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Abstract

We start this thesis by introducing the theory of locally compact groups
and their associated Haar measures. We provide examples and prove
important results about locally compact and more specifically amenable
groups. One such result is known as the Folner condition, which char-
acterises the class amenable groups. We then use this characterisation to
define the notion of a pseudo-amenable group. Our central theorem that
we present provides new characterisations of pseudo-amenable groups.
These characterisations allows us to prove several new results about these
groups, which closely mimic well known results about amenable groups.
For instance, we show that pseudo-amenability is preserved under closed

subgroups and homomorphisms.
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Chapter 1

Introduction

1.1 History

The theory of amenability began with measure theory, which was famously
introduced by Lebesgue in the early twentieth century.

The Haar measure was introduced by Alfréd Haar in 1933 [9]. This was
important as it allowed for the construction of a measure which respected
the group structure. This meant that it would be possible to incorporate
many aspects of measure theory and functional analysis into the study
of (locally compact) groups. Haar proved in his paper the existence and
uniqueness of such a measure, and we shall closely follow his proof in this
thesis.

The notion of amenability was first introduced by Von Neumann as a
response to the Banach-Tarski Paradox. Informally, this paradox tells us
that we can partition the sphere in three dimensions and translate the in-
dividual components in such a way so that we obtain two copies of our
original sphere. Notably, this paradox was proven to only exist in dimen-
sions three or greater. This was shown to be a property of the underlying
group of rigid motions, and such groups where this did not occur were
shown to possess an invariant finitely-additive measure. This was used

by Von Neumann to define the class of amenable groups.

1



2 CHAPTER 1. INTRODUCTION

Later, in the 1950s, Day shifted the focus from finitely-additive mea-
sures to left-invariant means [3]. Day also introduced the term ‘amenable
group’ here as a pun. This shift to invariant means was also important as
it now makes it possible to use the machinery of functional analysis in the
study of amenability. As a result, the subject of amenable groups has re-
ceived much activity in the past several decades. Amenable groups have
applications in many other disciplines of mathematics as well, such as Lie

groups and Ergodic theory.

1.2 Overview

A major focus of this thesis will be to introduce the notion of pseudo-
amenability in locally compact groups, and explore some properties of
these groups. Before we can do this however, we shall review the exist-
ing theory that is necessary to work with such groups.

In Chapter 2] we present the definition of a locally compact group, and
prove the existence and uniqueness of a Haar measure on this group. A
Haar measure is a Borel regular measure that is finite on compact sets,
and is invariant under left translations. We shall use this Haar measure to
explore some of the structure on the group, and more importantly use it
to define some important spaces of functions. Of particular interest will
be the Lebesgue spaces L?(G), and the space of Borel regular measures
M(G). This chapter will follow the material presented in Cohn [1] and
Loomis [13].

We shall then use the Haar measure in Chapter 3| to define and study
the notion of amenability. We motivate this by introducing the Banach-
Tarski paradox, and discussing paradoxical decompositions on discrete
groups. This will lead us to the following definition of amenability.

Definition. We say that a locally compact group G is amenable if it has a left-
invariant mean (on L>°(Q)).
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We shall define the notion of a mean precisely, but it can be in essence
seen as a sort of integral. We will then show several equivalent formula-
tions of amenability, one of these being the Felner condition, given below.

(FC) For every ¢ > 0 and compact K C G, there is some Borel set U so
that 0 < A(U) < oo and

AMzUAU) < eX(U)
for every z € K.

We shall primarily follow the books of Greenleaf [8] and Paterson [18].
Finally, we introduce and study the properties of pseudo-amenability
in Chapter[d We present two new characterisations of pseudo-amenability

in the form of the following conditions.

(L) Foreverye € (0,1), there is some N € N such that foralln > N, and
all s1,...,s, € G (not necessarily distinct), there is some f € L'(G)*
so that

s+ £V ooV s Il < enllfl

(M) For every ¢ € (0,1), there is some N € N such that for alln > N, and
all s1,...,s, € G (not necessarily distinct), there is some y € M(G)*"
so that

[s1% V. Vs pl| < enlluf

The central theorem of this section is the following.
Theorem. Let G be a locally compact group. Then the following are equivalent:
* (G is pseudo-amenable.
* G satisfies (L).
* (G satisfies (M).
This result will allow us to characterise some of the basic properties

of pseudo-amenable groups, such as pseudo-amenability being preserved

under subgroups.
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1.3 Background

We shall assume that the reader has some familiarity with the relevant
background material. In particular, we assume working knowledge of
measure theory and functional analysis. We shall review some of the more
specific concepts as we need them, however we assume the reader is famil-
iar with basic definitions and results (such as the monotone convergence
theorem in measure theory). We shall also make use of some elementary

group theory and topology.



Chapter 2

The Haar Measure

2.1 Locally Compact Spaces

The ultimate aim of this chapter will be to construct a Haar measure. We
shall define this term precisely later; however in essence, this is a ‘well-
behaved” measure on a group which respects the group structure in a cer-
tain sense. This Haar measure will be particularly useful in studying the
analytic properties of the spaces on which they arise. For instance, one can
use this measure to define an integral, which in turn can be used to define
the Lebesgue spaces of functions (L spaces) on this space.

Haar measures arise on structures known as locally compact groups -
these are groups which are equipped with a locally compact topological
structure that is compatible with the group operations.

In this chapter, we follow closely the definitions and proofs presented
in Cohn [1}, Chapters 7 & 9] and Loomis [13, Chapter 6]. We start by intro-
ducing the type of topological structures we are interested in, as well as a
few results that we shall later use.

Definition 2.1.1. A topological space X is Hausdorff if for any distinct x,y €
X, there are disjoint open sets U and V so that v € Uand y € V.

Many ‘nice” topologies have the property of being Hausdorff. It is a

5



6 CHAPTER 2. THE HAAR MEASURE

condition that will give rise to many other nice results about the space.
For instance, in a Hausdorff space, one can show that all limits are unique
or that all compact sets are closed (in fact, one could derive the latter as a
corollary of Proposition[2.1.2).

By definition, being Hausdorff essentially allows us to separate any
two points using open sets. However, we can generalise this fact - we can

separate any two compact sets using open sets as follows.

Proposition 2.1.2. Let X be a Hausdorff space, and K and L disjoint compact
subsets of X. Then there exist disjoint open subsets U and V' containing K and
L respectively.

Proof. First we consider the case where K is the singleton {z}. Since X
is Hausdorff, then for every y € L there are open sets Uy, V,, so that z €
U,y € V,and U, NV, = 0. Now, {V,},cL is an open cover of L. By
compactness of L, there are y;,...,y, € Lsothat L C |J_,V,,. If we
define U = (_, U,, and V' = |J._, V,,, then these are precisely the open
sets we require.

For the general case, we have that K is some arbitrary compact set.
However, for every x € K, we know by the previous argument that there
are some open sets U, and V,, so thatz € U,, L C V, and U, NV, = 0.
Now, we have that {U, }.cx is an open cover of K, so by compactness
there are zy,...,x, € K so that K C |J_, U,,. Taking U = |J;_, U,, and
V =, Va,, we obtain the required open sets. O

We can then use this result to split compact sets in the following way.

Lemma 2.1.3. Let X be Hausdorff and K a compact set. Let Uy, Uy be open sets
so that K C Uy U Uy. Then we can find compact sets Ky, Ky so that Ky C Uy,
KQ - UQ, and K = Kl U KQ.

Proof. Let Ly = K\ Uy and Ly = K\ U,. These are both compact as a closed
subset of a compact set is compact. We can invoke Proposition[2.1.2]so that
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we can find disjoint open sets V; and V5, so that L; C V; and Ly, C V,. Now
let K1 = K\ Vi and K,y = K \ V,, which are also compact.

To show that these are our required sets, we need to show that K, C U,
Ky C Uy, and K = K; U K5. We can see the latter is true as

KUK, =K\ (VinV,) = K
Furthermore, we can verify that K; C U, as
K \Up = (K\V)\U = (K\U)\Vi=Li\Vi=0
Likewise, we have that Ky C U,, thus proving our claim. O

Naturally, one can extend this proposition for any finite number of
open sets.

Corollary 2.1.4. Let U = |J;_, U; where each U is open. Let K be a compact
subset of U. Then there are compact sets K;, so that K; C U, foreveryi=1...n,
and that K = J_, K;.

As a reminder, our aim is to construct a measure that is invariant to
translations. As we shall see, the construction of such a measure is done
using compact sets. However, for this process to successfully give us the
measure we desire, we need every point to be contained in a ‘sufficiently
large’ compact set. For this, we introduce the notion of a compact neigh-
bourhood and present the following definition.

Definition 2.1.5. A Hausdorff space X is called locally compact if for any
point x € X, there is a neighbourhood U of x and a compact set K so that

relUCK
We say that K is a compact neighbourhood of x.

In our definition, we require X to be Hausdorff in order to be locally

compact. Some authors will work with non-Hausdorff locally compact
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spaces. However, for our concerns, we will not need to look at these
spaces. As such, we shall assume that any locally compact space is au-
tomatically Hausdorff.

We note the definition of locally compact is equivalent to saying that
about any point x, we can find a neighbourhood U of = with compact
closure. We can see this as if we have z € U C K, with U open and K
compact, then U is a closed subset of K, and thus compact. The other
direction for this equivalence is trivial.

Local compactness allows us to obtain a few even stronger topological
properties. To start with we can show that all compact sets (not just the

singletons) are contained in an open set with compact closure.

Lemma 2.1.6. Let X be a locally compact space. Let K be a compact set. Then
there is an open set U so that K C U and U has compact closure.

Proof. For every z € K, let U, be an open set containing = with compact
closure. This gives us then that the collection of U, forms an open cover of

K. As K is compact, we can find a finite subcover {U; : i = 1,...,n}. If we
let U = |J_, U;, we have that K C U, and furthermore we can see that U
has compact closure as each U; does as well. O

We can improve this result. We can extend it to say that the open set we

tind (with compact closure) can be in a certain sense as small as we like.

Proposition 2.1.7. Let X be a locally compact space. Let K be a compact set and
U an open set containing K. Then there is an open set V with compact closure so
that

KCVCVCU

Proof. Let W be an open set containing K with compact closure. We can
replace W by WNU, so we can assume without loss of generality that W C
U. This W almost works as our candidate, but unfortunately it is possible
that I extends outside of U. To mitigate this, we let L = W — W (which



2.1. LOCALLY COMPACT SPACES 9

is compact), and use Proposition on L and K, so that we obtain two
disjoint open sets V; and V2 with K C Vj and L C V5.

If we now set V = V; N W, we can see that V' is our desired set. Firstly,
we can see that K C V. Next, we have that V is compact, as it is a closed
subset of a compact set (V). Lastly, we need to check that V' C U. So take
y € V. This gives us that y € V; and y € W. Since V; and V; are open
and disjoint, the former containment gives us that y ¢ V5. This tells us that
y ¢ L, so either y ¢ W or y € W. From before we have that y € W, hence
we have thaty € W C U, and so ; C U. O

We also need to introduce an important space of functions, namely the
continuous functions with compact support. We begin by defining the support

of a function as follows.

Definition 2.1.8. Let X be a topological space, and let f be a function mapping
X to C. Then the support of f is the set

supp(f) :=={z € X : f(x) # 0}

We can think of the support of a function being the set of points where
the function is “interesting’. Everywhere else the function is simply 0. If,
for example, two functions have disjoint supports, then one could say they
act on two different parts of the space. We can use this to define the space

of continuous functions with compact support.

Definition 2.1.9. Let X be a topological space. We let C..(X) denote the set of all
continuous functions from X to C whose support is compact

A function f with compact support means that it only acts on a com-
pact space, and is zero elsewhere. This is a strong definition, and at times
we need something slightly weaker. We can define another closely related

space of functions.

Definition 2.1.10. Let X be a topological space. A function f : X — Cis said to
vanish at infinity if for every ¢ > 0, the set {x € X : |f(x)| > €} is contained
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in a compact set. We let Cy(X) denote the set of all continuous functions that

vanish at infinity.

It is clear from the definition that functions with compact support will
always vanish at infinity.

We can use these functions to separate sets in a certain sense. To do
this we will need a result known as Urysohn’s Lemma, which we state

here without proof.

Theorem 2.1.11 (Urysohn’s Lemma). Let X be a normal topological space,
and let E, F' C X be disjoint closed sets. We can then find a continuous function
f:X —[0,1] so that f(x) = 0 for every x € eand f(x) = 1 for every x € F.

Here, a topological space X is normal if every pair of disjoint closed
subsets of X can be separated by a pair of disjoint open subsets. We can
see by Proposition[2.1.2] that any compact Hausdorff set is normal. Unfor-
tunately we will be working with spaces which are not necessarily normal,
so we cannot use Urysohn’s Lemma directly.

Recall that for any Borel set A C X, we can define a characteristic func-
tion by

1 z€A

0 z¢A

xa() =

Using this, we have the following weaker version of Urysohn’s Lemma for

locally compact spaces.

Proposition 2.1.12. Let X be a locally compact set. Let K be a compact set and
U an open set so that K C U. Then there exists a function f € C.(X) so that

xx < f < xu.

