11       | 11       | 25       |
|             | 2900      | 9        | 2        | 6        | 8         | 4        | 9        | 2        |
|             | 3000      | 3        | 5        | 0        | 15        | 17       | 0        | n.a.     |
|             | 3100      | 0        | 2        | 0        | 1         | 1        | n.a.     | n.a.     |
|             | 3200      | 0        | 1        | 0        | 1         | 0        | 0        | 0        |
|             | 3300      | 0        | 3        | 0        | 0         | 0        | 1        | 0        |
|             | 3400      | 0        | 0        | 0        | 0         | 0        | 0        | 0        |
| Spiders     | 2700      | 3        | 6        | 7        | 14        | 9        | 7        | 5        |
|             | 2800      | 17       | 5        | 2        | 6         | 6        | 11       | 8        |
|             | 2900      | 4        | 4        | 10       | 5         | 7        | 13       | 7        |
|             | 3000      | 3        | 5        | 1        | 2         | 7        | 5        | n.a.     |
|             | 3100      | 1        | 1        | 1        | 0         | 0        | n.a.     | n.a.     |
|             | 3200      | 0        | 1        | 3        | 1         | 0        | 1        | 0        |
|             | 3300      | 0        | 0        | 0        | 1         | 0        | 2        | 2        |
|             | 3400      | 0        | 1        | 1        | 1         | 1        | 0        | 0        |

| (Table S1b) cont.   |           |          |          |          | Abundance |          |          |          |
|---------------------|-----------|----------|----------|----------|-----------|----------|----------|----------|
| Group               | Elevation | Sample 1 | Sample 2 | Sample 3 | Sample 4  | Sample 5 | Sample 6 | Sample 7 |
| Springtails surface | 2700      | 96       | 143      | 123      | 140       | 81       | 74       | 176      |
|                     | 2800      | 25       | 204      | 51       | 289       | 207      | 297      | 473      |
|                     | 2900      | 73       | 159      | 408      | 1150      | 125      | 69       | 19       |
|                     | 3000      | 70       | 306      | 161      | 101       | 1140     | 64       | n.a.     |
|                     | 3100      | 416      | 509      | 501      | 208       | 308      | n.a.     | n.a.     |
|                     | 3200      | 103      | 65       | 29       | 85 85     |          | 49       | 71       |
|                     | 3300      | 44       | 27       | 25       | 68        | 36       | 80       | 61       |
|                     | 3400      | 38       | 28       | 56       | 66        | 38       | 64       | 27       |
| Springtails soil    | 2700      | 45       | 47       | 75       | 216       | 8        | 21       | 66       |
|                     | 2800      | 16       | 3        | 65       | 201       | 5        | 52       | 11       |
|                     | 2900      | 12       | 6        | 101      | 158       | 332      | 12       | 3        |
|                     | 3000      | 10       | 13       | 135      | 463       | 405      | 28       | 193      |
|                     | 3100      | 649      | 911      | 893      | 46        | 7        | 1628     | 819      |
|                     | 3200      | 6        | 14       | 1        | 73        | 73 1359  |          | 19       |
|                     | 3300      | 117      | 32       | 90       | 1462      | 203      | 301      | 1135     |
|                     | 3400      | 161      | 4        | 18       | 7         | 10       | 13       | n.a.     |
| Oribatid mites      | 2700      | 77       | 84       | 36       | 44        | 26       | 30       | 37       |
|                     | 2800      | 14       | 2        | 5        | 54        | 4        | 40       | 29       |
|                     | 2900      | 19       | 14       | 50       | 33        | 94       | 86       | 21       |
|                     | 3000      | 206      | 37       | 39       | 67        | 22       | 4        | 41       |
|                     | 3100      | 113      | 47       | 186      | 159       | 307      | 88       | 26       |
|                     | 3200      | 0        | 0        | 0        | 16        | 1        | 1        | 0        |
|                     | 3300      | 0        | 0        | 2        | 2 2 0 38  |          | 384      | 0        |
|                     | 3400      | 0        | 0        | 0        | 0         | 1        | 0        | n.a.     |

| (Table S1b) cont. |           |          |          |          | Abundance |          |          |          |
|-------------------|-----------|----------|----------|----------|-----------|----------|----------|----------|
| Group             | Elevation | Sample 1 | Sample 2 | Sample 3 | Sample 4  | Sample 5 | Sample 6 | Sample 7 |
| Bacteria          | 2700      | 7.40E+09 | 7.90E+09 | 9.00E+09 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 2800      | 7.50E+09 | 3.10E+09 | 1.00E+10 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 2900      | 1.20E+10 | 5.50E+09 | 6.90E+09 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3000      | 3.10E+09 | 4.90E+09 | 3.50E+09 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3100      | 3.30E+09 | 6.90E+09 | 4.60E+09 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3200      | 1.50E+09 | 7.70E+08 | 8.00E+08 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3300      | 6.50E+08 | 1.50E+09 | 1.90E+09 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3400      | 3.20E+09 | 2.20E+08 | 8.90E+09 | n.a.      | n.a.     | n.a.     | n.a.     |
| Archaea           | 2700      | 4.50E+08 | 2.20E+08 | 8.70E+08 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 2800      | 9.40E+08 | 2.60E+08 | 1.90E+09 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 2900      | 6.10E+08 | 3.60E+08 | 9.10E+08 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3000      | 7.50E+07 | 5.40E+08 | 2.80E+08 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3100      | 1.00E+08 | 3.40E+08 | 4.80E+08 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3200      | 1.10E+07 | 5.30E+06 | 2.30E+07 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3300      | 6.40E+06 | 6.40E+06 | 6.00E+06 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3400      | 2.30E+07 | 6.20E+05 | 2.10E+03 | n.a.      | n.a.     | n.a.     | n.a.     |
| Methanocella      | 2700      | 2.30E+06 | 1.30E+06 | 4.30E+06 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 2800      | 3.70E+06 | 1.20E+06 | 1.20E+07 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 2900      | 2.30E+06 | 1.60E+06 | 8.90E+05 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3000      | 1.50E+05 | 1.80E+05 | 2.10E+05 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3100      | 6.80E+04 | 5.00E+05 | 9.10E+05 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3200      | 3.60E+04 | 1.60E+04 | 1.30E+04 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3300      | 1.40E+04 | 4.40E+04 | 3.80E+04 | n.a.      | n.a.     | n.a.     | n.a.     |
|                   | 3400      | 1.10E+05 | 2.10E+04 | 1.90E+05 | n.a.      | n.a.     | n.a.     | n.a.     |

|                 |                 |                                                        |      |      |      | Eleva | ation |      |      |      |
|-----------------|-----------------|--------------------------------------------------------|------|------|------|-------|-------|------|------|------|
| Group           | Family          | Species                                                | 2700 | 2800 | 2900 | 3000  | 3100  | 3200 | 3300 | 3400 |
| Vascular plants | Apiaceae        | Ligusticum mutellina (L.) Crantz                       | х    | х    |      |       |       |      |      |      |
|                 | Asteraceae      | Erigeron uniflorus L.                                  |      |      |      | х     | х     |      |      |      |
|                 | Asteraceae      | Gnaphalium supinum L.                                  | Х    | Х    | х    | х     | х     |      |      |      |
|                 | Asteraceae      | Hieracium alpinum L.                                   | х    |      |      |       |       |      |      |      |
|                 | Asteraceae      | Hieracium sp.                                          | х    |      |      |       |       |      |      |      |
|                 | Asteraceae      | Homogyne alpina (L.) Cass.                             | х    |      |      |       |       |      |      |      |
|                 | Asteraceae      | Leucanthemopsis alpina (L.) Heywood s.str.             | х    | х    | х    | х     | х     |      | х    |      |
|                 | Asteraceae      | Scorzoneroides helvetica (Mérat) Holub                 | х    | х    |      |       |       |      |      |      |
|                 | Asteraceae      | Senecio carniolicus Willd. s.lat.                      |      | х    |      |       |       |      |      |      |
|                 | Brassicaceae    | Cardamine resedifolia L.                               |      |      |      | х     |       |      |      |      |
|                 | Campanulaceae   | Campanula barbata L.                                   | х    | х    |      |       |       |      |      |      |
|                 | Campanulaceae   | Campanula scheuchzeri Vill.                            | х    | х    |      |       |       |      |      |      |
|                 | Campanulaceae   | Phyteuma hemisphaericum L.                             | х    | Х    | х    |       |       |      |      |      |
|                 | Caryophyllaceae | Cerastium uniflorum Clairv.                            |      |      | х    | х     | х     | х    |      |      |
|                 | Caryophyllaceae | Minuartia sedoides (L.) Hiern                          | х    |      | х    | х     |       |      |      |      |
|                 | Caryophyllaceae | Sagina saginoides (L.) H.Karst. s.str.                 |      |      |      | х     |       |      |      |      |
|                 | Caryophyllaceae | Silene acaulis (L.) Jacq. subsp. exscapa (All.) Br-Bl. | х    |      | х    | х     | х     |      |      |      |
|                 | Crassulaceae    | Sedum alpestre Vill.                                   |      |      | х    | х     |       |      |      |      |
|                 | Crassulaceae    | Sempervivum montanum L.                                |      | х    |      |       |       |      |      |      |
|                 | Cyperaceae      | Carex curvula All. s.str.                              | х    | х    | х    |       |       |      |      |      |
|                 | Cyperaceae      | Carex sempervirens Vill.                               | х    |      |      |       |       |      |      |      |
|                 | Ericaceae       | Loiseleuria procumbens (L.) Desv.                      | х    |      |      |       |       |      |      |      |
|                 | Fabaceae        | Lotus corniculatus L. var. alpicola Beck               | х    |      |      |       |       |      |      |      |
|                 | Gentianaceae    | Gentiana acaulis L.                                    | х    |      |      |       |       |      |      |      |
|                 | Gentianaceae    | Gentiana bavarica L.                                   |      |      |      | х     |       |      |      |      |
|                 | Gentianaceae    | Gentiana verna L. s.str.                               |      | х    |      |       |       |      |      |      |

