
 Web Appendix – Page 1

Consumer Behavior in the Online Classroom:

Using Video Analytics and Machine Learning

to Understand the Consumption of Video Courseware

Mi Zhou

UBC Sauder School of Business

Pedro Ferreira

CMU Heinz College

Michael D. Smith

CMU Heinz College

George H. Chen

CMU Heinz College

mi.zhou@sauder.ubc.ca pedrof@cmu.edu mds@cmu.edu georgechen@cmu.edu

Web Appendix1

APPLICATION TO A DIFFERENT CONTEXT – CRASH COURSE

To alleviate potential concerns about the specific context of Masterclass.com, we apply our

proposed video feature framework to a different context — Crash Course — an educational

YouTube channel with over 12 million subscribers.2 We have obtained a dataset from Crash

Course consisting of 1,127 videos for 39 courses. Different from Masterclass.com, Crash Course

material focuses on educational disciplines, such as statistics, computer science, physics, chemistry,

biology, engineering, and ecology. Each course includes a different number of chapters and each

chapter includes one video lecture. We also obtained a time-coded subtitle file for each Crash

Course video. In addition to the course videos, we acquired a unique dataset from a third-party

company which captures the historical consumption records for these videos.

We first use the same methods used in the body of the paper to extract the features for each

video in our data. We then use the extracted video features to predict a different outcome variable

in this setting — the popularity of the video one year after its posting, as extracted from the

1 These materials have been supplied by the authors to aid in the understanding of their paper. The AMA is sharing

these materials at the request of the authors.
2 We thank an anonymous referee for this suggestion.

mailto:mi.zhou@sauder.ubc.ca
mailto:pedrof@cmu.edu
mailto:mds@cmu.edu
mailto:georgechen@cmu.edu

 Web Appendix – Page 2

historical records. Since these videos were uploaded to YouTube at different times, we also include

the uploaded time as a control variable in our analysis. The summary statistics of our data are

reported in Table W1.

Table W1 Summary Statistics of Crash Course Videos

Variable Mean SD Min Max

Consumers’ Viewing Behavior:

 Y_popular 0.499 0.500 0.000 1.000

Basic Video Properties:

 Chapter 19.966 13.371 1.000 51.000

 Video Length 11.049 2.223 1.320 17.270

 Average Scene Length 0.180 0.074 0.059 0.595

 Speaking Rate 198.317 57.792 32.605 532.965

 Sentiment 0.072 0.073 -0.240 0.341

Instructors’ Emotions and Physical Characteristics:

 Anger 0.015 0.031 0.000 0.252

 Contempt 0.011 0.013 0.000 0.095

 Disgust 0.007 0.020 0.000 0.185

 Fear 0.003 0.005 0.000 0.082

 Happiness 0.176 0.141 0.000 0.780

 Neutral 0.639 0.158 0.147 0.980

 Sadness 0.039 0.055 0.000 0.303

 Surprise 0.110 0.076 0.000 0.512

 Age 35.553 5.727 21.474 50.038

 Gender 0.724 0.447 0.000 1.000

 Glasses 0.593 0.492 0.000 1.000

 Facial Hair 0.160 0.158 0.000 0.588

 Baldness 0.133 0.143 0.000 0.795

 Hair Color 2.177 1.706 1.000 6.000

 Makeup 0.350 0.393 0.000 1.000

 Smile 0.176 0.141 0.000 0.780

Visual Aesthetic Features:

 Foreground Motion Area 0.347 0.090 0.147 0.625

 Motion Magnitude 0.701 0.229 0.278 1.792

 Motion Direction 3.122 0.081 2.493 3.444

 Warm Hue Proportion 0.646 0.156 0.246 0.968

 Saturation 0.381 0.095 0.138 0.666

 Brightness 0.541 0.112 0.188 0.892

 Contrast of Brightness 0.201 0.031 0.124 0.310

 Clarity 0.987 0.030 0.492 1.000

 Web Appendix – Page 3

We measure the popularity of the videos using a binary variable extracted from the

historical records data: whether the video v in course c is popular among consumers (𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣).