Proof. We can use Proposition to find an open set IV with compact
closuresothat K CV CV C U. Now Visa compact Hausdorff space and
is thus normal. By Urysohn’s Lemma, we can find a continuous function
g:V —[0,1] sothat g(x) = 1 forz € K and g(x) = 0forz € V\ V.
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Now define f : X — [0,1] by

Fa) = {g(:c) reV

0 otherwise

It is clear from the definition that yx < f < xy. We can check that f is
continuous as it is continuous on the closed sets VV and X \ V. Moreover

we have that supp(f) € V, so supp(f) must be compact, and therefore
f e C.(X). O

2.2 Topological Groups

We now wish to extend our topological space by adding a group structure.
This group structure should be compatible with the topology, and we can
do this as follows.

Definition 2.2.1. Let G be a group with a topology on it. We call G a topolog-
ical group if the group operations ((a,b) — a - band a — a™') are continuous
with respect to this topology.

When dealing with general topological spaces, we often deal with sub-
sets of our space, rather than individual elements. With this in mind, we
need a way of applying the group operation on subsets of our group. Re-
call that for any arbitrary function f : X — Y, we can implicitly define
f(A) ={f(z) : 2 € A} for any A C X. We extend this notion to the group

operation and group inverses, so that for any z € G and A C G, we have
zA:={zy:y e A}
At={yt.yec A}

As the group operation and inverse are continuous, it should be no sur-

prise that this operation preserves the topological structure.

Proposition 2.2.2. Let U be an open/closed/compact set. Then for any a € G,
the sets aU and U~ are also open/closed/compact respectively.
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Proof. This follows as the mapping = — ax is a homeomorphism. This can
be seen as it is bijective and continuous, and its inverse (z — a~'x) is also
continuous. Likewise the mapping = +— 2! is also a homeomorphism. [

This proposition will prove to be incredibly useful, as it means that any
topological group must have a topology which is invariant under both
translations and inverses. And indeed, this will be instrumental in con-
structing a left-invariant measure.

For now, we proceed with the following propositions. We note that we
say that a set A is symmetric if A = A"

Proposition 2.2.3. Let U be an open neighbourhood of the identity e. Then there
is an (open) neighbourhood V of e so that V'V is contained in U. Moreover we
can also find a symmetric neighbourhood of e that is also contained in U.

Proof. We know the group operation is continuous. So then the set W =
{(z,y) € G x G : zy € U} is open in the product topology (as W is the
preimage of U). Since (e, e) € W, it follows by the definition of a product
topology, that there are some neighbourhoods Vi, V> C G of e so that V; x
Vo CW. Let V =V, NV, We can see now that VV C V;V, C U, thus
proving the first part of the proposition.

For the second part, we note thatboth e € U and e € U~'. By continuity
of the group inverse, we know that U~ is open, so that gives us that U N
U~!is a symmetric neighbourhood of e contained in U. O

Proposition 2.2.4. Let G be a topological group, and H a subgroup of G. If H is

open, then H is also closed.

Proof. Since H is open, we know all of its cosets are open as well (as they
are simply translations of ). The complement of H is simply the union
of all its other cosets, so must be open. Hence H is closed. O

Proposition 2.2.5. Let G be a topological group. Let K C G be compact, and let
U be an open set so that K C U. Then there are open neighbourhoods Vi, and Vi
of the identity e, so that Vi, K C U and KVi C U.
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Proof. First take any € K. Then, we know (by Proposition that
x~'U is an open neighbourhood of e. So we can use Proposition to
find an open neighbourhood V, of e so that V,V,, C 27 !'U. Now, {2V, },cx
is an open cover of K. So take finitely many z; so that 2;V,, fori =1,...,n
cover K. Now define Vi = (\;_, V4,. So for any y € K, there is some x; so
that y € x;V,,. Hence we have that

yVr CyVy, C 2V, Ve, C i 'U =U

Since this holds for all y € K, then we have that KV C U. A similar
argument may be used to construct V. O

Naturally, we can also define locally compact groups in the obvious
way.

Definition 2.2.6. A topological group G is locally compact if its topology is
locally compact.

2.3 Existence & Uniqueness

We finally have the background to introduce the Haar measure. This mea-
sure will aid us in our study of amenable (and pseudo-amenable) locally
compact groups. We explore this connection in more depth in Chapters[3]
and

First however, we need to define precisely what a Haar measure is. We

begin by defining the following types of measures.

Definition 2.3.1. Let i be a non-trivial countably additive measure on the Borel
sets of a topological space X. Then i is a Borel regular measure (or simply
regular measure) if it satisfies the following:

* i is outer regular on Borel sets:
p(S) =inf{uw(U) : Uisopen and S C U}

for every Borel set S C X
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* ,uis inner regular on open sets:
pu(U) = sup{u(C) : C'is compact and C C U}
for every open set U C X

Definition 2.3.2. Let ;1 be a (Borel) regular measure on a topological space X.
We say 1 is a Radon measure if it is locally finite. That is for every x € X, there
is an open neighbourhood U of = so that U is p-finite.

We note here that when dealing with locally compact spaces, the defi-

nition of a Radon measure has the following equivalent formulation.

Proposition 2.3.3. Let y be a reqular measure on a locally compact space X.
Then p is a Radon measure if and only if it is finite on all compact sets.

Proof. First suppose p is a Radon measure, and let C' be a compact set.
For every x € C, let U, be a neighbourhood of x which is pu-finite. Then
{Uy.}zec is an open cover of C, so it has a finite subcover. It follows then
that for some z1, ..., z, € C, we have that

n(C) < p (U Uxi> = Zu(Um) <0

In the other direction, suppose 1 is finite on all compact sets. Take any
x € X. Then by local compactness, there is an open set U and compact set
Cso that x € U C C. But since u(C) is finite, it must follow that u(U) is
also finite. O

Since we study exclusively locally compact groups, we shall regularly
use this characterisation of Radon measures.

The measures we have defined so far only invoke topological prop-
erties of the underlying set. If we now suppose our underlying set is a
(topological) group, we can define the notion of a translation invariant

measure.
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Definition 2.3.4. Let ;1 be a Radon measure on a topological group G. Then p
is a (left) Haar measure if it is left-invariant. That is, for all ¢ € G and Borel
S C G, we have u(gS) = ().

Finding such a measure would prove incredibly useful in analysing
properties of groups. Even further, we can use this measure to define a
left-invariant Haar integral and to look at elements of Lebesgue spaces of
G. Indeed, there are several common examples of Haar measures. One of
the most notable of these is the Lebesgue measure, which plays a crucial
role when studying the analytic properties of R.

In general, there is no guarantee that such a measure exists. Fortu-
nately, certain groups facilitate the existence and uniqueness of such a
measure. In particular, all locally compact groups have a Haar measure,

and this result is known as Haar’s Theorem.

Theorem 2.3.5 (Haar’s Theorem). Let G be a locally compact group. Then
there exists a Haar measure \ on G. Furthermore, if 11 is also a Haar measure on
G, then there is some ¢ > 0 so that ;1 = c.

There is a fair amount of work involved in proving this theorem. We
shall follow the proof that is laid out by Cohn [1, Chapter 9].

We first briefly present an overview of the proof. Firstly we shall find
a way of comparing the size of compact sets, by using translations of open
sets as a ‘measuring unit’ of sorts. For instance, suppose we have an open
set U, and compact sets K; and K,. If we have that we can cover K; by
a union of 5 translations of U, and we can cover K3 by a union of 3 trans-
lations of U, then we will say that K is roughly 5/3 times larger than K.
By taking a kind of limit of smaller and smaller open sets, we can make
finer and finer estimates for this ratio. We can then fix any suitable com-
pact set to have unit size, and then we extend to other Borel sets using the
regularity properties. This will yield us our desired Haar measure.

Other proofs of this theorem do exist. Some follow a similar route,

where they construct a left-invariant integral on a space of functions, and
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derive the measure from there. Others take a different approach, some
without invoking the axiom of choice. We refer the reader to Loomis
[13,114] for alternative proofs of Haar’s Theorem using these methods. For
us this is a minor issue, and we instead focus on presenting a more intu-

itive proof of this result.

With that, we shall now begin the proof of Haar’s Theorem.

First we need some definitions. For convenience we define C to be the
collection of all compact subsets of GG, and U to be the collection of all
neighbourhoods of e.

Definition 2.3.6. Let K be a compact subset of G and V' a subset with non-empty
interior (V™). The covering number of K with respect to V is the smallest
integer n so that

=1

for some xy ... x, € G. We denote this number n by #(K : V).

This definition is well defined, as (z(V"")),cc is an open cover of K,
and by compactness must have a finite subcover.

We now pick a "unit set” that we will use to measure the size of other
sets. So fix some compact set K with non-empty interior. This set shall
remain fixed throughout the remainder of this section. We define the fol-

lowing ratio.

Definition 2.3.7. Let U € U (that is, U is a neighbourhood of e). The covering
ratio is the function taking compact sets to R by

#(K : U)

#(KO . U)

This function will serve as an approximation to our outer measure.

hU(K) =

Firstly however we prove the following properties about hy;.

Proposition 2.3.8. Take any U € U, © € G, and any compact sets K, K1, K.
Then it follows that
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S OG0 xR W N
>
A/\S\/—\/—\
=
VAN
>
S
2

Proof. First we claim that #(K : U) < #(K : Ky)#(K, : U). This can
be seen if we let #(K : Ky) = n and #(K, : U) = m, then there are
T1yeoos Ty Y1, -, Ym € G so that

K - OleO and KO - LmJ’y,LU

i=1 i=1
It follows then that o
i=1j=1

and so #(K : U) is at most mn. Dividing through by #(K : U) yields us
item [T}

Items 2] to[f] can all be derived easily from the definition.

For item [p] let n = #(K; U K, : U) with 24,...,z, € G so that we
have K; U Ky C |J;_, z;U. Now, each z;U will only meet with one of K;
or K5, otherwise we would have z € K;U ' N K,U~!. This means that the

sequence x; can be partitioned into two subsequences y; and z; so that
m m
Kl g Ule and KQ Q UZZU
i=1 i=1

Using this fact and item 5| we obtain item [} O

For smaller values of U, the function hy is a finer approximation of
the ratio. We can use this to obtain a function & by taking a sort of limit
where we shrink U down to {e}. We do this by constructing the following

topological space, whose members are functions from C to R. Namely, for
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each K € C, denote I to be the interval [0, #(K : Kj)] in R. We then
let X = []xcc Ik, and we give X the product topology. Note that by
Tychonoff’s Theorem, we know that X is compact.

From item 1} it is clear that each Ay is an element of X. Now, for any
V e U, we define S(V)) C X to be

S(V):=Thy :U e, U CV}

where A denotes the closure of A. Note that we trivially have that hy €
S(V). We claim that the intersection of all S(V') is non-empty.

So take finitely many V4, ..., V,, € U. Itis clear thatif welet V =, V;,
then S(V) € N, S(V;). Moreover this means that hy € (;_, S(V;), so
this intersection is non-empty. So the collection of all S(V') satisfies the
finite intersection property, and by compactness of X, this means that the
intersection of all such S(V) is also non-empty. So we can take and fix
some h € [y, S(V).

We can show the following facts about A, similar to those in Proposi-
tion2.3.8

Proposition 2.3.9. For every K, K, Ky € C, and x € G, the chosen function h
satisfies the following:

0 < h(K)

NS ks b=
>

Proof. It follows immediately from the definition of X that item[T]will hold.

For items [2] to[6] we can prove these all in a similar manner. We first note
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that elements of X are functions from C to R, and moreover that for any
K € C, the mapping from X to R given by F' — F(K) is a continuous map.
Now we prove item [f| Take any K, K, € C. Consider the mapping

which is continuous. Now, this map is non-negative at each sy (by item 5]
in proposition 2.3.8). This means that it is non-negative on each S(U), and
so must be non-negative at h. This proves item [}

We can repeat this form of argument for each of the items [2| to [5} re-
placing the mapping from X to R as needed. For instance, to show itemEll
holds, we can use the mapping F' — F(K)— F(zK) (which is zero on each
hy).

Lastly, we need to prove item[7] So let K; and K, be disjoint compact
sets. By Proposition we can separate these by two open sets, that
is, there are disjoint open sets Uy, U; such that K; C U, for ¢ = 1,2. From
Proposition we can find two open neighbourhoods Vi, V, € U, so
that I;V; C U;. If welet V =V} NVj,, then we know that K,V and K,V are
disjoint, and moreover, since V' € U, then by item |§| of Proposition
we have that

hy-1(K1 U Ks) = hy-1(Kq) + hy-1(K3)

This will also hold true if we replace V' by any U € U such that U C V.
If we again consider the map as in eq. (2.1), then we see that it vanishes at
each point in S(V~1!). Since h € S(V 1), item [7] follows. O

Now, & is only defined on the compact subsets of GG, so we want to
extend it to all subsets of G. We do this by defining an outer measure as
follows.

Definition 2.3.10. We define \ by first extending to the open sets as follows
AU) =sup{h(K): K € C,K C U}
and then further extending it to all subsets by
AMA) = inf{h(U) : U is open and A C U}
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We want to show that \ is an outer measure. From the definition (and
also item El in Proposition , it can be seen that )\ is non-negative,
monotone, and that A() = 0. All that remains is to show that it is count-
ably subadditive.

Lemma 2.3.11. The function X is an outer measure.

Proof. As mentioned, we need only check that \is countably subadditive.
We start by showing this for open sets.