**Table S1c** Species list of vascular plants, beetles, spiders, springtails and oribatid mites and occurrence over the elevation gradient 2007-3400 m asl.

| S1c (cont.)     |                |                                             |      |      |      |      |      |      |      |      |
|-----------------|----------------|---------------------------------------------|------|------|------|------|------|------|------|------|
| Group           | Family         | Species                                     | 2700 | 2800 | 2900 | 3000 | 3100 | 3200 | 3300 | 3400 |
| Vascular plants | Juncaceae      | Juncus trifidus L. s.str.                   |      | Х    |      |      |      |      |      |      |
| (cont.)         | Juncaceae      | Luzula alpinopilosa (Chaix) Breistr. s.str. |      | х    |      |      |      |      |      |      |
|                 | Juncaceae      | Luzula lutea (All.) DC.                     |      | х    |      |      |      |      |      |      |
|                 | Juncaceae      | Luzula multiflora (Retz.) Lej.              | х    | х    |      |      |      |      |      |      |
|                 | Juncaceae      | Luzula spicata (L.) DC.                     | х    |      | х    | х    | х    |      |      |      |
|                 | Orobanchaceae  | Euphrasia minima Jacq. ex DC. s.str.        | х    | х    | Х    | х    | х    |      |      |      |
|                 | Orobanchaceae  | Pedicularis aspleniifolia Flörke ex Willd.  |      |      | х    |      |      |      |      |      |
|                 | Orobanchaceae  | Pedicularis kerneri Dalla Torre             |      |      |      | х    |      |      |      |      |
|                 | Plantaginaceae | Linaria alpina (L.) Mill.                   |      |      |      | х    |      |      |      |      |
|                 | Plantaginaceae | Veronica alpina L.                          |      | Х    |      | х    |      |      |      |      |
|                 | Plantaginaceae | Veronica bellidioides L.                    | х    | Х    | х    |      |      |      |      |      |
| F               | Poaceae        | Agrostis agrostiflora (Beck) Rauschert      | х    | х    |      |      |      |      |      |      |
|                 | Poaceae        | Agrostis alpina Scop.                       | х    | х    |      |      |      |      |      |      |
|                 | Poaceae        | Agrostis rupestris All.                     | х    | х    |      |      |      |      |      |      |
|                 | Poaceae        | Anthoxanthum alpinum Schur                  | х    | х    | х    |      |      |      |      |      |
|                 | Poaceae        | Avenula versicolor (Vill.) M.Laínz s.str.   | х    | х    | х    |      |      |      |      |      |
|                 | Poaceae        | Deschampsia cespitosa (L.) P.Beauv. s.str.  | х    |      |      |      |      |      |      |      |
|                 | Poaceae        | Festuca halleri All. s.str.                 | х    | Х    |      |      |      | Х    |      |      |
|                 | Poaceae        | Festuca intercedens (Hack.) Lüdi ex Bech.   | х    |      | Х    | х    | х    |      |      |      |
|                 | Poaceae        | Festuca melanopsis Foggi, Rossi & Signorini | х    |      |      |      |      |      |      |      |
|                 | Poaceae        | Nardus stricta L.                           | х    |      |      |      |      |      |      |      |
|                 | Poaceae        | Oreochloa disticha (Wulfen) Link            | х    | х    | х    |      |      |      |      |      |
|                 | Poaceae        | Poa alpina L.                               | х    | х    | х    | х    |      |      |      |      |
|                 | Poaceae        | Poa laxa Haenke                             | х    |      | х    | х    | х    | х    | х    |      |
|                 | Poaceae        | Trisetum spicatum (L.)K.Richter s.str.      |      |      | х    | х    |      |      |      |      |
|                 | Polygonaceae   | Persicaria vivipara (L.) Ronse Decr.        | х    | х    |      |      |      |      |      |      |
|                 | Primulaceae    | Androsace alpina (L.) Lam.                  |      |      |      | х    | х    |      |      |      |
|                 | Primulaceae    | Androsace obtusifolia All.                  |      | х    |      |      |      |      |      |      |

| S1c (cont.)     |               |                                          |      |      |      |      |      |      |      |      |
|-----------------|---------------|------------------------------------------|------|------|------|------|------|------|------|------|
| Group           | Family        | Species                                  | 2700 | 2800 | 2900 | 3000 | 3100 | 3200 | 3300 | 3400 |
| Vascular plants | Primulaceae   | Primula glutinosa Wulfen                 | х    |      | Х    |      |      |      |      |      |
| (cont.)         | Primulaceae   | Primula hirsuta All.                     |      | х    |      |      |      |      |      |      |
|                 | Primulaceae   | Primula minima L.                        | х    |      |      |      |      |      |      |      |
|                 | Primulaceae   | Soldanella pusilla Baumg.                |      | х    |      |      |      |      |      |      |
|                 | Ranunculaceae | Ranunculus glacialis L.                  |      |      | х    | х    | х    | х    | х    | х    |
|                 | Ranunculaceae | Ranunculus grenieranus Jord.             | х    |      |      |      |      |      |      |      |
|                 | Rosaceae      | Alchemilla vulgaris agg.                 | х    |      |      |      |      |      |      |      |
|                 | Rosaceae      | Geum montanum L.                         | х    | х    | х    |      |      |      |      |      |
|                 | Rosaceae      | Potentilla aurea L. s.str.               | х    | х    | х    |      |      |      |      |      |
|                 | Rosaceae      | Sibbaldia procumbens L.                  | х    |      | х    | х    |      |      |      |      |
|                 | Salicaceae    | Salix herbacea L.                        | х    | х    |      |      |      |      |      |      |
|                 | Salicaceae    | Salix serpillifolia Scop.                |      | х    |      |      |      |      |      |      |
|                 | Saxifragaceae | Saxifraga androsacea L.                  |      |      |      | х    |      |      |      |      |
|                 | Saxifragaceae | Saxifraga bryoides L.                    | х    |      | х    | х    | х    | Х    |      |      |
|                 | Saxifragaceae | Saxifraga exarata Vill. s.str.           |      |      |      |      | х    |      |      |      |
|                 | Saxifragaceae | Saxifraga oppositifolia L. s.str.        |      |      |      |      | х    |      |      |      |
| Beetles         | Byrrhidae     | Byrrhus fasciatus (Forster, 1771)        |      |      | х    |      |      |      |      |      |
| (Coleoptera)    | Cantharidae   | Rhagonycha maculicollis (Maerkel, 1852)  |      |      | х    |      |      |      |      |      |
|                 | Carabidae     | Amara praetermissa (Sahlberg, 1827)      | х    | х    |      |      |      |      |      |      |
|                 | Carabidae     | Amara quenseli (Schönherr, 1806)         |      |      | х    | x    |      |      |      |      |
|                 | Carabidae     | Bembidion magellense (Schauberger, 1922) |      |      |      | х    | х    |      |      |      |
|                 | Carabidae     | Carabus alpestris (Sturm, 1815)          |      |      | х    |      |      |      |      |      |
|                 | Carabidae     | Carabus depressus (Bonelli, 1810)        | х    | х    |      |      |      |      |      |      |
|                 | Carabidae     | Cymindis vaporariorum (Linné, 1758)      | х    | х    |      |      |      |      |      |      |
|                 | Carabidae     | Nebria germari (Heer, 1837)              |      |      |      | х    | х    | х    | х    |      |
|                 | Carabidae     | Nebria rufescens (Stroem, 1768)          |      | х    |      |      |      |      |      |      |
|                 | Carabidae     | Oreonebria castanea (Bonelli, 1810)      | х    | х    |      |      |      |      |      |      |
|                 | Carabidae     | Pterostichus jurinei (Panzer, 1803)      | Х    | х    |      |      |      |      |      |      |

