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Web Appendix1 

 

APPLICATION TO A DIFFERENT CONTEXT – CRASH COURSE 

To alleviate potential concerns about the specific context of Masterclass.com, we apply our 

proposed video feature framework to a different context — Crash Course — an educational 

YouTube channel with over 12 million subscribers.2 We have obtained a dataset from Crash 

Course consisting of 1,127 videos for 39 courses. Different from Masterclass.com, Crash Course 

material focuses on educational disciplines, such as statistics, computer science, physics, chemistry, 

biology, engineering, and ecology. Each course includes a different number of chapters and each 

chapter includes one video lecture. We also obtained a time-coded subtitle file for each Crash 

Course video. In addition to the course videos, we acquired a unique dataset from a third-party 

company which captures the historical consumption records for these videos. 

We first use the same methods used in the body of the paper to extract the features for each 

video in our data. We then use the extracted video features to predict a different outcome variable 

in this setting — the popularity of the video one year after its posting, as extracted from the 

 
1 These materials have been supplied by the authors to aid in the understanding of their paper. The AMA is sharing 

these materials at the request of the authors. 
2 We thank an anonymous referee for this suggestion. 
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historical records. Since these videos were uploaded to YouTube at different times, we also include 

the uploaded time as a control variable in our analysis. The summary statistics of our data are 

reported in Table W1. 

Table W1 Summary Statistics of Crash Course Videos 

Variable Mean SD Min Max 

Consumers’ Viewing Behavior: 

      Y_popular 0.499 0.500 0.000 1.000 

Basic Video Properties:     

      Chapter 19.966 13.371 1.000 51.000 

      Video Length 11.049 2.223 1.320 17.270 

      Average Scene Length 0.180 0.074 0.059 0.595 

      Speaking Rate 198.317 57.792 32.605 532.965 

      Sentiment 0.072 0.073 -0.240 0.341 

Instructors’ Emotions and Physical Characteristics:  

      Anger 0.015 0.031 0.000 0.252 

      Contempt 0.011 0.013 0.000 0.095 

      Disgust 0.007 0.020 0.000 0.185 

      Fear 0.003 0.005 0.000 0.082 

      Happiness 0.176 0.141 0.000 0.780 

      Neutral 0.639 0.158 0.147 0.980 

      Sadness 0.039 0.055 0.000 0.303 

      Surprise 0.110 0.076 0.000 0.512 

      Age 35.553 5.727 21.474 50.038 

      Gender 0.724 0.447 0.000 1.000 

      Glasses 0.593 0.492 0.000 1.000 

      Facial Hair 0.160 0.158 0.000 0.588 

      Baldness 0.133 0.143 0.000 0.795 

      Hair Color 2.177 1.706 1.000 6.000 

      Makeup 0.350 0.393 0.000 1.000 

      Smile 0.176 0.141 0.000 0.780 

Visual Aesthetic Features:     

      Foreground Motion Area 0.347 0.090 0.147 0.625 

      Motion Magnitude 0.701 0.229 0.278 1.792 

      Motion Direction 3.122 0.081 2.493 3.444 

      Warm Hue Proportion 0.646 0.156 0.246 0.968 

      Saturation 0.381 0.095 0.138 0.666 

      Brightness 0.541 0.112 0.188 0.892 

      Contrast of Brightness 0.201 0.031 0.124 0.310 

      Clarity 0.987 0.030 0.492 1.000 

 



 Web Appendix – Page 3 

 

 

We measure the popularity of the videos using a binary variable extracted from the 

historical records data: whether the video v in course c is popular among consumers (𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣). 

Specifically, for each video, if its total number of “likes” within one year after it was uploaded to 

YouTube is larger than the median, then we define 𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 = 1; otherwise 𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 =

0. We thus use 𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 as a proxy for 𝑌_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖𝑐𝑣 in the MasterClass context. Note that 

there is still some difference between these two contexts. In the MasterClass setting, we have 

individual-level consumption records from a proprietary dataset, whereas in Crash Course we have 

only aggregate-level consumption records for each video. 

