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Abstract. GPU programs are widely used in industry. To obtain the
best performance, a typical development process involves the manual or
semi-automatic application of optimizations prior to compiling the code.
To avoid the introduction of errors, we can augment GPU programs
with (pre- and postcondition-style) annotations to capture functional
properties. However, keeping these annotations correct when optimizing
GPU programs is labor-intensive and error-prone.

This paper introduces ALPINIST, an annotation-aware GPU program op-
timizer. It applies frequently-used GPU optimizations, but besides trans-
forming code, it also transforms the annotations. We evaluate ALPINIST,
in combination with the VerCors program verifier, to automatically op-
timize a collection of verified programs and reverify them.

Keywords: GPU - Optimization - Deductive verification - Annotation-
aware - Program transformation

1 Introduction

Over the course of roughly a decade, graphics processing units (GPUs) have
been pushing the computational limits in fields as diverse as computational biol-
ogy [62], statistics [34], physics [6], astronomy [23], deep learning [28], and formal
methods [16,42,63]. Dedicated programming languages such as CUDA [33] and
OpenCL [41] can be used to write GPU source code. To achieve the most perfor-
mance out of GPUs, developer should apply incremental optimizations, tailored
to the GPU architecture. Unfortunately, this is to a large extent a manual ac-
tivity. The fact that for different GPU devices, the same code tends to require
a different sequence of transformations [20] makes this procedure even more
time consuming and error-prone. Recently, automating this has received some
attention, for instance by applying machine learning [2].

Reasoning about the correctness of GPU software is hard, but necessary.
Multiple verification techniques and tools have been developed to aid in this task

* This work is supported by NWO grant 639.023.710 for the Mercedes project and by
NWO TTW grant 17249 for the ChEOPS project
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Fig. 1: Annotation-Aware Program Transformation.

aimed at detecting data races, see e.g., [7,9,13,31,32], and for a recent overview,
see [21]. Some of these techniques apply deductive program verification, which
requires a program to be manually augmented with pre- and postcondition-
style annotations. However, annotating a program is often time consuming. The
more complex a program is, the more challenging it becomes to annotate it. In
particular, as a program is being optimized repeatedly, its annotations tend to
change frequently.

This paper presents ALPINIST, a tool that can apply annotation-aware trans-
formations [25] on annotated GPU programs. It can be used with the deductive
program verifier VerCors [8]. VerCors can verify the functional correctness of
GPU programs [9]. It allows the verification of many typical GPU computations,
see e.g., [46,48,49]. The purpose of ALPINIST is twofold (see Fig. 1): First, it
automates the optimization of GPU code, to the extent that the developer needs
to indicate which optimization needs to be applied where, and the tool performs
the transformation. Interestingly, the presence of annotations is exploited by
ALPINIST to determine whether an optimisation is actually applicable, and in
doing so, can sometimes apply an optimization where a compiler cannot. Second,
as it applies a code transformation, it also transforms the related annotations,
which means that once the developer has annotated the unoptimized, simpler
code, any further optimized version of that code is automatically annotated with
updated pre- and postconditions, making it reverifiable. This avoids having to
re-annotate the program every time it is optimized for a specific GPU device.

ALPINIST supports GPU code optimizations that are used frequently in prac-
tice, namely loop unrolling, tiling, kernel fusion, iteration merging, matrix lin-
earization and data prefetching. In the current paper, we discuss how ALPINIST
has been implemented, how it can be applied on annotated GPU code, and how
some of the more complex optimizations work. In addition, we evaluate the ef-
fect of applying several of these optimizations, both in terms of annotation size
and time needed to verify a program, to a collection of examples including the
verified case studies in [46,47,49].

Outline. Section 2 demonstrates how ALPINIST optimizes a verified GPU pro-
gram while preserving its provability. Section 3 discusses the architecture of
ALPINIST. Section 4 discusses the most complex optimizations supported by
ALPINIST in detail, namely loop unrolling, tiling and kernel fusion, and briefly
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/*@ context_everywhere N > 0 && N < a.length;
req (\forall int i; 0 <= i < a.length; Perm(al[il, 1));
ens (\forallx int i; O <= i < a.length; i != a.length-1 ==> Perm(ali+1], 1));
ens (\forallx int i; O <= i < a.length; i == a.length-1 ==> Perm(a[0], 1));
ens (\forall int i; 0 <= i < a.length-1; al[i+1] == N*i);
ens a[0] == N*(a.length-1); @*/
void Host(int[] a, int size, int N) {
par Kernell (int tid = 0 .. a.length)
/*@ context Perm(altid], 1);
10 ens al[tid] == 0; @x/
11 { altid] = 0; }
12 par Kernel2 (int tid = 0 .. a.length)

O~ Uk WN -

13 /*@ context tid != a.length-1 ? Perm(a[tid+1], 1) : Perm(al[0], 1);
14 req tid != a.length-1 ? a[tid+1] == 0 : a[0] == 0;

15 ens tid !'= a.length-1 ? a[tid+1] == Nxtid : a[0] == Nxtid; @x/

16 { /%@ inv k >= 0 && k <= N;

17 inv tid != a.length-1 ? Perm(al[tid+1], 1) : Perm(al[0], 1);

18 inv tid != a.length-1 7 a[tid+1] == kxtid : al[0] == k*tid;0x*/
19 for(int k = 0; k < N; k++) {

20 if (tid != a.length-1) { al[tid+1] = a[tid+1] + tid; }

21 else { a[0] = a[0] + tid; }

22 |} 3}

Fig. 2: A verified GPU-style program

discusses the remaining three. Section 5 presents the results of experiments in
which the tool has been applied on a collection of programs. Section 6 discusses
related work and Section 7 concludes the paper, and discusses future work.