| S1c (cont.) |               |                                            |      |      |      |      |      |      |      |      |
|-------------|---------------|--------------------------------------------|------|------|------|------|------|------|------|------|
| Group       | Family        | Species                                    | 2700 | 2800 | 2900 | 3000 | 3100 | 3200 | 3300 | 3400 |
| Beetles     | Carabidae     | Dichotrachelus stierlini (Gredler 1856)    | х    |      | х    | х    |      |      |      |      |
| (cont.)     | Curculionidae | Otiorhynchus nodosus (Müller, O.F., 1764)  |      |      | х    |      |      |      |      |      |
|             | Dasytidae     | Dasytes alpigradus (Kiesenwetter, 1863)    | х    |      |      |      |      |      |      |      |
|             | Leiodidae     | Catops nigricans (Spence 1815) cf.         |      | х    |      |      |      |      |      |      |
|             | Leiodidae     | Leiodes rhaetica (Erichson, 1845)          | х    | х    |      |      |      |      |      |      |
|             | Scarabaeidae  | Aphodius abdominalis (Bonelli, 1812)       | х    | х    |      |      |      |      |      |      |
|             | Scarabaeidae  | Aphodius gibbus (Germar, 1817)             | х    | х    |      |      |      |      |      |      |
|             | Scarabaeidae  | Aphodius obscurus (Fabricius, 1792)        |      | х    |      |      |      |      |      |      |
|             | Staphylinidae | Anthophagus alpinus (Paykull, 1790)        | х    | х    |      |      |      |      |      |      |
|             | Staphylinidae | Arpedium brachypterum (Gravenhorst, 1802)  |      |      |      | х    |      |      |      |      |
|             | Staphylinidae | Atheta leonhardi (Bernhauer, 1911)         | х    |      |      |      |      |      |      |      |
|             | Staphylinidae | Eusphalerum anale (Erichson, 1840)         | х    | х    | х    |      |      |      |      |      |
|             | Staphylinidae | Ocypus ophthalmicus (Scopoli, 1763)        |      | х    |      |      |      |      |      |      |
|             | Staphylinidae | Oxypoda longipes (Mulsant & Rey, 1861)     |      | х    |      |      |      |      |      |      |
|             | Staphylinidae | Oxypoda nimbicola (Fauvel, 1900)           |      |      |      | х    |      |      |      |      |
|             | Staphylinidae | Oxypoda soror (Thomson, 1855)              | х    | х    |      |      |      |      |      |      |
|             | Staphylinidae | Quedius alpestris (Heer, 1839)             | х    | х    |      |      |      |      |      |      |
| Spiders     | Gnaphosidae   | Drassodes cupreus (Blackwall, 1834)        | х    | х    | х    | х    |      | х    |      |      |
| (Araneae)   | Gnaphosidae   | Gnaphosa leporina (L. Koch, 1866)          | х    |      |      |      |      |      |      |      |
|             | Gnaphosidae   | Gnaphosa petrobia (L. Koch, 1872)          |      |      | х    | х    | х    |      |      |      |
|             | Gnaphosidae   | Haplodrassus sp.                           |      | х    |      |      |      |      |      |      |
|             | Gnaphosidae   | Micaria alpina (L. Koch, 1872)             | х    | х    |      |      |      |      |      |      |
|             | Gnaphosidae   | Zelotes devotus (Grimm, 1982)              | х    | х    | х    |      |      |      |      |      |
|             | Linyphiidae   | Agyneta gulosa (C.L. Koch, 1869)           | х    |      |      |      |      |      |      |      |
|             | Linyphiidae   | Anguliphantes monticola (Kulczyński, 1881) | х    |      |      |      |      |      |      |      |
|             | Linyphiidae   | Araeoncus anguineus (L. Koch, 1869)        |      | х    |      |      |      |      |      |      |
|             | Linyphiidae   | Ceratinella brevipes (Westring, 1851)      | х    |      |      |      |      |      |      |      |
|             | Linyphiidae   | Diplocephalus helleri (L. Koch, 1869)      |      |      | х    |      |      |      |      |      |

| S1c (cont.)  |                 |                                                   |      |      |      |      |      |      |      |      |
|--------------|-----------------|---------------------------------------------------|------|------|------|------|------|------|------|------|
| Group        | Family          | Species                                           | 2700 | 2800 | 2900 | 3000 | 3100 | 3200 | 3300 | 3400 |
| Spiders      | Linyphiidae     | Erigonella subelevata (L. Koch, 1869)             | х    | х    | х    | х    | х    |      | х    | x    |
| (cont.)      | Linyphiidae     | Linyphiinae sp.                                   | х    |      |      |      |      |      |      | х    |
|              | Linyphiidae     | Mughiphantes armatus (Kulczyński, 1905)           |      |      |      |      |      | х    | х    | x    |
|              | Linyphiidae     | Mughiphantes variabilis (Kulczyński, 1887)        |      |      |      | х    |      |      |      |      |
|              | Linyphiidae     | Pelecopsis parallela (Wider, 1834)                |      |      | х    |      |      |      |      |      |
|              | Linyphiidae     | Styloctetor austerus (L. Koch, 1884)              |      |      | х    | х    |      |      |      |      |
|              | Lycosidae       | Pardosa blanda (C.L. Koch, 1833)                  | х    | х    |      |      |      |      |      |      |
|              | Lycosidae       | Pardosa giebeli (Pavesi, 1873)                    |      |      | х    |      |      |      |      |      |
|              | Lycosidae       | Pardosa nigra (C.L. Koch, 1834)                   | х    |      | х    | х    | х    | х    |      | x    |
|              | Lycosidae       | Pardosa riparia (C.L. Koch, 1833)                 |      | х    |      |      |      |      |      |      |
|              | Lycosidae       | Pardosa oreophila (Simon, 1937)                   |      | х    | х    |      |      |      |      |      |
|              | Salticidae      | Talavera sp.                                      | х    |      |      |      |      |      |      |      |
|              | Thomisidae      | Xysticus desiduosus (Simon, 1875)                 | х    | х    | х    |      |      |      |      |      |
| Springtails  | Arrhopalitidae  | Arrhopalites caecus (Tullberg, 1871)              |      | х    |      |      |      |      |      |      |
| surface      | Bourletiellidae | Bourletiella pistillum (Gisin, 1946)              | х    | х    | х    | х    | х    | х    | х    | x    |
| (Collembola) | Bourletiellidae | Heterosminthurus nonlineatus (Gisin, 1946)        |      | х    | х    | х    | х    | х    | х    | х    |
|              | Entomobryidae   | Lepidocyrtus lanuginosus (Gmelin, 1788)           | х    | х    | х    | х    | х    | х    | х    | x    |
|              | Entomobryidae   | Lepidocyrtus violaceus (Geoffroy, 1762) cf.       |      |      |      | х    | х    | х    | х    | х    |
|              | Entomobryidae   | Orchesella alticola (Uzel, 1891)                  | х    | х    | х    | х    | х    | х    | х    | x    |
|              | Entomobryidae   | Tomocerus minor (Lubbock, 1862)                   |      |      | х    |      |      |      |      |      |
|              | Hypogastruridae | Hypogastrura parvula (Haybach, 1971)              | х    | х    |      | х    | х    | х    |      |      |
|              | Hypogastruridae | Hypogastrura sahlbergi (Reuter, 1895)             | х    | х    | х    | х    | х    | х    | х    | x    |
|              | Isotomidae      | Anurophorus konseli (Kseneman, 1938)              | х    | х    | х    |      | х    | х    | х    |      |
|              | Isotomidae      | Isotoma riparia (Nicolet, 1842) cf                | х    | х    | х    | х    | х    |      |      | x    |
|              | Isotomidae      | Pseudanurophorus binoculatus (Kseneman, 1934) cf. |      |      | х    |      |      |      |      |      |
|              | Isotomidae      | Pseudisotoma sensibilis (Tullberg, 1876)          | х    | х    | х    | х    | х    | х    | х    | х    |
|              | Isotomidae      | Tetracanthella hystrix (Cassagnau, 1959)          | х    |      | х    |      |      |      |      |      |
|              | Neanuridae      | Frisea albida (Stach, 1949)                       | х    | х    | х    |      |      |      |      |      |