Our empirical analysis follows the approach used for the MasterClass content. First, we 

use machine learning algorithms to investigate the extent to which our proposed video feature 

framework predicts the consumers’ consumption of online course videos on Crash Course. We 

then use interpretability approaches in machine learning, including a standard feature permutation 

strategy (Breiman 2001, Molnar 2018) and Shapley values (Shapley 1953, Štrumbelj and 

Kononenko 2014, Lundberg and Lee 2017), to assess feature importance, which provides 

additional insights into the impact of different features on the consumers’ viewing behavior. 

In the first stage of our analysis, we use machine learning classifiers trained on our 

proposed video features to predict the behavior of consumers. As before, we use a gradient 

boosting machine (Friedman 2001) and use 80% of the data as training data, and the rest as test 

data (such that videos in the test data do not appear in the training data). Within the training data, 

we select hyperparameters using a 5-fold cross-validation prior to training on the complete training 

data (using the best hyperparameters found from cross-validation). When predicting whether a 

video is popular that received more likes from consumers (𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 = 1), our model achieves 

an average out-of-sample prediction accuracy of 85% (precision = 0.84, recall = 0.88, f1-score = 
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0.86, AUC = 0.92, ROC curve in Figure W1), which again suggests that our proposed video feature 

framework contains valid information that has predictive power of consumers’ viewing behavior 

of online educational videos.  

 

Figure W1 ROC curve and AUC 

 

In the second stage of our analysis, we use the same machine learning interpretability 

methods to assess feature importance, which can provide additional insights into the impact of 

different video features on the consumers’ viewing behavior. We first use a standard feature 

permutation strategy to assess category-level feature importance (Breiman 2001, Molnar 2018). 

Figures W2 presents results of permutation feature importance. We then compute Shapley values 

for the whole dataset to interpret individual-level feature importance (Lundberg and Lee 2017). 

Figures W3 summarizes the results of Shapley values. 
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Figure W2 Category-Level Feature Importance 

 

The results in Figure W2 confirm that video features are important factors in forecasting 

users’ consumption behavior of online course videos. However, the aesthetic features are the most 

important in Crash Course videos, followed by basic video properties and instructors’ 

characteristics. For example, the feature importance of aesthetic features is 2.5, meaning that 

permuting the values for aesthetic features more than double the prediction error in the model.  

The results in Figure W3 show some interesting findings on the impact of the Crash Course 

video features in the Crash Course context. First, the uploaded time of the video is negatively 

related to the predicted outcome, suggesting that videos uploaded in recent years tend to be less 

popular (i.e., receiving fewer “likes”) compared to videos uploaded in earlier years. For the video 

features, we find both similar and different patterns as compared to the MasterClass setting. For 

example, consistent with the findings in the MasterClass context, chapter has a negative impact 

such that later chapters in a course are correlated with lower likelihood of receiving “likes” from 

consumers. Most aesthetic features also show a positive impact in our predictive model. 

Specifically, videos with higher values of brightness, warmness, and clarity are predicted to be 
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more popular. Videos with lower values of brightness have a large negative impact on the predicted 

outcome. Speaking rate also has a negative impact, suggesting that when the instructor is speaking 

too fast in a video, the video is predicted to be less popular. Note that the average speaking rate in 

Crash Course videos (mean=198.32, sd=57.80) is higher than that of MasterClass videos 

(mean=144.05, sd=28.87). We also find some different impacts of video features in the Crash 

Course context. For example, sentiment has a negative impact on predicted outcome, which is 

contrary to the MasterClass setting. Such difference might be due to the different disciplines of the 

courses on these two platforms. Moreover, videos with very large motions have a negative impact, 

which might be due to the fact that on average Crash Course videos (mean=0.35, sd=0.09) have 

more motions than MasterClass videos (mean=0.20, sd=0.10), and very large motion values may 

cause a negative impact on consumers’ “likes” of the video. To ensure the robustness of this 

analysis, we have also conducted additional analysis using “views” instead of “likes” as a measure 

for video popularity. Note that these two metrics are strongly correlated on YouTube. In our Crash 

Course data, the correlation between these two metrics is 0.93. Following the same procedures, 

our model achieves an average out-of-sample prediction accuracy of 83% when using “views” as 

a proxy for popularity. The feature importance analysis results are summarized in Figure W4, 

which show consistent patterns. Such consistency is likely due to the high correlation between 

“likes” and “views” on YouTube. 