Specifically, for each video, if its total number of “likes” within one year after it was uploaded to

YouTube is larger than the median, then we define 𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 = 1; otherwise 𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 =

0. We thus use 𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 as a proxy for 𝑌_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖𝑐𝑣 in the MasterClass context. Note that

there is still some difference between these two contexts. In the MasterClass setting, we have

individual-level consumption records from a proprietary dataset, whereas in Crash Course we have

only aggregate-level consumption records for each video.

Our empirical analysis follows the approach used for the MasterClass content. First, we

use machine learning algorithms to investigate the extent to which our proposed video feature

framework predicts the consumers’ consumption of online course videos on Crash Course. We

then use interpretability approaches in machine learning, including a standard feature permutation

strategy (Breiman 2001, Molnar 2018) and Shapley values (Shapley 1953, Štrumbelj and

Kononenko 2014, Lundberg and Lee 2017), to assess feature importance, which provides

additional insights into the impact of different features on the consumers’ viewing behavior.

In the first stage of our analysis, we use machine learning classifiers trained on our

proposed video features to predict the behavior of consumers. As before, we use a gradient

boosting machine (Friedman 2001) and use 80% of the data as training data, and the rest as test

data (such that videos in the test data do not appear in the training data). Within the training data,

we select hyperparameters using a 5-fold cross-validation prior to training on the complete training

data (using the best hyperparameters found from cross-validation). When predicting whether a

video is popular that received more likes from consumers (𝑌_𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑐𝑣 = 1), our model achieves

an average out-of-sample prediction accuracy of 85% (precision = 0.84, recall = 0.88, f1-score =

 Web Appendix – Page 4

0.86, AUC = 0.92, ROC curve in Figure W1), which again suggests that our proposed video feature

framework contains valid information that has predictive power of consumers’ viewing behavior

of online educational videos.

Figure W1 ROC curve and AUC

In the second stage of our analysis, we use the same machine learning interpretability

methods to assess feature importance, which can provide additional insights into the impact of

different video features on the consumers’ viewing behavior. We first use a standard feature

permutation strategy to assess category-level feature importance (Breiman 2001, Molnar 2018).

Figures W2 presents results of permutation feature importance. We then compute Shapley values

for the whole dataset to interpret individual-level feature importance (Lundberg and Lee 2017).

Figures W3 summarizes the results of Shapley values.

 Web Appendix – Page 5

Figure W2 Category-Level Feature Importance

The results in Figure W2 confirm that video features are important factors in forecasting

users’ consumption behavior of online course videos. However, the aesthetic features are the most

important in Crash Course videos, followed by basic video properties and instructors’

characteristics. For example, the feature importance of aesthetic features is 2.5, meaning that

permuting the values for aesthetic features more than double the prediction error in the model.

The results in Figure W3 show some interesting findings on the impact of the Crash Course

video features in the Crash Course context. First, the uploaded time of the video is negatively

related to the predicted outcome, suggesting that videos uploaded in recent years tend to be less

popular (i.e., receiving fewer “likes”) compared to videos uploaded in earlier years. For the video

features, we find both similar and different patterns as compared to the MasterClass setting. For

example, consistent with the findings in the MasterClass context, chapter has a negative impact

such that later chapters in a course are correlated with lower likelihood of receiving “likes” from

consumers. Most aesthetic features also show a positive impact in our predictive model.

Specifically, videos with higher values of brightness, warmness, and clarity are predicted to be

 Web Appendix – Page 6

more popular. Videos with lower values of brightness have a large negative impact on the predicted

outcome. Speaking rate also has a negative impact, suggesting that when the instructor is speaking

too fast in a video, the video is predicted to be less popular. Note that the average speaking rate in

Crash Course videos (mean=198.32, sd=57.80) is higher than that of MasterClass videos

(mean=144.05, sd=28.87). We also find some different impacts of video features in the Crash

Course context. For example, sentiment has a negative impact on predicted outcome, which is

contrary to the MasterClass setting. Such difference might be due to the different disciplines of the

courses on these two platforms. Moreover, videos with very large motions have a negative impact,

which might be due to the fact that on average Crash Course videos (mean=0.35, sd=0.09) have

more motions than MasterClass videos (mean=0.20, sd=0.10), and very large motion values may

cause a negative impact on consumers’ “likes” of the video. To ensure the robustness of this

analysis, we have also conducted additional analysis using “views” instead of “likes” as a measure

for video popularity. Note that these two metrics are strongly correlated on YouTube. In our Crash

Course data, the correlation between these two metrics is 0.93. Following the same procedures,

our model achieves an average out-of-sample prediction accuracy of 83% when using “views” as

a proxy for popularity. The feature importance analysis results are summarized in Figure W4,

which show consistent patterns. Such consistency is likely due to the high correlation between

“likes” and “views” on YouTube.

