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Abstract 

 

Identifying the mechanisms causing population change is essential for conserving small 

and declining populations. Substantial range contraction of many carnivore species has resulted 

in fragmented global populations with numerous small isolates in need of conservation. Here I 

investigate the rate and possible agents of change in two threatened grizzly bear (Ursus arctos) 

populations in southwestern British Columbia, Canada. I use a combination of population vital 

rates estimates, population trends, habitat quality analyses, and comparisons to what has been 

described in the literature, to carefully compare among possible mechanisms of change. 

First, I estimate population density, realized growth rates (λ), and the demographic 

components of population change for each population using DNA based capture-recapture data 

in both spatially explicit capture-recapture (SECR) and non-spatial Pradel robust design 

frameworks. The larger population had 21.5 bears/1000km2 and between 2006 and 2016 was 

growing (λPradel = 1.02 ± 0.02 SE, λsecr = 1.01 ± 4.6 x10-5 SE) following the cessation of hunting. 

The adjacent but smaller population had 6.3 bears/1000km2 and between 2005 and 2017 was 

likely declining (λPradel = 0.95 ± 0.03 SE, λsecr = 0.98 ± 0.02 SE). Estimates of apparent survival 

and recruitment indicated that lower recruitment was the dominant factor limiting population 

growth in the smaller population.  

Then I use data from GPS-collared bears to estimate reproduction, survival and projected 

population change (λ) in both populations. Adult female survival was 0.96 (95% CI: 0.80-0.99) 

in the larger population (McGillvary Mountains or MM) and 0.87 (95% CI: 0.69-0.95) in the 

small, isolated population (North Stein-Nahatlatch or NSN). Cub survival was also higher in the 

MM (0.85, 95%CI: 0.62-0.95) than the NSN population (0.33, 95%CI: 0.11-0.67). This analysis 
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identifies both low adult female survival and low cub survival as the demographic factors 

associated with population decline in the smaller population. By comparing the vital rates from 

these two populations with other small populations, I suggest that when grizzly bear populations 

are isolated, there appears to be a tipping point (de Silva and Leimgruber 2019) around 50 

individuals, below which adult female mortality, even with intensive management, becomes 

prohibitive for population recovery. This analysis provides the first detailed estimates of 

population vital rates for a grizzly bear population of this size, and this information has been 

important for subsequent management action. 

To determine whether bottom-up factors (i.e. food) are limiting population growth and 

recovery in the small isolated population I use resource selection analysis from GPS collar data. I 

develop resource selection functions (RSF) for four dominant foraging seasons: the spring-early 

summer season when bears feed predominantly on herbaceous plants and dig for bulbs, the early 

fruit season where they feed on low elevation berries and cherries, the huckleberry season and 

the post berry season when foraging behaviours are most diverse but whitebark pine nuts are a 

relatively common food source. The differences in overall availability of high-quality habitats 

for different food types, especially huckleberries, between populations suggests that season 

specific bottom-up effects may account for some differences in population densities. Resource 

selections are a very common tool used for estimating resource distribution and availability, 

however, their ability to estimate food abundance on the ground are usually not tested. I assessed 

the accuracy of the resulting RSF models for predicting huckleberry presence and abundance 

measured in field plots. My results show that berry specific models did predict berry abundance 

in previously disturbed sites though varied in accuracy depending on how the models were 

categorized and projected across the landscape. 
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Finally, I combine spatially explicit capture-recapture methods and models developed 

from resource selection modelling to estimate the effect of seasonal habitat availability and open 

road density, as a surrogate for top-down effects, on the bear density in the two populations. I 

found that population density is most strongly connected to habitats selected during a season 

when bears fed on huckleberries, the major high-energy food bears eat during hyperphagia in this 

area, as well as a large baseline difference between populations. The abundance of high-quality 

huckleberry habitat appears to be an important factor enabling the recovery of the larger 

population that is also genetically connected to other bears. The adjacent, smaller and genetically 

isolated population is not growing. The relatively low abundance of high-quality berry habitat in 

this population may be contributing to the lack of growth of the population. However, it is likely 

that the legacy of historic mortality and current stochastic effects, inbreeding effects, or other 

Allee effects, are also contributing to the continued low density observed. While these small 

population effects may be more challenging to overcome, this analysis suggests that the 

landscape can accommodate a higher population density than that currently observed. 
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General Introduction 

 

1.1 How to identify the rate and causes of population change in threatened 

populations. 

 

“ . . . . when the bear was a fiew paces of the Shore I Shot it in the head. . . . the men 

hauled her on Shore and proved to be an old Shee which was so old that her tusks had worn 

Smooth, and Much the largest female bear I ever saw.” 

-William Clark, 1806 

When Lewis and Clark were making their famous journey across the North American 

continent, on a quest to explore newly acquired territory and find a route to the Pacific, they were 

heading an era of human population expansion and increased permanent settlement, quickly 

leading to the large-scale extirpation of some species. Meanwhile, thousands of kilometres away, 

on an island where brown bears had long been extirpated, Thomas Malthus had just published 

the first works on population limitation and regulation (Malthus 1798).  

Persecution is a unique form of top-down population limitation that is spatially 

predictable and historically well documented. It is often density-independent and therefore has 

frequently resulted in extirpation where humans and that species overlapped (Mattson and 

Merrill 2002, Laliberte and Ripple 2004). The ensuing patterns of occupancy are large 

continuous populations where human density is low or where landscape complexity limits 

effective persecution by humans. Therefore, the distribution of most large carnivore species is 
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currently or historically restricted by both continental-scale climate patterns and persecution by 

humans (Woodroffe 2000, Mattson and Merrill 2002). 

Global brown bear (a.k.a. grizzly bear Ursus arctos)1 distributions, for example, can be 

explained by large scale ecosystem changes following the last ice age and deliberate extirpation 

by humans for millennia in Europe and for centuries in the rest of the northern hemisphere 

(Curry-Lindahl 1972, Mattson and Merrill 2002). Between 1850 and 1970, grizzly bears became 

extirpated from 48% of their historical North American range. Humans caused this decline by 

direct persecution and habitat conversion. Mortality and subsequent extirpations were associated 

with the dominant food sources of the time; particularly predictable and low elevation food 

sources that concentrated bears near people, such as salmon, accelerated the rate of decline 

(Mattson and Merrill 2002). The resulting pattern of extirpation left islands and peninsulas of 

occupancy forming the contemporary distribution of grizzly bears. A similar pattern of extinction 

happened in Europe, Asia and North Africa, over many centuries. Brown bears now only persist 

in several isolated populations limited to mountainous regions of Europe and Asia, however 

populations become more contiguous to the north (McLellan et al. 2016).  

In North America, the continuous distribution of grizzly bears becomes increasingly 

restricted towards the southern fringe and ends in two long peninsulas and islands of occupancy 

(Figure 1.1): one along the interior mountain ranges and the other along the coastal mountains 

(Proctor et al. 2012). Grizzly bear populations in the interior mountains have been relatively well 

studied (McLellan 1989, Schwartz et al. 2006, Eberhardt et al. 2008, Kendall et al. 2009). In the 

                                                 
1 Grizzly bear and brown bear are common names for the same species, Ursus arctos. In general, the term grizzly 

bear is used in north America and brown bear is used in Europe and Asia, however in some areas of North America 

such as parts of coastal Alaska, they are also referred to as brown bears. In this thesis I will call North American 

bears “grizzlies” and Eurasian bears “brown bears” but in discussions where both are considered, I will use them 

interchangeably unless the continent of origin is important to the discussion.  
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southern Rocky Mountains of British Columbia, grizzly bears are continuously distributed and 

had sufficient abundance to support a sustainable harvest when the provincial hunt was stopped 

in 2017 for other reasons (Mowat and Lamb 2016, McLellan et al. 2017a). This interior 

population is continuous into the United States where it is considered threatened but is now 

growing and has more than 800 individuals. Two-hundred kilometers south the Yellowstone 

grizzly population is a large (>500 individuals), but isolated population that has been growing for 

around 45 years (Schwartz et al. 2006, Mace et al. 2012). Interior populations west of the 

Rockies were more fragmented and, as a result, were considered threatened and not hunted in 

Canada or the United States.  

In stark comparison, very little is known of the ecology and abundance of grizzly bears 

living in the southern coastal mountain ranges, other than that their status is extremely tenuous in 

some if not most areas (Romain-Bondi et al. 2004). Grizzly bears have been recently extirpated 

from two areas in the southern coastal mountains; additionally, five mostly isolated populations 

are considered threatened, and there may not be any bears left in the United States portion of the 

most southerly population (Schwartz et al. 2003, McLellan et al. 2016). 

The imbalance in research emphasis and apparent status of grizzly bears between interior 

and coastal mountain ranges led to the beginning of a research project in the coastal mountains in 

2004. The first estimates of grizzly bear abundance and distribution were measured using a broad 

scale, DNA capture-recapture program across approximately 40,000 km2 spanning some of these 

populations (Apps et al. 2007). This study identified major geographic and genetic population 

fractures; however, it did not estimate population trends or identify specific mechanisms that 

influence them. Therefore, in addition to the broad-scale, DNA based inventory, researchers 

initiated a finer-scale radio telemetry project in 2005 to investigate population trends and 
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associated mechanisms. The finer scale research program was established in two of the 

threatened populations that had an adjacent geographical boundary but was thought to lack 

genetic connectivity (Apps et al. 2007). As part of this research I began to monitor mortality and 

reproductive rates of collared bears as well as conduct field investigations of habitat use and 

associated behaviours. Following the first few years of research, the suspected difference in adult 

survival rates between the two threatened populations sparked the initiation of an ongoing DNA 

based mark-recapture population monitoring program in 2010. This program shared similar 

boundaries to the telemetry project and was conducted in parallel.  

This dissertation is the synthesis of that research. Here, I describe how I identified the 

rates and likely causes of population change in two threatened populations. I use data from this 

ongoing research to identify rates of population change, and in a multiple competing hypothesis 

framework, I address the possible agents of change (Caughley 1994) to establish whether these 

populations are declining and, if so, why?  

A common challenge for conservation research stems from the inherent difficulties 

obtaining meaningful inferences from small sample sizes characteristic of small populations. 

Because the few individuals remaining are often at very low densities, documenting population 

status and identifying major limiting factors for small populations is much more challenging than 

for large, healthy populations. However, research on the relatively easily studied large 

populations may provide hypotheses for the decline that can focus investigation in small 

populations. 

The enormous amount of research on interior bears enabled me to begin with three a 

priori, but not mutually exclusive, hypotheses on why these grizzly populations are small, 

threatened, and doing relatively poorly (Table 1.1). First, the top-down hypothesis or, for grizzly 
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bears, that human-caused mortality (HCM) rates are unsustainable. In the United States, reducing 

HCM has been the dominant approach for recovering grizzly bears and in some areas, including 

Yellowstone and Northern Montana, this strategy has been highly successful (Schwartz et al. 

2006, Mace et al. 2012). A similar effort to reduce HCM in the Cabinet/Yahk ecosystems of 

Montana and Idaho, as well as the Banff area of Alberta, however, has not resulted in dramatic 

increases in bear densities (Garshelis et al. 2005, Proctor et al. 2012, Sawaya et al. 2012), 

suggesting other factors may be more important there.  

 

Table 1.1: Multiple-hypotheses framework for comparing mechanisms of population change (row) 

and associated demographic, habitat quality and trend predictions (columns). Metrics for various 

predictions are comparative (low/high) relative to the other study population and other populations 

described in the literature. COD is the cause of death. 

Hypotheses 

Predictions 

Adult Survival 
Reproduction & 

Recruitment 

Habitat 

Quality/Food 
Population Trend 

Top-Down 

Factors 

(HCM) 

Low 

COD= HCM 
High Abundant Stable/Declining 

Recovering 

(from past 

HCM) 

High 

COD = Rare, 

mostly natural 

High 

Large Litters 

High survival 

Abundant Increasing 

Bottom-up 

Factors 

(Food 

availability) 

High 

COD = Rare, 

mostly natural 

Low 

Small litters 

Old primiparity 

Low or absent 

high energy foods 
Stable 

Small 

Population 

Effects 

Slightly lower 

than average 

 

COD = variable 

Low 

Low cub survival 

Small litters 

Old primiparity 

Relatively 

abundant 
Erratic/Declining 

 

If top-down factors are limiting these populations, I predict that adult mortality (1-

survival) is higher than recruitment, and both should be high compared to other populations 
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because the population would be far below carrying capacity and limited by HCM. If HCM has 

been unsustainably high in the past, but the populations are now recovering, we would expect 

both survival and reproduction to be high compared to other populations, and the population to 

be increasing. In addition to these predicted demographic responses to top-down limitation by 

HCM, I expect that if HCM is currently unsustainable, the leading cause of mortality for collared 

adults and sub-adults will be HCM, otherwise, I expect very little adult mortality and lower 

recruitment rates similar to those for populations near carrying capacity (Keay et al. 2018). 

Second, the bottom-up hypothesis is that south-coastal ecosystems have a limited 

abundance of high energy foods for grizzly bears to feed on. Research in the interior mountains 

of British Columbia found an abundance of high-energy foods, primarily huckleberry 

(Vaccinium membranaceum), but also buffalo berry (Shepherdia canadensis), consumed during 

late summer, enabled bears to have high reproductive rates and maintain a relatively high 

population density (McLellan 2011, 2015). Similarly, in the Yellowstone ecosystem, grizzly bear 

reproductive output was strongly influenced by whitebark pine (Pinus albicaulis) seed crops that 

bears consume in the autumn (Schwartz et al. 2006). Hilderbrand et al. (1999) suggested that the 

over two orders of magnitude range of grizzly bear density in North America is due to the 

amount and availability of high-energy foods (in particular spawning salmon) available to bears. 

The second hypothesis is more complicated than the first, requiring several steps 

beginning with the identification of dominant food sources and associated seasonal variations in 

resource use among individual bears and within these populations (Nielsen et al. 2004b, 

McLellan and McLellan 2015). The careful identification of dominant food types allows 

subsequent analyses of resource selection to be season-specific. This is useful for understanding 

the potential contribution of habitat, and specifically, which seasonal habitats, to the observed 
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densities and reproductive rates. Resource selection function (RSF) modelling uses GPS 

telemetry data to compare use sites to available sites to make inferences about habitat selection 

(Johnson 1980, Manly et al. 2002, Gillies et al. 2006), ultimately providing a spatial estimate of 

habitat quality that can then be linked to density and other population traits.  

Although useful, RSF models are not mechanistic and usually do not indicate why 

animals use the habitats they do (Boyce and McDonald 1999). For this analysis, I also 

investigate the efficacy of RSFs for predicting food abundance by measuring berry abundance in 

areas predicted by a berry season-specific RSFs to be selected by grizzlies. I compare the values 

predicted by the model to the abundance of berries at sites selected by bears to assess the 

accuracy and precision that can be applied to estimates of food availability within a specific 

spatial scale, such as a home range. This information will be useful for estimating the accuracy 

of RSF models for predicting food abundance, and therefore as a utility for testing hypotheses 

related to food-based (bottom-up) mechanisms of population regulation. 

If food is limiting, I expect that the relative availability of high-energy food, such as 

huckleberries or whitebark pine, which have shown to drive population growth in other 

populations, to be low or absent (Robbins et al. 2006, McLellan 2015). I also expect specific 

demographic outcomes of bottom-up limitation including moderate to high adult bear survival 

(because few are being killed by people), and low recruitment and low population density that is 

either stable or declining (because of the low recruitment) (McLellan 2015, Keay et al. 2018). In 

addition, I hypothesize that habitat abundance where low energy foods including herbs, roots and 

bulbs are consumed by bears in the spring will have relatively little effect on population 

parameters, whereas the abundance of late summer habitat, where bears consume high-energy 

foods, will affect population density and reproductive rates.  
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The third competing hypothesis is that the bear populations have been reduced by historic 

agents of decline, such as prolonged persecution, and now remain as small, isolated populations. 

Population smallness has specific consequences limiting a population’s chance for recovery; in 

small populations the dynamics are often determined by the specific fate of its few individuals. 

Also, the smaller the population, the more frequent pairings occur between related individuals, 

possibly resulting in reduced fecundity and increase mortality (Caughley 1994, Courchamp et al. 

1999, Chapron et al. 2009). Genetic analysis of the initial population grid identified near-

complete isolation of two grizzly populations in this area. Proctor et al. (2005, 2012) have shown 

that settled valleys with highways restrict inter-population movements of grizzly bears. Although 

some male movements may mediate gene flow, valleys with > 20% settlement appear to stop 

female movement and therefore isolate populations demographically. I hypothesize that severe 

inbreeding will result in reduced survival and fertility of offspring from related individuals 

(Charlesworth and Willis 2009, Kenney et al. 2014). Furthermore, if this is the case, cub survival 

and recruitment rates should be lower than predicted by the estimates based on measured 

availability of high-quality resources. Symptoms of non-genetic Allee effects may include 

skewed sex ratios caused by stochastic natal sex-ratios or net positive emigration rates exceeding 

replacement. Finally, small populations could experience increased rates of sexually selected 

infanticide if the number of females available to mate (i.e. without cubs) is low and there is a 

high proportion of adult males in the population (McLellan 2005). 

One final consideration is that it is likely that more than one agent is responsible for the 

current population status for these two bear populations at the extreme edges of their current 

range. It is also likely that the relative importance of the various agents shifts over time. 

Regardless, careful analysis of the components that contribute to current population change and 
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successful identification of even some of the independent and/or synergistic causes of population 

decline and smallness will inform recovery initiatives and the use of this framework for the 

future conservation of grizzly bears and other species. 

 

1.2 Thesis Structure 

 

 In this thesis I investigate the mechanisms driving the population trend of two threatened 

grizzly bear populations using multiple competing hypotheses (Table 1.1). In the second chapter, 

I use spatial capture-recapture techniques and long-term population monitoring data to estimate 

the density and trends of the populations. I also estimate the demographic components of 

population change, including apparent survival and apparent recruitment. In the third chapter, I 

use survival and reproduction data from collared bears to quantify age-specific survival, causes 

of mortality, and the components of reproduction, including litter size, juvenile survival, 

interbirth intervals and age of primiparity. This results in one of the only detailed accounts of 

population demographics for a large carnivore population with fewer than 25 individuals.  

The fourth chapter aims to estimate habitat selection and infer habitat quality in the two 

populations. In chapter four I use GPS collar location data and apply commonly used resource 

selection modelling to test bottom-up hypotheses. In that analysis, I delineate seasons according 

to diet composition so that interannual and individual variations in seasonal habitat selection are 

accounted for. I then test the efficacy of the resulting habitat model for the huckleberry foraging 

season by conducting ground truth investigations across the study area where I measure resource 

abundance. The ground-truthing exercise tests the huckleberry selection model independently of 

bear use, thereby validating it in areas where no bears were collared. The resulting habitat 
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models can then be confidently applied to assess and compare habitat quality in both threatened 

populations. 

 In the final chapter, I combine the resource selection functions developed in chapter 3 

with spatially explicit capture-recapture methods to examine the effects of habitat quality on 

density. I continue to test the hypothesis that possible bottom-up factors are contributing to the 

difference in density between threatened populations by measuring spatial correlations between 

seasonal habitat quality and density. In addition, by applying a spatial component to the 

comparison between habitat quality and density, I expose areas for potential recovery. 

 

1.3 Study Area 

 

This research was conducted near the southern tip of North America’s coastal mountain 

grizzly bear range (Figure 1.1). The human history of the area is focused around a series of long 

inland lakes and the Fraser River, both with large annual salmon runs. These geographic features 

also form the contemporary boundaries of remnant grizzly populations. Anthropologists have 

estimated that in the 3,000 years preceding European colonization several large villages, with 

populations ranging from 500-1,000 people, were common along the lakes and Fraser River 

(Hayden and Ryder 1991). Although the historical relationship between grizzly bears and native 

North American people is somewhat mysterious, we can safely assume that large commonalities 

in their diets brought the two into contact. Toward the end of the nineteenth century, thousands 

of people flooded the area in pursuit of gold. The two main travel arteries from the coast to the 

interior of the province also followed these lakes and the Fraser River, which flanks the currently 
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isolated Stein-Nahatlach grizzly population. The relationship between bears and humans during 

this time is less mysterious; bears were shot on sight, without exception.  

My study area spans 5,625 km2 in portions of two “threatened” grizzly bear population 

units (GBPU) in southwestern British Columbia, Canada: the northern portion of the Stein-

Nahatlatch (NSN) and the southern portion of the South Chilcotin population referred to as the 

McGillvary Mountains (MM) population (50.6oN, 122.5oW; Figure 1.2). These populations are 

identified to be genetically separate with little interbreeding (Apps et al. 2007). The populations 

are divided by two large lakes approximately 45 km long and 1.5 km wide and the rural 

settlements along a minor paved highway between several small communities. A highway also 

bisects the NSN population, but there is no human settlement along this highway, and collared 

male bears cross it regularly. The southern boundary of the study area is the Stein River, located 

in the centre of a large (1,300 km2) and un-roaded protected area. The northern boundary of the 

MM study area is Carpenter Reservoir.  

Both populations are in the eastern portion of the rugged Coast Mountain Range, 

elevations in the study area range from 240 m to 2,920 m. Air masses moving eastward from the 

Pacific Ocean dominate the climate and result in temperate rain forests on the west side of the 

mountain range, but conditions are increasingly drier moving eastward across the study area. 

Near the lowest elevation at the centre of the study area, the 25-year average daily maximum and 

minimum temperatures were 28.2 °C and 11.0 °C in July, and 0.6 °C and -2.9 °C in January. The 

average annual precipitation at this elevation is 500 mm. In the mountains at 1830 m, the average 

daily maximum and minimum temperatures are 17.0 °C and 5.3 °C in July and -3.5 °C and -9.5 

°C in January. On the wetter side of the study area, the average annual precipitation is 1,080 mm, 
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while in the mountains on the dry side of the study area the average annual precipitation is 780 

mm. 

Vegetation in the study area reflects the influence of high mountains, the transition of 

precipitation, and natural plus human-caused disturbances. Douglas fir (Pseudotsuga menziesii) 

and ponderosa pine (Pinus ponderosa) are the most common conifers at lower elevations with 

cottonwood (Populus trichocarpa) and western red cedar (Thuja plicata) along streams. On the 

western side of the study area, mid-elevation forests are dominated by cedar (Thuja plicata) and 

western hemlock (Tsuga heterophylla) and moving eastward Engelmann spruce (Picea 

engelmannii), and subalpine fir (Abies lasiocarpa) become most common. In the transition 

between wet and dryer forests there are a few 10 to 20 ha patches of whitebark pine (Pinus 

albicaulis) creating a subalpine parkland. Due to high snowfall and rugged mountains, avalanche 

chutes are common throughout most of the study area and are rich in glacier lilies (Erythronium 

grandiflorum), Canada thistle (Cirsium edule), cow parsnip (Heracleum lanatum) and other 

foods preferred by grizzlies in the spring. At higher elevations, subalpine fir grows in clumps, 

which are often stunted forming krummholz within extensive alpine meadows. Mountain peaks 

are rock and rise far above the alpine meadows. There are several small glaciers in the study 

area. 
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Figure 1.1: a) Extant (blue), vagrant (ochre) and extirpated (red) distribution of grizzly bears in central and western North America (McLellan et 

al. 2016). b) The southern extent of grizzly bear distribution in western North America highlighting the two peninsulas of occupancy (blue). The 

Yellowstone population is the large isolate at the southeastern tip of the current distribution in the United States. The study area boundary is 

outlined in the red dashed line and spans the genetic population fracture between the McGillvary Mountains (MM) part of the South Chilcotin 

population and the northern part of the Stein-Nahatlatch (NSN) populations. These populations are at the southern tip of the grizzly bear 

distribution in the Coast Mountain ranges in southwest British Columbia, Canada.  
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Figure 1.2: The southwestern extent of grizzly bear distribution in North America: extant (blue), vagrant 

(ochre) and extirpated (red) (McLellan et al. 2016). The population boundaries are outlined in black. The 

northern MM population has some degree of connectivity to the north and west while the NSN population 

has very little connectivity to other neighbouring populations. The effective sampling area for this 

research is outlined in a red dash. Grizzly bear capture occurred within both the study area (red dash) and 

the population boundary (black line).  

 

 



 

15 

 

  

Divergent population trends after ending the legal grizzly 

bear hunt 

 

2.1 Abstract 

 

I conducted DNA capture-recapture monitoring of grizzly bears (Ursus arctos) from 5 to 

17 years after hunting was stopped in two adjacent but genetically distinct populations in 

southwestern British Columbia, Canada. I used spatial capture-recapture and non-spatial Pradel 

robust design modelling to estimate population density, realized growth rates (λ), and the 

demographic components of population change for each population. The larger population had 

21.5 bears/1000km2 and was growing (λPradel = 1.02 ± 0.02 SE, λsecr = 1.01 ± 4.6 x10-5 SE) 

following the cessation of hunting. The adjacent smaller population had 6.3 bears/1000km2 and 

was likely declining (λPradel = 0.95 ± 0.03 SE, λsecr = 0.98 ± 0.02 SE). Estimates of apparent 

survival and apparent recruitment indicated that lower recruitment was the dominant factor 

limiting population growth in the smaller population. Factors limiting reproductive rates and 

population density could include poor habitat quality, particularly the abundance of high-energy 

foods, genetic Allee effects due to a long period of population isolation, or demographic effects 

affecting infanticide rates. The cessation of hunting was insufficient to promote population 

recovery for the low density, isolated population. My research highlights the importance of 

considering mortality thresholds in addition to small population effects and habitat quality when 

recovering large carnivore populations.  
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2.2 Introduction 

 

Over half of the world’s terrestrial large carnivore populations are declining because of 

habitat fragmentation, habitat loss, and human-caused mortality (HCM) (calculated for species > 

50 kg from IUCN, 2015, Myhrvold et al. 2015). Large carnivores are often killed by humans 

because they pose real or perceived threats to personal safety and property such as livestock. 

Besides, some large carnivore species are also hunted for sport, animal parts (Weber and 

Rabinowitz 1996), or because they are in competition with humans for prey (e.g., Riley et al. 

2004). The result is a common geographic pattern of extinction that begins with the contraction 

of species distribution into peninsulas and islands of occupancy which are then sequentially 

extirpated over time (van Oort et al. 2011, Proctor et al. 2012, Henschel et al. 2014, Kenney et al. 

2014). Extirpation is accelerated because, in addition to mechanisms initiating the decline, 

isolated populations face synergistic effects of population smallness such as vulnerability to 

stochastic change as well as genetic and demographic Allee effects (Caughley 1994, Berec et al. 

2007, Brook et al. 2008).  

The distribution and population size of brown and grizzly bears (Ursus arctos) have 

declined globally over the past two centuries as a result of habitat loss, habitat fragmentation, 

and persecution by humans (Mattson and Merrill 2002, McLellan et al. 2016). For example, 

grizzly bears in North America have been extirpated from approximately 42% of their historical 

range (calculated from IUCN spatial information; McLellan et al. 2016). Extirpation has 

primarily occurred in the lower 48 states of the USA and the prairies, boreal forest and taiga of 

central and northeastern Canada (Figure 1.1a). The northern portion of their current North 

American distribution is expansive but towards their southwestern extent, grizzly bears are now 
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restricted to two narrow peninsulas of occupancy; one along the interior Rocky and Columbia 

mountain ranges, and the other along the Coastal Mountain ranges (Figure 1.1a). Both peninsulas 

of occupancy end in isolated populations of varying sizes (Kendall et al. 2009, McLellan 2015) 

fragmented by natural landscape features and human settlements.  

There have been numerous grizzly bear research projects along the interior peninsula of 

North American occupancy that identified HCM as the primary limiting factor (Garshelis et al. 

