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Abstract

MDPOW is an open source Python package for calculating water-octanol and water-cyclohexane
partition coefficients using the molecular dynamics package GROMACS. During the SPIDAL
REU, MDPOW was updated to support Python 3. A collection of classes were constructed, to
simplify development of simulation analyses. These objects were designed for efficient and orga-
nized storage of a group of molecular dynamics systems, and provide a basic framework for devel-
oping analyses. All code is included in the latest release of MDPOW at https://github.com/becksteinlab/mdpow.

1 Introduction

Molecular dynamics (MD) is one method for computing water-octanol partition coefficients (P,,,) of
drug-like molecules. This is accomplished through calculating the free energy of solvation from the
simulation. With free energy values from water and octanol the partition coefficient can be obtained
using Ppyy = (AGy, — AG,)/(RT)log(e) where R = 8.31446261815 x 1072 kJ/mol - K is the universal
gas constant and e is Euler’s number [5].

A number of methods exist for obtaining free energies of systems in MD simulations. The two
discussed here are Bennett Acceptance Ratio (BAR) and Thermodynamic Integration (TT) [10]. The
free energy change AA from the canonical partition function @ is defined by the following [3]:
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BAR overcomes the challenge of calculating partition functions by substituting the ratio of the
partition functions @Q1/Qq for the ratio of probabilities (My/M;) for a trial move which maintains
the same configurational space but switches potential energies from the reference system Uy to the
unknown system Uy and vice-versa [2]. The potential energy can be calculated with system positions.

Thermodynamic integration (TI) obtains changes in free energy by defining a parameter A such
that at A\=0U = Uy and at A = 1 U = Uy, where U; is the final state and Uy is the initial state,
and taking the partial derivative of A with respect to A and integrating from 0 to 1 [3].

Both BAR and TI use A as a parameter for the extent of solute-solvent interactions [3]. This
requires running a MD simulation for each interaction at their respective A values [7]. The process of
initializing that number of simulations requires either the creation of a shell script running each or a
tedious process of manually navigating directories, copying files, and running simulations. MDPOW
makes this process easier with the user simply defining their settings and supplying a coordinate file,
then running a few Python scripts.

MDPOW is not without its limitations. Before release 0.7.0 it was incompatible with anything
newer than Python 2.7 and had few features for analysis beyond running BAR and TI calculations.
Both of these features were added over the course of the SPIDAL REU.

Incompatibility with Python 3 created a number of challenges, in particular compatibility with
newer versions of dependencies such as MDAnalysis, which dropped Python 2 compatibility [8, 6].
This made new development more difficult, and meant that users had to create an environment
for MDPOW separate from the environment used for other portions of a project. For version 0.7.0,
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retaining Python 2 cross-compatibility was necessary due to the long-term nature of scientific projects.
This meant that many of the new features added in Python 3 such as f-strings, and in Python 3.6
and later, type annotations, were unavailable during the update process [5, 1].

An additional shortcoming of MDPOW addressed during the REU
was its lack of a simple methodology for analyzing sets of alchemical free
energy simulations. MDPOW, when running free energy perturbation
(FEP) simulations, establishes a directory like the example in Fig 1, with
simulation files sorted by solvent, interaction and A-value. Running a
simulation to get the partition coefficient can result in forty or more indi-
vidual systems. For example using MDAnalysis Universe objects to load
systems, one would have to write code to individually load each simula-
tion each in its own directory. That’s not to mention actually running
analyses on that set of systems. Requiring users to each develop their
own analysis tools for managing a larger number of systems would result
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in lost time and repeated work. Providing an analysis framework makes 1220 1200
the process more user friendly.

Figure 1: Example MD-
POW FEP directory
2 Methods structure

2.1 Modernizing MDPOW

The differences between Python 2 and Python 3 presented compatibility

issues in a number of key areas primarily: outdated tests, pickle compat-

ibility issues, and changes to syntax. The first issue was ensuring that all tests ran in both Python
versions so that cross compatibility could be validated. MDPOW testing is done in pytest, which
eliminated yield tests in version 4.0 requiring their replacement. This was done using parameteriza-
tion tests where the test parameter and a list of inputs are provided to a function. In the process of
running tests, it became apparent reading pickle files was an incompatibility between versions. Pickle
files, which save an instance of a Python object as a file, are used throughout MDPOW, particularly
in testing. Pickles encoded in Python 2.7, when read normally using the six library in Python 3
raised byte errors. To solve this, pickle loading code was replaced with the block below throughout
MDPOW.

if sys.version_info.major >= 3:
with open(gsolv, ’rb’) as f:
G = pickle.load(f, encoding=’latinl’)
elif sys.version_info.major ==
G = pickle.load(gsolv.open())

By checking for the version, pickles can be loaded in byte mode when code is run in Python 3,
ensuring compatibility. Patches like this, where separate blocks of code are executed based on version
were avoided, but in this case was unavoidable. In MDPOW version 0.8.0 Python 2 support was
dropped, and this style of patch has been replaced. The tests and pickle file represented the bulk of
compatibility issues. Aside from that the remaining issues were simply the result of syntax differences
present in older version of Python.

