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Abstract 

 

The global marine environment is currently facing unprecedented anthropomorphic change 

and stress. One such stressor is plastic pollution, which has continually increased in 

magnitude since mass production began in the 1940’s. An increase in plastic debris 

throughout the oceans not only results in an infiltration of the pollutants throughout the 

entirety of the marine environment, but also increases the risk that it impacts the 

physiological, structural, and behavioural traits of various organisms – including humans. 

These negative interactions are particularly likely with microplastic particles (< 5 mm), as 

they can enter and be transferred throughout the food web with ease. However, research in 

the field of microplastic pollution is extremely one-sided, with most present studies focusing 

on the Northern Hemisphere. Additionally, comparatively little has been investigated 

regarding temporal and spatial patterns of microplastic occurrence. The aim of this research 

was to 1) examine the abundance and distribution of synthetic particles in sub-surface waters 

of the Southern Ocean, across broad temporal and spatial scales and 2) examine finer-scale 

spatial and temporal patterns of microplastic load within the urbanised Wellington Harbour, 

New Zealand, using a combination of environmental and biological indicators.  

To assess the broad-scales of temporal and spatial variation in the Southern Ocean, annual 

Continuous Plankton Recorder (CPR) tows were undertaken between New Zealand waters 

and the Ross Sea, Antarctica, over a span of 9 years (the austral summers of 2009/10 – 

2017/18) and a range of 5 oceanographic zones and two frontal systems, totalling a distance 

of approximately 22,000 km. Overall, patterns were inconsistent, with no constant increase or 

decrease in load throughout the years, while spatial variation was minimal and not associated 

with particular oceanographic fronts or proximity to an urban area. Despite no consistent 

spatial variation, temporal differences did occur between years. Again, there were no 

identifiably consistent trends across years (i.e. a gradual increase), but there was a substantial 

peak in 2009/10 and a trough in 2012/13. Such changes are likely due to large-scale 

variations in ocean circulation systems, along with environmental drivers such as El Niño and 

La Niña events.  

To investigate the microplastic load in a more urbanised environment, 3-monthly surveys 

were undertaken with surface waters, beach sediments, and M. gallloprovincialis mussels in 

Wellington Harbour, New Zealand, using samples from three sites for beach and mussel 
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surveys, and two sites for the surface water tows. Weekly variation was also measured for 

beach sediments and mussel tissues. Again, no consistency was observed in temporal or 

spatial variation for any environmental or biological indicator, however the average pollutant 

loads were on par with reported results in other literature, particularly for M. 

galloprovincialis tissues. Temporally, the peak microplastic load in the tissues of the mussel, 

M. galloprovincialis, appeared to correlate with the peak load found within the surface waters 

of the harbour, indicating a possible relationship between plastic pollution in the environment 

and that which is found within organisms. Finally, the spatial variation observed within beach 

sediments was far larger than that seen throughout the mussel tissues, supporting the idea that 

beach sediments are microplastic sinks, but also susceptible to a range of environmental 

drivers including wind strength, wind direction, and sediment erosion.  

Throughout the Southern Ocean and within Wellington Harbour, particle characteristics were 

similar, in that microfibres were the prevailing synthetic morphotype – accounting for 

upwards of 90% of all particles found. These results are similar to reports from other current 

literature, but not associated with public knowledge that is currently in the media and 

represented in the legislation. The results of this thesis illustrate the importance of monitoring 

and managing the occurrence and effect of microplastics on both fine- and broad-scales of 

temporal and spatial variation and helps address the knowledge gap surrounding 

microplastics in the Southern Hemisphere.  
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1. General Introduction 

 

Ensuring the health and productivity of the world’s oceans is integral to maintaining global 

biodiversity and the earth’s continued ability to thrive. However, numerous stresses are 

impacting the marine environment and its ability to support biodiversity on a global scale, 

including climate change, ocean acidification, and pollution. One key source of pollution is 

plastic debris, which has recently been described as any object that contains a synthetic or 

semi-synthetic polymer as the essential component, solid in natural environments and 

insoluble at 20°C (Hartmann et al., 2019). However, in general, plastic as a material can be 

defined as any synthetic organic polymer which is derived from oil and gas monomer 

polymerisation (Derraik, 2002; Rios et al., 2007; Thompson et al., 2009; Cole et al., 2011). 

As a result, plastics are extremely diverse in size, colour, chemical composition, and origin; 

they exist throughout the world as a key material that is used daily.  

The commercial manufacture of plastic took off in the 1940’s, around the time of the Second 

World War (Cole et al., 2011). Since this first instance of mass production, the development 

and use of plastic items has continued to grow, with the material’s seemingly inexhaustible 

purposes cementing its place in modern society. This rise in popularity can be attributed to its 

key characteristics, strength, durability, and flexibility.  The latest data shows that 359 

million tonnes of plastic were produced globally in 2018 alone (Figure 1.1), the highest 

amount produced in a single year since commercial manufacture began (PlasticsEurope, 

2019). However, this figure is likely to be highly conservative, as it does not account for 

synthetic fibre production or direct microplastic production (Hermabessiere et al., 2017).  
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Figure 1.1: Data from PlasticsEurope (2019) market data, demonstrating the global growth in plastic production 

from 2005 - 2018, measured in million tonnes. 

 

The problem with plastic 

Considering the sheer amount of annual plastic production that has been occurring for 

decades, and the diverse range of uses the material has throughout human society, it is 

unsurprising that plastic debris also exists in many forms. In fact, the characteristics of 

plastics that make them invaluable materials within human society are precisely the features 

that enable them to persist in the natural environment as long-lasting pollutants (Derraik, 

2002). Such debris can be found along an extensive size array, ranging from large 

commercial fishing nets that have been discarded, through to microscopic beads from beauty 

products (Fendall & Sewell, 2009; Napper et al., 2015). Consequently, plastic is ubiquitous 

around the globe and spread across terrestrial, freshwater, and marine biomes. Plastics are 

associated with numerous interactions and negative impacts on a wide range of ecosystems. 

For example, microplastics (<5 mm) within terrestrial environments are thought to leach 

chemicals into the surrounding soil and environment, leading to negative effects upon 

organisms such as plants and earthworms (Chae & An, 2018). However, despite plastic being 

manufactured by humans on land, a vast majority ends up in the marine ecosystem (Derraik, 

2002; Thompson et al., 2004; Eriksen et al., 2014; Galgani et al., 2015). Plastic litter makes 

its way into the ocean via several different pathways, including direct inputs such as littering, 

and run-off of manufactured consumer products (Reisser et al., 2013). Conversely, indirect 

inputs such as chemical and physical weathering of larger plastic debris inevitably results in 

fragmentation of the synthetic polymers into smaller particles that are continuously 

decreasing in size (Andrady, 2011; Jambeck et al., 2015). This inability to successfully 
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biodegrade causes a high abundance of plastic debris to infiltrate the world’s oceans – from 

the sea surface to the benthos of the deep sea, and polar regions to the tropics (for example: 

Goldberg, 1997; Obbard et al., 2014; Woodall et al., 2014; Van Sebille et al., 2015). The 

numerous pathways to the marine environment are exacerbated by contributing factors such 

as low regional and national plastic recycling rates. The recycling of these materials is often 

limited, due to the wide variety of plastic polymers available for use, which complicates the 

ability of governments to develop adequate methods for recycling, in ways that will not be 

detrimental to the environment (Dauvergne, 2018).  

To compound this issue, once in the marine environment, many plastic polymers are initially 

less dense than the surrounding seawater, so can be transported over long distances via 

surface currents (Maes et al., 2017). However, as factors like weathering and biofouling alter 

the appearance and structure of plastics, the buoyancy of the material decreases, thus 

promoting mixing of the pollutants throughout other parts of the water column (Ye & 

Andrady, 1991; Morishige et al., 2007; Maes et al., 2017).  As a result, these synthetic 

materials interfere with many different marine species and taxa through direct contact such as 

entanglement and ingestion. Given that plastic comes in many different sizes and shapes, it is 

bioavailable to many different marine organisms. Size ranges of plastic includes 

nanoparticles (1-100 nm), microplastics (1-5000µm), and macroplastics (>5 mm) (Hartmann 

et al., 2019).  It can therefore enter the food web at various levels, from primary consumers to 

apex predators (Derraik, 2002; Van Freneker et al., 2011). 

However, it is not only the direct interactions that organisms have with marine debris that 

presents a problem. In contrast to the initial school of thought – that plastic litter is a long-

lasting yet inert pollutant - the production of plastic materials involves the addition of 

chemicals such as plasticizers and flame retardants which enhance the durability and 

functionality of the material (Andrady, 2017). Consequently, as fragmentation occurs in the 

ocean, these chemicals leach into the surrounding environment where they become available 

for ingestion by marine biota (Oehlmann et al., 2009). Leaching is not the only toxicity issue 

that arises from plastic pollutants, as Persistent, Bioaccumulative, and Toxic substances 

(PBT’s) known as Persistent Organic Pollutants (POPs) are efficiently bound to synthetic 

polymers (Andrady, 2011; Engler, 2012). Although POPs are naturally found in seawater at 

low concentrations, they can accumulate at a faster rate on the surface of plastic debris due to 

both compounds being hydrophobic (Engler, 2012). Consequently, the ingestion of plastic 

debris not only establishes the presence of synthetic particles within the food web, but also 
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introduces POPs to marine biota at unnatural levels (Bakir et al., 2012; Andrady, 2017). 

Chemical interactions such as these can impact the health and mortality of organisms 

(Rochman et al., 2016; Andrady, 2017), but are also deleterious at non-lethal levels, through 

the alteration of behaviours like predation efficiency (De Sá et al., 2015). 

Abundance & Distribution of plastic litter 

Plastic pollution is rightly considered a global environmental issue, as there is a high 

abundance of both macro- and microplastic pollution along a wide spatial gradient. Plastic 

has been observed and documented in most marine environments from the poles to the 

equator, in urbanised and remote oceanographic regions. The local, national, and 

international extent of this pollutant impacts the effect that it may have on marine biota. For 

this reason, a comprehensive portrayal of the global plastic pollutant load and distribution 

within the oceans, along with how its physical, chemical, and structural characteristics are 

integral to understanding the risks for various ecosystems. Additionally, the continued 

increase of global plastic production rates (Figure 1.1), along with its long-lasting nature, 

complex recycling governance, and the unsatisfactory waste management indicates that 

plastic is likely to persist, if not increase in prevalence, throughout the marine environment 

for the foreseeable future (Barnes et al., 2009; Tetu et al., 2019). Consequently, data provided 

on plastic abundance and distribution may be valuable in focussing minimisation and 

management efforts. 

Estimates vary on how much plastic debris can be found in the world’s oceans, as the load 

can be highly variable due to factors such as widely ranging oceanographic conditions, 

seasonal effects, and spatial differences in plastic inputs. Despite this complexity, Cole et al. 

(2011) suggests that marine plastic debris likely accounts for 10% of all plastic produced. 

Conversely, Hermabessiere et al. (2017) stated that a low estimate for global, floating plastic 

litter may be between 70,000 – 270,000 tonnes. Combinations of intensive sea-surface 

sampling and statistical modelling indicates that microplastics comprise 1% of the plastic 

debris that enters the oceans each year from land-based sources (Van Sebille et al., 2015). 

However, one type of microplastic, microfibers, are thought to account for up to 95% of the 

sea surface, benthic, and coastline litter (Cesa et al., 2017; Galgani et al., 2015). Three 

comprehensive studies have been undertaken with the aim of determining microplastic 

occurrence, utilising various methodologies and oceanographic models. Cózar et al. (2014) 

estimated between 7000 – 35,000 tons of plastic (size range 0.20 – 100 mm), while Eriksen et 

al. (2014) suggested 35,500 metric tonnes (size range 0.33 – 200 mm). Van Sebille et al. 
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(2015) produced a considerably higher estimate than previous studies of 93,000 – 236,000 

metric tonnes (size range <200 mm). Despite these estimates being highly variable and 

including meso-particles larger than 5 mm, cumulatively they highlight the sheer magnitude 

of the issue.  

Abundance estimates are likely conservative and do not show the full extent of the problem. 

Currently, sea surface tows and oceanographic models are the primary measures available to 

monitor microplastic. Eriksen et al. (2014) recognises this limitation, particularly after 

considering how macroplastic fragmentation impacts the prevalence of microplastics. 

Theoretically, since large debris degrades into smaller particles, the volume of microplastics 

in the marine environment should be comparable to the volume of macroplastic. In addition, 

these global estimates only account for microplastics on the sea surface, and does not include 

those suspended in the water column, on the benthos, within sediment and sea ice, or ingested 

by organisms, which together likely comprise a large fraction of what is in the oceans 

(Eriksen et al., 2014). Sampling efforts may also impact the abundance of particles, with a 

wide range of collection methods and weather events disrupting sampling. Strong winds, for 

example, decrease surface microplastic concentrations by as much as five times (Collignon et 

al., 2012; Kukulka et al., 2012; Ivar de Sul & Costa, 2014). Additionally, other removal 

processes impact the abundance and distribution of surface microplastics, including 

decreased particle buoyancy (Barnes et al., 2009) and biodegradation of some synthetic 

polymers by microbes (Shah et al., 2008).  

Along with aiding fragmentation, physical processes help to determine where plastic litter is 

distributed. Although plastic debris has been documented in all major oceans, factors such as 

ocean circulation and wind-driven vertical mixing increase the likelihood of its concentration 

in certain oceanographic regions (Van Sebille et al., 2015). Consequently, plastics at the sea 

surface are of highest densities in the convergence zones of sub-tropical gyres (Cózar et al., 

2014; Kanhai et al., 2017). Cózar et al. (2014) describes this convergence as a large conveyor 

belt that collects floating plastic debris from the continents and brings it together using large-

scale vortices. Van Sebille et al. (2015) identifies the North Pacific Gyre as containing the 

largest global reservoir of plastic litter. This is the result of its proximity to plastic inputs by 

the populous United States and Asia, along with the convergence of Ekman transports 

(Jambeck et al., 2015; Van Sebille et al., 2015). Eriksen et al. (2014) estimates that 55.6% of 

the total floating plastics are in the Northern Hemisphere, 37.9% of which are confined 

within the North Pacific.  
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Despite occurring in high concentrations at convergence zones, plastic debris also infiltrates 

many other habitats and ecosystems, including both the deep sea and polar regions – For 

example within sea ice. Although often far-removed from urbanisation and human society, 

habitats such as the deep sea and its associated benthos have been reported to contain a 

microplastic load of up to one particle per 25 cm2 in the Mediterranean and Atlantic Ocean 

(Van Cauwenberghe et al., 2013). Synthetic fibres were also documented in similar regions, 

with concentrations reaching up to four orders of magnitude higher than microplastics 

surveyed at the sea surface (Woodall et al., 2014). Larger plastic debris has also been 

documented within the deep-sea benthos of the Arctic (Bergmann & Klages, 2012). As the 

deep-sea is considered a sink for plastic litter (Goldberg, 1997), it can be inferred that both 

micro- and macroplastics are likely to be a typical part of the sediment layer throughout all 

major ocean basins.  

Sea ice, on the other hand, typically incorporates microplastics as opposed to larger plastic 

debris. Formation of ice concentrates whatever particles are encompassed within it, trapping 

it until the ice melts (Obbard et al., 2014). This was the first publication that illustrated direct 

evidence for substantial microplastic pollution in the Arctic (Lusher, 2015). Obbard et al. 

(2014) sampled ice cores from remote locations around the North Pole, with the subsequent 

results showing concentrations two-times higher than the surface waters throughout the 

Atlantic or the North Pacific gyre at the same time (38 – 234 particles per m3). As sea ice is a 

temporary sink for microplastics, it is highly likely that amplified annual sea-ice melt due to 

ever-increasing effects of climate change, will result in the release of a large amount of 

microplastics into the surrounding water column where they are able to negatively interact 

with organisms (Obbard et al., 2014; Peeken et al., 2018).  

Macroplastics 

Research trends – Spatial & temporal patterns 

Throughout the second half of the 20th century, the rise in global plastic production coincided 

with the understanding that plastic did, in fact, pose a problem to the oceanic environment.  

Consequently, scientific studies began to investigate the impacts of the pollutant, primarily 

focussing upon macroplastic debris as it can be detected within the environment more easily, 

as well as detecting deleterious effects upon organisms from interactions such as 

entanglement and ingestion. Moreover, publications that demonstrated the direct impact of 

plastic on marine biota played a meaningful role in altering society’s view of the pollutant, 



19 
 

aiding a perspective shift from plastic debris being an inert and insignificant pollutant, to one 

that can interfere with physiology, behaviour, and mortality of organisms.  