2005, Kendall et al. 2009, Mace et al. 2012, Proctor et al. 2012). As with many other large 

carnivores, HCM for grizzly bears includes legal hunting, defence of human life or property, 

road and rail kills, and poaching. Reducing HCM has been the dominant approach for recovering 

grizzly bears and in some areas, including the Yellowstone and Northern Continental Divide 

ecosystems in the USA and northern Sweden, this strategy has been highly successful (Schwartz 

et al. 2006, Kindberg et al. 2011, Mace et al. 2012). Populations limited by HCM have relatively 

high adult mortality rates and will often have high recruitment rates because populations are 

perpetually below carrying capacity (Miller et al. 2003, McLellan 2015). In such conditions 

reducing HCM is expected to increase adult survival rates allowing populations to grow toward 

carrying capacity.  

In contrast to the interior populations of North America, there has been very little 

research along the coastal peninsula of grizzly bear occupancy. The limited available information 

suggests that the status of at least some populations appears extremely tenuous (Romain-Bondi et 

al. 2004, Apps et al. 2014). Specifically, the provincial government of British Columbia, Canada, 

considered the five most southerly populations to be Threatened (Grizzly Bears - Environmental 

Reporting BC 2012) and in 2000, declared a moratorium on grizzly bear hunting there due to 

suspected low population density and probable decline. Five years after the hunt ended, a DNA-
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based population study that included 4 of these Threatened populations, identified major 

geographic and genetic fractures as well as large differences in grizzly bear density among 

populations (Apps et al. 2014). Based on genetic evidence, this study also suggested 

reconnection and possibly population expansion in some areas, but actual trends or demographic 

mechanisms were not addressed.  

My goal was to quantify population trends and the relative contribution of survival and 

reproduction to population change in portions of two adjacent but mostly disjunct portions of 

Threatened grizzly bear populations at the southwestern extent of their range, the McGillvary 

Mountain (MM) and the North Stein-Nahatlatch (NSN) populations (Figure 1.1b). As a result of 

the hunting moratorium, both populations experienced a decline in known HCM; between 1978 

and 1999 the known HCM has declined from 0.72 bears/year in the MM and 0.50 bears/year in 

the NSN to 0.12 bears/year in both populations (Grizzly Bears - Environmental Reporting BC 

2012). I wanted to establish whether populations were recovering following the cessation of the 

legal hunt and, if not, whether adult mortality or low recruitment were limiting growth. 

Based on what is known of grizzly bear ecology and conservation from studies in the 

interior mountains (Garshelis et al. 2005, McLellan et al. 2007, Mace et al. 2012, McLellan 

2015), I derived three alternative hypotheses and corresponding predictions: (1) The grizzly bear 

populations were limited by HCM in the past, but due to the reduction in HCM following the 

hunting moratorium, they are now recovering. If this hypothesis is supported, I predict high 

population growth rates resulting from high recruitment and high adult survival rates. (2) The 

grizzly bear populations remain limited by high HCM; restricting population recovery. If this 

alternative hypothesis is supported, I predict relatively low adult survival but high recruitment 

rates because populations are being held below carrying capacity. (3) The grizzly bear population 
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growth is not solely being limited by HCM but by other effects such as poor habitat quality. If 

this hypothesis is supported, I predict moderate to high adult survival because few adult bears are 

being killed by HCM; but low recruitment rates.  

To measure the support for these hypotheses, I used non-invasive DNA sampling of hair 

traps (Woods et al. 1999) and rub-trees (Kendall et al. 2009) to estimate population densities, 

trends and the demographic components of population change. I used spatial capture-recapture 

(SCR) techniques to estimate population-specific density and trends (Efford 2004, Borchers and 

Efford 2008). I then used a robust design Pradel capture-recapture model for open populations to 

estimate apparent survival (φ) and apparent recruitment (f), and identify their relative 

contributions to the realized population growth (λ) for each population (Pradel 1996, Nichols et 

al. 2000).  

 

2.3 Methods 

  

2.3.1 DNA Capture-Recapture 

 

I used DNA capture-recapture data from two different studies. The first occurred in 2005 

and 2006 when Apps et al. (2014) estimated grizzly bear population density across the southern 

Coast Mountain ranges. The second study occurred annually from 2010 to 2017 and spanned the 

MM and NSN portion defined as the study area (Figure 1.1b). For both studies, hair traps 

consisted of one barbed wire strand tightly strung between trees, approximately 50 cm above the 

ground, forming a small corral around a pile of debris and scent lure (Woods et al. 1999). I 

visited traps every 2 to 5 weeks starting in late June to remove hair and re-bait. Each visit 
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constituted a capture occasion, and for each occasion, traps within a population were visited 

within 3 days of one another. The number of occasions each year varied from 3 to 6. Wildlife 

Genetics International (Nelson, British Columbia) screened samples, extracted DNA, carried out 

genotyping to 22 microsatellite loci, and identified individuals following established techniques 

(Paetkau 2003). The extent of the trap arrays remained nearly identical among years, though 

specific trap locations were often moved (Supplementary material Figure S.1). The annual 

minimum convex polygon (MCP) surrounding the trap arrays was 587 km2 (SD = 41 km2) in the 

NSN and 646 km2 (SD = 80 km2) in the MM. The average seasonal MCP home range for GPS 

collared females in these populations is 146 km2 (N = 24; unpublished data) therefore the trap 

array was large enough to encompass home ranges of multiple females, with multiple traps 

within each home-range. 

For the first study (2005-2006), one trap was placed in each 10 x10 km cell resulting in 

13 traps per population amounting to approximately 1 trap in every major drainage within the 

study area. For the second study (2010-2017), the number of traps used in each population varied 

from 12 to 43 among years. At least 1, and often 2 or 3 hair-traps were set within each drainage, 

depending on the size of the drainage (Supplementary material Figure S.1). 

For the second study, known rub trees were used in addition to hair traps to collect hair 

samples. One strand of barbed wire was attached to the rub tree and then revisited at the same 

occasion schedule as the hair traps. Because new rub trees were discovered, and old ones were 

sometimes removed by logging, the number of rub trees varied across years between 0 and 19 

trees for the MM and 0 and 22 for the NSN. Trap-type and differing capture efforts among years 

(number of traps) and occasions (length) were included as covariates in the population models 

(see 2.3 and 2.4).  



 

21 

 

2.3.2 Changes in population density 

 

I estimated changes in population density (𝐷̂) for the MM and the NSN populations by 

fitting SCR models by maximizing the full likelihood (Borchers and Efford 2008) using secr 

package v.3.1.0 (Efford 2018) in program R. I treated each population separately and intra-

annual capture-recapture occasions were nested within independent annual sessions. Grizzly 

bears only have offspring during winter and therefore populations were assumed to be closed 

across occasions of the same year (no births, deaths, immigration or emigration) and open 

between consecutive years (sessions). Both hair traps and rub trees allow capture of multiple 

individuals at a detector on one occasion and an animal may be caught in multiple traps on one 

occasion. In secr, traps with these characteristics are defined as “proximity” detectors and the 

capture probabilities are estimated accordingly (Efford et al. 2013). I defined the state space of 

density models (i.e. the area from which bears could potentially be captured) using a buffer 

around the hair trap/rub tree polygon of 3 times the root pooled spatial variance of each 

individual’s location dispersion (Efford 2004). I limited the resulting state-space at known 

population fractures using a spatial mask. SCR models estimate individual and trap-specific 

detection probabilities as a declining function of the distance between a trap and the individual’s 

estimated activity center. I used a half-normal detection function governed by two parameters: 

the baseline detection probability g0, describing detection probability at the individual’s activity 

center, and the scale parameter σ, which governs how quickly detection probability declines with 

distance and is related to how far animals move (e. g. Borchers and Efford 2008, Efford 2004). 

I used a three-step model comparison approach with differing detection and density 

covariates to estimate density trends in each population while minimizing the number of models 



 

22 

 

compared. The objective of the first two steps was to incorporate potential variability in 

detection probability parameters g0 and σ due to individual heterogeneity and sampling design. 

In the first step, I compared a model where traps were either used or unused for each occasion 

(binary), with a model where closed traps were classified as unused 0 but trapping effort for open 

traps was equivalent to the number of days in that occasion so that g0 will vary linearly (on a 

link scale) with the time the trap was open (Efford et al. 2013). Density could vary among years 

(D~session) while σ was assumed to be constant across years (σ ~1). I used Akaike’s information 

criterion for small samples (AICc) to compare models (Burnham and Anderson 2002). Models 

within 2 ΔAICc units of the top were incorporated into the model structure for the subsequent 

model comparison steps.  

In the second step, I selected the best model for estimating detection probability 

parameters (g0 and σ). I used the usage structure identified in step one and again allowed density 

to vary among years while I compared models that included covariates thought to influence the 

baseline detection probability g0: Trap-type (type), occasion timing (time), sex, and the 

interactions among them (g0~ type *sex, type*time, sex*time). Male grizzly bears usually have 

much larger home ranges than females resulting in a higher capture probability further from their 

activity centers, therefore, I included models with sex as a covariate for σ in the model selection 

process.  

In the final step, I used the top detection model from step 2 to estimate the change in 

density across years (D~year) by using session-number (in years) as a predictor. This fitted trend 

is linear on the link scale and corresponds to exponential growth or decline. Density is estimated 

as a function of year on the log-link scale, therefore the estimated β parameter is equivalent to r 

in the exponential growth curve Dt = Dt-1e
r where Dt is density at time t and Dt-1 is density at time 
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t-1. The finite rate of increase, or Pradel’s lambda, is then λ = exp(r). The density trend model 

was compared to a model with density held constant across years (D~1) and a model where each 

session had unique densities without a trend (D~session). If competing models were less than 2 

Δ AICc units of the best model, I used AIC weights (ωi) for each candidate model to obtain 

model-averaged mean and variance parameter estimates for density (𝐷̂) and capture probability 

parameters g0 and σ (Burnham and Anderson 2002). 

 

2.3.3 Apparent survival and recruitment 

 

To identify the components of population change, I used the same data described in 2.2 

and 2.3 in a Pradel robust design (PRD) framework. This approach allows estimation of 

demographic parameters in open populations (Pradel 1996, Nichols and Hines 2002) while using 

the Huggins conditional likelihood approach for estimating detection probabilities (p) and 

recapture probabilities (c) in closed populations (Huggins 1991). I parameterized the PRD model 

to estimate apparent survival (φ) and apparent recruitment (f), capture probability (p) and derive 

realized population growth (λ) for both the NSN and MM populations. Apparent survival (φ) is 

the probability that an individual remains in the population and does not die or emigrate, and 

apparent recruitment (f) is the rate of individuals entering the population through birth or 

immigration. These parameters are estimated between years and can be summed for each interval 

to produce the realized population growth (λ). Analyses were conducted using the RMark 

package (White and Burnham 1999, Laake and Rexstad 2008) in program R v.3.4.0 (R Core 

Development Team 2017). 
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Like the SCR modeling in 2.3, I used a three-step model selection approach. In the first 

step, I allowed apparent survival (φ) and apparent recruitment (f) to vary by sex and population 

in order to explore the effect of effort on detection probability p. Detection probability was 

constrained so that initial capture (p) and recapture probabilities (c) were the same. Effort was 

defined as either the number of traps open per occasion or, alternatively, the number of total trap 

nights for each occasion (number of traps x occasion length). The model with the lowest AICc 

score was used to define effort in the subsequent steps.  

In the second step, covariates for capture probability (p) included trap-type, sex, 

population, occasion specific time, effort, as determined from step one, and interactions between 

sex and trap-type, and time and trap-type. Trap-type is known to influence capture probability 

(Lamb et al. 2016); therefore captures at hair traps and rub trees were included as separate 

sequential sessions (e.g. Boulanger et al. 2008).  

In the final step, I used the model structure for capture probability determined in the 

previous steps and modeled variation in demographic rates. I hypothesized that both apparent 

survival and apparent recruitment could vary between populations and sexes. I compared all 

combinations of sex and populations, with models keeping these rates constant, resulting in 16 

models. I used the same model averaging techniques described in section 2.3 to obtain estimates 

of apparent survival and recruitment and their variances (Burnham and Anderson 2002). I 

derived estimates for population growth (λ) from model-averaged estimates of apparent survival 

(φ) and recruitment (f).  

Population-specific estimates for apparent survival (φ) and recruitment (f) were obtained 

by comparing models where one or both parameters could vary by population or be constant 

between populations. I used AICc weights from the four competing models to obtain model-
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averaged estimates of apparent survival (φ) apparent recruitment (f) and derived lambda (λ) in 

each population. 

 

2.4 Results 

 

Between 2005 and 2017, 78 (37 F, 41 M) grizzly bears were detected 479 times in the 

MM and 26 individuals (12 F, 14 M) were detected 176 times in the NSN (Table 2.1). Three 

male bears moved between populations: two from the NSN to the MM and one from the MM to 

the NSN. These individuals were handled as independent in each population. One additional 

adult male was known by his genetic structure to have NSN origin but was only captured in the 

MM. I did not detect any female movement between populations. In the last 4 years of 

monitoring, I marked an average of 9 new bears/year in the MM and but only 0.5 new bears/year 

in the similarly sized trap array over the NSN (Table 2.1).  
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Table 2.1 Summary of capture statistics from DNA population monitoring in the McGillvary Mountains (MM) and North Stein Nahatlatch 

(NSN) grizzly bear populations in southwest British Columbia, Canada. Statistics calculated by year and population including the number of 

detections, the number of individual grizzly bears, the mean number of recaptures per bear, the maximum number of recaptures, the number of 

new individuals, the average distance between recaptures, and the maximum distance between recaptures. 

Pop Year Detections 
No. 

Individuals 
Recaptures 

Max. 

recaptures 

New 

Individuals 

Distance between recaptures (km) 

Mean Max 

M
cG

il
lv

a
ry

 M
o
u

n
ta

in
s 2006 53 24 2.21 8 24 4.47 20.19 

2010 31 16 1.92 7 8 7.43 21.03 

2011 68 26 2.62 10 10 6.46 25.02 

2012 70 31 2.23 8 8 6.83 24.72 

2013 76 25 3.04 11 8 5.81 16.81 

2014 69 33 2.09 8 11 6.40 43.10 

2016 112 39 2.87 11 9 6.63 34.26 

N
o

rt
h

 S
te

in
-N

a
h

a
tl

a
tc

h
 

2005 31 13 2.2 7 13 9.93 21.07 

2010 13 9 1.44 3 6 12.84 26.81 

2011 15 9 1.67 4 1 11.54 20.36 

2012 28 13 2.15 6 4 5.63 12.75 

2013 26 8 3.25 6 0 6.48 18.88 

2014 25 8 3.13 8 1 9.05 32.67 

2015 24 8 3 8 1 9.33 28.36 

2017 14 6 2.5 4 0 3.90 16.02 
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2.5.1 Spatial Mark-Recapture Density Trends  

 

Grizzly bear population density and trend differed between the two populations. The top 

model for the MM population indicated that density was increasing (D~year) with a growth rate 

of λsecr = 1.01 ± 4.6x10-5 SE from 18.7 bears/1000km2 in 2006 to 21.5 bears/1000km2 in 2016 

(Table 2.2, Figure 2.1). In the NSN population, the top two models for density were a model 

allowing density to change across years (D~year) at a rate of λsecr = 0.97 ± 7.3x10-5 SE and the 

null model, where density was constant across years (Table 2.2). Model-averaged results for 

density estimation and trend for the NSN population indicated that the population was either 

stable or slowly declining λsecr = 0.98 ± 0.02 SE from 7.7 bears/1000km2 in 2005 to 6.3 

bears/1000km2 in 2017 (Figure 2.1). 

 

Table 2.2 Spatial capture-recapture model selection for estimating trend in population density for the 

McGillvary Mountains (MM) and North Stein Nahatlatch (NSN) grizzly bear populations in southwest 

British Columbia, Canada. The null model (D~1), indicating no change in density between years, was 

compared to models where density was different among years (D~session) and where density was 

changing as a linear function of time (D~year) indicating population growth or decline. I included trap-

type and sex as covariates for the probability of detection at the activity center of an individual (g0) and 

sex as a covariate for the scale parameter of the detection function (σ). See supplementary material table 

S.1 for model selection results for detection parameters. 

Population Density Model K a ΔAICc b ωi
 c 

NSN 

D (~year) 9 0.00 0.52 

D (~1) 8 0.16 0.48 

D (~session) 15 10.49 0.00 

MM 

D (~year) 9 0.00 1.00 

D (~session) 14 10.18 0.00 

D (~1) 8 10.34 0.00 
a Number of model parameters 
b Difference between AICc of model and the AICc of the highest ranked model 
c Model weight 
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Figure 2.1 Model average density estimates ± SE (shaded) of annual density estimate over time from 

spatial capture-recapture models for the North Stein-Nahatlatch (NSN) and McGillvary Mountain (MM) 

portions of the South Chilcotin grizzly bear populations, British Columbia, Canada. 
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Top models for detection probability parameters, g0 and σ, were the same for both 

populations. The best model for g0 included sex, trap-type, and sex–trap-type interactions as 

covariates and the best model for σ included sex as a covariate (Supplementary material Figure 

S.1). Effort, defined as a binary variable indicating whether a trap was used or unused, 

performed better than models using the number of days to indicate usage (Supplementary 

material Table S.1). 

Mean baseline detection probabilities g0, were similar for females in both populations but 

higher for males in the MM than in the NSN population (Table 2.3). Trap-type had little effect 

on the detection probability of males, but females were 6.4 and 3.7 times more likely to be 

detected at hair traps than rub trees in the NSN and MM population respectively (Table 2.3). 

Males had larger σ than females, and while σ for females was similar for both populations, σ for 

males was larger in the NSN (Table 2.3).  

 

Table 2.3 Model-averaged parameter estimates ± SE from spatial capture-recapture models for the 

McGillvary Mountains (MM) and North Stein Nahatlatch (NSN) grizzly bear populations in southwest 

British Columbia, Canada. Detection probability for each population and sex at individual home range 

centre (g0), scale parameter of the half-normal detection function (σ) in km. See figure 2.1 and 

Supplementary Material Table S.2 for model structure. 

Population Density a λ Sex 
g0 

σ (km) 
Hair trap Rub tree 

NSN 6.32 ± 1.09 0.98 ± 0.02 
F 0.34 ± 0.06 0.05 ± 0.02 3.91 ± 0.38 

M 0.13 ± 0.03 0.15 ± 0.03 11.48 ± 1.41 

MM 21.50 ± 1.98 1.01 ± 4.52 x10-5 
F 0.31 ± 0.03 0.08 ± 0.02 4.41 ± 0.27 

M 0.22 ± 0.03 0.21 ± 0.03 7.91 ± 0.47 

a Density (bears/1000km2) estimate for last year of sampling in each population. 
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2.5.2 Demographic components of trends 

 

The top three models for estimating apparent survival (φ) and apparent recruitment (f) 

had similar support and included sex or sex and population as covariates (Table 2.4). Model-

averaged estimates of apparent survival (φ) were lower for males than females in both 

populations, and slightly lower for both males and females in the NSN than the MM (Figure 2.2 

a, Supplementary material Table S.3). Apparent recruitment (f) was higher for males than 

females in both populations and was lower for both sexes in the NSN than the MM (Figure 2.2 

c). Model-averaged estimates of population growth by sex were λFemale = 1.03 ± 0.02 SE and λMale 

= 1.01 ± 0.02 SE in the MM and λFemale = 0.98 ± 0.03 SE and λMale = 0.92 ± 0.04 SE in the NSN 

(Figure 2.2 e).  

When parameters were constrained to obtain estimates for each population independent 

of sex, apparent survival and apparent recruitment were higher in the MM than the NSN (Figure 

2.2 b and c). Derived population growth (λ) showed divergent population trends with the MM 

population growing (λ = 1.02 ± 0.02 SE) and the NSN population declining (λ = 0.95 ± 0.03 SE).  

Top models for detection probability (p) had the same model structure as the spatial 

mark-recapture analysis. The top model included sex, trap-type, sex * trap-type interaction, and 

effort as covariates for p, where effort was the number of traps used each occasion 

(Supplementary material Table S.3). 
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Table 2.4 Pradel robust design models to estimate apparent survival (φ) and apparent recruitment 

(f), for both the McGillvary Mountains (MM) part of the South Chilcotin and North Stein (NSN) 

part of the Stein-Nahatlatch grizzly bear populations in southwest British Canada. Models fit using 

common detection probability (p) estimated in a prior analysis p (~sex + type + effort + (sex*type). 

Effort refers to the number of traps per occasion and type refers to whether the trap was a hair trap or 

rub tree. 

Model K a Δ AICc b ωi
 c 

φ (~sex) f (~sex + pop) 10 0.00 0.31 

φ (~sex + pop) f (~sex) 10 1.09 0.18 

φ (~sex + pop) f (~sex + pop) 11 1.38 0.16 

φ (~sex) f (~pop) 9 2.68 0.08 

φ (~sex) f (~sex) 9 2.70 0.08 

φ (~sex + pop) f (~1) 9 3.55 0.05 

φ (~sex + pop) f (~pop) 10 3.92 0.04 

a Number of model parameters 
b Difference between AICc of model and the AICc of the highest ranked model 
c Model weight 
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Figure 2.2 Pradel robust design model-averaged parameter estimates (±SE) for apparent survival (φ), 

apparent recruitment (f) and population growth (λ). Left panels (a,c,e) are model-averaged estimates 

where both sex and population were included as covariates. Right panel (b,d,f) model-averaged estimates 

for each population independent of sex. 

 

 

a) b
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2.5 Discussion  

 

I identified different population densities and divergent population trends in 2 

Threatened grizzly bear populations in British Columbia monitored from 5 to 17 years after the 

end of legal hunting. The MM population was growing and had 3.4 times the population density 

of the adjacent, and likely declining, NSN population (Figure 2.2). Both spatial and non-spatial 

estimates of population growth showed a similar trend, though non-spatial estimates were more 

divergent between populations with a more precipitous decline for the NSN population. 

Estimation of demographic parameters revealed that both apparent survival and recruitment were 

lower in the NSN, though the difference in apparent recruitment between the populations was 

consistently greater than that of apparent survival (Figure 2.2). The differences in the 

demographic components of population change between populations can be used to identify 

possible mechanisms of change as is necessary to facilitate recovery. 

The increasing population trend in the MM population following the reduction of 

reported HCM is consistent with findings from the interior mountains of North America and 

Europe where populations have been recovering following a decline in HCM (Schwartz et al. 

2006, Mace et al. 2012, Chapron et al. 2014). Although HCM, for reasons other than hunting, 

may eventually limit the MM population, the reduction of HCM following the end of hunting has 

been sufficient for the population to begin recovering. In contrast, despite the reduction in known 

HCM, the small, isolated NSN population is not growing, and the probable decline is mostly the 

result of low recruitment. Low recruitment in conjunction with slightly lower adult survival, is 

consistent with the hypothesis that other major limiting factors are affecting the NSN population, 

and reduction of HCM has been insufficient to recover this population. 
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Identifying the contribution of permanent migration to apparent survival and apparent 

recruitment increases my understanding of the mechanisms driving population change. Although 

I did not measure these movements directly, permanent migration rates and dispersal distances 

from natal home ranges, including differences between sexes, have been well documented for 

grizzly bears (Proctor et al. 2004, McLellan and Hovey 2011, Graves et al. 2014). Using this 

information and the genetic ancestry information from bears in the study populations, we can 

hypothesize the likely contribution of migration to apparent survival and recruitment. Female 

grizzlies are usually philopatric and remain in their natal population, while male grizzlies tend to 

disperse farther and have larger home ranges (McLellan and Hovey 2001, Proctor et al. 2004). I 

observed 3 events of permanent dispersal when 2 marked males emigrated from the NSN to the 

MM and 1 from the MM to the NSN. I did not detect any inter-population dispersal of females, 

nor did I capture any females with a genetic profile suggesting ancestry from a different 

population. Studies on captive brown bears show that birth rates are similar for both sexes 

(Tumanov 1995), therefore, if females are likely to remain in their natal home ranges, and males 

and females are born with equal probability, then it is likely that female apparent recruitment rate 

is near the actual recruitment rate of grizzlies at the age when they are more commonly caught in 

hair traps.  

Several mechanisms could explain why recruitment rates were lower in the NSN than the 

MM. In other populations, habitat quality and, in particular, the abundance of high-energy foods 

has been shown to limit reproductive rates and population density (Schwartz et al. 2006, 

McLellan 2015). Perhaps poorer habitat quality in the NSN resulted in smaller litters, increased 

inter-birth intervals, delayed age of primiparity or high cub mortality. Lower reproductive output 

could also be due to a long period of population isolation leading to a genetic Allee effect (Keller 
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and Waller 2002, Laikre et al. 1996). The observed heterozygosity was Ho = 0.61 for the MM 

and Ho = 0.51 for the NSN (unpublished data); though both are below the average for North 

American populations (Ho = 0.65, Cronin and MacNeil 2012) heterozygosity is higher than that 

observed for other threatened and isolated brown bear populations (e.g. Gobi desert, Ho = 0.29, 

Tumendemberel et al. 2015; the Pyrenees before augmentation, Ho = 0.25, Taberlet et al. 1997). 

Finally, low reproductive success could also result from sexually selected infanticide exacerbated 

by small population demographic effects such as skewed sex ratio or years with no 

reproductively available females (Wielgus and Bunnell 1994).  

In both populations I studied, females had higher apparent survival than males, and 

survival was slightly higher in the MM than the NSN (Figure 2.2); though standard errors of sex-

specific estimates between populations overlapped. Male dispersal distances are larger than those 

of females (McLellan and Hovey 2001, Proctor et al. 2004) and loss due to emigration likely 

contributed to some of the differences in apparent survival between sexes. Mortality rates of 

male grizzlies, even in un-hunted populations, are often higher than for other cohorts (McLellan 

et al. 2007) and therefore would also contribute to reduced apparent survival for males. Apparent 

survival rates were higher in the MM and NSN populations than estimates from Banff National 

Park, Alberta, another un-hunted population sampled using similar methods. There, a high 

incidence of road and train kill is suspected to have decreased grizzly bear survival (Whittington 

and Sawaya 2015). The slightly lower apparent survival rates of grizzlies in the NSN than in the 

MM suggests that factors other than HCM may be affecting survival, however, identifying 

differences in causes of mortality would be required to test this hypothesis. 

Although increasing, the density of grizzly bears in the MM (21.5 bears/1000 km2) is 

currently similar to the average (22.3 bears/1000 km2) of 75 populations in North America that 
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have little or no salmon in their diets (compiled by Mowat et al. 2013), but slightly lower than 

the average for British Columbia (27.4 bears/1000km2, n = 28). In contrast, the density of the 

NSN population (6.3 bears/1000 km2) is much lower than the average population density of areas 

with little or no salmon. Although lower bear densities have been recorded in parts of Alberta 

and the USA, only one of the 28 populations inventoried in British Columbia had a lower density 

estimate. Densities in the NSN are also lower than most small brown bear populations in Europe 

despite the latter having relatively high surrounding human density and modified habitats (e.g. 

38 bears/1000 km2 in the Italian Apennines, Ciucci et al. 2015; 21 bears/1000 km2 in the 

Cantabrian mountains, Martin et al. 2012).  

Population growth following the reduction of HCM has been recorded in many North 

American and European brown bear populations (e.g. Schwartz et al. 2006, Kendall et al. 2009, 

Kindberg et al. 2011, Mace et al. 2012, Pérez et al. 2014), indicating that reducing HCM may be 

sufficient to allow population recovery. However, if low-density populations become isolated, 

other factors may become important. For example, despite reductions in HCM the Pyrenean 

brown bear population continued to decline from low recruitment until augmentation reversed 

the trend in the central subpopulation while, in the absence of augmentation, the other 

subpopulation went functionally extinct (Chapron et al. 2009). Research from other grizzly bear 

populations suggests that changes in survival as small as 5% can result in negative population 

trends (Eberhardt et al. 2008). In the NSN, the difference between an increasing and stable 

population could thus be the fate of only one bear (derived population size of study area N≈16) 

highlighting the importance of stochastic events. Such a stochastic event in this population was 

that the only bear documented to have moved from the MM population to the NSN population 

was mistaken for a black bear and shot by a hunter. On the other hand, the only cubs known to 
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survive to maturity have been females. Managing for small populations thus requires additional 

attention to factors other than HCM.  