The differences between the specific predictors of consumption of Masterclass and Crash 

Course videos might be due to the differences in the types of content across the two platforms, the 

typical motivations of customers who use the two platforms, the revenue models (subscription vs. 

ad-supported), the production values, or the outcome variables available in the two settings 
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(individual-level viewing behavior for MasterClass videos vs. aggregate-level viewing behavior 

for Crash Course videos). 

The main point is that our framework is able to accurately predict video consumption—

and generate managerial insights—in both contexts, in spite of the differences in content, 

customers, revenue model, and outcome variables between the contexts. This suggests that our 

framework will generalize to, and be useful in, a variety of video consumption contexts that 

marketers may face online. 
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Figure W3 Individual-Level Feature Importance (using “likes” to measure popularity) 
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Figure W4 Individual-Level Feature Importance (using “views” to measure popularity) 
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PROPERTIES OF SHAPLEY VALUES 

In the analysis we use a novel framework named SHAP (SHapley Additive exPlanations) 

(Lundberg and Lee 2017) to interpret individual-level feature importance. Specifically, SHAP uses 

a model agnostic representation of feature importance, where the importance of each feature is 

represented using Shapley values (Shapley 1953, Štrumbelj and Kononenko 2014, Lundberg and 

Lee 2017). Shapley values are borrowed from the cooperative game theory literature (Shapley 

1953) and provide a theoretically justified method to allocate the output of a coalition among the 

coalition members (Štrumbelj and Kononenko 2014, Lundberg and Lee 2017). In our context, the 

coalition is a set of interpretable model input feature values (e.g., video features), and the output 

of the coalition is the value of the prediction made by the model when given the input feature 

values (e.g., consumers’ viewing behavior).  

The importance of each feature is defined as the change in the expected value of the 

model’s output when the feature is observed versus unknown (Štrumbelj and Kononenko 2014, 

Lundberg and Lee 2017). Different feature values have different impact on the prediction. The 

Shapley values 𝜙𝑗(𝑓, 𝑥), explaining a prediction 𝑓(𝑥), are an allocation of credit among the 

various features in 𝑥  (e.g., video features), and are the only such allocation that obeys two 

important properties: local accuracy and consistency (Young 1985, Lundberg and Lee 2017). Note 

that for a particular prediction, 𝜙𝑗(𝑓, 𝑥) is a single numerical value representing the impact of 

feature 𝑗 on the prediction of the model 𝑓 when given the input 𝑥. In our context, 𝑓 is a gradient 

boosting model, and 𝑥 is the set of input features including the video features and the consumer’s 

past average video completion rate. 

We provide a brief summary of the two desirable properties below following Lundberg et 

al. (2018). We refer to Lundberg and Lee (2017) for a full discussion and for relationships to 
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several other recent methods in complex model interpretability such as LIME (Local Interpretable 

Model-agnostic Explanations) (Ribeiro et al. 2016) and DeepLIFT (Deep Learning Important 

FeaTures) (Shrikumar et al. 2017). In the properties below, 𝑓𝑥(𝑆) = 𝐸[𝑓(𝑥) | 𝑥𝑆], where 𝑥𝑆 is a 

subset of the input vector with only the features present in set 𝑆. 

Local accuracy. The local accuracy property (also known as completeness or additivity) 

is given by  

𝑓(𝑥) = 𝜙0(𝑓, 𝑥) + ∑ 𝜙𝑗(𝑓, 𝑥)

𝑀

𝑗=1

 

where 𝜙0(𝑓, 𝑥) = 𝐸[𝑓(𝑥)] and 𝑀 is the number of input features. The local accuracy assumption 

forces the Shapley values to correctly capture the difference between the expected model output 

and the output for the current prediction (Lundberg et al. 2018). 