The quantification of macroplastic abundance and distribution has long been a secondary 

focus to the direct effects that these materials have upon organisms. In fact, a recent paper by 

Ostle et al. (2019) was one of the first that investigated long-term trends in surface water 

macroplastic abundance. This study demonstrated a clear increase in plastic litter over the 60-

year time series (1957-2016), across the North Atlantic. Although this is the most extensive 

study on how marine plastic debris has changed over time, previous studies have also 

indicated similar trends. For example, a report by Ryan & Moloney (1993) demonstrates an 

exponential increase in litter on an uninhabited island in the Tristan da Cunha group of the 

South Atlantic Ocean, between 1984-1990. Interestingly, both studies also note how, despite 

the clear increase in debris within the marine environment, research and monitoring 

surrounding the issue dropped off after 1987 (Ryan & Moloney, 1993; Ostle et al., 2019). A 

visual database of more than 1,000 marine litter studies – LITTERBASE (Tekman et al., 

2019) – illustrates that the number of macroplastic and microplastic abundance and 

distribution studies are similar (Bergmann et al., 2017; Ostle et al., 2019), but also most 

widely distributed around heavily populated regions (Figure 1.2). Considering that 

microplastic pollution is an emerging field, it is surprising that there are also significant gaps 

in the temporal and spatial trends regarding macroplastic pollution. In general, there appears 

to be a consensus that more work needs to be undertaken to understand patterns surrounding 

plastic pollution for all size classes, although visual databases such as LITTERBASE are a 

useful first step to recognise areas that require further attention (Bergmann et al., 2017; Ostle 

et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Distribution and results of studies investigating A) macroplastic abundance, and B) microplastic 

abundance across the globe (Tekman et al., 2019), where size of circle indicates relative reported pollutant 

concentrations.  
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Research trends – Interactions with biota  

Although there are distinct research gaps regarding long term distribution modelling and 

monitoring of macroplastic, the impacts that this pollutant has had upon marine organisms 

has been well described in the literature. Most of this literature centres around ingestion and 

entanglement, including many of the early studies and reports. In 1947, for example, a 

herring gull was reported to be entangled in a string (Jacobson, 1947; Ostle et al., 2019). Ten 

years later, a piece of twine – assumedly from fishing trawls – and a plastic bag were found 

tangled in a Continuous Plankton Recorder (CPR) (Ostle et al., 2019). At this stage, only a 

decade or so had passed from the beginning of commercial plastic production, yet there was 

already evidence of this pollutant being found in the open ocean.  

Entanglement in plastic debris became a persistent problem for marine organisms almost 

from the time that this synthetic material entered the ocean. The issue has been well-

understood for decades (Law, 2017), but the threats has only become more prevalent as the 

amount of plastic litter in the oceans increases. Evidence now suggests that approximately 

46% of seabird species, 100% of sea turtle species, and 26% of marine mammal species are 

negatively impacted by plastic entanglement, often resulting in serious injury or death 

(Koelmans et al., 2014; Worm et al., 2017). Although entanglement directly impacts 

individuals, this threat has been linked to the population decline of different species, 

including seals and sea lions (Fowler, 1987; Henderson, 2001; Derraik, 2002). One common 

cause of entanglement is discarded fishing nets (Figure 1.3), often referred to ghost fishing 

nets (Worm et al., 2017). For marine air-breathing taxa such as turtles, seabirds, and 

mammals, the inability to breathe due to entrapment in a net will likely have severe 

consequences. There is a myriad of other plastic items that are able to wrap around, choke, 

and encase organisms, with the immense variety of plastic shapes and sizes exacerbating the 

number of species and taxa that are vulnerable to plastic entanglement (Worm et al., 2017). 

In addition to impaired breathing, the other key consequences for individuals affected by 

entanglement include suffering abrasions and deep cuts into tissue from a tightly-wound item, 

as well as a negative effect upon mobility; thus, becoming vulnerable to predation (Derraik, 

2002). Additionally, problems may arise when juveniles become tangled in plastic pollution. 

As the individuals grow, they are likely to become constricted and impaired by the material. 

Entanglement is an issue typically constrained to macroplastic pollution, as microplastics are 

generally not large enough to entrap an organism. Consequently, past research has heavily 

focussed upon the effects of entanglement, as the results are both easily noticeable and 
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severe. Entanglement presents a significant problem to countless marine species, particularly 

as it is not only thought to impact individuals, but rather the fitness and success of 

populations.  

 

 

 

 

 

 

 

Figure 1.3: Images of A) a dead shearwater seabird and B) a sea turtle, both entangled in a common form of 

marine plastic pollution; discarded fishing nets. Image credit: A) NOAA Fisheries Pacific Islands Regional 

Office, B) Brian Skerry, National Geographic photographer. 

 

Within addition to entanglement, ingestion of macroplastic is also extremely common, with 

countless anecdotal and scientific reports of marine animals being found with some form of 

plastic in their digestive system (Derraik, 2002). This was first illustrated in the 1960’s with 

seabirds (Figure 1.4) and marine turtles (Harper & Fowler, 1987; Gregory, 2009; Law, 2017), 

however, like the issue of entanglement, research is still being undertaken to demonstrate the 

exact impacts of macroplastic ingestion and how widespread the problem is across taxa and 

oceanographic location. Ingestion may either be passive, such as the act of filter-feeding, or 

active, which may involve mistaking the item for prey (Derraik, 2002). Active ingestion is a 

mechanism that is common amongst marine biota such as sea turtles, who regularly mistake 

items such as plastic bags for a primary prey source, jellyfish (Figure 1.4) (Mattlin & 

Cawthorn, 1986; Derraik, 2002; Worm et al., 2017). This interaction is not only cited often in 

scientific literature, but also widespread in the general media and often credited as the 

inspiration behind plastic bag bans in numerous nations (Xanthos & Walker, 2017; Avery-

Gomm et al., 2018). Compared to microplastic ingestion, the larger and easier-to-observe size 

of macroplastic often results in its direct interactions with biota being more commonly 

reported in the media and in peer-reviewed publications, especially since this type of marine 

debris has extensive consequences for charismatic megafauna like sea turtles, seabirds, and 

cetaceans. The size of the debris also means that fewer items are required to cause 

gastrointestinal blockages, with gradual starvation a readily cited negative impact of plastic 

ingestion, in conjunction with chemical leaching (Derraik, 2002).  
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Figure 1.4: Images of A) a deceased Laysan Albatross with ingested plastic debris in its internal tissues and B) a 

sea turtle in the process of eating a discarded plastic bag. Image credit: A) Chris Jordon, Smithsonian Museum, 

B) Troy Mayne, WWF.  

 

Microplastics 

Origin & history of microplastic research 

In contrast to the substantial research of macroplastics and their effects on marine biota, 

microplastics are a relatively new and emerging research topic within the field of marine 

pollution. Although there has been an increasing focus on these particles within the scientific 

community since the early 2000’s (Ivar do Sul & Costa, 2014), much is still unknown 

regarding their abundance, distribution, and impacts on organisms in the marine environment.  

The first publication solely focused on plastic < 5 mm in length/diameter was released in 

1971 and was the only report or paper to discuss the issue of synthetic fibres in the marine 

environment before the rise of the 21st century (Ivar do Sul & Costa, 2014). Even though this 

was the first paper of its kind in the scientific literature, Buchanan (1971) recognised that the 

particles appeared to be steadily increasing in abundance. Furthermore, despite the field of 

microplastic research having only recently emerged, with fewer than 20 papers published pre-

2000, the research commonly recognised the potential consequences that these synthetic 

particles could have on the marine environment and the function of its ecosystems. Carpenter 

and Smith (1972) discussed how increasing concentrations of such particles may lead to a 

high accumulation on the sea surface. Similarly, Colton et al. (1974) emphasised the inability 

of plastic debris to biodegrade, which is an issue then confounded by the particles’ ability to 

provide an ideal surface for PCB’s to grow. However, most of the early papers generally 

observed and documented the abundance and distribution of microplastics in Northern 

Hemisphere regions such as the Sargasso Sea (Carpenter & Smith, 1972), the North-western 

Atlantic (Colton et al., 1974), coastal New England (Carpenter et al., 1972), and the Bristol 

Channel (Morris & Hamilton, 1974).  
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Although early papers had a primary focus on determining where microplastics were found, 

as well as how abundant they were, interactions with and effects on marine biota were also 

often recognised. This included the ingestion of particles by seabirds (Hays & Cormons, 

1974; Fry et al., 1987; Ryan., 1988; Van Franeker & Bell, 1988) and fish (Carpenter et al., 

1972; Kartar et al., 1973), although the effects on these organisms remained unclear, due to 

the biological implications being more difficult to show or test for (Colton et al., 1974). 

However, it was assumed by early researchers that microplastics were unlikely to be 

beneficial to any animal (Gregory, 1996; Zitko & Hanlon, 1991). Early publications also 

began to speculate on the sources of such pollution, and how efforts could be made to 

minimise the introduction of further litter. Zitko & Hanlon (1991) demonstrated, for example, 

that plastic scrubbers from facial cleansers could be attributed to some of the direct 

microplastic inputs into the marine environment in the forms of polyethylene, polypropylene, 

or polystyrene. In addition, they proposed that from a ‘common sense basis’, use of such 

products – as well as unnecessary discharge – should be minimised, otherwise accumulation 

will likely occur in the marine environment.  

Interactions with biota 

Due to their small size, microplastics are often biologically available for marine organisms. 

Consequently, both direct and indirect interactions such as ingestion and subsequent trophic 

transfer are a widespread issue in many different ecosystems. A plethora of studies have 

examined ingestion of these synthetic particles, along with the issues microplastics may cause 

for various individuals, populations, and species. Unlike the ingestion of macro debris, 

microplastics often enters the food web at the lower trophic levels, for example marine 

invertebrates (Lusher, 2015). However, it has also been shown that marine alga can absorb 

microplastic debris by incorporating the particles into their cellulose, resulting in measurable 

oxidative stress and decreased photosynthetic output (Battacharya et al., 2010). However, 

whether ingestion occurs as the result of accidental consumption or selective choice often 

depends on the relative concentration of plastic associated with normal prey items, as well as 

the organism’s ability to discriminate between prey and plastic litter (Moore et al., 2001; 

Moore, 2008).  

Although many macroplastic ingestion studies focus on larger marine organisms, most 

microplastic ingestion studies are carried out at lower trophic levels, particularly with smaller 

benthic and planktonic invertebrates. These organisms are commonly filter-, suspension-, or 

deposit-feeders, and are therefore highly susceptible to microplastic ingestion from the water 
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column and sediments. However, whilst it is straightforward to demonstrate that an animal 

has ingested or absorbed plastic debris, it is more difficult to determine how long plastic 

debris remains in an organism’s digestive tract and tissues, as well as any physiological, 

structural, or behavioural effects. A few such studies have reported evidence of decreased 

feeding rates in zooplankton (Cole et al., 2013) and lugworms (Besseling et al., 2013), while 

increased mortality was observed in copepods after generational exposure to the toxicity of 

microplastics (Lee et al., 2013). In addition to feeding and survival, fitness of marine 

invertebrates is also thought to be adversely affected. Oysters experience reduced fecundity 

and decreased offspring quality, both of which are attributed to the ingestion of microplastic 

particles (Galloway & Lewis, 2016; Sussarellu et al., 2016). 

Conclusion and Aims of research 

Plastics are an important pollutant in the oceanic environment, regardless of size, shape, or 

type. They are now recognised as being long-lasting and ubiquitous in abundance and 

distribution worldwide. Furthermore, both microplastics and macroplastics have significant 

and adverse effects upon marine organisms; ranging from primary producers through to apex 

predators. These effects may be direct, such as entanglement or ingestion of plastic debris. 

Alternatively, indirect effects are also experienced, including the ingestion of leached 

chemicals from the surface of plastic, or the trophic transfer of synthetic materials that may 

lead to bioaccumulation of both physical debris and/or chemical toxicity.  

Efforts are continuously being made to expand the understanding of how plastic pollution 

impacts marine organisms, but it is also vital to understand where the debris is found and in 

what quantities. Such information enables research on biological effects to focus upon 

organisms particularly susceptible to direct impacts, as well as oceanographic regions with 

high pollutant loads. Most of the studies within this review have been carried out in the 

Northern Hemisphere, leaving parts of the Southern Hemisphere greatly under-researched 

and lacking reliable plastic pollution metrics (Avio et al., 2017). In particular, studies 

undertaken to assess plastic load within the remote oceanographic region of the Southern 

Ocean have only recently started to be carried out, and New Zealand’s microplastic research 

has only recently had a resurgence (e.g. Clunies-Ross et al., 2016; Webb et al., 2019; Bridson 

et al., 2020) after a strong beginning in the 1970’s (Gregory, 1977; Gregory, 1978). 

Increasing awareness surrounding microplastic patterns throughout the world’s oceans is also 

integral, as the fragmentation of larger plastics already in the marine environment will likely 

result in an increasing amount of smaller synthetic particles in the coming decades.  



25 
 

Consequently, this thesis explores the abundance and distribution of microplastics over 

temporal and spatial scales, to identify patterns in both a remote area of the ocean, as well as 

a heavily urbanised setting. The first chapter examines surface water microplastic load over a 

10-year time series in the Ross Sea Region of the Southern Ocean. The second chapter 

surveys the inner harbour of Wellington, New Zealand, encompassing surface water, 

sediment, and biological samples. to gain a broad perspective of microplastic pollution across 

multiple surfaces. Up-to-date assessments and information on microplastic load and its 

distribution should aid in developing plans and legislation to manage and mitigate the spread 

of global oceanic plastic pollution. 
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2. Large-scale temporal and spatial patterns of microplastic pollution 

between New Zealand and the Ross Sea, Antarctica 
 

 

Abstract 

This study aimed to characterize the pollutant load of synthetic particles in a multi-year, large 

scale study between New Zealand waters and the Ross Sea Region of Antarctica.  

Field collections were made during each austral summer (November – March), between the 

years 2009/10 – 2017/18. Sub-surface tows collected plankton and inorganic material such as 

microplastic with a 270 µm mesh silk, using a Continuous Plankton Recorder (CPR). 

Microplastic abundance, colours, sizes, and morphotypes were counted and subsequently 

quantified over temporal and spatial scales.  

There was no evidence for consistent patterns of change across the sampled months, years, or 

latitudinal zones, however pollutant loads were often dynamic in their occurrence. Yearly 

abundances varied substantially, with a large peak in the 2009/10 sampling year, and a deep 

trough in 2012/13. These responses suggest that floating microplastic debris is likely at the 

mercy of ocean circulation systems and large-scale environmental drivers such as El Niño 

and La Niña effects. Regarding particle characteristics throughout the sub-surface waters of 

the Southern Ocean, a broad range of both colours and sizes were found. In total, 9 different 

colours were identified across the samples, and these ranged in size from < 1 – 5 mm. 

Overwhelmingly, however, the most significant result regarding particle characteristics came 

from the morphotypes that were observed. Microfibres accounted for 90.6% - 99.5% of all 

particles collected each year, which supports the figures reported in other literature. 

 

 

 

 

 

 



27 
 

Introduction 

Antarctica and the surrounding Southern Ocean is considered, on a whole, to be the most 

remote geographical region in the world, with the relatively recent increase of scientists and 

tourism operations becoming the only regular visitors to the icy continent (Hughes, K.A., 

2010; Shah, R.M., 2013). However, the ubiquity of plastic pollution would suggest that 

debris is likely to have also permeated these waters. This is especially probable when 

considering the oceanography of the Southern Ocean and the current system that drives it. In 

comparison to the remote nature of the Antarctic land mass, the Southern Ocean is integrally 

connected to the rest of the world. The Antarctic Circumpolar Current (ACC) wraps around 

the Antarctic continent and thus is connected to the Atlantic, Indian, and Pacific oceans 

(Figure 2.1) (Rintoul, et al., 2001; Rintoul, 2018). This oceanic circulation system, the ACC, 

both thermally isolates the Southern Ocean to prevent excessive melting of ice, and transports 

nutrient-rich, warmer water that has originated from low latitudes around the continent 

(Tynan, 1998; Martinson, 2012). This large-scale, circumpolar circulation provides a pathway 

for pollutants such as microplastics to be introduced to and  established within the waters of 

the Southern Ocean.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic depiction of major currents of the Southern Ocean, with particular reference to the 

Antarctic Circumpolar Current (ACC) and its associated fronts, which encircles the Antarctic continent. Image 

credit: Rintoul et al., 2001. 
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Research into plastic pollution throughout the polar regions has been a recent development, 

with many studies focussing on the more accessible and urbanised parts of the ocean. Before 

2014, no studies had shown any direct evidence for a substantial microplastic pollutant load 

in the Arctic (Lusher, 2015), and it wasn’t until 2017 that researchers began sampling 

sediments and surface waters around the coast of Antarctica (Cincinelli et al., 2017; Isobe et 

al., 2017; Munari et al., 2017; Waller et al., 2017). Prior to this, only two scientific papers 

had been published on plastic debris in the Southern Ocean, one on macroplastic occurrence 

(Barnes et al., 2010) and the other on ingestion by petrels (Van Franeker & Bell, 1988). More 

recently, abundance and distribution estimates around the Antarctic continent have been 

carried out by multiple research teams from numerous nationalities, with an emphasis on 

using data from the surface waters of the Southern Ocean to explain how macro  and 

microplastic pollution loads are impacted by oceanic currents and their rate of dispersal 

around the globe (e.g. Isobe et al., 2019). Plastic pollution in polar regions is still an 

emerging research topic, and recent papers examining the abundance of microplastics in 

Antarctic waters are highly variable. In general, publications accept that microplastics are 

found within multiple environments in the Southern Ocean, including sediments and surface 

waters. In Admiralty Bay, microfibers had an average abundance of 2.40 (± 4.57) particles 

per 100 m-3 across 60 samples in the 2010-11 austral summer (Absher et al., 2019). Similarly, 

a study carried out around the Antarctic Peninsula found an average abundance of meso- and 

microplastics of 0.008 particles per m -3 (Lacerda et al., 2019). Altogether, Southern Ocean 

microplastic abundances have been poorly classified, with most publications focused on a 

localised area such as the Antarctic Peninsula or a specific bay (Absher et al., 2019; Lacerda 

et al., 2019). Such a lack of broad spatial and temporal studies is largely due to the logistical 

difficulties of carrying out research in this isolated region of the world.  