Acquiring the necessary data from small populations to differentiate among multiple 

competing, and usually not mutually exclusive, hypotheses of population decline can be difficult 

because these species often occur at low densities, have long generation times, and low 

fecundity. Paradoxically, these characteristics predispose populations to extinction in rapidly 

changing environments (Caughley 1994, Purvis et al. 2000, Brook et al. 2008). My research 

highlights the importance of monitoring populations to understand the efficacy of management 

and other conservation actions. If a population is small and isolated, removing one major limiting 

factor, such as legal hunting, may be insufficient to ensure recovery.
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Vital rates underpinning trends of small and endangered 

large carnivore populations. 

 

3.1 Abstract 

 

 Identifying the mechanisms causing population change is fundamental for conserving 

small and declining populations. Few studies have measured the demographic components of 

population change for mammal populations with fewer than 50 individuals. Substantial range 

contraction of brown bears (Ursus arctos) has resulted in a fragmented global population with 

many small isolates in need of conservation.  

 My goal was to understand population dynamics in two adjacent but genetically and 

geographically distinct, threatened grizzly bear populations in southwestern British Columbia, 

Canada following the cessation of hunting in that area. The larger population had approximately 

45 resident bears and one-quarter of its perimeter was connected to other populations, while the 

smaller population had fewer than 25 individuals and was isolated.  

I estimated population vital rates by monitoring the survival and reproduction of collared 

bears and their dependent offspring between 2005 and 2018. I measured large differences in 

adult female and cub survival. In the larger, more connected population, adult female survival. In 

the larger, more connected population, adult female survival was 0.96 (95% CI: 0.80-0.99) and 

cub survival was 0.85 (95%CI: 0.62-0.95) while in the smaller, isolated population adult female 

survival was 0.87 (95% CI: 0.69-0.95) and cub survival was 0.33 (95% CI: 0.11-0.67). Mean 



 

39 

 

litter sizes were similar between the MM (2.33, 95%CI: 1.89-2.78) and the NSN (2.25, 95%CI: 

2.00-2.75). The stable reproductive state of the population indicated that the number of females 

with cubs of the year were similar for the MM (0.20, 95%CI: 0.12-0.29) and the NSN (0.17, 

95%CI: 0.07-0.25). These differences projected population growth in the larger population (λ = 

1.07, 95% CI: 1.04-1.12) and population decline in the smaller population (λ = 0.89, 95% CI: 

0.78-0.99). Other vital rates, including mean litter size and stable reproductive state did not 

differ. Low female survival in the smaller population was a result of diverse mortality causes and 

may be indicative of demographic stochasticity. Low cub survival was indicative of small 

population effects or limited resources.  

 By comparing the vital rates from these two populations with those from other small 

brown and grizzly bear populations, I suggest that when populations are isolated, there is a 

tipping point at approximately 50 bears, below which population growth is rare and, even with 

intensive management, becomes prohibitive for population recovery.  

 

3.2 Introduction 

 

Identifying mechanisms causing population change is essential for the conservation of 

small and declining populations (Caughley 1994, Peery et al. 2004, Bromaghin et al. 2015, 

Meyer et al. 2015, Duangchantrasiri et al. 2016). Differentiating between the effects of 

population smallness and the independent or synergistic causes of decline are difficult, but, in 

many cases necessary for successful population recovery (Brook et al. 2008). For widely 

distributed species occurring at a low density that have long generation times and low fecundity, 

estimating demographic parameters with sufficient precision to infer mechanisms requires large 
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sample sizes that often take years to collect, even from large populations (e.g. Gough and Kerley 

2006, Schwartz et al. 2006, Matkin et al. 2014, McLellan 2015, Regehr et al. 2018). 

Understanding the mechanisms of population change of these species in small, isolated 

populations is much more urgent but the sample sizes required for strong inferences are 

improbable (Mosnier et al. 2015, Zipkin and Saunders 2018). Identifying the common process of 

decline among small populations may highlight the realized effects of population smallness and 

provide insight for their conservation. 

Brown bears (Ursus arctos) are a large-bodied, long-lived omnivore with low 

reproductive potential. Females are predominantly philopatric and therefore do not rapidly 

colonize neighbouring habitats or provide demographic rescue to small populations while males 

will often disperse outside of their natal home range (McLellan and Hovey 2011, Proctor et al. 

2004). Substantial range contraction of this species has resulted in a fragmented global 

population with many small isolates in need of conservation (Mattson and Merrill 2002, 

McLellan et al. 2016). There have been significant efforts to recover populations, and some have 

been successful. In the 1930s, as few as 130 brown bears (Ursus arctos arctos) remained in 

Sweden but following a reduction in human-caused mortality (HCM), the population grew to 

over 700 by the mid-1990s (Swenson et al. 1995) and then to over 3200 bears by 2008 (Kindberg 

et al. 2011). In the United States, grizzly bear (Ursus arctos horribilis) populations in both the 

Yellowstone Ecosystem and in northern Montana grew at up to 7.6% annually for over twenty 

years (Mace et al. 2012, van Manen et al. 2015) to > 700 bears in each population (Kendall et al. 

2009, Haroldson et al. 2014) following the reduction of HCM. Similarly, the Canadian Flathead 

population, grew by 7% annually throughout the 1980s and 1990s following a reduction in 

HCM, despite continued legal hunting (McLellan 2015).  
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Despite similar efforts to reduce adult bear mortality from HCM in other populations, 

recovery has not been universal. While the South Selkirk grizzly population with about 80 

grizzly bears appears to be growing (λ = 1.02, Proctor et al. 2012, Wakkinen and Kasworm 

2004), the neighbouring, isolated Cabinet Mountains population, which consists of 22 to 24 bears 

(Kendall et al. 2016), has shown limited growth, despite substantial efforts to recover the 

population over the past 30 years via a reduction in HCM and augmentation with 15 (11F, 4M) 

bears (Kasworm et al. 2014, Kendall et al. 2016). Likewise, the western Cantabrian brown bear 

population in Spain increased from approximately 60 bears in the 1990s to over 200 in 2014 

(Pérez et al. 2014). In contrast, the eastern Cantabrian population increased slightly from 14 to 

~19 bears over the same period following comparable recovery efforts (Pérez et al. 2014), 

although recent immigration of males from the western population may be increasing the 

population (Gonzalez et al. 2016). In the Pyrenees, brown bear populations declined to < 10 

individuals in 1990, and, despite efforts to reduce adult mortality, by 1995 only 5 individuals 

remained in the western part of the range and the central population required reintroduction with 

bears from Slovenia (Chapron et al. 2003). While the western population became functionally 

extinct by 2004, the central population appears to be slowly recovering following reintroduction 

in the mid-1990s (Chapron et al. 2009). The success of population recovery via reduced HCM 

thus appears to be more successful in larger or connected populations. 

Here, I investigate the vital rates in two adjacent but distinct populations of grizzly bears 

in southwestern British Columbia, Canada, following efforts to reduce adult mortality primarily 

by ending legal hunting in 2000. Genetic mark-recapture monitoring of these populations 

suggested population growth in the McGillvary Mountain (MM) population but a decline in the 

North Stein Nahatlatch (NSN) population. The MM population had approximately 43 bears (21.5 



 

42 

 

bears/1000km2) in the monitoring area, however, it is geographically and genetically connected 

to the large, unfragmented populations further north. The NSN population had approximately 20 

bears (6.3 bears/1000km2) and has been genetically isolated likely for decades (Apps et al. 2014, 

McLellan et al. 2019). Based on open population models (Pradel 1996, Nichols and Hines 2002) 

identified lower apparent recruitment and slightly lower apparent survival in the NSN indicating 

that these differences were responsible for the divergent trends in the smaller, isolated population 

(McLellan et al. 2019). To further investigate why the two populations had different and opposite 

growth trends, I used 17 years of telemetry monitoring data of collared bears in these two 

populations to estimate vital rates to understand the demographic causes of population change 

and identify impediments to recovery specific to small populations.  

 

3.3Methods  

 

3.3.1 Bear Capture and Monitoring  

 

With other researchers I captured, collared and monitored from 2005 to 2018. Except for 

two males captured in foot snares, bears were immobilized by darting from a helicopter. Capture 

was carried out in the spring, shortly after den emergence when bears were feeding in avalanche 

chutes and open alpine meadows, or early autumn, when they fed on huckleberries. Spring 

capture was conducted when snow melt was sufficient for feeding in avalanche chutes (green-up) 

but before shrubs had leaf growth (leaf-out). This window of time where there is sufficient 

green-up but before leaf-out is usually around 10 days long and occurs once each year. The 

timing varies among years, usually occurring between mid-May and early July. Once 
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immobilized, bears over 2 years old were weighed, measured, and fitted with either GPS or VHF 

collars (Lotek Inc., Ontario, Canada). Tissue samples were obtained for genetic identification 

and a vestigial pre-molar for measuring age via cementum annuli. I classified two to five-year-

old bears as subadults and those six years and older as adults because, retrospectively, this was 

the youngest observed age of primiparity. All collars had canvas spacers to ensure that the collar 

would drop off and the canvas was cut on the collars of young bears to ensure they dropped in 

about one year. The Animal Care Committee of the British Columbia Fish and Wildlife 

Management Branch approved and permitted all the capture and handling protocols. GPS collars 

were programmed to obtain a location once every three hours or every hour depending on the 

collar model. 

Capture effort, defined as the time spent searching for bears, was evenly distributed 

between the study populations until 2014 when it had become apparent that the NSN population 

was not only small but had an unusually high incidence of adult female mortality. Although no 

bears had been injured or killed in this research program, the risk of additional female mortality 

due to capture in the small NSN population was deemed too high, so efforts from 2015-2018 

were limited to the MM population. I continued to monitor the vital rates of all collared bears in 

both populations until 2018. 

Throughout the first part of the study (2005-2008), I located collared bears by fixed-wing 

aircraft every two weeks from May to November. On each flight, I downloaded GPS location 

data and attempted to visually locate each bear and to count the dependent offspring of females. 

If I did not find a bear for more than eight consecutive weeks, I censored them from the sample 

at the time of their last known status. Because the populations were also monitored using genetic 

capture-recapture (chapter 2), there were no collared female bears with unknown fates. In the 
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second part of the study (May 2010 - October 2018), some recaptured females were fit with VHF 

collars because these small collars were preferable for long-term monitoring. Collared bears 

were located and observed from a helicopter at least once each spring (May or early June 

depending on snowmelt) and then again in summer (July and August) and fall (late September 

and October). I often located bears from the ground between aerial attempts and although these 

attempts did not follow a schedule, they increased the sightings of family groups and cub counts. 

Offspring age was determined by size for cubs in their birth year and yearlings in their second 

year. I grouped attendant offspring that were two years of age and older because they were not 

consistently indistinguishable if the previous year’s status was unknown.  

All collars were programmed to signal if the collar had not moved in 24 hours, and these 

mortality signals were investigated as soon as possible after detection. Whenever I found a 

dropped collar with rotted canvas, I assumed the bear was still alive. If a bear was found dead, I 

performed an investigation and necropsy in the field to determine the cause of death. Human 

involvement was suspected if the collar was cut. Because I was simultaneously conducting an 

annual DNA based capture-recapture monitoring program (McLellan et al. 2019), I was able to 

use this information in the interpretation of uncertain fates. 

 

3.3.2 Survival Analysis 

 

I estimated the annual survival rates of adult and subadult bears using a staggered entry 

design for the Kaplan-Meier estimator (Pollock et al. 1989). I used months as the monitoring 

interval from April to October when most bears were active. I amalgamated November through 

March into one monitoring interval because monthly mortality would not be distinguishable 
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when bears were hibernating, and the model structure was parameterized accordingly for annual 

estimates. I considered population (S~Pop), sex (S~Sex) and age class (S~Age) as individual 

covariates in candidate models along with the null model (S~1) assuming no differences among 

class. I used RMark v.2.25 (Laake and Rexstad 2008, White 2008) to construct, analyze and 

obtain model-averaged survival estimates for each class. I had insufficient data to investigate 

interactions among groups without the drastic loss of estimate precision. I used AIC based model 

averaging to obtain survival estimates for each sex and age class (Burnham and Anderson 2002).  

All collared bears in these populations entered a den during the winter season. Female 

den entrance varied from October 20th to November 12th and emergence varied from April 24th to 

May 20th. I located collared bears from a fixed-wing aircraft or a helicopter within 4 weeks of 

den emergence. If bears were not located within a month of den emergence they were censored 

from the cub survival data. I estimated cub survival by observing the number of cubs for each 

collared female shortly after den emergence and again throughout the same year. I assumed cub 

mortality if they were not seen with their mothers, and I censored them from analysis if their 

mothers dropped their collars or were not visually located again that year. Due to a possible lack 

of independence of survival of cubs within a litter (Swenson et al. 2001, Mace et al. 2012), I first 

compared cub survival for individual cubs and then within litters using an ANOVA. For each 

population, I resampled with replacement (bootstrapped) cub survival data 1000 times to obtain 

mean survival and 95% confidence intervals (McLellan 2015). I used the same method to 

estimate survival of yearlings. Analyses were conducted using PopTools (Hood 2011).  
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3.3.3 Age of primiparity and Litter size 

 

 I estimated the average litter size of collared females located in the spring shortly after 

den emergence and only when females and their cubs were observed clearly. Litter sizes were 

bootstrapped 1000 times to obtain means and 95% confidence intervals.  

I determined the average age of primiparity using the techniques described by Garshelis 

et al. (2008). This method includes all females observed before parturition even if they were not 

monitored until they reproduced. Means and confidence intervals were obtained for each 

population by bootstrapping the original sample 1000 times using PopTools (Hood 2011).  

 

3.3.4 Reproductive Rate and State Transition 

 

The stable reproductive state distribution (SRSD) describes the proportion of the adult 

female population in each possible reproductive state (Schwartz and White 2008). To obtain an 

estimate of each population’s SRSD, I first estimated the probability that a female will transition 

from one reproductive state to another. I defined the reproductive state of a female by the 

presence and age of dependent offspring. Females were classified as alone (A), with cubs (C), 

with yearlings (Y), or with older offspring (T). I observed a transition for any adult female 

monitored for two or more consecutive years. I considered ten biologically possible transitions 

(Table 3.1). A female alone could either remain alone or have cubs the following year. A female 

with cubs could lose her cubs and transition to being alone, lose her cubs and transition to having 

cubs, or transition to have yearlings. A female with yearlings or two-year-olds could either 

transition to be alone, to have cubs or to having offspring a year older. I used the multi-state 
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model in RMark (Laake and Rexstad 2008) to estimate the probability of transition from one 

state to another. Survival and recapture probability were constrained to 1.0 as they are a 

prerequisite for observing a transition. The resulting transition matrix was multiplied by a 

hypothetical starting state matrix (e.g. all alone) to obtain the reproductive state distribution after 

one transition (Eq. 1). 

𝑡2 = [1 0 0 0]  [

AA AC 0 0
CA CC CY 0
YA YC 0 YT
TA TC 0 0

]      (Eq. 1) 

I iteratively multiplied the resulting age distribution by the transition probability matrix in a 

Markov chain until it reached the asymptotic stable reproductive state distribution. For this 

analysis, I used markovchain package v. 0.6.9.15 (Spedicato et al. 2014) in program R (v.3.6.1: 

R Core Team, 2019). I resampled the data with replacement and bootstrapped estimates of the 

stable reproductive state distribution 1000 times to estimate means and 95%CI’s for each 

population. I did not have a sufficient sample size to include female age as a covariate for 

transition probabilities.  

 

Table 3.1 Possible reproductive state transitions for adult female brown bears. 

Reproductive states are defined by the presence and age of accompanying 

offspring. 

From State 
Transfer to State 

Alone Cubs Yearling Twos 

Alone A → A A → C   

Cubs C → A C → C C → Y  

Yearling Y → A Y → C  Y → T 

Twos T → A T → C   
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Reproductive rate (mx), defined as the number of female cubs/year/female, was estimated 

for each population by multiplying the estimated number of female cubs per litter by the stable 

reproductive state proportion of females with cubs of the year (Schwartz and White 2008). The 

number of female cubs would be half the mean litter size assuming a 1:1 sex ratio (Tumanov 

1995). This method for estimating the reproductive rate assumes no change in the stable state 

distribution over time but is more robust to sampling bias from capture and variability in 

monitoring duration than estimating SRSD by simply using the proportion of monitored 

individuals (Schwartz and White 2008).  

 

3.3.5 Population Growth and Stable Age Distribution 

 

To estimate the asymptotic finite population growth rate (λ), I estimated the net 

reproductive rate, defined as the estimated number of female cubs a female will produce in her 

lifetime, and the mean generation time for the MM and NSN populations. I estimated these latent 

variables by constructing an age-structured matrix population (Leslie matrix) model using 

repeated random samplings (Monte Carlo estimation) from the bootstrapped distributions of age-

specific survival and reproduction for each population (Mace et al. 2012). I considered the age of 

last reproduction as 24 years (Schwartz et al. 2003, McLellan, 2015). For each iteration, I solved 

for the dominant eigenvalue which is the population growth rate (λ), the net reproductive rate 

(Ro) and average generation time (GenT) using popbio v.2.2.4 package (Stubben and Milligan 

2007) in program R (R Core Team 2019). I repeated this process 1000 times for each population 

to estimate mean and variance for each variable. 
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I estimated the stable age distribution of each population by converting the age-structured 

matrix population model into a stage-structured population model. Because vital rates were 

estimated for age groups, only transition rates required calculation. The transition rate is the 

expected proportion of individuals transitioning from one life stage to the next and is conditional 

on individual survival and the population growth rate (Caswell 2001, Fujiwara and Diaz-Lopez 

2017). I applied a conditional age group-transition rate described in Caswell 2001 where the 

probability that an individual will transition from one age group to the next ( 𝑃𝑗,𝑖 ) is:  

   𝑃𝑗,𝑖 =
λ

−(𝑥𝑗−𝑥𝑖−1)
𝑙(𝑥𝑗−1)

∑ λ−(𝑥−𝑥𝑖)𝑙(𝑥)
𝑥𝑗−1

𝑥=𝑥𝑖

    (Eq. 2) 

and λ is the population specific growth rate, 𝑥𝑖 is the first age in stage 𝑖 and 𝑥𝑗  is the first age in 

stage 𝑗 = 𝑖 + 1 and 𝑙(𝑥) is the survivorship at time 𝑥. I repeated this process for all the 1000 

bootstrapped Leslie matrices from the preceding analysis to estimate the confidence interval 

around each population stable age class outcome (Mace et al. 2012).  

 

3.4 Results 

 

 In the MM and NSN, respectively, 26 (18F, 8M) and 16 (9 F, 7M) bears were collared 

between 2005 and 2018. An additional three subadult males (2 MM, 1 NSN) were captured, 

aged, genetically identified, measured and weighed but not collared. I limited my survival 

analyses of independent (i.e. subadult and adult) bears to females but report causes of mortality 

for both females and males. 
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3.4.1 Causes of mortality 

 

 None of the collared females and one collared male died in the MM while 5 collared 

females and no collared males died in the NSN population. The mortality of the male bear in the 

MM population was a result of repeated human-wildlife conflict. The causes of mortality for 

NSN females were diverse. One adult with an unknown reproductive state was killed in the early 

spring by another bear. Two nulliparous females (aged seven and eight) were suspected to have 

been illegally killed by humans; one collar had been cut off the bear and smashed into many 

pieces while the other collar was still intact but prematurely lost < 10 m from a road. This female 

had been genetically tagged in the concurrent DNA monitoring program each year since her birth 

but was never again tagged over the four following years. One subadult died in her den and was 

severely emaciated and showing severe gelatinous bone marrow transformation indicating 

starvation (Raglus et al. 2019), and one old bear died late in the fall with no sign of trauma 

(suspected natural senescence).  

 

3.4.2 Survival of independent females 

 

Survival of independent female bears was determined from 42 and 26 bear-years 

(cumulative number of years sampled for all bears) of monitoring in the MM and NSN, 

respectively. The top model indicated that survival differed between populations (Table 3.2) but 

there was no measurable difference between sex or among age class of females, although 

sampling of subadults and males was limited, and the analysis lacked power (Table 3.2). Model 

averaged estimates of annual independent survival was 0.96 (95% CI: 0.80-0.99) in the MM and 
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0.87 (95% CI: 0.69-0.95) SN population (Table 3.3) when both suspected mortalities are 

included. Because survival estimates used to derive population growth using a projection matrix 

should only include females of reproductive age and one mortality was of an old bear, excluding 

her death the resulting adult female survival in the NSN was 0.91 (95% CI: 0.73-0.98).  

 

Table 3.2 Model Selection results for Kaplan-Meir estimates independent bear survival from collared 

grizzly bears in McGillvary mountains and the North Stein Nahatlatch populations. Age is subadults 

from 2 to 5 years and adult bears are ≥6 years. 

Model na AICcc Δ AICcb ωc 

S (~Pop) 2 68.577 0.000 0.678 

S (~1) 1 71.308 2.731 0.173 

S (~Age) 2 72.767 4.190 0.083 

S (~Sex) 2 73.229 4.652 0.066 

a Number of model parameters 
b Difference between AICc of the model and the AICc of the highest-ranked model 
c Model weight 

 

3.4.3 Age of primiparity and Litter size 

 

 I monitored six nulliparous females in the MM; three did not reproduce by six, seven and 

eight years old when they were censored because they had lost their collars. One reproduced for 

the first time at age 11 and the remaining two had first surviving litters at age eight and nine. 

However, both of these females were not observed for one year immediately prior so could have 

had non-surviving cubs at ages seven and eight, respectively and lost them. Two more females 

were first captured at age seven with cubs of the year. The estimated mean age of primiparity 

following Garshelis and Noyce (2008) was 7.4 years (95% CI: 3.0-11.0, where lower confidence 

limit was increased to three years to reflect the minimum age of primiparity possible for the 

species). If I include possible surviving litters of females that may have had non-surviving litters 



 

52 

 

the previous year, the age of primiparity was 8.2 years (95% CI: 4.8-10.0). In the NSN the age of 

first surviving litter was observed for one bear at 12 years, and two nulliparous females died at 

ages seven and eight years old. The mean estimate of primiparity for the NSN was 8.0 years 

(95% CI: 3.0-11). I was unable to obtain estimates of primiparity with sufficient precision to 

compare populations.  

 

Table 3.3 Vital rates estimated using Kaplan-Meir estimator from monitoring collared grizzly bears 

in the McGillvary mountains (MM) and North Stein Nahatlatch (NSN) populations. Reproductive 

rates estimated based on monitoring females with cubs. 

 MM NSN p value 

Survival    

 

Cubs 0.85 (0.62–0.95) 0.33 (0.11–0.67) 0.004 

Yearling 1.00 1.00  

Adult female 0.96 (0.81–0.99) 0.88 (0.67–0.99) 
0.002 

Adult female*  0.91 (0.73–0.98) * 

Reproduction    

 

Litter size 2.33 (1.89–2.78) 2.25 (2.00–2.75) 0.837 

SRSD with cubs 0.22 (0.116–0.287) 0.17 (0.07–0.25) 0.625 

Mx 0.26 (0.15–0.38) 0.20 (0.093–0.310)  

* Excluding female that died of old age 

 

 I monitored eight litters to weaning, six were two-year-old offspring, two were three-

year-old offspring and one was four-year-old. I observed a female nursing her 2 ½-year-old cubs. 

I observed six interbirth intervals for three females, in the MM and four interbirth intervals for 

three females in the NSN. The resulting bootstrapped estimates of interbirth interval were 4.2 

years (95% CI: 4.0-4.5) and 4.3 years (95% CI: 4.0-4.8) for the MM and NSN, respectively. 

Litter sizes were estimated from 21 cubs in nine litters (𝑥̅= 2.33, 95% CI: 1.9-2.78) in the 

MM and nine cubs in four litters (𝑥̅= 2.25, 95% CI: 2.0-2.75) in the NSN (Table 3.3).  
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3.4.4 Survival of dependent offspring 

 

I estimated the survival rates of cubs (first year of life) and yearlings (one year old) as 

well as the reproductive rates of adult females from the reproductive events of 22 adult females 

(15 MM, 7 NSN) that produced 20 cubs in eight litters in the MM and nine cubs in four litters in 

the NSN. Cub survival in the MM was 0.85 (95% CI: 0.62-0.95), and 0.33 (95% CI: 0.11-0.67) 

in the NSN. Cub survival was independent of litter membership (p = 0.97); in the MM three cubs 

were lost from two litters (3 of 3 and 1 of 2) while all other six litters survived. In the NSN, one 

litter of three was entirely lost, and three other litters lost one of two cubs each. No litters in the 

NSN had all cubs survive (Table 3.3). No cub mortalities were attributed to maternal mortality in 

either population. I monitored the fate of 26 yearlings (20 MM, 6 NSN) and observed no 

mortalities.  

 

3.4.5 Stable reproductive state distribution (SRSD) 

 

 I observed 38 reproductive state transitions in the MM (13 bears) and 30 in the NSN (6 

bears). The resulting non-parametric bootstrapped estimates for the stable reproductive state 

distribution predicted similar proportions of females with cubs in each population; 0.20 (95% CI: 

0.12-0.29) in the MM and 0.17 (95% CI: 0.07-0.25) in the NSN. The largest difference between 

the SRSD of the two populations was the proportion of adult females alone estimated as 0.41 

(95% CI: 0.00-0.65) in the MM and 0.55 (95% CI: 0.38-0.84) in the NSN (Table 3.4, Figure 

3.2a).  
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Table 3.4 Reproductive state transition rates estimated using multi-state models on reproductive data 

from collared adult female grizzly bears (≥6 years) in the McGillvary Mountain and North Stein 

Nahatlatch populations in southwestern British Columbia, Canada. 

Population From State 

Transfer to State 

Alone Cubs Yearling Twos 

MM 

Alone 0.63 0.38   

Cubs 0.00 0.00 1.00  

Yearling 0.00 0.00  1.00 

Twos 0.75 0.25   

NSN 

Alone 0.67 0.33   

Cubs 0.17 0.00 0.83  

Yearling 0.00 0.00  1.00 

Twos 1.00 0.00   

 

3.4.6 Population growth 

 

 Mean estimates of projected population growth rate (λ) indicated that given the stable 

reproductive state and demographic rates observed, the MM population was growing with a λ = 

1.07 (95% CI: 1.04-1.12) while the NSN population was declining with λ = 0.89 (95% CI: 0.78- 

0.99, Table 3.5). The mean estimated generation time was approximately 12.5 years in both 

populations with broader variance in the MM (Table 3.5). In contrast, the net reproductive rate, 

Ro (the average number of female cubs an adult female will produce in her lifetime given the 

age-specific survival and reproductive rates) was seven times higher in the MM (2.38, 95% CI: 

1.14-4.03), than in NSN (0.31, 95% CI: 0.04-0.82) (Table 3.5). 
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Table 3.5 Latent variables derived from bootstrapped vital rates estimated with age-structured 

population matrix for collared grizzly bears in the McGillvary Mountains (MM) and North Stein 

Nahatlatch (NSN) populations in southwestern British Columbia, Canada. 

