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Abstract 

The hadal zone is the common name for the deepest section of the ocean (6,000-11,000 

m depth). It encompasses 45 % of the ocean’s depth range, and is mostly represented by 

oceanic trenches. Trench habitats lack sufficient sampling and the communities within are 

not well understood. Often, samples are derived from a single depth and thus the 

population dynamics of trench communities have not been analysed comprehensively.  

Scavenging amphipods are abundant and diverse taxa in the trench environment, and 

have been found in every trench sampled to date. They rapidly intercept and consume 

carrion falls at the deepest trench depths, and act as key prey items to predators in the 

shallower depths of the hadal zone. There appears to be a relationship of increasing 

abundance and decreasing diversity of scavenging amphipods with depth. However in the 

Tonga Trench, sampling of hadal amphipods has been limited, and these patterns remain 

unclear. 

The QUELLE (Quest for the Limit of Life) project in 2013 was led by The Japan Agency for 

Marine-Earth Science and Technology (JAMSTEC). As part of this project, the YOK 13-10 

voyage examined scavenging amphipods in the Tonga Trench. The voyage used baited 

traps to sample depths of ~6,250 m and ~10,800 m from October 6 – October 21 in 2013. 

The main objectives of the present study were to: identify scavenging amphipod 

assemblages within the Tonga Trench and compare them to other trenches of the South 

Pacific; analyse the population structure of Hirondellea dubia between depths in the 

Tonga Trench; and identify a suitable total length proxy for H. dubia. 

Six species of amphipods were identified from depths of ~6,250 m and ~10,800 m in the 

Tonga Trench. At ~6,250 m Alicella gigantea, Eurythenes gryllus, H. dubia, Bathycallisoma 

schellenbergi, an alicellid species, and a gammarid species were recovered. In contrast, H. 

dubia was the only species recovered from ~10,800 m. The abundance of amphipods was 

higher at the ~10,800 m site while the diversity was much lower.  
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The assemblage of scavenging amphipods in the Tonga Trench was similar to those from 

past sampling efforts in the same trench. There were also similarities to the assemblages 

in the adjacent Kermadec Trench, and together these observations support the 

classification of these two trenches as a single biogeographic province. The assemblages 

in the Peru-Chile Trench in the South East Pacific were more dissimilar sharing only a few 

species. The present study provides new Tonga Trench records of the vertical ranges of A. 

gigantea, E. gryllus, and H. dubia. It also extends the maximum known depth of H. dubia 

to 10,807 m. This thesis expanded our current knowledge of A. gigantea, by reporting the 

first instance of this large amphipod in the Tonga Trench, and the second known instance 

of the species at hadal depths.  

An analysis of Hirondellea dubia population structure revealed ontogenetic vertical 

structuring in the Tonga Trench. Juveniles dominated the composition in the shallow end 

of the H. dubia vertical range, while very few juveniles were found at the deepest site. 

Juveniles were substantially smaller at ~6,250 m compared to ~10,800 m, and this may 

suggest that juveniles migrate down the trench slope with increasing age. The most likely 

mechanism for distributing juveniles to the shallower depths is the ascending migration of 

brooding females. However, this is still not certain as no brooding females were captured. 

The shallower depth provides a higher quality of food source and the reduced hydrostatic 

pressure allows for a faster metabolic rate. Thus, this distribution is likely driven by the 

distribution of food sources throughout the trench in combination with hydrostatic 

pressure.   

The dimensions of several established proxies for total length were evaluated for H. 

dubia. Pereonite 2-7 had the strongest correlation to total length, however it was highly 

distorted by dorsal curvature. Both the pereonite 2-7 and the pleosome were considered 

inaccurate due to sexual dimorphism making them inappropriate as proxies. Pereonite 1 

was proportionately larger in juvenile lifestages. However, overall pereonite 1 was 

considered the strongest candidate for a proxy, this is because it was the least influenced 

by dorsal curvature and was a conspicuous segment that was easy to measure.    
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Chapter 1: Introduction 

1.1 Introduction 

The deep sea (> 200 m depth; Gage and Tyler, 1991) is the largest and least explored 

habitat on the planet (Ramirez-Llodra et al., 2010), and it contains a high diversity of 

species and extreme environmental conditions (Hessler and Sanders, 1967; Ramirez-

Llodra et al., 2010). Deep-sea communities provide a number of ecological services such 

as: driving nutrient regeneration and biogeochemical cycles that support primary and 

secondary production throughout the oceans (Danovaro et al., 2008; Thurber et al., 2013); 

transporting atmospheric carbon to deep sea water masses through the biological pump 

(Christina & Passow, 2007; Danovaro et al., 2008; Thurber et al., 2013); and supporting 

the microbial oxidation of pollutants like methane (Mora et al., 2012). These services 

occur on a global scale, but they are not extensively studied (Thurber et al., 2013).  They 

may be vulnerable to future changes in ocean biogeochemistry (Mora et al., 2012), and 

more research is therefore needed to understand the communities of the deep sea. The 

deep sea is separated into distinct zones based on depth. The greatest of these depths, 

the hadal zone (> 6,000 m; Wolff, 1960), represents an understudied and unique habitat 

in the deep sea (Jamieson et al., 2010). 