So let U; be a sequence of open sets, and let U = | J;2, U;. Let K be any
compact subset of U. This means that X C |J_, U; for some n. Further-
more, by Corollary 2.1.4} it follows that there are compact sets K; C U; so
that K = |J_, K;. Using item|§| from Proposition and the definition
of A on open sets, we get that

hEK) < Zn: hEK;) < zn: \NU;) < f: AU;)

Since this holds for every compact K C U, it follows then that

So )\ is countably subadditive on open sets.

Now take some arbitrary sequence of sets A4;, and let A = Uf; A;. In
the case where S | A\(4;) = oo, subadditivity follows trivially. So sup-
pose that this sum is finite. Let ¢ > 0. For each ¢, choose some U; so that
A; C U; and

AU;) < MA;) + 2%
Let U = J;2, U;. It then follows that

~

MA) < MU) < SOMU) < 3O AA) e

Since this holds for every ¢ > 0, the countable subadditivity of A follows.

Hence ) is indeed an outer measure. O]
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Next we show that the Borel sets are A measurable. So take any open
subset U and some arbitrary subset A, and suppose A(A) < oco. By subad-
ditivity we have

AMA) < ANANTU) + AANT)
so we only need to show the other direction. Let £ > 0. Take some open

V D Asuch that A(V) < A(A) + ¢. Let K be a compact subset of V N U so
that

WE) >NV NU) -

Further, we take L to be compact subset of V' N K¢, so that

~

ML) > MVNKS)—e>NVNU) -

Now since K and L are disjoint, it follows that h(K) + h(L) = h(K U L).
This gives us that

MANU)+MANU®) =3 <AV NU)+ MV NU®) =3¢
sMK) h(L) —¢
= h(KUL)—
<AV) -
< A(4)

Since ¢ is arbitrary, we obtain that
MANU)+AANTU®) < A\A)

showing that U is A-measurable. This means if we restrict \ to the Borel
sets (call this restriction \), then we get that ) is a measure on G.

The last step is to check that )\ is a Haar measure. Using Proposi-
tion and Definition 2.3.10} it can be checked that A > 0, \(G) > 0, and
that )\ is invariant under (left) translations. Furthermore, Definition [2.3.10
immediately gives us outer regularity. Inner regularity is similar, but one
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must note that for any compact set K and open set U O K, we have
AU) > h(K), so that

AMK) =inf{\(U) : Uisopenand K C U} > h(K)

So using Definition we see that ) is inner regular. Lastly we have
that \ is finite on compact sets, as for any compact set K, by Proposi-
tion 2.1.7)there is an open set U 2 K with compact closure, giving us that

A(K) < A(U) < h(U)

So A\(K) is finite (since A is finite by definition).

We have shown the existence of a Haar measure on an arbitrary locally
compact group. To finish the proof of Haar’s Theorem (Theorem[2.3.5), we
also need to show the (almost) uniqueness of this measure.

First however, we need the following results.

Lemma 2.3.12. Let G be a locally compact group, and X\ a left Haar measure.
Then for any open U, we have A(U) > 0.

Proof. Since A is regular and non-trivial, there must be some compact set
K so that A(K') > 0. Now, the collection of sets (zU),c¢ is an open cover
for K, so thereis some z; € GG, fori = 1...nso that z;U cover K. It follows
that \(K) <>, AMz;U) = nA(U). So A(U) > 0. O

Corollary 2.3.13. Let G be a locally compact group and X a left Haar measure.
For any f € C.(G) where f is not identically zero and f > 0, we have that
Jo fdx>0.

Proof. Take some = € G so that f(x) > ¢ for some € > 0. Since f is contin-
uous, there is some neighbourhood U of z so that f(y) > e forally € U.
Then it follows that [, fdA > eA(U) > 0. O

Finally, we complete the proof of Haar’s theorem, by showing that the

Haar measure is unique.
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Theorem 2.3.14. Let p and v be two (left) Haar measures on a locally compact
group G. Then p = cv for some positive real number c.

Proof. Take any f,g € C.(G), with f,¢g > 0 and g not identically zero. We
claim that the ratio

J fdu

Jgdu
only depends on f and g (but not 1). Note that Corollary gives us
that this ratio is defined.

Now we define h € C.(G x G) by

f(z)g(yx)
[ g(tx)v(dt)

We can then use Fubini’s Theorem to observe the following identity

//ﬁmywmwmm»zfjﬁy*@wumwww

// u(dz)
We can evaluate the left side as

// 2, y)v(dy)u(de) //fgtx(yy(?t dy)p(de)

/f SRICLALILT e

t:z:)l/(dt)
and the right side

[ [t wmanuian = [ [ HEIE )
::/g@NWMX/IQWrS$ﬁﬁ

This means that the ratio of [ fdu/ [ gduis

ffdu:i/ fly~)v(dy)
[gdu [ a(ty=Hv(dt)

h(z,y) ==
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which as we can see does not depend on the choice of p. In particular this
means that for any f € C.(G), we have that

_Jydp
[gdv

for any fixed non-zero g € C.(G) with g > 0. Since this holds for arbitrary
f, it follows that p = cv. m

/fdu:c/fdy where ¢

2.4 Properties of the Haar Measure

With existence and uniqueness now established, we denote the Haar mea-
sure of a group by A. It is important to note that A may be scaled by any
positive constant, so we sometimes will fix it by normalising some set of
finite positive measure. We cannot always normalise the entire group G,
as although we are guaranteed to have A\(G) > 0 (as A is non-trivial), it
may be the case that \(G) = .

When A\(G) is finite however, we will often normalise A so that we have
A(G) = 1. In fact, we know precisely when this is the case. As it so hap-
pens, A(G) is finite if and only if G is compact. The proof given here was
adapted from [13, Theorem 29E].

Theorem 2.4.1. Let G be a locally compact group with Haar measure \. Then G
is compact if and only if \(G) is finite.

Proof. 1f G is compact it follows immediately that A\(G) is finite since A is a
Radon measure. Conversely, suppose that A\(G) is finite. Fix some compact
set K with A\(K) > 0. Now let N be any integer so that NA(K) > A\(G).
If we take any z;...2y € G, the collection of sets z; K ...z K cannot be
disjoint, as otherwise the total measure of the union would be greater than
AG).

From this, we can find somen < Nand z; ...z, € Gsothatx1 K ...z, K
are disjoint, but are no longer disjoint if we add any more translations of
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K. In other words, for any = € G, we will have that e KN(J}_, 2;K) # 0, so
that z € (J;_, z; K)K ~'. It then follows that (| J;_, 2;K)K ! = G, showing
us that G must be compact. O

Before we proceed with more results, we present some examples of

locally compact groups and their respective Haar measures.

Example 2.4.2. The following are examples of locally compact groups and their

respective Haar measures:

* Consider the group R with addition as the group operation and the standard
topology. The Haar measure then is simply the standard Lebesgue measure
on R. Indeed, the Lebesgue measure arises from the length function on
intervals of R, which is clearly (left-)invariant. Of course, more work is
required to show this holds for arbitrary sets, and to further show that it is
a Radon measure, however these are well known results.

 Let G be the affine group. We can consider this group as a subgroup of 2 x 2

(i)

where the group operation is matrix multiplication and the topology is the

matrices of the form

subspace topology inherited from R*. One can show the Haar measure of
this group can be defined by

1
AA) :/Agdadb

Furthermore, one can also show that

)\*(A)://A%dadb

defines a right Haar measure (i.e. a right-invariant Radon measure) on G.
It is of note that the measures X and \* are not scalar multiples of each other
and thus define two distinct measures.



26 CHAPTER 2. THE HAAR MEASURE

* If G is a discrete group, then the Haar measure is simply the counting mea-
sure. This is not difficult to show. Firstly we have that the compact sets of
a discrete group are precisely the finite sets, and thus have finite measure.
Outer reqularity follows immediately as all sets are open. This is true for
inner reqularity on finite sets as well, whereas the case for infinite sets can
be shown by constructing larger and larger finite subsets.

Lastly, we have that for any a € G, the mapping x — ax is a bijection,
so that |aX| = |X]| for any X C G, so that |-| is left-invariant. We note
that this arqument may be used to show that the counting measure is also
right-invariant.

In the last two cases we gave some examples of right Haar measures. It
should be unsurprising that one may modify the proof of Haar’s theorem
to work for right Haar measures, by changing the covering number in
Definition 2.3.6]to use right translations instead.

However, with the results we have for the left Haar measures, we can
prove Haar’s theorem for right Haar measures almost directly. The key
idea is the following definition. If we take any Borel measure 1, then we
define the measure * by

p(A) = p(A™) (2.2)

Proposition 2.4.3. Let G be a locally compact group and p a Borel measure on
G. We have that p is a left/right Haar measure if and only if 1* is a right/left Haar
measure respectively.

Proof. We first note that (1*)* = pu. Now, the mapping = +— z~' is a home-
omorphism of G, so that if p is a Radon measure, we know that p* is as
well (and the reverse is true as well). This means we only need to check
left/right-invariance.

So suppose 1 is a left Haar measure and hence left-invariant. Then

p(Az) = p((Az) ™) = pla AT = (A7) = p*(4)
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so p* is right-invariant, and hence a right Haar measure. The same ar-
gument applies in the reverse direction, and when p is a right Haar mea-

sure. ]

Corollary 2.4.4. Let G be a locally compact group. Then there exists a unique
(up to a constant multiple) right Haar measure p on G.

As we have seen in Example there are cases where the left and
right Haar measures are distinct (as it is for the affine group), and there
are instances where they coincide (such as any discrete group). In the
latter case, such groups are called unimodular, and we shall present a way
to characterise such groups.

To do this, we first need to define the following. If G is a locally com-
pact group with (left) Haar measure ), then we let \, be the measure de-
fined by

Az (A) == A(Ax)
It is not difficult to see that )\, is a Haar measure. Indeed, we have that
A (YA) = MyAz) = MAz) = N, (A), so A, is left-invariant. Moreover,
the mapping y — yx is a homeomorphism of G, so A\, will be a Radon
measure, and is therefore a Haar measure.

However, we know that the Haar measure is unique up to a constant
scaling factor. In other words, there is some positive constant ¢ € R so that

Az = cA. We use this to define the following.

Definition 2.4.5. Let G be a locally compact group with Haar measure \. Then
we define the modular function A as a mapping from G to R*, so that for every
x € G, and Borel A C G, we have

Ao(A) = MAz) = A(z)A(A) (2.3)

The modular function is independent of our choice of Haar measure.
Moreover, we can show that this function has several nice properties which
will be useful to us. Perhaps the most important of these is that this func-
tion is a continuous homomorphism. The argument we present here is a

modified version of the proof given by [10]
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Proposition 2.4.6. Let G be a locally compact group, and A its modular function.
Then A is a continuous (group) homomorphism from G to RT, where R* has a

group operation of multiplication, and the usual topology inherited from R.

Proof. We first see that A is a group homomorphism as
Alzy)A(A) = MAzy) = A(y)A(Az) = Az)A(y)A(4)

Next we show that A is continuous at the identity. For this we fix some
compact set K with non-empty interior, and let ¢ > 0. By outer regularity
of ), there is an open set U so that K C U and A\(U) < (1 + ¢)A(K). By
Proposition there is an open neighbourhood of the identity V' such
that KV C U. Now, we have that V N V™! is also a (non-empty) open
neighbourhood of the identity. So take x € V N V! so that

NEz) _ MEV) _ AU)

A =TmE S ME S ME)

<l+4e

We can apply the above inequality to ' as well, and since A is a group

homomorphism, we have that

1 1

Alr) = A(x~1) = 1+e¢

Thus we obtain that A is continuous at the identity. We can further see that
it is continuous everywhere by using the group homomorphism property.
O

As mentioned previously, one special class of locally compact groups
are the unimodular groups. These are groups where the left and right
Haar measures coincide. We can formulate this as a property of A.

Definition 2.4.7. Let G be a locally compact group. We say G is unimodular if
A(z) =1 for every x € G.

In particular if A(z) = 1 at every point z € G, then we have that \, =

A. This means that A is preserved under right translations, and thus is
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also a right Haar measure. So it is clear that left and right Haar measures
coincide in unimodular groups (and the converse holds as well).

From the definition of A, we can see that every commutative group is
trivially unimodular. The same is also true for compact groups, though
this requires a bit more work.

Proposition 2.4.8. Let G be a locally compact group. If G is compact, then G is
unimodular.

Proof. Since A is a homomorphism, it follows that A(z") = A(z)" for every
z € G and n € N. This means that if there is some z so that A(x) > 1, then
A is unbounded. Similarly if A(z) < 1, then A(z™!) = A(z)~! > 1, and so
again A is unbounded.

Now, we know that G is compact. Since A is continuous, it follows that
the image of G under A must also be compact, and so is bounded. By the
above argument, this means that there is no element = € G so that either
A(z) > 1or A(z) < 1. In other words, G is unimodular. O

We also saw that in Example that all discrete groups are also uni-
modular. This means that we have that all groups which are either abelian,
compact, or discrete, will be unimodular. However, the converse of this
statement is not true. For instance one may take R x S5, where S is the
(discrete) group of permutations on three objects. As S5 is not abelian,
then neither is this product group. Furthermore, this group is not compact
nor discrete as R is neither of these. However both groups are unimodular
so it is easy to verify that their product will be as well.

2.5 Haar Integral

As with any measure, we can use it to construct an integral on our mea-
surable real and even complex valued functions. This construction follows
the usual method of approximation by simple functions. We shall omit this

construction here, though one may look at Cohn [1, Chapter 2] for more
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details. We have in fact already used this integral in Theorem [2.3.14] to
show that Haar measures are unique. For convenience, we shall denote its
differential by dz, so that [ fdz := [ fdA.