Variable  MM NSN 

Asymptotic Population Growth λ 1.07 (1.045-1.119) 0.89 (0.78-0.99) 

Net Reproductive Rate Ro 2.376 (1.12 -4.03) 0.305 (0.31 -0.82) 

Generation Time GenT 12.55 (10.32-14.94) 12.51 (11.40-13.52) 

 

 Comparing population size and associated projected population growth rate of the MM 

and NSN populations with other brown and grizzly bear populations with available data showed 

that growth in the MM population was similar to other connected populations (Figure 3.1). In 

contrast, the projected population decline in the NSN was similar to other small and isolated 

populations.  
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Figure 3.1: The relationship between population growth rate (λ) and population size from this research 

and other populations highlighting that connected, or larger populations are more likely to be growing 

than smaller, isolated populations. The isolated North Stein Nahatlatch population (■) and other isolated 

populations (●); the connected McGillvary Mountain population (□) and other connected populations (○); 

augmented populations (+) (Clevenger et al. 1987, Wakkinen and Kasworm 2004, Garshelis et al. 2005, 

Palomero et al. 2007, Chapron et al. 2009, Kindberg et al. 2011, Proctor et al. 2012, Pérez et al. 2014, 

Gervasi et al. 2017). 
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3.4.7 Stable age distribution 

 

 The difference in survival probabilities resulted in differences in the stable age 

distribution of each population (Figure 3.2b). The MM had a higher proportion of yearling and 

subadult bears, whereas the NSN had proportionately more adults and older bears because of the 

relatively low cub survival rates in that population (Figure 3.2b). 

 

 

Figure 3.2 Density plots of a) the stable reproductive state distribution estimated using in multistate 

transition models on reproductive data from collared adult female grizzly bears (≥6 years). b) 

bootstrapped estimates of the stable age distribution estimated from vital rates for grizzly bears in the 

McGillvary Mountain and North Stein Nahatlatch populations in southwestern British Columbia, Canada. 
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3.5 Discussion 

  

 Despite similar management efforts to recover by reducing HCM, vital rates of grizzly 

bears in the smaller NSN population indicated that it was declining while the larger MM 

population was growing. I identified both cub and adult female survival as factors most likely 

driving population decline in the small and endangered NSN population while the adjacent but 

genetically distinct and larger MM population had much higher cub and adult female survival 

rates and was growing. Both populations showed slightly lower reproductive rates than those in 

other populations despite having larger litters. Considering my findings and those from other 

small populations of brown and grizzly bears, I suggest that below a threshold of approximately 

50 individuals, may not respond to recovery actions that reduce adult mortality as well as larger 

populations (Figure 3.1, Chapron et al. 2009, Proctor et al. 2012, Gonzalez et al. 2016, Kendall et 

al. 2016).  

 The vital rates I recorded in the MM were consistent with estimates from other un-hunted 

grizzly bear populations in North America (Garshelis et al. 2005, Schwartz et al. 2006, Mace et 

al. 2012). For example, at 0.96, adult female survival rates in the MM were the same as in both 

Banff (Garshelis et al. 2005) and Yellowstone (Schwartz et al. 2006) ecosystems, and very 

similar to the 0.95 recorded in Northern Montana (Mace et al. 2012) and 0.97 in Denali, Alaska 

(Keay et al. 2018). The reproductive rate in the MM of 0.26 was lower than other rapidly 

growing populations (e.g. 0.32 in Yellowstone (Schwartz et al. 2006); 0.41 in Sustina River, 

Alaska (Miller 1997); 0.33 in northern Montana (Mace et al. 2012); 0.42 in the first 15 years of 

study in the Flathead drainage of British Columbia (Hovey and McLellan 1996)) but similar to 

the 0.24 recorded in Banff where λ = 1.04 (Garshelis et al. 2005). Litter sizes in the MM (2.33 
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cubs/litter) were larger than the average of 2.04 cubs/litter (range 1.8-2.3) in North American 

brown bear populations where females do not eat salmon (Zedrosser et al. 2011).  

 The difference in reproductive rate between the MM and other expanding populations 

was due to a relatively low proportion of females being with cubs compared to other 

reproductive states such as being alone or with older offspring. The stable reproductive state for 

adult females in the MM that are either alone or with three-year-old or older offspring was 0.34, 

which is higher than some other populations, such as 0.26 in northern Montana (Mace et al. 

2012) and 0.10 in the Canadian Flathead while the population was growing (McLellan 2015). 

This difference appears to be due to a combination of an older age of primiparity, longer 

interbirth intervals and, possibly a high proportion of younger adult females for which the 

expected per-capita reproductive rate is lower (Schwartz et al. 2006, McLellan 2015). The coarse 

estimates suggest that these populations have among the oldest documented age of primiparity 

(Garshelis et al. 2005). Despite a low reproductive rate, cub survival in the MM was high (Sc = 

0.85) and complete litter losses were not observed. Large litter sizes and high cub survival are 

contributing to overall populating growth rate showing that this population is recovering. 

 Despite a probable reduction of adult mortality following the cessation of hunting in the 

NSN in 2000, the population appears to be declining mostly due to low adult female and cub 

survival. The prominence of natural adult mortality in the NSN population is notable; three 

natural deaths of independent females occurred in 26 bear-years of monitoring (0.12 

mortalities/bear-year). By comparison, natural mortalities of female bears are rare in other 

populations. In the Yellowstone Ecosystem Schwartz et al. (2006) reported < 0.005 natural 

mortalities/bear-year over 198 bear-years; McLellan (2015) found 0.018 natural mortalities/bear-

year based on 227 bear-years of monitoring in the Canadian Flathead, and (Mace et al. 2012) 
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reported 0.008 mortalities/bear year in 122.6 bear-years of monitoring in northern Montana. 

Even in Denali, where the population was thought to be at carrying capacity, only three females 

died of natural causes and none due to HCM in 146.5 bear-years of monitoring (0.020 

mortalities/bear-year, Keay 2018).  

 The rate of HCM of independent females in the NSN (0.08/bear-year) was also high and, 

although my sample size was limited, it appears to be more than double that of other un-hunted 

North American populations. For example, the rate of HCM for females was 0.033-0.057/bear-

year in Montana (Mace et al. 2012), 0.025-0.0350 in Yellowstone (Schwartz et al. 2006), and 

0.037 in Banff (Garshelis et al. 2005). At 0.048 human-caused deaths per bear-year of 

monitoring, even the heavily hunted Flathead drainage in British Columbia (McLellan 2015), has 

a lower female HCM rate than the un-hunted NSN.  

 The diversity of causes of death of NSN female bears suggests that there is no a single, 

systematic factor influencing the population trajectory but more likely stochastic events that have 

often been suggested to impact small populations (Lande 1988, Foley 1994, Ovaskainen and 

Meerson 2010). Although not as low as the 0.87 female survival rate I found in the NSN, other 

small, isolated populations that were intensively managed for recovery also had relatively low 

female survival: 0.91 in the west Pyrenean population just prior to functional extinction with 10 

bears left (Chapron et al. 2009); 0.92 in the isolated Italian Apennine population (Gervasi et al. 

2017) of about 51 bears (Ciucci et al. 2015); and 0.93 in the isolated Cabinet mountains, U.S.A., 

when the population was approximately 15 to 23 bears until the 1990s (Wakkinen and Kasworm 

2004, Kendall et al. 2016). Even with extreme conservation efforts, these rates are lower than the 

0.94 estimated from the heavily hunted Canadian Flathead population and similar to the 0.91 in 

the Susitna drainage of Alaska when the management goal was to reduce bear numbers with 
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heavy hunting pressure (Miller et al. 1997). Population dynamics in the small West Pyrenean, 

Apennine, Cabinet Mountains and NSN populations suggest that adult female mortality, even 

with intensive management, may not permit population recovery. 

 In addition to low female survival, low cub survival in the NSN also affected population 

growth. Annual cub survival of 0.33 in the NSN was similar to the lowest rate recorded for this 

species of 0.34 in both Denali and Katmai National Parks, Alaska. These were both un-hunted 

populations in remote, protected areas that are thought to be at carrying capacity (Sellers et al. 

1999, Keay et al. 2018). Unlike in Denali where the grizzly bear reproductive rate remained 

comparable to expanding populations, reproductive rates in the NSN were low (0.20) even when 

compared to other declining populations. A combination of late average age of primiparity, (> 8 

years old) and high inter-birth intervals (4.3 years) results in a low proportion of females with 

cubs. Like the MM, litter size in the NSN (2.45 cubs) is also higher than average for North 

American populations (Zedrosser et al. 2011).  

 Because they were not radio-collared, I did not determine the specific causes of cub 

mortality, however, there are several possibilities for their low survival in the NSN. The NSN 

population could be at a low-density carrying capacity and limited by food. The amount of body 

fat of mothers strongly influences the body size of cubs at den emergence (Robbins et al. 2012) 

and in Denali, females that lost cubs had lower body fat than those that did not lose cubs (Keay 

et al. 2018). Cub survival also declined by about 20% in years of limited food availability in the 

Canadian Flathead population (McLellan 2015). That a subadult bear in the NSN died of 

starvation, which is very rare for this species, does suggest that food may be limiting for this 

population, at least in some years. In a food limited population, however, I would also predict 

small litter sizes (Robbins et al. 2012) which was not the case in the NSN population.  
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 Infanticide by adult males may also have contributed to high cub mortality (McLellan 

1994). Sexually selected infanticide has been documented in brown bears in Sweden (Swenson et 

al. 2001) and it may be exacerbated when the adult sex ratio favours males (McLellan 2005, 

Chapron et al. 2009). Having more males in a population not only increases the probable 

encounter rate between males and mothers with cubs but there is also an increased probability 

each male is not the father of a litter and, therefore, more likely to be infanticidal. Also, there 

would be fewer breeding opportunities per male so fewer would be encumbered with receptive 

mates (McLellan 2005). In small populations with few adult females and long interbirth 

intervals, there will often be years when all adult females are encumbered with cubs, yearlings or 

older offspring and none are reproductively available (e.g. Gonzalez et al. 2016), likely 

increasing the risk of infanticide as a component Allee effect. 

 Low cub and adult survival may also be indicative of a genetic Allee effect. The isolation 

of the NSN population and, to a lesser extent, the MM population, has resulted in lower than 

average observed heterozygosity (MM Ho = 0.61 and NSN Ho = 0.51; Bellemain et al. 2007, 

Paetkau et al. 1998) and several bears are the product of full-sibling and parent-offspring mating 

(unpublished data). Studies of brown bears in zoo populations identified a decrease in litter size 

as a result of inbreeding depression (Laikre et al. 1996). In a study of multiple mammal species, 

Ralls et al. (1988) found an average 33% reduction in survival of offspring resulting from parent-

offspring or full sibling mating. In other mammals, the lifetime breeding success can drop by as 

much as 70% from the equivalent of half-sibling mating and the reduction is often manifesting as 

increased age of primiparity (Huisman et al. 2016). Population recovery or persistence has been 

documented following population augmentation or natural immigration of un-related individuals 

(Åkesson et al. 2016, Quinn et al. 2019). 
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Comparing the relationship between the population growth rate and the size of isolated 

brown bear populations suggests that there is a threshold of around 50 bears below which 

reduction of human-caused mortality alone is insufficient to promote recovery (Chapron et al. 

2009, Pérez et al. 2014). Studies on other species have shown that in the absence of immigration, 

small populations are unlikely to persist and the variation in population persistence can be 

explained by stochastic events and environmental catastrophes (Stacey and Mark 1992, Aresu et 

al. 2020). Although there are few examples from small populations that highlight the 

demographic components of population decline, our results support the suggestions that bad luck 

can be a critical factor limiting the recovery of small, isolated populations.  
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The influence of habitat on the trend of two threatened 

grizzly bear populations & ground testing habitat 

selection models. 

 

4.1 Abstract 

 

For grizzly bears (Ursus arctos) in areas with low human-caused mortality, the quantity, 

quality and distribution of food and other habitat features may become more important for 

individual fitness. The objective of this chapter is to identify whether the large differences in 

population density and growth rate between two threatened grizzly bear populations in 

southwestern British Columbia reflect a difference in the availability of seasonal food sources. 

Grizzly bear habitat selection is seasonally dependent, and as different foods become 

available, grizzly bear diet composition changes accordingly. Here I use seasonally specific 

resource selection functions (RSFs) to predict seasonal habitat selection within individual home 

ranges. Then I use the resulting models to estimate the relative abundance of seasonally specific 

high-quality habitats in two adjacent but distinct grizzly bear populations. For this analysis, I 

consider four seasons: the spring-early summer season when bears feed predominantly on 

herbaceous plants and dig for bulbs; the early fruit season, where they feed on low elevation 

berries and cherries; the huckleberry season, when bears feed almost exclusively on black 

huckleberries (Vaccinium membranaceum); and the post berry season, when foraging behaviours 

are most diverse but whitebark pine seeds are a relatively common food source.  

Projected models indicated similar habitat quality between populations for the spring and 

summer herb-bulb season, and the early fruit season (< 2% difference). High-quality huckleberry 
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habitat covered 11% to14% of the larger (21.5 bears/1000km2), and growing (projected λ = 1.07), 

MM population while the same quality habitat accounted for only 2%-3% of the area in the 

smaller (6.3 bears/1000km2) and declining (projected λ = 0.89) NSN population. Although it is 

difficult to assess whether this difference is responsible for the differences in observed density, 

the difference suggests that there is likely a difference in carrying capacity for the two 

populations. While the post-berry habitat model also indicated a higher prevalence of good 

quality late season habitat in the MM than the NSN population, the model had a much lower 

predictive ability and therefore less robust for inferring meaningful differences in habitat quality 

at the population scale. 

To confirm the utility of using resource selection models for inferring food availability, I 

also assessed the predictive capacity of the resulting huckleberry season RSF models by using 

generalized additive models to compare RSF model scores with huckleberry abundance 

measured in field plots. My results show that berry specific models did predict plant cover, the 

proportion of plants with fruit and overall berry abundance, but the mass (g) of berries picked in 

10 minutes, controlled for the picker, was the measure of fruit abundance most accurately 

predicted by the huckleberry RSF model; adjustedR
2 = 0.48 (p < 0.0001).  

 

4.2 Introduction 

 

The distribution of most large carnivore species is the result of continental-scale climate 

patterns and persecution by humans (Woodroffe 2000, Mattson and Merrill 2002, Wolf and 

Ripple 2017). The resulting pattern of occupancy is for persistence where human density is 

relatively low, and extirpation where human density is high (Wolf and Ripple 2017). Human-

caused mortality of large carnivores has been such a dominant limiting factor that its reduction is 
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often the only action required to successfully recover declining populations (Schwartz et al. 

2006, Lopez-Bao 2015, Proctor et al. 2018a). In areas with low human-caused mortality, 

additional limiting factors become more important and individual fitness depends upon the 

quantity, quality, and distribution of food and other habitat features (Mowat et al. 2013). 

Although the top-down effects of human-caused mortality may still limit the broad-scale 

distribution of large carnivore species (Nielsen et al. 2004a), fine-scale variation in population 

density and distribution may reflect the spatial and temporal variability of habitat quality (Rettie 

and Messier 2000, Mayor et al. 2009, Boyce et al. 2016). 

For each individual there is a hierarchy of factors that limit, or potentially limit, its 

fitness, and the coarser the scale of selection, the more important the factor (Rettie and Messier 

2000). Therefore, to understand the relationships between habitat characteristics and individual 

fitness, habitat quality must be estimated at the appropriate scale (Garshelis 2000). When a 

population is at carrying capacity and limited by bottom-up factors, animal abundance should 

reflect the quality of available habitat (Boyce et al. 2016). Even though species distribution at the 

large scale may be limited by current or historical HCM, finer scale habitat selection for food 

sources within home ranges will still reflect which habitats are important to individuals at that 

scale and the ubiquity of these habitats will affect the density of individuals there.  

Estimating the abundance of high-quality habitat first requires identifying selected 

habitats and then quantifying their availability for individuals, or populations. Resource selection 

functions (RSFs) are commonly used statistical techniques for quantifying habitat selection. 

RSFs often compare multiple environmental correlates at locations used by animals to random 

locations considered to be available to the animals (Manly et al. 2002, Nielsen et al. 2002). The 

correlates are rarely mechanistic but most often they are derived from satellite imagery and 
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landscape mapping that are assumed to correlate to food sources or attributes for behaviours such 

as resting or avoiding predators and conspecifics (Boyce and McDonald 1999). The applicability 

and ecological understanding gained from the resulting models is often limited because they are 

based on surrogate, non-mechanistic variables (Nielsen et al. 2006). However, by carefully 

classifying animal use according to specific behaviours, such as seasonally specific foraging, and 

by removing locations for confounding activities such as sleeping, more mechanistic selection 

models can be built. The predictive ability of these models may be improved by choosing 

covariates that are thought to affect the production of a specific food, then the resulting RSFs 

should describe a more mechanistic pattern of selection to a specific food type. Because the 

resulting models are food-specific they are more useful for understanding bottom-up impacts on 

species distribution and abundance.  

Grizzly bears (Ursus arctos), are large-bodied omnivores that inefficiently digest plant 

material (Pritchard and Robbins 2008) yet hibernate for almost half a year (Nelson et al. 2007). 

When active, they have very high caloric requirements and spend much of their time feeding 

(MacHutchon et al. 1998, McLellan 2011, McLellan and McLellan 2015). Grizzly and brown 

bears live in temperate climates and have dramatically shifting diets as the seasons progress and 

different foods become available. Consequently, the habitats grizzly bears use also change 

seasonally as different foods become available and they change what they eat (McLellan and 

Hovey 1995, Munro et al. 2006).  

The specific foods consumed by grizzly bears varies among ecosystems, but there is a 

similar seasonal pattern among many populations. In the interior mountains of British Columbia, 

Alberta, and Montana, grizzly bears consistently select for avalanche chutes (Waller and Mace 

1997, Munro 1999, Ramcharita 2000, McLellan and Hovey 2001, Serrouya et al. 2011) or 
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riparian areas (McLellan and Hovey 2001, Munro et al. 2006) during spring and early summer 

(May-July). Although these habitats are structurally different, avalanche chutes and riparian 

areas contain many of the same bear foods that flourish in wet sites (McLellan and Hovey 2001, 

Munro et al. 2006), and, for bears, they are functionally similar (McLellan and Hovey 2001). In 

the summer, when high-energy foods become available, bears will switch their diet to one that 

consists almost entirely of the specific food type and display hyperphagic behaviour by 

increasing the time they spend feeding (McLellan and McLellan 2015) to deposit the fat needed 

for hibernation and reproduction (McLellan 2011). 

In many populations huckleberries (Vaccinium membranaceum) are the primary high-

energy food source for grizzly bears in late summer (McLellan and Hovey 1995, Munro et al. 

2006, McLellan 2007, Costello et al. 2014, Lamb et al. 2017) and grizzlies will often spend 

several weeks feeding on them (McLellan 2007, McLellan and McLellan 2015). In other 

populations, such as the Greater Yellowstone Ecosystem, grizzly bears eat whitebark pine (Pinus 

albicaulis) seeds in late summer (Mattson et al. 1991). The transition between dominant food 

sources results in spatially and temporally variable habitat selection patterns making food-based 

definitions of habitat fitting for this species. 

The distribution of many plant species, including primary bear foods, is well documented 

and mapped but occurrence does not adequately describe the value to foragers. In particular, 

huckleberry is the primary understory shrub in many forest types in British Columbia 

(MacKenzie 2012), but it has highly variable fruit production. Variable production renders 

vegetative plant-based models ineffective for predicting habitat value because grizzly bears only 

eat the fruit. Additional environmental factors are necessary to produce models that describe and 

predict the occurrence of this grizzly bear food source. Despite the challenges for predicting the 
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occurrence and abundance of some high-energy food sources, their importance as drivers for 

grizzly bear reproduction and population density have been well documented (McLellan 2015, 

van Manen et al. 2015). 

In the interior mountains of North America, dozens of research projects have monitored 

thousands of radio-collared grizzly bears and have produced hundreds of research papers that 

have helped managers enhance populations and improve the long-term security of these bears 

(McLellan 1989, Johnson et al. 2006, Eberhardt et al. 2008, Kendall et al. 2009, Laikre et al. 

2010). In stark comparison, very little is known of the ecology of grizzly bears living in the 

southern Coastal Mountain Ranges. Despite stopping the legal grizzly bear hunt in this area two 

decades ago, recovery is inconsistent among populations and some remain critically endangered 

(Romain-Bondi et al. 2004, Apps et al. 2014, McLellan et al. 2017b, Morgan et al. 2019). Two of 

these threatened populations are geographically adjacent to one another and have similar 

ecosystem characteristics but remain genetically isolated from one another and have divergent 

population trends. The more northern McGillivray Mountains (MM) population has been 

increasing while the other, the North Stein Nahatlatch (NSN), has a much lower density of bears 

and is slowly declining to where it has been classified as critically endangered by the IUCN 

(Mclellan et al. 2019, McLellan et al. 2016). The difference in population growth rates is the 

result of large differences in both adult female and cub survival (chapter 3). Because high energy 

foods are so important for bears in other populations (McLellan and Hovey 1995, Hilderbrand et 

al. 1999, MacHutchon and Wellwood 2003, Munro et al. 2006) one hypothesis for the ultimate 

cause of high cub and adult female mortality is that the population is near carrying capacity and 

limited by food resources.  
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In this chapter, I quantify seasonal habitat selection by grizzly bears in the MM and NSN 

populations to test the hypothesis that habitat quality is contributing to the difference in density 

and trend observed in the populations. I first delineate among seasons to differentiate between 

the availability of different seasonal food types. I expect that if food abundance is limiting 

population growth in the NSN population, then there will be proportionately less food available 

than in the MM population. In particular, I expect that habitats used by bears for eating high-

energy foods during the summer and early autumn, or the season of hyperphagia, are more 

common in the MM than the NSN. I attempted to develop selection models that predict 

seasonally specific food types by delineating among seasonal foraging behaviours and diel 

activity for each individual. This further limits the variability introduced by inconsistencies 

among individuals and years. My second objective is to measure how well the resulting spatially 

extrapolated RSF berry season model predicts huckleberry abundance during the season when 

bears feed almost exclusively on this fruit. By measuring huckleberry production independent of 

bear use, I test the ability of RSF models to predict food abundance. This result will quantify the 

efficacy of using seasonal food-specific RSFs to further understand potential food-related 

mechanisms of population regulation of small, isolated populations. 

 

4.2 Methods 

 

4.2.1 Capture and Collaring  

 

Between 2005 and 2018, grizzly bears in the McGillvary Mountain (MM) and North 

Stein Nahatlatch (NSN) populations were captured and collared. Bears ≥ 3 years of age were fit 

with GPS telemetry collars (Lotek Inc. Ontario, Canada) programmed to obtain either 8 or 24 
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locations per day depending on the size of the collar. Except for two adult males that were caught 

in foot snares, all bears were immobilized from a helicopter using a combination of tiletamine 

and zolazepam (Telazol®) administered with a projectile. Capture was done in both spring and 

autumn. Depending on the collar model, I downloaded locations bimonthly from a fixed-wing 

aircraft using a remote device or obtained locations via satellite upload. All collars were fit with 

a canvass spacer that rotted so all collars dropped off.  

 

4.2.2 Seasonal Delineation 

 

I defined four distinct seasons based on the dominant foods consumed by collared 

grizzlies in this study (McLellan 2007, McLellan and McLellan 2015). To account for the 

interannual variation of seasonal onsets, I defined seasons for each individual and year 

depending on observed foraging behaviours and large-scale movement patterns that characterize 

switching among patches (McLellan and McLellan 2015).  

All collared bears in this study fed on herbs and bulbs following den emergence (April-

May) and lasting until mid-summer (July) for bears that had early fruiting species in their home 

range, or until mid or late August when bears either switched to huckleberries or the herbaceous 

foods senesced. Diet during the herb-bulb season consisted of herbs, grasses, bulbs and corms. 

There was very little variability among individual diet compositions during this season.  

The early fruit season followed the herb-bulb season and lasted from mid-July until early 

or mid-August. Food species selected during the early-fruit season were lower elevation fruiting 

shrubs including Saskatoon berries (Amelanchier alnifolia) and, to a lesser extent, pin (Prunus 

pensylvanica) and choke (Prunus virginiana) cherries. No bears in the NSN population and 

about ¼ of the bears in the MM population had early-fruit shrubs available in their home ranges. 
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The huckleberry season for most years occurred from mid-August until late September 

when grizzlies fed almost exclusively on this fruit. In years when the berry bushes were 

productive, all monitored bears in the MM fed on huckleberries, but some bears in the NSN 

population were never known to feed on huckleberries or had much shorter seasons. All 

observations of huckleberry foraging occurred in sites previously disturbed by wildfire, forest 

harvest or both. 

The post-berry season diet was the most variable among individual bears and years and 

therefore the most difficult to define temporally. I defined it as after the end of the huckleberry 

season or, in the absence of the huckleberry season, the senescence of herbaceous forage. The 

dominant foods during the post-berry season were whitebark pine seeds, glacier lily bulbs 

(Erythronium grandiflorum) and one collared individual fed on salmon (Oncorhynchus spp.). In 

many areas, whitebark pine and glacier lilies grow adjacent to each other within the scale of 

selection (grain) measurable by the RSF. In years when huckleberries were scarce and bears did 

not feed on them, the change from the herb-bulb or early fruit season to the post berry season 

was defined as September 1st because this is when, according to site investigations, bears would 

begin to feed on whitebark pine cones of that year (McLellan 2007, McLellan and McLellan 

2015).  

 

4.2.3 RSF Model Development 

 

I developed separate resource selection functions for the herb-bulb, early-fruit, 

huckleberry and post-berry seasons using mixed-effects logistic regression with individual bear 

as the random effect (Gillies et al. 2006). Availability was defined as features within the 

minimum convex polygon (MCP) annual home range for each individual. Only bears monitored 
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for a full year were included in the analysis to not bias seasonal selection patterns. Likewise, 

only seasons with complete data for a bear in a year were included to reduce the effects of partial 

seasons. For example, if a bear was collared for more than one year, but only half of the second 

year, only the complete seasons of the second year were included in the analysis. 

I was interested in modelling habitats specific to foraging behaviours, therefore, I 

excluded all night-time locations between evening and morning civil twilight when bears are 

usually inactive (Nielsen et al. 2010, McLellan and McLellan 2015). Because bear site 

investigations indicated that grizzlies in this population only foraged for berries in previously 

disturbed sites, I developed an additional model for the huckleberry season where the sampling 

area was constrained to previously disturbed sites within an individual’s home range. 

Comparisons between the reduced area huckleberry habitat model and the full home range model 

would indicate whether excluding large areas unused for foraging improved the model.  

Model building included several steps. First, I tested predictor variables for 

multicollinearity which can decrease the precision of the model and possibly create erroneous 

results (Graham 2003). If predictor variables were considered highly correlated by having 

Pearson correlation coefficient of > 0.6 (Nielsen et al. 2009), I conducted a separate logistic 

regression for each covariate and retained the variable with the lowest AIC score (Boyce et al. 

2002, Burnham and Anderson 2002) and the highest pseudo-R2 values for subsequent steps of 

model building.  

The remaining environmental covariates were ordered by their explanatory power, 

measured by pseudo-R2 value, and were sequentially added to create a multivariate model. If the 

inclusion of a covariate increased model performance by > 5% or its exclusion changed the β 

parameter by more than 20%, it was retained in the final model (Bursac et al. 2008). Any 
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removed parameters were then re-added in reverse order to ensure that the order did not 

confound results (Proctor et al. 2015).  

To assess whether it was appropriate to combine bears from the two populations into one 

model, the top model was compared to a model with population included as an additional 

random variable fit using maximum likelihood estimation and compared using AIC to the model 

with individual as the only random variable. Fixed variables were not changed for this 

comparison allowing the use of information-theoretic approaches to model comparison. Model 

building used lme4 (V.1.1-14, Bates and Mächler 2016), pscl (V.1.5.2, Jackman 2017) and 

MASS (7.3-49) packages in program R (v.3.6.2, R Core Team 2019). 

I evaluated model performance using repeated k-fold cross-validation (Boyce et al. 