1.1.1 Hadal zone  

The hadal zone (6,000-11,000 m) encompasses just under half of the oceans depth range 

(Jamieson et al., 2010). After the first discovery of marine life beyond 6,000 m depth 

(Nybelin, 1951), the hadal zone was named after the realm of Hades, the underworld in 

Greek mythology (Bruun, 1956). Initial sampling lacked the replication and range of 

depths necessary to record spatial or temporal population and community dynamics 

(Wolff, 1970).  More recently the hadal zone has been shown to host a high degree of 

endemism and diversity (Jamieson, 2015), and spatial population dynamics are now being 
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examined (Blankenship et al, 2006; Eustace et al., 2013). Technical challenges involved 

with sampling at these depths have made the hadal zone the most understudied habitat 

on Earth (Jamieson, 2015). The change in community structure from the abyssal (3,000-

6,000 m; Tyler, 1995) to hadal zone at 6,000 m is distinct, because the hadal zone is 

mainly comprised of steeply sloped trenches, and the unique topography of these 

trenches cause variation in environmental variables beyond simply increasing hydrostatic 

pressure (Jamieson et al., 2010; Thurber et al., 2013).   

Deep ocean trenches are formed by converging plate boundaries. Typically the denser 

oceanic plate will be forced under the thinner continental plate and into the mantle 

(Stern, 2002). This process is called subduction and can produce deep valleys (trenches) in 

the sea floor. Trenches are isolated from each other by shallower habitat and are 

distributed worldwide, though the majority are in the Pacific Ocean proximal to 

continental shelves (Jamieson et al., 2010). The topography of trenches are defined by 

steep slopes creating a deep V-shaped valley in the sea floor. The incline of trench slopes 

usually fluctuates from 5 to 15°, however the slopes may reach angles of <2° and >45° 

(Beliaev & Brueggeman, 1989). The trench axis itself is usually level, sedimentary, and 2– 

5 km in width (Jamieson et al., 2010). Due to the destructive nature of converging plate 

boundaries, trench sites are often subject to earthquakes and volcanic activity (Beliaev & 

Brueggeman, 1989; Stern, 2002). Seismic activity in tandem with steeply inclined slopes 

facilitates large rates of sedimentation into the trench axis (Beliaev & Brueggeman, 1989; 

Ichino et al., 2015). The changes in environmental variables driven by the topography and 

immense depth of a trench help to define the communities that live in them.   

Our understanding of environmental variables in the hadal zone has vastly improved since 

initial sampling (Menzies, 1965; Tyler, 1995; Jamieson, 2015). Water masses in trenches 

are not stagnant as once suggested (Johnson, 1998), and instead deep-water currents 

keep bottom waters circulated. In the Pacific Ocean, thermohaline circulation drives two 

deep water masses, the Lower Circum-Polar Water (LCPW) and the North Pacific Deep 

Water (NPDW) (Siedler et al., 2004). The LCPW penetrates the Pacific from the south and 



3 
 

continues north and clockwise, and the Southwest Pacific trenches are therefore typically 

colder than North Pacific trenches (Siedler et al., 2004; Jamieson, 2015).  

Below 4,000 m depth, temperatures slowly increase with rising hydrostatic pressure, a 

process caused by adiabatic heating (Bryden, 1973). The temperatures are low compared 

to surface waters, and the range within trenches is small, typically 1.0 - 2.50C (Danovaro et 

al., 2004). However small differences in temperature influence distributions and spatial 

population structure of shallow water fauna, and may also modify the distribution of 

hadal life (Thurston et al., 2002; Danovaro et al., 2004). Temperature varies substantially 

between trenches, and in the Western Pacific, the bottom water increases by ~0.5 oC 

between the southern and northern trenches (Jamieson et al., 2010). The salinity remains 

at 34-35 PSU (Beliaev and Brueggerman, 1989), so although changes in salinity have 

ecological consequences in shallow waters, the same doesn’t seem to be true in the hadal 

zone (Tyler, 1995). Dissolved oxygen does vary between trenches and over temporal 

scales, however generally the levels detected at this depth are not considered limiting to 

hadal fauna (Beliaev & Brueggeman, 1989; Tyler, 1995). The circulation of deep water 

masses ensures that both salinity and dissolved oxygen remain relatively stable and 

comparable to abyssal levels (Vinogradova, 1959; Beliaev & Brueggeman, 1989; Tyler, 

1995; Kitahashi et al. 2013). 

Hydrostatic pressure increases linearly with depth, and increases by 1 atmosphere (atm) 

every 10 m of depth (Wolff, 1960; Jamieson et al., 2010). The hadal zone includes 

pressures from 600-1,100 atm, the highest experienced by any known life on earth 

(Jamieson, 2015). Immense hydrostatic pressure can inhibit biological functions in shallow 

species (Somero, 1992). Most hadal fauna have a limited range of pressure tolerance with 

66% of species being confined within 1-2 km vertical range (Beliaev & Brueggeman, 1989). 

However the tolerance of pressure in hadal fauna is larger than in that of shallow water 

species, because at great depths a large change in depth represents a proportionately 

smaller shift in pressure (Wolff, 1960; Jamieson et al., 2010). The barriers and adaptations 

brought about by hydrostatic pressure are many and include inhibition of enzymatic 
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functions (Wolff, 1960; Somero, 1992), storage of metabolic energy in the form of lipid 

reserves (Beliaev & Brueggeman, 1989; Somero, 1992), adaptation to subunit assembly 

and stability of proteins (Somero, 1992), and the Carbonate Compensation Depth (CCD), 

which represents a barrier to organisms that use calcium carbonate in their structural 

tissue (Jamieson et al., 2010). Hydrostatic pressure alone does not justify the distinction 

of the hadal and abyssal zones, however in combination with other environmental 

variables, it contributes to the unique setting found in trenches (Wolff, 1960; Somero, 

1992; Siedler et al., 2004; Jamieson et al., 2010). 