2 Annotation-Aware Optimization using ALPINIST

This section illustrates how ALPINIST can optimize a verified GPU program while
preserving its provability. Fig. 2 shows a GPU program with annotations [9] that
is verified by VerCors. The example is written in a simplified version of VerCors’
own language PVL. The program initializes an array a, and subsequently updates
the values in a, N times. The workflow of a GPU program in general is that the
host (i.e., CPU) invokes a kernel, i.e., a GPU function, executed by a specified
number of GPU threads. These threads are organized in one or more thread
blocks. In this program, there are two kernels, both executed by one thread
block of a.length threads (lines 8 and 12 (1.8, 1.12))?. Each thread has a unique
identifier, in the example called tid. In the first kernel (1.8-1.11), each thread
initializes a[tid] to 0. In the second kernel (1.12-1.22), each thread updates
altid+1] (modulo a.length) N times, by adding tid to it. In the main Host
function, Kernell is called, followed by Kernel2.

The kernels, the for-loop and the host function are annotated for verification
(in blue), using permission-based separation logic [5,10,11]. Permissions capture
which memory locations may be accessed by which threads; they are fractional
values in the interval (0, 1] (cf. Boyland [11]): any fraction in the interval (0,
1) indicates a read permission, while 1 indicates a write permission. A write

3 In practice, the size of a block cannot exceed a specific upper-bound, but for this
example, we assume that a.length is sufficiently small.
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1 |[/*@ context_everywhere N > O && N < a.length;

2 req (\forall* int i; O <= i < a.length; Perm(al[il, 1));

3 ens (\forall* int i; O <= i < a.length; i != a.length-1 ==> Perm(ali+1], 1));
4 ens (\forall* int i; O <= i < a.length; i == a.length-1 ==> Perm(a[0], 1));
5 ens (\forall int i; 0 <= i < a.length-1; al[i+1] == Nx*i);

6 ens a[0] == Nx(a.length-1); @*/

7 |void Host(int[] a,int size,int N){

8 par Fused_Kernel(int tid = 0 .. a.length)

9 /*@ req Perm(altid]l, 1);

10 ens tid != a.length-1 ? Perm(al[tid+1], 1) : Perm(a[0], 1);

11 ens tid != a.length-1 7 a[tid+1] == N*tid : a[0] == N*tid; @x/

12 {

13 aftid] = 0;

14 /*@ req Perm(altid], 1);

15 req altid] == 0;

16 ens tid != a.length-1 ? Perm(altid+1], 1) : Perm(a[0], 1);

17 ens tid != a.length-1 7 al[tid+1] == 0 : a[0] == 0; @x/

18 barrier (Fused_Kernel)

19

20 int a_reg_0, a_reg_1;

21 if (tid !'= a.length-1) { a_reg_1 = a[tid+1] } else { a_reg 0 = a[0] }
22 int k = 0;

23 if (tid != a.length-1) { a_reg_1 = a_reg_1 + tid; }

24 else { a_reg 0 = a_reg 0 + tid; }

25 k ++;

26 /*@ inv k >= 0 + 1 && k <= N;

27 inv tid != a.length-1 ? Perm(a[tid+1], 1) : Perm(a[0], 1);

28 inv tid !'= a.length-1 ? areg.l == kxtid : a_reg0 == k¥tid; 0*/

29 for(k; k < N; k++) {

30 if (tid !'= a.length-1) { a_reg_1 = a_reg_1 + tid; }

31 else { a_reg_0 = a_reg 0 + tid; }
32 }
33 if (tid != a.length-1) { altid+1] = a_reg_1 } else { al[0] = a_reg 0 };
34 [} }

Fig. 3: An optimized GPU-style program, annotated for verification

permission can be split into multiple read permissions and read permissions can
be added up, and transformed into a write permission if they add up to 1. The
soundness of the logic ensures that for each memory location, the total number
of permissions among all threads does not exceed 1.

To specify permissions, predicates are used of the form Perm(L, ) where L
is a heap location and 7 a fractional value in the interval (0, 1] (e.g., 1\3). Pre-
and postconditions, denoted by keywords req and ens, should hold at the begin-
ning and the end of an annotated function, respectively. The keyword context
abbreviates both req and ens (1.9, 1.13). The keyword context_everywhere is
used to specify a property that must hold throughout the function (1.1). Note
that \forallx* is used to express a universal separating conjunction over permis-
sion predicates (1.2-1.4) and \forall is used as standard universal conjunction
over logical predicates (1.5). For logical conjunction, && is used and *x is used as
separating conjunction in separation logic.

In the example, write permissions are required for all locations in a (1.2).
The pre- and postconditions of the first kernel specify that each thread needs
write permission for al[tid] (1.9). The postcondition states that al[tid] is set
to 0 (1.10). In the second kernel, all threads have write permission for a[tid+1],
except thread a.length-1 which has write permission for a[0] (1.13). Moreover,
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it is required that a[tid+1] (modulo a.length) is 0 (1.14). For the for-loop (1.19-
1.22), loop invariants are specified: k is in the range [0,N] (1.16), each thread has
write permission for a[tid+1] (modulo a.length) (1.17) and this location always
has the value k*tid (1.18). The postconditions of the second kernel and the host
function are similar to this latter invariant.