2002). First, I randomly partitioned the data into k = 5 groups and, in sequence, each group of 

20% were withheld for model testing while the remaining 80% of the data were used to fit an 

RSF model as described above. The resulting model scores were partitioned into ten ranked 

quantile bins and predictions were evaluated based on the proportion of bear use and random 

locations in each bin. Spearman’s rank correlation coefficient was used to assess the goodness-

of-fit between bin RSF scores and the proportion of bear use-locations in each bin; high positive 

values indicating good predictive capacity. The entire process was repeated 10 times to estimate 

variance among validation measures. I also calculated the area under the receiver operating 

characteristic curve (ROC) to assess the predictive ability of the resulting RSFs. The area under 

the ROC may be biased slightly low for use-availability data but because the data set is large, the 

statistic is useful for understanding the accuracy of the fit model. ROC was calculated using 

pROC package (V.1.11.0, Robin et al. 2015) and the K-fold estimate function was developed in 

R.  
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4.2.4 Environmental Variables 

 

I considered environmental covariates for model development that, based on field 

observations and the literature, were hypothesized to affect habitat selection or food-specific 

productivity. These covariates included eight general types: climate, soil, terrain, greenness, 

landscape cover, whitebark pine cover, disturbance history, and road density (Table 4.1). 

Specifically, I included climate variables known for their influence on berry production and 

vegetation growth such as average seasonal rainfall, some seasonal temperature covariates, the 

number of frost-free days and the number of days above or below 18 °C (Selås 2000, Barnuud et 

al. 2014, Wang et al. 2016). Soil types were based on their unconsolidated mineral and organic 

materials mapped at a 100 m resolution (Bulmer et al. 2016). 

I used a digital elevation model at a 25 m resolution (ESRI 2010, GEO BC 2011) to 

derive terrain variables previously shown to influence grizzly bear habitat selection and possibly 

affecting the growth and fruiting of food types (Proctor et al. 2015, Nielsen et al. 2004b). These 

included elevation, slope, aspect, solar radiation, compound topographic index (CTI) as a 

surrogate for terrain wetness (Rho 2002), and terrain ruggedness index (Evans 2004). Using the 

aspect layer, I calculated indices of southerliness (SOUTH) and westerliness (WEST) that each 

range from 0 to 1 where values close to 0 indicate north or easterly aspects respectively. 

Southerliness (S) is defined by:  

𝑆 = 1 −
|𝐴−180|

180
                                                                  (Eq. 1)  

where A is aspect (1-360°). Westerliness (W) is computed in two steps: first, if aspect (A) ≤ 90°, 

then a = A + 360°, if aspect > 90° then a = A, and westerliness (W) is then:  

𝑊 = 1 −
|𝑎−270|

180
                                                                 (Eq. 2) 
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Normalized difference vegetation index (NDVI), commonly called greenness, is a 

measure of the density of green wavelengths of light reflected by plants and is an index of 

vegetative productivity. I mosaiced imagery collected from Landsat 8 satellite during the last 

week of July (2014-2018) when there was < 3% cloud cover (NASA Land Processes Distributed 

Active Archive Center Products 2014) to calculate greenness using the tasselled-cap 

transformation (Baig et al. 2014). I restricted imagery to late July for consistency across the 

study area and before plants began to senesce in the alpine.  

Landscape cover was defined to be one of 13 discrete functional habitat units believed to 

be identifiable by both bears and humans and likely differentially selected by grizzly bears. I 

based polygon boundaries on those delineated in the Vegetation Composite Polygon Spatial layer 

(VRI) created by the BC Ministry of Forests (Ministry of Forests 2013). First, I classified each 

polygon using the British Columbia Land Cover Classification Scheme levels 1 through 5 to 

delineate among rock, ice, water, wetland, grassland, forested, herbaceous, and heather 

dominated habitats. Forests were classified by dominant tree species commonly delineated as 

separate biogeoclimatic zones (BEC) described in the VRI (MacKenzie 2012). Forest types in 

the study area included coastal western hemlock (CWH), Engelmann spruce and subalpine fir 

(ESSF), interior Douglas fir (IDF), mountain hemlock (MH), montane spruce (MS), and 

ponderosa pine (PP). For model parsimony and convergence reasons, I grouped ponderosa pine 

forests (< 1% of the study area) with IDF forests. PP is always adjacent to IDF in this region and 

have many understory plant species in common.  

Unforested areas were divided into vegetated and non-vegetated. For alpine, the VRI 

base-map boundaries were often incorrect. I used the NDVI layer to differentiate among rock, ice 

and vegetated areas, where, on a scale from 1-10, 1 and 2 are ice and rock. This scale was 
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developed by examining the relative greenness in areas that had been visited on the ground and 

where vegetation plots had been recorded (see McLellan 2007).  

Avalanche chutes are habitats kept in a perpetual sub-seral state because sliding snow 

frequently removes larger shrubs and trees. Each avalanche chute polygon was manually 

digitized from orthophotos and delineated into different avalanche chute types including 

herbaceous, krummholz, rock, and shrub-dominated. To differentiate the uppermost portions of 

avalanche chutes from alpine, I used VRI to identify treeline and above that was alpine (Ministry 

of Forests 2013). Alpine areas were classified as herb dominated, heather dominated, rock and 

ice. The percent of whitebark pine cover and overall canopy cover in a polygon were each 

included as additional continuous variables. Polygons dominated by human use such as homes, 

farms, schools, and towns were classified as anthropogenic. Landscape disturbance history was 

classified into disturbance type: fire, timber harvest, both or none; and the time since the last 

disturbance; > 30 years, 10 to 30 years, old and < 10 years. Preliminary analysis showed sharp 

increases in bear use of disturbed sites older than ~10 years but newer than ~30 years old. 

Categorical variables were used because the relationship between disturbance age and selection 

was not linear.  

Road density has been correlated to grizzly bear mortality in several other populations 

(McLellan et al. 1999, Lamb et al. 2018, Proctor et al. 2018b). I estimated road density (km of 

road/km2) across the study area. First, I amalgamated digital road layers from the provincial 

database, Ainsworth Forest Company, and manually digitizing new roads. I then removed 

overgrown or reclaimed roads that were no longer navigable by a vehicle during the snow-free 

seasons. I then calculated road length within a circle with a 1.0 km2 area to obtain the density of 



 

78 

 

roads surrounding each pixel. All data were organized and overlaid in a geographic information 

system (ArcMap V.10.4). 

 

4.2.5 Comparing seasonal habitats between the populations. 

 

I tested the hypothesis that highly selected habitats were more common in the MM than 

the NSN, and in particular, had proportionately more high-quality huckleberry habitat by 

comparing the proportion of the study areas in each RSF equal-area bin for the top model for 

each season.  

 

4.2.6 Bear foraging sites 

 

To test RSF model accuracy I estimated food abundance where bears were feeding and 

compared it to areas predicted by the RSF to have high-quality habitat. To quantify site-specific 

food abundance, I visited locations downloaded from collared grizzly bears within two weeks of 

the bear’s being at the site. At each site I conducted a 100 m2 plot in which I measured terrain 

attributes, disturbance history, canopy closure, and percent cover of all plant species. For fruiting 

bear foods, I recorded the percent of stems with berries, the phenological and generative state of 

the plant and berry load; Low = 0-5 berries/stem, Medium 6-15 berries/stem, and High > 15 

berries/stem. I recorded evidence of bear behaviours such as bedding, berry feeding, herbaceous 

feeding, travelling, and whitebark pine feeding. Specific locations were randomly chosen, but if 

a heavily used area had been investigated several times, I gave preference to unfamiliar areas to   
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Table 4.1 Spatial covariates used for seasonal RSF model development for grizzly bear habitat in 

southwestern British Columbia, Canada. 

Covariates Code Description Data Type 

Climate Covariates dd_0 Degree-days below 0°C Continuous 

dd_18 Degree-days below 18°C Continuous 

dd18 Degree-days above 18°C Continuous 

dd5 Degree-days above 5°C Continuous 

nffd_sp Spring number of frost-free days Continuous 

dd_0_sp Spring degree-days below 0°C Continuous 

dd18_sm Summer degree-days above 18°C Continuous 

dd5_sp Spring degree-days above 5°C Continuous 

map Mean annual precipitation (mm) Continuous 

ppt_at Autumn precipitation (mm) Continuous 

ppt_sp Spring precipitation (mm) Continuous 

ppt_wt Winter precipitation (mm) Continuous 

ppt_su Summer precipitation (mm) Continuous 

pas_wt Winter precipitation as snow (mm) Continuous 

NDVI green Greenness Continuous 

Topographical 

south Southerliness Continuous 0 to 1 

west Westerliness Continuous 0 to 1 

sol_rad Solar Radiation Continuous 

cti Wettness Continuous 

tri Ruggedness Continuous 

slope Slope Continuous 

Crown Closure canopy Crown Closure Continuous % 

Whitebark pine WBP Whitebark pine cover  Continuous % 

Open road density OR_dens Road density in km/km2 Continuous 

Table continued on next page. 
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Table 4.1 Continued. 

Covariates Code Description Data Type 

Disturbance History 

 (DIST) ** 

F_less10 Fire less than 10 years old  0 or 1 

F_10to30 Fire 10 to 30 yrs 0 or 1 

F_over30 Fire over 30 yrs 0 or 1 

H_less10 Harvest less 10 yrs 0 or 1 

H_10to30 Harvest 10 to 30 yrs 0 or 1 

H_over30 Harvest over 30 yrs 0 or 1 

None None recorded 0 or 1 

Landscape Cover 

 (HAB_COV) 

CWH Cedar-Western Hemlock  0 or 1 

ESSF Engelmann-Spruce-Subalpine Fir  0 or 1 

IDFPP Interior Douglas Fir -Ponderosa Pine 0 or 1 

MH Mountain Hemlock 0 or 1 

MS Montane Spruce 0 or 1 

AVY Herb dominated avalanche chutes 0 or 1 

ALP Herb dominated alpine  0 or 1 

SHRUB_AVY Shrub-dominated avalanche chutes 0 or 1 

HEATHER Heather dominated alpine 0 or 1 

KRUM Krumholtz 0 or 1 

WETLAND Wetland 0 or 1 

ROCKI Rock and Ice 0 or 1 

ANTH Anthropogenically modified  0 or 1 

Soil Parent Material 

 (Soil) 

GF Glaciofluvial 0 or 1 

FL Fluvial 0 or 1 

LA Lacustrine 0 or 1 

CO Colluvium 0 or 1 

TI Till 0 or 1 

BR BedRock 0 or 1 

GL Glaciolacustrine 0 or 1 

 O Organic 0 or 1 

** For berry models estimated for disturbed sites only; disturbance was categorized into DIST_AGE and DIST_TYPE for better 

model function. 
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increase the documentation of habitat use across the study area. For each bear use plot, I matched 

a random plot where I collected the same information. These were at a random distance (< 350 

m) and direction but within the same habitat type (see HAB COV for RSF model development) 

but not overlapping the bear use plot. 

To measure the site attributes specific to the huckleberry season I analyzed only locations 

where bears were feeding on this fruit and the associated random plots where bears were not 

feeding on it. I estimated the mean, variance and 95% confidence intervals for site attributes at 

used and random plots by bootstrapping 1000 times. I defined berry abundance as the product of 

overall huckleberry plant coverage, the percent of stems with berries, and the average berry load. 

Because areas where foraging had occurred would be biased low for berry load due to depletion 

by the bear, I also included berry cover, defined to be the same as berry abundance but excluding 

berry load.  

 

4.2.7 Huckleberry productivity plots 

 

To test the efficacy of the RSF huckleberry models for predicting fruit abundance, berry 

plot data were also measured independent of bear locations. Data were obtained from two 

separate sampling programs with the same objective of quantifying berry production and based 

on the site investigation methods described above.  

In the first program, researchers conducted a series of 100 m2 plots every 50 m along 200 

m transects. At each plot, site-specific characteristics were collected as well as the information 

on huckleberry plants and the fruit load as described above. Researchers also measured the mass 

of berries picked in 10 minutes beginning at a random point along the transect. The researcher 

was instructed to pick as fast as they could, and the person picking was recorded. Finally, for 5 
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random berries picked, researchers measured the sweetness in degrees Brix, using an Atago 3810 

digital refractometer and averaged the measurements for the plot value. 

The second program was conducted by a Fish and Wildlife Compensation Program 

project (FWCP, Hobbs et al. 2013) that collected data along 136 transects to estimate 

huckleberry abundance in areas where huckleberry fruit was expected and in adjacent areas 

where huckleberry plants were expected but fruit production was uncertain. Huckleberry plant 

coverage and the proportion of stems with berries were recorded along 100 m transects (Hobbs et 

al. 2013). The transects done by the FWCP did not estimate berry load in the same way so they 

were excluded from that analysis. I also included the previously described matched random plots 

for testing. Although these data may be slightly positively biased because plots were close to 

grizzly bear locations used to create the RSF models, the precise nature of the sampling methods 

will allow inference at the pixel scale.  

 

4.2.8 Huckleberry Season Model Testing Analysis 

 

I used the data collected from the huckleberry productivity transects to compare the 

predictive ability of four huckleberry specific RSF models. One was the top model for the season 

excluding interactions (BTOP) and the second was the top model including covariate interactions 

(BINT), increasing the statistical measures for model fit, but also increasing model complexity. 

Two other models (DTOP and DINT) were developed following the same rules except that use 

and availability were limited to previously disturbed sites within individual home ranges. DTOP 

is the top model from disturbed sites only, and DINT is the top model for disturbed sites 

including interactions. 
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The four berry season RSF models were projected across the study area using the 

equation  

𝑤̂ =  exp (𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ 𝛽n𝑥n )                                       (Eq. 3) 

where 𝛽1 through 𝛽n were the coefficients of selection estimated for each covariate in the RSF 

and values 𝑥1 through to 𝑥n were the covariate values in that pixel (Nielsen et al. 2009). To scale 

the models, they were binned into 100 equal-area quantiles across the study area (Boyce and 

McDonald 1999, Morris et al. 2016). The RSF model values and their binned quantile values 

were extracted at each use location and to each test huckleberry plot point location. The expected 

number of locations according to bin size, assuming no selection, was compared to the number 

of locations in each bin with a chi-squared test. As a comparative control for the effects of 

binning on model accuracy, the BTOP model was projected and limited to previously disturbed 

sites to match the extent of the disturbance only models and expressed using equal area quantiles 

(BDTOP). 

The efficacy of RSF models to predict food abundance was evaluated by comparing RSF 

values to the huckleberry abundance and productivity data measured in the transect plots. In the 

first step of quantifying the predictive ability of the RSFs, the possible non-linearity in the 

relationship between the RSF model and huckleberry measure variables (e.g. % stems with 

berries) were explored by comparing the fit of the linear mixed-effects regression with 

generalized additive mixed models (GAMMs, Crawley 2005). Then, using the most accurate 

technique from step one, each berry model variable was related to each RSF model 

independently because of collinearity and lack of independence among RSFs and the various 

measures of huckleberry productivity. Project and transect were included as random variables for 

both linear and non-parametric GAMMs to control for the lack of independence among plots 
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along a transect. Likewise, for measures of grams of fruit picked in 10 minutes, the picker was 

included as a random variable to control for differences among pickers. Linear regression and 

GAMMs were carried out using the lme4 (v. 1.1-21, Bates et al. 2019) and gamm4 (v.0.2-5, 

Wood and Scheipl 2017) packages in R. 

The success of RSFs to predict huckleberry abundance that was comparable to berry 

abundance at sites used by bears was also evaluated. For this evaluation, I estimated each RSF 

model’s accuracy, precision, specificity, sensitivity, and the F1 statistic that enumerates the 

trade-off between model precision and sensitivity (Fawcett 2006, Powers 2007). Model accuracy 

is the proportion of predictions that are true, or, the sum of true positives and true negatives 

divided by the sum of all model predictions. Precision is the correctly labelled positive values, 

defined as the number of true positives divided by the sum of both true and false positives. 

Sensitivity is the ratio of the true positives (e.g. huckleberry cover equal to or higher than at bear 

use sites) to the sum of true positives and false negatives, or, how accurate the models are for 

assessing good habitat quality. These statistics describe model performance by comparing 

model-predicted values to “true” values and therefore require the truth to be known or defined. I 

used cut-off points determined from bear use plots to define whether the estimate was “positive” 

or “negative”. For example, if the mean huckleberry plant cover at sites selected by bears when 

foraging on berries was 20%, then “positive” selection was for all plots with huckleberry cover 

as 20% and above, and all plots with less than 20% cover were considered “negative”. Whether 

an observation was true or not was defined for all bins, grouped in 5% increments and for a 

single point estimate for bins ≥ 95 together. The assessment across bins allows identification of 

variability in model performance across bins. While the point estimate for high bin values 
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describes the utility of the model for predicting good berry habitat in a way that is commonly 

used by researchers and managers (Morris et al. 2016).  

 

4.3 Results 

 

4.3.1 Capture and Collaring 

 

 Between 2005 and 2018, 45 grizzly bears were captured and collared in the McGillvary 

Mountain (18F; 10M) and North Stein Nahatlatch populations (9F; 8M) resulting in 81,027, high 

accuracy (3D) bear locations. After excluding nighttime locations when bears were inactive and 

incomplete seasons, I retained 58,305 (39,523 MM; 18,782 NSN) daytime locations for RSF 

model development.  

 

4.3.2 Seasonal RSF Models 

 

Including the population (MM or NSN) as a random effect did not improve model 

performance during any season therefore I only retained individual bear as a random effect for 

subsequent analyses (Table 4.2).  

Of the collared bears, 26 (20 F; 6 M) had data for at least one entire spring and early 

summer (herb-bulb season) and their locations were used in model development. The top RSF 

model for the herb-bulb season showed that bears selected highly productive south and west-

facing avalanche chutes as well as herbaceous alpine meadows, particularly those in recent burns 

(Table 4.3). Areas used by humans were very strongly avoided. Grizzlies selected areas with low 

canopy cover, relatively high whitebark pine cover, a relatively high number of spring days 

above freezing and low previous autumn precipitation. Organic soil types were selected over   
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Table 4.2 Model selection for the inclusion of continuous modifying covariates on habitat covariates or 

disturbance covariates in seasonal resource selection functions for grizzly bears in southwestern British 

Columbia, Canada. 

Model Models k ΔAIC ωi 

Herb-Bulb 

HERB + (HAB_COV *ppt_at) 49 0 1 

HERB + (HAB_COV * dd_0_sp) 49 576.1 0 

HERB + (HAB_COV* green) 49 699.6 0 

HERB + (HAB_COV* OR_Dens) 49 843.2 0 

HERB 37 917.6 0 

Early Fruit 

EARLY + (HAB_COV * pas_wt ) 40 0 1 

EARLY + (HAB_COV*green) 40 39.889 0 

EARLY 30 110.614 0 

EARLY + (DIST_AGE_T)* pas_wt) 32 110.809 0 

EARLY + (DIST *green) 32 111.72 0 

Huckleberry 

BTOP + (HAB_COV*green) 49 0 1 

BTOP + (HAB_COV*ppt_sp) 49 61.2 0 

BTOP + (DIST AGE_T *dd_0) 43 282.5 0 

BTOP + (DIST AGE_T *green) 43 286.3 0 

BTOP 37 298.4 0 

Disturbance – 

Berry** 

 

DTOP + (ORI_FOR*DIST_AGE) 34 0 1 

DTOP + (ORI_FOR*DIST_TYPE) 34 94.6 0 

DTOP + (ORI_FOR * ppt_sp ) 34 126.7 0 

DTOP + (DIST_TYPE * Soil_P) 39 136.6 0 

DTOP + (ORI_FOR * green) 30 142.1 0 

DTOP 26 153.3 0 

Post-Berry 

POST + (HAB_COV*green) 49 0 1 

POST+ (HAB_COV * dd18_sm) 49 303.2 0 

POST + (HAB_COV*ppt_su) 49 462.8 0 

POST 37 743.0 0 

** Use and availability from previously disturbed sites only 

Top univariate resource selection functions estimated using stepwise model development 

HERB = dd_0_sp + ppt_at + green + south + west + tri + canopy + WBP + OR_Dens + DIST + HAB_COV + Soil 

EARLY= dd5_sp + ppt_sp + green + south + west + slope + canopy + OR_Dens + DIST_TYPE + DIST_AGE + ORI_FOR + Soil 

BTOP = dd_0 + ppt_sp + green + south + west + cti + tri + canopy + OR_Dens + DIST + HAB_COV + Soil 

DTOP = dd5_sp + ppt_sp + green + south + west + slope + canopy + OR_Dens + DIST + DIST_AGE + ORI_FOR + Soil 

POST = dd18_sm + ppt_su + green + sol_rad + west + cti + slope + WBP + OR_Dens + DIST + HAB_COV + Soil 
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other types and there was a small effect suggesting selection for areas with higher open-road 

densities (Table 4.3). Interaction effects improved model fit and indicated that increased autumn 

precipitation negatively affected selection for avalanche chutes but increased selection for most 

forested areas regardless of disturbance (Table 4.2).  

Early-fruit foraging was documented for 6 (5F; 1M) bears collared for the duration of the 

season. This behaviour was only observed for approximately ¼ of the collared bears in the MM 

population. The top RSF model for the early-fruit season showed selection for areas with lower 

winter snowfall and relatively high greenness. Selected areas were less rugged (tri) and collected 

more moisture (cti) than available habitats (Table 4.3). In contrast to all other seasons, grizzlies 

selected habitats in the Interior Douglas Fir zone with a fire disturbance over 30 years old but 

like other seasons organic soils were selected (Table 4.3). Areas with high open road density 

were avoided during this season. Including interactions between the amount of precipitation as 

snowfall and habitat cover improved model fit, particularly for IDF and ESSF zones (Table 4.2). 

I monitored 20 bears (15 F; 5M) for at least one complete huckleberry season. The top 

huckleberry models for each of the four availability and interaction criteria all showed strong 

selection for areas with relatively high spring precipitation (Table 4.4). For the models where all 

areas within their home ranges were considered available (BTOP and BINT), models predicted 

selection areas with fewer days below freezing, but when limited to disturbed areas only (DTOP 

and DINT), selection was more specifically for spring days above 5 °C (Table 4.4). When all 

areas were included, bears avoided forests as expected but also avoided recently harvested, and, 

to a lesser extent, recently burned areas. Greenness increased the probability of selection for both 

entire home range models and disturbed areas only models, however, its importance was reduced 

in the disturbed only models (Table 4.4). Overall, bears avoided rugged areas during the 
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huckleberry season but selected for steeper slopes within previously disturbed sites. Grizzlies 

also avoided high road density areas but more so when only disturbed sites were considered. 

Sites with organic soils were selected above other soil types. Repeated k-fold cross-validation for 

the berry season RSF was 0.979 (SD = 0.016) and 0.983 (SD = 0.018) with interactions. The area 

under the ROC curve was 0.938 (95%CI: 0.936-0.941) and 0.940 (95%CI: 0.938-0.942) for the 

model including interactions.  

The huckleberry season top models for both availability grouping methods included 

covariate interactions (Table 4.2). Within home range selection the moderation of habitat cover 

type by greenness improved model fit the most. At the more focused, disturbance only scale, 

including the interactions between the disturbance age and forest type improved model fit most 

(Table 4.2, Table 4.4). Specifically, an increase in greenness increased selection for IDF forests 

and ESSF forests including disturbed areas within that forest type. A bear was 10.2 and 3.3 times 

more likely to select a site where the time since disturbance was between 10 and 30 years than a 

site with older or newer disturbance in these two forest types respectively. However, the 

moderating effect of disturbance age varied among other forest types. For example, disturbance 

> 30 years old was more strongly avoided in MS and harvest < 10 years old was more strongly 

avoided in ESSF forests than MS, MH and CWH forests (Table 4.4). The bootstrapped mean 

Spearman’s rank correlation coefficient for repeated k-fold cross-validation indicated that all 

berry season models performed well and including interactions resulted in minor improvements 

in model performance (Table 4.4).  

In the post-berry season, when grizzly bears no longer fed on huckleberries, they selected 

areas with high summer precipitation and a high number of days above 18 °C (Table 4.3). Other 

factors that increased the odds of selection were increased greenness, west-facing aspects and 
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areas with high solar radiation. WBP cover also was selected for as were areas with low road 

density. Bears selected for areas burned less than 10 years previously more than any other areas 

disturbed by fire or forest harvest. Areas without prior disturbance were preferred to disturbance 

over 30 years old. High elevation habitat types were selected including avalanche chutes, alpine 

herbaceous meadows, and even rock, presumably because bears were digging dens during this 

season (McLoughlin et al. 2002). In contrast, the IDF zone was also selected over all other 

forested zones and one male did feed on salmon in this zone until December. Greenness 

modified the selection of habitat types, particularly by drastically increasing the selection of IDF, 

and to a lesser extent, increasing the selection of avalanche chutes and rock, the latter is likely an 

error due to model grain by including multiple, adjacent, habitat types in a pixel.  

Overlaying bear locations with the resulting RSF map from the model development area 

indicated that 50.5 % of spring-early summer bear locations were within 6% of the overall area 

(bins 95-100) and 20.1% were inside 1% of the area. Less than 10% of all locations were in the 

lower 50% of the RSF bins (Figure 4.1). The early fruit models were similarly predictive with 

over 50% of all early fruit locations within 6% of the available habitats and 25% inside 1% of the 

available habitat. The BTOP model and BINT model respectively captured 68% and 86% of 

berry season locations in 6% of the available habitat. Habitat selection was more diffuse in the 

post berry season. Only 30% of bear locations were in the top 6% of habitat types and 8% inside 

the top 1% of habitat (Figure 4.1).  
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Table 4.3 Estimated scaled coefficients ± SE for the top seasonal RSF models estimating resource 

selection by grizzly bears in southwest British Columbia, Canada. See table 4.4 for huckleberry season 

models. P values in parentheses (α = 0.05). 