The Southern Ocean, covering the region south of 60˚C (Stössel et al., 2015), covers a vast 

expanse of ocean, so to limit microplastic studies to a narrow temporal or spatial range is to 

limit the knowledge that can be obtained on how extensive this pollutant is. Between New 

Zealand and the Ross Sea Region lies five major oceanographic zones and three main frontal 

systems (Figure 2.2), where each frontal system and its associated latitudinal zones have 

distinct characteristics and biological associations (Robinson et al., 2014; Rintoul, 2018). For 

example, satellite observations have recorded distinct differences in sea surface temperature 

and sea surface height across the different zones (Moore et al., 1999; Solokov & Rintoul, 

2009; Graham et al., 2012) The Sub-Tropical Front (STF) and its associated Sub-Tropical 
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Zone (STZ) have been suggested to be more susceptible to wind shifts, as this region is 

surface intensified (Graham et al., 2012). However, the other frontal systems, located at 

higher latitudes and within the ACC, are reported to be more sensitive to the associated 

topography, as opposed to wind shifts (Graham et al., 2012). Differences between the frontal 

systems are also observed when regarding biological communities. For example, Tynan 

(1998) and Rodhouse & White (1995) reported that the ecological community found within 

the Polar Frontal Zone (PFZ) includes cephalopods, but krill and fishes were absent. The 

spatial variability between frontal systems not only helps to control the global climate 

(Graham et al., 2012), but is also possibly a factor that contributes to the distribution of 

microplastics throughout the Southern Ocean, along with the interactions that these synthetic 

particles may have with the ecological communities which inhabit these waters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: CPR tows undertaken by FV San Aotea II during the first five annual sampling voyages (2008/09 – 

2012/13), where transects can be seen traversing the five latitudinal zones and three frontal systems.   
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Another contributing factor to the abundance and distribution of floating marine microplastic 

pollution is time. With the ever-increasing amount of plastic that is produced – and 

consequently discarded into the environment each year – temporal variation is an integral 

aspect of microplastic research. Currently, the only multi-year, long-term temporal study 

investigating floating debris has been carried in the Northern Hemisphere (Ostle et al., 2019). 

This study took place over a period of 60 years (1957-2016) and recorded a clear increase in 

macro- and microplastic pollution throughout sub-surface waters in the North Atlantic. On 

the other hand, Isobe et al. (2019) conducted a survey in the Southern Hemisphere, between 

Japan and Antarctica, in the Austral summer of 2016-2017. This study, while not a long-term 

temporal field study, utilised a numerical model to predict likely microplastic abundances in 

the future – up to 2066. This study by Isobe et al. (2019) also predicted that there will be an 

unmistakable increase in microplastic loads throughout these southern waters in the next ~40 

years. This limited understanding of long-term temporal patterns surrounding microplastic 

research severely limits the future advancement of this field, as mitigation efforts depend 

largely upon a well-defined knowledge of its distribution and abundance. Without a solid 

grasp of these long-term patterns, models will not be able to effectively predict the dispersal 

or occurrence patterns of this pollutant throughout the world’s oceans.  

The aim of this chapter is to characterise the trends in abundance as well as size and colour of 

microplastics in sub-surface tows over a 9-year sample period. I examine the abundance of 

synthetic particles and their spatial distribution over a ~22,000 km (11,900 nautical mile) 

transect between New Zealand and the Ross Sea, within and between years. I hypothesized 

that the prevalence of microplastics will increase with the proximity to urbanised, New 

Zealand waters, but that there will be significant variation in microplastic abundance between 

years, due to random dispersal effects and environmental variables. In the same way that 

other scientific literature has found fibres to be the most predominant type of microplastic 

within surface waters, I also hypothesized that these types of particles will have the highest 

abundance within the study area and time period.  
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Methods  

Data collection 

Field sampling occurred every austral summer from 2008, between New Zealand and the 

Ross Sea Region (defined here as 160ºE – 150ºW and South of 40ºS), as seen in Figure 2.3. 

The collection of sub-surface water samples was directed by NIWA (National Institute of 

Water and Atmospheric research), in collaboration with the Antarctic toothfish fishing vessel, 

FV San Aotea II. Detailed descriptions of field methodology, along with the initial post-

voyage sampling, can be found within the Robinson et al. (2014) Ministry for Primary 

Industries (MPI) report. Briefly, samples were collected by the FV San Aotea II as it followed 

a similar route to and from its Southern fishing grounds each year and also had long periods 

of continued cruising/steaming, both factors allowing for adequate sampling durations and 

annual repetitions (Figure 2.3). Water samples were collected while in transit between New 

Zealand and the Ross Sea Region, using a Continuous Plankton Recorder (CPR).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: A depiction of SCAR Southern Ocean CPR survey tows between 1991-2013, with particular focus 

upon the light grey transects conducted by the FV San Aotea II for this study, in conjunction with NIWA. Image 

credit: Australian Antarctic Data Centre © Commonwealth of Australia.  

 

Continuous Plankton Recorders (CPR) were initially created to aid plankton surveys in sub-

surface oceanic waters. However, because of their ability to capture small organisms like 

plankton, they could also be used for the purpose of assessing microplastic load. During this 
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study, the CPR was towed roughly 100 m astern of the FV San Aotea II, at an approximate 

depth of 10 m below the sea surface. According to the methods described in Robinson et al. 

(2014), the CPR conducted tows whilst the vessel travelled at cruising speed. Throughout 

each deployment, water, organisms, and inorganic material entered the body of the CPR via a 

small opening (12.7 x 12.7 mm), before they were passed through a 270 µm collecting silk 

(Figure 2.4). This silk layer was then coated with a covering silk, which consequentially 

captured animals and inorganic materials between the two layers. During this process, an 

external propeller moved the silk through the internal workings of the CPR at an approximate 

rate of 1 cm per 1 nautical mile (nm), regardless of the cruising speed at which the FV San 

Aotea II was travelling. Both silks were finally rolled into a preservation tank that contained a 

solution of buffered 40% formaldehyde at the rear of the CPR body (Figure 2.4), where they 

remained until the completion of the tow. Each CPR deployment was able to run for up to a 

maximum 450 nautical miles (nmi), however the actual tow length was heavily dependent 

upon environmental factors at play such as wave height and wind strength.  

 

 

Figure 2.4: A depiction of the internal workings of a Continuous Plankton Recorder (CPR), as used in this 

study. Image credit: Robinson et al., 2014. 

 

Over the 20 separate transits that were conducted over the 10-year sample period (2008/09 – 

2017/18), the CPR was deployed 71 times over a collective distance of 23,286 nmi (43,140.5 

km), with an average of 7 tows per transit (Table A2.1). FV San Aotea II crew members were 

trained by NIWA technicians to operate the CPR machinery and the associated chemicals, 
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tools, and safety equipment effectively. They were also trained in correct preservation 

methodologies for all samples, so to minimise contamination (Robinson et al., 2014).  

Laboratory protocol 

Post voyage sampling 

At the completion of each voyage, samples were transported to the NIWA laboratories, where 

they were cut into 5 cm segments that each represented 5 nautical miles of towed 

distance (Figure 2.5). These segments were individually analysed to determine Phytoplankton 

Colour Index (PCI), zooplankton abundance, and taxonomic identification to the highest 

possible level. Whilst examining samples for the presence and identification of biota, 

presence and absence of inorganic materials was recorded. All 5 cm segments were preserved 

in 10% formaldehyde. For tows between 2009/10 – 2017/18, all samples that contained any 

inorganic material were set aside, and later sent to me to further characterize the 

microplastics at the Victoria University Coastal Ecology Laboratory (VUCEL). The samples 

from 2008/09 were not analysed as a part of this study, due to time constraints.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5: A roll of 270 µm collecting mesh, which is used in CPR tows throughout this study. Once in the 

NIWA laboratory, these rolls are cut into the 5 cm samples along the marked lines, at which point they are ready 

for microscopic analysis.  

 

Sample preparation 

All 1558 samples with at least one piece of inorganic material (37% of the total samples 

collected between 2009/10 – 2017/18) were individually washed with distilled water, visually 

analysed, then preserved using an adapted NIWA protocol. To prepare the individual samples 

for analysis, the two layers of silk were removed, then the 40% formaldehyde preserving 
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solution was poured through a 75 µm filter. The collecting and covering silks were also 

rinsed with distilled water and washed through a 75 µm filter, to recover any residual trapped 

biological or inorganic material.  

Visual analysis 

Washed samples were transferred to a petri dish (Figure 2.6) and analysed under a stereo 

microscope at 15x magnification. Synthetic materials were recorded by colour, size, and type. 

Particles were categorized into three size classes; small (<1 mm), medium (>1 - 2 mm), or 

large (>2 - 5 mm), determined by measuring each inorganic particle at its longest or widest 

point. The type of synthetic particle was either recorded as a fibre, fragment, foil, paint chip, 

or macroplastic (> 5 mm). Finally, the colour of each synthetic particle was also recorded. To 

verify that the visual identification of a microplastic was correct, forceps were used to 

attempt to break apart the particle. If it could not be broken, it was determined to be a form of 

microplastic debris, whilst if it could be broken but was an irregular shape and/or colour, it 

was classed as a paint chip. 

 

 

 

 

 

 

 

 

 

Figure 2.6: Samples arrived at Victoria University Coastal Ecology Laboratory (VUCEL) in tubes. To prepare 

each sample for microscopic analysis, silks were removed, and the formaldehyde solution was washed through a 

75 µm filter, along with both mesh layers. Samples were then transferred to the pictured petri dishes and 

labelled appropriately.  

 

Statistical analyses 

All analyses were conducted in R V3.6.3 (R Core Team 2020) using RStudio v1.2.5033 

(RStudio Team, 2020). Firstly, a Chi-square Likelihood Ratio Test (LRT) was used to 
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determine whether there was a significant effect of month, transit (North- or South-bound), 

year, or oceanographic zone. Further analyses were conducted if results were significant. For 

significant variables, a Poisson mixed effects model was used, with an adjustment made for 

autocorrelation using the AR1 structure. Pairwise comparisons using the EMMEANS 

package conducted tests for years that had significantly different counts from each other. 

Similar tests were conducted for the effects of month and oceanographic zone. Results were 

given on a log scale. 

Pearson’s Chi-square tests were conducted for the three aspects of particle characteristics: 

morphotype, size, and colour. The results of these determined if there was a significant 

difference between variables. 
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Results 

Throughout the 9-year sampling period, 4211 individual surface water samples were 

collected during CPR tows between New Zealand’s waters and the Ross Sea Region of 

Antarctica. Of these, Figure 2.7 demonstrates that there was a high yearly variation in the 

proportion of individual 5 cm silk samples that contained at least one microplastic particle. 

The most recent survey, in the austral summer of 2017/18, had a total of 487 samples with 

88.3% of these containing at least one synthetic particle (Table 2.1). In contrast, the austral 

summer of 2011/12 had a total of 404 samples, but only 26.8% of these contained any 

microplastics (Table 2.1). Overall, the percentage of samples containing microplastic was less 

than 50% in most years.  

Table 2.1: Total number of samples collected from surface waters between New Zealand and the Ross Sea, 

broken down into the total number of samples containing at least one microplastic particle and those without any 

microplastics.  

Year Total Number of samples 

with ≥1 microplastic 

Number of samples with 

no microplastic particles 

2009/10 468 149 319 

2010/11 541 192 349 

2011/12 404 31 373 

2012/13 504 135 369 

2013/14 449 187 262 

2014/15 454 103 351 

2015/16 465 70 395 

2016/17 439 260 179 

2017/18 487 430 57 
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Figure 2.7: Proportion of total samples collected per year, where black bars represent the percentage of samples 

that contain at least 1 microplastic particle and striped bars represent the percentage of samples that do not 

contain any microplastics.  

Explanatory Variables  

For all explanatory variables of microplastic abundance in surface waters between New 

Zealand and the Ross Sea Region, three were not independent. Both temporal variables 

(month of collection and year) were significant predictors (Table 2.2) and so was the spatial 

variable; oceanographic zone. There was no effect of direction of travel, North- or South-

bound along the transect, on microplastic abundance (Table 2.2). Since month, year, and 

oceanographic zone of surface water sampling all have a relationship with mean microplastic 

abundance, these were able to be investigated further.  

Table 2.2: Results of Chi-squared Likelihood Ratio Test examining effects of collection month, collection 

transit, year, and oceanographic zone on microplastic abundance between New Zealand and the Ross Sea 

Region. * indicates significance at p = 0.05. 

 
AIC LRT P. value  

Month 13126 23.107 < 0.0001 * 

Transit 13109 0.05 0.8233  

Year 13134 39.253 < 0.0001 * 

Zone 13186 84.332 < 0.0001 * 
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Temporal variation 

Between-year 

Average microplastic abundance in surface waters between New Zealand and the Ross Sea 

Region was variable across years. There was no consistent increase or decrease in average  

load throughout the 9-year study (Figure 2.8), however the average amount of microplastics 

found in the 2009/10 survey was significantly higher than 2011/12, 2012/13, and 2013/14 

(Table 2.3). In contrast, as shown in Figure 2.8, the 2012/13 samples only contained up to 

half the amount of microplastics on average compared with 2009/10, 2014/15, and 2015/16 

(Table 2.3).  

Table 2.3: Results of a pairwise comparison (adjusted for the effect of autocorrelation) examining the effect of 

sampling year (2009/10 – 2017/18), on microplastic abundance within surface waters between New Zealand and 

the Ross Sea Region. Results are averaged over the levels of Month, Transit, and Zone, and are significantly 

different at p = 0.05 

Contrast Estimate SE df t.ratio P.value  

2009/10 – 2011/12 0.7369 0.182 49 4.042 0.0054 * 

2009/10 – 2012/13 0.8728 0.137 49 6.392 <0.0001 * 

2009/10 – 2013/14 0.5008 0.120 49 4.191 0.0034 * 

2012/13 – 2014/15 -0.4932 0.148 49 -3.327 0.0405 * 

2012/13 – 2015/16 -0.7428 0.174 49 -4.269 0.0027 * 
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Figure 2.8: Distribution of synthetic particle abundances in surface waters between New Zealand and the Ross 

Sea, over a 9-year period (2009/10 – 2017/18). Data is pooled across months, transit, and zones.  

 

Between-month 

Throughout the 9-year annual sampling period, tows were carried out between November and 

March (austral summer). Similar to the yearly variation, microplastic abundance was also 

dynamic between months, with no consistent increase or decrease in load throughout the 

summer (Figure 2.9). The largest difference occurred between the month of December and 

the following two months, with December having the highest average number of 

microplastics. However, there was no significant difference between the microplastic 

abundance in any month where sampling took place (Table 2.4). 
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Table 2.4: Results of a pairwise comparison (adjusted for the effect of autocorrelation) examining the effect of 

month (November, December, January, February, March), on microplastic abundance within surface waters 

between New Zealand and the Ross Sea Region.  

Contrast Estimate SE df t. ratio P.value 

Nov - Dec -0.0026 0.162 1490 -0.016 1.0000 

Nov - Jan 0.3867 0.221 1490 1.750 0.4039 

Nov - Feb 0.3195 0.254 1490 1.257 0.7178 

Nov - Mar 0.0276 0.399 1490 0.069 1.0000 

Dec - Jan 0.3893 0.221 1490 1.766 0.3942 

Dec - Feb 0.3221 0.215 1490 1.502 0.5616 

Dec - Mar 0.0302 0.374 1490 0.081 1.0000 

Jan - Feb -0.0672 0.129 1490 -0.522 0.9852 

Jan - Mar -0.3592 0.339 1490 -1.060 0.8269 

Feb - Mar -0.2920 0.310 1490 -0.943 0.8800 

 

 

Figure 2.9: Distribution of synthetic particle abundances across the 5 different collection months in the austral 

summer (November – March), with data pooled across years, zones, and transits. 
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Spatial variation 

Overall variation 

Figure 2.10 demonstrates the variability that was observed between microplastics throughout 

all zones and years. There was no discernible pattern or trend observed throughout the 9-year 

period, or the five oceanographic zones and frontal system where microplastics were 

collected.  

 

Figure 2.10: Mean (+/- 95% confidence interval) surface water microplastic abundance from the 2009/10 

sampling period to 2017/18, between five oceanographic zones and two frontal systems. In order from closest 

proximity to New Zealand, dotted bars represent the Sub-Tropical Zone (STZ), dashed bars represent the Sub-

Tropical Front (STF), black bars represent the Sub-Antarctic Zone (SAZ), striped bars show the Polar Frontal 

Zone (PFZ), open bars represent the Permanent Open Ocean Zone (POOZ), and grey bars represent the Sea Ice 

Zone (SIZ). On the graph, 0 demonstrates zones that collections did not occur in.  

Between oceanographic zones  

Between New Zealand and the Ross Sea Region of Antarctica, a variety of oceanographic 

zones and frontal systems were sampled during the annual CPR collections between 2009 – 

2019. With data pooled across years, Figure 2.11 demonstrates that there was no noticeable 

difference in the amount of microplastics collected in most of the different oceanographic 

zones and frontal systems sampled during this study. However, Table 2.5 indicates that 

significant differences were observed between the Sea Ice Zone and both the Polar-Frontal 

(PFZ) and Sub-Antarctic Zone (SAZ).  
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Table 2.5: Results of a pairwise comparison (adjusted for the effect of autocorrelation) examining the effect of 

oceanographic zone (PFZ, POOZ, SAZ, SIZ, STF, and STZ), on microplastic abundance within surface waters 

between New Zealand and the Ross Sea Region. * indicates significance at p = 0.05. 