2.2 Implementation of Analysis Features

Addressing the aforementioned challenge of managing several simulations the Ensemble object was
developed. The Ensemble object is a collection of MDAnalysis Universes stored in a Python dictio-
nary. Python dictionaries, a type of hash table, have O(1) average search efficiency. This means that
the time required to find an item is independent of the size of the table [4]. This search efficiency,
and the organization created by the key-value pair structure of dictionaries, were the reasons for their
selection when developing the Ensemble object. An Ensemble object is able to load the trajectory
files present in a MDPOW molecules directory, automatically handling the process of directory nav-
igation and system loading. The Ensemble object also replicates some of the functionality present
in MDAnalysis Universe objects, namely it allows users to select atoms from the systems it stores.
This returns a EnsembleAtomGroup object.

The EnsembleAtomGroup is to the MDAnalysis AtomGroup as the Ensemble is to the MDAnal-
ysis Universe. It is initialized by the select atoms command of Ensemble. It, like the Ensemble
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attempts to extend the functionality of MDAnalysis objects to collections of those objects. It has
class methods to select atoms, return positions, and return the original Ensemble object. The code
example below shows how an Ensemble can be initialized from a simulation directory, and how an
EnsembleAtomGroup is created from an Ensemble.
benzene_dir = os.path.join(’mdpow’, ’tests’, ’testing_resources’,

’states’, ’benzene’)

Benzene = mdpow.ensemble.Ensemble(dirname=benzene_dir)
DihedralGroup = Benzene.select_atoms(’name Cl1 or name C2 or name C3 or name C4’)

With the Ensemble and EnsembleAtomGroup objects an analysis framework analogous to Anal-
ysisBase in MDAnalysis was developed for running calculations on collection of systems gener-
ated by MDPOW. Setting up an analysis for a MDPOW simulation requires simply sub classing
EnsembleAnalysis as in the next listing. To implement an analysis, an EnsembleAnalysisBase
subclass with a few basic methods must be defined. For an analysis to work it needs an __init__ to
accept parameters, a _prepare to create a place to store data, a _single_universe Or _single_frame that
runs an analysis generating data. A more detailed explanation of designing an analysis can be found
in section 3.1.1.
class ExampleAnalysis (mdpow.ensemble.EnsembleAnalysis):

def __init__(self, ExampleEnsemble):

super (ExampleAnalysis, self).__init__(ExampleEnsemble.ensemble ())
self . _ensemble = ExampleEnsemble

def _prepare_ensemble(self):

self._cols = [’solvent’, ’interaction’, ’lambda’, ’time’, ’result’]
self._result_dict = {x: [] for x in self._cols}
self .results = pd.DataFrame(column=self._cols

def _single_frame (self):
result = analysis_function(self._ensemble[self._key])
res_list = [self._key[0], self._key[1], self._key[2], self._ts.time, result]
for i in range(len(res_list)):
self. _result_dict[self._col[il].append(self.res_list[i])

def _conclude_ensemble(self):
for k in self._result_dict:
self .results[k] = self._result_dict[k]

EnsembleAnalysis was developed to be similar to AnalysisBase in MDAnalysis. When developing
an analysis several aspects must be defined; an __init__, which accepts parameters in this case lines 2-4.
Among the parameters must be at least one Ensemble, which must be passed back to the parent class
using the super function from Python as seen in line 3. Next _prepare_ensemble and _prepare_universe
can be used to establish data structures used in the overall analysis and the individual systems. In
lines 6-9 on the example a results dictionary and DataFrame are set up for organizing results by
solvent, interaction, lambda, and time. Next are the methods responsible for generating results from
the MD simulations, _single_universe which runs on each system in the Ensemble, and _single_frame
which runs on each frame of each Universe. _conclude_universe and _conclude_ensemble are run after
each Universe and the Ensemble respectively. When an EnsembleAnalysis based object is run, each
system stored in the provided Ensemble is iterated over with _single_universe ran at that point, and
_single_frame run on each frame of the Universe. In this case _single_frame consists of an example
example_function which returns a result on line 12. In the proceeding lines that result is stored in
_result_dict which was created in _prepare_ensemble. All of the information from each frame is recorded
to ensure that the data is "tidy”[11]. Afterwards there is the option to define _conclude_universe which
runs each time a new system is completed allowing for processing to occur after each system. Finally
after iteration is complete _conclude_ensemble is run. In this case it saves the contents of the results
dictionary into the results DataFrame, this is done at the end because dictionaries are far simpler
to add data to within the program, but DataFrame is more convenient for saving and plotting data.
In the final DataFrame each index has a all the information, ’solvent’, 'interaction’, 'lambda’, time’,
and ‘result’. This allows for easy organization of data by multiple parameters for example returning
all the results for water and VDW.
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3 Results and Discussion