The differences between the specific predictors of consumption of Masterclass and Crash

Course videos might be due to the differences in the types of content across the two platforms, the

typical motivations of customers who use the two platforms, the revenue models (subscription vs.

ad-supported), the production values, or the outcome variables available in the two settings

 Web Appendix – Page 7

(individual-level viewing behavior for MasterClass videos vs. aggregate-level viewing behavior

for Crash Course videos).

The main point is that our framework is able to accurately predict video consumption—

and generate managerial insights—in both contexts, in spite of the differences in content,

customers, revenue model, and outcome variables between the contexts. This suggests that our

framework will generalize to, and be useful in, a variety of video consumption contexts that

marketers may face online.

 Web Appendix – Page 8

Figure W3 Individual-Level Feature Importance (using “likes” to measure popularity)

 Web Appendix – Page 9

Figure W4 Individual-Level Feature Importance (using “views” to measure popularity)

 Web Appendix – Page 10

PROPERTIES OF SHAPLEY VALUES

In the analysis we use a novel framework named SHAP (SHapley Additive exPlanations)

(Lundberg and Lee 2017) to interpret individual-level feature importance. Specifically, SHAP uses

a model agnostic representation of feature importance, where the importance of each feature is

represented using Shapley values (Shapley 1953, Štrumbelj and Kononenko 2014, Lundberg and

Lee 2017). Shapley values are borrowed from the cooperative game theory literature (Shapley

1953) and provide a theoretically justified method to allocate the output of a coalition among the

coalition members (Štrumbelj and Kononenko 2014, Lundberg and Lee 2017). In our context, the

coalition is a set of interpretable model input feature values (e.g., video features), and the output

of the coalition is the value of the prediction made by the model when given the input feature

values (e.g., consumers’ viewing behavior).

The importance of each feature is defined as the change in the expected value of the

model’s output when the feature is observed versus unknown (Štrumbelj and Kononenko 2014,

Lundberg and Lee 2017). Different feature values have different impact on the prediction. The

Shapley values 𝜙𝑗(𝑓, 𝑥), explaining a prediction 𝑓(𝑥), are an allocation of credit among the

various features in 𝑥 (e.g., video features), and are the only such allocation that obeys two

important properties: local accuracy and consistency (Young 1985, Lundberg and Lee 2017). Note

that for a particular prediction, 𝜙𝑗(𝑓, 𝑥) is a single numerical value representing the impact of

feature 𝑗 on the prediction of the model 𝑓 when given the input 𝑥. In our context, 𝑓 is a gradient

boosting model, and 𝑥 is the set of input features including the video features and the consumer’s

past average video completion rate.

We provide a brief summary of the two desirable properties below following Lundberg et

al. (2018). We refer to Lundberg and Lee (2017) for a full discussion and for relationships to

 Web Appendix – Page 11

several other recent methods in complex model interpretability such as LIME (Local Interpretable

Model-agnostic Explanations) (Ribeiro et al. 2016) and DeepLIFT (Deep Learning Important

FeaTures) (Shrikumar et al. 2017). In the properties below, 𝑓𝑥(𝑆) = 𝐸[𝑓(𝑥) | 𝑥𝑆], where 𝑥𝑆 is a

subset of the input vector with only the features present in set 𝑆.

Local accuracy. The local accuracy property (also known as completeness or additivity)

is given by

𝑓(𝑥) = 𝜙0(𝑓, 𝑥) + ∑ 𝜙𝑗(𝑓, 𝑥)

𝑀

𝑗=1

where 𝜙0(𝑓, 𝑥) = 𝐸[𝑓(𝑥)] and 𝑀 is the number of input features. The local accuracy assumption

forces the Shapley values to correctly capture the difference between the expected model output

and the output for the current prediction (Lundberg et al. 2018).

