Supplementary table 4: Summary of studies on obesity related neuroinflammation.

		Cognitive tests		Additional information	
a		and		(e.g. age; obesity indices;	
Study	Population/Sample	neuroimaging	Results	observation time/FU)	
Rodent studies					
			After 16 wk of HFD: cognitive impairment on Y-maze test; ↑ anxiety		
			during open field and elevated zero maze test; ↑ depressive behaviour in		
			forced swim test; \uparrow IL-1 β expression in the hippocampus and amygdala; \uparrow		
		Open field;	hippocampal GFAP and Iba-1.		
		elevated zero	Cognitive performance was negatively correlated with IL-1 β in		
Almeida-		maze; Y maze,	hippocampus and amygdala.		
Suhett et	C57BL/6J male mice,	forced swim	Anxiety-like behaviour was positively correlated with IL-1 β in the	5 wk old mice at start;	
al., 2017	chow or HFD.	test	amygdala.	treatment of 18 wk.	
			Genetically and HFD- induced obese mice vs lean mice: ↑ GFAP		
	C57BL/6, MC4R		immunoreactivity in several nuclei of hypothalamus. Distinct pattern		
Buckman	deficient, or Tie2-GFP		between regions of the hypothalamus. No differences between genetic		
et al.,	female mice, chow or		model or diet-induced obesity.	12-17 wk old mice at start;	
2013	HFD.	None	GFAP immunoreactivity was often associated with microvasculature.	20 wk of diet.	
			Db/db mice vs control: 1 basal NO frequency; no increased NO release in		
			hypothalamus after enteric glucose sensor stimulation \rightarrow disturbed gut		
Duparc et	C57BL6/J WT and		brain axis; \uparrow iNOS, \uparrow IL-1 β mRNA in intestines; \uparrow ER stress markers; \uparrow		
al., 2011	db/db male mice.	None	IL-1 β , \uparrow TNF- α in hypothalamus.	13 to 15 wk old mice.	
			db/db without treadmill vs control and db/db with treadmill: \downarrow spatial		
			recognition; \downarrow object recognition memory; infrequent dendritic spines; \uparrow		
			Iba-1 in hippocampus and epididymal fat; \uparrow circulating IL-1 β ; \uparrow MHCII		
			immunoreactivity in hippocampus.		
			Db/db with treadmill showed LTP deficit reversion.		
			Fat transplantation from db/db to wt control: \downarrow spatial and object memory;		
	C57BL/6J WT and		\uparrow MHCII; \uparrow CD163 cells; \uparrow Iba-1 in hippocampus.		
	db/db male mice, with		Effects lipectomy: \uparrow spatial and object memory; \uparrow LPS; \downarrow CD163 cells;		
	or without treadmill		\downarrow MHCII and Iba-1 in hippocampus.		
	training, fat	Y maze, novel	IL-1ra infusion in hippocampus abolished memory deficits in db/db mice,	5 wk old mice at start; 10	
Erion et	transplantation, with or	object	but did not affect time exploring in maze, it normalized LTP and dendritic	wk of treadmill training; 2	
al., 2014	without IL-1ra.	recognition	spine density compared to WT mice.	wk of IL-1ra treatment.	
, 2011	manout IL IIu.	recognition			