Covariates Code β ± SE (p value) 

  HERB EARLY POST BERRY 

Intercept  -0.61 ± 0.29 (0.038) -2.44 ± 0.45 (<0.001) -0.36 ± 0.24 (0.15) 

Climate 

pas_wt  -1.31 ± 0.19 (<0.001)  

dd_0_sp -0.28 ± 0.02 (< 0.001)   

dd18_sm   0.36 ± 0.03 (< 0.001) 

ppt_at -0.68 ± 0.04 (<0.001)   

ppt_su   0.63 ± 0.03 (< 0.001) 

NDVI Green 1.34 ± 0.02 (<0.001) 0.86 ± 0.05 (< 0.001) 1.00 ± 0.05 (< 0.001) 

Topo 

South 0.24 ± 0.01 (<0.001) -0.07 ± 0.04 (0.070)  

West 0.14 ± 0.01 (<0.001) -0.19 ± 0.04 (< 0.001) 0.14 ± 0.02 (< 0.001) 

Sol_rad   0.15 ± 0.02 (< 0.001) 

cti  0.12 ± 0.03 (<0.001) 0.06 ± 0.02 (< 0.001) 

tri -0.06 ± 0.02 (<0.001) -0.19 ± 0.06 (0.003)  

slope   -0.03 ± 0.02 (0.156) 

canopy -0.32 ± 0.02 (<0.001) -0.66 ± 0.07 (< 0.001)  

WBP WBP 0.30 ± 0.04 (<0.001)  0.25 ± 0.07 (< 0.001) 

Road Density OR_dens 0.05 ± 0.01 (<0.001) -0.26 ± 0.04 (< 0.001) -0.17 ± 0.02 (< 0.001) 

DIST 

F_less10 1.30 ± 0.09 (<0.001)  0.48 ± 0.13 (< 0.001) 

F_10 to 30 REF REF REF 

F_over30 0.05 ± 0.11 (0.649) - -3.94 ± 0.28 (< 0.001) 

H_less10 -0.14 ± 0.13 (0.268) -1.23 ± 1.13 (0.376) -1.27 ± 0.24 (< 0.001) 

H_10to30 -0.32 ± 0.09 (<0.001) 0.33 ± 0.17 (0.050) -1.50 ± 0.13 (< 0.001) 

H_over30 -0.28 ± 0.10 (0.006) -1.27 ± 0.44 (0.004) -2.87 ± 0.23 (< 0.001) 

None 0.05± 0.08 (0.535) -1 ± 0.16 (0.001) -1.71 ± 0.10 (< 0.001) 

HAB COV 

CWH -0.31 ± 0.06 (<0.001) - -0.74 ± 0.16 (< 0.001) 

ESSF -0.30 ± 0.05 (<0.001) -0.30 ± 0.20 (0.168) -0.33 ± 0.10 (< 0.001) 

IDF_PP -0.96 ± 0.05 (<0.001) -0.31 ± 0.39 (0.418) -3.08 ± 0.28 (0.985) 

MH 0.00 ± 0.13 (0.988) - -0.42 ± 0.23 (0.062) 

MS 0.21 ± 0.07 (0.006) 0.29 ± 0.28 (0.297) -1.48 ± 0.18 (< 0.001) 

AVY 0.14 ± 0.05 (<0.001) -0.43 ± 0.17 (0.013) 0.22 ± 0.12 (0.068) 

ALP REF REF REF 

SH_AVY -0.53 ± 0.19 (0.005) -0.74 ± 0.25 (0.004) -0.01 ± 0.25 (< 0.957) 

Table Continued on next page 
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Table 4.3 Continued 

Covariates Code β ± SE (p value) 

  HERB EARLY POST BERRY 

HAB COV 

HEATHER -0.97 ± 0.06 (<0.001) -0.08 ± 0.33 (0.801) 0.21 ± 0.13 (0.090) 

KRUM -0.93 ± 0.05 (<0.001) -0.33 ± 0.19 (0.077) -0.15 ± 0.12 0.208) 

ROCKI -0.69 ± 0.06 (<0.001) -0.18 ± 0.19 (0.033) 0.25 ± 0.10 (0.010) 

ANTH -3.22 ± 0.26 (<0.001) - - 

SOIL 

GF -0.29 ± 0.11 (0.010) 0.07 ± 0.28 (0.806) -0.76 ± 0.30 (0.013) 

FL 0.28 ± 0.07 (<0.001) 0.98 ± 0.22 (< 0.001) 0.04 ± 0.14 (0.783) 

LA 0.13 ± 0.15 (0.406) 0.48 ± 0.31 (0.123) -1.69 ± 0.51 (0.001) 

CO 0.52 ± 0.03 (0.080) -0.13 ± 0.12 (0.291) -0.27 ± 0.04 (< 0.001) 

TI -0.23 ± 0.04 (<0.001) -0.17 ± 0.14 (0.205) -0.41 ± 0.05 (< 0.001) 

BR REF REF REF 

GL -1.12 ± 0.20 (<0.001) -0.88 ± 0.39 (0.023) -1.19 ± 0.45 (0.008) 

O 0.79 ± 0.11 (<0.001) 1.02 ± 0.27 (<0.001) -0.56 ± 0.25 (0.023) 

Interaction Parameter ppt_at pas_wt green 

HAB COV* 

CWH 1.21 ± 0.06 (<0.001) - -0.08 ± 0.14 (<0.562) 

ESSF 0.56 ± 0.04 (<0.001) 0.26 ± 0.26 (0.325) 0.16 ± 0.07 (0.023) 

IDF_PP 0.66 ± 0.04 (<0.001) 0.23 ± 0.25 (0.360) 3.31 ± 0.21 (< 0.001) 

MH -0.04 ± 0.18 (0.840) - -0.13 ± 0.32 (0.680) 

MS 1.32 ± 0.06 (<0.001) 1.03 ± 0.27 (<0.001) -1.10 ± 0.25 (< 0.001) 

AVY 0.14 ± 0.05 (<0.001) 1.50 ± 0.28 (<0.001) -0.04 ± 0.07 (0.561) 

ALP REF REF REF 

SH_AVY 0.70 ± 0.10 (0.005) 1.39 ± 0.66 (0.034) -1.04 ± 0.17 (< 0.001) 

HEATHER 0.30 ± 0.06 (<0.001) 1.54 ± 0.47 (0.001) -0.59 ± 0.11 (< 0.001) 

KRUM 0.54 ± 0.05 (<0.001) 2.18 ± 0.29 (<0.001) -0.56 ± 0.11 (< 0.001) 

ROCKI 0.51 ± 0.07 (<0.001) 0.61 ± 0.24 (0.011) 0.47 ± 0.07 (< 0.001) 

ANTH -0.55 ± 0.13 (<0.001) - - 

k-fold r2 (SE) 0.999 (0.001) 0.919 (0.03) 0.994 (0.006) 

Area under ROC curve 

(95% CI) 
0.905 (0.903-0.906) 0.907 (0.900-0.914.) 0.870 (0.866-0.874) 
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Table 4.4 Model comparison for the top huckleberry models to highlight model variability due to increased model complexity with interaction 

terms and to examine the effects of defining non-habitat for model development. BTOP is the top huckleberry season model without interaction 

and (BINT) is the top model overall, with interactions. DTOP is the model constructed from the same data but only considering locations and 

availability within disturbance sites. DINT is DTOP with interaction term. 

  BTOP BINT DTOP DINT 

Covariate Code β ± SE (p value) 

Intercept  -2.07 ± 0.34 (< 0.001) -1.29 ± 0.34 (< 0.001) -0.47 ± 0.51 (0.362) -0.09 ± 0.57 (0.880) 

Climate 

dd_0 -1.05 ± 0.04 (< 0.001) -1.00 ± 0.04 (< 0.001)   

dd5_sp   0.37 ± 0.08 (< 0.001) 0.35 ± 0.09 (< 0.001) 

ppt_sp 1.45 ± 0.03 (< 0.001) 1.43 ± 0.03 (< 0.001) 2.45 ± 0.11 (< 0.001) 2.53 ± 0.12 (< 0.001) 

NDVI green 0.96 ± 0.03 (< 0.001) 0.52 ± 0.06 (< 0.001) 0.37 ± 0.05 (< 0.001) 0.37 ± 0.05 (< 0.001) 

Topo 

south -0.31 ± 0.02 (< 0.001) -0.31 ± 0.02 (< 0.001) -0.38 ± 0.04 (< 0.001) -0.41 ± 0.04 (< 0.001) 

west -0.11 ± 0.02 (< 0.001) -0.10 ± 0.02 (< 0.001) -0.17 ± 0.04 (< 0.001) -0.15 ± 0.04 (< 0.001) 

cti 0.01 ± 0.02 (0.508) 0.01 ± 0.02 (0.488)   

tri -0.31 ± 0.03 (< 0.001) -0.30 ± 0.03 (< 0.001)   

slope   0.27 ± 0.05 (< 0.001) 0.23 ± 0.05 (< 0.001) 

Canopy canopy -0.91 ± 0.03 (< 0.001) -0.84 ± 0.03 (< 0.001) -0.32 ± 0.05 (< 0.001) -0.33 ± 0.05 (< 0.001) 

Roads OR_dens -0.05 ± 0.02 (< 0.001) -0.07 ± 0.02 (< 0.001) -0.34 ± 0.05 (< 0.001) -0.34 ± 0.05 (< 0.001) 

Disturbance 

F_less10 -1.36 ± 0.31 (< 0.001) -1.42 ± 0.31 (< 0.001)   

F_10 to 30 REF REF   

F_over30 - -   

H_less10 -2.47 ± 1.27 (0.052) -2.27± 1.25 0.070)   

H_10to30 -0.74 ± 0.36 (< 0.042) -0.74 ± 0.36 (< 0.042)   

H_over30 - -   

None -1.61 ± 0.16 (< 0.001) -1.68 ± 0.16 (< 0.001)   

Table Continued on next page 

 



 

93 

 

Table 4.4 Continued 

  BTOP BINT DTOP DINT 

Covariate Code β ± SE (p value) 

Dist Type 

Both   REF REF 

Fire   -0.57 ± 0.17 (<0.001) -0.32 ± 0.18 (0.070) 

Harv   -0.65 ± 0.16 (< 0.001) 0.45 ± 0.18 (0.009) 

Dist Age 

<10 yr   REF REF 

>30 yr   1.19 ± 0.18 (< 0.001) 1.05 ± 0.39 (0.007) 

10 to 30   2.32 ± 0.12 (< 0.001) 2.02 ± 0.28 (< 0.001) 

Land Cover 

OTHER*   -2.05 ± 0.22 (< 0.001) -3.62 ± 0.68 (< 0.001) 

CWH* 1.44 ± 0.1 (< 0.001) 0 .83 ± 0.14 (< 0.001) REF REF 

ESSF* 1.47 ± 0.07 (< 0.001) 0.54 ± 0.17 (< 0.001) -0.51 ± 0.15 (<0.001) -1.48 ± 0.31 (<0.001) 

MH* 3.05 ± 0.13 (< 0.001) 2.34 ± 0.16 (< 0.001) 0.58 ± 0.23 (0.013) 0.97 ± 0.69 (0.160) 

MS* 0.54 ± 0.12 (< 0.001) 0.09 ± 0.18 (0.634) -0.73 ± 0.18 (< 0.001) 0.37 ± 0.37 (0.324) 

IDF_PP -0.34 ± 0.21 (0.058) -2.16 ± 0.34 (< 0.001)   

AVY 0.09 ± 0.08 (0.259) -0.45 ± 0.14 (0.001)   

ALP REF REF   

SH_AVY -0.88 ± 0.14 (< 0.001) -0.02 ± 0.23 (< 0.923)   

HEATHER -0.36 ± 0.09 (< 0.001) -0.77 ± 0.15 (< 0.001)   

KRUM -0.19 ± 0.09 (0.040) -0.62 ± 0.13 (< 0.001)   

WETLAND -0.16 ± 0.18 (0.385) -0.33 ± 0.25 (0.193)   

ROCKI -0.06 ± 0.08 (0.498) -0.61± 0.11 (< 0.001)   

Soil 

GF -0.49 ± 0.36 (0.172) -0.55 ± 0.37 (0.132) 0.59 ± 0.57 (0.300) 0.61 ± 0.58 (0.292) 

FL 0.53 ± 0.13 (< 0.001) 0.49 ± 0.13 (< 0.001) 0.74 ± 0.31 (0.015) 0.49 ± 0.32 (0.121) 

LA 0.39 ± 0.32 (0.218) 0.52 ± 0.32 (0.107) - - 

Table Continued on next page 
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Table 4.4 Continued 

  BTOP BINT DTOP DINT 

Covariate Code β ± SE (p value) 

Soil 

CO 0.34 ± 0.06 (< 0.001) 0.34 ± 0.06 (< 0.001) 0.63 ± 0.24 (0.008) 0.41 ± 0.25 (0.104) 

TI 0.38 ± 0.07 (< 0.001) 0.35 ± 0.07 (< 0.001) 0.62 ± 0.25 (0.015) 0.43 ± 0.27 (0.109) 

BR REF REF REF REF 

GL -0.61 ± 0.39 (0.118) -0.55 ± 0.39 (0.157) 0.71 ± 0.61 (0.243) -0.12 ± 0.63 (0.844) 

O 0.63 ± 0.16 (<0.001) 0.34 ± 0.07 (<0.001) 1.21 ± 0.39 (0.002) 0.97 ± 0.40 (0.016) 

Interactions BINT  HAB_COV*green Interactions DINT HAB_COV *DIST 

Interactions 

CWH *green 0.32 ± 0.09 (< 0.001) CWH *(Age > 30) REF 

ESSF*green 0.89 ± 0.07 (< 0.001) ESSF * (Age > 30) 1.45 ± 0.44 (<0.001) 

IDF_PP*green 1.73 ± 0.32(< 0.001) MH * (Age > 30) - 

MH*green 0.47 ± 0.24 (0.044) MS * (Age > 30) -2.52 ± 0.79 (0.001) 

MS*green 0.42 ± 0.15 (0.005) OTHER * (Age > 30) 2.54 ± 0.73 (0.001) 

AVY*green 0.37 ± 0.08 (<0.001) CWH * (Age 10 – 30) REF 

ALP*green REF ESSF * (Age 10 – 30) 0.94 ± 0.33 (0.004) 

SH_AVY*green -0.59 ± 0.14 (<0.001) MH * 10 -30 -0.29 ± 0.74 (0.697) 

HEATHER*green 0.09 ± 0.13 (0.507) MS * 10 -30 -1.46 ± 0.41 (<0.001) 

KRUM*green 0.03± 0.12 (<0.820) OTHER * 10 -30 2.54 ±0.73 (<0.001) 

ROCKI*green 0.70 ± 0.08 (<0.001)   

k-fold r2 (SE) 0.980 (0.002) 0.984 (0.018) 0.960 (0.015) 0.949 (0.02) 

 AUC ROC (95% CI) 0.938 (0.936 – 0.941) 0.940 (0.938-0.942) 0.947 (0.942 – 0.952) 0.949 (0.945-0.954) 

-Indicates that the parameter was considered in model building as it was part of a factorial variable but there was insufficient data to estimate selection usually resulting from 

complete avoidance.  
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4.3.3 Habitat distribution among populations 

 

 Differences in the availability of high-quality habitats between the MM and NSN 

populations were largest for the huckleberry and post-berry seasonal habitats while early fruit 

season and the herb bulb season models had similar availability in both populations (Figure 4.2). 

By definition each bin represents 1% of the total area in the model development area, therefore 

we expect that if habitat quality is equal between populations than both will have 6% of their 

population area in the top 6 bins representing the most highly selected habitats. The top 

herbaceous feeding model (HERB) indicated that 7% of the MM and 6% of the NSN areas were 

high-quality habitats. Similarly, the top model for the early fruit season, predicted 7% and 5% of 

the MM and NSN respectively, to be in the top 6 bins. In the huckleberry season, however, the 

top model (BINT) indicated that the top 6 RSF bins covered 11% of the MM area but only 3% of 

the NSN area. With the huckleberry models restricted to disturbed areas (DINT), the difference 

between populations was larger; the model estimated that 14% and 2% in the MM and NSN 

populations respectively were considered high-quality (> bin 95) huckleberry habitat (Figure 

4.2). 

For the post-berry season (POST), the model predicted that 9% of the MM and 3% of the 

NSN population areas were in good habitat however this model had a much lower proportion of 

bear use locations in the top 6% of bins than the other habitat selection models. As a result, the 

RSF model for the post berry season is less indicative of good habitat and therefore less reliable 

for comparing habitat availability between populations (Figure 4.1).  
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Figure 4.1 Proportion of bear use locations in the top 6 RSF bins where each bin represents1% of 

available habitat in the model construction area. All models are projected across the population areas. 

HERB (May-early July) season diet is dominated by herbaceous forage, roots and bulbs. EARLY fruit 

(July-mid Aug.) diets are dominated by fruit from tall shrub species (see text). DTOP & DINT (mid-

Aug.– late Sept.) without and with interactions respectively, these models predict diet consists almost 

entirely of huckleberries; this model only considers selection in previously disturbed sites. BTOP & BINT 

(mid-Aug - late Sept) without and with interactions respectively, these models predict habitat selection for 

huckleberry foraging but consider use and availability within the home range including undisturbed sites. 

POST (Sept.-Oct.) follows the huckleberry season and includes many food types. All models scored 

highly in Spearman’s rank correlation coefficient >90%.  
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4.3.4 Berry Foraging Site Attributes 

 

I measured attributes at 70 sites where bears (N = 17) had fed on huckleberries and 111 

random sites within 350 m of a bear use site and the same habitat cover type (as described in the 

RSF as HAB COV). All of these feeding sites were in habitats that had previously been disturbed 

by wildfire, logging or both. Sites used by bears and random sites differed for all measures of 

huckleberry presence and productivity (p < 0.0001 Table 4.5). Mean huckleberry plant cover was 

20.1% (95% CI: 17.0-23.6) at use sites and 4.6% (95% CI: 2.8-6.1) at random sites. The 

proportion of stems with berries was 52.9% (95% CI: 45.6-60.3) at used sites while at random 

sites only 13.9% (95% CI: 7.9-19.2, p < 0.0001) of stems had berries. Berry cover, defined as the 

product of huckleberry plant cover and percent stems with berries was, at 0.12 (95% CI: 0.10-

0.15), an order of magnitude higher at use sites than the 0.013% (95% CI: 0.01-0.02) at random 

sites. Finally, berry abundance, measured as the product of berry cover and average berry load, 

was 1.75 (95% CI: 1.25-2.35) in bear use sites but only 0.14 (95% CI: 0.06-0.25) in random sites 

even though bears would have depleted the fruit at used sites before I measured it (Table 4.5).  

 

Table 4.5 Huckleberry (Vaccinium membranaceum; VM) abundance attributes measured in 100m2 plots at 

sites where grizzly bears had fed on huckleberries and at random 100m2 plots sites in the southern Coast 

Ranges of British Columbia. F-statistic and p values are from ANOVA for comparison of measures at use and 

random plots. 

Variable Bear Use mean variance 95% CI df F p-value 

VM % cover 
Radnom 4.32 0.71 2.83-6.06 

177 84.12 < 0.0001 
Use 20.11 2.81 16.90-23.62 

VM % stem berry 
Radnom 13.92 7.90 8.67-19.23 

161 72.69 < 0.0001 
Use 52.93 15.12 45.61-60.25 

VM berry cover 
Radnom 0.014 1.5 x10-5 0.007-0.022 

158 78.93 < 0.0001 
Use 0.121 1.7 x10-4 0.097-0.147 

VM berry abundance 
Radnom 0.139 0.002 0.061-0.244 

177 46.81 < 0.0001 
Use 1.752 0.091 1.185-2.404 
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Figure 4.2 The proportion of habitat that is high-quality (≥ RSF bin 95) for each foraging season in the 

McGillvary Mountain (MM) and North Stein Nahatlatch (NSN) grizzly bear populations. HERB (May-

early July) season diet is dominated by herbaceous forage, roots and bulbs. EARLY fruit (July-mid Aug.) 

diets are dominated by fruit from tall shrub species (see text). DIST (mid-Aug.– late Sept.) diet consists 

almost entirely of huckleberries; this model only considers selection in previously disturbed sites. 

BERRY predicts habitat selection for huckleberry foraging but considers use and availability within the 

home range including undisturbed sites. POST (Sept.-Oct.) follows the huckleberry season and includes 

many food types. 
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4.3.5 Test Plots and RSF Predictions 

 

I visited 505 sites predicted to have huckleberry fruit by the BTOP and BINT models, 

300 of which were nested in transects (Figure 4.3). The disturbance models (DTOP and DINT) 

had reduced sample sizes (N = 442). Of all models tested huckleberry plant height and mean 

degrees Brix had insignificant splines and therefore fit better with a linear relationship (Table 

4.6).  

Except for berry degrees Brix, all measures of huckleberry production measured in the 

model testing plots correlated with the huckleberry season RSF model values (Table 4.6). For all 

models, RSF score correlated most strongly with the mass of berries picked in a 10-minute 

session (controlled for picker) with adjusted R2 value ranging from 0.28 for the DINT model to 

0.48 for both the BTOP and BINT models. Other measures explained less of the variation in RSF 

model scores (Figure 4.4, Supplementary material Figures: S.2, S.3, S.4). The BINT model 

performed best for predicting huckleberry metrics when comparing the models with AIC (Table 

4.6, Figure 4.4). When models were compared using the adjusted R2 statistic from the GAMM 

models, BINT performed consistently better except for percent stems with berries and berry 

cover (Table 4.6).  
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Figure 4.3 Huckleberry season RSF model testing plot locations in the McGillvary Mountain (MM) and 

the North Stein Nahatlatch (NSN) grizzly populations in the south Coast Ranges of British Columbia, 

Canada. RSF model development area (pink outline) included both populations and all test plots were in 

sites previously disturbed by wildfire or forest harvest. 

 

 



 

101 

 

Table 4.6 RSF model testing comparisons for four different model parameterizations (see text for 

details) using test plots measures of different huckleberry abundance parameters. Results show model 

comparison using generalized additive models. 

Variable RSF β F** p-value 
R-

sq.(adj) 
Δ AIC 

Best 

Model 

Huckleberry % 

cover 

BINT 3.816 8.303 < 0.0001 0.089 0 † ⁕ 

BTOP 3.565 6.832 < 0.0001 0.069 7.5  

DINT 2.902 5.996 0.0010 0.073 364.0  

DTOP 2.889 5.525 0.0019 0.071 466.8  

Percent stems with 

berries 

BINT 2.966 18.410 < 0.0001 0.103 0 † 

BTOP 2.705 20.910 < 0.0001 0.102 17.8  

DINT 2.130 24.050 < 0.0001 0.132 347.6  

DTOP 2.528 22.180 < 0.0001 0.144 494.8 ⁕ 

Plant height 

(cm)** 

BINT 0.019 2.655 0.0085 0.100 0 † ⁕ 

BTOP 0.018 2.325 0.0210 0.088 22.2  

DINT 0.022 2.320 0.0213 0.060 153.2  

DTOP 0.035 2.80 0.0056 0.072 252.17  

Berry cover 

BINT 4.365 7.886 < 0.0001 0.097 0 † 

BTOP 4.216 7.044 < 0.0001 0.083 7.558  

DINT 3.282 9.565 < 0.0001 0.095 356.4  

DTOP 3.233 8.556 < 0.0001 0.101 462.9 ⁕ 

Berry abundance 

BINT 3.528 6.062 0.0002 0.065 0 † ⁕ 

BTOP 3.576 5.723 0.0002 0.061 20.5  

DINT 2.461 3.730 0.0383 0.039 241.0  

DTOP 2.429 4.102 0.0266 0.049 339.8  

Berries picked 

(gram) 

BINT 6.206 6.886 < 0.0001 0.483 0 †⁕ 

BTOP 6.448 6.636 < 0.0001 0.484 15.1  

DINT 3.492 5.814 0.0007 0.279 54.9  

DTOP 3.986 7.740 < 0.0001 0.360 73.4  

Mean °Bx 

BINT 1.929 1.023 0.3900 0.038 0 † 

BTOP 1.784 0.743 0.5180 0.018 4.7  

DINT 3.944 1.030 0.3500 0.082 24.8 ⁕ 

DTOP 4.529 1.310 0.3260 0.042 42.8  

† Best model based on the lowest AIC score using the reduced data set. 

⁕ Best model based on adjusted R-squared value 

** Linear mixed-effects model, t -statistic is reported in place of the F-statistic. 
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The way a model was binned had the greatest effect on the relationship between mod 

accuracy, precision, sensitivity and specificity. For individual plots, I defined predictive accuracy 

to be when the model predicted values matched or was greater than the mean values measured at 

bear use sites. To highlight the effects of binning on model performance (Figure 4.5), I included 

a reference model for bin effects (BDTOP) which is the BTOP model structure, binned only in 

disturbed sites thereby allowing separation of model accuracy from the effects of binning shown 

by the similarity between the BDTOP (dashed line) and both disturbance-only models (Figure 

4.5). Model accuracy was highest for the disturbance only models regardless of binning (Figure 

4.5).  

The percent of stems with berries was the huckleberry productivity measure most 

precisely estimated by all huckleberry season RSFs, and of those, the disturbance only models 

had highest precision (0.98% and 0.95%) for bin 95 and over. But the overall precision of 

models for bin 95 and above was below 50% indicating a high number of false positives. These 

models, however, had much lower sensitivities indicating that many true positives were not 

correctly identified (Figure 4.5) and perhaps bin cut off for good habitat should be lowered. The 

highest F1 score (harmonic mean of precision and sensitivity), was for either BINT or BTOP in 

all huckleberry measures. Specificity was also highest for BINT and BTOP above the 95 bin but 

the difference with the other models was much lower (Figure 4.5). 
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Figure 4.4 Non-linear relationships estimated using generalized additive models between the predicted 

top huckleberry RSF model (BINT) and huckleberry (VM) metrics measured at model test plots across 

the McGillvary Mountain and North Stein Nahatlatch grizzly bear populations. See text for abundance 

definitions and supplementary material Figures S2, S.3, S.4 for other RSF model comparisons.  
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Figure 4.5 Bin specific estimates of model performance metrics including precision, sensitivity, specificity, accuracy and F1 score for four RSF 

huckleberry habitat selection models developed from seasonally specific bear locations. BTOP and BINT predict within home range habitat 

selection across all available habitats while DTOP and DINT are limited to disturbed sites based on the a priori exclusion of all others. BDTOP is 

the BTOP model binned within disturbed sites like DTOP and DNT, but only as a reference for comparison between the effects of binning and 

model structure.  
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4.4 Discussion 

 

This chapter had two objectives. One was to predict grizzly bear habitat selection 

during four seasons defined by major foods bears consumed. Using these habitat models, I 

tested the hypothesis that the MM, where bear density was higher and the population 

increasing, would have more highly selected habitats, and in particular more high-quality 

huckleberry habitat, than in the NSN where the population density is low and in decline. The 

second objective was to assess the accuracy of the resulting RSF models for predicting 

huckleberry presence and abundance measured in field plots.  

Consistent with habitat selection patterns in other grizzly populations, the habitat 

selection analyses in the MM and NSN populations identified differing, and sometimes 

opposite, selection patterns among seasons. During spring and early summer, when bears 

were predominantly feeding on herbaceous plants, roots and bulbs and sometimes marmots, 

they selected open areas in alpine herbaceous meadows and avalanche chutes on south or 

west-facing slopes with relatively few days below freezing. This pattern is consistent with 

many other populations (Waller and Mace 1997, Munro 1999, McLellan and Hovey 2001 

Serrouya et al. 2011) but differs from areas where some bears also selected riparian habitat to 

feed on similar plant species but in low-elevation valleys without human settlement 

(McLellan and Hovey 2001). The resulting RSF projected across the study area showed that 

the proportion of the two areas that were high-quality spring habitat was slightly (5% vs 7%) 

higher in the MM than the NSN. But, with a much lower density of bears in the NSN, there 

would be more spring habitat per bear than in the MM and therefore less spring habitat was 

unlikely a major cause of the difference in population density and trend between these two 

populations (McLellan et al. 2019).  

Early fruit foraging was only observed in the MM population when bears were 

feeding primarily on Saskatoon berries, pin and chokecherries at lower elevations in 
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relatively dry, hot environments (McLellan and McLellan 2015). These food types have not 

been identified as primary food types for grizzly bears in other areas in North America 

although similar early fruit seasons exist for buffalo berries (Shepherdia canadensis) 

elsewhere (McLellan and Hovey 1995, Nielsen et al. 2010, Denny et al. 2018). In the early 

fruit season, grizzlies selected areas with little winter precipitation as snow, in previously 

disturbed, or perpetually disturbed (electrical transmission lines) habitats. Although human 

settlement is generally closer to these habitat types than others because they are at low 

elevations, bears avoided higher road densities.  

Interestingly no bears in the NSN population were observed feeding on early fruiting 

species, despite that the resulting RSF model predicts a relatively high abundance of this 

habitat type in the NSN area. This result may be a legacy of historic mortality restricting 

home ranges to higher elevations where this habitat type is not encountered. If this is the case, 

these habitats may provide foraging opportunities for dispersing bears, however, the efficacy 

of the RSF for predicting these food species across the area would be necessary to confirm 

this. Although the use of early fruit was likely a factor influencing the favourable population 

status in the MM compared to the NSN, only about a quarter of the population used this food 

source. Because most bears did not, early fruit habitat was unlikely to be a major factor 

causing the differences in population density and trend.  

Habitat selection models developed for the huckleberry season, when grizzly bears 

fed almost exclusively on this species, were similar regardless of whether availability 

included entire home ranges or was restricted to previously disturbed sites. Differences were 

mostly in the effect size of variables, reflecting the change in the range of values associated 

with limiting what was defined as available. For example, the avoidance of high canopy 

cover was much higher in the model that included closed forests as available habitats than the 

model limited to disturbed sites where average canopy closure was much lower (Table 4.4). 
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Interestingly, selection for previously burned areas was higher than for previously harvested 

areas but the highest was where they overlapped. Disturbance age was also important and at 

the disturbance site scale, the importance of age was moderated by the original forest type. 