We previously used the modular function to evaluate the measure of a
right translation of any set. We can use this to evaluate the integral of right

translations of functions as well. For characteristic functions, we have that

/XA(tx_l)dt = /XAx(t) dt = M(Az) = A(x)A(A) = A(x) /XA(t) dx

We can use this to generalise this fact as for any measurable function f we

get
/ ftx™Y)dt = A(x) / f(t)dt (2.4)

The first theorem we present here gives us a nice application of the mod-

ular function which allows us to evaluate certain integrals.

Theorem 2.5.1. For any integrable function f : G — C, we have that

/ f(z)da = / Fla YA de (2.5)

Proof. We first consider the case where f is the characteristic function of
some Borel set A. With this in consideration and using eq. (2.5), we define

a new measure /. by

We claim that p¢* = A\. We will show this by first showing that p is a right
Haar measure, and then using uniqueness to prove our claim

Firstly we see that p is clearly a positive measure - this follows from the
fact that A is positive. To show that . is a right Haar measure, we need to
prove that it is regular, finite on compact sets, and right-invariant.

Right-invariance follows from a straightforward computation. Using
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eq. , we see that for any Borel A C G and z € G we have
u(4r) = [ral)B6 dy
— [ xatvr A6 dy
=86 [ xalw)A((g) ) dy

= AA@*MMZMMJ

Next we can also see that p is finite on compact sets. For any compact
set i, we have that A is bounded on K, and furthermore we have \(K) is
finite. It follows then that p(K) is finite.

Lastly we need to show that p is both inner and outer regular. For this
we define the open set

1
Gn:{xeG:E<A($_1)<n}
Take any open set U. We claim that
w(UNG,)=sup{u(K): K CUNG,and K is compact} (2.6)

By inner regularity of )\, choose any increasing sequence of compact sets
K; € U N G, such that lim; .. A(K;) = AU N G,). In the case where
AMUNG,) is finite, this tells us that the set N := (UNG,,) \|J K; mustbe a A-
null set. Taking the limit of ;/(K;) and invoking the monotone convergence

theorem we find

lim pu(K;) = lim Az dz

1—00 1—00 Kz

= / Az dz
(UNGn)\N

= / Alz™Y) dz
UNGn
= pu(UNGy)
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Otherwise if A(U N G,,) = +00, we can easily check that u(U N G,,) = +oo.
Namely, we can find an increasing sequence of compact sets K; so that we
have A\(K;) > i. This gives us that

u(K;) = /K Az~ dz >i/n

and so in either case we get that eq. holds. As we let n — oo, we
obtain
p(U) =sup{p(K): K C U and K is compact}

showing us that y is inner regular.

Now we take any arbitrary Borel set A. Outer regularity follows im-
mediately if A is p-infinite, so let us suppose it is p-finite. Let ¢ > 0 and
n € N. Using the outer regularity of A\, we can choose an open set U,, C G,
so that AN G,, C U, and that A(U,,) < A(ANG,) + ¢/(n2"). From this we
obtain

pUn) = | A(z)da

U'n

:/ A(m_l)dx—i—/ Az~ dz
ANGy Un\(ANGy)

< pANG) + 5
It then follows that if we let U = | U, then A C U with u(U) < u(A) + ¢,
thus showing the outer regularity of ..

With this, we have shown that . is a right Haar measure. We know that
this means that ;1 must therefore be a left Haar measure. By uniqueness,
it follows that there is some positive constant ¢ so that /*(A) = cA(A) for
every Borel set A C G. For any € > 0, we can take A to be a sufficiently
small symmetric neighbourhood of ¢, so that |A(z)—1| < ¢ forevery z € A.
From this we have that
e (A)

L (AT — Dda] _ A(A)e
A(4) B

o= AA) AA)

=&

_1‘

Thus it follows that ¢ = 1, and so p* = A.
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We now have that eq. holds for all characteristic functions. How-
ever we know that integrals of arbitrary measurable functions are defined
in terms of the integrals of characteristic functions. Since this equation is
preserved under finite linear combinations, and also under taking limits,

it follows that it must hold for any arbitrary integrable f. O

One may consider the mapping f ~ f* where f*(z) = f(z=1)A(z ™).
This mapping is an involution on L'(G), and the above theorem tells us
that this involution is norm-preserving. Here we define L'(G) (and more
generally LP(G)) to be the usual Lebesgue space with respect to the Haar
measure. Recall that for a measurable function f : G — C, we define the

Il i= [ 1760 az) "

We then construct L?(G) by first constructing equivalence classes on the set

p-norm

of functions whose p-norm is finite. We say two functions f, g are equiv-
alent if ||f — g¢||, = 0. We then take this set of equivalence classes, and
this gives us the space L”(G). Some authors will explicitly differentiate
between the space of functions with finite p-norm and L?(G). For the sake
of simplicity and ease of presentation, we shall ignore this detail, and treat
each element of L”(G) as a function on G.

We can also define L>°(G), the space of essentially bounded functions.
In a discrete group this is simply the space of bounded functions. Other-
wise this is the space of functions which are bounded up to an exceptional
locally null set.

Definition 2.5.2. We define the essential supremum of a function to be

esssup f(x) := inf{ sup |f(x)| : N C G is locally null}
zeG z€G\N
The essential infimum is defined in a similar manner.

We then define the norm || f||» := esssup,cq|f|, and we can then use

the same construction as above to define L>*(G).
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As hinted at previously, one particularly important Lebesgue space
that we shall need is L'(G). We can turn this space into an algebra, or
more specifically a Banach x-algebra, by introducing a multiplication op-
eration. This multiplication takes the form of a convolution and is defined

as follows
(f * 9)(x /f gy 1z)d 27)

We can see this is indeed an element of L' (G) as

£l = [ | [ Faty o) ay

//|f g(y~'a)| dy de
Z//If(y)g(y‘ z)| dz dy
/!f z)| dz dy
= [1rwdy [lg@)ldz = 171lgl:

We note that we need to invoke Fubini’s theorem. We need it to both swap

dx

the integrals, as well as to show that function defined by f * g is indeed
measurable. However, to use this theorem, we typically require measures
to be o-finite (and not all Haar measures are o-finite). We can circumvent
this issue by restricting our space to the support of f and g (which is nec-
essarily o-finite). We also note that if we add the extra condition that f
and g are positive (in the sense that f(x), g(x) > 0 for every z € G), then
we obtain equality, so that || f * g||x = || f|l1||g]l:-

We shall omit the proof that L!(G) with these operations is a Banach x-
algebra, and instead refer the reader to Cohn [, Section 9.4] for the details.

Another important space we shall need is the space of complex-valued
Borel regular measures, which we denote as M (G). There is a natural
embedding of L'(G) into M(G), where for any f € L'(G), we define

s € M(G) by
= /Af(x) dz
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With this in mind, we can extend the notions of convolution and involu-
tion to M (G).

(15 )(A) = (1 x V)({(5,9) € G x G - 3y € A})
:/V(x_lA) dp(z)
= [y dv(w)

We can easily see that this is simply an extension of our previous defini-

tion, so that iy * 1y = pi5.4. Likewise we define the involution

We briefly mention here that M (G) is isometrically linear homeomor-
phic to the dual of Cyy(G). This result is known as the Riesz-Markov Rep-
resentation Theorem. This is a non-trivial result and we shall not prove it
here. However this result will be important in the following chapters.

We can also impose a lattice structure to some elements of these spaces,
via the notion of a join (least upper bound), which is denoted by V. For
real-valued functions of L'(G), this can be simply thought of as a point-
wise supremum (up to a locally null set). That is, for any f,g € L'(G), we
have

(f Vg)(x) := max{f(z),g(x)} (2.8)

for all z € G. It is not difficult to verify that f V g € L'(G) where we have

IF Vgl < If1+ gl
For M (G) however, this definition is not as straightforward. We again

only define this join for real-valued measures on this space. Since M (G) =
Co(G)*, we want our join to respect the structure of the predual. So for
pu,v € M(G), and Borel A C GG, we define

(uVv)(A) :=sup{u(X)+v(A—X): XisBoreland X C A} (2.9)

We again have that © vV v € M(G).
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This additional structure also allows us to define positive and negative

parts of a function:

fr=fVvo0 fT=(=f)vo (2.10)

so that we have f = f* — f~. We define this for measures in the same
way. It is of note that this definition for measures coincides with the posi-
tive and negative measures obtained via the Hahn-Jordan decomposition
theorem.

We can also use these parts of a function to define its absolute value.
We define

[fl=1"+1
For functions, this corresponds to the usual definition of |f|, where we
have |f|(z) = |f(z)|. However, this is not the case for measures (so in
general, |p|(A) # |u(A)]). More importantly, we can use this to define a
norm, where

lpell = 11l (@)
We note that this norm is only defined for real-valued measures. It is pos-
sible to define a norm for complex-value measures, however we shall for
simplicity omit this detail.

Using this definition of norm and the involution operations previously
mentioned, we can turn M (G) into a Banach *-algebra. We again omit this
proof, the details of which can also be found in Cohn [1, Section 9.4].

We can also consider taking the product of a function and a measure.
For € M(G) and f € L'(G).

(o f)(x /fy ) dp(y
and
(Fn)(e) = [ FlayAG ) duty)

We shall omit the calculations here, but one may verify that these products
are elements of L'(G). In particular we have || f1], || f*u|| < [|u|l]| fl, with
equality holding when both 1, and f are positive.
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One particularly important measure we need here is the Dirac point
measure 6,(A) (where z € ), which is 1 precisely when =z € A, and
0 otherwise. This means that for any x € G and f € L'(G), we have
[ fdé, = f(x). If we use these in our product, we get that

(5 N)y) == (6. % )y /fzyd5 — [ y)
(f % 2)(y) = / Fur A dby(2) = flyz A

This gives us a convenient way to define translations of functions (and mea-
sures), using convolution. We shall use the notation frequently throughout
the remainder of this thesis.

One useful result that we previously alluded to is that we can embed
LY(G) into M(G). This embedding preserves all the structure properties

we have discussed here. Recall that for any given f € L'(G), we define

puy € M(G) by
:/f(x)dx (2.11)
A

Indeed this definition gives rise to the following important theorem.

Theorem 2.5.3. The mapping f — iy as defined above is a linear embedding of
LY(G) to M(G). Moreover this mapping preserves the norm, joins, and transla-
tions.

Proof. We omit the details showing that p; € M(G). However it should
be clear that this indeed defines a measure, and one could verify that is a
Borel regular measure. It is however clear that this mapping is linear, and
so is a linear embedding.

To show it preserves the lattice structure (joins), we first take any f €
LY(G). Itis clear that yiy = py+ — pup-, where both 4+ and 14— are positive.
Now let P = supp f*, and define N = G\ P. It is not difficult then to verify
that yip+ (V) = 0 and pp- (P) = 0, thus showing that act on two different

components of G. In particular, this gives us that ;s+ and py- form a
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Hahn-Jordan decomposition of ;. Since this decomposition is unique, it
must follow that i+ = p7 and ;- = pu5.

We can now use this to show that our mapping preserves joins. We note
that this mapping will take real-value functions to real-valued measures.
If we take any real-valued f, g € L'(G), then we know that

Hvg = Hg = H(f-gvo = H(f—grt = ;g = H(—g) ¥ 0= (s V g) — pig
Hence iy = 115 V 114, thus showing that the embedding f — 11 preserves

joins. We can also use this to see it is norm preserving, as for every f €
L'(G) we have

sl = [ps[(G)
= uf (G) + py (G)
= pp+(G) + pyp-(G)

= [ 1) dz =111

Lastly we would like to show that this mapping preserves translations.
In particular we want to show that s * p; = ps.s for every f € L'(G) and
s € G. So take f € L'(G) and some s € G. Then for any h € Cy(G)

(s*pp, h) = /hd(s*,uf)

— [ hew) 45,60 dusto)

h(sy) dps(y)

h(sy)f(y)dy
(y)f(s™'y) dy

h(y)(s * f)(y) dy

I Il
>

hdpsey = (pses, h)

Since this holds for all £, it follows that s * j1f = fi.. O



Chapter 3

Amenability

3.1 Paradoxical Decompositions

We begin this chapter by presenting the infamous Banach-Tarski Paradox,
and briefly investigating what are the necessary requirements for such a
paradox to occur. The Banach-Tarski Paradox can be stated as the follow-

ing theorem.

Theorem 3.1.1 (Banach-Tarski Paradox). Let Sy be the unit sphere in three
dimensions. Then there is a partition Ay, As, Az, Ay, As of Sy and rigid transfor-
mations g1, g2, g3, ga, g5 € SFE(3) such that:

* The sets g1(A1), g2(A2), g3(As) are disjoint.
* 91(A1) Uga(A2) U g3(As3) = Se.

® The sets g4(A4), g5(As) are disjoint.

* g4(As) Ugs(45) = So.

Here, the set of rigid transformations SE(3) is the set of all rotations,
translations, and combinations of both (in three dimensions).

To summarise informally, this theorem tells us that we can take the unit
sphere, split it into finitely many pieces, then using only translations and
rotations, reassemble these pieces into two copies of the original sphere.

39
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This is a surprising result which strongly contrasts our intuition about
how real three dimensional objects behave.

One resolution to this paradox is that the proof of this theorem requires
the axiom of choice. In particular, the sets A; will not be Lebesgue measur-
able. This means that one could not perform such a decomposition using
physical spheres, which partially explains the origin of such a paradox.