Consistency. For any two models 𝑓 and 𝑓′, if 

𝑓′𝑥(𝑆 ∪ {𝑗}) − 𝑓′𝑥(𝑆) ≥ 𝑓𝑥(𝑆 ∪ {𝑗}) − 𝑓𝑥(𝑆) 

for all 𝑆 ∈ 𝑍/{𝑗} where 𝑍 is the set of all 𝑀 input features, then 𝜙𝑗(𝑓′, 𝑥) ≥ 𝜙𝑗(𝑓, 𝑥). This states 

that if a feature is more important in one model than another, no matter what other features are 

also present, then the importance attributed to that feature should also be higher. Note that 

consistency is known as monotonicity in game theory literature. 

 Lundberg and Lee (2017) show that game theory results guaranteeing a unique solution 

apply to the entire class of additive feature attribution methods and propose SHAP values as a 

unified measure of feature importance that various methods approximate, including several 

popular methods such as LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al. 

2016) and DeepLIFT (Deep Learning Important FeaTures) (Shrikumar et al. 2017). They have 

also conducted a set of user studies which demonstrated that the SHAP method shows better 
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consistency with human intuition and more effectually discriminates among model output classes 

than several existing methods. We refer to Lundberg and Lee (2017) for more details. 

 

ROBUSTNESS CHECKS 

In the main text of our paper, we used a common hold-out method for testing such that we 

performed cross-validation on the training data and out-of-sample testing on the hold-out data. To 

ensure the robustness of our analysis, we use a cross-validation method for testing to ensure that 

our model generalizes well to unseen data. In particular, we use a 10-fold cross-validation for 

testing. The dataset was randomly split into 10 folds, and the model was trained and tested 10 

separate times such that each fold got a chance to be the test data and the other 9 folds were used 

as training data. The results are summarized in the table below, which show consistent 

performance. This is likely due to the stability and advantage of a large dataset in our study. When 

the dataset is small, the results are more likely to be sensitive to different train-test splits. 

Table W2 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆  

Using 10-fold Cross-Validation 

Fold #1 #2 #3 #4 #5 

Accuracy 92.12% 92.03% 92.07% 92.12% 92.16% 

Fold #6 #7 #8 #9 #10 

Accuracy 92.28% 92.17% 92.11% 92.26% 92.22% 

 

In our dataset each instructor only has one course. To examine whether the results are 

driven by the person specific fixed effects, we repeat the prediction analysis for with or without 

the course-level fixed effects (e.g., adding or removing course ID dummy variables). The results 

are reported in the table below, suggesting that, even though brands/instructors may play an 
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important role when enrolling consumers, once the consumers have purchased access to the course, 

their consumption behavior for each video within the course mostly depends on the video content 

itself (note that the instructor does not change from video to video within the same course, only 

the content does). In other words, consumers are likely to purchase an online course because of 

their interest in the brand/instructor. But once they start watching video lectures in that course, 

their video consumption behavior will be mainly driven by the content given that the 

brand/instructor is the same for each and every portion of the video. 

Table W3 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆 

 Accuracy Precision Recall 

With Person Specific Fixed Effects 0.92 0.89 0.93 

Without Person Specific Fixed Effects 0.92 0.89 0.93 

 

 

In the main text of our paper, we used a nonparametric approach called gradient boosting 

machine (Friedman 2001) to predict consumer behavior. In the two tables below, we show that 

other machine learning algorithms such as random forests (Breiman 2001) achieve similar 

performance. 

Table W4 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆 

 Accuracy Precision Recall 

Gradient Tree Boosting 0.92 0.89 0.93 

Random Forests 0.92 0.89 0.93 

AdaBoost 0.92 0.89 0.93 

SVM 0.92 0.89 0.92 

Logistic Regression 0.77 0.75 0.69 
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Table W5 Out-of-Sample Performance for Predicting 𝒀_𝒏𝒆𝒙𝒕  

 Accuracy Precision Recall 

Gradient Tree Boosting 0.88 0.88 0.86 

Random Forests 0.87 0.87 0.86 

AdaBoost 0.88 0.88 0.86 

SVM 0.87 0.87 0.86 

Logistic Regression 0.84 0.83 0.85 

 

 

One unique characteristic of our data is that the video segments are relatively short (average 

video length = 11.6 minutes). Unlike movies or television shows, videos on MasterClass usually 

do not have an ending sequence with the full cast and crew information. Instead, MasterClass 

instructors usually talk until the last second in video lectures. Therefore, to acquire full knowledge 

of the video, users need to watch the entire video. In the two tables below, we show that our results 

are robust to using a less strict definition of video completion and watching next video.  

