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Supporting information (S1 Text)

One-dimensional a priori physical model details

For completeness, we give the derivation of the forward model, which was originally

proposed in [1]. Substituting the a priori cylinder model into the three-dimensional

forward model yields

φ(x, y, z) = − 1

4πς

∫ b

a

∫ ∫
x2+y2≤R

g(z′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′ dy′ dz′.

(S.1)

We assume x and y are inside the cylinder (as typically, we assume we observe φ at the

center of the cylinder). Changing to polar coordinates, we define

r2 = (x− x′)2 + (y − y′)2 as the variable radius inside the cylinder and use the
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substitution dx′ dy′ dz′ = r dθ dr dz′ to obtain

φ(x, y, z) = − 1

4πς

∫ b

a

∫ R

0

∫ 2π

0

rg(z′)√
(z − z′)2 + r2

dθ dr dz′ (S.2)

= − 1

2ς

∫ b

a

g(z′)

∫ R

0

r√
(z − z′)2 + r2

dr dz′ (S.3)

= − 1

2ς

∫ b

a

g(z′)
[√

(z − z′)2 +R2 −
√

(z − z′)2
]
dz′. (S.4)

Notice that after integration, this is no longer a function of x or y, so we can simply

write

φ(z) = − 1

2ς

∫ b

a

g(z′)
[√

(z − z′)2 +R2 −
√

(z − z′)2
]
dz′. (S.5)

To better understand how R affects the φ, we can factor out R:

φ(z) = −R
2ς

∫ b

a

g(z′)

[√( r
R

)2
+ 1−

√( r
R

)2]
︸ ︷︷ ︸

a(z,z′;R)

dz′ (S.6)

where r = z − z′ and a(z, z′;R) is a weight function with a maximum value of 1 when

r = 0. Typically, we are interested only in the relative magnitude of the CSD in space

and time so the scalar R
2ς can be ignored.

Two-dimensional a priori physical model details

As mentioned in the text, certain choices of two-dimensional a priori physical models

may lead to singularities in the forward model. To avoid the singularity, we assume that

there is some region of zero CSD surrounding the probe, which is parameterized by τ .

As shown by [2], substituting the a priori model into the three-dimensional forward

model yields

φ(x, y, z) = − 1

4πς

∫ bz

az

∫ by

ay

∫
τ≤x≤R+τ

g(y′, z′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′ dy′ dz′

= − 1

4πς

∫ bz

az

∫ by

ay

∫ R+τ

τ

g(y′, z′)√
(x− x′)2 +m2

dx′ dy′ dz′

= − 1

4πς

∫ bz

az

∫ by

ay

g(y′, z′)

∫ R+τ

τ

1√
(x− x′)2 +m2

dx′ dy′ dz′
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where m =
√

(y − y′)2 + (z − z′)2. Since we are interested in modeling the LFP at the

face of the probe (x = 0), let x = 0 and integrate over x′:

φ(0, y, z) = − 1

4πς

∫ bz

az

∫ by

ay

g(y′, z′)

∫ R+τ

τ

1√
(x′)2 +m2

dw dy′ dz′

= − 1

4πς

∫ bz

az

∫ by

ay

g(y′, z′)
[
log(R+ τ +

√
(R+ τ)2 + (y − y′)2 + (z − z′)2

− log(τ +
√
τ2 + (y − y′)2 + (z − z′)2

]
dy′ dz′.

We will write the LFP as φ(y, z) where implicitly x = 0 when using the forward model.

As in the one-dimensional case, 1
4πς may be dropped if one is only interested in the

relative variation of the CSD across space and time (and in many cases, ς may not be

known).

Computational details for Gaussian process

Let Ks ∈ RM×M be the LFP spatial covariance evaluated at the locations of the

observed LFPs and Kt ∈ RT×T be the temporal covariance evaluated at the observed

time points; they are functions of θ (including the forward model parameter R which is

part of the LFP spatial covariance function through the forward operator; the

computation of Ks is discussed in the next section). Let φ̃
(r)
∈ RM×T represent the

matrix of observed LFPs on trial n (with N total trials). The traditional expression for

the log marginal likelihood (excluding terms that don’t depend on θ) takes the form

logL(θ) = −1

2

N∑
n=1

log
(∣∣Ks ⊗Kt + σ2I

∣∣)+ vec
(
φ̃

(r)
)T [

Ks ⊗Kt + σ2I
]−1

vec
(
φ̃

(r)
)
.