Food supply is one of the most defining variables of hadal faunal diversity and distribution 

(Blankenship and Levin, 2006; Jamieson et al., 2010; Eustace et al., 2013; Ichino et al., 

2015). Almost all of the food resource in the deep sea is directly or indirectly derived from 

surface waters (Tyler, 1995), the only known exceptions being chemosynthetic production 

at hydrothermal vents and methane seeps, both of which been observed in trenches 

(Barnes et al., 1992; Fujikura et al., 1999;  Ohara et al 2012). Surface-derived organic 

matter reaches hadal depth in several forms (Jamieson et al., 2010): particulate organic 

matter (POM) which is largely dead planktonic material (Stockton and DeLaca, 1982; 

Saint-Marie, 1992); larger carrion falls (Saint-Marie, 1992; Britton and Morton, 1994); or 

terrestrial plant matter (Wolff, 1960; Kobayashi et al., 2012). This organic matter must 

travel large distances during the descent, and intercepting zooplankton and microbial 

species consume, degrade and fragment the food source. In this way, the quality and 

quantity of organic matter typically reduces with depth (Sokolova, 1994; Christina & 

Passow, 2007). In the case of larger carrion falls, the drop in food quality is significantly 

less overall, because the large surface-area-to-volume ratio of a carcass slows degradation 

by pelagic heterotrophic organisms (Sokolova, 1994; Lebrato and Jones, 2009; Jamieson et 

al., 2010). The steep V-shaped slopes of the trench cause POM to accumulate along 

trench axes, resulting in a unique trend of increasing POM quantity with depth (Jamieson 

et al., 2010; Ichino et al., 2015). In addition, seismic activity that is common near trenches 

facilitates this accumulation of organic matter through deep water landslides (Itoh et al., 

2011; Eustace et al., 2013; Glud et al., 2013). Productivity in surface waters and nearby 
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landmasses have direct impacts on the food supply in trenches (Ichino et al., 2015), and 

there is therefore considerable variation between trenches in the input of organic matter.   

The unique environmental variables and isolation of each trench have all likely 

contributed to the endemism and exclusion of certain taxa from the hadal zone (Jamieson 

et al., 2010). Environmental variables are not consistent across all trenches and 

differences in latitude, trench topography, seismic activity, and surface productivity make 

generalising trench habitats difficult (Ichino et al., 2015). Thus each study of hadal fauna 

must consider the independent characteristics of the relevant trench. 

1.1.2 Sampling the hadal zone 

Hadal sampling has been sporadic and uncoordinated over the last 30 years (Jamieson et 

al., 2010). Limitations in current technology and the immense depths of trenches make 

experimentation on hadal fauna difficult (Tyler, 2003; Jamieson, 2015), thus research has 

been conducted in an explorative and observational capacity (Tyler, 2003; Jamieson, 

2015). Tethered sampling techniques have been utilized in the past (Kullenberg, 1956; 

Wolff, 1960), however these are not practical at hadal depths. Surface vessels must 

withstand the weight of the connecting wire and the attached equipment, and few 

research vessels currently have the capability to sample deeper than 6,000 m (Jamieson, 

2015). The method of attaching instruments to free falling landers has become popular in 

hadal studies (Hessler et al., 1978; Blankenship et al., 2006; Jamieson et al., 2009b; 

Eustace et al., 2013). The method involves deploying an instrument that sinks to the 

seafloor autonomously, and once sampling is complete, an acoustic signal or preset timer 

jettisons ballast weights, thus allowing the now buoyant system to rise to the surface 

where it is collected by a research vessel (Murashima et al., 2009; Jamieson, 2015). This 

technique does include the risk of the instrument failing to release its ballast weights, and 

therefore losing valuable traps and equipment. However, the method allows smaller 

vessels to conduct hadal research, and for a wide variety of instruments to be deployed 

on these free fall systems (Jamieson et al., 2009b; Glud et al., 2013).   
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Baited traps and cameras are commonly used in benthic hadal studies (Perrone et al., 

2002; Jamieson et al., 2009b; Gallo et al., 2015). These techniques have been well utilised 

due to the accessibility and relative cheapness compared to other techniques (Jamieson, 

2015), and baited traps in particular can be attached and deployed by systems that have 

entirely independent purposes. Research on samples collected by baited traps include 

phylogenetics (France and Kocher, 1996; Ritchie et al., 2015), physiological and taxonomic 

studies (Tamburri and Barry, 1999; Kilgallen, 2015; Kilgallen and Lowry, 2015), diet 

analyses (Blankenship and Levin, 2007), and size – structure analyses (Thurston et al., 

2002; Blankenship et al., 2006). The instruments specifically target bait-attending fauna, 

and therefore are biased towards mobile carrion-dependant scavengers. Variations in trap 

design, height off seafloor, orientation of trap, and length of deployment likely preclude 

capture of some hadal scavengers (Hessler et al., 1978; Ingram and Hessler,1983; 

Legeżyńska et al., 2000; Blankenship et al., 2006). Use of baited cameras has become 

more prevalent as the technology becomes more accessible, the advantages of baited 

cameras include recording behaviour at bait and the observation of fauna that attended 

bait but were not captured (Jamieson et al., 2009b; Gallo et al., 2015). Recent 

technological advances have allowed for more extensive research in this zone, however 

there are still many limitations for research to overcome (Gallo et al., 2015).  