Fig. 3 shows an optimized version of the program, with updated annotations
to make it verifiable. ALPINIST has applied three optimizations:

1. Fusing the two kernels: in GPU programs, the only global synchronisation
points (used, for instance, to avoid data races) exist implicitly between ker-
nel launches. However, if such a global synchronisation point is not really
needed between two specific kernels, then fusing them gives several benefits,
in particular the ability to store intermediate results in (fast) thread-local
register memory as opposed to (slow) GPU global memory, and it has a
positive effect on power consumption [60]. In the example, the kernels are
combined into Fused_Kernel, and a thread block-local barrier is introduced
(1.18) to avoid data races within the single thread block executing the code.

2. Using register memory; register variables can be used to reduce the number
of global memory accesses. Here, the use of a_reg 0 and a_reg_1 has been
enabled by kernel fusion.

3. Unrolling the for-loop; the for-loop has been unrolled once here (1.20-1.25).
Since GPU threads are very light-weight, compared to CPU threads, any
checking of conditions that can be avoided benefits performance. When un-
rolling a loop, this means that fewer checks of the loop-condition are needed.
Note that here, ALPINIST benefits from the knowledge that N > 0 (1.1), so it
knows that the for-loop can be unrolled at least once.

To preserve provability of the optimized program, ALPINIST changed the
annotations, in particular the pre- and postcondition of the fused kernel and
the loop invariants (highlighted in Fig. 3). Moreover, ALPINIST introduced an
annotated barrier (1.14-1.18). Since threads synchronize at a barrier, it is possible
to redistribute the permissions. In the rest of the paper, we discuss how ALPINIST
performs these annotation-aware transformations.

3 The Design of ALPINIST

This section gives a high-level overview of the design of ALPINIST. The opti-
mizations supported by ALPINIST are discussed in Section 4. To understand the
design of ALPINIST, we first explain the architecture of the VerCors verifier.

3.1 VerCors’ Architecture

VerCors is a deductive program verifier, which is designed to work for different in-
put languages (e.g., Java and OpenCL). It takes as input an annotated program,
which is then transformed in several steps into an annotated Silver program. Sil-
ver is an intermediate verification language, used as input for Viper [36, 58].
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Viper then generates proof obligations, which can be discharged by an auto-
mated theorem prover, such as Z3 [35].

The internal transformations in VerCors are defined over our internal AST
representation (written in the Common Object Language or COL [50]), which
captures the features of all input languages. Some of the transformations are
generic (e.g., splitting composite variable declarations) and others are specific
to verification (e.g., transforming contracts). The transformations implemented
as part of Alpinist are also applied on the COL AST, but they are developed
with a different goal in mind, and in particular several of the transformation are
specific to the supported optimizations.

Using VerCors and its architecture to implement ALPINIST gives us some ben-
efits. First, existing helper functions can be reused, which simplifies tasks such
as gathering information regarding specific AST nodes. Second, some generic
transformations of VerCors can be reused, such as splitting composite variable
declarations or simplifying expressions. This helps to simplify the implementa-
tion of the optimizations. Third, using the architecture of VerCors allows us to
prove assertions that we generate relatively easily by invoking VerCors internally.

3.2 ALPINIST’s Architecture

ALPINIST takes a verified file as its input, annotated with special optimiza-
tion annotations that indicate where specific optimizations should be applied.
ALPINIST is written in Java and Scala and runs on Windows, Linux and macOS.
Fig. 4 gives a high-level overview of the internal design of ALPINIST. The input
program goes through four phases: the parsing phase, the applicability checking
phase, the transformation phase and the output phase.

The parsing phase transforms the input file into a COL AST, after which
the applicability checking phase checks if the optimization can be applied. Some
optimizations, such as tiling (see Section 4.2), are always applicable, hence their
applicability check always passes. For other optimizations, prerequisites have to
be established. Sometimes, a syntactical analysis of the AST suffices, for instance
when considering kernel fusion (see Section 4.3). For this optimization, it must be
determined whether there is any data dependency between two selected kernels.
When analysis of the AST is not enough, VerCors can be used to perform more
complex reasoning. An example of this is loop unrolling (see Section 4.1). Its
prerequisite is that for the loop to be unrollable k times, it is guaranteed that
the loop executes at least k times. This prerequisite is encoded as an assertion
to be proven by VerCors.

The applicability checking phase is one of the strengths of ALPINIST. It ex-
ploits the fact that the input program is annotated to determine whether an
optimization is applicable, and relies on the fact that VerCors can perform com-
plex reasoning. Moreover, this approach allows to distinguish failure due to un-
satisfied prerequisites and due to mistakes in the transformation procedure.

If the applicability check passes (i.e., the optimization is applicable), the
transformation phase is next, otherwise a message is generated that the prereq-
uisites could not be proven.
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Fig. 4: The internal design of ALPINIST.

The transformation phase applies the optimizations to the input AST. The
output phase either prints the optimized program in the same language as the
input program, or a message is printed, signifying either a failure in optimizing
or a verification failure in the applicability checking phase.

4 GPU Optimizations

ALPINIST currently supports six frequently-used GPU optimizations, namely
loop unrolling, tiling, kernel fusion, iteration merging, matrix linearization and
data prefetching. This section discusses loop unrolling, tiling, and kernel fusion
in detail. The rest of the optimizations follow the same approach in spirit and are
discussed only briefly, but they can be found in the implementation of ALPIN-
IST [15]. Each optimization is first introduced in the context of GPU programs.
Then, we discuss how to apply them. Interesting insights on their implementa-
tion are discussed where relevant.