Contrast Estimate SE df t.ratio p.value 
 

PFZ - POOZ -0.14866 0.147 1490 -1.027 0.9090 
 

PFZ - SAZ -0.03257 0.0737 1490 -0.442 0.9979 
 

PFZ - SIZ -0.24607 0.0759 1490 -3.241 0.0154 * 

PFZ - STF -0.24798 0.1870 1490 -1.326 0.7707  

PFZ - STZ -0.54669 0.2131 1490 -2.565 0.1065  

POOZ - SAZ 0.11608 0.1512 1490 0.768 0.9728  

POOZ - SIZ -0.09742 0.1489 1490 -0.654 0.9867  

POOZ - STF -0.09933 0.2288 1490 -0.434 0.9981  

POOZ - STZ -0.39804 0.2508 1490 -1.587 0.6071  

SAZ - SIZ -0.21350 0.0739 1490 -2.888 0.0453 * 

SAZ - STF -0.21541 0.1756 1490 -1.227 0.8238  

SAZ - STZ -0.51412 0.2056 1490 -2.500 0.1245  

SIZ - STF -0.00191 0.1858 1490 -0.010 1.0000 
 

SIZ - STZ -0.30062 0.2120 1490 -1.418 0.7160 
 

STF - STZ -0.29871 0.2693 1490 -1.109 0.8777 
 

 

 

Figure 2.11: Distribution of synthetic particle abundances between five oceanographic zones (Polar Frontal 

Zone – PFZ, Permanent Open Ocean Zone – POOZ, Sub-Antarctic Zone – SAZ, Sea Ice Zone – SIZ, & Sub-

Tropical Zone – STZ) and a frontal system (Sub-Tropical Front – STF), with data pooled across years, months, 

and transit.  
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Particle characteristics  

Type of particle 

 

Figure 2.12: Examples of different synthetic particles found during the sample analysis conducted within this 

study, where A) is a large (> 2 – 5 mm) yellow fibre, B) is a large (> 2 – 5 mm) blue fibre, and C) is a medium-

size (> 1 – 2 mm) multi-layered paint chip. 

Five different types of synthetic particles were observed within the CPR surface water 

samples collected between 2009 – 2018, including those seen in Figure 2.12. Microfibers 

were the most prolific type across all years, accounting for between 90.6 – 99.5% of all 

observed microplastics (Figure 2.13). Fragments were also found throughout the span of the 

study, however these only accounted for between 0.8 – 8% of all microplastics. Synthetic 

particles such as foils, paint chips, and captured macroplastics (> 5 mm) comprised a 

negligible amount of the total particles found throughout the entire study. In support of this, 

the percentage of each particle type (fibres, fragments, and ‘other’) was shown to differ 

significantly (x2 (16) = 627.46, p = <0.0001).   

Table 2.6: Count data investigating the number of synthetic particles collected between New Zealand and the 

Ross Sea Region, using CPR tows.  

Year Fibres Fragments Foils Macro  

(> 5mm) 

Paint 

2009/10 3194 42 1 0 1 

2010/11 2695 39 1 4 1 

2011/12 344 12 0 0 0 

2012/13 1108 107 6 0 2 

2013/14 2565 129 3 0 0 

2014/15 1449 29 1 0 1 

2015/16 1268 11 3 5 1 

2016/17 3537 17 0 0 0 

2017/18 6328 30 0 13 0 

A B C 
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Figure 2.13: Percentages of the total count data between 2009 - 2018, for all different plastic types collected 

during CPR tows. Data is pooled across oceanographic zones. Striped bars represent the percentage of 

microfibres, black bars represent the percentage of fragments, and open bars represent the percentage of all 

other plastic types – foil, macroplastic, and paint chips.  

Size of particles 

Throughout this study, 22,913 microplastic particles were found in the surface waters 

between New Zealand and the Ross Sea Region (small = 6062; medium = 8697; large = 

8154), excluding any macroplastic particles (Table 2.7). In the first three years of sampling, 

large particles were the most predominant, accounting for up to 56.7% of all microplastics. 

However, the CPR tows between 2013/14 – 2017/18 , the proportion of these dropped off and 

medium-sized particles became the most predominant size category (Figure 2.14). However, 

particle size categories were still found to be significantly different from one another (x2 (16) 

= 1871, p = <0.0001).   
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Table 2.7: Count data investigating size distributions of synthetic particles in surface waters between New 

Zealand and the Ross Sea Region. Count data not inclusive of macroplastic particles >5 mm in length or 

diameter. 
 

Small  

(< 1 mm) 

Medium  

(> 1 – 2 mm) 

Large  

(> 2 – 5 mm) 

2009-10 591 811 1834 

2010-11 566 645 1532 

2011-12 121 96 139 

2012-13 489 372 354 

2013-14 860 973 861 

2014-15 373 691 414 

2015-16 282 627 370 

2016-17 877 1545 1132 

2017-18 1903 2937 1518 

 

 

Figure 2.14 : Microplastic size distributions between 2009 – 2018, expressed as a stacked percentage. Black bars 

represent the percentage of small particles (< 1 mm), striped bars represent medium (> 1 – 2 mm), and grey bars 

represent large particles ( >2 – 5 mm).  

Colour of particles 

Microplastics ranged in colour significantly throughout the surface water CPR samples, with 

nine different colours detected overall. Black and blue particles were the predominant colours 

found throughout the study (Figure 2.15), however other primary colours (red and yellow) 

were also highly abundant (Table 2.8). In support of this, the percentage of various colours 

analysed (black, blue, red, yellow, and ‘other’) was found to be significantly different (x2 (32) 

= 1298.5, p = <0.0001).   
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Table 2.8: Count data investigating colour distributions of synthetic particles in surface waters between New 

Zealand and the Ross Sea Region, between 2009 - 2018.  

 
Black Blue Colourless Green Orange Purple Red White Yellow 

2009/10 1272 907 0 42 116 112 351 26 408 

2010/11 1081 764 75 28 46 108 356 14 260 

2011/12 149 131 0 10 9 3 42 5 7 

2012/13 502 450 4 24 26 46 146 11 7 

2013/14 1101 626 8 36 72 80 474 29 268 

2014/15 632 366 2 9 25 76 262 9 98 

2015/16 511 341 3 24 16 13 139 2 236 

2016/17 1007 866 0 40 40 45 632 16 908 

2017/18 2460 1701 0 58 43 67 1111 42 880 
 

 

Figure 2.15: Microplastic colour distributions between 2009 – 2018, expressed as stacked percentages of the 

total count data for each year. Black bars represent the percentage of black particles, striped bars represent blue 

particles, open bars represent red particles, grey bars represent yellow particles, and dotted bars represent the 

total percentage of all other colours (colourless, green, orange, pink, purple, and white). 
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Discussion 

This study provided no evidence for consistent temporal or spatial patterns of microplastic 

occurrence between New Zealand and the Ross Sea Region of Antarctica, across the 9-year 

dataset. There was, however, a large amount of variation between years and zones, indicating 

that microplastic abundance and distribution is highly dynamic in these surface waters. In 

contrast to the initial hypothesis, the microplastic load within the sub-surface waters did not 

appear to increase with proximity to New Zealand, nor did the distribution change 

significantly across this 22,000 km stretch of the Southern Ocean. Despite microplastic levels 

not showing a clear increasing or decreasing temporal trend across the entire 9-year sample 

period, the mean abundance was highly dynamic and particularly for the tows collected 

during 2009/10 and 2012/13. The austral summer of 2009/10 contained up to double the 

average amount of microplastics compared to some other years, while those collected during 

the 2012/13 period had the smallest microplastic pollutant load overall. However, the 

morphotype most commonly found over the entire study was microfibres, which supports the 

original hypothesis. The variation in both spatial and temporal components of this study are 

likely due to a combination of factors, particularly environmental drivers, as well as sampling 

error.  

Despite a lack of consistency in spatial or temporal distributions of microplastic between 

2009/10 – 2017/18, the morphotypes, size distributions, and colours of particles found 

throughout the sub-surface waters of the Southern Ocean was quite consistent. Black and blue 

coloured particles were of highest abundance throughout the study, whilst size of particles 

favoured the medium size distribution (> 1 – 2 mm) in earlier surveys, then large 

microplastics (> 2 – 5 mm) in later years. This could be due to sampling methodology, 

namely the aperture of the CPR mesh size, or alternatively, particles > 1 – 5 mm in 

length/diameter may simply be more prevalent in these waters. However, throughout this 

entire study, microfibres were by far the most prevalent morphotype of synthetic particle 

present, occupying between 90.6% - 99.5% of all synthetic particles collected each year. 

These results are relatively similar to the particle characteristics reported in other sea surface 

studies, particularly as microfibres are thought to comprise up to 90% of the global marine 

microplastic floating debris (Barrows et al., 2018; Woods et al., 2018).  

From 2017 onwards, there has been a considerable rise in the number of studies looking at 

marine plastic pollution in the Southern Hemisphere, particularly around the Antarctic 

continent. This surge in publications is likely due to the realisation that knowledge of the 
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abundance and distribution of marine plastic debris – particularly microplastics – had 

previously been limited to the Northern Hemisphere, thus creating a divide in the global 

knowledge of this pollutant. The recent research largely encompasses studies that have been 

confined to certain regions around the continent, where they have examined localised surface 

waters (Cincinelli et al., 2017; Lacerda et al., 2019), sediments (Munari et al., 2017; Reed et 

al., 2018), or the abundance and impacts of microplastics upon a single species (Dawson et 

al., 2018; Bessa et al., 2019). All of these examples have provided evidence for the presence 

of microplastics, however the estimated abundance differs significantly, largely as a result of 

the various sampling and analyses used. Inclusive of all samples between 2009/10 – 2017/18, 

regardless of whether they contained synthetic particles or not, there was an average of 1.99 

particles km-1, of which ranged between 0.33 – 4.84 particles km-1. As a concentration, this 

load was extremely low, averaging 1.99e-6 particles per m3. In comparison, a paper 

examining near-shore and off-shore microplastic abundances in the Ross Sea reported 

between 0.0032 – 1.18 particles m-3 through the use of a saltwater intake pump system 

(Cincinelli et al., 2017), whilst an alternative study using manta nets to conduct surface 

trawls around the Antarctic Peninsula reported average concentrations of 0.008 particles m-3, 

although this was inclusive of both micro- and mesoplastics (>5 – 20 mm) (Lacerda et al., 

2019). 

A lack of cohesive sampling methodology in the field of microplastic research provides 

another source of variation between results of different studies, making it extremely difficult 

to compare between studies in similar oceanographic regions. For the examination of surface 

waters, three different methods are commonly used to execute transects on or just below the 

sea surface – neuston nets, grab systems, and Continuous Plankton Recorders – all of which 

have different apertures, mesh sizes, and collection techniques. Most techniques used for 

sampling microplastics on the sea surface or sub-surface have been adapted from their 

original use of collecting plankton (Robinson et al., 2014; Barrows et al., 2017; Green et al., 

2018). Consequently, multiple factors such as mesh size and contamination influence the 

accuracy of the results gathered from each of these methods. Mesh size, for example, varies 

significantly across the literature, with many tows using a 333 µm mesh (Miller et al., 2017), 

whilst CPRs use a 270 µm mesh (Robinson et al., 2014) and others may use a different size 

altogether (Miller et al., 2017; Green et al., 2018). The size of the mesh often impacts the 

lower size limit you can collect, which is particularly unfavourable for examining the relative 

abundance of microplastics <1 mm. On the other hand, neuston nets and CPRs have the 
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advantage of sampling over large areas compared to grab systems, which are reliant upon 

sampling from the shore or a boat and collect small volumes of water (Barrows et ai., 2017). 

In saying that, further variability arises due to neuston nets conducting transects right at the 

sea surface, while CPRs are towed ~10 m beneath the surface. These examples are just some 

of the ways that the different methods of sea surface sampling differ, however they all 

contribute to a high variance in results and therefore a limited ability to effectively compare 

results between samples collected using different methodologies.  

Temporal variation 

This study indicates that temporal changes to surface water microplastic abundance are likely 

driven by environmental factors which are extremely variable. As opposed to what was 

hypothesized, microplastic abundance did not increase between the austral summer of 

2009/10 and 2017/18, despite global production of plastic materials continuing to grow 

(PlasticsEurope, 2019). One possibility is that this yearly variation is related to El Niño and 

La Niña events, as the two years with the highest average microplastic load (2009/10 & 

2015/16) are also years that have experienced significant El Niño events (Welhouse et al., 

2016; Ministry for the Environment, 2017). On the other hand, La Niña events appear to 

correlate with years that have a more moderate average number of microplastics (11 – 14 

particles per 5 nm transect) and the lowest average microplastic load, which occurred in 

2012/13, correlates to a neutral year with no obvious La Niña or El Niño trade winds. The El 

Niño-Southern Oscillation (ENSO) is a significant climate cycle that operates on decadal and 

sub-decadal periods (Welhouse et al., 2016), with primary effects felt across the Pacific 

Ocean (Turner, 2004). However, effects of the phenomenon have been documented in many 

other regions of the globe, including Antarctica. El Niño events are thought to account for an 

estimated 31% of the altered sea surface temperature conditions, along with higher pressure 

areas in the West Antarctic (Welhouse et al., 2016). La Niña events, on the other hand, are 

reportedly associated with negative temperature anomalies around the Ross Sea (Welhouse et 

al., 2016). In addition to changes in temperature, El Niño and La Niña events can alter other 

aspects of the Antarctic climate, including winds and ocean currents. As reported by Kim & 

Orsi (2014), the ACC fronts tend to respond to both ENSO and SAM (the Southern 

Hemisphere annular mode), with localised variations in features such as surface wave height 

– possibly resulting in increased mixing of synthetic particles. Furthermore, ENSO and SAM  

variation has been widely documented to result in significant oceanographic changes 

throughout the ACC system, with positive SAM and La Niño events driving polar lows and 
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forcing upwelling, whilst El Niño and negative SAM causing the opposite; fewer storms and 

a reduction in upwelling (Marshall et al., 2004; Yuan, 2004; Martinson, 2012). Wide-scale 

alterations such as these are likely to have some impact upon the circulation of microplastics 

throughout the Southern Ocean, with rates of deposition and typical patterns of dispersal  

likely interrupted. Interestingly, anomalies in ENSO events throughout this sampling period 

seem to correlate with the years that experienced the highest and lowest microplastic loads in 

the sub-surface waters, respectively. These climate events are not likely to be the only 

environmental drivers of yearly variation in microplastic abundance, but they do indicate that 

further investigations into similar large-scale oceanic circulation trends are warranted.  

As hypothesized, monthly variation between average microplastic occurrence was minimal. 

This was to be expected, as sampling could only occur during the Austral Summer months of 

each year – primarily between November and February. To gain a more complete perspective 

of the monthly variation for surface water microplastic abundance, future studies would 

ideally need to examine the abundance across all 12 months. This would provide information 

on whether there are any significant temporal differences in microplastic abundance on a 

smaller scale. So far, numerous polar studies in the Arctic and Antarctic have illustrated the 

ability of sea ice to take up high concentrations of microplastics during the winter months 

(Obbard, et al., 2014; Peeken et al., 2018; Geilfus et al., 2019). In addition, microplastic load 

is likely to change throughout the year with the contributing factor of winter storms, and the 

resultant deepening of the surface mixing layer (Nicholson et al., 2016). Although studies 

have not yet focussed on the change in microplastic abundance within Antarctic waters 

throughout all 12 months – likely due to the logistical difficulties in carrying out sea-based 

research during the Antarctic winter and the high frequency of winter storms  – it is a 

reasonable assumption that microplastic loads in Antarctic waters may experience high levels 

of variability throughout the year.  

Spatial variation 

In a similar vein to the temporal variation observed within this study, there are no clear 

increasing or decreasing trends regarding the levels of microplastic abundance between the 

different oceanographic zones. Instead, microplastic abundance was found to be relatively 

similar in its distribution across most of the oceanographic zones, which differed to the 

results reported in Suaria et al. (2020). This study collected 40 neuston net samples from the 

surface waters of Antarctica, during a circumnavigation of the continent. Although the 

primary focus was not to analyse the differences in microplastics between various latitudinal 
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zones, their results suggested that microplastic abundance was an order of magnitude lower in 

latitudinal zones below the Sub-Tropical Front (STF), where this front acts like a boundary. 

The results from this thesis directly contradict this conclusion, as the long, continuous 

transects executed between oceanographic zones detected no significant difference in 

abundance immediately above or below the STF. This contrasts with the original hypothesis, 

indicating that proximity to an urbanised nation such as New Zealand does not have a strong 

impact upon microplastic distribution. Several factors may be driving these results, 

particularly environmental variables such as oceanic currents. The land mass of Antarctica 

may be geographically isolated from all other continents, but the Antarctic Circumpolar 

Current (ACC) connects the Southern Ocean with all other major oceanic systems. 

Consequently, it is likely that the currents which circulate around the continent also bring 

synthetic particles to the area, as microplastics are typically buoyant with the ability to 

undergo long periods of dispersal (Obbard, 2018). Studies such as Obbard (2018) suggest that 

the incidence of man-made microplastics in polar waters is primarily the result of long-range 

oceanic transport through global current systems, waves, and wind, as opposed to local inputs 

from production and human usage. This long-range transport to remote polar regions 

generally enhances the occurrence of microparticles instead of larger debris, as these smaller 

items are thought to be submerged within the sub-surface oceanic layer during transport, 

consequently taking longer to reach the polar environments, simultaneously being subjected 

to fragmentation and degradation as well (Lebreton & Borrero, 2013; Desforges et al., 2014; 

Obbard, 2018). Therefore, the Antarctic Circumpolar Current not only transports 

microplastics to the Southern Ocean but is also responsible for mixing of these synthetic 

particles through the three main oceanic fronts, which are further described in Orsi et al. 

