
Appendix

A Proof of Proposition 1

Proof. First, we show that an optimal �˚ for problem (7) exits. By the definition of the

Lagrangian dual function, we have that Lp�q in (7) is an infimum of a collection of linear

functions. Thus, it holds that Lp�q is a convex function. Also, it is not di�cult to see that

as � Ñ `8, we have Lp�q Ñ `8. Thus, together with the convexity of Lp�q, we have that

Lp�q has compact level sets. That is, for any ↵ P R, the set t� : Lp�q § ↵u is compact.

By the Bolzano-Weistrass Theorem, there exists an optimal Lagrangian multiplier �˚ that

minimizes Lp�q.
Then, given the optimal Lagrangian multiplier �

˚. Since, by assumption, the primal

solution p� exists, we have that the function xMp�q is bounded above. We have that a dual

optimal solution r� exists. ⌅

B Proof of Theorem 2

Proof. In the proof, for ease of presentation, we let the constraint for the primal problem be

pQ⌧ p�q • q.

We consider the case where the optimal Lagrangian multiplier �
˚ “ 0 or �

˚ ° 0. We

first have that, if �˚ “ 0, we have that �˚ “ argmax xMp�q by (8). Since pQ⌧ p r�q • q by the

feasibility of r�, we have r� is also a primal optimal solution, and our clam holds.

If �˚ ° 0, we show in Lemma 12 that one of the two cases hold

i. There exists a dual optimal solution such that pQ⌧ p r�q “ q.

ii. There exist at least two solutions achieve the dual optimal objective, denoted as r� and

r�1, such that pQ⌧ p r�q † q and pQ⌧ p r�1q ° q.

Considering the two cases separately, for case (i), there exists a dual optimal solution r� such
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that pQ⌧ p r�q “ q. By the weak duality, we have

xMp p�q • xMp r�q ` �
˚tq ´ pQ⌧ p r�qu “ xMp r�q,

and our claim holds as desired. Note that in this case, the dual optimal solution actually

also achieves the primal optimality.

We then focus on case (ii). Given the multiplier �˚, there exist multiple solutions achieve

the dual optimality. Suppose that there are m of them. Let these solutions be �p1q,...,�pmq

be the sequence of solutions ranked by their corresponding primal objective values that

xMp�p1qq § xMp�p2qq § ¨ ¨ ¨ § xMp�pmqq.

Meanwhile, by the dual optimality, we have that

�
˚ xMp�p1qq ` �

˚ pQ⌧ p�p1qq “ xMp�p2qq ` �
˚ pQ⌧ p�p2qq “ ¨ ¨ ¨ “ xMp�pmqq ` �

˚ pQ⌧ p�pmqq.

Since �
˚ ° 0, we have

pQ⌧ p�p1qq • pQ⌧ p�p2qq • ¨ ¨ ¨ • pQ⌧ p�pmqq.

Meanwhile, by our assumption, we have that there exists some k P rms such that

pQ⌧ p�pkqq • q • pQ⌧ p�pk`1qq.

This shows that there exists a dual solution, �pk`1q in this case, that satisfies the primal

constraint, and the duality gap is upper bounded by r�p pQ⌧ p�pk`1q ´ qq. Note that by the

discrete nature of the sample quantile function pQ⌧ p¨q, the primal solution’s corresponding

sample quantile value is pQ⌧ p p�q, which might be di↵erent from q. We thus have, the duality

bound can be bounded by r�
 pQ⌧ p�pk`1qq ´ pQ⌧ p p�q

(
, which concludes our proof. ⌅

Lemma 12. For the dual problem (8), suppose that the optimal Lagrangian multiplier �
˚ °

0. One of the following two cases must hold that

i. There exists a dual optimal solution such that pQ⌧ p r�q “ q.
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ii. There exist at least two solutions achieve the dual optimal objective, denoted as r� and

r�1
, such that pQ⌧ p r�q † q and pQ⌧ p r�1q ° q.