However, this form relies on inversion of an MT ×MT matrix which is clearly

problematic for typical M and T observed in real data, so we instead leverage the

special structure present in the matrix. In particular, we use the eigendecomposition of

the covariance matrices, Ks = QsΛsQ
T
s and Kt = QtΛtQ

T
t , where Λs and Λt are
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diagonal matrices. This is useful because of the following identity:

[
Ks ⊗Kt + σ2I

]−1
=
[
QsΛsQ

T
s ⊗QtΛtQ

T
t + σ2I

]−1
=
[
(Qs ⊗Qt)(Λs ⊗Λt)(Q

T
s ⊗QT

t ) + σ2I
]−1

=
[
(Qs ⊗Qt)(Λs ⊗Λt)(Q

T
s ⊗QT

t ) + σ2(Qs ⊗Qt)(Qs ⊗Qt)
−1]−1

=
[
(Qs ⊗Qt)(Λs ⊗Λt)(Q

T
s ⊗QT

t ) + (Qs ⊗Qt)(σ
2I)(QT

s ⊗QT
t )
]−1

=
[
(Qs ⊗Qt)(Λs ⊗Λt + σ2I)(QT

s ⊗QT
t )
]−1

= (Qs ⊗Qt)
[
Λs ⊗Λt + σ2I

]−1
(QT

s ⊗QT
t )

which relies on properties of the Kronecker product and the orthonormality of

(Qs ⊗Qt). This implies that after eigendecomposition, the inversion of the matrix

reduces to inversion of a diagonal matrix.

Let D = Λs ⊗Λt + σ2I be a diagonal matrix, and let q be an MT -vector with

elements 1/Dii. Note that a low-rank Gaussian process could be implemented by using

truncated eigendecompositions [4]. Using the eigendecomposition and properties of

Kronecker products (as shown in more detail in [3]), the log marginal likelihood may be

rewritten:

logL(θ) = −N
2

MT∑
i=1

log(Dii)−
1

2

N∑
n=1

MT∑
i=1

[
vec
(
QT
s φ̃

(r)
Qt

)
◦ vec

(
QT
s φ̃

(r)
Qt

)
◦ q
]
i

where the Hadamard product ◦ indicates elementwise multiplication and Qt, Qs, D,

and q depend on θ. This form is faster and more stable to compute as it avoids direct

inversion of an MT ×MT matrix which has computational complexity O(M3T 3).

Because eigendecomposition is of complexity O(M3) and O(T 3) for the spatial and

temporal covariance matrices, respectively, the computational complexity of one

likelihood function evaluation is instead O(M3 + T 3 +MT ) for both

eigendecompositions and the inversion of a diagonal matrix of size MT ×MT .

Given fixed θ, the log marginal likelihood may also be optimized over mean function

parameters γ; here we show the likelihood assuming a shared mean function across

trials, though per-trial mean parameters could also be used (and if trials were assumed

independent, this would result in a separate log marginal likelihood for each trial). Let

µ ∈ RM×T be the mean function evaluated at the observed LFP spatial and temporal
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points (where this function depends on γ). We first calculate the inverse covariance

matrix as

Σ−1 = (Qs ⊗Qt) diag(q) (Qs ⊗Qt)
T

and calculate the mean of the LFPs across trials as ȳ = 1
Nr

∑Nr

r=1 φ̃
(r)

. Then we use the

following (rescaled) log marginal likelihood:

logL(γ) = vec(µ)TΣ−1vec(ȳ)− 1

2
vec(µ)TΣ−1vec(µ).

Numerical integration in computing covariance matrices

To compute the spatial LFP covariance matrix, the forward model must be applied to

the CSD covariance function and evaluated at the observed LFP spatial locations. We

will assume that the integral is approximated using a standard numerical integration

scheme of the form

∫ b

a

f(u) du ≈
∑
i

wif(ui)

where wi are weights that may depend on a quadrature scheme or the distance between

the ui points. In the case of a covariance function for the LFP, we apply the forward

model integral equation to both inputs of the covariance function, so that the function

evaluated at a single pair of inputs (x, x′) takes the form

∫ b

a

∫ b

a

b(x− u)b(x′ − v)k(u, v) du dv ≈
∑
i

∑
j

wui w
v
j b(x− ui)b(x′ − vj)k(ui, vj) (S.7)

where k is the CSD covariance function and b are the forward model weights. Assume

we want to evaluate the LFP covariance matrix at all pairs of locations from two vectors

x = [x1, ..., xm] and x′ = [x1, ..., xn], and assume we have vectors u = [u1, ..., uc] and
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v = [v1, ..., vd] spanning the ranges of the integrals. Define the following matrices:

A =



wu1 b(x1 − u1) · · · wuc b(x1 − uc)

wu1 b(x2 − u1) · · · wuc b(x2 − uc)
...