Representatives of most marine taxa are present in the hadal zone, however hadal fauna 

are adapted to the extreme environment and are thus dissimilar to shallow water 

relatives (Jamieson et al., 2010). Invertebrates dominate these depths (Jamieson, 2015), 

and some of most prolific and well-studied groups are molluscs (Wolff, 1960), 

echinoderms (Wolff, 1960; Beliaev & Brueggeman, 1989), annelids (Beliaev & 

Brueggeman, 1989; Paterson et al., 2009), and crustaceans (Jamieson et al., 2009a). A 

large percentage of the known hadal fauna are benthic (Wolff, 1960; Beliaev & 

Brueggeman, 1989), and this is most likely due to the methods employed to sample hadal 

depths (Hessler and Sanders, 1967). Mobile scavengers in particular have been sampled in 

great numbers using baited traps and cameras (Jamieson et al., 2010). Amphipoda are 

often the most prolific scavenging fauna captured in baited traps and appear to be 
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important members of the hadal communities (Hessler et al., 1978; Blankenship et al., 

2006; Eustace et al., 2013).  

1.1.3 Scavenging amphipods 

Scavenging amphipods are a conspicuous and widely distributed component in hadal 

communities (Wolff, 1960; Fujii et al., 2013). They act as key prey items for predators in 

the shallower depths of the hadal zone (Eustace et al., 2013), and dominate the 

scavenging community at carrion falls in the greater depths of a trench (Jamieson et al., 

2009a; Jamieson et al., 2009b). Amphipods therefore play an important role as a disperser 

of organic matter in hadal depths, particularly at depths past 8,000 m where they are 

often the only scavenging fauna detected (Hessler et al., 1978; Eustace et al., 2013). 

Amphipods are often the first fauna to attend bait (Hessler et al., 1978), and they are 

thought to facilitate the attraction of other amphipods and fauna to the carrion. This 

facilitation may be a result of the amphipods disturbing and fragmenting the carcass 

thereby enhancing the spread of food particles, and perhaps releasing feeding byproducts 

such as ammonia that may attract new amphipods (Perry, 1960; Hessler et al., 1978). It is 

interaction such as these that make amphipods an important group to study in the hadal 

zone. 

Hadal scavenging amphipods have been recorded in every trench sampled to date, and 

represent diverse and abundant taxa at these depths (Wolff, 1960; Jamieson et al., 2010). 

There appears to be a relationship of increasing abundance and decreasing diversity of 

scavenging amphipods with depth (Hessler et al., 1978). This increasing abundance is in 

contrast with regular deep sea patterns, and is likely related to the accumulation of 

organic matter down the slopes of trenches (Itoh et al., 2011; Ichino et al., 2015). All of 

the scavenging amphipods collected from hadal depths have belonged to the suborder 

Gammaridea (Brusca and Brusca, 1990) with a large portion of those belonging to the 

superfamily Lysianassoidea (Dana, 1849).  

There are two distinct forms of lyssianassoids at hadal depths (Jamieson et al., 2010). The 

larger benthopelagic amphipods have cutting mouthparts and highly expansive guts, and 



8 
 

their adaptation to store energy as lipids allow them to fast between irregular carrion falls 

(Beliaev & Brueggeman, 1989; Somero, 1992; Jamieson et al., 2010). The alternative form 

of lyssianassoids are smaller benthic species that possess grinding mandibles and non-

expanding guts that must more or less constantly consume and metabolise food (Dahl, 

1979; Blankenship and Levin, 2007; Jamieson et al., 2010). 

Hadal amphipods are highly adapted to endure extreme hydrostatic pressures and 

limitations in food supply. The ability of amphipods to detect and intercept bait is 

particularly impressive (Jamieson et al., 2010); they use chemosensory appendages to 

detect the odour plumes released by carrion falls (Tamburri and Barry, 1999). Although 

many hadal amphipods consume carrion, they are not exclusively reliant on necrophagy 

(De Broyer et al., 2004). There is evidence that these scavengers supplement necrophagy 

with detrivory, carnivory, and even cannibalism (Blankenship and Levin, 2007; Jamieson, 

2010), and some amphipods may even be capable of digesting wood debris derived from 

terrestrial plants (Kobayashi et al., 2012).  

Scavenging amphipod species are vertically stratified throughout the trench environment 

(Blankenship et al., 2006) due to the limited depth range of each species (Beliaev & 

Brueggeman, 1989), and interspecific competition for food in the deeper hadal depths 

(Blankenship et al., 2006; Blankenship and Levin, 2007). As previously stated, the diversity 

of species typically decreases with depth in a trench, and often the deepest section of a 

trench is dominated by a single amphipod species (Blankenship et al., 2006; Eustace et al., 

2013). However amphipod community structure varies between trenches, and often the 

known range of one species can vary drastically between these hadal habitats (Fujii et al., 

2013). Differences in community composition within and between trenches indicate that 

these communities may have been isolated over geological timescales, and thus have 

developed a unique composition and structure (France, 1993; Jamieson et al., 2011). 

