
Internal Use - Confidential

Utilizing Kubernetes and Open OnDemand
to Support Virtual Classroom Labs

Alan Chalker, Ph.D.
Trey Dockendorf
Ohio Supercomputer Center

Supercomputing for anyone, anywhere!
Ohio academic institutions
• Faculty
• Postdocs
• Research scientists
• Grad students
• Instructors

Commercial, nonprofit & more
• Business and industry
• Nonprofit organizations
• Government agencies
• Hospitals and health care
• Organizations outside of Ohio

In FY21, OSC supported 5,565 enrollees, 249 courses, 77
departments, 20 universities with:
• Custom OnDemand dashboard at class.osc.edu

• Installing specific software packages as requested

• Streamlining student account creation

• Scheduler reservations as needed

• Introduction to supercomputing for classroom

Virtual Computer Lab Support

3

75/249 Ohio
Higher-Ed
Courses
Up 232%

Kubernetes Workload

4

• Lightweight interactive workloads

• Minimal CPU requirements compared to traditional HPC workloads

• Exclusively Jupyter and Rstudio (so far)

• 16 different classes this autumn semester are using Kubernetes

under the hood.

• OSC staff make the decision to leverage Kubernetes based on the

expected usage pattern of the class – all hidden from students.

Overview of Technologies
Kubernetes

• Open-source container orchestration
Open OnDemand

• Web interface to make HPC access easier
• Provides a way for sites to make things like interactive jobs easy to

deploy and use
• Web processes run as logged in HPC user
• Supports multiple resource manages: SLURM, Torque, Kubernetes

Kyverno
• Kubernetes policy engine
• Deploy policies using Kubernetes resources, ie standard Kubernetes

YAML resources

• Treat Kubernetes "jobs" similar to traditional HPC jobs and allow usage
of SLURM or Kubernetes from same app code

• Kubernetes pods can run as root and on systems with shared
filesystems like GPFS, this can be very dangerous.

• How to ensure a user running a pod is doing so using their UID/GIDs
that ensures operations like filesystem access are taking place as that
user

• How to charge users for their usage of Kubernetes similar to job
charging in traditional HPC batch environment

Challenges

• All user pods run in user specific namespace of pattern user-$USER which
is bootstrapped by OnDemand at login

• RBAC for user-$USER namespaces limits user operations to just the
things needed to run OnDemand jobs

• Kubernetes authenticates with Keycloak OIDC IDP and the OIDC tokens
for OnDemand are allowed to be used for Kubernetes via OAuth2 audience

• Deploy job-pod-reaper tool to cleanup pods after “walltime” is exceeded
• Uses annotation to set what walltime should be

• Deploy k8-namespace-reaper to cleanup unused namespaces

Kubernetes Design Patterns

• When OnDemand PUN starts, a pre-PUN hook is executed as root to
bootstrap Kubernetes resources for each user

• Namespace, network policy, RBAC
• Hook is passed username and OIDC token, and this token is used to

set kube config credentials using OnDemand token
• Possible thanks to OAuth2 audience configured in Keycloak

• The kubeconfig is done per-environment so unique context for
production vs test vs dev. Main OnDemand instance can use same
context as classroom OnDemand instance

• OSC uses one OnDemand instance for general usage and separate
instance for classrooms

OnDemand Infrastructure

• Kube config is bootstrapped by OnDemand code, credentials
come from pre-PUN hook

• All kubectl commands run as user logged into OnDemand using
bootstrapped kube config

• OnDemand forces UID, GID and supplemental groups of user logged
into OnDemand

• Labels assigned to pod such as "account" label, other labels allowed
• Annotation added to set walltime so pods can be seen as having finite

runtime.
• Pods always have a CPU/memory request and limit set, also supports

requesting GPU resources from Kubernetes

OnDemand Kubernetes Support

• OSC currently supports Jupyter and RStudio Server, both used for
classrooms

• Single Jupyter or RStudio Server OnDemand app that supports both
SLURM and Kubernetes. Kubernetes is selected as "Kubernetes"
cluster vs selecting "Owens" or "Pitzer" HPC clusters

• Classrooms have form options removed for most classrooms and
instead forced to use specific number of cores and forced onto
Kubernetes

• Matched based on group membership and map stored in
OnDemand

OnDemand Interactive Apps

• Kubernetes pod mounts numourous locations, $HOME of user, GPFS,
Lmod apps and init, SLURM munge socket, sockets for SSSD