4.1 Loop Unrolling

Loop unrolling is a frequently-used optimization technique that is applicable
to both GPU and CPU programs. It unrolls some iterations of a loop, which
increases the code size, but can have a positive impact on program performance;
e.g., see [20,37,44,57,61] for its impact, specifically on GPU programs. Fig. 5
shows an example of unrolling an (annotated) loop twice: the body of the loop is
duplicated twice before the loop. This has the following effect on the annotations:
the loop invariant bounding the loop variable (1.5) changes in the optimized
program (1.14). Note that the other loop invariants (i.e., Inv(i)) remain the
same. Moreover, after each unrolling part, we add all invariants as assertions
(1.8-1.10) except after the last unroll. This captures that the code produced by
unrolling the loop should still satisfy the original loop invariants.

Our approach to loop unrolling is more general than optimization techniques
during compilation. For instance, the unroll pragma in CUDA [53] and the
unroll function in Halide [54] unroll loops by calculating the number of iterations
to see if unrolling is possible, i.e., it should be computable at compile time.
This difference is illustrated in Fig. 5 where N (i.e., the number of iterations)
is unknown at compile time. Their approach cannot automatically handle this
case, while our approach can automatically unroll the loop, since annotations
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1 | /%@ context_everywhere N > 1; @*/
2 | void Host(int[] arr, int size, int N){
3 par Kernel(tid=0..size){
4 int i = 0;
5 int newInt = 1i;
1 | /*@ context_everywhere N > 1; @/ . _ to. .
2 |void Host(int[] arr, int size, int N){ 6 farf[t,:ld] = arr[tid] + nevlnt;
3 ar Kernel(tid=0..size){ T i=1+1;
pal . o 8 //@ assert i >= 1 && i <= N;
4 int i =0; 9 //@ t N > 1;
5 /%@ inv i >= 0 && i <= N; asser N
) 10 //@ assert Inv(i);
6 inv N > 1; .
7 inv Inv(i); @/ =11 newlnt = i;
N ’ 12 arr[tid] = arr[tid] + newInt;
8 loop (i < M{ 13 i24 41
9 int newInt = i; . T R
10 arr[tid] = arr[tid] + newlInt; 14 /,*@ inv i >= 2 & 1 <= N;
. . 15 inv N > 1;
11 i=1i+1;} . .
12 |13 16 inv Inv(i); @*/
17 loop (i < M{
18 newlnt = i;
19 arr[tid] = arr[tid] + newInt;
20 i=di+1;}
21 |} }
Fig. 5: An example of unrolling a loop 2 times.
1 |void Host(int[] array, int size){
2 par Kernel(tid=0..size){
3 int i = init; // The loop variable
4 .
5 //@ assert (i == a) || (i == b); // Depending on initialization of i only one
6 // of the conditions is specified
7 /%@ inv i >= a && i <= b; // The lowerbound of i (a), The upperbound of i (b)
8 inv Inv(i); @/ // Additional loop invariants
9 loop (cond(i)) { // The loop condition
10 body(i); // The loop body, a sequence of statements in the it" iteration.
11 i = upd(i); } // The update function of i, restricted to (i +<¢c), (i —c),
12 |} // (i x c) or (i/c) where c is a positive integer constant”.

Fig. 6: A general template of a loop inside a kernel.

(1.1, 1.6) specify the lower-bound of N (provided by the programmer, who knows
that this is a valid lower-bound). VerCors verifies that the unrolling is valid.
Fig. 6 shows a loop template in a verified GPU program. We would like
to automatically unroll the loop k times and preserve the provability of the
program. To accomplish this, we follow a procedure consisting of three parts:
the main, checking and updating part. In the main part, an annotated (verified)
GPU program and positive k are given as input. Next we go to the checking
part, to see if it is possible to unroll the loop k times. This part corresponds
with the applicability checking phase. Thus, we statically calculate the number
of loop iterations, by counting how many times the condition (cond(i)) holds
starting from either a (as the lowerbound of i) or b (as the upperbound of i),
depending on the operation of upd(i). If k is greater than the total number of
loop iterations at the end of the checking part, then we report an error. Otherwise
we go to the updating part, in which we update either a or b according to the

4 If ¢ was negative, for the multiplication and division, i would oscillate between
positive and negative values and hence would not always be useful as array index.
Hence we consider ¢ to be positive.
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Fig. 7: Inter- and intra-tiling of an array as T = 12, N = 4 and [T/N] = 3.

1 |void Host(int[] a, int T){

2 par Kernel(tid = 0..T)

3 /*@ // Preconditions related to permissions and functional correctness
4 req prePerm(al[tid]) ** preFunc(altid]);

5 // Postconditions related to permissions and functional correctness
6 ens postPerm(al[tid]) #** postFunc(al[tid]); @x/

7 { body(altidl); }

8 |}

Fig. 8: A general unoptimized GPU program to apply for tiling.

operation in upd (i). If the operation is addition or multiplication, then the loop
variable i (in the unoptimized program) goes from a to b. That means, after
unrolling, a should be updated according to the constant ¢ from the update
expression and k. If the operation is subtraction or division, i goes from b to a.
Thus, after unrolling, b should be updated. After the updating part, we return
to the main part to unroll the loop k times.