More sampling is required to gain a better understanding of these variations between 

depths and trenches.  
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The population structures of many hadal amphipods are not well understood. Past trench 

sampling efforts have often targeted a single depth thus neglecting patterns that may 

occur across a species’ full depth range (Hessler et al., 1978; Perrone et al., 2002; 

Thurston et al., 2002; Eustace et al., 2013).  Blankenship et al. (2006) reported 

ontogenetic structuring of Hirondellea dubia (Dahl, 1959) between depths of 7,349 m and 

10,787 m in the Tonga trench. Hirondellea dubia juveniles were captured in the shallower 

depths but were absent at the greater depths (Blankenship et al., 2006). The stratification 

of juveniles to shallow depths was attributed to an increase in metabolic rate under lower 

hydrostatic pressure (Blankenship et al., 2006), and the higher quality of POM at shallow 

depths (Hessler et al., 1978). Ontogenetic structuring was previously unknown in the 

hadal environment, but since then (2006) it has also been reported in the Izu-Bonin 

Trench (Eustace et al., 2013), for Hirondellea gigas (Birstein and Vinogradov, 1955). 

Understanding of amphipod population structure has been limited by logistical difficulties 

in collecting samples from these extreme depths and improvements to methodology will 

allow a more detailed understanding of life at these depths in the future.   

Analysis of amphipod populations has often used length-based size structure to define 

age groups (Thurston et al., 2002; Blankenship et al., 2006), but variations in methodology 

have hindered comparisons between studies.  An accurate total length measurement is 

needed to separate size classes, however this is difficult in amphipods due to their dorsal 

curvature (Stebbing, 1919; Chapelle, 1995). Total length measurements are taken along 

the dorsal aspect from the head to the tip of the telson (Hessler et al., 1978), but this 

measurement is influenced by the telescoping of dorsal segments, which can cause  >10 % 

variation in length (Stebbing, 1919; Chapelle, 1995; refs). Dorsal curvature can be avoided 

by measuring a segment of the amphipod as a proxy in place of measuring total length 

(Chapelle, 1995). A large single segment is ideal as a proxy because it is conspicuous and 

easy to measure while also avoiding any variability in length cause by dorsal curvature 

(Stebbing, 1919; Chapelle, 1995). A proxy should not be a segment that displays sexual 

dimorphism, as while sex-based variation is uncommon in hadal lyssianassoids, small 

variations could confound size structure analysis (Chapelle, 1995; Kilgallen, 2015). A 
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variety of proxies have been used in amphipods in the past (Von Westernhagen, 1976; 

Hessler et al., 1978; Chapelle, 1995; Thurston et al., 2002), however a consensus for a 

single proxy to be used in hadal amphipods would be useful to make future study cross-

comparable.  

1.1.4 The Tonga Trench 

The Tonga Trench is located in the Southwest Pacific Ocean, it lies directly north east of 

the Kermadec trench and New Zealand’s EEZ. The Tonga Trench’s greatest depth is 10,882 

m deep, a site known as the Horizon Deep (Wright et al., 2000). This depth is exceeded 

only by the Challenger Deep site in the Mariana Trench, making it the second deepest 

trench in the world. The Tonga Trench runs from ~15ºS to ~25ºS, and the surface waters 

above trench are typically oligotrophic, with primary productivity is aproximatly < 100 mg 

C/M2/day (Herring, 2002). Although the Tonga Trench has been sampled with trawls 

(Beliaev & Brueggeman, 1989) and baited traps (Blankenship et al., 2006), the habitat 

requires further investigation to unravel the structure of scavenging amphipod 

assemblage and population structures. 

The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) led the QUELLE 

(Quest for the Limit of Life) project in 2013. The YK 13-10 voyage was part of this project 

that sampled depths of ~6,250 m and ~10,800 m from October 6 – October 21 in 2013 in 

the Tonga Trench. Baited traps were deployed during this voyage providing the 

opportunity to examine scavenging amphipods at these depths. The present study has 

utilised the samples collected during this voyage, with the following objectives:  

(1) Identify scavenging amphipod species in the hadal environment of the Tonga Trench.  

(2) Compare the scavenging amphipod assemblage structure of the Tonga Trench with 

studies in this trench and others of the South Pacific Ocean. 

(3) Examine the population structure of Hirondellea dubia in the Tonga Trench.  

(4) Identify a suitable total length proxy for Hirondellea dubia.  
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1.2 Thesis structure 

Chapter 1 has already provided an overview of the hadal zone and the scavenging 

amphipod fauna within it. 

 

Chapter 2 details the methods involved in the collection and identification of hadal 

scavenging amphipods from the Tonga Trench. The species composition of the amphipod 

assemblage is described and compared between a site on the outer trench slope (~6,250 

m depth) and a site at the trench axis (~10,800 m depth), as well as with assemblages in 

trenches elsewhere.  

 

Chapter 3 describes the population structure of the scavenging amphipod Hirondellea 

dubia at the two depths sampled. Here H. dubia are classified into life-history stages and 

morphometric analyses conducted and described. These data is then used to compare 

lifestage composition and size structure of H. dubia between the two sampling depths. 

This chapter also contains an analysis of proxies for the total length of the amphipod.  

 

Finally, Chapter 4 provides an overview of the preceding chapters and an outline for 

future research directions. Literature cited in the course of the present study has been 

documented in the bibliography at the end of this chapter. 