| S1c (cont.)    |                   |                                                |      |      |      |      |      |      |      |      |
|----------------|-------------------|------------------------------------------------|------|------|------|------|------|------|------|------|
| Group          | Family            | Species                                        | 2700 | 2800 | 2900 | 3000 | 3100 | 3200 | 3300 | 3400 |
| Springtails    | Neanuridae        | Neanura muscorum (Templeton, 1835)             |      | Х    |      |      |      |      |      |      |
| surf. (cont.)  | Tullbergiidae     | Protaphorura parallata (Gisin, 1952)           |      |      | х    |      |      |      | Х    |      |
| Springtails    | Bourletiellidae   | Bourletiella pistillum (Gisin, 1946)           | х    | х    |      |      | х    |      |      | х    |
| soil           | Bourletiellidae   | Heterosminthurus nonlineatus (Gisin, 1946)     |      | х    |      |      |      |      |      |      |
| (Collembola)   | Entomobryidae     | Entomobrya sp.                                 |      |      |      |      | х    |      |      |      |
|                | Entomobryidae     | Lepidocyrtus lanuginosus (Gmelin, 1788)        |      |      | х    |      |      | х    |      |      |
|                | Entomobryidae     | Lepidocyrtus violaceus (Geoffroy, 1762) cf.    |      |      |      |      | Х    |      | х    | x    |
|                | Entomobryidae     | Orchesella alticola (Uzel, 1891)               | х    |      |      | Х    |      | х    | х    |      |
|                | Hypogastruridae   | Hypogastrura parvula (Haybach, 1971)           | х    | х    | х    | х    |      |      |      |      |
|                | Hypogastruridae   | Hypogastrura sahlbergi (Reuter, 1895)          | х    |      |      |      | Х    | х    | х    | х    |
|                | Isotomidae        | Anurophorus konseli (Kseneman, 1938)           |      | х    |      |      |      |      |      | x    |
|                | Isotomidae        | Folsomia binoculata (Wahlgren, 1899)           |      |      |      |      |      |      | х    | x    |
|                | Isotomidae        | Pachyotoma curva (Gisin, 1949)                 | х    |      |      |      |      |      |      |      |
|                | Isotomidae        | Pseudisotoma sensibilis (Tullberg, 1876)       | х    | х    | х    | Х    | Х    | Х    | х    | x    |
|                | Isotomidae        | Scutisotoma variabilis (Gisin, 1949)           | х    |      |      |      |      |      |      |      |
|                | Isotomidae        | Tetracanthella afurcata (Handschin, 1919)      | х    | Х    | х    | х    | х    | х    | х    |      |
|                | Neanuridae        | Anurida pygmaea (Börner, 1901)                 | х    |      |      |      |      |      |      |      |
|                | Neanuridae        | Frisea albida (Stach, 1949)                    | х    | х    |      |      | Х    |      |      |      |
|                | Odontellidae      | Superodontella empodialis (Stach, 1934)        | х    |      |      |      |      |      |      |      |
|                | Onychiuridae      | Argonychiurus fistulosus (Gisin, 1956)         |      |      |      | х    | х    | x    | x    |      |
|                | Onychiuridae      | Hymenaphorura alticola (Bagnall, 1935)         |      |      |      | х    | х    | х    | х    | x    |
|                | Onychiuridae      | Protaphorura parallata (Gisin, 1952)           |      |      |      |      |      |      | х    | x    |
|                | Tullbergiidae     | Mesaphorura sp1                                |      |      |      |      | х    |      |      |      |
|                | Tullbergiidae     | Mesaphorura sp2                                | х    |      |      |      |      |      |      |      |
|                | Tullbergiidae     | Metaphorura sp3                                | х    |      |      |      |      |      |      |      |
| Oribatid mites | Achipteriidae     | Anachipteria shtanchaevae (Subias, 2009)       | х    | х    | х    | х    |      |      |      |      |
| (Oribatida)    | Brachychthoniidae | Brachychthonius pius (Moritz, 1976)            |      |      | х    | х    | х    |      |      |      |
|                | Brachychthoniidae | Eobrachychthonius oudemansi (v d Hammen, 1952) |      |      |      |      | х    |      |      |      |

| S1c (cont.)    |                   |                                                          |      |      |      |      |      |      |      |      |
|----------------|-------------------|----------------------------------------------------------|------|------|------|------|------|------|------|------|
| Group          | Family            | Species                                                  | 2700 | 2800 | 2900 | 3000 | 3100 | 3200 | 3300 | 3400 |
| Oribatid mites | Brachychthoniidae | Liochthonius strenzkei (Forsslund, 1963)                 | х    | х    |      | х    | х    |      |      |      |
| (cont.)        | Brachychthoniidae | Verachthonius laticeps (Strenzke, 1951)                  |      |      |      | Х    |      |      |      |      |
|                | Caleremaeidae     | Caleremaeus monilipes (Michael, 1882)                    | х    |      |      |      |      |      |      |      |
|                | Camisiidae        | Platynothrus peltifer (C.L. Koch, 1839)                  |      | Х    |      |      |      |      |      |      |
|                | Carabodidae       | Carabodes labyrinthicus (Michael, 1879)                  | х    |      |      |      |      |      |      |      |
|                | Carabodidae       | Carabodes marginatus (Michael, 1884)                     |      | х    |      |      |      |      |      |      |
|                | Carabodidae       | Carabodes schatzi (Bernini, 1976)                        | х    | х    |      |      |      |      |      |      |
|                | Ceratozetidae     | Ceratozetes spitsbergensis (Thor, 1934)                  |      |      |      |      |      |      | х    |      |
|                | Ceratozetidae     | Edwardzetes edwardsi (Nicolet, 1855)                     |      |      |      | х    |      |      |      |      |
|                | Ceratozetidae     | Fuscozetes intermedius (Caroli et Maffia, 1934)          | х    | Х    | Х    | х    | х    |      |      | х    |
|                | Ceratozetidae     | Melanozetes meridianus (Sellnick, 1929)                  |      | х    | Х    |      |      |      |      |      |
|                | Ceratozetidae     | Melanozetes mollicomus (C.L. Koch, 1839)                 |      |      |      | х    | х    |      |      |      |
|                | Ceratozetidae     | Trichoribates scilierensis (Bayartogtokh & Schatz, 2008) | x    | ¥    | ×    | v    | ×    |      |      |      |
|                | Ceratozetidae     | Trichoribates trimaculatus (C.L. Koch. 1835)             | x    | ~    | x    | x    | x    |      |      |      |
|                | Damaeidae         | Kunstidamaeus diversipilis (Willmann, 1951)              | х    | х    | x    | x    | x    |      |      |      |
|                | Damaeidae         | Metabelba pulverulenta (C.L. Koch, 1839) pulverosa       |      | ~    |      | x    | ~    |      |      |      |
|                | Eremaeidae        | Eueremaeus valkanovi (Kunst, 1957)                       | х    |      |      | ~    |      |      |      |      |
|                | Malaconothridae   | Malaconothrus monodactylus (Michael, 1888)               |      | х    |      |      |      |      |      |      |
|                | Metrioppiidae     | Metrioppia helvetica (Grandjean, 1931)                   |      |      | Х    |      |      |      |      |      |
|                | Mycobatidae       | Jugatala cribelliger (Berlese, 1904)                     |      |      |      |      | х    |      |      |      |
|                | Niphocepheidae    | Niphocepheus nivalis (Schweizer, 1922)                   |      |      | Х    |      |      |      |      |      |
|                | Nothridae         | Nothrus borussicus (Sellnick, 1929)                      | х    |      |      |      |      |      |      |      |
|                | Oppiidae          | Berniniella bicarinata (Paoli, 1908)                     |      | Х    |      |      |      |      |      |      |
|                | Oppiidae          | Dissorhina ornata (Oudemans, 1900)                       |      |      |      |      | х    |      |      |      |
|                | Oppiidae          | Moritzoppia unicarinata (Paoli, 1908)                    |      |      |      |      | х    | х    | х    |      |
|                | Oppiidae          | Oppiella nova (Oudemans, 1902)                           |      |      |      |      | х    |      |      |      |
|                | Onniidae          | Oppiella obscura (Mahunka, Mahunka-Papp, 2000)           | х    |      | x    | x    | x    | x    |      |      |