However this alone is not enough. It turns out that we cannot do such
a decomposition for the unit circle (S), despite the fact that it also contains
non-measureable sets (assuming axiom of choice). Moreover, we can even
get a modified version of this statement without choice. It was shown by
Dougherty and Foreman [4] that one can make a similar sort of decom-
position using sets with the property of Baire, though one must take the
closure. Crucially, what this means, is that this sort of decomposition is not
a result of non-measureable sets, but rather something else. In fact, this is
due to a certain property of the group acting on this set, in this case SE(3)
(the set of proper rigid transformations). We shall formalise this property

into a definition.

Definition 3.1.2. Let G bea group, and let A,, ..., A,, By, ..., By, bea partition
of G. We say that this partition is a paradoxical decomposition if there exist
elements xy,..., Ty, Y1,...,Ym € G so that G = J;_, v;A; and G = \J" , y; B;.
We say that a group G is paradoxical if it has a paradoxical decomposition.

Perhaps the simplest example of a paradoxical group is the free group
of rank 2. This group (denoted F3) is generated by two elements a and b,
so that these two elements are independent from each other. Another way
to more explicitly construct this group, is to consider the set of all finite
words using the symbols a,b,a™*,b~!. We say that a word is reduced if it
has no pair of adjacent letters of the form xzz~! (or 2~ 'x). Then the group
F, is simply the set of all reduced words, including the empty word, which
we write as e. Naturally, the group operation is concatenation, reducing
the word if necessary.
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Figure 3.1: The free group F, with its paradoxical decomposition.
Proposition 3.1.3. The group F, is paradoxical.

Proof. For any reduced word z in F,, we denote W (z) to be the set of all
(reduced) words which begin with x. We shall use this to define our para-
doxical decomposition as follows.

First let A be the set of all words which only contain the letters a and

a~'. We define our partition as follows.
Ai=W(@UA  Ay=W(@ ") \A B =W()) By =W (™)

We can easily see these are disjoint, and it is not hard to check that they
do indeed partition F,. A visual representation of this partition is given in
Figure 3.1}

Next we choose 1 = a%, 29 = ¢, y1 = b, and y» = e. The crucial
observation here is to see that z~'W (z) = F;, \ W(z™'), where z is any one
of a,b,a!,b~!. Furthermore, we have that aA = a='A = A, so it follows
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that
11 AL UxoAy = [a ' W(a) Ua ' Al Ue[W(at) \ A

= [RA\W(@HUAUW(a™)\ 4]
=R\ W@hHuAuW(a™)

= FRUAUW(a™)

= F5

We also have
1B UysBy = [\ WO HUW (B! = K

and hence this partition does indeed form a paradoxical decomposition.
O

The existence of such a decomposition in a group is somewhat prob-
lematic when one attempts to study measures on the group. Consider a
group G with a paradoxical decomposition A,..., A,, By,...,B,,. Let p
be any finitely additive, translationally invariant measure on ;. Then we
have that

W(G) = Z pu(A;) + Z p(B;) (3.1)

as these sets partition G. However, since they also form a paradoxical
decomposition, then there are elements z1,...,2,,y1,...,yn € G so that
G =U._,z;A and G = |J.", y; B;. Therefore we have that

u(@G) =p (U xﬁh) < ZM(%AO = ZM(AU
and similarly
(@) < Zu(Bi)

By eq. (B.1), this means that ;(G) > 2u(G). Then the only two possible
solutions are either that ;(G) = 0 (and the measure is trivial), or u(G) = oco.

In particular we note that we cannot have a non-trivial finite measure on
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G. In fact, the converse is true as well, and this is result is known as Tarski’s
Theorem.

Theorem 3.1.4 (Tarski’s Theorem). Let G be a group. Then there exists a
finitely additive, left-invariant measure ;1 on G so that u(G) = 1 if and only
if G is not paradoxical.

We omit the proof in the other (more difficult) direction, and refer the
reader to Wagon’s book [22][Corollary 9.2]. We use this theorem as moti-
vation for the following definition.

Definition 3.1.5. Let G be a group. We say that G is amenable if there exists a
finitely additive, left-invariant measure y on G so that 1(G) = 1.

This is an important definition. By using Theorem we see that
amenability is precisely what disallows paradoxical decompositions. One
immediate example of amenable groups is all finite groups, where we may
simply use the counting measure as our left-invariant measure. All abelian
groups are also amenable, though showing this requires some work. On
the other hand, we know any group with a paradoxical decomposition
is not amenable. So by Proposition the free group of rank 2 is not
amenable. In fact, the Banach-Tarski Paradox tells us that the group SE(3)
is also paradoxical, so it too is not amenable.

The class of amenable groups also has nice closure properties. For in-
stance, any subgroup of an amenable group is also amenable. This is easy
to see for the case where the subgroup has non-zero measure (as one may
simply take the restriction of the measure), but it is more difficult other-
wise. We shall prove this and other similar results in the following section,

where we shall generalise this definition of amenability.

3.2 Left-Invariant Means

A natural next step is to try and extend the definition of amenable groups

to topological groups. In the case of discrete groups, where the topology
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is trivial (one could even consider such a group as not having any topo-
logical structure at all), we would like our new definition of amenability
to coincide with Definition B.1.5

With this in mind, we first notice that the existence of a finitely addi-
tive left-invariant measure gives rise to a certain kind of integral. As our
measure is only finitely additive, we do not have the access to all of the
machinery of measure theory (such as the monotone convergence theo-
rem). However, this integral does exist and is an example of a so called

left-invariant mean.

Definition 3.2.1. For a locally compact group G, we define a left-invariant
mean to be a linear functional m on L>(G) so that:

* m is left-invariant, that is m(x = f) = m(f) for every f € L*(G) and
req.
 Forevery f € L>®(G), we have

essinf f(z) < m(f) < esssup f(x)
reG z€G

We note that the last condition on m is equivalent to condition that
m(1l) = 1 and m(f) > 0 whenever f > 0. We can also use the term
left-invariant mean to describe such means on spaces other than L>(G),
most commonly on spaces such as the continuous bounded functions on
G. Such means are defined almost identically, with the exception that the
essential infimum (supremum) is replaced with the infimum (supremum).

Two particular spaces of functions that we shall need are C' B(G) and
UCB,(G). The former is simply set of all functions f : ¢ — C that are
both continuous and bounded. The latter is the set of all function which
are right uniformly continuous and bounded. Here we say a function f is
right uniformly continuous if for any € > 0, there is an open neighbourhood
U of the identity such that | f(z) — f(zy)| < e forevery x € Gand y € U.

As we have seen, all amenable groups (in the sense of Definition |3.1.5)
will have a left-invariant mean by way of integration. We extend this def-

inition to all locally compact groups.
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Definition 3.2.2. Let G be a locally compact group. We say G is amenable if it
has a left-invariant mean on L>(G).

There are many examples of amenable groups, and perhaps the sim-
plest are compact groups. We simply define our left-invariant mean to be
m(f) = [ fd\ where the Haar measure ) is normalised so that A\(G) = 1
(see Theorem 2.4.T). Another example of amenable groups is any abelian
group. Showing that all abelian groups are amenable is less straightfor-
ward, though we shall later give a rough overview of the proof. One of
the key steps in this will be to show that the discrete group of integers Z
(under addition) is amenable.

The class of amenable groups has nice closure properties. As one would
expect, amenability is preserved under subgroups, and also under homo-

morphisms. With this in mind we state the following theorems.

Theorem 3.2.3. Let 7 be a surjective continuous homomorphism from G to H,
where both G and H are locally compact groups. If G is amenable, then so is H.

Theorem 3.2.4. Let G be amenable. If H is a closed subgroup of G, then H is
amenable.

Theorem 3.2.5. Let G be a locally compact group, and H a closed normal sub-
group. If both H and G /H are amenable, then so is G.

Theorem 3.2.6. Let G be a group and let H be a collection of amenable subgroups
of G such that for any H,, H; € H, there is some H), € H so that H; U H; C Hj,.
Furthermore, if we have that the directed union of all these sets is G, (that is
G = U H), then it follows that G is amenable.

These theorems give us nice properties about the class of amenable
groups. Their proofs (as given in Greenleaf [8, Theorems 2.3.1 - 2.3.4]) of-
ten involve constructing a left-invariant mean on spaces other than L>(G).
It

For instance the proofs often construct a left-invariant mean on CB(G).
) or

turns out that the existence of a left-invariant mean on either CB(G
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UCB,(G) is equivalent to amenability (see Greenleaf [8, Theorem 2.2.1]).
We shall use this to prove Theorems[3.2.3]and 3.2.5

Proof of Theorem Let m be a left-invariant mean on CB(G). If f €
CB(H), then f om € CB(G). Then it is not hard to verify then that the
mapping f — m(f o) is a left-invariant mean on CB(H). O]

Proof of Theorem[3.2.5] Take f € UCB,(G), let m; be a left-invariant mean
on CB(H), and let my be a left-invariant mean on CB(G/H). Then we

have that for any net z, € G where z, — z, we get
|xax f—x* f|| =0

Thus it follows that m,(x, * f) — mi(z * f). In other words, the function
F defined by

F(z) =m(z = )

is a continuous bounded function on G. Moreover it is constant on the
cosets of H, so we can therefore treat F' as a function in CB(G/H). With
this, we define m on UCB,.(G) by m(f) = ms(F). One may easily check
that this is a left-invariant mean, giving us that GG is amenable. O

Perhaps more interestingly, is that we can formulate numerous other
conditions that are equivalent to amenability, but on the surface may ap-
pear very different. In this thesis, we shall study one in particular that is
known as the Fglner condition.

3.3 Folner Conditions

The term “Folner condition’ is often used generally to describe one of many
characterisations of amenability that are often of a combinatorial nature.
The first and perhaps most important of these is referred to as the Folner

condition, and was introduced by Felner in 1955 [7].
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(FC) For every ¢ > 0 and compact K C G, there is some Borel set U so
that 0 < A\(U) < oo and

MzUAU) < eA(U)
for every z € K.

The symbol A here denotes symmetric difference (so that AAB = (A \ B)U
(B\ A)). Felner showed this condition to be equivalent to amenability
in the discrete case. The non-discrete is case is less straightforward and
requires some work, but was eventually proved by Namioka [16]. The
main approach to this proof will be to find some intermediate statements
which are also equivalent to amenability (and are also important in their
own right). We shall roughly follow the proofs given in Greenleaf [8] and
Paterson [18].

We first introduce the following definition for convenience.

Definition 3.3.1. For a locally compact group G, we define the set P(G) as the
set of all positive functions in L'(G) with unit norm. That is

P(G):={f € L (G): f = 0,[|IflL =1} (3.2)

We also introduce the notion of converging to left invariance. There are
two variations of this definition, and we shall need both.

Definition 3.3.2. Let f, be a net in P(G). We say that f, is convergent to left
invariance if for every © € G, we have that ||x * fo, — fol|l1 — 0as « tends to
infinity.

Definition 3.3.3. Let f, be a net in P(G). We say that f, is convergent to

topological left invariance if for every ¢ € P(G), we have that ||¢x fo,— fo|1 —
0 as o tends to infinity.

These definitions naturally may also be extended to define conver-

gence to right invariance, as well as also the notion of weak convergence
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(where one uses the weak-* topology instead of the norm). For our pur-
poses however this definition will suffice. As it so happens, the existence
of a sequence that is convergent to (topological) left invariance is equiv-
alent to amenability. The following result, which we state without proof,
was first introduced and proved by Day [3].

Theorem 3.3.4. Let G be a locally compact group. Then the following are equiv-
alent:

* (G is an amenable group
* There is a net in P(G) that is convergent to left invariance.

* There is a net in P(G) that is convergent to topological left invariance.

This is a powerful statement as it allows us to restate the amenability in
terms of a net in P(G). Finding such a net is often easier than constructing
a left-invariant mean, as the dual of L>°(G) is a very large space. The exis-
tence of such a net in P(G) also allows us to formulate similar conditions

that are also equivalent to amenability.

(R) For every € > 0 and compact set C, there is some f € P(G) so that

[z f = flli <e
forevery z € C.

The above condition is often referred to as Reiter’s condition. This was in-
troduced by Reiter [21) p. 405, equation (ii")] and was later shown to be
equivalent to amenability by Hulanicki [11]. The proof we present here

follows closely to his original proof.

Theorem 3.3.5. A locally compact group G is amenable if and only if it satisfies
condition

Proof. Firstsuppose G satisfies[(R)] Let J be the collection of all pairs (¢, K)
so that ¢ > 0, and K is a compact subset of G. We can apply a partial
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order on J by saying (1, K1) < (g2, K3) if both &1 > e and K; C K, (so
that in the limit, € gets very small and K gets very large). Now, for any
j=(e,K) € J,wetake ¢; € P(G) to satisfy condition item [(R)} That is

|z *¢; — &) < e

for every x € K. We can see that as we take a cluster point of this net of
functions, we get that ||z * ¢; — ¢;|| — 0 for every = € G. Hence the net
{¢;};es will converge to left invariance. So G is amenable.