One explanation is that forest regeneration rates differ among forest types therefore likely 

affect berry production in a disturbed site over time. Understanding this relationship could be 

important for the application of habitat management efforts and specifically for berry 

production. 

Regardless of whether the huckleberry specific RSF was projected across the 

landscape, or if the analysis was limited to previously disturbed sites, the proportion of high-

quality huckleberry habitat was 5 to 7 times more abundant in the MM than in the NSN. This 

result supports the hypothesis developed elsewhere in Canada (McLellan 2015, Proctor et al. 

2017) and Scandinavia (Hertel et al. 2018), that the difference in the availability of high-

quality huckleberry habitat has contributed to bottom-up effects resulting in a higher density 

and positive trend of the grizzly bear population in the MM compared the population in the 

NSN. The mechanism is consistent with other research indicating that bears rapidly deposit 

fat needed for hibernation and reproduction while feeding on this high-energy food (Welch et 

al. 1997, McLellan 2011). In addition to the amount, the distribution and patch size of high-

quality habitats (Serrouya et al. 2011) may also influence the bottom-up effects on population 

density. 

As has been reported in other areas (Waller and Mace 1997, McLellan and Hovey 

2001) habitat selection was much more variable among individuals in the post-berry season 

and this resulted in a less predictive model. This model's lack of precision is likely due to the 

inclusion of multiple behaviours by and among individuals and therefore varying selection 

patterns. When huckleberry fruit shrivels and senesces near the end of summer, no single 

food or food group becomes dominant (McLellan and Hovey 1995, Munro et al. 2006) 
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enough to concentrate bears into a few habitats as in previous seasons. Bears also become 

much less active as days shorten in the autumn (McLellan and McLellan 2015) and inactivity 

is likely less habitat-specific than foraging. 

The implication of individual variability on the accuracy and interpretation has been 

highlighted in other research (Nielsen et al. 2002, Gaillard et al. 2010) and I expect the 

inclusion of multiple behaviours by individuals to have a similar effect on resource selection 

models. Including a random slope for individuals in the habitat selection models would 

increase our understanding if the variability of habitat selection was mostly between 

individuals (Gaillard et al. 2010). Increasing model predictive ability by further delineating 

among feeding behaviours for this season would be necessary to use post-berry season 

models for bottom-up comparisons among populations. Their current variability makes the 

post berry season model insufficient for making confident inferences.  

The second objective of this chapter was to assess the utility of season-specific RSF 

models for predicting huckleberry presence and abundance measured in field plots. Results 

indicate that these models were highly accurate using conventional methods of model 

assessment including k-fold cross-validation, ROC and Spearman’s Rank correlation 

coefficient on the allocation of used sites to model quantile bins (Boyce et al. 2002, Johnson 

et al. 2006, Morris et al. 2016). The strongest predictive relationship was between RSF score 

and the amount (g) of berries picked (R2 = 48%), controlled for the individual picker. Even 

though human picking was used as a surrogate for bear foraging and the difference among 

people was sufficient to make the actual amount collected uninformative, the relationship 

between RSF value and berry foraging indicates that if picking followed a type II functional 

response, then the RSF best predicts areas where the largest number of berries per unit time 

can be picked. The models also correlated with various measures of berry abundance, 
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particularly for the higher values of the model, but data were fairly dispersed and the 

coefficient of determination (R2) ranged between 5% and 11%. 

The cut-off points for estimating whether an RSF was true or not were the average 

values measured at sites where bears were feeding, therefore, by definition, many of the sites 

selected by bears had lower huckleberry cover and abundance than what were considered to 

be “true” sites. This would have the effect of decreasing measures of model precision and 

overrating the proportion of false positives and also possibly reducing model accuracy. 

Foraging bears would likely affect some of the berry abundance estimates. We can assume 

that at the bear use plots measure of abundance and berry load were higher when the bear 

selected the plot, though plant cover and height would remain unchanged, this would increase 

the mean berry abundance. Therefore, we would expect that the actual measures for areas 

used by bears to be higher than those observed, and that for test plots, the density of bears 

using the area may bias measures low.  

Increasing model complexity by including covariate interactions increased model fit 

using information-theoretic approach during model development, only slightly improved 

other model performance measures by less than 1% (k-fold, ROC) and improved model 

predictive ability for huckleberry cover, percent stems with berries, overall berry cover and 

abundance in the top 5% of model bins (Figure 4.5, Table 4.6). Despite the concern for 

overfitting a model by increasing complexity, the huckleberry test plots suggest that the more 

complex models improved model predictive ability for huckleberries across the study area, 

albeit sometimes only slightly (Table 4.5).  

Model quantile or equal area binning is commonly applied to RSFs for spatial 

inferences of habitat selection, comparative analysis among models, and for habitat 

management applications (Nielsen et al. 2004a, Johnson et al. 2006). My analysis using 

selection estimated from bear use areas confirms predictions by Morris et al. (2016) that 
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estimated model accuracy depends on how results are binned. This investigation into the 

accuracy of RSF models for predicting huckleberry production at test sites highlighted the 

importance of how RSF models are binned after they are estimated and that the trade-off 

between model precision and sensitivity at different levels should be considered. Identifying 

the requirements of model application will aid in the identification of appropriate bins, 

particularly when making management decisions based on habitat modelling. 

My results show that berry specific models did predict berry abundance in previously 

disturbed sites though varied in accuracy depending on how the models were depicted or 

binned across the landscape. Further delineation of foraging behaviours for late-season 

behaviours would likely increase model precision and utility for this time of year. 

Interestingly, RSF predicted the amount(g) of berries picked in 10 minutes better than any 

other measure of VM abundance indicating that the plot sizes used for the other measures 

were not at the appropriate scale for inference of selection. Finally, the differences in the 

overall availability of high-quality habitats for different food types between populations 

suggests that season-specific bottom-up effects may account for some differences in 

population densities and warrants further investigation.  
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Estimating the role of bottom-up processes in the 

recovery of endangered populations of a large 

carnivore. 

 

5.1 Abstract 

 

Where populations are limited primarily by bottom-up factors it is expected that 

population density will vary across the landscape in proportion to resource availability, and if 

there is a food source more important than others, then density will correlate more strongly 

with it.  

In this chapter, I investigate the hypotheses that bottom-up effects are responsible for 

the difference in observed density and trend between two adjacent and threatened grizzly bear 

(Ursus arctos) populations in southwestern British Columbia, Canada. I use spatial capture-

recapture techniques with projected seasonal Resource Selection Function models, open road 

density and whitebark pine (Pinus albicaulis) abundance, to test whether the density of 

grizzly bears across both study areas can be explained by seasonal food type availability or 

road density as a surrogate for mortality risk.  

Using an information-theoretic approach I found that population density is most 

strongly connected to habitats selected during a season when bears fed on huckleberries as 

well as a large baseline difference between populations. The abundance of high-quality 

huckleberry habitat appears to an important factor enabling the recovery of the larger, 

genetically connected population. The adjacent, smaller and genetically isolated population is 

not growing and the relatively low abundance of high-quality berry habitat in this population 

may be contributing to the slow growth of the population. However, in the isolated 
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population, the lack of association between the current distribution of individuals on the 

landscape with extant huckleberry patches caused by overall low density in this population, 

indicates that the population is unlikely at carrying capacity. It is possible that the legacy of 

historic mortality and current stochastic effects, inbreeding effects, or other Allee effects, are 

also contributing to the continued low density observed on the landscape. While these small 

population effects may be more challenging to overcome, it appears that the landscape can 

accommodate a higher population density than that currently observed.  

 

5.2 Introduction 

 

The population dynamics for most mammals, whether driven by top-down or bottom-

up forces, are spatial processes (Gripenberg and Roslin 2007). Landscapes are heterogeneous. 

Therefore, the strength and importance of top-down and bottom-up forces vary across space. 

We expect that where populations are limited primarily by bottom-up factors, population 

density will vary across the landscape in proportion to resource availability (Boyce et al. 

2016). Likewise, for populations limited by top-down processes, we expect the association 

between population density and habitat quality to be weakened while spatial patterns 

associated with top-down limitation become more influential (Rettie and Messier 2000, 

Nielsen et al. 2004a, Boulanger et al. 2018).  

Unlike point estimates of population size, spatial variation in population density 

enables the investigation of the covariation of density with landscape attributes such as 

habitat quality and mortality risk. Resource selection is also a spatial process resulting from 

the selective movements of individuals in an attempt to maximize their fitness. The 

widespread availability of spatial data, (e.g. satellite imagery, landscape cover, digital 

elevation models) coupled with accurate locations from GPS tracking devices enables the 
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estimation and subsequent prediction of resource selection at different scales (Boyce and 

McDonald 1999, Apps et al. 2001, Boyce 2006, Nielsen et al. 2006, Ciarniello et al. 2007). 

Most commonly, resource selection functions (RSF) compare habitats used by a species to 

those available to estimate the relative probability that a habitat type will be used. Fitness is 

usually related to habitat suitability (Boyce et al. 2016) and density (McLoughlin et al. 2006), 

but with exceptions such as attractive sink dynamics (Nielsen 2011). Due to the seasonality 

of physiological demands as well as food quality and availability, a correlation between 

habitat selection and individual fitness cannot be assumed (Nielsen et al. 2013, Greene and 

Stamps 2017). Therefore, it is expected that some habitat types during some seasons correlate 

more strongly with density than others.  

Spatial capture-recapture models (SCR) allow for robust estimates of population size 

and density while accounting for imperfect individual detection as well as individual 

movement and resulting exposure to sampling effort (Efford 2004). SCR also allows for the 

estimation of spatial variation in density or capture probability by including spatial covariates 

(Royle et al. 2013, Efford 2014, Proffitt et al. 2015). By modelling local density as a function 

of a spatial covariate, associations between landscape variables and density can be inferred. 

Therefore, by including time and space-specific resource selection models with spatial 

capture-recapture models facilitates direct inferences on the effects of habitat on population 

densities (Boulanger et al. 2018).  

The McGillvary Mountain (MM) and North Stein-Nahatlatch (NSN) grizzly bear 

(Ursus arctos) populations are adjacent but genetically distinct populations in southwestern 

British Columbia, Canada. Both populations are considered threatened with the NSN 

critically endangered due to its small size and degree of genetic isolation (McLellan et al. 

2017b). Like grizzly bears across most of their southern distribution, both populations 

experienced substantial human-caused mortality (HCM) for at least a century before a recent 
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reduction in HCM resulting from both the cessation of legal hunting and the gradual change 

in human attitudes towards large carnivores and conservation in general. Despite a similar 

history, the MM population is growing and recovering while the NSN population remains at a 

low density and is likely slowly declining (McLellan et al. 2019).  

In chapter 4, I used GPS telemetry data and landscape covariates to develop seasonal 

resource selection functions (RSFs) where seasons were temporally defined by changing diet 

composition. The RSFs predicted habitat selection within home ranges where habitat 

selection was thought to reflect bottom-up processes (Johnson 1980, Rettie and Messier 

2000). The herb-bulb season, the early fruit season, and the huckleberry season RSF models 

performed well and predicted between 50 and 95% of all seasonal locations within 6% of the 

available landscape (chapter 4). Seasonal habitat selection models for the short post-berry 

season were less reliable due to the high variability of foraging and pre-denning behaviours. 

However, the most common food source for this season was whitebark pine seeds, and, 

unlike the main foods for other seasons, whitebark pine distribution has been mapped and 

delineated according to abundance. Using the seasonal RSFs, I compared the proportion of 

the MM and NSN that consisted of seasonally selected habitats and determined that, there 

was much more high-quality huckleberry habitat in the MM than the NSN suggesting a 

possible bottom-up mechanism for differences in density between populations.  

In this chapter, I further investigate the hypotheses that bottom-up factors are 

responsible for the difference in observed density and trend between the MM population and 

the adjacent NSN population (McLellan et al. 2019). If food is limiting and the NSN 

population is at, or near carrying capacity, and thus responsible for the difference in density, 

then I predict that population density within the study area will be spatially correlated with 

high-energy food abundance. In contrast, if contemporary top-down effects are the major 

factor limiting population density, I expect that either bear densities are negatively associated 
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with human use of the landscape, or that high-quality habitat and human use overlap creating 

an attractive sink phenomenon (Nielsen et al. 2006, Gripenberg and Roslin 2007).  

I use season-specific RSFs, whitebark pine occurrence, and road density as spatial 

covariates in SCR models of the MM and NSN. The degree of correlation between the 

resulting bear density surface each covariate indicates if differences in density can be 

explained by top-down (i.e road density) or bottom-up process and the season and thus food 

types most likely responsible for differences in density.  

 

5.3 Methods 

 

5.3.1 DNA Capture-Recapture 

 

Capture-recapture data was collected from 74 detectors, including hair traps and rub 

trees distributed across the 6528 km2 study area spanning both grizzly bear populations (See 

chapter 2). Hair traps were distributed so that each drainage had a hair trap and larger 

drainages had two. Rub trees were common along roads and trails throughout the study area 

but their distribution was uneven, and there were often multiple trees along one linear feature. 

Hair traps consisted of one barbed wire strand tightly strung between trees, approximately 50 

cm above the ground, forming a small corral around a pile of debris and scent lure (Woods et 

al. 1999). Grizzly bear hair samples were collected every four weeks for five intervals of 

similar duration (see chapter 2 for details) between the end of June and the end of September 

2014; spanning all feeding seasons for these populations. Wildlife Genetics International 

(Nelson, British Columbia) screened the hair samples, extracted DNA, carried out genotyping 

to 22 microsatellite loci, and identified individuals following established techniques (Paetkau 

2003).  
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5.3.2 Habitat and road density covariates  

 

 Grizzly bears are generalist omnivores and their diets vary among populations or even 

among individuals within a population, however predictable seasonal shifts in diet and 

resource selection are common for the species (McLellan and Hovey 1995, 2001, Munro et 

al. 2006). Grizzly bear diet predictably changes due to shifts in the availability of foods 

resulting in seasons characterized by dominant foods in their diet. The clustering of food 

resources into habitat types allows us to observe seasonal shifts in resource use. In the MM 

and NSN, four major seasons can be distinguished from one another by bear movement 

between habitat types in which different foods dominate their diet. I defined these as the 

herb-bulb season (HERB) that begins shortly after den emergence and is characterized by 

foraging primarily on herbaceous plants and bulbs in the spring and early summer; in some 

years, when berries were scarce, this season would extend through the summer. The early 

fruit season (EARLY) occurs in the early to mid-summer when bears forage on Saskatoon 

berries (Amelanchier alnifolia), and pin (Prunus pensylvanica) and choke (P. virginiana) 

cherries. This feeding pattern was only observed in the MM but RSF modelling indicated that 

this habitat type may be available in locations scattered throughout the study area. The 

huckleberry season (BERRY) usually begins in mid-August and lasts until early-October, 

depending on the year, when bears fed almost exclusively on black huckleberries (Vaccinium 

membranaceum). The post-berry season (POST) is the least well defined of the foraging 

season due to a relatively high diversity of bear behaviours and associated habitat selection: 

some bears returned to digging bulbs in similar habitats to the HERB season, others fed on 

whitebark pine seeds (Pinus albicaulis), and some went directly from huckleberry feeding to 

den sites; one bear, and perhaps a second, fished for salmon. 
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In the previous chapter, I outlined how I used seasonally delimited location data from 

45 bears to model seasonal habitat selection across both the MM and NSN populations 

(McLellan and McLellan 2015). Most of the variation in habitat selection between 

populations was in the presence and duration of a specific season so populations were pooled 

(chapter 3). For this analysis, I used the projected seasonal RSFs for the herb-bulb, early-fruit 

and huckleberry seasons (Figure 5.1). Due to the high variability of foraging and pre-denning 

behaviours, the post-berry season RSF lacked sufficient precision to be used as an 

informative covariate. However, if bears remained active, the most common food source for 

this season was whitebark pine seeds. Unlike the main foods for other seasons, whitebark 

pine distribution has been mapped and delineated according to abundance (Crone et al. 2011), 

and consequently, could be included as a measure of whitebark pine (WBP) availability 

(VRI-2017) (Figure 5.1). 

Because they are an apex predator, and by far the largest carnivore in the region, the 

only top-down effects for adult grizzly bears is human-caused mortality (Garshelis et al. 

2005, McLellan et al. 2018, Proctor et al. 2018b). Grizzly mortality has been correlated with 

road density in many areas which, as a result, is suggested to be a useful surrogate for 

negative effects of human use on grizzly bear populations (McLellan and Shackleton 1988, 

Lamb et al. 2018, McLellan et al. 2018, Proctor et al. 2018b). Road density quantifies 

ephemeral human presence and landscape use such as forest harvest, tourism, hunting, and 

recreation. In this analysis, I use open road density (OP_RD) as a surrogate for the effects of 

human use on bear populations (Figure 5.1).  
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Figure 5.1: Seasonal food-based habitat and open road density maps for grizzly bears in southwest British Columbia, Canada. Units are scaled habitat quality 

from binned resource selection functions for HERB, EARLY fruit, BERRY seasons. Whitebark pine cover is percent cover (WBP) and open road density 

(OP_RD) in km/ km2 models is a surrogate for increased mortality risk. The BERRY *depicts shows the footprint of potential black huckleberry patches in 

disturbed sites while BERRY reflects the RSF model projected across the landscape. The boundary between the MM and NSN follows the most centre line of 

increased road density crossing the study area noticeable on the OP_RD panel.  
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5.3.3 Analysis methods 

 

I used spatially explicit capture-recapture methods (Borchers and Efford 2008) to 

estimate the effects of habitat quality on grizzly bear population density across the study area 

using density surfaces (Borchers and Efford 2008). Spatial capture-recapture models require 

the definition of an area that encompasses all individuals possibly exposed to sampling, 

called the state-space. Masks are a spatial component of secr that can be used to define the 

boundaries of the area of integration and populated with spatial covariates to represent spatial 

variation in habitat quality. The state-space for this analysis was limited geographically to the 

west by a large lake and human settlement, and to the east by human settlement and the 

Fraser River. Population-specific masks were used to limit the state space of each to the 

common population boundary that genetically and geographically separates the two 

populations. Bear populations are continuous to the north and south, and these perimeters 

were determined by estimating the minimum effective sampling area necessary to estimate 

density with minimal bias (Borchers and Efford 2008). Predicted density declines 

asymptotically as the area of integration increases until the area is large enough to eliminate 

sampling area bias (Borchers and Efford 2008). The effective sampling area was estimated in 

program secr based on previous analyses and confirmed by plotting the effective sampling 

area curve post hoc for fitted models using the esa.plot tool in secr.  

I used a multi-step approach to estimate the effects of habitat variability on population 

density to simplify the model selection process. For analysis, the MM and NSN were 

considered separate sessions so that the effective sampling area could be limited according to 

population boundaries and to allow for population-specific inference and account for 

variation in parameters between populations during model development. All spatial capture-
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recapture analyses were conducted using secr v. 3.2.1 (Efford 2019) in program R v.3.6.1 (R 

Core Team 2019). 

 

5.3.4 Detection parameters 

 

The objective of the first model selection step was to select the best model for 

estimating detection probability parameters. I used maximum-likelihood estimation in 

program secr to estimate the probability of detection at the activity centre (g0) and the rate of 

decline following a half normal curve according to the movement scale (σ). Allowing density 

to vary by population, I compared models including covariates thought to influence the 

baseline detection probability (g0) including sex, trap-type, learned response (b), animal-

specific and site-specific response (bk) and time (t). I also investigated the variation in 

detection probability due to the quality of habitat surrounding detectors (Royle et al. 2014). I 

used the same habitat covariates hypothesized to affect density except in this case habitat 

covariates were the average scaled RSF score or whitebark pine coverage in a 500-m radius 

around each trap which is approximately the average daily distance moved for females in this 

study area (unpublished data). Habitat covariates included seasonal spring habitat (g0~herb), 

early fruit habitat (g0~early), huckleberry habitat (g0~berry) and whitebark pine habitat 

(g0~wbp). Home range size varies by sex (Proctor et al. 2004, McLellan and Hovey 2011, 

chapter 2) so sex was included as a possible covariate for σ and compared to a null model 

where sigma was unaffected by sex. Relative support for each detection model, and the null 

model, was compared using Akaike information criterion corrected for small samples (AICc) 

(Burnham and Anderson 2002) and the top detection model was retained for subsequent 

density surface modelling. Home range centres were predicted using the most supported 

detection and scale movement model and the summed probability densities of the home range 
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centres were projected as an initial investigation of the distribution of home range centres 

across the study area (Royle et al. 2014).  

 

5.3.5 Density surfaces 

 

 Before fitting spatial models of density, centroids of the cells making up the state 

space were populated with resource values and risk covariates derived from seasonal RSF 

models, whitebark pine cover or from road density layers to form a habitat mask. Habitat 

values were averaged for each 1.5 km2 area and scaled for comparison among covariates. 

Following a series of iterative models investigating the effects of centroid spacing from 1km 

to 3km on density estimation, the spacing of mask centroids was set at 3.0 km in the secr 

mask to optimize computation time without affecting density estimates (Boulanger et al 

2018).  

To investigate seasonal habitat quality and top-down human effects on bear density I 

fit density surface models, D(x,φ), that constrained density for each mask point (x) to be a 

linear function of population identity, a seasonal habitat covariate or open road density (φ), or 

the additive or interactive effect between population and habitat (Borchers and Efford 2008, 

Boulanger et al. 2018). This method tests hypotheses that the density gradient observed in the 

region can be explained by bottom-up effects and specifically, which food season is the 

strongest predictor of local bear density. To differentiate them from the covariates used in 

detection modelling, seasonal density covariates are in uppercase letters (e.g. HERB, 

EARLY, BERRY, WBP and OP_RD). Density surface models were compared using Akaike 

Information Criterion corrected for small samples (AICc) (Burnham and Anderson 2002). I 

used back-transformed model estimates to predict density as a correlate of huckleberry 
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habitat. Errors for predicted density were calculated using the delta method with the msm 

package (v.1.6.7) (Jackson 2019).  

 

5.4 Results 

 

 In 2014, 41 grizzlies (22 F; 19 M) were detected 94 times over five sampling 

occasions. In the MM population 33 (18F; 15 M) individuals were detected 69 times and in 

the NSN 8 (4F; 4M) individuals were detected 25 times.  

The top model for detection parameters included an interaction between sex and trap 

type and the spatial scale of detection varied by sex (Table 5.1). Habitat quality surrounding 

the detector did not affect detection probability enough to improve the detection model. The 

summed probability density functions estimated from the top detection model and predicted 

across the study area indicated pockets of high density in two parts of the MM and small and 

relatively low-density pockets in the NSN (Figure 5.2). There is a low-density area at the 

northern end of the NSN, adjacent to the MM populations, with very few detections. The 

predicted number of home range centres in the MM portion of the study area was 46.59 

(95%CI: 36.21-62.88) and 7.48 (95%CI: 3.00-12.04) in the NSN. The regional abundance of 

individuals in the NSN is lower than the number of actual bears captured because the 

expected home range centre may not be within the study area.  
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 Figure 5.2: Probability densities of home range centres for detected individuals using the top 

detection model for density estimation of grizzly bears in the MM and NSN populations in 

southwestern British Columbia Canada. The projected densities are limited to the study area boundary 

to reduce edge bias in density estimates resulting from increased distance from trap location. Red dash 

marks the boundary between the populations delineated along the highway and settled areas. 
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Table 5.1 Model selection results for covariates influencing grizzly bear encounter rate (g0), and 

movement scale (σ) and density (D) without density surface integration. See text for covariate 

definitions. Only the top 4 models are shown, all models are included in supplementary material 

Table S.4. 

D g0 σ K a ΔAICc b ωi
 c 

D~ pop 

g0~ (trap-type * sex) σ~ (sex) 8 0 0.82 

g0~ (trap-type +sex) σ~ (sex) 7 3.47 0.15 

g0~ (trap-type) σ~ (.) 5 6.55 0.03 

g0~ (sex) σ~ (sex) 6 11.71 0 
a Number of model parameters 
b Difference to the AICc of the highest-ranked model 
c Model weight 

 

The top density surface model included density as a function of the additive effects of 

huckleberry habitat and population identity. This model was slightly better than the model 

with only population as a predictor for variation in density (Table 5.2). This result suggests 

that although there is a positive relationship between density and huckleberry habitat, other 

population-specific effects are contributing to the density differences between populations. 

The effects of other habitat types and road density on grizzly bear density were weak (Table 

5.2).  

 

Table 5.2 Model selection results comparing destiny surfaces including habitat and road density 

covariates as well as population. Detection parameters were consistently defined for all models g0 

(trap-type * sex) σ(sex). 

 Density surface model K a ΔAICc b ωi
 c 

D~ BERRY + pop 9 0 0.3429 

D~ pop 8 0.215 0.3079 

D~ WBP + pop 9 2.917 0.0798 

D~ BERRY * pop 10 3.269 0.0669 

D~ HERB + pop 9 3.346 0.0644 

D~ EARLY + pop 9 3.468 0.0605 

D~ OP_RD * pop 10 4.501 0.0361 

D~ WBP * pop 10 5.812 0.0188 

D~ EARLY * pop 10 6.752 0.0117 

D~ HERB* pop 10 6.874 0.011 
a Number of model parameters 
b Difference to the AICc of the highest-ranked model 
c Model weight 

 



 

125 

 

 Predicting density as a function of population and huckleberry habitat illustrates its 

positive relationship with huckleberries (Figure 5.3, top panel). Because the density-

huckleberry relationship is modelled on the log-scale, the lower intercept of the back-

transformed curve for the NSN (i.e., the population effect on density) causes the relationship 

to be flatter across the possible huckleberry habitat values than for the same habitat values in 

the MM. In addition, the proportion of good habitat is much higher in the MM than in the 

NSN, as demonstrated by the probability density functions for huckleberry habitat quality in 

each population (Figure 5.3, bottom panel).  
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Figure 5.3 Relationship between density and scaled huckleberry habitat estimated from the top 

density surface model for the McGillvary MM and NSN grizzly bear populations in southwestern 

British Columbia, Canada. Lower panel is the probability density function for the scaled huckleberry 

habitat in each population. Huckleberry habitat quality is the scaled output of foraging specific 

resource selection functions projected across the populations where 0 is low quality habitat and 1 is 

high-quality habitat. Most selection for huckleberries occurs between 0.75 and 1.0 (see chapter 4 for 

details). 
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5.5 Discussion 

 

This analysis supports the hypothesis that bottom-up effects are contributing to the 

difference in recovery dynamics observed in the MM and NSN populations. At a continental 

scale, the relationship between bear density and high energy food has been well documented 

(Hilderbrand et al. 1999, Mowat et al. 2013). Within populations, the implications of high 

energy foods on local density has been less frequently shown (McLellan 2015). Interestingly, 

my results show that density is so low in the NSN that variation in density with resources is 

limited, the broader span of densities in the MM allows for the comparison of density to 

habitat quality and the population density is likely affected by huckleberry availability. 

The abundance of high-quality huckleberry habitat appears to an important factor 

enabling the recovery of the MM populations. While the NSN population is unlikely to 

achieve densities observed in the MM population, the lack of association between the current 

distribution of individuals on the landscape with extant huckleberry patches in the NSN, 

caused by overall low density in this population, indicates that the population is unlikely at 

carrying capacity. Thus, other factors are contributing to the absence of recovery. It is 

possible that the legacy of historic mortality and current stochastic effects (chapter 3), 

inbreeding effects or Allee effects are also contributing to the continued low density observed 

on the landscape. While these small population effects may be more challenging to 

overcome, it appears that the landscape can accommodate a higher population density than 

that currently observed.  