 

Chapters 2 and 3 of the thesis have been written in a format ready for submission to a 

scientific journal for publication.  As a result there is some repetition of introductory 

material in these chapters.  
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Chapter 2: Scavenging amphipod 

assemblage In the Tonga Trench 

2.1 Introduction 

The hadal zone (6,000-11,000 m), encompasses 45 % of the oceans depth range (Wolff, 

1960; Jamieson et al., 2010), and oceanic trenches are the dominant environment within 

these depths. The benthic habitat in the hadal zone takes up only 1-2 % of the total 

seafloor area, however this habitat is host to highly endemic and abundant biological 

communities (Wolff, 1960; Somero, 1992; Fujii et al., 2010; Jamieson et al., 2010; Ichino et 

al., 2015). These hadal communities are less understood than shallow water benthic 

communities, and while they are generally high in biomass and abundance, the diversity 

of species is low (Beliaev & Brueggeman, 1989). Benthic community diversity decreases 

with depth leading to increasing dominance of a few abundant species (Wolff, 1960; 

Beliaev & Brueggeman, 1989).  

Representatives of most marine taxa are present in the hadal environment (Wolff, 1960; 

Jamieson et al., 2010), however these hadal species are dissimilar to shallow water 

equivalents due to adaptation to the extreme environmental conditions that define the 

trench habitat. The adaptation is so specific that a small change in environmental 

variables changes diversity of taxa substantially (Hessler et al., 1978; Ichino et al., 2015). 

Changes in depth modify environmental variables such as hydrostatic pressure, 

distribution of organic matter, and temperature (Jamieson et al., 2010; Itoh et al., 2011; 

Ichino et al., 2015). However, our understanding of hadal community composition has 

been limited by logistical difficulties in collecting samples from these extreme depths 

resulting in very few samples often only from a single depth (Hessler et al., 1978; Perrone 

et al., 2002; Thurston et al., 2002; Eustace et al., 2013).   
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Amphipods are the dominant scavengers in the trench environment (Wolff, 1960). They 

rapidly intercept and consume carrion falls at the deepest trench depths and have been 

found in all the trenches sampled to date (Wolff, 1960; Jamieson, 2015). Although trench 

amphipods consume carrion, they are not exclusively reliant on these large one-off 

events. Detrivory, carnivory and even cannibalism have been recorded with varying 

prevalence at different depths and lifestages (Blankenship and Levin, 2007; Jamieson et 

al., 2010). The partitioning of these feeding strategies is likely a mechanism for such 

species to co-exist in a habitat limited in organic matter (Blankenship et al., 2006; 

Blankenship and Levin, 2007).  

The structure of scavenging amphipod assemblages has not often been examined across 

trenches (Jamieson et al 2011, Fujii et al., 2013), rather studies of amphipods more often 

focus on a single species or depth within a trench (Beliaev & Brueggeman, 1989; Thurston, 

2002). In the Tonga Trench, species have been found to be vertically stratified 

(Blankenship et al., 2006), the distributions of these species were thought to be driven by 

interspecific interactions and partitioning of feeding strategies (Blankenship and Levin, 

2007). However a more detailed understanding of the assemblage at these depths is 

needed to determine these trends with confidence. There is therefore impetus to 

complete more sampling across multiple depths in trenches, and to revisit previously 

sampled trenches to sample depths outside those recorded from previous studies. 

The extreme depth of the hadal zone has made recovering amphipods difficult and 

sporadic over the last 30 years, however there has been a resurgence of hadal studies 

partially due to advancement in technological capabilities (Jamieson, 2015). Baited traps 

and cameras have begun to reveal more of the diversity and abundance of scavenging 

amphipods in the trench environment (Jamieson et al., 2010). The use of baited traps is a 

reliable way to recover the scavengers, because amphipods are mobile and can escape 

methods such as trawling that were used more frequently in the past (Wolff, 1960; 

Beliaev & Brueggeman, 1989).  Consistent methodology also provides datasets that are 



14 
 

comparable for future analyses of amphipod assemblage composition between depths 

and among trenches.  

Scavenging amphipods have been found in every trench sampled to date, and many 

species are cosmopolitan in trenches worldwide, however these trenches are isolated 

from one another by large distances of abyssal plains and are characterized by a different 

set of environmental conditions (Jamieson et al., 2010; Thurber et al., 2013). Differences 

in amphipod assemblage structure between and within trenches suggest that amphipod 

assemblages may have been isolated over geological timescales and each has evolved 

different ecological adaptations and different key species dominate (Jamieson et al. 

2011). However, sampling effort remains small with most studies still describing species 

new to science, and the use of molecular techniques to understand connectivity among 

trenches is still in its infancy. The variables that determine biogeographic distribution and 

depth limits for hadal amphipods require more sampling and analysis. 

The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) lead the QUELLE 

(Quest for the Limit of Life) project in 2013, and during part of this project the  Research 

Vessel YOKOSUKA sampled depths of ~6,250 m and ~10,800 m in from October 6 – 21 in 

2013 (voyage YK 13-10). The purpose of the voyage was in part to describe the biological 

communities of the Tonga Trench in the south western Pacific Ocean and compare theses 

hadal assemblages to others found in the western Pacific, ie the Mariana, Japan, and 

Kermadec trenches. The voyage used baited traps deployed by free fall landers in 

combination with traps and direct sampling made by a piloted submersible. The voyage 

also collected data on geology and the biogeochemistry of the sediment, however the 

present study focuses on the scavengers caught by baited traps and the submersible. 