Consistency. For any two models 𝑓 and 𝑓′, if

𝑓′𝑥(𝑆 ∪ {𝑗}) − 𝑓′𝑥(𝑆) ≥ 𝑓𝑥(𝑆 ∪ {𝑗}) − 𝑓𝑥(𝑆)

for all 𝑆 ∈ 𝑍/{𝑗} where 𝑍 is the set of all 𝑀 input features, then 𝜙𝑗(𝑓′, 𝑥) ≥ 𝜙𝑗(𝑓, 𝑥). This states

that if a feature is more important in one model than another, no matter what other features are

also present, then the importance attributed to that feature should also be higher. Note that

consistency is known as monotonicity in game theory literature.

 Lundberg and Lee (2017) show that game theory results guaranteeing a unique solution

apply to the entire class of additive feature attribution methods and propose SHAP values as a

unified measure of feature importance that various methods approximate, including several

popular methods such as LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al.

2016) and DeepLIFT (Deep Learning Important FeaTures) (Shrikumar et al. 2017). They have

also conducted a set of user studies which demonstrated that the SHAP method shows better

 Web Appendix – Page 12

consistency with human intuition and more effectually discriminates among model output classes

than several existing methods. We refer to Lundberg and Lee (2017) for more details.

ROBUSTNESS CHECKS

In the main text of our paper, we used a common hold-out method for testing such that we

performed cross-validation on the training data and out-of-sample testing on the hold-out data. To

ensure the robustness of our analysis, we use a cross-validation method for testing to ensure that

our model generalizes well to unseen data. In particular, we use a 10-fold cross-validation for

testing. The dataset was randomly split into 10 folds, and the model was trained and tested 10

separate times such that each fold got a chance to be the test data and the other 9 folds were used

as training data. The results are summarized in the table below, which show consistent

performance. This is likely due to the stability and advantage of a large dataset in our study. When

the dataset is small, the results are more likely to be sensitive to different train-test splits.

Table W2 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆

Using 10-fold Cross-Validation

Fold #1 #2 #3 #4 #5

Accuracy 92.12% 92.03% 92.07% 92.12% 92.16%

Fold #6 #7 #8 #9 #10

Accuracy 92.28% 92.17% 92.11% 92.26% 92.22%

In our dataset each instructor only has one course. To examine whether the results are

driven by the person specific fixed effects, we repeat the prediction analysis for with or without

the course-level fixed effects (e.g., adding or removing course ID dummy variables). The results

are reported in the table below, suggesting that, even though brands/instructors may play an

 Web Appendix – Page 13

important role when enrolling consumers, once the consumers have purchased access to the course,

their consumption behavior for each video within the course mostly depends on the video content

itself (note that the instructor does not change from video to video within the same course, only

the content does). In other words, consumers are likely to purchase an online course because of

their interest in the brand/instructor. But once they start watching video lectures in that course,

their video consumption behavior will be mainly driven by the content given that the

brand/instructor is the same for each and every portion of the video.

Table W3 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆

 Accuracy Precision Recall

With Person Specific Fixed Effects 0.92 0.89 0.93

Without Person Specific Fixed Effects 0.92 0.89 0.93

In the main text of our paper, we used a nonparametric approach called gradient boosting

machine (Friedman 2001) to predict consumer behavior. In the two tables below, we show that

other machine learning algorithms such as random forests (Breiman 2001) achieve similar

performance.

Table W4 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆

 Accuracy Precision Recall

Gradient Tree Boosting 0.92 0.89 0.93

Random Forests 0.92 0.89 0.93

AdaBoost 0.92 0.89 0.93

SVM 0.92 0.89 0.92

Logistic Regression 0.77 0.75 0.69

 Web Appendix – Page 14

Table W5 Out-of-Sample Performance for Predicting 𝒀_𝒏𝒆𝒙𝒕

 Accuracy Precision Recall

Gradient Tree Boosting 0.88 0.88 0.86

Random Forests 0.87 0.87 0.86

AdaBoost 0.88 0.88 0.86

SVM 0.87 0.87 0.86

Logistic Regression 0.84 0.83 0.85

One unique characteristic of our data is that the video segments are relatively short (average

video length = 11.6 minutes). Unlike movies or television shows, videos on MasterClass usually

do not have an ending sequence with the full cast and crew information. Instead, MasterClass

instructors usually talk until the last second in video lectures. Therefore, to acquire full knowledge

of the video, users need to watch the entire video. In the two tables below, we show that our results

are robust to using a less strict definition of video completion and watching next video.