(1995) and Solokov & Rintoul (2009).  

In conjunction with occupying numerous oceanographic zones, the Southern Ocean provides 

a habitat for a unique ecosystem, with many endemic species that have adapted to the harsh 

environment. Overall, this study provides evidence for microplastics occurring within the 

surface waters of every zone between New Zealand and the Ross Sea. Consequently, species 

that carry out functional roles within the sub-surface of the water column are at a higher risk 

of direct interactions with these synthetic particles, particularly if they feed within this part of 

the water column and are filter feeders. Euphausia Superba (Antarctic Krill) are one such 

species, notable in the Southern Ocean for occupying a keystone role in the ecosystem, 

comprising the main dietary component of higher trophic levels such as whales and penguins, 
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for example (Laws, 1977; Bernard & Steinberg, 2013). This species has an alternating 

seasonal feeding regime, primarily consuming phytoplankton in the summer months and a 

range of zooplankton and copepods come winter (Price et al., 1988; Bernard & Steinberg, 

2013). However, in conjunction with their prey items, E. superba have been shown to ingest 

microplastic particles from the water column, then expel most of these particles as smaller 

nanoplastics (<1 µm) (Dawson et al., 2018). Since Antarctic krill are an integral prey item for 

many other Antarctic marine species, the uptake of synthetic particles increases the likelihood 

of microplastics being passed up the food web. On the other hand, the excretion of plastic 

nanoparticles may provide this pollutant with new ways to enter the food web, such as 

ingestion by zooplankton and the ability to cross physical barriers (Dawson et al., 2018). In 

addition, the current literature demonstrates that the sea surface is not the end point for 

microplastics in the marine environment; instead they drift down to the benthos (Munari et 

al., 2017; Reed et al., 2018), interact with biota (Bessa et al., 2019; Sfriso et al., 2020), or in 

the case of polar regions, also incorporate into sea ice (Obbard et al., 2014; Kelly et al., 

2020). Consequently, the presence of microplastics within the sea surface indicates that it is 

likely to be found elsewhere in the Antarctic marine environment, with the possibility for 

wide-reaching implications upon the entirety of the Southern Ocean’s ecosystem.  

Conclusion 

Although definitive trends in microplastic load were not detected in this long-term temporal 

and spatial study between New Zealand waters and the Ross Sea Region of New Zealand, 

these results have illustrated that microplastics are, indeed, present in these remote waters – 

likely as a result of long-range oceanic transport. The quantity of surface water microplastics 

is shown to be lower than that in other regions of the world, but synthetic particles were 

found throughout all sampled years (2009/10 – 2017/18), as well as in every oceanographic 

zone between New Zealand and the Ross Sea Region. This is the first multi-year microplastic 

study to have been carried out in the Southern Hemisphere, and the first in this geographical 

region to examine latitudinal spatial distribution of the synthetic particles to this extent. 

Despite the need for further research to support these findings using FTIR spectroscopy, this 

study has provided an essential baseline for understanding the occurrence and dispersal of 

floating microplastic debris in a remote area of the globe.  
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3. Temporal surveys of microplastic load in sediment, surface water, 

and mussel (Mytilus galloprovincialis) tissue in Wellington Harbour 
 

Abstract 

This study aimed to take a multi-pronged approach to microplastic assessment in Wellington 

Harbour, through undertaking temporal and fine-scale spatial microplastic surveys on the sea 

surface, beach sediments, and within the tissues of Mytilus galloprovincialis mussels. 

A series of baseline surveys were conducted every three months between February 2019 and 

February 2020. Beach sediments and M. galloprovincialis individuals were each collected 

from three sites around Wellington Harbour, with collections increasing to weekly surveys 

from August 2019, to assess temporal variation on a finer scale. Sea surface tows were 

conducted once every three months throughout the year, at two different locations within the 

harbour. The total microplastic abundance in each sample was recorded, along with size, 

colour, and morphotype of the synthetic particles.  

Mussel tissues contained an average of 0.30 ± 0.04 particles g-1 (wet weight) and were less 

temporally and spatially variable than beach sediments, which had an average of 124.9 ± 35.7 

particles kg-1 (wet weight). Spatial variation was observed throughout beach sediments, 

although differences among sites did not follow a consistent pattern throughout the span of 

the study. Surface water microplastic load appeared to correlate with the temporal peaks in 

mussel tissue, indicating a possible relationship between levels in the environment and the 

ability for transferral to coastal marine organisms. Microfibres were the predominant particle 

morphotype found within every source, whilst microplastic size was distributed far more 

evenly throughout the three categories. These responses suggest that microplastics are, 

indeed, a globally pervasive pollutant which infiltrate numerous marine habitats and interact 

with organisms.  
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Introduction 

In New Zealand, the ocean is central to daily life, with many individuals earning a living 

from it, as well as participating in countless recreational activities around the coastline. With 

an estimated 18,000 km of coastline in various forms that include open coast, harbours, 

estuaries, and lagoons (Hart & Bryan, 2008), New Zealand’s society is unequivocally linked 

to, and surrounded by, the marine environment, and the coastal ecosystem is the primary 

interface between marine and terrestrial habitats. This results in the ecosystem being subject 

to many different processes, and consequently providing a pathway for pollutants like plastics 

to interchange between land and oceanic environments.  

Research on microplastic load in New Zealand, including its abundance, distribution, and 

effects upon marine and intertidal species, is limited. Although some of the very first papers 

to ever document microplastic occurrence were carried out in New Zealand during the 1970’s 

(Gregory, 1977; Gregory, 1978), little progress has been made since then. These initial 

studies surveyed a range of beaches around the New Zealand coastline, particularly within the 

Auckland, Wellington, and Canterbury regions, and provided some of the first direct 

evidence for microplastic contamination in the marine environment. Almost 40 years later, 

two more publications focussing on the occurrence of microplastics around New Zealand’s 

coastlines. Clunies-Ross et al. (2016) was able to quantify both primary and secondary 

sources of microplastic pollution within Canterbury, whilst Bridson et al. (2020) focussed 

upon the microplastic load on Auckland beaches. All four of these New Zealand microplastic 

research examples published to date have placed a primary focus on beach sediments, as 

opposed to the abundance within other habitats or marine biota. Beaches are considered to be 

sinks for oceanic plastic pollution, particularly microplastics, as onshore winds push the 

buoyant particles onto the shore, dropping them at the high tide line (Moore, 2008; Clunies-

Ross et al., 2016). Consequently, the top layers of beach sediment provide a valuable insight 

into the abundance of microplastic particles that inhabit the surrounding waters. Microplastics 

present a unique problem once on the shoreline, however, as unlike macroplastic, they are 

often difficult to distinguish in size from sand grains and therefore become easily 

incorporated into the beach sediments (Young & Elliott, 2016) (Figure 3.1).  
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Figure 3.1: Microplastics found on Evan’s Bay Beach, Wellington, where A) depicts the difficulty of extracting 

synthetic particles from organic matter and B) demonstrates the occurrence of microplastics in situ. Image 

credit: A) Sea Shepherd New Zealand, B) Caitlyn Shannon. 

Consequently, although it is still limited, our knowledge of microplastics on beaches far 

surpasses the current understanding of surrounding environments like sea surface waters or 

the pollutant load within coastal marine organisms. This extension to other habitats, along 

with an expansion of knowledge throughout various regions around the country, is integral if 

comparisons to the global microplastic load are to be made. Presently, there is only one paper 

which examines the occurrence of microplastics within New Zealand coastal organisms. 

Webb et al. (2019) reported an abundance of between 0 – 1.5 particles per individual within 

the Perna canaliculus (Green-lipped mussel) species, around the coastline of New Zealand. 

With exception to this paper, the only other knowledge of microplastic occurrence and 

impacts of microplastics upon our coastal environment has examined the freshwater inputs 

from urban rivers and streams (Dikareva & Simon, 2019; Mora-Teddy & Matthaei, 2020). 

With such a limited grasp upon microplastic abundance, distribution, and its impacts on the 

New Zealand ecosystem, comparisons to the global pollutant load cannot be made at this 

time.  

Globally, surface waters are commonly associated with plastic debris of all size classes. 

Estimates of floating plastic pollution provide a valuable insight to the levels of plastic 

pollution permeating into other marine environments and biota, as the buoyancy of the 

pollutant means it often circulates at the surface of the water column before undergoing 

vertical mixing (Ye & Andrady, 1991; Morishige et al., 2007; Maes et al., 2017). Research 

examining the extent of floating plastic debris – both macro and micro – has been carried out 

for decades using many different sampling methodologies. One recent study has even 

evaluated the presence of floating plastic debris over the span of 60 years, to investigate 

A B 
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temporal trends over an extended period (Ostle et al., 2019). However, like most research on 

marine plastic pollution, most of the work has been typically carried out in the Northern 

Hemisphere. Studies examining abundance and distribution on the sea surface in the Southern 

Hemisphere are limited (Avio et al., 2017); for example there have been a few studies carried 

out in South Africa (Ryan, 1988; Nel & Froneman, 2015), Australia (Reisser et al., 2013; 

Hall et al., 2015), and Brazil (Lima et al., 2014), as well as the South Pacific subtropical gyre 

(Eriksen et al., 2013). Yet, these studies are integral to forming a more comprehensive 

understanding of how microplastics move throughout the oceans.  

The occurrence of microplastics within marine organisms is another key facet of plastic 

pollution research. In contrast to the identification of microplastics in beach sediments and 

throughout the sea surface, research upon organisms elevates the field to a deeper level of 

understanding. Such studies promote a widening of knowledge from the rudimentary 

understanding that this pollutant is found within our marine environments, to an awareness 

that it is also infiltrating and impacting biological communities, and therefore conceivably 

also interacting with humans. The current global estimates of microplastics in the marine 

environment certainly pose a significant problem in themselves, as the high volume likely 

increases the possible interactions they have with the surrounding ecosystem for many years 

to come, but these issues are exacerbated with the current knowledge that the particles are 

able to enter the food web and cause physiological, behavioural, and structural difficulties for 

various marine organisms including invertebrates (Besseling et al., 2013; Wright et al., 2013; 

Galloway & Lewis, 2016) and fish (Critchell & Hoogenboom, 2018).  

Bivalves such as mussels are useful bioindicators for assessing microplastic occurrence in 

coastal marine ecosystems, as well as indicating the level of transfer between the surrounding 

environment and marine biota. In addition, bivalves are filter-feeders with a global 

distribution (Chae & An, 2020). Suspension and filter-feeders are vulnerable to microplastic 

ingestion, as they continually filter larger volumes of water and are generally limited in their 

ability to selectively ingest particles (Kinjo et al., 2019). Filter-feeders also tend to feed upon 

organisms that occupy a similar size range to microplastics, making it even more difficult to 

discriminate between food and synthetic particles. In fact, one study has demonstrated that 

when mussels are simultaneously exposed to alga and microplastics, the organisms are more 

likely to retain the plastic particles for longer before excreting them, compared to when they 

were exposed to microplastic without the presence of alga (Chae & An, 2020). Consequently, 
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filter feeders like mussels may be more susceptible to retaining microplastics for longer 

periods when there is also a high volume of food sources in the surrounding environment.  

In New Zealand, three mussel species occupy the intertidal and shallow subtidal zones. The 

ribbed mussel (Aulacomya maoriana), the green-lipped mussel (Perna canaliculus), and the 

Mediterranean blue mussel (Mytilus galloprovincialis) co-exist in many different hard-shore 

environments along New Zealand’s coastline, where they have similar ecological functions as 

primary consumers and sessile filter-feeders (Gardner, 2002). The New Zealand coastline 

provides an interface between the marine and terrestrial environment, so is often highly 

urbanised. Consequently, the coastal ecosystem experiences significant pollution from 

sources such as plastic, heavy metals, and sedimentation – to name a few (Vikas & 

Dwarakish, 2015). Coastal-dwelling species such as mussels are subjected to these pollutants 

on a regular basis, thus placed under significant stress and the possibility of trophic transfer 

throughout the food web. Mytilus galloprovincialis mussels are a particularly good model 

species for the investigation of microplastic occurrence, as they have a global distribution, 

meaning that there are comparisons that can be made from other studies. Additionally, as Li 

et al. (2019) states, mussels are likely to be a significant source of microplastic transferral to 

humans, as they are a common seafood that is typically consumed whole.   

Temporal and spatial studies allow us to better elucidate the full extent of microplastic load in 

the marine environment, however currently, studies that consider the impacts of space and 

time are not commonplace. A study conducted by Baechler et al. (2020) has reported a 

difference in microplastic abundance within Pacific oysters (Crassostrea gigas) and Pacific 

razor clams (Siliqua patula) across different seasons, at different sites across the Oregon 

coastline. Consequently, we can see that attempts are being made to characterise spatial and 

temporal trends in microplastic load within the Northern Hemisphere, so it is valuable to 

undertake similar studies throughout coastal environments in the Southern Hemisphere – 

enabling comparisons to be made for future mitigation efforts.  

Wellington Harbour is a semi-enclosed harbour composed of a roughly circular shape at the 

southern-most tip of the North Island, New Zealand (Kröger et al., 2006). It has a total area 

of approximately 85 km2  (Booth, 1975) and a benthos made up of soft sediment, particularly 

in the deeper parts of the harbour (Van der Linden, 1967). Towards the harbour entrance and 

around nearshore areas, however, the sediment layer is reported to be coarser (Carter, 1977; 

Kröger et al., 2006). A relatively shallow harbour, the average depth is 14 m, but it reaches 
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32 m South of Matiu-Somes Island (Heath, 1977; Kröger et al., 2006) and is considered well-

mixed (Kröger et al., 2006).  Its main source of fresh water is the Hutt River, which itself is 

subject to relatively high levels of pollution of various kinds (Booth, 1975), including inputs 

of plastic pollution (Mora-Teddy & Matthaei, 2020). As a heavily urbanised harbour with 

significant man-made alterations, it is likely that there are high levels of microplastic 

pollution in all aspects of the habitat – whether that be the sea surface, beach sediments, or in 

the tissues of coastal organisms that inhabit Wellington Harbour.  

This study aimed to provide the first quantitative baseline survey of microplastic debris in 

Wellington Harbour, using a multi-pronged approach. An emphasis was placed upon 

collecting data from multiple sources, including surface water, the shoreline, and the tissues 

of Mytilus galloprovincialis, for the purpose of addressing the following questions: does 

larger-scale (3-monthly) and shorter-scale (weekly) temporal variation play a role in 

determining microplastic abundance within Wellington Harbour? Do all three sources show 

coherent patterns of microplastic abundance and distribution within the harbour? Finally, is 

the level of microplastic pollution found in Wellington’s surface waters, beaches, and 

mussels similar to abundances found elsewhere in New Zealand and the Southern 

Hemisphere? 
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Methods 

Sample collection 

Samples were collected between the 7th of February 2019 and the 15th of February 2020, from 

a total of three beach sites, three mussel collection sites, and two surface water tow sites. 

Samples were collected every three months for a year, with shoreline and mussel surveys 

occurring in February, May, August, and November, while surface water tows occurred in 

March, June, September, and December. For the first two sediment and mussel collections 

(February & May 2019), only one sampling event took place at each site per month. To better 

elucidate variability over shorter time scales, samples were collected once a week for three 

weeks at each beach and mussel collection site in August (2019), November (2019), and 

February (2020). During all field collections, non-synthetic clothing was worn, so to 

minimise contamination.  

Beach sampling 

Beach samples were collected during low tide from Oriental Bay, Balaena Bay, and Seatoun 

Beach (Figure 3.2). Three replicate samples were collected at what was visually determined 

as the most recent high tide line, which is known to be the area on a shoreline to accumulate 

the highest amount of plastic debris (Hidalgo-Ruz et al., 2012). To ensure sampling was 

unbiased, samples were taken at a random distance apart. This was determined by throwing a 

sediment corer (10 cm diameter) and collecting sediment from the point on the high tide line 

where it landed. The corer was marked with centimetre notches, and the first 5 cm of 

sediment were collected. The total sediment volume collected for each sample was ~400 cm3 

(𝑉 = 𝜋525). Samples were returned to the laboratory for analysis.  

Mussel sampling 

Individual mussels (Mytilus galloprovincialis) were collected at low tide from rocky substrata 

at three sites around the Wellington Harbour, all with high mussel abundance; Oriental Bay, 

Kau Point, and Scorching Bay (Figure 3.2). At each location, 5 mussels with a shell length of  

≥ 30 mm (measured with calipers to the nearest 0.1 mm) were collected from the substrate 

and placed in a small bag, before being returned to the laboratory for processing.   

Surface water sampling 

Small boats belonging to the Victoria University Coastal Ecology Laboratory (VUCEL) were 

used to collect plankton along two 200 m long transects: one from the South-West of Matiu-

Somes Island (S 41°15, E 174°51), in the middle of Wellington Harbour, and one from the 

mouth of Evans Bay (S 41°17 E 174°49) (Figure 3.2). The vessel cruised at a speed of ~5 



60 
 

knots during the collection, while a neuston net was towed behind it. Seawater was filtered 

through a 250 µm mesh collecting sieve, with organic and inorganic material collected in a 

collecting tube. After the transect had been completed, the material in the collecting tube was 

transferred into a bucket and the tube was rinsed to collect all organisms and particles. 