In the other direction, we suppose G is amenable, and take a net ¢,
converging to topological left invariance. Take some ¢ > 0, compact set
K C G, and fix some element 5 € C.(G), where (3 is positive and has unit
L'-norm (so that 8 € P(G)). We can find some sulfficiently small compact
neighbourhood E of the identity so that

lpp x5 —=pll<e and  [[ixf—-f| <e (3.3)

forallt € E. Here ¢ € P(G) denotes the normalised characteristic func-
tion of E. The existence of such a set can be seen by the (uniform) con-
tinuity of 3. By compactness of K, we can find finitely many elements
T1,...,2, € Gsothat K C |J._, z;E. As ¢, converges to topological left

invariance, we can find some ¢, so that

|02 * Yo — @all < € and 18 % 00 — @al| <€ (3.4)

We choose ¢ = [ * p,, which we will show satisfies ||z % ¢ — ¢|| < be for
all z € K. To do so, we first see that any element x € K can be written as

x = x;t forsomei =1,...,nand ¢t € E. This means that we have

g * @ —tx ol <o * o=l + e -ty
< log * 8 = Blllpall + 118 = ¢ * Blllall

< 2¢

where the last equality holds by eq. (.3). From this we obtain

|pai % @ — wit x @|| = [[pp* o —t % @] < 2¢
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Now, we can do the following

[ % o — @l < ||zit * @ — duy * Il + | Pniz * ¢ — ¢l
<26+ ||pp5 @ — ¢
<26+ [|[¢nip * @ — GuiE * Pall + |62,8 * Lo — Pall + o — ¢l
< de + ||¢u,elllle — @al
< 5e

The final inequality is obtained by applying eq. to each of the three
normed terms. This gives us our desired inequality, and completes the
proof. O

This theorem is a major stepping stone in showing that condition [(FC)|
is equivalent to amenability. To prove this we will introduce a weaker vari-
ation of the Felner condition, and simultaneously show both are equiva-

lent to amenability. The condition is as follows:

(WFC) For any 4, ¢ > 0, and any compact set C' C G, there are Borel sets U, N
so that 0 < A(U) < 00, A(N) < 6, and

MazUAU) < eX(U) (3.5)
forallz € C'\ N.
We can now prove this result.
Theorem 3.3.6. Let G be a locally compact group. The following are equivalent.

* G is amenable.
* G satisfies (WFC)|
* (G satisfies
Proof. We first show that amenability implies Lete, 0 > 0, and take

any compact set C. Since (G is amenable, then we have that holds, so
take some f € P(G), so that ||z x f — f|| < ed/\(C) for all z € C. Without



3.3. FOLNER CONDITIONS 51

loss of generality, we may assume that f is a positive simple function, and

f - Z az’¢Ai
=1

where A; D --- D A,, are \-finite, non-null Borel sets, and a; > 0. Now, we
have that

Zal” 2 g S =!\w*f—f|!1<%

i=1

write

Integrating = over C' we get

“ A;AA;
Z 0 / Az A AA:) de < &6
—~ Jo  MA)
and since this is a convex sum, there must be some A = A; so that

L/A@AAA)

NA) der < &b

Now, let N C C be the set of all points © where \(zAAA)/A(A) > e. Since
the value of the integral is strictly less than €4, it then follows that size of
N must be \(N) < §. Hence we have that

AzAAA)

)\(A) <e

for every x € C'\ N. So G satisfies |(WFC)

Now suppose G satisfies and we will aim to show that it sat-
isfies So let ¢ > 0 and let K be a non-null compact set. Take A =
K U KK, which is compact. We can then applyto /2,6 = 3A(K)
and the compact set A. So there are Borel sets U and N C A so that U is
AM-finite and non-null, A\(N) < 4, and

A@UAU)<%A@U
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for every x € A\ N. For convenience we define M = A\ N. Now, for
every x € K, we have

AMzANA) = AN(zKUzKK)N(KUKK)) > M(zKNKK) = MzK) = A\(K)
so it follows that
20 < MNK) < ANzANA) < XNazMNM)+AN)+XzN) < XaM N M)+ 26

This gives us that M N M must be non-empty (as it is not null), and so
r € MM~!. In other words we get that K C MM~
Following on from this, if we take any n,m € M, from the condition

given by we get that

AnmTUAU) = X\(m™'UAn'U)
AXmTUAU) + MUAn™'U)
ANmUAU) + MNnUAU)
<eAU)

<

If we let z = nm ™!, we see that A\(xUAU) < eA\(U) forallz € K C MM~
Hence G satisfies [[FC)|

Lastly, we show that implies amenability. For any ¢ > 0, and
compact set K, we know by [[FC)|that there is some Borel set U so that for
every x € K, we have

MzUAU) < eA(U)

If we let ¢ = ¢, we see that

1

for all z € K. Thus G satisfies[[R)] and is therefore amenable. O
We have already seen that all compact groups are amenable. A clas-

sic example of a non-compact amenable groups is the (discrete) group of

integers Z. We can show this is amenable using Folner’s condition.
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Example 3.3.7. The discrete group of integers Z is amenable. Take any ¢ > 0 and
any finite (compact) subset C. Let m = max{|c| : ¢ € C'}. Further, let U be the
set of all integers between —n and n (inclusive), where 2n +1 > 2m/e. It follows
that for any x € C (so |z| < m), we have

(z+U)AU| 2|z
|U| C2n+1

e

Hence U satisfies Folner's condition, and so Z is amenable.

In fact, the very same argument can be used to show that R under
addition is amenable as well. Furthermore, this argument can be used
to show that every abelian group is amenable. We shall present a sketch

proof of this theorem, as we omit a few minor details.
Theorem 3.3.8. Every abelian group is amenable.

Proof sketch. Firstly, since the direct product of two groups is amenable
(Theorem [3.2.5), we see that for any integer n, the group Z" is amenable.
We can then use a combination of this fact and that amenability is closed
under direct unions (Theorem 3.2.6) to show that any free abelian group is
amenable. Here a free abelian group is defined in a similar way as to the
free group - we have a basis set X (which may be infinite) which is used to
generate the elements of our group. Naturally, the elements of this basis
are defined so that they commute with each other.

Now we take any abelian group G. It is not difficult to see that we
can find a free abelian group F' so that there exists a surjective homomor-
phism from F' to G. We can then use Theorem [B.2.3]to see that G must be

amenable. ]
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Chapter 4

Pseudo-Amenability

4,1 Definition

We introduced the Folner condition [[FC)|in the previous chapter, and we
showed it was a characterisation of amenability. One may strengthen this

condition as follows.

(SF) For every ¢ > 0, and every compact K, there is a compact C' such
that
MEC\ C) <eX0) (4.1)

This condition was shown to be equivalent to Felner’s condition (and
hence also to amenability) by Emerson and Greenleaf [5].
It is also possible to weaken the Folner condition as follows.

(WF) For every € > 0, there is an n € N such that for every finite ' C ¢
with |F'| > n, there is a compact C so that

ANEC) < |E]NC) (4.2)
for every £ C F' with |E| > n.

This condition was introduced by Pham and was proven to be equivalent
to amenability [19, Theorem 5.1].

55
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One may ask if quantifying over large enough subsets of F' in
is necessary. Removing this constraint, we obtain a condition is known as
pseudo-amenability, which was introduced for discrete groups by Dales and
Polyakov [2, Definition 5.5]. We restate this definition for general (non-

discrete) locally compact groups.

Definition 4.1.1. Let G be a locally compact group with Haar measure \. We
say G is pseudo-amenable if it satisfies the following condition.

(PA) For every € > 0 there is some n € N such that, for every finite F' C G with
|F'| > n there is some compact C C G so that

AFC) < |FINC) (4.3)

From condition[(WF)} it is immediate that amenability implies pseudo-
amenability, however the converse still remains an open problem. One
may alter condition[[WF)|slightly, so that instead of requiring it to hold for
every ¢ € (0,1), we instead modify the quantifier so that it need only be
true for one € € (0,1). As it turns out, this weaker condition is still equiv-
alent to amenability [19, Theorem 5.1]. One may weaken the condition for

pseudo-amenability in a similar way:.

Definition 4.1.2. Let G be a locally compact group with Haar measure \. We
say G is weakly pseudo-amenable if it satisfies the following condition.

(WPA) There exists some € € (0,1) and n € N, so that for every finite ' C G with
|F'| > n there is some compact C C G so that

A(FC) < £|FIA(C) (4.4)

Naturally, this condition is weaker than It is an open problem as
to whether this condition is equivalent to pseudo-amenability. Through-
out the rest of this chapter, we focus on pseudo-amenability. However, the

majority of proofs we use do not manipulate ¢ in any way. This means
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that many of the theorems we present can be stated for weakly pseudo-
amenable groups as well. We shall omit the statements of these theorems
and their proofs for the sake of brevity.

We briefly note here that in egs. and (#.4), we have that our finite
set I is on the left side of the product F'C. We can then interpret these
equations as saying that the size of multiple left translates of a compact set
C'joined together is a factor of € smaller than the size of the sets individu-
ally.

In the case where our group G is a discrete group, the definition of
pseudo-amenability may be simplified somewhat. Namely we get that C

must be finite and our equation can be written as
|FC| < e|F||C| (4.5)

Using this formulation, we can in fact directly show that any subgroup
of a discrete pseudo-amenable group is itself pseudo-amenable. The non-

discrete case will require some more work, and we shall prove it later in
the chapter (see Theorem ¢4.3.2)).

Theorem 4.1.3. Let G be a discrete pseudo-amenable group. If H is a subgroup
of G, then H is pseudo-amenable.

Proof. First, let e > 0, and take n € N large enough, so that for every finite
F C G with |F| > n, there is a finite set C' C G such that

|FC| < e|F||C] (4.6)

Fix some F' C H with |F| > n.

Define C to be the collection of all non-empty finite sets C' with posi-
tive measure which satisfy eq. above. We note that as G is pseudo-
amenable, then C must be non-empty. We also note that since every set
in C is finite, C must have some minimal element (though it may not be
unique). Here we define minimality in terms of cardinality, so that for
A,B € C,wehave A < Bif|A| <|B].
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Further we claim that C is invariant under right translations. To see
this, take any C' € C and = € G. We want to show that Cz € C. First we
note that clearly C'z is also compact (finite). Moreover, we will have that
|Cz| = |C|, so that

[FC| < elF|C]

which implies that
|FCzx| < e|F||Cx|

Hence Cz € C, and so C is invariant under right translation.

Now, let C' be a minimal element of C. By eq. we see that ¢ cannot
be empty. So take any ¢ € ', and define C' = C’c™'. Since C is translation
invariant, we see that C' € C. Furthermore, from this definition we see that
eq € C,s0 C'N H is non-empty. We claim that, in fact, C C H.

We suppose toward contradiction that this is not the case (so C' ¢ H).
First define D = C' N H and £ = C'\ H. By assumption, E is non-empty,
and we also have that D is non-empty as well. Since this is the case, and
D UFE = C, then it follows that both are proper subsets of C. However
since C' is the minimal element in C, it follows that neither D nor E are in

C. In other words, we must have that

[FD| > | F||D)
[FE| > <|F||E)

and so
|[F'D| + |FE| > [F|(|D] + | E)

Now, since D and E are disjoint, and that D U £ = C, we must have
|D|+|E| = |C].

Further, we see that since both F' and D are subsets of H, then we have
FD C H. However, E is disjoint from H which gives us that F'E must also
be disjoint from H. This gives us then that F'D and F'E are disjoint, and
hence

|FD|+|FE|=|FDUFE|=|F(DUE)|=|FC|
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Thus we obtain
|[F'C| > g|F|C]

and we therefore have a contradiction. Hence C' C H.
This gives us that C'is a compact subset of /1, and thus ‘witnesses’ the
pseudo-amenability of H for the given F'. O

Unfortunately, this proof does not generalise to non discrete pseudo-
amenable groups, even if one puts the additional restriction that # must
be closed. For now however, we turn our attention to other similar prop-
erties of pseudo-amenable groups.

We know that amenable groups are closed under directed union. We
can equivalently state this by saying that if the closure of any finitely gen-
erated subgroup is amenable, then the group itself is amenable. We have
a similar result for pseudo-amenable groups, though we require it for all
countably generated subgroups. Fortunately however, this proof works
for a general locally compact group (not just discrete groups).

Proposition 4.1.4. Let G be a locally compact group. Suppose that every densely
countably generated subgroup of G is pseudo-amenable. Then it follows that G is
pseudo-amenable.

Proof. Suppose that G is not pseudo-amenable. Then by the definition,
there is some ¢ > 0 such that for every n € N there is some finite F;,, C G
with |F,,| > n so that for every compact set C, we have

ME,C) > e|FlAC)

Let F' = {J,,cy Fn, and let H be the closed subgroup generated by F'. Note
that I is countable and so H is densely countably generated. Now we note
that F,, C H for every n € N. Furthermore, for any C C H, C is compact
in G if and only if C' is compact in H. It then immediately follows that H

is not pseudo-amenable. O
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We can also show that amenability is preserved in opposite groups.
Recall that we define \*(A) = A\(A™!), and that this defines a right Haar
measure on GG. Alternatively we may view this as a left Haar measure on

G°, the opposite group of G.

Definition 4.1.5. Let G = (G, -) be a group. We say the opposite group of G is
the group G° = (G, 0) such that oy =y - x.

Using this definition, it is easy to show that G° is pseudo-amenable
precisely whenever G is.

Proposition 4.1.6. Let G be a locally compact group. Then G is pseudo-amenable
if and only if G° is.