Proof. We prove the lemma by contradiction. We assume the contrary that pQ⌧ p r�q † q for

all dual optimal solutions r� that achieve the dual optimal objective. (Note that the other

case pQ⌧ p r�q † q follows by similar arguments.) We have that

Lp�˚q “ maximize
�

xMp�q ` �
˚tq ´ pQ�p�qu

“ maximize
`Prns

xMp�p`qq ` �
˚tq ´ pQ�p�p`qqu,

where �
p`q “ argmax�:Q⌧ p�q“y`

xMp�qp�q, by the fact that Q⌧ p�q “ yi for some i P rns.
By our assumption that pQ⌧ p r�q is strictly less than q. As shown in Lemma 13, we have

that for small " ° 0, we have

Lp�˚ ` "q “ maximize
`Prns

xMp�q ` p�˚ ` "qtq ´ pQ⌧ p�qu

† maximize
`Prns

xMp�q ` �
˚tq ´ pQ⌧ p�qu

“ Lp�˚q.

However, since �˚ is the optimal Lagrangian multiplier by our assumption, it minimizes the

function Lp�˚q. The above result gives a contradiction, and our result holds as desired. ⌅

Lemma 13. Suppose that the dual optimal Lagrangian multiplier �
˚ ° 0. Let �

p`q “
argmaxt xMp�q : pQ⌧ p�q “ y`u for ` “ 1, ..., n. With loss of generality, assume y1 † y2 †
¨ ¨ ¨ † yn. It holds that if 0 † " † min`Pt2,...,nu

 
Mp�p`´1qq ´ Mp�p`q(

,

Lp�˚ ` "q “ minimize
`Prns

xMp�q ` p�˚ ` "qtq ´ pQ⌧ p�qu.

Proof. When we perturb the optimal �˚ to �
˚ ` ", the corresponding dual solution becomes

r�1 “ argmax
�

xMp�q ` p�˚ ` "qtq ´ pQ⌧ p�qu.

By our choice of ", it is not di�cult to see that our claim holds as desired. ⌅

32



C Proof of Proposition 4

Proof. For ease of presentation, we denote by |Mp q�q and qQ⌧ p q�q the sample mean and ⌧ -th

quantile of the treatment e↵ects following deterministic decision rule fi “ pxJ
i

q� ° 0q.
We first prove that there exists a r� that if we follow the stochastic ITR fpxi,

r�q “
Ppfi “ 1q “ t1 ` expp´x

J
i

r�qu´1, the corresponding objective can be arbitrarily close to the

objective achieved by the deterministic ITR fi “ pxJ
i

q� ° 0q, and the quantile constraint

is approximately satisfied by the stochastic ITR. We have that for any q� and � ° 0, there

exists some r� such that
ˇ̌

pxJ
i

q� ° 0q ´
 
1 ` expp´x

J
i

r�q
(´1

ˇ̌
§ � for all xi. (Note that

here we implicitly assume that xi ‰ 0. If we indeed have some xi “ 0, we may perturb

the data by letting all x1
i “ xi ` � for some � such that all x1

i ‰ 0.) This implies that

by considering stochastic ITRs that fpxi,�q “ Ppfi “ 1q “ t1 ` expp´x
J
i �qu´1, we have

for any given "1 ° 0, there exists some r�, such that the corresponding objective satisfies

xMp r�q ° |Mp q�q´"1 and the corresponding quantile constraint satisfies pQ⌧ p r�q ° qQ⌧ p q�q´"1.

In addition, we have that by our assumptions that all outcomes are bounded, and q�

achieves the quantile constraint in population. Also, as shown above, for any "1 ° 0, there

exists some r� such that pQ⌧ p r�q ° qQ⌧ p q�q´"1. We thus have that if n is large enough, problem

(6) is feasible. Note that as n Ñ 8 both xMp�q and |Mp�q converge to Mp�q “ EpY ˚p�qq.
Meanwhile, we have xMp r�q ° |Mp q�q ´ "1. We then have for any "2 ° 0, the solution to our

problem (6), p�, satisfies that Mp p�q • Mp q�q ´ "1 ´ "2 with probability approaching one,

and satisfies the quantile constraint in (6). Since "1 and "2 are arbitrary, our claim follows

as desired. ⌅

D Proof of Theorem 5

Proof. Denote by Pn the empirical measure of the observed samples. Let �˚ be a minimizer

to the loss function under the quantile constraint in expectation that

�
˚ “ argmax

�PB
Mp�q, subject to Q⌧ p�q • q.
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First, we have that as Q⌧ p�˚q • q, by Theorem 1 of Wang et al. (2018), it is not di�cult to

see that, as n increases, pQ⌧ p�˚q • q ´C ¨n´1{2 for some constant C with probability goes to

1. Thus, we have that as n increases, �˚ is a feasible point for problem (6) with probability

goes to 1.