Samples were then taken back to VUCEL for further filtering and laboratory analysis. The 

tows were carried out using a neuston net, which is traditionally used to capture plankton, but 

also commonly used for obtaining surface water microplastics (Barrows et al., 2017; Green et 

al., 2018). Due to logistical limitations, only one transect was carried out at each of the two 

sites every three months – these occurred on the same day. To minimise contamination 

between the two sites, the net and collecting mesh were both rinsed with fresh water before 

the commencement of the tow at the second site (Löder & Gerdts, 2015). 
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Figure 3.2: Map of sites sampled within Wellington Harbour, where pink symbols represent beach sediment 

survey sites, orange represents M. galloprovincialis mussel sites, and green demonstrates surface water 

transects. Retrieved from Google Earth 21/05/2020.  
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Laboratory analysis 

Beach samples 

Once in the laboratory, a density-separation method was used to extract any synthetic 

particles from the sediment collected in the field. This method was adapted from techniques 

first used by Thompson et al. (2004) and Claessens et al. (2011). For every 200 g of 

sediment, 400 mL of super-saline NaCl solution was added. Beakers were then manually 

stirred and shaken for 30 seconds (Clunies-Ross et al., 2016), and then the contents allowed 

to settle for 1 minute. The top layer of debris was then siphoned off and filtered through a 75 

µm sieve. This process of manually stirring, settling, then filtering was repeated until there 

was only a thin layer of NaCl solution left above the sediment (1-2 mm), with the leftover 

sediment then discarded. The process was repeated until all the sediment from each sample 

had been density-separated and filtered.  

Mussel samples 

After field collection, the mussels were returned to the laboratory and placed in the freezer 

for 48 hours. 1 hour before processing, they were removed from the freezer to thaw out. At 

this time, shell length was confirmed using calipers and they were placed in individual jars. 

To minimise contamination from particles in the air, each jar was covered in cling wrap 

during thawing and digestion. After the mussels had thawed out sufficiently, the flesh was 

removed from the shells and weighed at wet weight .  

To prepare for mussel digestion, a 10% KOH solution was made, using KOH pellets and 

distilled water in a 1L flask, following an adapted protocol described in Miller et al. (2017), 

used in Tanaka & Takada (2016) and Wagner et al. (2017). The 10% KOH solution was 

poured into each jar until the mussel tissues were completely covered (Figure 3.3). At this 

stage, the cling wrap was added, and the tissues were left at room temperature for a total of 2 

weeks, stirring every few days. After two weeks, all M. galloprovincialis tissue had been 

digested, leaving only inorganic particles. To remove these and analyse them, the KOH 

solution was filtered through a 75 µm sieve, and the collected particles rinsed with distilled 

water before being transferred to a petri dish for examination under the microscope. 
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Figure 3.3: Mussel digestion process, including A) at the commencement of digestion, as the 10% KOH solution 

was being added, and B) after a week of digestion, where there was only a small amount of soft tissue left, along 

with byssal threads and inorganic materials. At the end of the digestion process, there was no soft tissue left, and 

the byssal threads had dispersed.  

 

Water surface samples 

Once in the laboratory, each sample was filtered further through a 100 µm sieve, again using 

the adapted density-separation and filtering methodology first described in Thompson et al. 

(2004) and Claessens et al. (2011). A siphon was again used to collect particles and filter 

them, before the particles were transferred to a petri dish using distilled water. These samples 

were then ready for examination under the microscope. 

Microscope analysis 

Once filtered, each sample was transferred to a petri dish, using distilled water. These were 

then visually examined under a stereo microscope at 15x magnification. Items were 

characterised in the same way as the previous data chapter, with three size classes – small (<1 

mm), medium (1-2 mm), and large (2-5 mm). Type of particle was also recorded, with 

categories for fibres, fragments, foil, paint, and macroplastic. Additionally, the colour of each 

particle was noted. Items were verified as synthetic by attempting to break apart the item with 

forceps, as well as the visual analysis. If the object was plastic, it would not break under 

pressure of the forceps. After examination, samples were again rinsed through the 75 µm 

filter then transferred to a collection tube and preserved with 40% ethanol.   

Statistical analyses 

All analyses were conducted in R V3.6.3 (R Core Team 2020) using RStudio v1.2.5033 

(RStudio team, 2020). Pearson’s Chi-squared tests were used to test morphotype, size, and 
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colour of synthetic particles collected during the study. Additionally, a generalized linear 

model (GLM) with a Poisson distribution was used to test for temporal and spatial variation 

within the M. galloprovincialis tissue samples and beach sediment samples, due to non-

normal distribution of count data. Tests were conducted for temporal variation, both between 

months (February 2019 – February 2020), and between weeks for the applicable collections 

that occurred during August 2019 – February 2020. Tests for spatial variation were conducted 

for the three different sites within a collection month – Oriental Bay (OB), Kau Point (KP), 

and Scorching Bay (ScB) for mussels, and Oriental Bay (OB), Balaena Bay (BB), and 

Seatoun Beach (ST) for beach sediments. Results were reported on a log scale. 

Finally, due to a small sample size (n = 8) and non-normal distribution, a Kruskal-Wallis test 

was conducted to quantify temporal differences between the surface water tows, using the 

two sites (Evans Bay & Matiu-Somes Island) as the two replicates.  
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Results 

Mytilus galloprovincialis   

Monthly variation  

Mean microplastic abundance within M. galloprovincialis individuals was highly variable, 

dependent upon the month of sampling. February 2019 was significantly different to all other 

months (Table 3.1), with values approximately 5 times higher than May 2019, and up to 13 

times greater than all other sampled months (Figure 3.4). In addition, there was also a 

significant difference between May 2019 and all subsequent months (Table 3.1), with mean 

microplastic abundance was twice as high (Figure 3.4). 

Table 3.1 Results of between-month variation (February 2019, May 2019, August 2019, November 2019, and 

February 2020) on microplastic abundance within pooled M. galloprovincialis samples, where * indicates 

significant differences at p = 0.05.   

Month Estimate SE Z.ratio P.value 
 

Aug19 - Feb19 -2.4155 0.102 -23.790 <0.0001 * 

Aug19 - Feb20 -0.0081 0.127 -0.064 1.0000 
 

Aug19 - May19 -0.6039 0.147 -4.122 0.0004 * 

Aug19 - Nov19 0.2375 0.136 1.749 0.4039 
 

Feb19 - Feb20 2.4074 0.101 23.786 <0.0001 * 

Feb19 - May19 1.8116 0.125 14.545 <0.0001 * 

Feb19 - Nov19 2.6530 0.112 23.740 <0.0001 * 

Feb20 - May19 -0.5958 0.146 -4.073 0.0004 * 

Feb20 - Nov19 0.2456 0.136 1.812 0.3667 
 

May19 - Nov19 0.8414 0.154 5.472 <0.0001 * 

 

 

Figure 3.4: Mean (+/- 95% confidence interval) number of microplastics observed within M. galloprovincialis 

samples collected in February 2019, May 2019, August 2019, November 2019, and February 2020. 
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Weekly variation  

M. galloprovincialis tissues had a statistically similar microplastic load throughout the three 

collections in August 2019 and November 2019 (Table 3.2). In contrast, the third week of 

sampling in February 2020 was significantly different to week 1 and 2 (Table 3.2), with M. 

galloprovincialis mussels containing approximately half the amount of microplastics 

observed in the previous weeks within their tissues (Figure 3.5). 

Table 3.2: Results of a pairwise comparison, showing between-week variation of microplastic abundance within 

M. galloprovincialis samples, where * indicates significant differences at p = 0.05. Collections A – C represent 

weeks 1 – 3, respectively. 

Month Collection Estimate SE Z.ratio P.value 
 

Aug-19 A - B 0.2029 0.213 0.952 0.6071 
 

 
A - C 0.3655 0.223 1.637 0.2299 

 

 
B - C 0.1625 0.233 0.697 0.7654 

 

Nov-19 A - B 0.2162 0.25 0.867 0.6614 
 

 
A - C 0.1178 0.243 0.485 0.8785 

 

 
B - C -0.0984 0.256 -0.384 0.9220 

 

Feb-20 A - B 0.2007 0.201 0.998 0.5779 
 

 
A - C 0.8293 0.245 3.390 0.0020 * 

 
B - C 0.6286 0.253 2.487 0.0344 * 

 

 

Figure 3.5: Mean (+/- 95% confidence interval) number of microplastic particles within M. galloprovincialis 

tissues, with variation observed between weekly collections in Aug/Sept ’19, Nov/Dec ’19, and Feb/Mar ’20. 
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Spatial variation  

For M. galloprovincialis samples, the monthly mean microplastic abundance was not heavily 

influenced by site. The only significant differences between site occurred within the month of 

August 2019, where the mean microplastic abundance differed between Kau Point and 

Oriental Bay individuals (Table 3.3), with mean microplastic abundance greater in 

individuals collected from Oriental Bay (Figure 3.6). Within all other months sampled, mean 

microplastic abundance was comparable between Kau Point, Oriental Bay, and Scorching 

Bay (Figure 3.6). 

Table 3.3: Results of a pairwise comparison, examining between-site variation (Kau Point, Oriental Bay, and 

Scorching Bay) of microplastic abundance within M. galloprovincialis samples, with * indicating significant 

differences at p = 0.05.   

Month Site Estimate SE Z.ratio P.value 
 

Feb19 KP - OB -0.00717 0.120 -0.060 0.9980 
 

 
KP - SCB -0.25848 0.113 -2.289 0.0575 

 

 
OB - SCB -0.25131 0.113 -2.230 0.0662 

 

May19 KP - OB -0.42286 0.295 -1.433 0.3241 
 

 
KP - SCB -0.35140 0.299 -1.173 0.4690 

 

 
OB - SCB 0.07146 0.267 0.267 0.9614 

 

Aug19 KP - OB -0.62415 0.226 -2.759 0.0160 *  
KP - SCB -0.20972 0.246 -0.854 0.6696 

 

 
OB - SCB 0.41443 0.212 1.956 0.1233 

 

Nov19 KP - OB -0.19237 0.235 -0.818 0.6918 
 

 
KP - SCB 0.31845 0.268 1.187 0.4609 

 

 
OB - SCB 0.51083 0.258 1.978 0.1175 

 

Feb20 KP - OB 0.18232 0.214 0.852 0.6708 
 

 
KP - SCB 0.28768 0.220 1.305 0.3925 

 

 
OB - SCB 0.10536 0.230 0.459 0.8906 
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Figure 3.6: Average (+/- 95% confidence interval) microplastic abundances per mussel between sites within 

each collection month, where black bars represent Kau Point, striped bars represent Oriental Bay, and grey bars 

represent Scorching Bay.  

Beach sediment 

Monthly variation  

Similar to the mean microplastic abundance within M. galloprovincialis tissues, the pollutant 

load in beach sediment cores (each sample ~ 400 cm3) was also highly variable. However, 

average microplastic load peaked in May 2019, as opposed to February 2019 (Figure 3.7). 

Sediments collected in May 2019 were up to 11 times greater than the smallest monthly 

average, in November 2019 (Figure 3.7). A pairwise comparison between months indicated 

that all sampled months were significantly different than each other (Table 3.4).  

Table 3.4: Results of between-month variation (February 2019, May 2019, August 2019, November 2019, and 

February 2020) on microplastic abundance within pooled beach sediment samples, where * indicates significant 

differences at p = 0.05.   

Month Estimate SE Z.ratio P.value 
 

Aug19 - Feb19 -0.347 0.0520 -6.669 <0.0001 * 

Aug19 - Feb20 0.333 0.0455 7.320 <0.0001 * 

Aug19 - May19 -1.448 0.0392 -36.941 <0.0001 * 

Aug19 - Nov19 0.951 0.0555 17.130 <0.0001 * 

Feb19 - Feb20 0.680 0.0554 12.276 <0.0001 * 

Feb19 - May19 -1.101 0.0503 -21.876 <0.0001 * 

Feb19 - Nov19 1.297 0.0638 20.323 <0.0001 * 

Feb20 - May19 -1.781 0.0436 -40.860 <0.0001 * 

Feb20 - Nov19 0.617 0.0587 10.519 <0.0001 * 

May19 - Nov19 2.399 0.0539 44.494 <0.0001 * 
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Figure 3.7: Mean (+/- 95% confidence interval) abundance of microplastics observed within beach sediment 

samples of approximately 400 cm3, collected in February 2019, May 2019, August 2019, November 2019, and 

February 2020.  

Weekly variation  

Average microplastic abundance in beach sediment cores (each sample ~ 400 cm3) was 

slightly more variable on a weekly basis than in M. galloprovincialis tissues. There were no 

statistically significant differences between weeks in August 2019 (Table 3.5), however week 

1 in November 2019 had a higher amount of microplastics on average compared to week 2 

(Table 3.5). In addition, week 1 of February 2020 had a higher number of microplastics 

contained within the sediments than both subsequent weeks of the same month. (Figure 3.8).  

Table 3.5: Results of between-week variation (Weeks 1, 2, and 3 respectively) on microplastic abundance within 

beach sediment samples of approximately 400 cm3, collected in August 2019, November 2019, and February 

2020.  * indicates significant differences at p = 0.05.   

Month Collection Estimate SE Z.ratio P.value 
 

Aug19 A - B -0.0126 0.0710 -0.178 0.9828 
 

 
A - C 0.0441 0.0720 0.612 0.8135 

 

 
B - C 0.0567 0.0718 0.79 0.7094 

 

Nov19 A - B 0.2896 0.1169 2.487 0.0353 * 
 

A - C 0.0918 0.1107 0.829 0.6849 
 

 
B - C -0.1978 0.1193 -1.659 0.2212 

 

Feb20 A - B 0.7975 0.0852 9.365 <0.0001 * 
 

A - C 0.7441 0.0836 8.897 <0.0001 * 
 

B - C -0.0535 0.0987 -0.543 0.8503 
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Figure 3.8: Average (+/- 95% confidence interval) abundance of microplastic particles within beach sediment 

samples of approximately 400 cm3,  with variation observed between weekly collections in Aug/Sept ’19, 

Nov/Dec ’19, and Feb/Mar ’20. 

Spatial variation  

In contrast to M. galloprovincialis samples, microplastic abundance within beach sediments 

appears to be more spatially variable within months, with site variability observed in three 

out of five months. In February 2019, microplastic abundance was significantly different at 

Oriental Bay, while in May 2019 each site was dissimilar in microplastic load from the others 

(Table 3.6), with Seatoun having the greatest difference. Values in Seatoun during May 2019 

were up to two times greater than average microplastic abundance in Balaena Bay or Oriental 

Bay (Figure 3.9). Thirdly, in February 2020, Balaena Bay differed from both other sites 

(Table 3.6), with less microplastics on average in its sediments than the other two sites 

(Figure 3.9). Consequently, the sites where difference in microplastic abundance was 

observed was not ubiquitous across all sampled months.  
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Table 3.6: Results of between-site variation (Balaena Bay, Oriental Bay, and Scorching Bay) on microplastic 

abundance within beach sediment samples of approximately 400 cm3 across all collection months. * indicates 

significant differences at p = 0.05.   

Month Site Estimate SE Z.ratio P.value 
 

Feb19 BB - OB -0.2877 0.0986 -2.918 0.0099 * 
 

BB - ST 0.2231 0.1118 1.996 0.1132 
 

 
OB - ST 0.5108 0.1054 4.846 <0.0001 * 

May19 BB - OB 0.4316 0.0724 5.964 <0.0001 * 
 

BB - ST -0.8262 0.0544 -15.174 <0.0001 * 
 

OB - ST -1.2577 0.0639 -19.698 <0.0001 * 

Aug19 BB - OB -0.0153 0.0715 -0.215 0.9749 
 

 
BB - ST 0.0000 0.0718 0.000 1.0000 

 

 
OB - ST 0.0153 0.0715 0.215 0.9749 

 

Nov19 BB - OB -0.1881 0.1123 -1.675 0.2150 
 

 
BB - ST 0.0715 0.1196 0.597 0.8215 

 

 
OB - ST 0.2595 0.1145 2.265 0.0608 

 

Feb20 BB - OB -0.4580 0.0882 -5.195 <0.0001 * 
 

BB - ST -0.3991 0.0892 -4.474 <0.0001 * 
 

OB - ST 0.0589 0.0788 0.748 0.7348 
 

 

Figure 3.9: Average (+/- 95% confidence interval) microplastic abundances between sites within each sediment 

collection month, where black bars represent sediment cores (approximately 400 cm3) collected in Balaena Bay, 

striped bars represent Oriental Bay, and grey bars represent Seatoun.  

 

Surface water tows 

Microplastic abundance between the months of March – November 2019 appeared to be 

dynamic (Figure 3.10), with the highest number of synthetic particles within a single 200 m 

long neuston net transect recorded in March 2019, at Matiu-Somes Island (n = 107). The 

lowest number of particles collected in a single tow occurred during September 2019 – also at 
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Matiu-Somes Island (n = 19). Despite the apparent differences between the sample months, a 

Kruskal-Wallis test suggests that there is no significant difference in microplastic abundance 

between different months (p = 0.129). Spatially, Figure 3.10 suggests there may be 

similarities between Evans Bay and Matiu/Somes Island, as the tows produced comparable 

amounts of microplastic particles within each month that was sampled. These results must be 

interpreted with caution, however, due to the small sample size of water surface tows able to 

be collected during the study. 