| S1c (cont.)    |                   |                                                       |      |      |      |      |      |      |      |      |
|----------------|-------------------|-------------------------------------------------------|------|------|------|------|------|------|------|------|
| Group          | Family            | Species                                               | 2700 | 2800 | 2900 | 3000 | 3100 | 3200 | 3300 | 3400 |
| Oribatid mites | Oribatellidae     | Oribatella longispina (Berlese, 1915)                 | х    |      | х    |      | х    |      |      |      |
| (cont.)        | Oribatulidae      | Oribatula interrupta (Willmann, 1939)                 | х    |      | Х    | х    | х    |      |      |      |
|                | Oribatulidae      | Oribatula longelamellata (Schweizer, 1956)            | х    | Х    | Х    |      |      |      |      |      |
|                | Oribatulidae      | Oribatula tibialis (Nicolet, 1855)                    | х    |      |      |      |      |      |      |      |
|                | Phenopelopidae    | Eupelops strenzkei (Knulle, 1954)                     |      |      | Х    |      | Х    |      |      |      |
|                | Punctoribatidae   | Mycobates alpinus (Willmann, 1951)                    | х    | Х    | Х    | х    |      |      |      |      |
|                | Punctoribatidae   | Mycobates carli (Schweizer, 1922)                     | х    | х    | х    | х    | х    |      |      |      |
|                | Quadroppiidae     | Quadroppia maritalis (Lions, 1982)                    | х    |      |      |      |      |      |      |      |
| So             | Scheloribatidae   | Scheloribates (Topobates) holsaticus (Weigmann, 1969) |      |      | х    |      |      |      |      |      |
|                | Scheloribatidae   | Scheloribates (Topobates) umbraili (Schweizer, 1956)  |      |      |      | x    |      |      |      |      |
|                | Scutoverticidae   | Scutovertex alpinus (Willmann, 1953)                  | х    |      |      |      |      |      |      |      |
|                | Suctobelbidae     | Suctobelbella acutidens (Forsslund, 1941)             | х    |      | х    | х    | х    |      |      |      |
|                | Suctobelbidae     | Suctobelbella similis (Forsslund, 1941)               |      | х    |      |      |      |      |      |      |
|                | Tectocepheidae    | Tectocepheus sp.                                      | х    |      | х    | х    |      |      |      |      |
|                | Tectocepheidae    | Tectocepheus velatus sarekensis (Tragardh, 1910)      | х    | Х    |      |      | х    |      |      |      |
|                | Tectocepheidae    | Tectocepheus velatus velatus (Michael, 1880)          | х    | х    | х    |      | х    |      |      |      |
|                | Thyrisomidae      | Pantelozetes alpestris (Willmann, 1929)               | х    |      |      |      | х    |      |      |      |
|                | Thyrisomidae      | Pantelozetes paolii (Oudemans, 1913)                  | х    | х    |      |      |      |      |      |      |
|                | Thyrisomidae      | Passalozetes intermedius (Mihelcic, 1954)             |      |      | х    | х    | х    |      |      |      |
|                | Trhypochthoniidae | Trhypochthonius tectorum (Berlese, 1896)              | х    |      |      |      |      |      |      |      |
|                | Unduloribatidae   | Unduloribates undulatus (Berlese, 1914)               |      |      | х    |      |      |      |      |      |

**Table S2** Predictors of generalized linear models (a) and fixed effects of generalized linear mixedeffects models (b-h) with a quasipoisson distribution and log-link comparing patterns of abundance of plant, animal and microbial groups along (a) elevational, (b) thermic vegetation indicator (TVI), (c) soil moisture Landolt indicator value (F), (d) maximum water holding capacity (MWHC), (e) soil organic matter content (OM), (f) soil C content (C), (g) soil N content (N), and (h) soil pH gradients on Mt. Schrankogel, Tyrol, Austria. Abundance data were re-scaled to values between 0 and 100. The baseline level of the fixed effect organism group is vascular plants. A significant ecological factor:group interaction means that abundance patterns of the respective group along the respective gradient are significantly deviating from that of vascular plants. P-values significant at the 0.05 level are printed in bold.

| (Table S2a)                    | Value | SE   | df | t-value | p-value |
|--------------------------------|-------|------|----|---------|---------|
| (Intercept)                    | 3.09  | 0.19 |    | 16.30   | <0.001  |
| Elevation                      | -1.06 | 0.17 |    | -6.29   | <0.001  |
| Archaea                        | -0.60 | 0.38 |    | -1.60   | 0.111   |
| Bacteria                       | 0.50  | 0.25 |    | 1.99    | 0.048   |
| Springtails surface            | -0.42 | 0.26 |    | -1.61   | 0.107   |
| Springtails soil               | -0.50 | 0.26 |    | -1.91   | 0.056   |
| Beetles                        | -0.97 | 0.33 |    | -2.98   | 0.003   |
| Methanocella                   | -1.47 | 0.57 |    | -2.57   | 0.011   |
| Oribatid mites                 | -0.61 | 0.26 |    | -2.29   | 0.023   |
| Spiders                        | -0.39 | 0.27 |    | -1.43   | 0.155   |
| Elevation: Archaea             | 0.07  | 0.34 |    | 0.21    | 0.834   |
| Elevation: Bacteria            | 0.60  | 0.23 |    | 2.57    | 0.011   |
| Elevation: Springtails surface | 0.74  | 0.24 |    | 3.09    | 0.002   |
| Elevation: Springtails soil    | 1.44  | 0.25 |    | 5.86    | <0.001  |
| Elevation: Beetles             | 0.10  | 0.29 |    | 0.34    | 0.733   |
| Elevation: Methanocella        | -0.33 | 0.48 |    | -0.68   | 0.494   |
| Elevation: Oribatid mites      | 0.95  | 0.25 |    | 3.76    | <0.001  |
| Elevation: Spiders             | 0.15  | 0.24 |    | 0.62    | 0.537   |

| (Table S2b)              | Value | SE   | df  | t-value | p-value |
|--------------------------|-------|------|-----|---------|---------|
| (Intercept)              | 1.03  | 0.58 | 357 | 1.77    | 0.077   |
| TVI                      | 1.02  | 0.24 | 6   | 4.30    | 0.005   |
| Archaea                  | -0.75 | 0.75 | 357 | -1.00   | 0.317   |
| Bacteria                 | 1.29  | 0.51 | 357 | 2.53    | 0.012   |
| Springtails surface      | 1.10  | 0.51 | 357 | 2.15    | 0.032   |
| Springtails soil         | 2.94  | 0.58 | 357 | 5.08    | <0.001  |
| Beetles                  | -1.16 | 0.67 | 357 | -1.73   | 0.085   |
| Methanocella             | -3.15 | 1.35 | 357 | -2.34   | 0.020   |
| Oribatid mites           | 1.34  | 0.53 | 357 | 2.52    | 0.012   |
| Spiders                  | -0.31 | 0.54 | 357 | -0.58   | 0.563   |
| TVI: Archaea             | 0.03  | 0.25 | 357 | 0.13    | 0.896   |
| TVI: Bacteria            | -0.45 | 0.18 | 357 | -2.45   | 0.015   |
| TVI: Springtails surface | -0.78 | 0.20 | 357 | -3.97   | <0.001  |
| TVI: Springtails soil    | -1.93 | 0.32 | 357 | -6.11   | <0.001  |
| TVI: Beetles             | 0.04  | 0.22 | 357 | 0.17    | 0.869   |
| TVI: Methanocella        | 0.65  | 0.41 | 357 | 1.58    | 0.114   |
| TVI: Oribatid mites      | -1.04 | 0.22 | 357 | -4.64   | <0.001  |
| TVI: Spiders             | -0.07 | 0.18 | 357 | -0.37   | 0.710   |