4.2 Tiling

Tiling is another well-known optimization technique for GPU programs. It in-
creases the workload of the threads to fully utilize GPU resources by assigning
more data to each thread. Concretely, we assume there are T threads and a one-
dimensional array of size T in the unoptimized GPU program where each thread
is responsible for one location in that array (Fig. 8). To apply the optimization,
we first divide the array into [T/N] chunks, each of size N (1 < N < T)°. There
are two different ways to create and assign threads to array cells (as in Fig. 7):
— Inter-Tiling We define N threads and assign them to one specific location in
each chunk. That means each thread serially iterates over all chunks to be
responsible for a specific location in each chunk.
— Intra-Tiling We define [T/N]| threads and assign one thread to one chunk

(i.e., 1-to-1 mapping) to serially iterate over all cells in that chunk.

Both forms of tiling can have a positive impact on GPU program performance;
e.g., see [24,27,45,65] for the impact of this optimization.

Fig. 9 shows the optimized version of Fig. 8 by applying inter-tiling. Regard-
ing program optimization, two major changes happen: 1) the total number of
threads has reduced (1.2), and 2) the body is encapsulated inside a loop (1.16-
1.18). As mentioned, in inter-tiling, we define N threads instead of T. The number

5 Since N is in the range 1 < N < T, the last chunk might have fewer cells.
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1 |void Host(int[] a, int T){

2 par Kernel(tid = 0..N)

3 /*@ req (\forallx int i; 0 <= i && i < ceiling(T, N) && tid+iXxN < T;
4 pre(altid+ixN]));

5 ens (\forall* int i; O <= i && i < ceiling(T, N) && tid+iXxN < T;
6 post(altid+ixN])); @x/

7 {

8 int j = 0;

9 /%@ inv j >= 0 && j <= ceiling(T, N);

10 inv (\forall* int i; 0 <= i && i < ceiling(T, N) && tid+iXN < T;
11 prePerm(a[tid+ixN1));

12 inv (\forall int i; j <= i && i < ceiling(T, N) && tid+iXxN < T;

13 preFunc(al[tid+ixN]));

14 inv (\forall* int i; 0 <= i && i < j && tid+iXxN < T;

15 postFunc(altid+ixN])); @*/

16 loop (tid+jxN < T){

17 body (altid+jxNI1);

18 =3+ 1}

19 |}

Fig. 9: Optimized version of the GPU program of Fig. 8 after applying inter-tiling.

of chunks is indicated by the function ceiling(T, N). Each thread in the newly
added loop iterates over all chunks (in the range 0 to ceiling(T, N)-1) to be
responsible for a specific location. This happens by the loop variable j and the
loop condition tid+jxN < T. This means, each thread tid can access its own
location at index tid in each chunk. To preserve verifiability, we add invariants
to the loop (1.9-1.17). Therefore, we specify:

— the boundaries of the loop variable j, which iterates over all chunks.

— a permission-related invariant for each thread in each chunk (1.10). This
comes from the precondition of the kernel and is quantified over all chunks.

— an invariant to indicate functional properties of the locations that have not
yet been updated by each thread in the body of the loop (1.12). This comes
from the functional property as the precondition of the kernel and is quan-
tified over all chunks.

— an invariant to specify how each thread updates the array in each chunk
(1.14). This comes from the functional property as the postcondition of the
kernel and is quantified over all chunks.

Moreover, we modify the specification of the kernel (1.3-1.6). Note that we have
the condition tid+jxN < T in all universally quantified invariants, because the
last chunk might have fewer cells than N. We quantified the pre- and postcondi-
tion of the kernel over the chunks in the same way as the invariants.

Intra-tiling is in essence similar to inter-tiling with two major differences: 1)
the total number of threads is ceiling(T, N), and 2) each thread in the loop
iterates over cells within its own chunk. Therefore, we have different conditions
in the loop and the quantified invariants. ALPINIST also supports this.

Above, each thread is assigned to one cell. This can easily be generalized
to have each thread assigned to one or more consecutive cells (i.e., a task). A
similar procedure can be applied as long as the tasks do not overlap, i.e., each
cell is assigned to at most one thread.
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4.3 Kernel Fusion

Kernel fusion is a GPU optimization where we merge two or more consecutive
kernels into one. It increases the potential to use thread-local registers to store
intermediate results (see Section 2) and can lead to less power consumption.
See [1,18,59,60,64] for the impact of kernel fusion on GPU programs. We pro-
vide a generalized procedure to fuse an arbitrary number of consecutive kernels
while considering data dependency between them. The idea is to fuse them by
repeatedly fusing the first two kernels (i.e., kernel reduction). In each iteration,
if there is no data dependency between the two kernels, we safely fuse them.
Else if there is only one thread block then we fuse the two kernels by inserting
a barrier between the bodies, else fusion fails.

A benefit of this approach is that it only considers two kernels at a time.
In this way, it can be determined whether a barrier is necessary between two
specific kernels, and we do not miss any possible fusion optimization. Another
benefit of this approach is that when a data dependency between two kernels P
and P+1 (1 < P < Fkernels—1) is detected, the output of the approach is the
fusion of the first P kernels, and the remaining unfused kernels after P. This
allows the user to not only find out that there is a data dependency between P
and P + 1, but also to obtain fused kernels where possible.

There are multiple challenges in this transformation: (1) how to detect data
dependency between two kernels? (2) how to collect the pre- and postconditions
for the fused kernel? and (3) how to deal with permissions so that in the fused
kernel the permission for a location does not exceed 17 The main difficulty in
addressing these challenges is that we have to consider many different possible
scenarios. Fortunately, we can use the information from the contract of the two
kernels. The permission patterns in the contract indicate for each thread which
locations it reads from and writes to. We provide procedures to separately collect
pre- and postconditions related to permissions and to functional correctness. Due
to space limitations, we only discuss the essential steps to collect the precondition
related to permissions for array accesses of the fused kernel in Alg. 1. Collecting
the rest of the contract uses a similar procedure.