 

Table W6 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆 

 Accuracy Precision Recall 

Threshold = 99.9% 0.92 0.89 0.93 

Threshold = 99% 0.90 0.89 0.90 

Threshold = 98% 0.90 0.88 0.90 
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Table W7 Out-of-Sample Performance for Predicting 𝒀_𝒏𝒆𝒙𝒕 

 Accuracy Precision Recall 

Threshold = 5% 0.88 0.88 0.86 

Threshold = 4% 0.87 0.87 0.87 

Threshold = 3% 0.87 0.87 0.88 

 

In our prediction analysis, the out-of-sample prediction is based on new consumers. That 

is, the training/test split is conducted at the consumer level (e.g., shuffling consumer ID), and 

consumers in the test data have never appeared in the training data. We have conducted another 

out-of-sample prediction using new courses (e.g., shuffling course ID) so that course videos in the 

test data have never appeared in the training data. We have also added another out-of-sample 

prediction using both new courses and new consumers (e.g., shuffling both course ID and 

consumer ID). That is, neither course videos or consumers in the test data have appeared in the 

training data. Both results are reported in the table below. These results show that the prediction 

performance for new courses (accuracy = 0.76) and new courses with new consumers (accuracy = 

0.75) are lower than that of new consumers (accuracy = 0.92).3 This is expected because predicting 

brand new courses is a more difficult task. However, we also note that, although the prediction 

accuracy of predicting new courses is lower than that of predicting new consumers, it is still 

significantly higher than the average baseline 60% (Recall the average completion rate was 0.397 

as shown in Table 3 in the paper). 

 
3 In a robustness check where we remove consumers’ past viewing data, the results show that our proposed 

framework achieves an average out-of-sample prediction accuracy of 74.50% when predicting video competition. 



 Web Appendix – Page 16 

 

 

 

Table W8 Out-of-Sample Prediction Performance 

 Accuracy Precision Recall 

Predict New Consumers 0.92 0.89 0.93 

Predict New Courses 0.76 0.75 0.76 

Predict New Courses and New Consumers 0.75 0.74 0.75 

 

To explore how different features vary across different videos within a course, we have 

added two sets of descriptive statistics for the two different courses as presented in the table below. 

We note that for those features that do not vary much within a course (e.g., hair color, facial hair, 

makeup, glasses), they are indeed shown to have little predictive power as shown in the individual-

level feature importance analysis in the paper.4 

 
4 We thank an anonymous referee for this suggestion. 
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Table W9 Summary Statistics for Two Different Courses 

 Course #1 Course #2 

Variable Mean SD Mean SD 

Basic Video Properties:     

      Chapter 4.497 2.886 9.368 7.219 

      Video Length 11.251 4.568 13.116 4.781 

      Average Scene Length 0.089 0.016 0.351 0.136 

      Speaking Rate 143.450 19.568 118.676 17.316 

      Sentiment 0.144 0.072 0.029 0.024 

Instructors’ Emotions and Physical Characteristics:  

      Anger 0.006 0.005 0.023 0.023 

      Contempt 0.005 0.004 0.002 0.005 

      Disgust 0.003 0.002 0.012 0.006 

      Fear 0.002 0.004 0.000 0.001 

      Happiness 0.345 0.134 0.197 0.086 

      Neutral 0.577 0.111 0.735 0.095 

      Sadness 0.037 0.021 0.025 0.015 

      Surprise 0.024 0.021 0.005 0.016 

      Age 31.354 0.806 68.034 2.458 

      Gender 0.000 0.000 1.000 0.000 

      Glasses 0.119 0.323 0.074 0.262 

      Facial Hair 0.000 0.001 0.106 0.014 

      Baldness 0.319 0.121 0.321 0.049 

      Hair Color 3.676 1.882 3.924 0.473 

      Makeup 1.000 0.000 0.008 0.062 

      Smile 0.345 0.134 0.197 0.086 

Visual Aesthetic Features:     