Table W6 Out-of-Sample Performance for Predicting 𝒀_𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆

 Accuracy Precision Recall

Threshold = 99.9% 0.92 0.89 0.93

Threshold = 99% 0.90 0.89 0.90

Threshold = 98% 0.90 0.88 0.90

 Web Appendix – Page 15

Table W7 Out-of-Sample Performance for Predicting 𝒀_𝒏𝒆𝒙𝒕

 Accuracy Precision Recall

Threshold = 5% 0.88 0.88 0.86

Threshold = 4% 0.87 0.87 0.87

Threshold = 3% 0.87 0.87 0.88

In our prediction analysis, the out-of-sample prediction is based on new consumers. That

is, the training/test split is conducted at the consumer level (e.g., shuffling consumer ID), and

consumers in the test data have never appeared in the training data. We have conducted another

out-of-sample prediction using new courses (e.g., shuffling course ID) so that course videos in the

test data have never appeared in the training data. We have also added another out-of-sample

prediction using both new courses and new consumers (e.g., shuffling both course ID and

consumer ID). That is, neither course videos or consumers in the test data have appeared in the

training data. Both results are reported in the table below. These results show that the prediction

performance for new courses (accuracy = 0.76) and new courses with new consumers (accuracy =

0.75) are lower than that of new consumers (accuracy = 0.92).3 This is expected because predicting

brand new courses is a more difficult task. However, we also note that, although the prediction

accuracy of predicting new courses is lower than that of predicting new consumers, it is still

significantly higher than the average baseline 60% (Recall the average completion rate was 0.397

as shown in Table 3 in the paper).

3 In a robustness check where we remove consumers’ past viewing data, the results show that our proposed

framework achieves an average out-of-sample prediction accuracy of 74.50% when predicting video competition.

 Web Appendix – Page 16

Table W8 Out-of-Sample Prediction Performance

 Accuracy Precision Recall

Predict New Consumers 0.92 0.89 0.93

Predict New Courses 0.76 0.75 0.76

Predict New Courses and New Consumers 0.75 0.74 0.75

To explore how different features vary across different videos within a course, we have

added two sets of descriptive statistics for the two different courses as presented in the table below.

We note that for those features that do not vary much within a course (e.g., hair color, facial hair,

makeup, glasses), they are indeed shown to have little predictive power as shown in the individual-

level feature importance analysis in the paper.4

4 We thank an anonymous referee for this suggestion.

 Web Appendix – Page 17

Table W9 Summary Statistics for Two Different Courses

 Course #1 Course #2

Variable Mean SD Mean SD

Basic Video Properties:

 Chapter 4.497 2.886 9.368 7.219

 Video Length 11.251 4.568 13.116 4.781

 Average Scene Length 0.089 0.016 0.351 0.136

 Speaking Rate 143.450 19.568 118.676 17.316

 Sentiment 0.144 0.072 0.029 0.024

Instructors’ Emotions and Physical Characteristics:

 Anger 0.006 0.005 0.023 0.023

 Contempt 0.005 0.004 0.002 0.005

 Disgust 0.003 0.002 0.012 0.006

 Fear 0.002 0.004 0.000 0.001

 Happiness 0.345 0.134 0.197 0.086

 Neutral 0.577 0.111 0.735 0.095

 Sadness 0.037 0.021 0.025 0.015

 Surprise 0.024 0.021 0.005 0.016

 Age 31.354 0.806 68.034 2.458

 Gender 0.000 0.000 1.000 0.000

 Glasses 0.119 0.323 0.074 0.262

 Facial Hair 0.000 0.001 0.106 0.014

 Baldness 0.319 0.121 0.321 0.049

 Hair Color 3.676 1.882 3.924 0.473

 Makeup 1.000 0.000 0.008 0.062

 Smile 0.345 0.134 0.197 0.086

Visual Aesthetic Features:

 Foreground Motion Area 0.456 0.072 0.142 0.044

 Motion Magnitude 1.180 0.348 0.542 0.138

 Motion Direction 3.140 0.047 3.078 0.096

 Warm Hue Proportion 0.438 0.163 0.498 0.130

 Saturation 0.307 0.022 0.219 0.043

 Brightness 0.469 0.038 0.195 0.030

 Contrast of Brightness 0.229 0.012 0.171 0.011

 Clarity 0.996 0.005 0.976 0.037

 Web Appendix – Page 18

When converting videos to lower dimension, we use a commercial video converter

software named Wondershare Video Converter Ultimate which compresses video with little

quality loss. In a robustness check we also show that converting videos to a lower resolution level

at 640*360 pixels still preserves representative information of the original video. The results are

shown in the tables below. Moreover, we also attach two full screenshots below for a more

straightforward illustration for the high-quality video conversion. We can see that although the

details in low-resolution video is not as clear as those in high-resolution video, the low-resolution

video is still of high quality which preserves similar distributions of pixels in the original video.

Table W10 Comparing High-Resolution and Low-Resolution Versions for the Same Video

 High Resolution Low Resolution

Warm Hue Proportion 0.640 0.639

Saturation 0.296 0.292

Brightness 0.374 0.374

Contrast of Brightness 0.120 0.120

Clarity 0.870 0.870

A. Screenshot for Original High-Resolution Video

 Web Appendix – Page 19

B. Screenshot for Low-Resolution Video after Conversion

Figure W5 Screenshots Comparison

DIFFERENT MACHINE LEARNING ALGORITHMS

When predicting students’ viewing behavior with video genome features, we use different

machine learning models to corroborate the results. Each of these models can be implemented

using scikit-learn (Pedregosa et al. 2011). Some descriptions of the algorithms in this appendix

are adapted from https://scikit-learn.org/.

Gradient Tree Boosting

Gradient boosting machines are nonparametric models that draw a parallel between

boosting and gradient descent in function space (Friedman 2001). They additively build up simple

models, where each successive model is built by predicting the residuals of the preceding model

to increase model performance. We use a regression tree which is the most common type of basic

model to predict the residuals. Gradient Tree Boosting considers additive models of the following

form:

𝐹(𝑥) = ∑ 𝛾𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

 Web Appendix – Page 20

where ℎ𝑚(𝑥) are the basis functions (e.g., decision trees), which are usually called weak learners

in the context of boosting. Decision trees have a number of abilities that make them valuable for

boosting, namely the ability to handle data of mixed types, and the ability to model complex

functions. Similar to other boosting algorithms, Gradient Tree Boosting builds the additive model

in a greedy fashion:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)

where the newly added tree ℎ𝑚 tries to minimize the loss 𝐿, given the previous ensemble 𝐹𝑚−1:

ℎ𝑚 = 𝑎𝑟𝑔 min
ℎ

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖))

𝑛

𝑖=1

.

Gradient Boosting attempts to solve this minimization problem numerically via steepest descent.

The steepest descent direction is the negative gradient of the loss function evaluated at the current

model 𝐹𝑚−1 which can be calculated for any differentiable loss function:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) − 𝛾𝑚 ∑ ∇𝐹𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝑛

𝑖=1

where the step length is chosen using line search:

𝛾𝑚 = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) − 𝛾
𝜕𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
)

𝑛

𝑖=1

.

AdaBoost

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm that aims to

convert a set of weak classifiers into a strong one to improve performance (Freund and Schapire

1997). The output of the weak classifiers is combined into a weighted sum that represents the final

output of the boosted classifier, which can be represented as

 Web Appendix – Page 21

𝐹(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝜃𝑚

𝑀

𝑚=1

𝑓𝑚(𝑥))

where 𝑓𝑚 stands for the mth weak classifier and 𝜃𝑚 is the corresponding weight. AdaBoost is

adaptive in the sense that subsequent weak learners are tweaked in favor of those instances

misclassified by previous classifiers. The individual learners can be weak, but as long as the

performance of each weak learner is slightly better than random guessing, the final model can be

proven to converge to a strong learner.