With the establishment of a framework for analyzing collections of simulations, such as those generated
by FEP calculations, the process of developing analyses for MDPOW simulations is simplified. These
are developed using objects created as subclasses of EnsembleAnalysis.

3.1 Implemented EnsembleAnalysis Methods

Using the EnsembleAnalsis framework two new methods were developed as part of the new MD-
POW analysis submodule. The first to be discussed is SolvationAnalysis which quantifies solvent
molecules within the given cutoff distances. It is discussed in section 3.2.1 specifically focusing on
how to design an EnsembleAnalysis based class. The second is DihedralAnalysis in section 3.2.2
which discusses considerations for efficient design of EnsembleAnalysis classes.

3.1.1 Solvation Shell: Example for the EnsembleAnalysis Framework

One of the analyses developed with the EnsembleAnalysis framework, SolvationAnalysis, which
returns the number of solvents within the given distances, can also serve as an example of how to
develop an analysis more generally.

SolvationAnalysis quantifies the number of solvent atom within a given distance of the so-
lute. It accomplishes this through calculating the distances between and each molecule using the
capped_distance function from MDAnalysis to get the indices for pairs which fall within the given
cutoff [8, 6].

Building EnsembleAnalysis using inheritance, a concept from object oriented programming, sim-
plifies the process of programming an analysis. Inheriting from a superclass gives a subclass the same
methods and attributes, meaning that some methods common to all EnsembleAnalysis objects like
run can be retained; other methods the user can override to run their own analysis code. To develop
SolvationAnalysis, only three methods were overridden in the subclass.
class SolvationAnalysis (EnsembleAnalysis):

def __init__(self, solute: EnsembleAtomGroup, solvent: EnsembleAtomGroup,

distances: List[float]):
self.check_groups_from_common_ensemble ([solute, solvent])

super (SolvationAnalysis, self).__init__(solute.ensemble)
self._solute = solute

self._solvent = solvent

self._dists = distances

def _prepare_ensemble(self):

self._col = [’distance’, ’solvent’, ’interaction’,
>lambda’, ’time’, ’N_solvent’]
self . results = pd.DataFrame(columns=self._col)

self._res_dict = {key: [] for key in self._col}

def _single_frame (self):
solute = self._solute[self._key]
solvent = self._solvent[self._key]

pairs, distances = capped_distance(solute.positions, solvent.positions,
max (self._dists), box=self._ts.dimensions)
solute_i, solvent_j = np.transpose(pairs)
for d in self._dists:
close_solv_atoms = solvent[solvent_j[distances < dl]

result = [d, self._key[0], self._keyl[1],self._keyl[2],
self._ts.time, close_solv_atoms.n_atoms]
for i in range(len(self._col)):
self. _res_dict[self._col[i]].append(result[i])

def _conclude_ensemble (self):
for k in self._col:
self.results[k] = self._res_dict[k]

The first method __init__ accepts arguments needed to generate an instance of the object. In
this case the user selected solute and solvent, contained in EnsembleAtomGroups, and a list of
the distances to be measured. On line 2 the __init__ ensures that the two EnsembleAtomGroup
objects originate from the same Universe using a built in method of EnsembleAnalysis called
check_groups_from_common_ensemble. This is important as the the groups in _single_frame must both
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exist in the same Universe. Next the Ensemble from the aforementioned groups is passed into the
parent class with the super function in line 4. Finally the items are saved as class attributes (saved in
the class, and accessible to other methods). The underscore in front of method and attribute names
by Python convention indicates that it is protected.

The next method _prepare_ensemble establishes data structures needed in the analysis. The final
results are available to the user in a DataFrame, but for the sake of efficiency the results are stored in
arrays contained in a dictionary with the same keys as the columns in the DataFrame as the analysis is
run. On line 13 for brevity dictionary interpretation is give each key a blank array. With structures
established for storing the results the next methods can focus on obtaining information from the
simulation.