      Foreground Motion Area 0.456 0.072 0.142 0.044 

      Motion Magnitude 1.180 0.348 0.542 0.138 

      Motion Direction 3.140 0.047 3.078 0.096 

      Warm Hue Proportion 0.438 0.163 0.498 0.130 

      Saturation 0.307 0.022 0.219 0.043 

      Brightness 0.469 0.038 0.195 0.030 

      Contrast of Brightness 0.229 0.012 0.171 0.011 

      Clarity 0.996 0.005 0.976 0.037 
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When converting videos to lower dimension, we use a commercial video converter 

software named Wondershare Video Converter Ultimate which compresses video with little 

quality loss. In a robustness check we also show that converting videos to a lower resolution level 

at 640*360 pixels still preserves representative information of the original video. The results are 

shown in the tables below. Moreover, we also attach two full screenshots below for a more 

straightforward illustration for the high-quality video conversion. We can see that although the 

details in low-resolution video is not as clear as those in high-resolution video, the low-resolution 

video is still of high quality which preserves similar distributions of pixels in the original video. 

Table W10 Comparing High-Resolution and Low-Resolution Versions for the Same Video 

 High Resolution Low Resolution 

Warm Hue Proportion 0.640 0.639 

Saturation 0.296 0.292 

Brightness 0.374 0.374 

Contrast of Brightness 0.120 0.120 

Clarity 0.870 0.870 

 

A. Screenshot for Original High-Resolution Video 
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B. Screenshot for Low-Resolution Video after Conversion 

 
Figure W5 Screenshots Comparison 

 

 

 

DIFFERENT MACHINE LEARNING ALGORITHMS 

When predicting students’ viewing behavior with video genome features, we use different 

machine learning models to corroborate the results. Each of these models can be implemented 

using scikit-learn (Pedregosa et al. 2011). Some descriptions of the algorithms in this appendix 

are adapted from https://scikit-learn.org/. 

Gradient Tree Boosting 

Gradient boosting machines are nonparametric models that draw a parallel between 

boosting and gradient descent in function space (Friedman 2001). They additively build up simple 

models, where each successive model is built by predicting the residuals of the preceding model 

to increase model performance. We use a regression tree which is the most common type of basic 

model to predict the residuals. Gradient Tree Boosting considers additive models of the following 

form: 

𝐹(𝑥) = ∑ 𝛾𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1
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where ℎ𝑚(𝑥) are the basis functions (e.g., decision trees), which are usually called weak learners 

in the context of boosting. Decision trees have a number of abilities that make them valuable for 

boosting, namely the ability to handle data of mixed types, and the ability to model complex 

functions. Similar to other boosting algorithms, Gradient Tree Boosting builds the additive model 

in a greedy fashion: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) 

where the newly added tree ℎ𝑚 tries to minimize the loss 𝐿, given the previous ensemble 𝐹𝑚−1: 

ℎ𝑚 = 𝑎𝑟𝑔 min
ℎ

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖))

𝑛

𝑖=1

. 

Gradient Boosting attempts to solve this minimization problem numerically via steepest descent. 

The steepest descent direction is the negative gradient of the loss function evaluated at the current 

model 𝐹𝑚−1 which can be calculated for any differentiable loss function: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) − 𝛾𝑚 ∑ ∇𝐹𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝑛

𝑖=1

 

where the step length is chosen using line search: 

𝛾𝑚 = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) − 𝛾
𝜕𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
)

𝑛

𝑖=1

. 

AdaBoost 

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm that aims to 

convert a set of weak classifiers into a strong one to improve performance (Freund and Schapire 

1997). The output of the weak classifiers is combined into a weighted sum that represents the final 

output of the boosted classifier, which can be represented as 
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𝐹(𝑥) = 𝑠𝑖𝑔𝑛 ( ∑ 𝜃𝑚

𝑀

𝑚=1

𝑓𝑚(𝑥)) 

where 𝑓𝑚  stands for the mth weak classifier and 𝜃𝑚  is the corresponding weight. AdaBoost is 

adaptive in the sense that subsequent weak learners are tweaked in favor of those instances 

misclassified by previous classifiers. The individual learners can be weak, but as long as the 

performance of each weak learner is slightly better than random guessing, the final model can be 

proven to converge to a strong learner. 