Meanwhile, by the definition that p� is the maximizer for the empirical mean function

under the constraint, we have that for any n large enough, xMp p�q • xMp�˚q for all �˚ P B

and satisfies pQ⌧ p�˚q • q ´C ¨n´1{2 with high probability. Thus, we only need to prove that

xMp p�q Ñ Mp p�q in probability.

By our assumption that � P B, and B is compact, we have that p� is bounded. This

implies that t xMp�q : � P Bu belongs to a Donsker class because it is not di�cult to see

xMp�q is Lipschitz continuous with respect to �. Consequently, we have

?
n
 xMp p�q ´ Mp p�q

(
“ OP p1q.

Our claim holds as desired. ⌅

E Proof of Theorem 6

Proof. The proof is based on an application of Theorem 5.6 of Steinwart et al. (2007).

Specifically, let G be the function class

G “
 xMp�q ´ xMp�˚q : � P Q⌧ pqq

(
,

where �
˚ P argmax�PQ⌧ pqq Mp�q, and Q⌧ pqq “ t� : Q⌧ p�˚q • qu. We first have that

Epgq § 0 for any g P G as �
˚ is a maximizer in expectation. Note that our loss function

is Lipschitz conitnuous with respect to �. Denote that Lipschitz constant as CL, we have

|g| § CL}� ´ �
˚}. As we assume that � P BpMq, we have |g| § B “ 2MCL. Consequently,

squaring both sides and taking expectations, we have Epg2q § Epgq ` 4B2.

34



Next, for the covering number N
`
B

´1
G, ", L2pPnq

˘
, we have

logN
`
B

´1
G, ", L2pPnq

˘
§ logN

`
B

´1t xMp�q : � P BpMqu, ", L2pPnq
˘

§ logN
`
BpMq, B"{CL, , L2pPnq

˘

§ logN
`
Bp1q, 2", L2pPnq

˘
.

Thus, by Theorem 2.1 of Steinwart et al. (2007), we have that for some constant C,

sup
Pn

logN
`
B

´1
G, ", L2pPnq

˘
§ C"

´2
.

Consequently, by Theorem 5.6 of Steinwart et al. (2007), there exists a constant CS such

that for all n • 1 and ⌧ • 1, we have that

P˚`
Mp p�q † Mp�˚q ´ CS"pn,C1, B, ⌧q

˘
§ e

´⌧
,

where

"pn,C1, B, ⌧q “ B ¨
´ 1

n
` 4?

n

¯
` pB ` C1q

⌧

n
.

Our claim holds as desired. ⌅

F Dynamic Treatment Regime with Intermediate Out-

come

In this section, we extend the dynamic treatment regime discussed in Section 5 to the more

general case where we observe intermediate outcome at each stage. Similar to Section 5, we

consider 2-stage dynamic treatment regime for ease of presentation, and the methods and

results for the general T -stage case can be easily generalized. We also assume that the data

are from some SMART trial.

The main di↵erence between the setup with intermediate outcome is that after the first

stage, we observe an intermediate outcome Y
p1q
i for sample i, and after the second stage,

we observe an outcome Y
p2q
i . Let Hp1q

i “ X
p1q
i and H

p2q
i “ pXp1qJ

i , A
p1q
i , Y

p1q
i ,X

p2qJ
i qJ. We
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consider candidate stochastic F-ITR indexed by � “ t�p1q
,�

p2qu such that fjpH pjq
i ,�

pjqq “
PpApjq

i “ 1|Hpjq
i q “ t1 ` expp´H

pjqJ
i �

pjqqu for j “ 1, 2.