| (Table S2c)            | Value  | SE   | df  | t-value | p-value |
|------------------------|--------|------|-----|---------|---------|
| (Intercept)            | 11.34  | 1.92 | 333 | 5.92    | <0.001  |
| F                      | -2.81  | 0.67 | 6   | -4.22   | 0.006   |
| Archaea                | -1.86  | 2.42 | 333 | -0.77   | 0.443   |
| Bacteria               | -3.74  | 2.15 | 333 | -1.74   | 0.083   |
| Springtails surface    | -5.37  | 2.20 | 333 | -2.44   | 0.015   |
| Springtails soil       | -12.53 | 2.54 | 333 | -4.93   | <0.001  |
| Beetles                | -2.79  | 2.25 | 333 | -1.24   | 0.217   |
| Methanocella           | -2.01  | 2.69 | 333 | -0.75   | 0.456   |
| Oribatid mites         | -7.14  | 2.28 | 333 | -3.14   | 0.002   |
| Spiders                | -1.63  | 2.13 | 333 | -0.76   | 0.446   |
| F: Archaea             | 0.46   | 0.86 | 333 | 0.53    | 0.597   |
| F: Bacteria            | 1.43   | 0.75 | 333 | 1.91    | 0.057   |
| F: Springtails surface | 1.66   | 0.76 | 333 | 2.17    | 0.031   |
| F: Springtails soil    | 3.97   | 0.85 | 333 | 4.69    | <0.001  |
| F: Beetles             | 0.66   | 0.80 | 333 | 0.83    | 0.405   |
| F: Methanocella        | 0.32   | 0.97 | 333 | 0.33    | 0.739   |
| F: Oribatid mites      | 2.16   | 0.78 | 333 | 2.76    | 0.006   |
| F: Spiders             | 0.43   | 0.75 | 333 | 0.58    | 0.566   |

| (Table S2d)               | Value | SE   | df  | t-value | p-value |
|---------------------------|-------|------|-----|---------|---------|
| (Intercept)               | 1.37  | 0.61 | 357 | 2.26    | 0.025   |
| MWHC                      | 3.55  | 1.02 | 6   | 3.49    | 0.013   |
| Archaea                   | -1.02 | 0.69 | 357 | -1.48   | 0.139   |
| Bacteria                  | 1.01  | 0.49 | 357 | 2.06    | 0.040   |
| Springtails surface       | 0.69  | 0.51 | 357 | 1.34    | 0.182   |
| Springtails soil          | 2.89  | 0.67 | 357 | 4.30    | <0.001  |
| Beetles                   | -1.47 | 0.61 | 357 | -2.42   | 0.016   |
| Methanocella              | -2.88 | 1.03 | 357 | -2.79   | 0.006   |
| Oribatid mites            | 1.10  | 0.57 | 357 | 1.95    | 0.052   |
| Spiders                   | -0.37 | 0.49 | 357 | -0.76   | 0.450   |
| MWHC: Archaea             | 0.51  | 0.91 | 357 | 0.56    | 0.572   |
| MWHC: Bacteria            | -1.40 | 0.72 | 357 | -1.95   | 0.052   |
| MWHC: Springtails surface | -2.50 | 0.81 | 357 | -3.09   | 0.002   |
| MWHC: Springtails soil    | -7.72 | 1.51 | 357 | -5.12   | <0.001  |
| MWHC: Beetles             | 0.59  | 0.79 | 357 | 0.75    | 0.453   |
| MWHC: Methanocella        | 2.25  | 1.21 | 357 | 1.85    | 0.065   |
| MWHC: Oribatid mites      | -3.87 | 1.01 | 357 | -3.84   | <0.001  |
| W: Spiders                | -0.19 | 0.66 | 357 | -0.29   | 0.776   |

| (Table S2e)             | Value  | SE    | df  | t-value | p-value |
|-------------------------|--------|-------|-----|---------|---------|
| (Intercept)             | 2.37   | 0.46  | 357 | 5.09    | <0.001  |
| OM                      | 20.48  | 8.16  | 6   | 2.51    | 0.046   |
| Archaea                 | -0.95  | 0.50  | 357 | -1.90   | 0.058   |
| Bacteria                | 0.54   | 0.36  | 357 | 1.51    | 0.133   |
| Springtails surface     | -0.09  | 0.38  | 357 | -0.23   | 0.819   |
| Springtails soil        | 1.53   | 0.52  | 357 | 2.94    | 0.004   |
| Beetles                 | -1.43  | 0.44  | 357 | -3.24   | 0.001   |
| Methanocella            | -2.16  | 0.71  | 357 | -3.04   | 0.003   |
| Oribatid mites          | 0.23   | 0.44  | 357 | 0.53    | 0.596   |
| Spiders                 | -0.45  | 0.35  | 357 | -1.28   | 0.200   |
| OM: Archaea             | 4.39   | 6.27  | 357 | 0.70    | 0.485   |
| OM: Bacteria            | -7.52  | 5.36  | 357 | -1.40   | 0.162   |
| OM: Springtails surface | -13.95 | 6.23  | 357 | -2.24   | 0.026   |
| OM: Springtails soil    | -66.09 | 15.94 | 357 | -4.15   | 0.000   |
| OM: Beetles             | 5.66   | 5.42  | 357 | 1.04    | 0.297   |
| OM: Methanocella        | 13.37  | 7.74  | 357 | 1.73    | 0.085   |
| OM: Oribatid mites      | -28.62 | 9.39  | 357 | -3.05   | 0.003   |
| OM: Spiders             | -0.66  | 4.71  | 357 | -0.14   | 0.889   |

| (Table S2f)            | Value | SE   | df  | t-value | p-value |
|------------------------|-------|------|-----|---------|---------|
| (Intercept)            | 2.66  | 0.40 | 357 | 6.66    | <0.001  |
| С                      | 0.41  | 0.18 | 6   | 2.32    | 0.060   |
| Archaea                | -0.89 | 0.46 | 357 | -1.94   | 0.053   |
| Bacteria               | 0.43  | 0.32 | 357 | 1.34    | 0.181   |
| Springtails surface    | -0.28 | 0.34 | 357 | -0.83   | 0.407   |
| Springtails soil       | 0.81  | 0.41 | 357 | 1.96    | 0.051   |
| Beetles                | -1.36 | 0.40 | 357 | -3.35   | 0.001   |
| Methanocella           | -1.97 | 0.66 | 357 | -3.00   | 0.003   |
| Oribatid mites         | -0.13 | 0.37 | 357 | -0.36   | 0.717   |
| Spiders                | -0.46 | 0.32 | 357 | -1.44   | 0.152   |
| C: Archaea             | 0.09  | 0.14 | 357 | 0.64    | 0.523   |
| C: Bacteria            | -0.15 | 0.12 | 357 | -1.28   | 0.201   |
| C: Springtails surface | -0.29 | 0.14 | 357 | -2.05   | 0.041   |
| C: Springtails soil    | -1.54 | 0.42 | 357 | -3.66   | <0.001  |
| C: Beetles             | 0.12  | 0.12 | 357 | 1.00    | 0.320   |
| C: Methanocella        | 0.28  | 0.17 | 357 | 1.62    | 0.106   |
| C: Oribatid mites      | -0.61 | 0.22 | 357 | -2.75   | 0.006   |
| C: Spiders             | -0.01 | 0.11 | 357 | -0.14   | 0.889   |

| (Table S2g)            | Value  | SE   | df  | t-value | p-value |
|------------------------|--------|------|-----|---------|---------|
| (Intercept)            | 2.63   | 0.40 | 357 | 6.66    | <0.001  |
| Ν                      | 5.36   | 2.24 | 6   | 2.39    | 0.054   |
| Archaea                | -0.86  | 0.44 | 357 | -1.98   | 0.049   |
| Bacteria               | 0.45   | 0.31 | 357 | 1.48    | 0.140   |
| Springtails surface    | -0.18  | 0.32 | 357 | -0.55   | 0.580   |
| Springtails soil       | 0.68   | 0.33 | 357 | 2.05    | 0.041   |
| Beetles                | -1.35  | 0.39 | 357 | -3.48   | 0.001   |
| Methanocella           | -2.04  | 0.64 | 357 | -3.18   | 0.002   |
| Oribatid mites         | -0.06  | 0.33 | 357 | -0.20   | 0.845   |
| Spiders                | -0.47  | 0.31 | 357 | -1.52   | 0.129   |
| N: Archaea             | 1.00   | 1.73 | 357 | 0.58    | 0.563   |
| N: Bacteria            | -2.03  | 1.44 | 357 | -1.41   | 0.159   |
| N: Springtails surface | -4.40  | 1.71 | 357 | -2.58   | 0.010   |
| N: Springtails soil    | -18.22 | 4.15 | 357 | -4.39   | <0.001  |
| N: Beetles             | 1.46   | 1.50 | 357 | 0.98    | 0.329   |
| N: Methanocella        | 3.81   | 2.17 | 357 | 1.75    | 0.080   |
| N: Oribatid mites      | -8.36  | 2.48 | 357 | -3.38   | 0.001   |
| N: Spiders             | -0.17  | 1.29 | 357 | -0.13   | 0.894   |