In each boosting iteration, the data modifications consist of applying weights 

𝜔1, 𝜔2, … , 𝜔𝑁 to each of the training samples. Initially, those weights are all set to 𝜔𝑖 = 1/𝑁, so 

that the first step simply trains a weak learner on the original data.  For each successive iteration, 

the sample weights are individually modified and the learning algorithm is reapplied to the 

reweighted data. At a given step, those training examples that were incorrectly predicted by the 

boosted model induced at the previous step have their weights increased, whereas the weights are 

decreased for those that were predicted correctly. As iterations proceed, examples that are difficult 

to predict receive ever-increasing influence. Each subsequent weak learner is thereby forced to 

concentrate on the examples that were missed by the previous ones in the sequence (Hastie et al. 

2009). 

Random Forests 

A random forest constructs a multitude of decision trees at training time and outputs the 

class that is the mode of the classes (classification) or mean prediction (regression) of the 

individual trees (Breiman 2001). It can correct for decision trees’ tendency to overfit the training 

set. Random forests combine the general technique of bootstrap aggregation and random selection 

of features to construct a collection of independent decision trees with controlled variance. In 
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particular, each tree in the ensemble is built from a sample drawn with replacement from the 

training set. When splitting each node during the construction of a tree, the best split is found either 

from all input features or a random subset. The purpose of these two sources of randomness is to 

decrease the variance of the forest estimator.   

SVM  

Support Vector Machine (SVM) is a widely used classification algorithm which finds the 

optimal hyperplane to separate positive and negative classes while leaving the largest possible 

margin on both sides of the decision boundary. Specifically, the SVM classifier works by solving 

the following optimization problem: 

min
𝑤𝑝,𝑏𝑝

1

2
𝑤𝑝

𝑇𝑤𝑝 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

 

s. t.    𝑦𝑖(𝑤𝑝
𝑇𝑥𝑖 + 𝑏𝑝) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁𝑝, 

where 𝑤𝑝  and 𝑏𝑝  are model parameters of the maximum-margin hyperplane and 𝜉𝑖  are slack 

variables that penalize data points that violate the margin requirements. 

 

CODE EXAMPLES 

When generating video genome features, we use several different methods from machine 

learning and computer vision to quantify relevant variables from each video such as average scene 

length and emotions. In this Web Appendix, we briefly describe those methods and demonstrate 

how they are implemented in Python. 

Average scene length is calculated as the average amount of time between scene cuts, 

which is based on an intelligent scene cut detection algorithm implemented using PySceneDetect 

(https://pyscenedetect.readthedocs.io/). We first use a content-aware scene detection algorithm to 
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detect scene changes in each video. The content-aware scene detector works the way most people 

think of “cuts” between scenes in a movie: given two frames, do they belong to the same scene, or 

different scenes? The content-aware scene detector compares each frame sequentially looking for 

changes in content, which is useful for detecting quick cuts between scenes based on detecting 

consecutive frames in a video that have significant differences. The following code sample 

illustrates the general workflow to perform scene detection programmatically. It provides an 

example for detecting the scenes on an input video (testvideo.mp4) and printing the scenes to 

the terminal/console. We have also included more code examples for detecting instructors’ 

emotions and physical characteristics as well as motions in the videos in our data. 

 

from __future__ import print_function 

import os 

 

import scenedetect 

from scenedetect.video_manager import VideoManager 

from scenedetect.scene_manager import SceneManager 

from scenedetect.frame_timecode import FrameTimecode 

from scenedetect.stats_manager import StatsManager 

from scenedetect.detectors import ContentDetector 

 

STATS_FILE_PATH = 'testvideo.stats.csv' 

 

def main(): 

    # Create a video_manager point to video file testvideo.mp4. Note that 

multiple 

    # videos can be appended by simply specifying more file paths in the list 

    # passed to the VideoManager constructor. Note that appending multiple 

videos 

    # requires that they all have the same frame size, and optionally, 

framerate. 