 

Figure 3.10: Total microplastic abundance per 200 m neuston net transect between collection sites, at each 3-

monthly sampling tow, where black bars represent Evans Bay and striped bars represent Matiu-Somes Island.  
 

Plastic characteristics 

Type of particle 

 

 

 

 

 

 

 

Figure 3.11: Two examples of synthetic particles collected within this study, where A) was a large blue 

fragment found in a M. galloprovincialis individual, whilst B) shows two fibres (black and blue) of medium and 

small sizes respectively, found within sea surface samples.  
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Multiple types of inorganic particles were found in all three sources of collection for this 

study, including those shown in Figure 3.11. Synthetic fibres were the predominant plastic 

type throughout all three sources, accounting for 90.5% of all synthetic particles within 

sediments collected along the high tide line, 94.2% in surface water tows, and 95.8% within 

M. galloprovincialis tissue. Plastic fragments were the second-most abundant particle type in 

all three sources, although these accounting for a mere 3.6% of total inorganic particles in M. 

galloprovincialis, 5.2% of surface water samples, and 9.2% of particles collected within 

sediments. All other occurrences of various inorganic particles within M. galloprovincialis, 

sediment, and surface water tows are negligible (Table 3.7), with synthetic fibres and plastic 

fragments the only consistent types of microplastic found throughout the study (Figure 3.12). 

The difference in percentage of each particle type was significant in the three sources (x2 (4) 

= 38.939, p = <0.0001), particularly as microfibres comprised the highest percentage in M. 

galloprovincialis samples, while microplastic fragments were more common in beach 

sediment samples as opposed to the other two sources (Figure 3.12). 

Table 3.7: Count data investigating total number of synthetic particles within M. galloprovincialis tissues, 

sediment, and water tows collected during the scope of this study.  
 

Bead Fabric Fibre Foil Fragment Macro Virgin 

pellet 

Paint 

Mussel 1 0 845 1 32 3 0 0 

Sediment 0 0 4495 0 458 12 3 1 

Water 0 1 451 0 25 2 0 0 

 

 

 

 

 

 

 

 

 

  

Figure 3.12: Percentages of the total count data between February 2019 and February 2020, for all different 

plastic type. Data is pooled across sources. Striped bars represent the percentage of microfibres, black bars 

represent the percentage of fragments, and open bars represent the percentage of all other plastic types – beads, 

fabric, foil, macroplastic, virgin plastic pellets, and paint chips.  
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Size of plastic particles  

A total of 6,312 synthetic particles were detected within the samples collected for this study. 

Of these, medium-sized microplastics (1-2 mm) were most common throughout all three 

sources; M, galloprovincialis tissues, beach sediments, and surface water tows (Table 3.8). 

This size category comprised between 40 – 44% of all synthetic particles observed, while 

small and large particles were more widely varied between the three sources (Figure 3.13). 

The difference in the proportions was shown to be significant between size classes and the 

three sources (x2 (4) = 51.828, p = <0.0001). 

Table 3.8: Count data investigating size distributions of synthetic particles within M. galloprovincialis tissues, 

sediment, and water tows collected during the scope of this study. Count data not inclusive of macroplastic 

particles >5 mm in length or diameter. 

 
Small Medium Large 

Mussel 208 355 316 

Sediment 1501 2215 1240 

Water 128 201 148 

 

 

Figure 3.13: Microplastic size distributions within M. galloprovincialis, sediment, and surface water tows, 

expressed as a percentage.  Black bars represent the percentage of small particles (< 1 mm), striped bars 

represent medium (1 – 2 mm), and grey bars represent large particles ( >2 – 5 mm). 

Colour of particles 

The colours of synthetic particles were found to range significantly throughout M. 

galloprovincialis, beach sediment, and water surface samples. Black and blue microplastics 

were the most prevalent varieties, accounting for between 25 – 52% of each source. All other 

colours found within the samples were far less predominant, as demonstrated in Figure 3.14. 

The difference in percentage of each particle colour (black, blue, colourless, and other) was 

significant in the three sources (x2 (6) = 294.52, p = <0.0001), supporting the count data 
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shown in Table 3.9. Black particles were particularly of highest prevalence in the sediment 

and water samples, while blue particles comprised a far greater proportion of the colours 

found within M. galloprovincialis samples.  

Table 3.9: Count data investigating colour distributions of synthetic particles found within M. galloprovincialis 

tissues, sediment, and water tows collected during the scope of this study. 
 

Black Blue Colourless Green Orange Purple Red White Yellow 

Mussel 229 461 126 10 10 2 41 3 1 

Sediment 2350 1981 183 61 39 25 145 149 36 

Water 229 130 37 13 13 5 33 11 8 

 

 

Figure 3.14: Microplastic colour distributions within M. galloprovincialis, sediment, and surface water tows, 

expressed as stacked percentages of the total count data for each source. Black bars represent the percentage of 

black particles, striped bars represent blue particles, grey bars represent colourless particles, and open bars 

represent the total percentage of all other colours (green, orange, pink, purple, red, white, and yellow). 
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Discussion 

This study illustrated that microplastic abundance within Wellington Harbour is highly 

dynamic on a variety of spatial and temporal scales, both within and among the three 

different sources examined: M. galloprovincialis tissues, beach sediments, and surface water 

tows. As hypothesized, the abundance and distribution of microplastic pollution was 

reasonably variable between the months and sites sampled, however less so between weeks. 

Furthermore, tissues of M. galloprovincialis individuals had a low abundance of microplastic 

particles on average, as hypothesized, although the pollutant load within all three sources 

were relatively on par with what has been found elsewhere in the world’s coastal 

environments. This difference between sources is likely due to each mussel filtering a 

relatively small volume of seawater, in addition to their ability to egest synthetic particles 

within a relatively short period following ingestion (Woods et al., 2018; Gonҫalves et al., 

2019). The peak microplastic load for M. galloprovincialis tissues and surface water tows 

was observed in the samples collected during February/March, however for beach sediments 

the highest level of plastic pollution was observed in May/June. This may indicate that 

microplastics in Wellington Harbour do not follow the same temporal trend across all 

sources, or that different environmental factors impact the various habitats and organisms in 

separate ways.   

Spatial differences were not as pronounced across the board as the temporal variation that 

occurred. This was particularly true for the M. galloprovincialis tissues, as Scorching Bay 

samples were similar to the other sites over all months. Oriental Bay individuals contained 

more synthetic particles than those collected from Kau Point in August 2019, but this was the 

only instance of significant variation. Interestingly, beach sediments experienced much 

higher levels of spatial variation, occurring over all three sites. This may also be due to 

environmental drivers that affect loading of plastic in beach sediment, however human 

interaction with beach surfaces may also play a role (Barnes et al., 2009; Agamuthu et al., 

2019).  

As hypothesized, microfibres were the most common type of synthetic particle detected in all 

three sources. Furthermore, the colour and size of particles ranged significantly throughout 

mussel tissue, beach sediment, and water surface samples. Black and blue particles were 

highly abundant in all three sources, whilst overall, size was the particle characteristic that 

was most evenly distributed, with particles measuring between 1 – 2 mm in length found to 

be the most prevalent size class observed in all three sources. 
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Microplastic abundance & distribution in Mytilus galloprovincialis 

Mussels are ecologically significant in coastal marine ecosystems, and an integral role in 

benthic-pelagic coupling as a primary consumer that directly interacts with the surrounding 

environment. Consequently, it has been suggested that they are valuable bioindicators of 

microplastic pollution (Beyer et al., 2017; Brate et al., 2018; Li et al., 2019; Scott et al., 

2019), thus helping to demonstrate the rate at which microplastics can enter the food web.  

In this multi-pronged survey of Wellington Harbour, it is significant that synthetic particles 

were found within the tissues of M. galloprovincialis, which has not been documented in the 

Southern Hemisphere until now. This suggests that the uptake of microplastic pollutants can 

occur through either ingestion or adherence to their tissues (Kolandhasamy et al., 2018; 

Webb et al., 2019), but the majority of particles are egested as opposed to accumulating in 

the organism’s internal tissues (Capolupo et al., 2018; Gonҫalves et al., 2019).  

Some laboratory studies have begun to look at the accumulation vs. egestion of pollutants 

such as microplastics and heavy metals, within various mussel species. Estimates vary 

regarding how long microplastics are able to persist in mussels, but one such study reports 

that particles translocated from the digestive system to the circulatory system of Mytilus 

edulis and remained there for over 48 days (Browne et al., 2008). In contrast, a different 

study reported that after introducing 30 microfibres mL-1 to M. edulis mussels, approximately 

71% of these were quickly released as pseudofeces, and 9% ingested after a period of 3 hours 

(Woods et al., 2018). For M. galloprovincialis mussels, laboratory studies have focused upon 

microplastics such as polystyrene up until this point, with one paper providing evidence for 

rapid processing and egestion of the particles (Gonҫalves et al., 2019). However, 

microplastics were still retained within the digestive system for 7 days after ingestion 

(Gonҫalves et al., 2019). On the other hand, a larval study demonstrated that polystyrene 

microplastics were retained for up to 8 days in the digestive tract after ingestion (Capolupo et 

al., 2018). Both studies provided evidence for microplastics remaining in the digestive tract 

only, rather than being translocated to the gills or other internal tissues; indicating that 

microplastics are preferentially taken up when feeding (Rivera-Hernández et al., 2019). Since 

M. galloprovincialis mussels were digested whole during this study, an individual analysis of 

where the microplastic particles were located was unable to occur; in future studies this 

would provide evidence for short-term versus long-term retainment.  
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Interestingly, spatial trends indicated that microplastic load within M. galloprovincialis 

mussels around different Wellington Harbour sites that are on average 1.3 km apart 

(straightline distance) do not vary much. These results indicate that variation across the scale 

of sites separated by a few kilometres is less important than temporal variation in contributing 

to patterns of microplastic abundance in M. galloprovincialis mussels in Wellington Harbour. 

This result is similar to the spatial patterns discussed in Webb et al. (2019), where 

microplastic abundance within P. canaliculus samples collected from around New Zealand 

(including the Auckland, Wellington, and Canterbury regions) was not found to be 

significantly associated with location. Although this study looked at finer spatial trends in 

comparison to Webb et al. (2019), it can still be suggested that the same principles apply. As 

a semi-enclosed harbour, Wellington Harbour experiences high levels of urbanisation, 

however the intensity of human activity is likely to be more constant than other coastal areas 

in the Northern Hemisphere that have reported significant spatial trends of microplastic 

abundance for various mussel species. For example, Li et al. (2016) conducted a study across 

approximately 2/3 of the total mainland coastline China, looking at the microplastic pollution 

load within the Mytilus edulis population. Their results suggested that the microplastic load 

was significantly higher in areas that undergo intensive human activities, and less so in the 

more remote areas. These differences could be – in part – due to differences in sampling 

methodologies, but it is also feasible that there may be higher levels of variability in pollutant 

loads across regions with intensive human activity. 

Apart from the mussel samples collected in February 2019, there was generally a low 

abundance of microplastic particles contained within M. galloprovincialis tissues. The 

microplastic load ranged between 0 – 11 (May 2019 – February 2020 samples), with an 

average of 2.8 particles per individual or 0.30 ± 0.04 particles g-1 (wet weight). These results 

are within a similar range to other mussel studies, both within New Zealand and globally. In 

New Zealand, Webb et al. (2019) reported 0 – 1.5 particles per Perna canaliculus mussel, 

while for the M. edulis spp. some reports suggest a microplastic load in the range of 0.36 ± 

0.07 particles g-1 from a mussel farm in Germany (Van Cauwenberghe & Janssen, 2014) or 

0.3 ± 0.2 particles g-1 on the French/Belgian/Dutch coastline (Van Cauwenberghe et al., 

2015). For M. galloprovincialis mussels, one study reported that this species may contain up 

to 2.33 ± 0.2 particles g-1 for individuals along the South African coastline (Sparks, 2020), 

while a study on coast of the Adriatic Sea reported 1.06 – 1.33 fragments g-1 and 0.62 – 0.63 

fibres g-1 (Gomiero et al., 2019). In saying this, however, many variables are at play when 
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investigating microplastic abundance in bivalves and other taxa. Geographic region is likely 

of high importance, as some coastal areas may be more heavily influenced by urbanisation, or 

subject to more pronounced environmental drivers. Furthermore, as there is no standard 

laboratory protocol for assessing microplastic load in mussel species, many different 

digestion methods are used, which may yield varying results. Until recently, for example, the 

use of Nitric acid was popular for digestion of soft tissue, however it has since been reported 

that this method results in degradation of some synthetic particles (Claessens et al., 2013; 

Dehaut et al., 2016; Karami et al., 2017). Regardless, these results are generally in line with 

those found in other published studies, suggesting that the maximum processing rates of 

microplastic particles are similar throughout the world and across multiple mussel species. 

Microplastic abundance & distribution in beach sediments 

This thesis has provided the first effort to quantify microplastic loads in Wellington beach 

sediments in the 21st century. The substantial quantity of particles found in this study is likely 

due to a combination of factors, but environmental drivers are thought to be highly 

influential. Wave stress and regular high tides, for example, are generally considered to be 

integral factors, as they push the particles onto the shore, resulting in a high concentration 

(Young & Elliott, 2016). Using sediment cores with an approximate volume of 400cm3 per 

sample, the extrapolated average abundance of microplastics within sandy beach sediments 

was 124.9 ± 35.7 particles kg-1 (wet weight). This estimation is on the lower end of global 

beach sediment microplastic approximations in the Northern Hemisphere, but surprisingly 

appears to be higher than the abundances reported in other Southern Hemisphere studies – 

including those carried out in other regions of New Zealand. Clunies-Ross et al. (2016) 

reported 0 – 45.4 particles kg-1 within the Canterbury region, while Bridson et al. (2020) only 

reported an average of 6 particles kg-1 in the Auckland region. In comparison, a study in 

Belgium reported 53 – 390 particles kg-1 (Claessons et al., 2011), therefore bearing more 

similarities to the results from this study.  

The large abundance in Wellington Harbour may possibly indicate that there are higher levels 

of microplastic pollution within the region’s marine environment. In saying that, however, at 

this stage it cannot yet be determined whether the microplastic particles examined during this 

study stem from a local origin such as the Hutt River and urban inputs around the region, or 

whether they come from further afield – flowing into the harbour via the Cook Strait 

entrance. 40 years ago, Gregory (1978) demonstrated that one microplastic type, virgin 

plastic pellets, were of the highest abundance around locales with large populations – like 
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Wellington – indicating that the plastics may have local origins. More recently, microplastics 

were found in urban streams around New Zealand, including from the Hutt River, therefore 

supporting the idea that at least some plastic inputs occur upstream (Mora-Teddy & Matthaei, 

2020). Bridson et al. (2020) however, suggests that a significant proportion of the 

microplastic load found around New Zealand may originate from nations such as Australia 

and the South-east of Asia. This is particularly likely when considering the major oceanic 

circulation systems in the Southern Hemisphere, where the New Zealand archipelago 

encounters the East Australian current (Bridson et al., 2020), as well as the report from 

Eriksen et al. (2014), where New Zealand is included in an accumulation zone for floating 

plastic litter. Regardless of whether microplastics found in Wellington Harbour originate 

locally or from afar, it is still possible that once they are in the harbour, they are retained in 

the region for a significant period.  

Wellington Harbour is considered a well-mixed system (Maxwell, 1956; Gilmour, 1960; 

Booth, 1975), with most local discrepancies quickly dispersed throughout the 76 km2 area. 

However, Booth (1975) also reported that the harbour is relatively cut off from the Cook 

Strait, with much of the mixing occurring within the constraints of the Harbour. This does 

suggest that it would be possible for microplastics to have a long residence time inside the 

Harbour’s system, with the possibility of also collecting within the semi-enclosed region. 

Consequently, if pollutant loads are significant with the additional ability to collect over time, 

it is probable that microplastic sinks such as beaches are a common deposition point for the 

particles. On the other hand, environmental variables further complicate the issue, in that 

beaches may not be permanent sinks. Moore (2008) reports that onshore winds will often 

push floating debris onto shorelines, whilst offshore winds will have the opposite effect. 

Furthermore, a lack of wind promotes the accumulation of synthetic particles on the coastline 

as they have time to settle into the sediment, whilst strong winds often displace the plastics – 

possibly resuspending the particles back into the water column (Oigman-Pszczol & Creed, 

2007; Costa et al., 2011; Agamuthu et al., 2019). These variables make it extremely difficult 

to accurately predict the spatial and temporal trends of microplastic abundance and 

distribution, even in semi-enclosed environments such as Wellington Harbour.  

There was a higher degree of spatial variation in microplastic abundance for beaches than 

mussels, despite the similar, relatively close distances between sites (approximately 1.5 km – 

straightline distance). Differing levels of human activity throughout the year has often been 

attributed to this changeable load in various studies (Bridson et al., 2020), as movement of 
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particles on the top layers of beach sediment often results in smaller items being dispersed or 

buried (Agamuthu et al., 2019). However, other contributing factors to this variation are 

likely to be differences amongst rates of sediment erosion, the variable topography of the 

beaches (Ribic et al., 2012; Agamuthu et al., 2019), and the direction that the beach faces in 

relation to the prevailing Wellington winds. In this study, the approximate directions of each 

beach differ, with Oriental Bay beach facing North, Seatoun beach facing North-East, and 

Balaena Bay facing South-East. As stated in Oigman-Pszczol & Creed (2007), Costa et al. 