In each boosting iteration, the data modifications consist of applying weights

𝜔1, 𝜔2, … , 𝜔𝑁 to each of the training samples. Initially, those weights are all set to 𝜔𝑖 = 1/𝑁, so

that the first step simply trains a weak learner on the original data. For each successive iteration,

the sample weights are individually modified and the learning algorithm is reapplied to the

reweighted data. At a given step, those training examples that were incorrectly predicted by the

boosted model induced at the previous step have their weights increased, whereas the weights are

decreased for those that were predicted correctly. As iterations proceed, examples that are difficult

to predict receive ever-increasing influence. Each subsequent weak learner is thereby forced to

concentrate on the examples that were missed by the previous ones in the sequence (Hastie et al.

2009).

Random Forests

A random forest constructs a multitude of decision trees at training time and outputs the

class that is the mode of the classes (classification) or mean prediction (regression) of the

individual trees (Breiman 2001). It can correct for decision trees’ tendency to overfit the training

set. Random forests combine the general technique of bootstrap aggregation and random selection

of features to construct a collection of independent decision trees with controlled variance. In

 Web Appendix – Page 22

particular, each tree in the ensemble is built from a sample drawn with replacement from the

training set. When splitting each node during the construction of a tree, the best split is found either

from all input features or a random subset. The purpose of these two sources of randomness is to

decrease the variance of the forest estimator.

SVM

Support Vector Machine (SVM) is a widely used classification algorithm which finds the

optimal hyperplane to separate positive and negative classes while leaving the largest possible

margin on both sides of the decision boundary. Specifically, the SVM classifier works by solving

the following optimization problem:

min
𝑤𝑝,𝑏𝑝

1

2
𝑤𝑝

𝑇𝑤𝑝 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

s. t. 𝑦𝑖(𝑤𝑝
𝑇𝑥𝑖 + 𝑏𝑝) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁𝑝,

where 𝑤𝑝 and 𝑏𝑝 are model parameters of the maximum-margin hyperplane and 𝜉𝑖 are slack

variables that penalize data points that violate the margin requirements.

CODE EXAMPLES

When generating video genome features, we use several different methods from machine

learning and computer vision to quantify relevant variables from each video such as average scene

length and emotions. In this Web Appendix, we briefly describe those methods and demonstrate

how they are implemented in Python.

Average scene length is calculated as the average amount of time between scene cuts,

which is based on an intelligent scene cut detection algorithm implemented using PySceneDetect

(https://pyscenedetect.readthedocs.io/). We first use a content-aware scene detection algorithm to

 Web Appendix – Page 23

detect scene changes in each video. The content-aware scene detector works the way most people

think of “cuts” between scenes in a movie: given two frames, do they belong to the same scene, or

different scenes? The content-aware scene detector compares each frame sequentially looking for

changes in content, which is useful for detecting quick cuts between scenes based on detecting

consecutive frames in a video that have significant differences. The following code sample

illustrates the general workflow to perform scene detection programmatically. It provides an

example for detecting the scenes on an input video (testvideo.mp4) and printing the scenes to

the terminal/console. We have also included more code examples for detecting instructors’

emotions and physical characteristics as well as motions in the videos in our data.

from __future__ import print_function

import os

import scenedetect

from scenedetect.video_manager import VideoManager

from scenedetect.scene_manager import SceneManager

from scenedetect.frame_timecode import FrameTimecode

from scenedetect.stats_manager import StatsManager

from scenedetect.detectors import ContentDetector

STATS_FILE_PATH = 'testvideo.stats.csv'

def main():

 # Create a video_manager point to video file testvideo.mp4. Note that

multiple

 # videos can be appended by simply specifying more file paths in the list

 # passed to the VideoManager constructor. Note that appending multiple

videos

 # requires that they all have the same frame size, and optionally,

framerate.

 video_manager = VideoManager(['testvideo.mp4'])

 stats_manager = StatsManager()

 scene_manager = SceneManager(stats_manager)

 # Add ContentDetector algorithm (constructor takes detector options like

threshold).

 scene_manager.add_detector(ContentDetector())

 base_timecode = video_manager.get_base_timecode()

 try:

 # If stats file exists, load it.

 if os.path.exists(STATS_FILE_PATH):

 # Read stats from CSV file opened in read mode:

 with open(STATS_FILE_PATH, 'r') as stats_file:

 Web Appendix – Page 24

 stats_manager.load_from_csv(stats_file, base_timecode)

 start_time = base_timecode + 20 # 00:00:00.667

 end_time = base_timecode + 20.0 # 00:00:20.000

 # Set video_manager duration to read frames from 00:00:00 to

00:00:20.

 video_manager.set_duration(start_time=start_time, end_time=end_time)

 # Set downscale factor to improve processing speed.

 video_manager.set_downscale_factor()

 # Start video_manager.

 video_manager.start()

 # Perform scene detection on video_manager.

 scene_manager.detect_scenes(frame_source=video_manager)

 # Obtain list of detected scenes.

 scene_list = scene_manager.get_scene_list(base_timecode)

 # Like FrameTimecodes, each scene in the scene_list can be sorted if

the

 # list of scenes becomes unsorted.

 print('List of scenes obtained:')

 for i, scene in enumerate(scene_list):

 print(' Scene %2d: Start %s / Frame %d, End %s / Frame %d' % (

 i+1,

 scene[0].get_timecode(), scene[0].get_frames(),

 scene[1].get_timecode(), scene[1].get_frames(),))

 # We only write to the stats file if a save is required:

 if stats_manager.is_save_required():

 with open(STATS_FILE_PATH, 'w') as stats_file:

 stats_manager.save_to_csv(stats_file, base_timecode)

 finally:

 video_manager.release()

if __name__ == "__main__":

 main()

Detecting Instructors’ Emotions and Physical Characteristics

import requests

import json

set to your own subscription key value

subscription_key = None

assert subscription_key

replace <My Endpoint String> with the string from your endpoint URL

face_api_url = 'https://<My Endpoint String>.com/face/v1.0/detect'

 Web Appendix – Page 25

image_url =

'https://upload.wikimedia.org/wikipedia/commons/3/37/Dagestani_man_and_woman.

jpg'

headers = {'Ocp-Apim-Subscription-Key': subscription_key}

params = {

 'returnFaceId': 'true',

 'returnFaceLandmarks': 'false',

 'returnFaceAttributes':

'age,gender,headPose,smile,facialHair,glasses,emotion,hair,makeup,occlusion,a

ccessories,blur,exposure,noise',

}

response = requests.post(face_api_url, params=params,

 headers=headers, json={"url": image_url})

print(json.dumps(response.json()))

Detecting Motions

import numpy as np

import cv2 as cv

cap = cv.VideoCapture(cv.samples.findFile("vtest.avi"))

ret, frame1 = cap.read()

prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY)

hsv = np.zeros_like(frame1)

hsv[...,1] = 255

while(1):

 ret, frame2 = cap.read()

 next = cv.cvtColor(frame2,cv.COLOR_BGR2GRAY)

 flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5,

1.2, 0)

 mag, ang = cv.cartToPolar(flow[...,0], flow[...,1])

 hsv[...,0] = ang*180/np.pi/2

 hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX)

 bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR)

 cv.imshow('frame2',bgr)

 k = cv.waitKey(30) & 0xff

 if k == 27:

 break

 elif k == ord('s'):

 cv.imwrite('opticalfb.png',frame2)

 cv.imwrite('opticalhsv.png',bgr)

 prvs = next

 Web Appendix – Page 26

References

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of

Statistics, 1189-1232.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining,

inference, and prediction. Springer Science & Business Media.

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In

Advances in Neural Information Processing Systems (NeurIPS) (pp. 4765-4774).

Molnar, C (2018). Interpretable machine learning - a guide for making black box models

explainable.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel O., Blondel M.,

Prettenhofer P., Weiss R., Dubourg V., Vanderplas J. (2011). Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28),

307-317.

Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions

with feature contributions. Knowledge and Information Systems, 41(3), 647-665.

	Consumer Behavior in the Online Classroom:
	Using Video Analytics and Machine Learning to Understand the Consumption of Video Courseware
	Web Appendix
	References