Alg. 1 requires kernels k1 and k2 to not lose any permissions, only possibly
redistribute them (using a barrier). Furthermore, for ease of presentation, we
assume that in both k1 and k2, each thread accesses at most one cell of array a,
and that the expressions used to compute array indices only combine constants
and thread ID variables, using standard arithmetic operators.

We compare the postcondition of k1 and the precondition of k2 (1.2) to
understand how to add permissions of the preconditions of k1 and k2 to the
precondition of the fused kernel. Note that prePerm and postPerm correspond
to a permission-related pre- and postcondition, respectively. We use the post-
condition of k1 for this comparison since the permission at the end of k1 needs
to be sufficient to satisfy the precondition of k2. If the index expressions el and
e2 to access an array a are syntactically the same, then they refer to the same
array cell. In that case, we first add to the precondition of the fused kernel the
original permission from the precondition of k1 that corresponds to the permis-
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Algorithm 1 Kernel fusion procedure for collecting precondition permissions.

1: Add all precondition permissions related to non-shared arrays (i.e., accessed by only one of the
two kernels) into the contract of the fused kernel kf.

2: for each shared array a with a permission postPerm(ale1], p1) in the postcondition of the first
kernel k1 and a permission prePerm(ale2], p2) in the precondition of the second kernel k2 do

3: if patterns el and e2 are syntactically the same then

4: Add pre. of k1 corresponding to postPerm(alel], pl) as pre. to kf

5: if p1 < p2 then

6: Add prePerm(ale2], p2-p1) as pre. to kf

7 else if patterns el and e2 are not syntactically the same then

8: if p1 + p2 < 1 then

9: Add pre. of k1 corresp. to postPerm(alel], p1) and prePerm(ale2], p2) as pre. in kf

10: else if p1 + p2 > 1 && pt < 1 && p2 < 1 then

11: Add pre. of k1 corresp. to postPerm(alel], pl) with permission p3 and prePerm(ale2],

12: p4) as pre. s.t. p3 + p4 ==

13: else if p1 == 1 (i.e., write) then > Data dependency, add barrier

14: Add pre. of k1 corresponding to postPerm(alell, p1) as pre. to kf

15: else p2 == > Data dependency, add barrier

16: Add pre. of k1 corresponding to postPerm(alel], pl1) as pre. to kf

17: Add prePerm(ale2], 1-pl) as pre. to kf

sion for alel] in the postcondition of k1 (remember that the latter permission
may have been obtained in k1 after permission redistribution). Second, if p1 is
not sufficient for the precondition of k2 (1.5), we add additional permission to
the precondition of the fused kernel to satisfy the precondition of k2 (1.6).

The remaining different cases in the algorithm correspond to the different
edge cases that we should consider when el and e2 are not syntactically the
same. In particular, data dependency happens when the accumulated permission
(in both kernels) for one location is greater than 1, and there is at least one write
permission. Therefore, we have to distinguish multiple cases: 1) p1+ p2 does not
exceed 1 (1.8), 2) pl + p2 exceeds 1, but no write permission is involved (1.10),
or 3) and 4) at least one write is involved (1.13 and 1.15). In the latter two cases,
a barrier must be introduced to take care of distributing permissions from the
access in k1 to the access in k2, and possibly additional permission for the latter
must be added to the precondition of the fused kernel (1.17). After constructing
the contract of the fused kernel, we check for data dependency.

Fig. 10 shows an example of fusing two kernels. We only present the per-
mission precondition expressions which are collected with Alg. 1. There are two
shared arrays a and b. To collect permission preconditions in the fused kernel,
we follow steps {1.2—1.3—1.4} for array a and steps {1.2—1.3—1.4—1.5—1.6} for
array b. As there is no data dependency, we can safely fuse the two kernels.

Implementing Data Dependency Detection. One of the implementation chal-
lenges of kernel fusion is to check for data dependency in the applicability check-
ing phase. To do this for a specific shared array, the function SV is used. Fig.
11 shows an example of the output of SV. Here, the kernel has 1\2 permission
for altid+1] and 1\3 permission for a[0] if tid+1 is out of bounds. SV takes
the name of an array and the pre- and postconditions of a kernel (of the form
cond(tid) => Perm(alpatt(tid)], p)) onl.3-1.6, and returns a mapping from
indices patt(tid) to the permissions p (on the right in Fig. 11).
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1 |void Host(...){

2 par Kernell(tidl = 0..T) 1 |void Host(...){

3 /*Q@ context Perm(altidil], 1); 2 par Fused_Kernel(tid = 0..T)
4 context Perm(b[tid1]l, 1\2);0x/ 3 /*@ req Perm(altid], 1);

5 { altid1l] = 2+b[tid1]l; } 4 req Perm(b[tid], 1\2);

6 par Kernel2(tid2 = 0..T) = 5 req Perm(b[tid], 1\2);0*/

7 /*@ context Perm(al[tid2], 1\2); 6 { a[tid] = 2#b[tid];

8 context Perm(b[tid2], 1);@*/ 7 bltid] = altid]l+1; }

9 { bltid2] = altid2]+1; } 8 |}
10 |}

Fig. 10: An example of collecting preconditions in fusing two kernels.