| (Table S2h)             | Value | SE   | df  | t-value | p-value |
|-------------------------|-------|------|-----|---------|---------|
| (Intercept)             | 3.50  | 5.62 | 357 | 0.62    | 0.534   |
| рН                      | -0.03 | 1.25 | 6   | -0.03   | 0.981   |
| Archaea                 | 0.21  | 5.34 | 357 | 0.04    | 0.969   |
| Bacteria                | -0.48 | 4.07 | 357 | -0.12   | 0.907   |
| Springtails surface     | -8.14 | 4.26 | 357 | -1.91   | 0.057   |
| Springtails soil        | -4.30 | 4.30 | 357 | -1.00   | 0.318   |
| Beetles                 | -2.77 | 4.54 | 357 | -0.61   | 0.542   |
| Methanocella            | 7.64  | 7.16 | 357 | 1.07    | 0.286   |
| Oribatid mites          | -6.70 | 4.54 | 357 | -1.48   | 0.141   |
| Spiders                 | 0.81  | 3.90 | 357 | 0.21    | 0.836   |
| pH: Archaea             | -0.19 | 1.19 | 357 | -0.16   | 0.871   |
| pH: Bacteria            | 0.13  | 0.90 | 357 | 0.14    | 0.885   |
| pH: Springtails surface | 1.61  | 0.94 | 357 | 1.72    | 0.086   |
| pH: Springtails soil    | 0.75  | 0.95 | 357 | 0.79    | 0.433   |
| pH: Beetles             | 0.39  | 1.01 | 357 | 0.39    | 0.700   |
| pH: Methanocella        | -1.99 | 1.63 | 357 | -1.22   | 0.223   |
| pH: Oribatid mites      | 1.24  | 1.00 | 357 | 1.24    | 0.216   |
| pH: Spiders             | -0.29 | 0.87 | 357 | -0.33   | 0.741   |

**Table S3** Predictors of (**a**) generalized linear models and (**b-h**) fixed effects of generalized linear mixed-effects models with a quasipoisson distribution and log-link comparing diversity patterns of plant and animal groups along (**a**) elevational, (**b**) thermic vegetation indicator (TVI), (**c**) soil moisture Landolt indicator value (F), (**d**) maximum water holding capacity (MWHC), (**e**) soil organic matter content (OM), (**f**) soil C content (C), (**g**) soil N content (N), and (**h**) soil pH gradients on Mt. Schrankogel, Tyrol, Austria. The baseline level of the fixed effect organism group is vascular plants. A significant ecological factor:group interaction means that diversity patterns of the respective group along the respective gradient are significantly deviating from that of vascular plants. P-values significant at the 0.05 level are printed in bold.

| (Table S3a)                    | Value | SE   | df | t-value | p-value |
|--------------------------------|-------|------|----|---------|---------|
| (Intercept)                    | 2.00  | 0.07 |    | 26.99   | <0.001  |
| Elevation                      | -0.82 | 0.07 |    | -11.91  | <0.001  |
| Springtails surface            | -0.11 | 0.10 |    | -1.14   | 0.257   |
| Springtails soil               | -0.80 | 0.11 |    | -7.18   | <0.001  |
| Beetles                        | -1.90 | 0.19 |    | -9.89   | <0.001  |
| Oribatid mites                 | -0.66 | 0.11 |    | -5.82   | <0.001  |
| Spiders                        | -1.45 | 0.15 |    | -9.56   | <0.001  |
| Elevation: Springtails surface | 0.77  | 0.09 |    | 8.45    | <0.001  |
| Elevation: Springtails soil    | 0.86  | 0.11 |    | 7.80    | <0.001  |
| Elevation: Beetles             | -0.24 | 0.17 |    | -1.40   | 0.161   |
| Elevation: Oribatid mites      | 0.15  | 0.11 |    | 1.44    | 0.151   |
| Elevation: Spiders             | 0.05  | 0.14 |    | 0.38    | 0.707   |

| (Table S3b)              | Value | SE   | df  | t-value | p-value |
|--------------------------|-------|------|-----|---------|---------|
| (Intercept)              | 0.57  | 0.30 | 291 | 1.87    | 0.063   |
| TVI                      | 0.73  | 0.13 | 6   | 5.64    | 0.001   |
| Springtails surface      | 1.22  | 0.20 | 291 | 5.98    | <0.001  |
| Springtails soil         | 0.70  | 0.24 | 291 | 2.90    | 0.004   |
| Beetles                  | -2.58 | 0.42 | 291 | -6.11   | 0.000   |
| Oribatid mites           | -0.15 | 0.23 | 291 | -0.67   | 0.504   |
| Spiders                  | -1.40 | 0.32 | 291 | -4.34   | <0.001  |
| TVI: Springtails surface | -0.69 | 0.08 | 291 | -8.59   | <0.001  |
| TVI: Springtails soil    | -0.80 | 0.10 | 291 | -7.75   | <0.001  |
| TVI: Beetles             | 0.31  | 0.14 | 291 | 2.22    | 0.027   |
| TVI: Oribatid mites      | -0.24 | 0.09 | 291 | -2.77   | 0.006   |
| TVI: Spiders             | -0.03 | 0.11 | 291 | -0.26   | 0.795   |

| (Table S3c)            | Value | SE   | df  | t-value | p-value |
|------------------------|-------|------|-----|---------|---------|
| (Intercept)            | 8.00  | 1.11 | 275 | 7.22    | <0.001  |
| F                      | -2.03 | 0.37 | 6   | -5.45   | 0.002   |
| Springtails surface    | -5.56 | 1.09 | 275 | -5.10   | <0.001  |
| Springtails soil       | -7.47 | 1.20 | 275 | -6.22   | <0.001  |
| Beetles                | -2.66 | 1.23 | 275 | -2.16   | 0.032   |
| Oribatid mites         | -1.63 | 1.12 | 275 | -1.45   | 0.147   |
| Spiders                | -2.31 | 1.20 | 275 | -1.93   | 0.054   |
| F: Springtails surface | 1.84  | 0.37 | 275 | 5.02    | <0.001  |
| F: Springtails soil    | 2.23  | 0.40 | 275 | 5.55    | <0.001  |
| F: Beetles             | 0.37  | 0.43 | 275 | 0.87    | 0.386   |
| F: Oribatid mites      | 0.33  | 0.38 | 275 | 0.87    | 0.384   |
| F: Spiders             | 0.32  | 0.41 | 275 | 0.78    | 0.435   |

| F: Spiders                | 0.32  | 0.41 | 275 | 0.78    | 0.435   |
|---------------------------|-------|------|-----|---------|---------|
|                           |       |      |     |         |         |
| (Table S3d)               | Value | SE   | df  | t-value | p-value |
| (Intercept)               | 0.71  | 0.35 | 291 | 2.03    | 0.043   |
| MWHC                      | 2.67  | 0.61 | 6   | 4.41    | 0.005   |
| Springtails surface       | 1.06  | 0.21 | 291 | 5.05    | <0.001  |
| Springtails soil          | 0.64  | 0.26 | 291 | 2.48    | 0.014   |
| Beetles                   | -2.54 | 0.37 | 291 | -6.85   | 0.000   |
| Oribatid mites            | -0.15 | 0.23 | 291 | -0.65   | 0.514   |
| Spiders                   | -1.30 | 0.30 | 291 | -4.29   | <0.001  |
| MWHC: Springtails surface | -2.52 | 0.34 | 291 | -7.43   | <0.001  |
| MWHC: Springtails soil    | -3.15 | 0.46 | 291 | -6.85   | <0.001  |
| MWHC: Beetles             | 1.18  | 0.48 | 291 | 2.48    | 0.014   |
| MWHC: Oribatid mites      | -0.98 | 0.34 | 291 | -2.87   | 0.004   |
| MWHC: Spiders             | -0.28 | 0.43 | 291 | -0.64   | 0.521   |