    video_manager = VideoManager(['testvideo.mp4']) 

    stats_manager = StatsManager() 

    scene_manager = SceneManager(stats_manager) 

    # Add ContentDetector algorithm (constructor takes detector options like 

threshold). 

    scene_manager.add_detector(ContentDetector()) 

    base_timecode = video_manager.get_base_timecode() 

 

    try: 

        # If stats file exists, load it. 

        if os.path.exists(STATS_FILE_PATH): 

            # Read stats from CSV file opened in read mode: 

            with open(STATS_FILE_PATH, 'r') as stats_file: 
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                stats_manager.load_from_csv(stats_file, base_timecode) 

 

        start_time = base_timecode + 20     # 00:00:00.667 

        end_time = base_timecode + 20.0     # 00:00:20.000 

        # Set video_manager duration to read frames from 00:00:00 to 

00:00:20. 

        video_manager.set_duration(start_time=start_time, end_time=end_time) 

 

        # Set downscale factor to improve processing speed. 

        video_manager.set_downscale_factor() 

 

        # Start video_manager. 

        video_manager.start() 

 

        # Perform scene detection on video_manager. 

        scene_manager.detect_scenes(frame_source=video_manager) 

 

        # Obtain list of detected scenes. 

        scene_list = scene_manager.get_scene_list(base_timecode) 

        # Like FrameTimecodes, each scene in the scene_list can be sorted if 

the 

        # list of scenes becomes unsorted. 

 

        print('List of scenes obtained:') 

        for i, scene in enumerate(scene_list): 

            print('    Scene %2d: Start %s / Frame %d, End %s / Frame %d' % ( 

                i+1, 

                scene[0].get_timecode(), scene[0].get_frames(), 

                scene[1].get_timecode(), scene[1].get_frames(),)) 

 

        # We only write to the stats file if a save is required: 

        if stats_manager.is_save_required(): 

            with open(STATS_FILE_PATH, 'w') as stats_file: 

                stats_manager.save_to_csv(stats_file, base_timecode) 

 

    finally: 

        video_manager.release() 

 

if __name__ == "__main__": 

    main() 

 

 

# Detecting Instructors’ Emotions and Physical Characteristics 

import requests 

import json 

 

# set to your own subscription key value 

subscription_key = None 

assert subscription_key 

 

# replace <My Endpoint String> with the string from your endpoint URL 

face_api_url = 'https://<My Endpoint String>.com/face/v1.0/detect' 
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image_url = 

'https://upload.wikimedia.org/wikipedia/commons/3/37/Dagestani_man_and_woman.

jpg' 

 

headers = {'Ocp-Apim-Subscription-Key': subscription_key} 

 

params = { 

    'returnFaceId': 'true', 

    'returnFaceLandmarks': 'false', 

    'returnFaceAttributes': 

'age,gender,headPose,smile,facialHair,glasses,emotion,hair,makeup,occlusion,a

ccessories,blur,exposure,noise', 

} 

 

response = requests.post(face_api_url, params=params, 

                         headers=headers, json={"url": image_url}) 

print(json.dumps(response.json())) 

 

 
 

# Detecting Motions 

import numpy as np 

import cv2 as cv 

cap = cv.VideoCapture(cv.samples.findFile("vtest.avi")) 

ret, frame1 = cap.read() 

prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY) 

hsv = np.zeros_like(frame1) 

hsv[...,1] = 255 

while(1): 

    ret, frame2 = cap.read() 

    next = cv.cvtColor(frame2,cv.COLOR_BGR2GRAY) 

    flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 

1.2, 0) 

    mag, ang = cv.cartToPolar(flow[...,0], flow[...,1]) 

    hsv[...,0] = ang*180/np.pi/2 

    hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX) 

    bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR) 

    cv.imshow('frame2',bgr) 

    k = cv.waitKey(30) & 0xff 

    if k == 27: 

        break 

    elif k == ord('s'): 

        cv.imwrite('opticalfb.png',frame2) 

        cv.imwrite('opticalhsv.png',bgr) 

    prvs = next 
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