With data structures lined up, the actual number of solvent molecules
can be counted with _single_frame. This is done using the fast capped
distances function in MDAnalysis on line 18. This computes a distance
array for the given group positions and returns distances in that range [8,
6].

Finally the _res_dict data is inputted into the results DataFrame. This
gives data that is neatly organized and easy to generate figures from.
The data obtained from SolvationShell gives an idea of how solvent
molecules are distributed around the solute. This data can also be com-
pareq be.twleen. different A value.s in a a.lchemical free energy s.imul.ation, Figure 2: SM36 from
offerm.g incite into the role of different intermolecular interactions in the SAMPL7 dataset
solvation process.

This analysis was developed to determine arrangement of solvents
around the solute. Figure 2 is SM36 from the SAMPL7 data set
shows a rendering of the solute sew rounded by water molecules [5].
SolvationAnalysis works by counting the solvents within the given cutoff’s. The relationship be-
tween distance and number of solvent molecules for the solvent in figure 2 is shown in figure 3. The
collected data sorted with Coulomb on the left and VDW on the right shows that the solvent molecules
arrangement around the solute is dependent on their interactions.
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Figure 3: Example solvation shell plot for SM36 in water. Solvation data is sorted by interaction with
Coulomb on the left and VDW on the right. Lambda is a parameter for the extent of interactions.

3.1.2 Dihedral Analysis: Building an EnsembleAnalysis Efficiently

Additionally DihedralAnalysis was developed using the EnsembleAnalysis framework. DihedralAnalysis
accepts a list of EnsembleAtomGroup objects and returns the dihedral angles over the course of the
trajectory. It accomplishes this using the calc_dihedrals function from MDAnalysis [8, 6]. This func-

tion is written in Cython, which translates python code to C, making it significantly faster than code
written in python [9].

Dihedral angles are calculated from the positions of four atoms, and describe the geometry of two
portions of a molecule between a chemical bond. This gives a better understanding of the spatial
relationship between groups in a molecule. Figure 4.A demonstrates how a dihedral can quantify the
arrangement of larger groups in a molecule, in that case the orientation of the phenyl group on the
carbon labeled 4 relative to benzyl group on the carbon labeled 1.
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Figure 4: A. Dihedral C-N-S-C (1 - 2 - 3 - 4) from SM36. B. Plot of execution time for repackaging
method (top) and iterating (bottom).

DihedralAnalysis was built to collect data of dihedral angles over time from simulations. It uses
the same data organization methods implemented in SolvationAnalysis generating an indexable
DataFrame implying the process of data analysis. Figure 5 demonstrates the data generated by
DihedralAnalysis used in two different plots.
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Figure 5: Plot of dihedral angle over time from C-N-S-C of SM36. A. Angle of dihedral for each
interaction and lambda. B. time series with Coulomb left and VDW right for dihedral angle over
time.

Two different implementations were tested during the development of DihedralAnalysis, iter-
ative and The implementation of DihedralAnalysis in MDPOW was based on the MDAnalysis
version designed for one Universe, accepting a list of AtomGroup objects each containing the four
atoms of a dihedral group. It then repackages that list of AtomGroup objects into four groups each
containing one atom from the user given list [9]. The advantage of this approach is that for each
frame of the trajectory calc_dihedrals, which can accept arrays, is only run a single time, calculating
the list of dihedrals simultaneously. This is more efficiency due to the aforementioned efficiency of
code run in C as compared to python.

DihedralAnalysis replicated this approach, but extended it to a list of EnsembleAtomGroup.
Prior to running calculations, the dihedral group atoms are repacked into new AtomGroups each
containing one atom from each provided dihedral group. Those AtomGroups are then repackaged into
four EnsembleAtomGroups, ensuring that, like in the MDAnalysis version, calc_dihedrals is only called
once per trajectory frame rather than repeatedly as the list of dihedrals is iterated over.

When applied to EnsembleAtomGroups the added inefficiency of repackaging the dihedral groups
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outweighed the added efficiency of removing iteration from _single_frame. This was found by compar-
ing the execution time of the two methods as additional dihedral groups were added as seen in figure
4.B. The iterative method outperformed the repackaging method by a relatively consistent margin
each time.

4 Conclusion

The modernization of MDPOW and development of the analysis submodule over the course of the
SIPDAL REU increased the usability and utility of the library. The update to Python 3 will ensure
compatibility with future versions of dependency libraries, and ensure access to future features of
those libraries. Additionally the Ensemble objects and EnsembleAnalysis framework simplify the
development of analytical tools within MDPOW.
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