(2011), and Agamuthu et al. (2019), beaches that are not as readily exposed to prevailing 

winds often accumulate microplastics to a greater degree, as the lack of wind force enables 

the pollutants to settle on the coastline. Therefore, the differing coastline directions, in 

conjunction with some or all of the other social and environmental factors, may contribute to 

the irregular spatial variation observed during this study.  

Microplastic abundance & distribution in surface water tows 

Temporal trends in microplastic abundance peaked at similar periods throughout the three 

sources sampled. Tissues of M. galloprovincialis mussels had the highest load in February 

2019, also observed in water surface tows. Beach sediments, however, had a slight delay, 

with their peak microplastic load occurring in the next sampling period, May 2019. 

Interestingly, the temporal trends seen in mussel tissues and water samples followed a similar 

curve to each other, while beach sediment data experienced more drastic peaks and troughs. 

This is possibly reminiscent of the results found in Qu et al. (2018), who report a correlation 

between the abundance of microplastics in surface waters and within mussels, but no 

correlation to the pollutant load in beach sediments within the same areas. Furthermore, Qu et 

al. (2018) suggest that the microplastic abundances present within mussel tissues are 

dependent upon the quantities in the water column. This determination cannot be made in this 

study, but the possibility of a correlation is intriguing, nonetheless.  

This is the first study in New Zealand that has surveyed surface waters for microplastic 

occurrence, although unfortunately limited in scope due to logistical constraints. Worldwide, 

particularly within the Northern Hemisphere, surface waters have been studied extensively, 

providing valuable estimations of micro- and macroplastic pollution. Therefore, although the 

results from this study in Wellington Harbour should be interpreted with caution, it provides 

a baseline for future surface water studies investigating abundance and distribution of plastic 

in New Zealand coastal waters. These transects collected between 15 – 107 particles per 200 

m, with an average of 59.5 ± 23.8 particles per 200 m. Global results from sea surface tows 



82 
 

are extremely variable, with one study reporting a maximum of 157,000 particles km-2 in the 

North-East Atlantic (Maes et al., 2017), while studies carried out by the North-Pacific gyre 

have previously recorded up to 300,000 particles km-2 (Moore et al., 2001). However, 

methodologies for assessing differences and similarities in global microplastic abundance are 

still varied in almost every aspect (Galgani et al., 2015). With no standard methodologies 

across the board, there are limitations upon creating a comprehensive understanding of 

marine plastic pollution, let alone taking steps to manage and reduce it. Furthermore, 

microplastic abundance and distribution within surface waters are again likely to be heavily 

impacted by environmental drivers such as vertical mixing due to wind strength, resulting in 

even larger variance between scientific studies.  

Conclusion 

This study is the first of its kind in New Zealand, and one of the first globally. Taking a 

multi-pronged approach to assessing microplastic pollution in a localised area provides a 

valuable baseline for further research. Surface waters, beach sediments, and filter-feeding 

bivalves such as Mytilus galloprovincialis have all been studied comprehensively in other 

nations, particularly throughout the Northern Hemisphere. Therefore, through investigating 

possible temporal and spatial patterns of microplastic abundance and distribution, future 

studies may build upon the initial trends observed.  
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4. General discussion 
 

Understanding how the abundance and distribution of microplastic debris varies in the marine 

environment is integral to coming up with mitigation, management, and prevention strategies. 

However, unless there is a global understanding of where this pollutant is, and at what 

concentrations, we cannot begin to effectively reduce the impacts upon affected marine 

species. Plastic pollution has been an ever-increasing issue since mass production began in 

the 1940’s (Cole et al., 2011), particularly as its impacts were initially underestimated 

(Colton et al., 1974; Zitko & Hanlon, 1991; Gregory, 1996). In the marine environment, the 

characteristics of plastic enable it to persist for an extended period of time and penetrate 

numerous ecosystems including the sea surface, the benthos & deep sea, coastal sediments, 

polar environments, and more (e.g. Van Cauwenberghe et al., 2013; Obbard et al., 2014; 

Woodall et al., 2014; Cózar et al., 2015). However, most of this current information has 

arisen from studies carried out in the Northern Hemisphere, since it is more heavily populated 

and thus has a greater number of research facilities investigating plastic pollution in the 

oceans (Lusher, 2015; Avio et al., 2017). Consequently, until recently it has been relatively 

unknown as to whether oceanic currents have circulated microplastics throughout the world, 

or alternatively whether direct and indirect inputs of plastic pollution are as significant in the 

Southern Hemisphere as they are in the Northern Hemisphere.  

Variation in microplastic abundance can impact the associated marine biota. If concentration 

of microplastic debris is high, this interaction is likely to be significant, therefore increasing 

the associated risk for negative effects on individuals (Agamuthu et al., 2019). Direct 

interactions such as ingestion or adherence to tissues are typically observed in taxa that are 

filter-feeders or suspension-feeders, thus occupying the lower trophic levels. However, once 

plastics have entered the food web, there is evidence to suggest that the particles – and the 

chemicals associated with them – can be transported up throughout the food web and 

bioaccumulate within internal tissues (Kelly et al., 2007). Such interactions have been 

reported to have negative impacts upon the physiology and behaviour of organisms 

(Andrady, 2011; Wright, 2013; Gall & Thompson, 2015; Agamuthu et al., 2019) and also 

possibly human health (Van Cauwenberghe & Janssen, 2014; Agamuthu et al., 2019) – 

although this facet of research is still in its infancy (Vandermeersch et al., 2015). 

In this study, I found that microplastics are found in many habitats throughout Wellington 

Harbour, as well as in the tissues of intertidal M. galloprovincialis mussels. The 
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concentration within M. galloprovincialis specimens was comparable to the microplastic 

loads reported within other studies that have examined mussel species, including one that was 

carried out in New Zealand on P. canaliculus (Webb et al., 2019). Microplastic 

concentrations within beach sediments and water surface tows were also in a similar range to 

what other studies have reported, however on a global scale there is an extremely broad range 

of estimates for the concentration of microplastics in these habitats. This discrepancy is 

thought to be a result of the wide range of environmental variables that drive the movement 

of plastics within the water column and onto the beach, including wind and wave exposure, 

sediment erosion, and direction of the coastline, along with the inconsistency between 

different sampling methodologies used in various studies. 

Sampling methodologies differ widely in almost every way across the breadth of current 

microplastic research, from field collections to laboratory analyses. For surface water 

sampling, this variation often arises from the type of net or collection technique used, 

whether that be a neuston net, Continuous Plankton Recorder, manta trawl, the ‘grab’ 

technique, or a saltwater intake pump (Figure 4.1) (Robinson et al., 2014; Setälä et al., 2016; 

Barrows et al., 2017; Cincinelli et al., 2017; Green et al., 2018). These all have different 

mesh sizes and varying success in capturing environmental microplastics. The differences are 

exacerbated in the laboratory setting, not only for surface water samples, but those from 

sediments and organisms also. The extraction of synthetic particles from different sources can 

be done in many ways including density flotations, acidic separations, and the digestion of 

soft tissue using numerous kinds of acids, alkali, and oxidation chemicals, all of which is 

further demonstrated by Miller et al. (2017) who has compiled a review of the methodologies 

used in a range of studies. This lack of consistency across the literature not only makes it 

difficult to know which methods to follow, but also increases the likelihood of sampling error 

when assessing pollutant load, simultaneously hindering the chance to make progress at all 

scales within the field.  
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Figure 4.1: Examples of the various sea surface sampling methods that are commonly used for assessing 

microplastic load. A) is a ‘grab’ system, B) a neuston net, C) a Continuous Plankton Recorder (CPR), and D) is 

a manta trawl. Image credit: A) & B) Barrows et al., 2017; C) Robinson et al., and D) Setälä et al., 2016. 

In general, the abundance and distribution of microplastic particles was highly dynamic at 

both the relatively small scale within Wellington Harbour, and in the large scale of the 

surface waters between New Zealand and the Ross Sea. This high level of variability is one 

of the main conclusions to come from this research and is indicative of the complex processes 

that dictate the movement of plastic pollutants. Plastic materials of all size classes are 

renowned for being lightweight yet durable, which subsequently makes it difficult to predict 

and model where they are likely to move or end up in the world’s oceans (Andrady, 2011). In 

saying that, this study provides preliminary evidence that both fine-scale (within an urbanised 

harbour) and wide-scale (across multiple oceanographic zones) spatial differences are not as 

pronounced as temporal differences. Spatial trends have been studies in far more depth, due 

to macropatterns such as the trend for plastic to accumulate in gyres and along frontal 

systems (Moore et al., 2001; Van Sebille et al., 2012; Fazey & Ryan, 2016). There have only 

been a limited amount of studies that examine both spatial and temporal trends in 

microplastic abundance and distribution, however of those that do, both space and time are 

thought to be useful predictors to model current and future abundance of this marine pollutant 

(Isobe et al., 2019). 

In accordance to predictions, microfibres were the most prevalent morphotype of microplastic 

found throughout both Wellington Harbour and the transects between New Zealand and the 

Ross Sea. These results were ubiquitous across sea surface tows, beach sediment surveys, and 
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contamination within M. galloprovincialis mussels. This is consistent with reports of global 

microplastic estimates, some of which predict between 90 - 95% of all marine microplastic 

debris to be in the form of microfibres (Galgani et al., 2015; Cesa et al., 2017; Barrows et al., 

2017; Woods et al., 2018). As opposed to other morphotypes, fibres are thought to be 

particularly extensive in the marine environment, with a large proportion coming from human 

clothing, ropes, and fishing gear (Andrady, 2011; Cesa et al., 2017).  

Clothing remains a significant source of microplastic pollution, as many items are made from 

synthetic materials such as nylon and polyester. Due to their miniscule size, most washing 

machines and dryers do not have inbuilt filters that can capture microfibres, so these escape 

into the wastewater drains and eventually are discharged into the sea. Browne et al. (2011) 

reported that one single polyester fibre shirt can release 1900 fibres during a single wash, so 

this value adds up quickly. As evidenced by the microfibres found within M. 

galloprovincialis tissues during this study, along with ingested microfibres reported in other 

species including – but not limited to – other invertebrates such as Carcinus maenas crabs 

(Watts et al., 2015), fish larvae (Steer et al., 2017), and shorebirds (Lourenҫo et al., 2017), it 

is clear that this morphotype is bioavailable to marine organisms, consequently entering the 

marine food web. While scientific research and the public’s understanding of microplastic 

pollution has grown extensively in recent years, most of this awareness has focused upon 

other morphotypes such as beads and fragments from larger debris, as evidenced by popular 

campaigns from environmental organisations including Greenpeace (Greenpeace New 

Zealand, 2020) and Plastic Oceans (Plastic Oceans International, 2020). Consequently, there 

now appears to be a gap between what microplastic researchers are finding within the 

environment and what the public is cognisant of, with regards to the sources of plastic and 

mitigation solutions.  

Limitations of Research 

Due to the breadth of information collated within this study, the main limitations of this thesis 

arose from both time and resource logistical constraints. For the two data chapters (Chapters 

2 & 3), time and resource limitations resulted in the sample analyses being conducted through 

visual microscopic analysis, but without the opportunity for confirmatory spectroscopy. 

Typically, many studies identify microplastics first through microscopic analysis, then 

confirmation of synthetic particles with Raman or Fourier transform infrared (FTIR) 

spectroscopy, which can further characterise the specific polymers of the plastic particles, 

beyond the simple morphotype. Furthermore, laboratory analysis utilised adapted methods 
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from previous papers, including Dehaut et al. (2016), Zhao et al. (2016), and Miller et al. 

(2017). Methodologies such as which separation technique to use, the most effective 

chemical for degradation of a mussel’s soft tissue, best filtration size for microplastic 

separation, and the type of net most suited to carrying out surface water plankton tows all 

differed drastically throughout the current available literature, thus making comparisons 

between my thesis and other examples within literature difficult.  

The time and resource constraints also meant that the ability to undertake replication of 

mussel, beach sediment, and surface water surveys within Wellington Harbour was limited, 

with the plankton tows only able to give a baseline indication of the abundance of 

microplastics contained within surface waters once every three months. Mussel and beach 

sampling was more robust, with multiple samples taken from each site during each collection, 

however the time it took to thoroughly process each sample meant I was unable to examine a 

larger sample size within this study.  Larger sample sizes would provide a clearer and 

broader perspective of the overall microplastic pollution load within this coastal environment.   

Environmental drivers are a significant factor when it comes to microplastic abundance and 

distribution, variables such as wind strength, vertical mixing, and seasonal changes in ocean 

currents (Eriksen et al., 2014) are expected to result in a significant change in marine 

microplastic load throughout the seasons. Data from chapter 3 sees a peak in microplastic 

abundance towards the beginning of the year, in the summer and early autumnal months. 

Investigations into the environmental variables at play within Wellington Harbour would be 

expected to provide inference into the reasons behind any possible temporal change. Chapter 

2 illustrated the temporal change that often occurs in surface water microplastic loads from 

year to year, which was an aspect unable to be examined in Chapter 3, as a long-term study 

was not feasible in the scope of this study. Temporal and spatial microplastic research 

appears to be a recent development in the field, with a handful of studies examining a range 

of different scales, whether that be investigating the fine-scale daily changes within a small 

area (Imhof et al., 2017), as well as broader seasonal changes across a coastline (Baechler et 

al., 2020) and monthly variation in beach sediments across the span of a year, on three 

different islands  (Herrera et al., 2018). The consideration of changes throughout time and 

space are considered necessary for the development of an overall understanding of 

microplastic occurrence, as well as future predictions.  
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Studies investigating annual changes in marine plastic pollution are rare to come by, as they 

require a significant logistical commitment. Two previous research papers which have carried 

out such a study are  Isobe et al. (2019) and Ostle et al. (2019). The study by Ostle et al. 

(2019) examined the occurrence of plastics throughout the North Atlantic, over a 60-year 

period (1957 - 2016). This study also utilised a CPR for its sub-surface water sampling, and 

reported a clear temporal increase in both microplastics and macroplastics. On the other hand, 

Isobe et al. (2019) used data from Neuston net transects collected between Japan and 

Antarctica in 2016 to infer previous and future estimates of microplastic abundance and 

distribution using a numerical model. Both studies are extremely different in their 

approaches, however the reported results provide strong support for a long-term increase in 

marine plastic pollution, along with the potential for even greater microplastic loads to be 

seen throughout the world’s oceans in the coming years. 

Contamination from outside sources poses a significant risk to microplastic studies, 

particularly as fibres and fragments circulate in the air and are easily removed from clothing. 

Many studies cite contamination as a means for error in results, including Li et al. (2019), 

stating that contamination control is an integral detail that must be taken into account when 

designing an experiment or conducting a field survey. Recent studies have reported that 

microplastics can travel through the atmosphere, including both urban (Wright et al., 2020) 

and remote (Allen et al., 2019) locations. Estimations using air mass trajectory suggest that 

microplastics of multiple morphotypes can cover a distance of over 95 km before they settle 

in the terrestrial or marine environment, thus illustrating their potential to be a major source 

of transport for plastic pollution (Allen et al., 2019). Contamination risk throughout this 

thesis is low, as preventative measures were made by using a limited amount of plastic 

laboratory equipment, not wearing synthetic clothing during collection or analysis, and 

covering samples to prevent contamination from the air. In saying that, the samples for 

Chapter 2 were collected by a third party, the crew of San Aotea II, before being initially 

processed by NIWA. However, steps to prevent contamination within these samples were 

taken, including comprehensive training of a dedicated crew member to the deployment and 

retrieval of the CPR, as well as training in how to appropriately label and preserve the silks 

(Robinson et al., 2014). Regardless, a small level of contamination is likely to have resulted 

in a minimal amount of measurement error.  
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Conclusions and Suggestions for Further Research 

This thesis has contributed to the global pool of information on temporal and spatial trends of 

microplastic loads within the marine environment. With consideration to the Southern 

Hemisphere, little research currently exists to confirm whether the abundance and distribution 

of microplastics are comparable to what has been reported in the Northern Hemisphere. The 

differing responses to temporal and spatial sampling, and the highly dynamic nature of 

microplastic load in Wellington Harbour and the Southern Ocean demonstrates how integral 

it is to consider time and space when focussing management efforts. These results also 

support the consensus that no matter where studies are carried out throughout the globe, 

marine biota is still at risk of ingesting these foreign particles. Ideally, additional research 

would establish multi-year studies that further demonstrate the spatial and temporal changes 

that occur in various regions around New Zealand, along with a continuation of surface water 

collections between New Zealand and the Ross Sea with microplastics abundance confirmed 

through the use of FTIR or Raman spectroscopy. Ideally, such research would combine field 

studies with laboratory experiments, to determine the vulnerability of species in New Zealand 

and Antarctica to the deleterious effects of synthetic particles. These kinds of investigations 

would account for some of the areas that could not be examined in detail within this study. 

Additionally, this research would add valuable information that contributes to the 

development of management and mitigation advice in order to eventually reduce the negative 

effects that plastic pollution wreaks upon the local, national, and global marine environment.  
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Appendix 
 

Table A2.1: Collective number of tows undertaken, samples collected, and distance towed (nmi) throughout 

each annual CPR survey from the FV San Aotea II. 

Year Tows # samples Distance towed (nmi) 

2008/09 7 461 2310 

2009/10 6 468 2336 

2010/11 8 541 2703 

2011/12 5 404 2017 

2012/13 8 504 2513 

2013/14 9 449 2244 

2014/15 8 454 2270 

2015/16 7 465 2325 

2016/17 6 438 2136 

2017/18 7 487 2432 

 71 4,671 23,286 

 