...
...

wu1 b(xm − u1) · · · wuc b(xm − uc)


∈ Rm×c,

B =



wv1b(x
′
1 − v1) · · · wv1b(x

′
n − v1)

wv2b(x
′
1 − v2) · · · wv2b(x

′
n − v2)

...
...

...

wvdb(x
′
1 − vd) · · · wvdb(x

′
n − vd)


∈ Rd×n,

K =



k(u1, v1) · · · k(u1, vd)

k(u2, v1) · · · k(u2, vd)

...
...

...

k(uc, v1) · · · k(uc, vd)


∈ Rc×d.

Then the LFP spatial covariance may be computed as AKB. Similarly, the spatial

cross-covariance between the LFP and the CSD may be computed as AK. We found

that using simple integration rules (midpoint or trapezoid rule) worked well given large

enough c and d. Notice that the multiplication AKB must be done prior to the

eigendecomposition, or else the orthonormality need to establish the key identity for

computing the matrix inverse is not preserved.

The scheme described above also applies directly to the two-dimensional case. To

evaluate a single element of the covariance matrix at spatial locations (x1, x2) and

(x′1, x
′
2), where single subscripts now represent dimension indexing, we evaluate the

integral

∫ b2

a2

∫ b2

a2

∫ b1

a1

∫ b1

a1

b(x1 − u1, x2 − u2)b(x′1 − v1, x′2 − v2)k(u1, u2, v1, v2) du1 dv1 du2 dv2.

Now assuming u and v are two-dimensional grids indexed as uk,i and vk,j where k is

the dimension index in {1, 2} and i, j are the element indices, the integral can be

November 5, 2021 6/9



approximated as

∑
i

∑
j

wui w
v
j b(x1 − u1,i, x2 − u2,i)b(x′1 − v1,j , x′2 − v2,j)k(u1,i, u2,i, v1,j , v2,j)

which is again a double sum and can be written in the form AKB.

In evaluating the likelihood and making predictions with the Gaussian process, the

spatial covariance matrix must be calculated using the numerical integration schemes

discussed in this section. Given ns spatial points in the integration grid, computing the

spatial covariance matrix requires n2s calculations. While ns is chosen by the user, a

small value leads to inaccurate numerical integration. In addition, while moderate ns

may be reasonable for one-dimensional GPCSD, two-dimensional GPCSD generally

requires larger ns because it is the total number of points in a two-dimensional grid, so

is typically roughly quadratic in the number of points required for one-dimensional

integration. If the forward model parameter R and the Gaussian process parameters

were known, the spatial covariance matrix could be computed once with a cost of O(n2s)

and the computational complexity of following likelihood evaluations would be

O(M3 + T 3 +MT ) where M is the number of observed spatial points and T is the

number of observed time points. However, the numerical integration needed to compute

the spatial covariance matrix must be repeated each time the spatial covariance or

forward model parameters change, leading to O(n2s +M3 + T 3 +MT ) for each

likelihood evaluation as those parameters are varied.

Additional simulation results

In addition to simulating from a GPCSD model then fitting a GPCSD model with the

same model form, we also investigated simulating from a GPCSD model and fitting a

mis-specified GPCSD model. We looked at two cases; for each case, we again generated

50 trials each with 60 time points and 24 spatial locations (similar to the auditory LFP

probe).

First, we fit a GPCSD model with only a squared exponential temporal covariance

plus LFP white noise to data generated from a squared exponential (lengthscale 20,

variance 1.5), plus Matérn (lengthscale 2, variance 0.2), plus LFP white noise. The

November 5, 2021 7/9



average MSE across 50 trials was 0.01, which is orders of magnitude higher than we

found using a correctly specified model in the main text. Visually, the estimated CSD

captured the overall slow-timescale trend, but failed to capture fast non-white-noise

fluctuations. These results suggest that models that are not flexible enough may fail to

fit the data well. While lack of fit (in the LFP space) can be used to diagnose this issue,

and models with varying numbers of components can be compared by their negative log

likelihood values, it may be difficult to pin down the exact number of components that

best explains a particular data set. That is, diagnostics can suggest a more flexible

model is needed, but in the spirit of model parsimony, decisively selecting a minimal

number of components may require a subjective judgement.

Second, we fit a GPCSD model with two components (squared exponential and

Matérn) to data generated using three components (fast squared exponential with

lengthscale 10 and variance 0.5, slow squared exponential with lengthscale 100 and

variance 0.1, and Matérn with lengthscale 2 and variance 0.2). In this case, the average

MSE across trials was 7.4× 10−5, similar to the error with a correctly specified model

in the main text. This case study demonstrates that if the fitted model form is flexible

enough, it can achieve a good fit to the data even if the underlying true generating

process contained more components (which may be difficult to disentangle based on real

data if, for instance, their temporal spectral properties overlap).
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