| (Table S3e)             | Value  | SE   | df  | t-value | p-value |
|-------------------------|--------|------|-----|---------|---------|
| (Intercept)             | 1.42   | 0.28 | 291 | 5.09    | <0.001  |
| ОМ                      | 15.98  | 5.11 | 6   | 3.13    | 0.020   |
| Springtails surface     | 0.35   | 0.15 | 291 | 2.30    | 0.022   |
| Springtails soil        | -0.13  | 0.19 | 291 | -0.68   | 0.496   |
| Beetles                 | -2.19  | 0.26 | 291 | -8.52   | <0.001  |
| Oribatid mites          | -0.33  | 0.16 | 291 | -2.05   | 0.041   |
| Spiders                 | -1.34  | 0.21 | 291 | -6.24   | <0.001  |
| OM: Springtails surface | -14.78 | 2.54 | 291 | -5.81   | <0.001  |
| OM: Springtails soil    | -20.97 | 3.77 | 291 | -5.57   | <0.001  |
| OM: Beetles             | 7.25   | 3.13 | 291 | 2.32    | 0.021   |
| OM: Oribatid mites      | -7.80  | 2.52 | 291 | -3.09   | 0.002   |
| OM: Spiders             | -2.33  | 3.07 | 291 | -0.76   | 0.448   |

| (Table S3f)            | Value | SE   | df  | t-value | p-value |
|------------------------|-------|------|-----|---------|---------|
| (Intercept)            | 1.64  | 0.24 | 291 | 6.87    | <0.001  |
| С                      | 0.33  | 0.11 | 6   | 2.92    | 0.027   |
| Springtails surface    | 0.14  | 0.13 | 291 | 1.12    | 0.264   |
| Springtails soil       | -0.41 | 0.15 | 291 | -2.68   | 0.008   |
| Beetles                | -2.09 | 0.22 | 291 | -9.38   | <0.001  |
| Oribatid mites         | -0.42 | 0.14 | 291 | -3.09   | 0.002   |
| Spiders                | -1.36 | 0.18 | 291 | -7.41   | <0.001  |
| C: Springtails surface | -0.30 | 0.05 | 291 | -5.56   | <0.001  |
| C: Springtails soil    | -0.43 | 0.08 | 291 | -5.30   | <0.001  |
| C: Beetles             | 0.15  | 0.07 | 291 | 2.34    | 0.020   |
| C: Oribatid mites      | -0.17 | 0.05 | 291 | -3.13   | 0.002   |
| C: Spiders             | -0.05 | 0.07 | 291 | -0.81   | 0.421   |

| C: Spiders             | -0.05 | 0.07 | 291 | -0.81   | 0.421   |
|------------------------|-------|------|-----|---------|---------|
|                        |       |      |     |         |         |
| (Table S3g)            | Value | SE   | df  | t-value | p-value |
| (Intercept)            | 1.62  | 0.24 | 291 | 6.72    | <0.001  |
| Ν                      | 4.23  | 1.43 | 6   | 2.96    | 0.025   |
| Springtails surface    | 0.18  | 0.13 | 291 | 1.38    | 0.168   |
| Springtails soil       | -0.40 | 0.15 | 291 | -2.63   | 0.009   |
| Beetles                | -2.13 | 0.23 | 291 | -9.18   | <0.001  |
| Oribatid mites         | -0.39 | 0.14 | 291 | -2.83   | 0.005   |
| Spiders                | -1.38 | 0.19 | 291 | -7.29   | <0.001  |
| N: Springtails surface | -4.03 | 0.69 | 291 | -5.83   | <0.001  |
| N: Springtails soil    | -5.47 | 0.98 | 291 | -5.60   | <0.001  |
| N: Beetles             | 2.13  | 0.89 | 291 | 2.40    | 0.017   |
| N: Oribatid mites      | -2.34 | 0.70 | 291 | -3.34   | 0.001   |
| N: Spiders             | -0.57 | 0.85 | 291 | -0.67   | 0.505   |

| (Table S3h)             | Value | SE   | df  | t-value | p-value |
|-------------------------|-------|------|-----|---------|---------|
| (Intercept)             | 1.51  | 3.62 | 291 | 0.42    | 0.677   |
| рН                      | 0.15  | 0.80 | 6   | 0.18    | 0.860   |
| Springtails surface     | -1.45 | 1.62 | 291 | -0.90   | 0.371   |
| Springtails soil        | -0.93 | 1.97 | 291 | -0.47   | 0.639   |
| Beetles                 | 1.79  | 2.58 | 291 | 0.69    | 0.488   |
| Oribatid mites          | -1.85 | 1.75 | 291 | -1.06   | 0.291   |
| Spiders                 | 0.38  | 2.33 | 291 | 0.16    | 0.869   |
| pH: Springtails surface | 0.23  | 0.36 | 291 | 0.65    | 0.516   |
| pH: Springtails soil    | -0.04 | 0.44 | 291 | -0.09   | 0.927   |
| pH: Beetles             | -0.78 | 0.58 | 291 | -1.34   | 0.180   |
| pH: Oribatid mites      | 0.24  | 0.39 | 291 | 0.63    | 0.529   |
| pH: Spiders             | -0.41 | 0.52 | 291 | -0.79   | 0.428   |

**Table S4** Predictors of (**a**) linear models and (**b**) fixed effects of linear mixed-effects models comparing the Shannon index of plant and animal groups along (**a**) elevational and (**b**) thermic vegetation indicator (TVI) gradients on Mt. Schrankogel, Tyrol, Austria. The baseline level of the fixed effect organism group is vascular plants. A significant ecological factor:group interaction means that patterns of the Shannon index of the respective group along the respective gradient are significantly deviating from that of vascular plants. P-values significant at the 0.05 level are printed in bold.

| (Table S4a)                    | Value  | SE     | df  | t-value | p-value |
|--------------------------------|--------|--------|-----|---------|---------|
| (Intercept)                    | 11.23  | 0.87   |     | 12.87   | <0.001  |
| Elevation                      | 0.00   | 0.00   |     | -11.43  | <0.001  |
| Springtails surface            | -11.85 | 1.14   |     | -10.41  | <0.001  |
| Springtails soil               | -10.30 | 1.15   |     | -8.97   | <0.001  |
| Beetles                        | -5.10  | 1.14   |     | -4.48   | <0.001  |
| Oribatid mites                 | -2.68  | 1.15   |     | -2.33   | 0.020   |
| Spiders                        | -3.82  | 1.14   |     | -3.36   | 0.001   |
| Elevation: Springtails surface | 0.004  | 0.0004 |     | 10.42   | <0.001  |
| Elevation: Springtails soil    | 0.003  | 0.0004 |     | 8.47    | <0.001  |
| Elevation: Beetles             | 0.001  | 0.0004 |     | 3.76    | <0.001  |
| Elevation: Oribatid mites      | 0.001  | 0.0004 |     | 1.99    | 0.048   |
| Elevation: Spiders             | 0.001  | 0.0004 |     | 2.79    | 0.006   |
|                                |        |        |     |         |         |
| (Table S4b)                    | Value  | SE     | df  | t-value | p-value |
| (Intercept)                    | -0.02  | 0.19   | 27  | -0.12   | 0.908   |
| TVI                            | 0.66   | 0.09   | 26  | 7.61    | <0.001  |
| Springtails surface            | 1.61   | 0.19   | 289 | 8.27    | <0.001  |
| Springtails soil               | 0.60   | 0.19   | 289 | 3.08    | 0.002   |
| Beetles                        | -0.42  | 0.19   | 289 | -2.14   | 0.033   |

#### References

Oribatid mites

**TVI:** Springtails surface

**TVI:** Springtails soil

**TVI:** Oribatid mites

**TVI: Beetles** 

**TVI:** Spiders

Spiders

Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Benito Alonso, J. L., Coldea, G., Dick, J., Erschbamer, B., Fernandez Calzado, M. R., Kazakis, G., Krajci, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., Nagy, L., Nakhutsrishvili, G., Pedersen, B., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Theurillat, J.-P., Tomaselli, M., Villar, L., Vittoz, P., Vogiatzakis, I., and Grabherr, G., 2012: Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2: 111-115. doi: 10.1038/nclimate1329

0.02

-0.32

-0.82

-0.60

-0.21

-0.20

-0.17

0.19

0.19

0.09

0.09

0.09

0.09

0.09

289

289

289

289

289

289

289

0.08

-1.62

-9.41

-6.94

-2.41

-2.33

-1.94

0.935

0.107

< 0.001

< 0.001

0.017

0.020

0.054