1 |void Host(...){

2 par Kernell(tidl = 0..T)

3 /*0 context (tid != a.length-1 => Output SV(a, spec kernel)
4 Perm(al(tid + 1)1, 1\2)); .

5 context (tid == a.length-1 => - index 0]1]2)3]4
6 Perm(a[0], 1\3)); @/ aq] 11010101

7 .. permission 3 3 3 3 B)

8 |}

Fig. 11: Example output of the SV function for array a

If the function SV is executed for two kernels to fuse with the same shared
array a, the results SV;(a) and SV5(a) can be compared to determine whether
there is data dependency between the two kernels. This comparison is described
generally at 1.8-1.16 in Algorithm 1. For each corresponding location in SV; (a)
and SVs (a), we can determine, for example, whether both permissions combined
do not exceed 1 (1.8) or whether the location in k1 has write permission (1.12).

4.4 Other Optimizations

We briefly discuss the three remaining optimizations supported by ALPINIST.
Iteration merging is an optimization technique that is applicable to both GPU
and CPU programs®. It merges several iterations of a loop into a single iteration.
As aresult, there are fewer iterations, which leads to fewer comparison operations
in the loop. Iteration merging can have a positive performance impact; see [37,
44,51] for the effectiveness of this optimization on GPU programs.

Matrix linearization is an optimization where we transform two-dimensional
arrays into one dimension ones. This optimization can result in better memory
access patterns, thereby improving caching. See [4,12,52] for the impact of matrix
linearization on GPU programs.

The last optimization implemented in ALPINIST is data prefetching. Suppose
there is a verified GPU program where each thread accesses an array location
in global memory multiple times. In this optimization, we prefetch the values
of those locations that are in global memory into registers which are local to
each thread. A similar optimization, in which intermediate results are stored in
register memory, is applied in Section 2. Therefore, instead of multiple accesses
to the high latency global memory, we benefit from low-latency registers. Data
prefetching can have a positive performance impact; see [3,56,66].

S Tteration merging is also referred to as loop unrolling/vectorization in the literature.
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Table 1: A summary of the optimization and verification times for all optimizations.

Optimization Optim. time (s) Verif. time (orig.) (s)|Verif. time (opt.) (s)

min. max. avg. med.| min. max. avg. med.|min. max. avg. med.
Loop unrolling 0.067 0.238 0.116 0.098| 7.6 50.7 18.2 14.3| 7.6 57.5 20.8 17.3
Tiling 0.044 0.052 0.048 0.047| 16.7 21.5 18.7 18.1| 19.3 31.4 24.7 20.8
Kernel fusion 0.099 0.338 0.173 0.137| 16.7 54.5 24.6 20.0| 14.9 22.3 19.0 19.5

Iteration merging 0.042 0.592 0.152 0.097| 6.9 51 17.0 12.7| 7.3 64 20.0 13.8
Matrix linearization|{0.011 0.044 0.022 0.017| 11.6 16 14.3 14.1] 11.5 16.8 14.4 15.1
Data prefetching 0.010 0.068 0.051 0.053| 9.7 23 14.0 13.4] 10.4 23 13.5 12.7

5 Evaluation

This section describes the evaluation of ALPINIST. The goal is to

Q1 test whether ALPINIST works on GPU programs.

Q2 investigate how long it takes for ALPINIST to transform GPU programs and
how this affects the verification time.

Q3 investigate the usability of ALPINIST on real-world complex examples.

5.1 Experiment Setup

ALPINIST is evaluated on examples from three different sources. The first source
consists of hand-made examples that cover different scenarios for each optimiza-
tion. The second source is a collection of verified programs from VerCors’ ex-
ample repository’. The third source consists of complex case studies that are
already verified in VerCors: two parallel prefix sum algorithms [49], parallel
stream compaction and summed-area table algorithms [46], a variety of sort-
ing algorithms [47], a solution [26] to the VerifyThis 2019 challenge 1 [17] and a
Tic-Tac-Toe example [55] based on [22]. In total, we applied the optimizations
30 times in the first category, 23 times in the second category and 17 times in
the third category (in total 70 experiments). All the examples are annotated
with special optimization annotations such that ALPINIST can apply those op-
timizations automatically. All these examples are publicly available at [14]. All
the experiments were conducted on a MacBook Pro 2020 (macOS 11.3.1) with
a 2.0GHz Intel Core i5 CPU. Each experiment was performed ten times, af-
ter which the average times, i.e., optimization and verification times, of those
executions were recorded for the experiment.

5.2 Results & Discussion

Q1 To test whether ALPINIST works on GPU programs, we applied the six
optimizations in all 70 experiments and used VerCors to reverify all the resulting
programs. All these tests were successful.

Q2 To investigate how long it takes for ALPINIST to transform GPU programs,
we recorded the transformation time for each optimization applied to all the

" The example repository of VerCors is available at https://github.com/
utwente-fmt/vercors/tree/dev/examples.


https://github.com/utwente-fmt/vercors/tree/dev/examples
https://github.com/utwente-fmt/vercors/tree/dev/examples
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Table 2: An overview of optimizing case studies, where # is the unroll factor (for
loop unrolling) or the merge factor (for iteration merging), OT the time it takes to
optimize, VB the original verification time (Verification Before) and VA the optimized

verification time (Verification After). All times are in seconds.