Suppose we have random samples txp1q
i , a

p1q
i , y

p1q
i ,x

p2q
i , a

p2q
i , y

p2q
i uiPrns, and we let hp1q

i “ x
p1q
i ,

and h
p2q
i “ pxp1qJ

i , a
p1q
i , y

p1q
i ,x

p2qJ
i qJ. We consider a backward fitting approach to estimat-

ing the optimal F-ITR. Specifically, letting c
p2q
i p�p2qq “ a

p2q
i f

p2qphp2q
i ,�

p2qq ` p1 ´ a
p2q
i qt1 ´

f
p2qphp2q

i ,�
p2qqu, we estimate the regime for stage 2 by

p�p2q P argmax xMp2qp�p2qq, subject to pQp2q
⌧2 p�p2qq • q ´ C2{?

n, (13)

where xMp2qp�p2qq and pQp2q
⌧2 p�p2qq are the estimators for the mean and ⌧2-th quantile of out-

come in stage 2 that

xMp2qp�p2qq “ argminµn
´1

nÿ

i“1

c
p2q
i p�p2qqpyp2q

i ´ µq2,

and

pQp2qp�p2qq “ argminqn
´1

nÿ

i“1

c
p2q
i p�p2qq⇢⌧2pyp2q

i ´ qq,

and C2 is a constant.

After getting p�p2q, we estimate the regime for stage 1. First, similar to (11), we let

c
p1q
i p�p1qq “a

p1q
i a

p2q
i

⇡1⇡2

¨ f p1q
i php1q

i ,�
p1qqf p2q

i php2q
i , p�p2qq

` a
p1q
i p1 ´ a

p2q
i q

⇡1p1 ´ ⇡2q
¨ f p1q

i php1q
i ,�

p1qq
`
1 ´ f

p2q
i php2q

i , p�p2qq
˘

` p1 ´ a
p1q
i qap2q

i

p1 ´ ⇡1q⇡2

¨
`
1 ´ f

p1q
i php1q

i ,�
p1qq

˘
f

p2q
i php2q

i , p�p2qq

` p1 ´ a
p1q
i qp1 ´ a

p2q
i q

p1 ´ ⇡1qp1 ´ ⇡2q
¨
`
1 ´ f

p1q
i php1q

i ,�
p1qq

˘`
1 ´ f

p2q
i php2q

i , p�p2qq
˘
.

Then, we estimate the F-ITR at stage 1 by

p�p1q “ argmax
�p1q

xMp�p1qq, subject to pQp1q
⌧1 p�p1qq • q1 ´ C1{

?
n, and pQ⌧ p�p1qq • q ´ C{?

n,

(14)
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where

xMp�p1qq “ argminµn
´1

nÿ

i“1

c
p1q
i p�p1qqpyp1q

i ` y
p2q
i ´ µq2

is the estimator of the mean of total outcome, and

pQ⌧ p�p1qq “ argminqn
´1

nÿ

i“1

c
p1q
i p�p1qq⇢⌧ pyp1q

i ` y
p2q
i ´ qq

is the estimator for the ⌧ -th quantile of the total outcome, and

pQp1q
⌧1 p�p1qq “ argminqn

´1

nÿ

i“1

cip�p1qq⇢⌧1pyp1q
i ´ qq,

where cip�p1qq “ a
p1q
i f

p1qphp1q
i ,�

p1qq ` p1 ´ a
p1q
i qt1 ´ f

p1qphp1q
i ,�

p1qqu, is the estimator for the

⌧1-th quantile of the stage 1 intermediate outcome.

For the estimator p� “ t p�p1q
, p�p2qu derived above, we can get similar OP pn´1{2q rate of

convergence to the optimal riskMp�˚q, while satisfying the quantile constraints by backward

induction and similar arguments in the proof of Theorem 6.

Theorem 14. Suppose that �
˚ “ t�˚

1
,�

˚
2
u belongs to a compact set BpMq, where M ° 0 is

a constant. Then we have that for all ⌧ • 1 we have

P˚`
Mp p�q • Mp�˚q ´ "

˘
• 1 ´ e

´⌧
,

where P˚
denotes the outer probability for possibly nonmeasureable sets, and " “ Opn´1{2q.

Or, equivalently,

|Mp p�q ´ Mp�˚q| “ OP pn´1{2q.

In addition, we have that, with probability goes to 1,

Q
p1q
⌧ p p�p1qq • q1, Q

p2q
⌧ p p�p2qq • q2, and Q⌧ p p�q • q,

where Q
p1q
⌧1 p�p1qq denotes the ⌧1-th quantile of the stage 1 intermediate outcome, Q

p2q
⌧2 p�p2qq

denotes the ⌧2-th quantile of the stage 2 intermediate outcome, and Q⌧ p p�q denotes the ⌧ -th

quantile of the total outcome.
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