• Pods use a "cluster" container image that essentially looks like HPC
compute node in terms of OS packages

• Pods treated like HPC compute nodes so Lmod apps that can run on
HPC batch jobs can run in Kubernetes

• One limitation is other user $HOME locations not accessible in pod
given how OSC mounts $HOME locations

OnDemand Kubernetes Pods

• Deploy policies that enforce user’s pods run as that user
• Ensure pod user UID and GID match the requesting user based on

LDAP
• Ensure pod supplemental groups match those of user based on

LDAP
• Ensure user pods cannot escalate privileges or access host

filesystems outside of filesystems needed to run OnDemand jobs

• LDAP user mapping is performed by k8-ldap-configmap tool that
generates ConfigMap resources from LDAP data that Kyverno can use
in policies

Solutions to security using Kyverno

• Deploy policies that ensure accounting is possible
• Require pods to have account label
• Ensure the account label is valid when compared to LDAP data

• Deploy policies that ensure controlled usage of Kubernetes
• Ensure CPU and Memory requests and limits exist
• Ensure pod lifetime annotation is present and set max lifetime
• Ensure pods are pulling images from trusted image registries

Solutions for accounting using Kyverno

validate:
message: >-

Invalid user UID specified in fields
spec.securityContext.runAsUser or spec.containers[*].securityContext.runAsUser or
spec.initContainers[*].securityContext.runAsUser

anyPattern:
- spec:

securityContext:
runAsUser: "{{ uidMap.data.\"{{ request.object.metadata.namespace }}\" }}"

=(initContainers):
- =(securityContext):

=(runAsUser): "{{ uidMap.data.\"{{ request.object.metadata.namespace }}\" }}"
containers:

- =(securityContext):
=(runAsUser): "{{ uidMap.data.\"{{ request.object.metadata.namespace }}\" }}"

- spec:
=(initContainers):

- securityContext:
runAsUser: "{{ uidMap.data.\"{{ request.object.metadata.namespace }}\" }}"

containers:
- securityContext:

runAsUser: "{{ uidMap.data.\"{{ request.object.metadata.namespace }}\" }}"

Example policies - runAsUser

validate:
message: "{{ request.object.metadata.namespace }} not authorized to charge against account {{

request.object.metadata.labels.account }}"
deny:

conditions:
- key: "{{ request.object.metadata.labels.account }}"
operator: NotIn
value: "{{ userGroupMap.data.\"{{ request.object.metadata.namespace }}\" }}"

validate:
message: "{{ request.object.metadata.namespace }} not authorized to use those supplemental groups"
deny:

conditions:
- key: "{{ request.object.spec.securityContext.supplementalGroups[*].to_string(@) }}"
operator: NotIn
value: "{{ userGIDMap.data.\"{{ request.object.metadata.namespace }}\" }}"

Example policies – account and supplement
groups

LDAP user UID map:
user-tdockendorf: "20821"

LDAP user GID map:
user-tdockendorf: "5509"

LDAP user GIDs map:
user-tdockendorf:

'["1021","2399","3241","3285","3309","4391","4496","4547","4548","5087","5301","5325","5353","
5356","5358","5509","5527","5607","6393","6557","6558","6951","6952","6957","7175"]'

LDAP user groups map:
user-tdockendorf: '["PZS0708","PZS0703","PAS1936","PDE0001"]'

Example LDAP config maps

An intuitive, innovative, and interactive interface to remote computing resources

Open OnDemand helps computational researchers and students efficiently utilize remote
computing resources by making them easy to access from any device. It helps computer
center staff support a wide range of clients by simplifying the user interface and
experience.

Key Benefits & Impact
• Key benefit to you, the end user:

You can use any web browser to access
resources at a computing service provider.

• Key benefit to you, the computer center staff:
A wide range of clients/needs can utilize your computing resources.

• Overall impact:
Users are able to use remote computing resources faster and more efficiently.

Supercomputing. Seamlessly.

Production Deployments

openondemand.org

• Use our Discourse instance for help

• Join our mailing list for updates

• Our webinars are roughly quarterly

This work is supported by the National Science Foundation of the United States
under the awards NSF SI2-SSE-1534949 and CSSI-Software-Frameworks-1835725.

Find Out More!

http://openondemand.org/

Sponsored by

	Utilizing Kubernetes and Open OnDemand to Support Virtual Classroom Labs
	Supercomputing for anyone, anywhere!
	Virtual Computer Lab Support�
	Kubernetes Workload�
	Overview of Technologies
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