Case Loop unrolling Iter. merging Matrix lin. Data pref.
# OT VB VA|# OT VB VA| OT VB VA| OT VB VA
BubbleSort [47] 1 0.101 25.4 27.3| 4 0.170 29.8 34.1| N/A N/A N/A| N/A N/A N/A
InsertionSort [47][| 1 0.134 25.6 25.8] 3 0.225 24.1 28.0| N/A N/A N/A| N/A N/A N/A
SelectionSort [47][| 1 0.107 23.5 25.7| 2 0.592 22.8 27.7| N/A N/A N/A| N/A N/A N/A
TimSort [47] 2 0.216 29.3 38.5| 3 0.182 29.1 37.9] N/A N/A N/A| N/A N/A N/A
Blelloch [49] 1 0.129 50.7 57.5] 3 0.355 51.0 64.0| N/A N/A N/A| N/A N/A N/A
Kogge-Stone [49] [[ 1 0.238 23.0 25.6] 2 0.082 21.8 25.6] N/A N/A N/A[0.103 23.0 23.0
TicTacToe [55] 3 0.106 19.8 21.0| 2 0.076 17.3 19.6] N/A N/A N/A| N/A N/A N/A
VerifyThis [26] 1 0.144 26.2 28.7|N/A N/A N/A N/A| N/A N/A N/A| N/A N/A N/A
Transpose [46] N/A  N/A N/A N/A[N/A N/A N/A N/A[0.022 16.0 16.0] N/A N/A N/A

examples. Table 1 summarizes the best and worst optimization times for the
six optimizations (as reported by ALPINIST). To investigate the impact on the
verification time, the table also shows the (best and worst) verification times of
the original and optimized programs (as reported by VerCors). The table shows
the minimum, maximum, average and median times of all examples. It can be
observed that ALPINIST takes insignificant time to apply each optimization to
all the examples. Moreover, the verification time after optimizing generally in-
creases. For loop unrolling, tiling and iteration merging, the verification time
increases. This can be attributed to the additional code that is generated. For
kernel fusion, the verification time decreases. This is due to verifying fewer ker-
nels. For matrix linearization and data prefetching, the verification time slightly
increases. This can be attributed to the linear expressions in matrix linearization
and the extra statements to read from/write to the registers in data prefetching.
Q3 To investigate the usability of ALPINIST on real-world examples, we suc-
cessfully applied it on the third category with the complex case studies. Table 2
shows the optimization and verification times of applying loop unrolling, iter-
ation merging, matrix linearization and data prefetching to these case studies.
Note that in the case studies only these four optimizations could be applied. In
the table, N/A indicates that the optimization is not applicable to the example.

6 Related Work

To the best of our knowledge, this is the first paper to showcase a tool that
implements annotation-aware transformations. We categorize the related work
into three parts, covering both tools and optimizations.

Automatic Optimizations without Correctness. There is a large body of related
work, see e.g., [1,3,18,24,27,45,59,60,64-66], that shows the impact of auto-
mated optimizations on GPU programs, but does not consider correctness, or the
preservation of it. Our tool can potentially complement these approaches by pre-
serving the provability of the optimized programs, and it can exploit annotations
to further automate optimisation.
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Correctness Proofs for Transformations. Another body of related work focuses
on different approaches to preserve provability not specific to GPU programs.
COMPCert [29,30] is a formally verified C compiler which preserves seman-
tic equivalence of the source and compiled program, by proving correctness of
each transformation in the compilation process. De Putter and Wijs [43] prove
the preservation of functional properties over transformations on models of con-
current systems. They prove preservation of model-independent properties. This
approach differs from ours as they work on models instead of concrete programs.

Compiler Optimization Correctness. Finally, there is related work that focusses
on the compilation of sequential programs, performing transformations from
high-level source code to lower-level machine code while preserving the seman-
tics. These approaches neither consider parallelization, nor target different ar-
chitectures. In GPU programming, the optimizations often need to be applied
manually rather than during the compilation process.

Namjoshi and Xu [40] use a proof checker to show equivalence between an
original WebAssembly program and optimized program. An equivalence proof is
generated based on the transformations. Namjoshi and Singhania [39] created a
semi-automatic loop optimizer with user-directives. The loops are verified during
compilation. For each transformation, semantics are defined to guarantee seman-
tical equivalence to the original program. Namjoshi and Pavlinovic [38] focus on
recovering from precision loss due to semantics-preserving program transforma-
tions and propose systematic approaches to simplify analysis of the transformed
program. Finally Gjomemo et al. [19] help compiler optimizations by supplying
high-level information gathered by external static analysis (e.g., Frama-C). This
information is used by the compiler for better reasoning.

7 Conclusion

In this paper, we presented ALPINIST, the annotation-aware GPU program opti-
mizer. Given an unoptimized, annotated GPU program, we showed how ALPIN-
IST transforms both the code and the annotations, with the goal to preserve the
provability of the optimized GPU program. ALPINIST supports loop unrolling,
tiling, kernel fusion, iteration merging, matrix linearization and data prefetch-
ing, of which the first three are discussed in detail. We discussed the design and
implementation of ALPINIST, and we validated it by verifying a set of examples
and reverifying their optimized counterparts.

For future work, there are other optimizations that could be supported, such
as data prefetching for all memory patterns as mentioned by Ayers et al. [3].
Another open question is if and how this approach can be used in program
compilation. We also plan to extend this approach to preserve the provability
of transpiled code, e.g., CUDA to OpenCL conversions. Moreover, we plan to
investigate how ALPINIST can be combined with techniques such as autotuning
that automatically detect the potential for applying specific optimizations and
identify optimal parameter configurations [2,61].
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