 

The objectives of the present research are to: (1) identify scavenging amphipod species in 

the hadal environment of the Tonga Trench; (2) describe and compare the scavenging 

amphipod assemblage structure of the Tonga Trench with assemblages detected in the 

past and in other trenches of the South Pacific Ocean.   
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2.2 Materials and Methods 

2.2.1 Study Site and Voyage 

 
Figure 2.1: Tonga Trench Study site in the Southwest Pacific Ocean. (A) The red square identifies the study site where 
samples were collected. (B and C) Red spots signified the two sampling sites, ~10,800 m in the trench axis, and ~6,250 m 
on the trench outer slope.  Figure from Leduc et al., 2015. 

The Tonga Trench is located in the Southwest Pacific Ocean and is 10,882 meters deep at 

the axis of the trench, a site known as the Horizon Deep (Wright et al., 2000). This depth is 

exceeded only by the Challenger Deep site in the Mariana Trench. The Tonga Trench runs 

from ~15°S to ~25°S (Figure 2.1A). Samples of scavenging amphipods were collected from 

2 depths within the trench: ~10,800 m at Horizon Deep, and at a ~6,250 m site on the 

edge of the trench. During the voyage, 6 lander deployments and 3 dives from a piloted 

submersible (Shinkai 6500) successfully collected a variety of samples (Table 2.1). 
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2.2.2 Collection 

Table 2.1: Sample details for scavenging amphipods, Site 1 corresponds to trench edge site, site 2 corresponds to 
Horizon Deep site. Time at sea floor indicate the hours and minutes that each sample had to collected scavengers from 
the sea floor.  
 

Site/
Dive 
No. 

Depth (m) latitude longitude Date Gear 
Time at sea floor 
hours:minutes 

1370 6,255 23:36.7500:S 174:17.3444:W 15/10/2013 
Trap deployed by 
submersible and 
suction sampler 

3:00 

1-1 6,256 23:36.6771:S 174:16.8787:W 09/10/2013 
sediment profile 

lander 
2:46 

1-2 6,253 23:36.6344:S 174:16.8133:W 10/10/2013 
sediment profile 

lander 
11:16 

2-1 10,817 23:16.4294:S 174:44.9826:W 11/10/2013 
camera-corer 

lander 
15:16 

2-2 10,807 23:16.5298:S 174:44.8380:W 12/10/2013 
sediment profile 

lander 
7:02 

2-3 10,807 23:16.5085:S 174:45.1347:W 13/10/2013 
camera-corer 

lander 
8:06 

2-4 10,805 23:16.54365:S 174:45.2294:W 14/10/2013 
sediment profile 

lander 
9:43 

The majority of samples were collected by deployment of baited traps (Figure 2.2). The 

traps were 25 cm x 25 cm x 36 cm with two 6 cm diameter openings. The walls of the trap 

were covered with a 3mm mesh, and bait was placed in fine mesh bags attached to the 

inside wall of the trap. The bait consisted of pieces of raw fish (previously frozen). The 

amount of time each trap spent on the seafloor varied (Table 2.1).  



17 
 

 

Figure 2.2:  Baited Traps used to catch amphipods from the Tonga Trench. These traps were attached to Landers at 
multiple heights. 

The baited traps were deployed to the sea floor by attachment to two autonomous free-

fall landers, and on one dive by the submersible. The landers used were a sediment 

sampling-camera lander and a sediment profile lander.  

The sediment sampling-camera lander (Figure 2.3) was used to collect sediments, make 

sea floor observations, collect scavenging amphipods, and to take measurements of  

pressure, temperature and conductivity (salinity) using a CTD during the lander decent. 

One of the baited traps were attached to the lander at the base (0 m above seabed), and 

two were attached on the frame at a height of 1.5 m above the seabed.  
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Figure 2.3: The sediment sampling-camera lander being deployed. Three baited traps can be seen, with 2 at the base of 
the lander and one at the top. Transparent tubes at the lander base collect sediment upon settlement on seafloor. 

The sediment profile lander (Figure 2.4) also collected amphipods by baited trap, and in 

addition the lander was used to obtain O2, (oxygen) resistivity, and temperature 

microprofiles recorded by a central measuring unit made up of various microsensors. Two 

baited traps were placed on the frame of the sediment profile lander at 1.8 m above the 

seabed, however no traps were placed at the base of the lander to avoid any damage that 

amphipods attracted to the bait might do to the delicate profile electrodes as they 

entered the sediment.  
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The Shinkai 6500 submersible (Figure 2.5) collected samples from a dive (Dive No. 1370) 

to the edge the Tonga Trench.  Two of the standard baited traps and one larger trap 

(overall dimension 45 x 21 x 55 cm; 11 mm mesh; 5 and 8 cm openings) were deployed on 

the seafloor at the beginning of the dive and recovered before the submersible ascended 

to the surface.  In addition a single amphipod individual was collected using the 

submersible’s suction sampler. 

Figure 2.4: The sediment profile lander. (A) lander being deployed. Two baited traps can be seen on top of the yellow frame of the 
lander. (B) Central measuring unit made up of various microsensors to detect environmental variables in the sediment. 

A B 
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Figure 2.5: The Shinkai 6500 submersible being deployed in the Tonga Trench. 

Once the traps were brought onboard, all amphipods were recovered and fixed and 

preserved in 100% ethanol.  Amphipods were split into samples based on the traps and 

deployments that collected them. A small number of specimens were removed from the 

most abundant samples for separate analysis by Japanese scientists. In the laboratory 

ashore, samples were further divided by species (see below). Some tissue samples of the 

various amphipods were dissected at the laboratory for future molecular analysis. The 

abundance for each species was obtained by counting all the individuals in a sample. The 

ethanol was then drained and the sample was blotted dry and weighed on a balance to 

the nearest 0.01 g.   