Proof. First we take any ¢ and choose N satisfying Now take any
tinite /' C G°. Choose a compact set C' so that

MF'C) < e|F7HNO)
Now we know that C~! is also compact so that
MN(FoC™)=X(C'F) = AF'C) < e|FHAC) = e|FIN*(C™H

Hence G° satisfies|(PA)} The converse follows as (G°)° = G. O

4.2 Characterisations

We now aim to show two new characterisations of pseudo-amenability.
These will aid us in showing some more closure properties of the class of

pseudo-amenable groups. These two characterisations are conditions
and [[M)|as given below.

(L) Foreverye € (0,1), there is some N € N such that for alln > N, and
all s1,...,s, € G (not necessarily distinct), there is some f € L*(G)*"
so that

|s1 % fV...Vs,* f| <enlf] 4.7)
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(M) For every ¢ € (0, 1), there is some N € N such that for all n > N, and
all s1,...,s, € G (not necessarily distinct), there is some p € M(G)"
so that

Is1 %V ...V sy % ul| <enl/p| (4.8)

The two spaces denoted in these conditions are the positive real-valued
functions of L'(G) and the positive real-valued measures of M (G) respec-
tively. We note that apart from the difference in this space, these conditions
are identical. We also note that the representatives f and p in eqgs. (.7)
and can be chosen so they have unit norm. This can be done by taking
the function f/| f||, and showing that it preserves eq. (¢.7) (and similarly
for measures).

We will first prove and then use it to prove Before we can
attempt this we need a few intermediate results. Firstly, due to the regu-
larity of our Haar measure ), it is not necessary for the set C' we choose in
condition to be compact. The main condition on C'is that it must be
Mfinite. Indeed, this condition is satisfied if the set we choose is an open
set:

(O) Forevery ¢ € (0, 1), there is some n € N such that for all finite /' with
|F'| > n, there is some A-finite open set U such that

AFU) < | FIANU) (4.9)

or even any Borel set will suffice:

(B) Foreverye € (0, 1), there is some n € N such that for all finite /" with
|F'| > n, there is some A-finite Borel set B such that

MFB) < ¢|FI\(B) (4.10)

We prove the equivalence of these as follows.
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Proposition 4.2.1. Let G be a locally compact group. Then the following are
equivalent:

* G is pseudo-amenable.
* G satisfies[(O)}
* G satisfies|(B)]

Proof. To show that [(B)] — take some ¢ € (0, 1), choose n € N so that
for every finite set F' with |F'| > n, we have

AFB) < ¢|FIN(B)

for some A-finite Borel set B. As the inequality is strict, we can find a § > 0
so that
AMFEB) +6|F| < e|FINB)

Now, by outer regularity of the Haar measure, there is some open set U so
that B C U and A\(U) < A(B) + 0, which we can rewrite as A\(U — B) < 4.
Since FU — FB C F(U — B), it follows that

MFU — FB) < NF(U — B)) < Y_As(U — B)) = |[FI\U — B) < |F|3

sel

This means that A\(FU) < A\(FB) + |F|6, giving us that
AMFU) < XNFB)+0|F| <e|FINB) <e|FIAU)

which gives us condition [(O)}
Next we show that[(O)] —[(PA)] So again, lete € (0,1) and choosen € N,
so that for every finite set F' with |F'| > n, we have

AFU) < | FINU)

for some A-finite open set U. As we have strict inequality, then there is
some ¢ > 1 so that
AEFU) < §|F\>\(U)
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Now, by inner regularity of ), there is some compact set C' such that
C C Uand \U) < AC)d. Since C C U, it follows that FC C FU. This
means that
AFC) < AFU) < §|F\A(U) < e|FIAC)

So it follows that G is pseudo-amenable, thus proving our claim.
Lastly it is trivial that — as all compact sets are Borel and
A-finite. O

For our next result, recall that when we define integration over a mea-
sure, this is defined in terms of simple functions, which can be written as

finite sums over characteristic functions. For a given simple function f we

f=Y aixa,
=1

where o; € C and A, are disjoint Borel sets. However we can change this

often write

slightly and write f as
f= Z BiX B,
i=1

where here we have 3; € C and B; are Borel setssothat B 2 By O ... D
B,,,. We shall use this form since, as we shall see, it provides nice results
when one applies translations and joins to this function. In particular, in
the case where we have a positive simple function, applying these trans-
lations and joins as in condition |(L)| gives us another simple function that

can also be easily written in this form.

Lemma 4.2.2. Let f be a simple function so that f = ", Bixp,, where 5; > 0
and B D By D ... D By,. Let F = {s1,...,,}. Then we have that

stk fV.Vsaxf=Y Bixrn,

=1

Proof. Firstly for convenience, define g = s; x f V...V s, * f. Fix some
z € G. We define j, to be the largest integer so that z € s, 5;, for some
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k € {1,...,n}. This means that (s; * f)(z) is maximal when [ = k, and so

g(ﬂ?) Sk * f ZBZXS}CB ) = Zﬂz

Now, j, can also be seen to be the largest integer so that x € F'B;,. Further-
more, it is easy to check that F'B; O ... D F'B,,. This means that v € F'B,
fori < j,,and x ¢ F B, for i > j,. So it must follow that

ZﬁzXFB Z/Bz - g

thus completing the proof. O

In order to use the above result in a meaningful way, we shall first
need to obtain a simple function which has a sort of “‘pseudo-amenable
property’. Fortunately, this is possible as the simple functions are dense in
LYG).

Lemma 4.2.3. Let G be a locally compact group. Further, let X be a dense subset
of L'(G)*. Now fix some sy, ..., s, € G, and take any ¢ € (0, 1). If there is some
f € LYG)* so that

|s1* fV...Vs,x flli <enl|flx (4.11)
then there is a g € X which also satisfies the above equation.

Proof. Firstly, we may scale f so that ||f||; = 1. Since the inequality in
eq. (4.11) is strict, we can find a 6 > 0 so that

s fV...Vsyx fll1 <(e=0d)n

Now, take any g € X so that || f — g|[s < /(1 + ). This gives us that

>l = I1f =gl >1-
lglls > 11fll = [1f = glh e

Furthermore, we can bound the size sy x gV ...V s, * g as

lsi*gV...Vspxgli<n|lf—glli+si*xfV...Vsy*fl1
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which gives us that

on
xgV ...V 8, * < -9
[s1% g Sn * g1 1+5+(€ )n
0
=en|1l-—
< 1+8)
<enllglh
Hence g satisfies eq. (¢.11). O

We now have the tools to prove the characterisation [[L)} One may no-
tice that this condition is similar to Reiters condition Indeed, we shall
use an argument that is somewhat similar to the proof of Felner’s condi-
tion from Reiters condition (see Theorem and Greenleaf [8, p. 66]).

Theorem 4.2.4. Let G be a locally compact group. Then G is pseudo-amenable if
and only if G satisfies condition

(L) For every € € (0, 1), there is some N € N such that for all n > N, and all
S1,...,8n € G (not necessarily distinct), there is some f € L'(G)" so that

lIs1x fV ... Vs, flli <enlflh

Proof. We start by showing that implies [(L)] We take ¢ € (0,1), and
fix N € N to satisfy Take any s;...s, € G where n > N, and let
F = {s1,...,8,}. We note that if our elements s,..., s, are not distinct,
we may without loss of generality extend F' to a larger finite set so that
|F| = n.

By [(PA)] we obtain that there is a compact set C' so that eq. holds.
Now, we define f = x¢, which gives us that || f||; = A(C) and

Thus we obtain that

Is1 % fV...Vs,* fll1 = AMFC) < e|FINC) =enl fl:
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so that G has property (L)}

For the other direction, we again take ¢ € (0, 1), and choose N € N so
that it satisfies[(L)} We let F be a finite subset whose elements are sy, . . ., s,
wheren > N.

Now by [[L)} we know that there is some f € L'(G)" so that eq. .7)
holds. By Lemma we can without loss of generality take f to be a
positive simple function (as simple functions are dense in L' (G) ™). More-

over we can scale f so that || f||; = 1. As f is simple we can write

= Z BiXx B,
i=1

where 3; > 0Oand B; O By, O ... O B, are Borel. We also have that
0 < A(B;) < oo for each B;, as || f||1 = 1. Now, by Lemma[4.2.2] we can see
that

Is1 fV...Vs,* fl|l1 =

Z BixrB,
i=1

_ f; BNFB;)
_ z:: () (352)

The right hand side of this equation is a convex sum, as Y .-, 5;\(B;) =

1

| f]l1 = 1. This means that there must be some B = B; so that

A(FB)
\(B)

lsi* fV...Vs,*fl1>
It then follows that
MFB) <|ls1* fV...Vs,* fI1A(B) < enA(B)

This gives us condition [(B)|for G, and by Proposition [#.2.1} this means that
G is pseudo-amenable. O
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From this we can directly prove the second condition (M)}
Theorem 4.2.5. A group G is pseudo-amenable if and only if condition[[M)]below
is satisfied.
(M) For every e € (0,1), there is some N € N such that for all n > N, and all
S1,..., 8y € G (not necessarily distinct), there is some p € M(G)* so that

stV ...V s, pl| <enl|p

Proof. We will show this by showing that condition is equivalent to
We choose ¢ € (0,1) and fix n € N as required in both cases.

Firstly, we know by Theorem it is possible to embed L'(G) into
M(G). In particular this embedding preserves norm, translations and
joins. We can show that this is enough to give us eq. from condi-
tion[(L)} So take f € L'(G)* satisfying[(L)|for the given £ and n. Recall that
we define i;(A) = [, f d\. We then have that

[s1% p1p VooV Sp % gl = [y pvvsnnr |
=lsyx fV...Vs,*f]
<en|/f]
= enlluyll
Thus 4 satisfies condition (M)}

In the other direction, take 1 € M(G)" so that  satisfies[(M)] (again for
the given ¢ and n). Now take any h € L'(G)", and define f € L'(G)" by
f := p*h. We note that we have || f|| = ||u||||»]|, which holds as both ; and
h are positive. Then it follows that

lsi* fV...Vsy*fll=|s1xpuxhV...V8,*puxh|
< (s1 %V ...V sy ) * hl|
= [ls1*p V...V snx p[IR]
<enulll[R]]
= en|[f]]
Hence f satisfies condition[(L)} O
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4.3 Subgroups & Homomorphisms

With these new characterisations we can show some interesting properties
about pseudo-amenable groups. In particular we will show that certain
operations (such as taking subgroups, or images of homomorphisms) will
preserve pseudo-amenability.

We start with the case of subgroups and state the following definition.

Definition 4.3.1. Let G be a locally compact group, and H a closed subgroup. A
Bruhat function for H is a function § : G — R satisfying

* For every compact C C G, there is a continuous function ¢ > 0 so that

Ylen = Blen.

* For every x € G we have
/ Blay)dny =1
H

We first note that for every locally compact group G' and closed sub-
group H, there exists a Bruhat function for H. This is shown in Chapter 8
of Reiter [20].

We can now show that a closed subgroup of pseudo-amenable group is
itself pseudo-amenable. For this, we adopt a proof to that given in Pater-
son [18] Section (1.11)], where a similar statement is proved for amenable
groups. However, the case for pseudo-amenable groups is more involved

as we cannot simply take a left-invariant mean.

Theorem 4.3.2. Let G be a locally compact pseudo-amenable group. Let H be a
closed subgroup of G. Then H itself is pseudo-amenable.

Proof. We let ¢ > 0 and take any n large enough and any s;,...,s, € H
and some f € L'(G)* satisfying[(L)] In fact we can assume by Lemma.2.3]
that f € C.(G)".
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Let 5 be a Bruhat function for H. We define

/f (z7'y) dex (4.12)

We can find some continuous function ¢y > 0 so that ¢¥|c-1g = Slo-1y
where C'is the support of f. This then gives us that

/f (x7'y) dgx (4.13)

As both f and 1 are continuous, we can now see that ¢ must be measur-
able. Next we show g € L'(H)™". Note that g > 0 asboth f > 0and 38 > 0.

We can see that

/ dHy_//f (z7'y) dgz dpy
= [ 1@ [ s duyaca
:/Gf(a:)dgx

so it follows that ||g||z1(my = || fll21(e)

Now if we consider a translation of g by s € H, it is not difficult to see
that

(5% 9)(y) = / (5% N)(@)Ba"y) doz

From this we can show that ||s;xg V... Vs, xg| < |[s1xfV...Vs,* f]|. For

simplicity we argue the case where n = 2, but the argument may be easily
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generalised for any n.

|s1% gV s9 g

= /H(81 * gV sy *g)(y)dpy
— /H { /G (s1 % f)(z)B(z"y) dGI} v [ /G (s % [)(2)B(z" y) dex | duy
H/G (51 [)(@)B(z" )] V [(s1 % 9) () Bz y))] dez duy

<

:/ / (s1% fVsgxf) (x)ﬁ(x_ly) dgrdpyy
uJa
:/ (s1% fVsgx f) (x)/ ﬁ(a:_ly) dyydgr
e H
:/ (s1% fVsyxf)(z)der
a
= |lsy % fVsyx f
Thus it follows that g satisfies (L)} as
lsixgV...Vsyxg|| <|ls1*fV...Vs,x*f| <enlf|] =en|g|

So H is pseudo-amenable. O

Our next theorem will show that the image of a pseudo-amenable group
under a homomorphism is also pseudo-amenable. We shall use condition
to show this. The proof will be a two step process. First we use the
measure as given by [M)]and our homomorphism to construct an element
of the dual Cy(H). With this we use the Riesz-Markov theorem to create
the desired measure on H, and we show it satisfies the necessary proper-
ties for pseudo-amenability.