Density was not linked to habitat types highly selected for during other seasons. All 

bears monitored in this study fed on herbaceous plants and bulbs in the spring; the fact that 

this habitat type was not linked to density across the study area or in relation to a specific 

population indicates that, despite its possible importance due to its ubiquity (chapter 4), this 
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habitat type was not limiting or driving population density. Likewise, the relationship 

between whitebark pine and density was also weak even though this food source is 

commonly used by bears in both populations. Furthermore, seeds from this conifer is a major 

component of the diet for grizzlies in the NSN where huckleberries are relatively rare. 

Roughly a quarter of the collared bears in the MM fed on early fruit while no collared bears 

in the NSN did (chapter 4), despite the availability of early fruit at lower elevations for both 

populations.  

In contrast to other research, road density, which has been frequently linked to bear 

density (Lamb et al. 2018), behavioural changes (Northrup et al. 2012), and mortality 

(McLellan et al. 2007, Schwartz et al. 2010, Boulanger et al. 2014), did not correlate to 

grizzly density in this study area. Due to the rugged topography, and short life-span of roads 

in this area, their density is relatively low throughout the study area, between 0 and 7.63 

km/km2, with a few areas with higher road density near human settlements or road junctions. 

As a result, there is seldomly more than one resource road per drainage, resulting in large 

areas of secure habitat with no roads at all (Figure 5.1). As a result, the road density across 

the study area has a similar pattern of a single road, sometimes with a few spurs, separated 

from one another by of between 4 to 8 km. of wilderness. Despite the lack of effect of roads 

on density, the present analysis does not test for the potential effect of roads on bear mortality 

and a more detailed study on this topic would be necessary before concluding that they play 

no role for population recovery.  

One caveat of this study is that by building the secr model based on output from an 

RSF model, there is no propagation of error from the RSF to the density surface. Ignoring the 

uncertainty in RSF scores may have biased estimates of coefficients and/or cause us to 

underestimate coefficient uncertainty. However, the accuracy of all habitat models, when 

tested using k-fold cross validation (Boyce et al. 2002), was found to be over 90%. Thus, 
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effects on secr estimates of ignoring RSF error should be comparable across the different 

models we fit and should not affect our conclusions about huckleberries being the most 

important RSF-type predictor of bear density. Methods for directly integrating RSF and SCR 

into one analysis have been developed and implemented in other research (Linden et al. 

2018), however the models do not use the resulting habitat selection estimates as predictors 

of density.  

Spatial capture recapture analysis assumes that home range centres are stationary 

during sampling (Royle et al. 2016) however estimates of density are very robust to 

transience and dispersal. This capture-recapture program spanned an entire active season, this 

allows for individuals to use habitats throughout their home range within the capture time and 

may lead to more accurate estimates of sigma and home range than sampling in a single 

season. However, we can expect differences in σ to arise from transience and therefore 

sampling duration should be considered when comparing detection parameters among 

studies. It should also be noted that although each resource is important in a different season, 

this analysis only looks at the effects of resources across all seasons. This may mask effects 

on density on smaller temporal scales. As a result, only habitats that are important enough for 

their effects to be evident across all seasons will be identified in this analysis. The 

distribution of herbaceous foods, bulbs and pine nuts may affect bear distribution, but 

perhaps only in their respective season.  

The relationship between habitat selection and animal density or abundance is of 

fundamental interest to ecologists. Until recently, predicting abundance across space from 

habitat use models predicated on the assumption that a population was at, or near, carrying 

capacity (Boyce and McDonald 1999, Boyce et al. 2016), otherwise comparisons were made 

with point estimates of one or both parameters, excluding spatial variation. The integration of 

spatial mark recapture and resource selection functions allow incorporation of the spatial 
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nature of both approaches (Borchers and Efford 2008, Royle et al. 2013, Linden et al. 2018) 

therefore eliminating some otherwise key assumptions. Specifically, in this analysis I used 

resource selection functions within a spatial-mark recapture framework and found that 

population density is most strongly connected to habitats selected during a season when bears 

fed on huckleberries as well as a large baseline difference between populations.  
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General Discussion 

 

6.1 Discussion 

 

At the beginning of this research, I set out to identify the rates and causes of 

population change in two grizzly bear populations that the Province of British Columbia had 

classified as threatened. I developed three competing hypotheses that, when used in 

conjunction, would estimate the bear densities and current population trends for each 

population, but most importantly, provide a mechanism explaining the trends. While I fully 

appreciated that this task would be difficult for small populations, particularly if they were 

declining, I did not understand how unique an opportunity it was to describe, in detail, what 

the demographic components of decline looked like for a very small population; the 

manifestation of stochastic processes on individuals, in space and time, and how the negative 

results of stochastic processes or other small population effects, can then be used as an 

opportunity for recovery.  

Identifying the current status for the MM population ended up being relatively easy; 

whether evaluated using population vital rates from collared individuals (chapter 3) or 

population wide DNA capture-recapture (chapter 2), the consensus was that the population 

was growing. The research pointed to a mechanism that, following the reduction in HCM, 

there was both high adult survival and high cub survival. The increasing density was 

associated with the selection of high energy foods, which provided fuel for the observed 

recovery (chapter 4 and 5). This was the successful outcome of management action, and it 

matched similar outcomes from similar efforts elsewhere (Kindberg et al. 2011, Mace et al. 

2012, van Manen et al. 2015). 
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What I observed in the NSN population is more nebulous. What is now known, is that 

the population is small and not growing. My first hypothesis was that top-down limitation 

was still too high and as a result, the population was not recovering. What I found was that 

top-down limitation was higher than estimated for MM and other populations. However, the 

second prediction for this hypothesis, that reproductive rates would be high because the 

population was far below carrying capacity and therefore not limited by resources, was not 

supported. I found the reproductive rates of bears in the NSN were among the lowest 

observed for any grizzly population (chapter 3). From these results, I concluded that, while 

there is room for improvement as far as reducing top-down mortality, it does not appear to be 

the only factor. 

My second hypothesis was that there are insufficient resources to support population 

growth and densities comparable to the MM population. Predictions in support of this 

hypothesis are relatively high adult survival, as is common in grizzly populations near 

carrying capacity (Garshelis et al. 2005, Keay et al. 2018), but low reproductive rates. This 

hypothesis thus appears to be supported and a plausible explanation for the absence of growth 

in the NSN and may be partially responsible for the continued lack of population recovery. In 

chapter 4, I showed that there was proportionally (by area) much less habitat with high-

energy food in the NSN than in the MM, and in chapter 5, I established a relationship, albeit, 

somewhat weak, for the NSN, between population density and huckleberry abundance. Both 

of these analyses suggest that the carrying capacity for the NSN is likely lower than for the 

MM, but because the MM population has not yet reached carrying capacity, quantitative 

comparisons remain somewhat speculative.  

Bottom-up limitation for grizzly bears results in predictable demographic responses 

including low reproductive rates while maintaining relatively high adult survival rates 

(Garshelis et al. 2005, Keay et al. 2018, McLellan 2015). Recruitment rates in the NSN were 
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much lower than in the MM primarily as a result of much higher cub mortality. In 

comparison, reproductive rates were not significantly lower and mean litter sizes in both 

populations were among the largest recorded for any population (Zedrosser et al. 2011). Low 

cub survival has been correlated to poor habitat conditions but often in conjunction with 

small litters (Robbins et al. 2012). Neither of these observations supports a lack of fitness due 

to bottom-up population limitation alone.  

In addition, over the years of monitoring, two of the adult females that died (one by 

another bear and one a suspected HCM) left vacant home ranges, one in 2012 and another in 

2014. No females were genetically detected in their home ranges after. Despite confirmed 

huckleberry fields in the western portion of the NSN (chapter 4), these females were the only 

ones monitored that had significant berry fields within their home range. Compiling the 

demographic and habitat modelling evidence, I suggest that while it is likely that the carrying 

capacity of the NSN is lower than the MM, the remaining NSN population is still below the 

carrying capacity and there is sufficient habitat for greater recovery. 

Finally, we are left with the third hypothesis, which is, that small population effects 

are dominating the observed demographics of the NSN. Some scientists have proposed that 

even in the absence of evidence, all small, genetically isolated populations should be 

considered to be at least potentially suffering from inbreeding effects because such effects 

have been well documented (Frankham 2005, Laikre et al. 2010). Although I agree with 

exercising the precautionary principle, I think that highlighting the observations that are 

indicative of small populations and potential ones that are of special concern for small 

populations of grizzly bears is worthwhile. One hypothesis, that would be challenging to 

manage and possibly specific to few taxa including grizzly bears, is that small populations 

have higher occurrences of mating seasons in which there are no females available to mate, 

thus increasing the incentive for sexually selected infanticide by adult males (chapter 3). This 
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hypothesis is supported by the low observed cub survival. However, because the cause of cub 

deaths is unknown, it remains untested.  

Other predictions from the small population hypothesis are that inbred individuals 

would have low population heterozygosity (Chapron et al. 2003, Kenney et al. 2014) and as a 

result of inevitable inbreeding, cub survival and recruitment rates would also be low. While 

the population heterozygosity was lower than average, some other small populations were 

even lower (Taberlet et al. 1997, Tumendemberel et al. 2015). It seems likely that some of the 

observed low cub survival, high interbirth intervals and late primiparity are all, at least 

partially, outcomes of inbreeding effects.  

The consistency among this population and other small brown bear populations 

discussed in chapter 3 highlights that, like so many other species, grizzly bears may also have 

a small population threshold, below which adult female and cub survival are low, and 

intervention is necessary to curb extirpation. If this threshold is true for grizzly bears than a 

similar threshold is likely also true for other mammal species, particularly those with similar 

life histories.  

My research exposes several opportunities for recovery including organic genetic and 

demographic rescue, or an assisted rescue by population augmentation. Organic rescue would 

require population connectivity between the NSN and neighbouring populations. As the MM 

population continues to grow, this becomes more likely however, management efforts that 

conserve habitat connectivity between populations, without the development of a source sink 

dynamic, will be necessary. In the short term, population augmentation by moving female 

bears from other populations into the NSN, would simultaneously increase the breeding 

population and introduce genetic variability to the population. There is evidence of small 

population recovery following augmentation or demographic rescue from neighbouring 
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populations, although the mechanism, whether it is increased reproduction or survival, has 

not been identified (Chapron et al. 2009, Gonzalez et al. 2016, Kendall et al. 2016).  

Each chapter in this thesis is a continuation of the previous ones. Together they 

identify the mechanisms behind population recovery or lack of recovery. The unique details 

of what is contributing to population change in these populations are important for their 

recovery. However, the details of the process by which they were uncovered are likely of 

interest and utility for understanding the dynamics of other small and possibly declining 

populations. This study is an example of combining the small and declining population 

paradigms described by Caughley (1994) and understanding where they overlap. In this case, 

the overlapping effects of limited bottom-up resources and small population effects appear to 

be responsible for the lack of population recovery. By examining the population dynamics of 

small populations in this framework I have accomplished what I set out to do: find out why 

this population is small and declining and what can be done about it.  

 

6.2 Applications in Conservation Biology 

 

Whether a population is trending or stationary is one of the most commonly asked 

questions by conservation biologists and managers. It is also one of the criteria used by the 

IUCN (International Union for the Conservation of Nature 2020) to define the degree of 

threat faced by a population. However, estimating trend and direction, much less the 

mechanisms causing an observed trend, is complicated and full of practical and theoretical 

challenges. My research is an example of using a multiple competing hypotheses approach to 

differentiate among several possible causes of population decline. In my research I estimated 

population density and trends; population vital rates, including survival, reproductive rates 

and their components. Each rate was considered in light of possible causes. Independently, 

each analysis in this dissertation is useful for the management of these grizzly bear 
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populations, however the real strength results from their amalgamation. By putting them 

together to compare among multiple plausible hypotheses, and systematically identify 

corroborating or contradicting evidence, it is possible to make inferences greater than the sum 

of each part.  

The multiple competing hypothesis framework, its components, and how they are 

used to decipher among possible mechanisms driving population change, are independent of 

species or even discipline (Peery et al. 2004, Betini et al. 2017). For each taxon there is a list 

of potential causes threatening population stability and persistence—whether this is pollution 

and habitat degradation commonly faced by amphibians and reptiles (Gibbon et al. 2000), or 

invasive species and climate change threatening freshwater fish populations (Jelks et al. 

2008). The need to decipher among multiple agents of decline in order to implement effective 

conservation actions remains the same. My research is an example of the implementation of 

the multiple competing hypothesis framework that has potential for much broader application 

in conservation biology. 

Another common issue faced by conservation biologists is necessarily drawing 

inferences from small sample sizes. Appropriate conservation actions are needed on small 

populations but it is impossible to obtain a large sample size needed for statistical rigour 

when there are very few animals available to measure. Even though there may be other 

quantifiable reasons the population is small, limited sample sizes is enough to cast doubt on 

any metric that is estimated. As a result, there arises an awkward balance between the lack of 

statistical confidence due to a small sample that is implicit to small populations yet urgent 

need to act to conserve small populations, particularly if they are declining. 

One of the reasons I was able to obtain meaningful estimates from a small population 

because of the long study duration (13 years) and by having another population in my study 

from which to draw comparisons. The benefits of long-term research in ecology and 
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conservation have been shown for many species, including Bearded Vulture (Gypaetus 

barbatus) in the Pyrenees (Margalida 2017), African savanna elephants (Loxodonta africana) 

(Fritz 2017), and chimpanzees (Pan troglodytes) in Gombe National Park (Pusey et al. 2007). 

However, studies that have successfully estimated vital rates for mammal populations with 

fewer than 25 individuals are extremely rare (e.g. Wittmer et al. 2005). The degree to which 

the vital rates differed from large populations should be of comparative value for anyone 

studying a small population. Though long-term initiatives are impractical for many 

researchers, my research reiterates the importance of long-term and comparative studies, 

especially for small populations.  

Another aspect of my dissertation research that is likely widely applicable in ecology 

and conservation science is the amalgamation of fine-scale habitat selection analysis to 

identify food-specific foraging, with broad-scale habitat selection models that utilize 

available spatial data. The importance of food to the density and distribution of animals is 

fundamental to ecology yet estimating the availability and abundance of food and how it 

relates to population density is surprisingly complicated. At fine scales, identifying food 

specific resource selection requires observing where and what animals eat, and how this 

compares to what is available to them (e.g. Denryter et al. 2017). However, this method alone 

is limited to small-scale patterns of selection and food availability is not always easily 

expanded to the home range or population scale. At broader scales, Resource Selection 

Functions (RSFs), have been commonly used to predict habitat selection. RSFs use widely 

available spatial data (e.g. satellite, digital elevation models, climate models) for predicting 

resource selection patterns, but due to the nature of the input variables, they are usually 

devoid of a mechanistic link between resource selection and population level attributes such 

as density and abundance (Gillies et al. 2006, Johnson et al. 2006, Fieberg et al. 2010, Apps 

et al. 2016). The resulting models have often not produced substantial advances for 
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understanding habitat or managing bottom-up processes because they are based on multiple 

behaviours predicted by a group of surrogate habitat variables.  

The disassociation between RSF model outputs and food is largely the result of the 

integration of multiple behaviours, that are food independent (e.g. predator avoidance, 

movement, sleeping), into estimates of resource selection (chapter 4, Nielsen et al. 2010, 

Bose et al. 2018). To further obscure matters, interannual variation in selection that often 

arises from environmental fluctuations, is inadequately accounted for by assuming that 

calendar dates are sufficient to account for seasonal variations. Much of this variability 

manifests as variability among individuals in their selection patterns. Gillingham and Parker 

(2008) showed that when individual moose (Alces alces) were pooled into one RSF, there 

were no individuals that had the selection pattern estimated by the resulting RSF. Likewise, 

Elk (Cervus elphus), a highly gregarious species, also showed large individual variability in 

time specific habitat selection independent from age and sex class (Montgomery et al. 2018). 

The resulting resource selection models thus inaccurately predict forging specific habitat 

selection and by extension, the abundance of specific food types. 

By building resource selection models based on behaviour-specific data, in this case 

food specific foraging, I was able to spatially identify habitat patches and determine the 

relative quality of habitat across a landscape-based resources. The models were still largely 

based on spatial surrogates, however because models were behaviourally specific and animal 

locations were categorized based on use-site visits that determined behaviour, they accurately 

predicted food specific selection patterns, and resource availability. The resulting highly 

accurate and resource specific habitat map is important for management and conservation 

decisions as well as for hypothesis testing at the population scale (chapter 5). Because 

management often involves trade offs for securing habitat, it is easy to see why understanding 

the mechanisms for habitat selection, would be beneficial for many species.  
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Accurately estimating food resource distribution and availability allows for 

mechanistic approaches to understanding the density and distribution of individuals on a 

landscape. As a result, providing a mechanistic link between habitat selection and food 

abundance extends the utility of RSFs as they can be used to test among hypotheses across 

multiple scales without a suite of potentially confounding assumptions (Boyce et al. 2016). 

Although grizzly bears are particularly well suited for food based RSFs due to their 

seasonally predictable, omnivorous diet, this technique could be used to estimate food 

specific habitat abundance for, many other species with similar life histories or large 

differences in seasonal or diel habitat selection patterns. For example, the Peruvian spider 

monkey (Ateles chamek), is an arboreal primate that is mostly frugivorous and displays 

behavioural differences in seasonal and daily habitat selection patterns (Felton et al. 2009). 

There is some indication of bottom-up limitation in this species where food specific foraging 

patterns shift with varying availability of fruit, but, like grizzly bears, this monkey’s range 

distribution appears to be limited by top-down HCM (Wallace et al. 2008). Applying 

foraging specific resource selection modeling would likely contribute to the understanding of 

how top-down and specific bottom-up factors affect the large-scale distribution of this 

species.  

In order to exploit the rapidly increasing availability of remotely sensed data and 

technological advances in GIS and spatial statistics, ecologists and conservation biologist will 

need to find ways to integrate these data in ways that are meaningful to the ecologically 

relevant patterns and processes at the individual and population levels. We want to have 

confidence that all the pretty maps we make, actually mean something to the animals and 

ecosystems. 
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6.2 Project Legacy 

 

This research program did not exclusively culminate in this dissertation. As a result of the 

information gathered, the NSN has received a new IUCN and provincial species at risk 

classification. Local First Nations have come together, in the first multi-nation collaborative 

project in the region, to continue monitoring the entire NSN population and are committed to 

supporting recovery. The provincial government has also passed legal orders on land use to 

limit human access to sensitive areas within the population. Provincial park managers are 

now consulting with researchers when producing visitor management plans and local and 

international NGOs are playing an integral role in recovery initiatives by serving as 

organizers, motivators and funders. Finally, together we have developed an augmentation 

program that is set to begin in 2020. 
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 Figure S.1 Hair trap array for capture-recapture population monitoring in the North Stein Nahatlatch (NSN) and McGillvary Mountain (MM) grizzly 

populations in southwestern British Columbia, Canada, between a) 2005 and 2012 and b) 2013-2017. Panels are separated for clarity only. Red line shows the 

study area boundary and the search area for areal capture described in chapter 3.  
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Table S.1 Model selection for detection parameters estimated using spatial capture-recapture methods in 

each the MM part of the South Chilcotin and NSN part of the Stein-Nahatlatch grizzly bear populations in 

southwest British Columbia, Canada, between 2005 and 2017. a) Step one: candidate models compare 

usage defined as the number of days a trap is open or closed per occasion (days) with usage defined as a 

binary indicating whether a trap was open or not during an occasion, while density could vary among years 

(D~ session). b) Step 2: candidate models for detection parameters (g0 and σ) while density could vary 

among years (D~ session). 

a) Step 1 

Population Model K a ΔAICc b ωi c 

MM 
g0(~1) Usage: binary σ(~1) 10 0.00 1.00 

g0(~1) Usage: days σ(~1) 10 61.89 0.00 

NSN 
g0(~1) Usage: binary σ(~1) 11 0.00 1.00 

g0(~1) Usage: days  σ(~1) 11 50.53 0.00 

b) Step 2      

Population Model K a ΔAICc b ωi c 

MM 

g0(~type + sex + (type * sex))  σ(~sex) 14 0.00 1.00 

g0(~type)  σ(~sex) 12 30.98 0.00 

g0(~type+sex)  σ(~sex) 13 33.09 0.00 

g0(~type+time)  σ(~sex) 18 38.71 0.00 

g0(~type+time +(type*time))  σ(~sex) 24 47.94 0.00 

g0(~1)  σ(~sex) 11 56.51 0.00 

g0(~sex)  σ(~sex) 12 58.54 0.00 

g0(~sex+time +(sex*time)) σ(~sex) 24 63.79 0.00 

g0(~time) σ(~sex) 17 63.89 0.00 

g0(~sex+time) σ(~sex) 18 65.71 0.00 

g0(~1) σ(~1) 10 116.57 0.00 

NSN 

g0(~type + sex + (type * sex))  σ(~sex) 15 0.00 1.00 

g0(~type)  σ(~sex) 13 19.74 0.00 

g0(~type+sex) σ(~sex) 14 20.42 0.00 

g0(~sex) σ(~sex) 13 23.25 0.00 

g0(~1)  σ(~sex) 12 24.78 0.00 

g0(~type+time) σ(~sex) 18 30.98 0.00 

g0(~sex+time) σ(~sex) 18 33.35 0.00 

g0(~time) σ(~sex) 17 35.95 0.00 

g0(~sex+time +(sex*time)  σ(~sex) 23 46.92 0.00 

g0(~type+time +(type*time) σ(~sex) 23 49.81 0.00 

g0(~1)  σ(~1) 11 60.73 0.00 
a No. model parameter 

b Difference between AICc of model and the AICc of the highest ranked model 

c Model weight 
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Table S.2 Candidate models for detection probability (p), estimated using Pradel robust design 

capture-recapture. Apparent survival (φ) and apparent recruitment (f) could vary by sex and 

population, φ (~sex+pop) and f (~sex +pop). Recapture probability (c), was the same as p. a) Step 

one compared effort defined as the number of traps open per occasion (~effort) with the number of 

traps times length of the occasion in days (~both). b) Step two used the top model from step one to 

compare other covariates affecting capture probability p. 

 Model K a ΔAICc b ωi
 c 

a) Step one    

 p (~effort) 8 0 1.00 

 p (~both) 8 100.60 0.00 

 p (~1) 7 207.49 0.00 

b) Step two    

 p (~sex + type + effort + (sex * type))  0.00 1.00 

 p (~sex + type + effort)  28.18 0.00 

 p (~sex + time + pop + type + effort)  45.03 0.00 

 p (~type + effort)  48.22 0.00 

 p (~pop + type + effort)  48.48 0.00 

 p (~pop + type + effort + (pop * type))  50.49 0.00 

 p (~time + type + effort)  65.21 0.00 

 p (~time + effort)  78.92 0.00 

 p (~time + type + effort + (time * type))  85.87 0.00 

 p (~ sex+ effort)  87.75 0.00 

 p (~pop + effort)  106.50 0.00 

 p (~effort)  107.38 0.00 

a No. model parameter 
b Difference between AICc of model and the AICc of the highest ranked model 
c Model weight 
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Table S.3 Model coefficients for the top five Pradel robust design models to estimate apparent 

survival (φ) and apparent recruitment (f) and derived population growth (λ), for both the 

McGillvary Mountains (MM) part of the South Chilcotin and North Stein (NSN) part of the Stein-

Nahatlatch grizzly bear populations in southwest British Columbia, Canada. Models fit using 

common detection probability (p) estimated in a prior analysis p (~sex + type + effort + (sex*type). 

Effort refers to the number of traps per occasion and type refers to whether the trap was a hair trap 

or rub tree. 

Model AIC ωi Sex Pop f ± SE φ ± SE λ ± SE 

φ (~sex) 

f (~sex + pop) 
0.310 

F MM 0.104 ± 0.022 0.907 ± 0.020 1.023 ± 0.027 

F NSN 0.060 ± 0.019 0.907 ± 0.020 0.972 ± 0.024 

M MM 0.176 ± 0.026 0.800 ± 0.030 1.014 ± 0.034 

M NSN 0.106 ± 0.028 0.800 ± 0.030 0.919 ± 0.036 

φ (~sex + pop) 

f (~sex) 
0.180 

F MM 0.091 ± 0.020 0.919 ± 0.019 1.019 ± 0.024 

F NSN 0.091 ± 0.020 0.873 ± 0.032 0.973 ± 0.032 

M MM 0.155 ± 0.023 0.824 ± 0.031 1.007 ± 0.031 

M NSN 0.155 ± 0.023 0.738 ± 0.047 0.922 ± 0.043 

φ (~sex + pop) 

f (~sex + pop) 
0.156 

F MM 0.100 ± 0.022 0.914 ± 0.020 1.026 ± 0.026 

F NSN 0.068 ± 0.023 0.890 ± 0.031 0.963 ± 0.029 

M MM 0.171 ± 0.026 0.81 ± 0.033 1.020 ± 0.034 

M NSN 0.118 ± 0.033 0.770 ± 0.049 0.904 ± 0.042 

φ (~sex) 

f (~pop) 
0.081 

F MM 0.140 ± 0.018 0.893 ± 0.021 1.055 ± 0.028 

F NSN 0.082 ± 0.022 0.893 ± 0.021 0.983 ± 0.030 

M MM 0.140 ± 0.018 0.825 ± 0.025 0.987 ± 0.028 

M NSN 0.082 ± 0.022 0.825 ± 0.025 0.915 ± 0.031 

φ (~sex) 

f (~sex) 
0.081 

F MM 0.140 ± 0.018 0.893 ± 0.021 1.055 ± 0.028 

F NSN 0.082 ± 0.022 0.893 ± 0.021 0.983 ± 0.030 

M MM 0.140 ± 0.018 0.825 ± 0.025 0.987 ± 0.028 

M NSN 0.082 ± 0.022 0.825 ± 0.025 0.915 ± 0.031 
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Figure S.2 Non-linear relationships estimated using generalized additive models between the 

predicted top huckleberry RSF model (BTOP) and huckleberry (VM) metrics measured at model test 

plots across the McGillvary Mountain and North Stein Nahatlatch grizzly bear populations. See text 

for abundance definitions in section 4.3.5.  
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Figure S.3 Non-linear relationships estimated using generalized additive models between the 

predicted top huckleberry RSF model (DTOP) and huckleberry (VM) metrics measured at model test 

plots across the McGillvary Mountain and North Stein Nahatlatch grizzly bear populations. See text 

for abundance definitions in section 4.3.5. 
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Figure S.4 Non-linear relationships estimated using generalized additive models between the 

predicted top huckleberry RSF model (DINT) and huckleberry (VM) metrics measured at model test 

plots across the McGillvary Mountain and North Stein Nahatlatch grizzly bear populations. See text 

or abundance definitions in section 4.3.5. 
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Table S.4 Model selection results for covariates influencing grizzly bear encounter rate (g0), and 

movement scale (σ) and density (D) without density surface integration. See section 5.32 for 

covariate definitions. 

D g0 σ K ΔAICc ωi 

D(pop) 

g0 (trap-type * sex) σ(sex) 8 0 0.82 

g0 (trap-type +sex) σ(sex) 7 3.47 0.15 

g0(trap-type) σ(.) 5 6.55 0.03 

g0(sex) σ(sex) 6 11.71 0 

g0(herb) σ(.) 5 16.39 0 

g0(b) σ (.) 5 16.49 0 

g0(wbp) σ(.) 5 17.47 0 

g0(.) σ(.) 4 18.21 0 

g0(early) σ(.) 5 19.49 0 

g0(bk) σ(.) 5 19.72 0 

g0(berry) σ(.) 5 19.88 0 

g0~1 σ(.) 5 20.60 0 

g0~t σ(.) 8 21.10 0 

D(.) g0(.) σ(.) 3 36.36 0 

D(sex) g0(.) σ(.) 4 38.60 0 
a No. model parameter 
b Difference between AICc of model and the AICc of the highest ranked model 
c Model weight 

 