Gladding	C57BL/6J male mice,	Morris water		8 wk old mice at start; 12		
et al,.	LFD or HFD, insulin	maze and Y	HFD vs LFD: \downarrow spatial memory; \uparrow inflammatory markers in hippocampus.	wk of diet; 4 wk of insulin		
2018	or saline infusion.	maze	Both were reversed by insulin infusion in the hippocampus.	infusion treatment.		
			HFD-induced obesity: \downarrow hippocampus-dependent memory; \downarrow LTP; \uparrow			
			MHCII in hippocampal microglia; \uparrow IL-1 β in hippocampus.			
			Diet reversal from HFD to LFD: reduced adiposity partially; MHCII			
	C57BL/6J male mice,	Y maze, novel	normalized; plasticity deficits normalized.	6 wk old mice at start;		
Hao et al.,	2	object	LFD and HFD/LFD: \uparrow synaptic density near microglial processes, but not	1,2,3, 5 mo of HFD or HFD		
2016	HFD then LFD.	preference test	in HFD.	for 3mo then LFD for 2mo.		
			Ob/ob mice vs WT mice: \uparrow body weight; \uparrow fat mass; insulin sensitivity; \uparrow			
			pro-inflammatory cytokines in serum and hippocampus; \downarrow brain weight; \downarrow			
Jin et al.,	C57BL/6J and ob/ob		hippocampal volume; \downarrow Sorl1 and BDNF in hippocampus; \uparrow Wdfy1 gene;	5 wk old mice at start;		
2020	male mice.	None	\uparrow LCN2 and MMP9; levels in serum and hippocampus.	measurement at 25 wk.		
2020			Male and ovariectomized females + HFD vs female + HFD: ↑ weight gain	incastrement at 25 wk.		
			(protection by ovarian hormones).			
			1 2			
			Males vs females: ↑ weight gonadal fat, no differences in other depots.			
			Obese male mice show microglial activation and macrophage infiltration in			
	C57BL/6J male and		hypothalamus, females are protected for these inflammatory changes.			
Lainez et	female mice, chow or		Obese female mice vs obese male mice: \uparrow IL-10 in hypothalamus.	4 wk old at start; 12 wk of		
al., 2018	HFD.	None	Obese male mice vs obese female mice: ↓ PSD95 in hypothalamus.	diet.		
	LysMGFP and		HFD consumption: GFP in hypothalamic ARC; change in morphology			
Lee et al.,	LysMtdT male mice,		from linear to ramifying; expansion of GFP cells; \uparrow iNOS, \uparrow Hif-1 α , \uparrow IL-	7 wk old at start; 4 or 20		
2018	chow or HFD.	None	1β , \uparrow IL-6 and \uparrow TNF- α mRNA in MBH; \downarrow Vegfa, \downarrow eNOS mRNA.	wk of diet.		
			HFD vs chow: different gene expression pattern in hypothalamus; \uparrow			
	C57/BL6 male mice,		inflammatory response; \uparrow IFNy; \uparrow adipogenesis; \uparrow TNF- α signalling.	4 wk old mice at start; 20		
Park et	chow or HFD.		Ob/ob and HFD- induced obese mice: \uparrow TNF- α signalling and enriched	wk of diet.		
al., 2019	Ob/ob mice on chow.	None	gene sets of cancer pathways.	9 wk old ob/ob mice.		
			HFD after 12 and 40 wk: \uparrow plasma NT; metabolic disturbances; \uparrow systemic			
Saiyasit			inflammation; \uparrow oxidative stress; \uparrow Iba-1 in hippocampus; \downarrow dendritic			
et al.,	Male Wistar rats, chow		spines in hippocampus			
2020a	or HFD.	None	HFD after 40 wk: \uparrow brain NT.	12 or 40 wk of diet.		
	Human studies					
	Vietnam Era Twin		At age 62, obese vs non-obese: \downarrow cortex thickness in frontal and temporal	Measures at average age		
Franz et	Study of Aging. 173		lobe areas. Frontal lobe thinness mainly in right hemisphere.	20, 40, 56, and 62 yr; BMI;		
al., 2019	men with obesity and	None	No differences between groups in WM volume	longitudinal.		
un, 2017	men with obesity and	1,010	The universe between groups in this volume	ionSituation.		

	202 men without			
	obesity.			
		MMSE, IQ test,		
		verbal learning		
		test, long delay		
		free recall,		
		recognition		
		discriminability		
	61 adults without	, trail making		
Kaur et	history of heart	test, COWA,	Higher WHR associated with: \downarrow COWA score; \downarrow BDNF levels. BDNF	Aged 40-60 yr; BMI,
al., 2016	failures.	digit span	fully mediated the relation between WHR and COWA.	WHR; cross-sectional.
			\uparrow lean muscle mass predicted improvement in fluid intelligence.	
			\uparrow visceral and non-visceral adipose mass predicted decline in fluid	Aged 40-79 yr; lean muscle
Klinedins			intelligence.	mass, non-visceral adipose
t et al.,	4431 adults from the	Fluid	The effects of visceral adipose mass on fluid intelligence were mediated by	mass, visceral adipose
2019	UK Biobank.	intelligence test	leukocytes.	mass; longitudinal.
			Global brain water content (indirect measure of inflammation) not	
			associated with any obesity indices.	Aged 24-74 yr; BMI, WC,
Kullman	115 normal weight,		Regional: \uparrow BMI associated with: \uparrow water content in cerebellum, limbic	WHR, body fat
et al.,	overweight and obese		lobe and sub-lobular region.	distribution; cross-
2020	adults without T2D.	MRI	VAT strongest tested link between water content and obesity.	sectional.
	141 Post-mortem			
	samples from			
Lauridsen	BrainCloud database,			
et al.,	without neurological or		\uparrow BMI associated with: \downarrow IL-10; \uparrow iNOS; not with IL-1 β , IL-6 or PTGS2.	Aged 18-78 yr; BMI; post-
2017	psychiatric diseases.	None	Expression of IL-10 most affected by $BMI \ge 40$.	mortem samples.
		Wechsler adult		
		intelligence		
		scale, trail		
		making test, Wisconsin card	Obese subjects showed $\downarrow \lambda 1$ values in hypothalamus.	
		sorting, Stroop,	Subject with higher $\lambda 1$ values: \uparrow BMI; \uparrow fat mass; \uparrow inflammatory	Average age 49 yr; BMI,
Puig et	24 obese and 24	Iowa gambling	markers; \uparrow carotid-intima media thickness; \uparrow hepatic steatosis; \downarrow scores on	WC, fat mass; cross-
al., 2015	healthy women.	task; DTI	cognitive tests.	sectional
, 2010	2 cohort, in total: 43	Extensive	Obese vs lean: \uparrow DBSI-RF; \downarrow DBSI-FF in multiple WM tracts.	
Samara et	obese and 62 non-	cognitive	Regional analyses, obese vs lean: \uparrow DBSI-RF and \downarrow DBSI-FF in	Average age around 30 yr;
al., 2020	obese participants.	battery:	hippocampus.	BMI; cross-sectional