Theorem 4.3.3. Let G and H be locally compact groups, and let m : G — H be
a surjective homomorphism. If G is pseudo-amenable, then so is H.

Proof. We shall use condition [M)| from Theorem to prove this, using
a linear mapping from M (G) to M (H ). We define this mapping as follows.
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First let 1 € M(G). Let ¢, € Cy(H)* be defined as

©u(h) :z/howd,u
G

It is easy to see that this mapping is linear. Moreover we claim that ||, || <
||1¢||, so that this operator is bounded. We can see this as

|ou(h)] =

/ howdu‘ < [ o mlcdlil < el
G G

In the case where ;1 > 0, we claim that ||¢,| = ||x||. To show this we need
to construct a sequence of positive elements h,, € Cy(H) with the property
that

Jim S > 419
We construct these h,, as follows. First we know that ( is regular. So there
must be some sequence of compact sets K, so that lim,, . u(K,) = u(G).
Let L,, = 7(K,,), which by continuity are also compact. Now, we can use
Proposition 2.1.12)to find some h,, € C.(H) C Co(H) with ||h,|| = 1 so that
hn(x) =1forall z € L,.

Now take ¢ > 0, and choose n so that y(K,) > u(G) — . Then we have
that

@u(hn)—/hnmrd,uz/ hnOﬂ'd,u_/ Ldp = u(K,) > w(G) —¢
e n n

Noting that ||h,| = 1, we can take the limit as ¢ — 0, so that these h,, sat-
isfy eq. (4.14). This proves our claim that ||u|| = ||¢.||-

Now, by the Riesz-Markov Representation theorem, there is some mea-
sure (i, € M(H) so that

/hduwzwu(h)Z/hOWdu
H G

for every h € Cy(H). We note that if ;i is positive, then so is y,, and

furthermore we have |1 || = ||p,|| = ||ull-
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We will show that the mapping . — 1, is sufficiently nice so that if we
take p € M(G)* that satisfies then so will p, € M(H)" for the same
values of ¢ and n.

Now consider a translation of y.. In particular, for any s € G and
positive h € Cy(H ), we have that

(r() ¢ e = [ [ haw) 45,000 de )

m(s)y) dpx(y)
h(m(s)m(y
((

K
/
e
/

)y
)

) du(y)
) dp(y)

homdsx*p

((s % p)m, )

Since this holds for all h € Cy(H), then we have that 7(s) * p1; = (5% ).
Next, we take i € M(G)*. Then for any positive h € Cy(H), we have

((r) " 1) = sup{{px, f) : f € Co(H),0 < f < h}
= sup{( ,fo7r> f€Co(H),0< f<h}

up{(u,g) : g € Co(G),0< g < hom}

ho

s

| /\

<
((u

)
h)

From this it follows that for any u, v € M(G)", we have that (u, V )" <
(nVv)y

With this, we can take any ¢ € (0, 1), and let n be sufficiently large. Take
any tq,...,t, € H, and since 7 is surjective, we can find s;,...,s, € G
so that 7(s;) = t;. Now choose ;i € M(G) satisfying condition for



4.3. SUBGROUPS & HOMOMORPHISMS 73
S1,...,58,. Then, it follows that

1t1 % por Voo o Vot * ]| = |[(81 % )2 Voo o V(S % )|
< |[(s1kp V...V sy *p)l
=||ls1kpu V...V S, *ul
<en|lul

= enl|pr||
Hence /i satisfies and so H is pseudo-amenable. O

Corollary 4.3.4. Let G be a pseudo-amenable group, and N a closed subgroup.
Then the quotient group G /N is pseudo-amenable.

Proof. We know that the canonical mapping ¢ : G — G/N where we have
q(z) = xN is a surjective homomorphism. By Theorem it follows
that G/N is pseudo-amenable. O

We now wish to see if we can reverse this process. In particular we
want to show the pseudo-amenability of a group by looking at its sub-
groups and quotient groups. Before we attempt this, we need some method
of relating the Haar measure of our group G and the groups H and G/H.
Some details of this are covered by Folland in [6, Pages 56-57]. Most im-
portantly is the result stated in Theorem 2.49. In essence, if we have a
closed normal subgroup H, then we can normalise the Haar measures in
each of G, H, and G/ H, so that for any function f € C.(G) we have

/f(a:)dx—/ Pf(zH)d(zH)
€ G/H
where we define Pf € C.(G/H) by

PF(uH) = /H F(zh) dh

We need a slightly altered version of this statement in terms of character-

istic functions, which we prove as follows.
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Lemma 4.3.5. Let G be a locally compact group, and H a closed normal sub-
group. For any compact set K, we have

MK = / / \ic(wh) dh d(zH)
G/H JH
Proof. Firstly we shall for convenience define

olf) = /G B /H f(zh) dhd(zH)

for any function f for which the right hand side is defined. Our aim then
is to show that A\(K') = ¢(xk) for all compact sets K.

To prove this result we shall need to use Proposition 7.4.4 in Cohn [1].
This tells us that if f : G — R is a positive lower semicontinuous function,

and if K is a family of positive lower semitcontinuous functions such that

f(x) =sup{g(z) : g € K}

/Gf(a:) dx:sup{/Gg(as) dv:ge lc}

Here we say a function is lower semicontinuous if for every a € R, we

then

have that the set {x € G : f(z) > a} is open. One may easily verify that
xv for any open set U is lower semicontinuous.

Now, for any open set U, we may use Proposition to show that
xv(z) =sup{f(x): f € C.(G),0 < f < xv}. Using Proposition 7.4.4 from
Cohn, we then have that

/H voleh) dh = sup{ /H Fleh)da : f € CUG),0< f < xU}
=sup{Pf(zH): f € C.(G),0 < f <xv}

We note here that the function P f is continuous, so we can apply Proposi-
tion 7.4.4 to this expression as well. In fact, we shall need to apply it two
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more times, and in doing so we obtain
:sup{/ Pf(xH)d(xH):fECc(G),OSfSXU}
G/H
:sup{/Gf({E)d(L' : f € CC(G),O < f < XU}
_ /Gsup{f@ . f€CG),0< f < xu}da
_ / () dz = A(U)
G

This proves the equality we desire for A-finite open sets. In the case where
we have a compact set K, we can find a A-finite open set U so that K C U.
It then follows that both U and U\ K are M-finite open sets, so that we have
o(xv) = AMU) and p(xx\v) = A(K \ U). From this we finally get that

AE) = MU) = MU\ K) = o(xv) — o(xong) = ¢(xv — xonk) = ¢(xx)
thus proving our result. O

In the ideal case, we would only need a closed normal subgroup H and
the corresponding quotient group G/H to be pseudo-amenable in order
to induce pseudo-amenability in G. However, we do in fact require our

subgroup H to be amenable.

Theorem 4.3.6. Let G be a locally compact group, and H a closed normal sub-
group. If H is amenable and G/ H is pseudo-amenable, then G is pseudo-amenable.

Proof. Firstly we let 7 : G — G/H denote the canonical mapping where
7(z) = xH. We shall denote the Haar measures on G, H and G/H by A¢,
Am and Ag g respectively.

Now let ¢ > 0, and choose N as required for the pseudo-amenability
of G/H. Take any finite set ' C G so that |F| > N. Now it is possible
that |7(F)| < N, so we cannot directly apply pseudo-amenability here.
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However, in this case we may simply take any finite set X so that 7(F") C
X and |X| = |F| > N. This gives us that there is some compact set C" C
G/H so that

! ! € !
Ao/ (m(F)C") < Ag/u(XC') < §|F|)\G/H(C)

We note that the right side of this equation is | F'| instead of | (F)|.
Now, for any compact set C’ in G/H, we can find a compact set C'in G
so that 7(C') = C' (the proof of this is given by Folland in [6, Lemma 2.46]).

So this means we can find a compact set C' C G so that
€
Ay (m(FC)) < S|F|Aeyn(n(C))

Next we define
= (FC)"'FCNH

It is clear from this definition that X' C H. Moreover, we know that F'C is
compact, and this gives us that K must also be compact. We can use the
amenability of [ via eq. (4.1) to find some compact set L C H so that

A(KL) < 22 (L)

Now, for any z € G and h € H where vh € FCL, we clearly have that
zH € w(FC). Using Lemma gives us that

A¢(FCL) :/G/H/HXFCL(:Eh) dhd(zH)
FC)/HXFCL(mh) dhd(zH)
Mg(r ' FCLN H)d(xH)

d(zH)

/
Lo
- / (e 'FC'N H)L) d(zH)
/
gy



4.4. SIMILARITIES TO AMENABILITY 77

Next, for any z € C'and h € H, we have that if h € L then zh € CL. Thus
it follows that x(h) < xcr(xh). From this we obtain

A(CL) = /G B /H Yor(xh) dhd(zH)

_ / B /H yor(xh) dhd(zH)

> (h)dhd(xH
> / . /H vi(h) dhd(zH)
— Ay (m(C)Au(D)

We can finally use these results to get that
AG(FCL) < Ag/u(m(FC))An(KL)
< elFlAe/u(m(C))Au(L)
< e[ (CL)
which is precisely what we need to show the pseudo-amenability of G. [

A natural corollary of this theorem is that we can construct pseudo-
amenable groups using group products as follows.

Corollary 4.3.7. If G is an amenable group and H a pseudo-amenable group,
then G x H is pseudo-amenable.

Proof. We know that G x {e} is a closed normal subgroup of G x H, whose
corresponding quotient group is isomorphic to H. By Theorem we
get that G’ x H is pseudo-amenable. O

4.4 Similarities to Amenability

In the previous section, we showed some properties of pseudo-amenable
groups that closely mimic the behaviour of amenable groups. Unfortu-
nately however, we did not show all the results equivalent to those pre-
sented in Theorems to
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The first instance of this is constructing a group from its subgroup and
quotient group. In particular we know that if a normal subgroup H and
its quotient group G/H are both amenable, then G is amenable as well
(see Theorem B.2.5). The case for pseudo-amenability is similar, how-
ever we have in Theorem that our subgroup H is also required to
be amenable.

We also showed that a group is pseudo-amenable if all its densely
countably generated subgroups are. If one can generalise this statement
to only require (densely) finitely generated subgroups, then this would be
equivalent to showing that a direct union of pseudo-amenable groups is
pseudo-amenable.

One could argue that the underlying issue in both these cases is that
we do not have a bound for N in our condition. If we for example con-
sider condition [(SF)| which is equivalent to amenability, it tells us that for
any € > 0 and finite set F', we can find a compact set C' so that we have
MFC) < (e +1)A(C). So, for any amenable group, we can always satisfy
by simply choosing N > (¢ + 1)/e. The existence of such a bound
would allow us to resolve the issues discussed previously. An alternative
solution would be to show that pseudo-amenability and amenability are
equivalent.

It is also possible that these are not equivalent, and perhaps the sim-
plest way to show this would be by constructing a counterexample. How-
ever, as the following theorem tells us, such a group would not contain
F, as a subgroup. We use an outline of the proof presented by Pham [19,
Proposition 5.9].

Proposition 4.4.1. Let G be a locally compact group that contains F,. Then G is
not pseudo-amenable.

Proof. Firstly, it is known that F}, contains the countably generated group
Fy as a subgroup, so we will without loss of generality assume that we

have G = Fy. For any n € N we will define P, = {s1,...,8,}, where these
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are the first n basis elements of Fy. We claim that for any finite (compact)
subset C' C Fy, we have that

[F.Cl > (n = 1)[C]

We will prove this claim inductively, by inducting on C. To do so, we let
z1 be any element in C' with minimal length. We define C; = {z1}, and we
easily see that
|E.Ch| > (n—1)|C

We define C}, inductively by adding any element of minimal length at each
step. Thatis, we take z;, € C\Cj_; so that {(x) < {(z) forevery z € C\Cj_3,
where ¢ is the length function on the free group (so /(x) is the number of
characters in z in its reduced form). We then define Cy, = Cj_; U {x}}.

For now, we shall assume that the set Fn(}k_l ﬂan contains at most one
element, and we will prove this fact later. With this we show the inductive

step as

|E,Ch| = |FChq U Epay|
> |F,Crr| + |Foas| — 1
> (n—1)|Cha|+n—1
= (n —1)|Cy|

So to complete the proof we only need to show that |Fn0k_1 N an| <1
So let y be an element of this set, so we can write y = s;c = s;x for some
5i,8; € F,and ¢ € C,_,. We can show that y must necessarily be unique.
To see this, we first note that the length of c is at most the length of 2. Now
suppose that the first character of z (in its reduced form) is s, for s, in
the basis of F},. Then since ¢(c) < ((z), it follows that we must have that
s; = s; and therefore ¢ = z, which is a contradiction. Hence we must have
that x starts with s,,!, and moreover we must have s; = s,,. This is enough

to uniquely determine y, thus proving our claim. O

So, if we were to show that pseudo-amenability and amenability were

two distinct classes of groups by using an example, then such an example
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would necessarily be a nonamenable group that does not contain F5. The
existence of such groups was a long standing problem, commonly referred
to as Von Neumann Conjecture, and was resolved by Ol’shanskii in 1979
[17] by constructing an explicit (though very complex) example of such
a group. Recently, simpler counterexamples have been found by Monod
[15] and by Lodha and Moore [12], so these may prove to be easier to

analyse. It is not known if these groups are pseudo-amenable or not.
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