		executive	Hippocampal and amygdalar DBSI-FF and DBSI-FF associated with	
		function, verbal	cognitive performance in cohort 2.	
		and visuospatial	cogina ve performance in conore 2.	
		learning and		
		memory and		
		motor speed;		
		DBSI; DTI		
		2201,211	Obesity associated with \downarrow cortical thickness in right frontal cortex.	
Shaw et	404 midlife		↑ BMI over 8 yr is associated with cortical thinning in the posterior	Aged 44-49 yr at baseline;
	individuals.	MRI	cingulate, right lingual gyrus, anterior cingulate, and peri-calcarine sulcus.	BMI; longitudinal.
Combined		MICI	enigulate, fight fingual gyras, alterior enigulate, and peri ealearine suleas.	Divit, iongitudinai.
Comoniou			8 wk of HFD: ↑ microglia number; ↑ GFAP astrocytes in hypothalamus.	
			This reaction was limited to endogenous microglia and not mediated by	
			infiltrating myeloid cells.	Mice: 14-17 wk old mice at
	C57BL6J male mice,		3 days of HFD: \uparrow gene expression of IL-1 β and IL-6.	start; diet for 3 days to 20
	chow or HFD.		8 wk of HFD: \downarrow expression of IL-6 in human cases with obesity showed	wk.
Baufeld	Brain autopsies of 9		hypothalamic gliosis and more microglia dystrophy. The ratio of	Human: average age
et al.,	non-obese and 12		hypothalamic/cortical Iba-1 area was larger in obese subjects and	around 67 yr. Cross-
2016	obese cases.	None	correlated with BMI.	sectional.
			1 to 3 days of HFD in mice and rats: \uparrow IL-6, TNF- α , Socs3, IkBkB mRNA	
			in hypothalamus.	
			8 days of HFD in mice and rats: \uparrow GFAP in arcuate nucleus, returning to	
			baseline after few wk.	
			8 wk HFD: 1 microglia in arcuate nucleus.	
			20 wk of HFD in mice and rats: \uparrow autophagosomes mainly in POMC.	
			Mitochondria in HFD in POMC were irregular, swelled, less electron	
	Male Long-Evans rats,		dense lumen.	Rats and mice: 1 day to 8
	male C56BL/6 mice on		In humans, T2 left MBH/amygdala signal ratio intensity was positively	mo of diet.
	chow or HFD and 34		correlated with BMI, but not with age or sex and was higher in obese	Humans: aged 18-63 yr;
Thaler et	human participants		subjects compared to lean subjects, but BMI was not correlated with	BMI; retrospective cohort
al., 2012	with MRI scan.	MRI	putamen/amygdala signal ratio intensity.	study.

HFD: high fat diet; IL-1β: interleukin 1β; GFAP: glial fibrillary acidic protein; Iba-1: ionized calcium binding adaptor molecule-1; wk: week(s); IL-6: interleukin 6; NO: nitric oxide; iNOS: inducible nitric oxide synthase; IL-1β: interleukin 1β; ER: endoplasmic reticulum; TNF-α: tumor necrosis factor α; MHCII: major histocompatibility complex class II; LTP: long-term potentiation; LPS: lipopolysaccharide; IL-1ra: interleukin 1 receptor antagonist; WT: wild-type; LFD: low fat diet; mo: month(s); Sorl1: sortilin-related receptor 1; BDNF: brain-derived neurotrophic factor; Wdfy1: WD repeat and FYVE-domain-containing 1; LCN2: lipocalin 2; MMP9: matrix metalloproteinase 9; IL-10: interleukin 10; PSD95: postsynaptic density protein 95; GFP: green fluorescent

protein; tdT: tdTomato; ARC: arcuate nucleus; Hif-1 α : hypoxia-inducible factor-1 α ; MBH: mediobasal hypothalamus; Vegfa: vascular endothelial growth factor-A; eNOS: endothelial NOS; IFN γ : interferon gamma; NT: neurotensin; WM: white matter; BMI: body mass index; yr: year(s); MMSE: mini-mental state examination; IQ: intelligence quotient; COWA: controlled oral word association; WHR: waist-hip ratio; T2D: type 2 diabetes; VAT: visceral adipose tissue; WC: waist circumference; DTI: diffusion tensor imaging; λ 1: eigenvalue 1; DBSI: diffusion basis spectrum imaging; DBSI-RF: DBSI-derived restricted fraction; DBSI-FF: DBSI-derived fiber fraction; MRI: magnetic resonance imaging; Socs3: suppressor of cytokine signaling 3; IkBkB: inhibitor of nuclear factor kappa B kinase subunit beta; POMC: proopiomelanocortin.