2.2.3 Identification  

Amphipods were identified to the lowest possible taxonomic level following Ingram and 

hessler (1987), Barnard and Barnard, (1969), Kilgallen, (2015), and Kilgallen and Lowry, 

(2015). The identification of the largest individual of Alicella gigantea was compared with 
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the type specimen descriptions from the Atlantic (Chevreux, 1899), North Pacific (De 

Broyer and Thurston, 1987), and as re-described by Jamieson et al. (2013) from the 

neighbouring Kermadec Trench. 

Amphipods were primarily identified under a stereoscopic microscope (LEICA MZ 8, 

Germany), in cases when small parts needed to be dissected and examined, a compound 

microscope (Carl Zeiss, Germany) was used.  Many of the amphipods had suffered severe 

damage or degradation during collection. Nevertheless, identification of these individuals 

was still attempted. Such individuals were always marked as damaged and so that they 

could be removed from later analysis if the identification was considered unreliable. 

2.2.4 Photography/imaging  

All individuals other than Hirondellea dubia (Dahl 1959) species were photographed, 

sexed, and measured using the following methods. For detail about the methodology 

used for H. dubia see Chapter 3. 

Larger species were photographed with a Sony NEX-7 camera positioned 23 cm above the 

individual.  Smaller species were photographed under a stereoscopic microscope using 

either a U3CMOS series C-mount USB3.0 CMOS camera with C-mount 0.50X camera 

adapter, or an ODCM0310C series C-Mount USB2.0 CMOS camera with C-mount 0.50X 

adjustable camera adapter (ProSciTech, Australia). Photographs were taken against a 

scale were possible, or otherwise a separate image of the scale was taken at a focus and 

zoom matching the image of the specimen. 

2.2.5 Length and sex  

All measurements and sexing was conducted using the stereoscopic microscope or the 

compound microscope. Measurements were made along the dorsal aspect, from the head 

to the tip of the telson. Image analysis was conducted with software ImageJ (ImageJ v. 

1.49; NIH, USA; Abramoff et al 2002). The degree of dorsal curvature varied within and 

between species. No adjustment was made for this curvature, which will have introduced 
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a degree of inaccuracy to these measurements. However these lengths were not used in 

any length-based population analysis so this was considered acceptable.  

The sex of an individual was established by the presence of penile papillae (male), 

oostegites (female), or the absence of both of these (Juvenile) (Hessler et al., 1978). When 

individuals were damaged or missing segments, all possible sexing/measuring were made, 

while noting that the individual was damaged.  

2.2.6 Statistical analysis  

Statistical analyses were conducted using the IBM® SPSS® statistics software (version 22.0, 

2015), and all the results were assessed at the 95% confidence level. Following the sexing 

of all individuals, sex ratios were calculated and a χ2 test was used to detect any 

significant deviation from a 1:1 male to female ratio. 
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2.3 Results and Discussion 

The baited traps successfully captured a variety of scavenging fauna at 2 hadal depths. A 

total of 552 amphipods were captured at the ~6,250 m depth and 3,174 were collected at 

the ~10,800 m depth (Table 2.2). The baited traps nearly exclusively caught amphipods, 

the only non-amphipod organisms collected were two mysids at the trench edge site and 

these most likely entered the traps in shallower water.   

The 2 depths sampled varied substantially in amphipod assemblage structure. A total of 6 

amphipod species were sampled across the two depths (Table 2.2). All six of these species 

were found in the 6,250 m site while only one (Hirondellea dubia) was found at the 10,800 

m depth. Alicella gigantea Chevreux, 1899, Eurythenes gryllus (Lichtenstein, 1822), 

Hirondellea dubia Dahl, 1959, Bathycallisoma schellenbergi (Britein and Vinogradova, 

1958) were positively identified, and the remaining species were an alicellid species, and 

an unidentified gammarid species. H. dubia was the sole species found at ~10,800 m, and 

typically in high abundance. The assemblage structure at 6,250 m was more complex, 

where the alicellid species was the most abundant making up 47% of the individuals, E. 

gryllus was also prevalent comprising 20% of the assemblage, while B. schellenbergi, H. 

dubia, the unidentified gammarid sp., and A. gigantea were the least prevalent making up 

15, 13, 4, and 1 % respectively of the total assemblage. (Table 2.2).   
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Table 2.2: Composition and abundance of bait-attending amphipods recovered from 6 stations sampled across 2 depths in the Tonga Trench.  

a Weights were determined prior to separation of these 4 species 

2
4 
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2.3.1 Species-specific observations 

Alicella gigantea (Figure 2.6) is recorded here for the first time from the Tonga Trench. 

Despite appearing to be a cosmopolitan species at abyssal depths (Barnard and Ingram, 

1986; Hasegawa et al., 1986; De Broyer and Thurston, 1987), this large scavenger has only 

been recorded from the South Pacific once before in the neighbouring Kermadec Trench 

(Jamieson et al., 2013). The two individuals, a juvenile and a male (Figure 2.6 shows the 

large male), were recovered during independent deployments of the sediment sampling-

camera lander to 6,250 m. This depth is within the known range of A. gigantea (Barnard 

and Ingram, 1986), although this is only the second record of the species at hadal depths. 

A. gigantea is the largest known amphipod with a maximum recorded length of 340mm 

(Harrison et al., 1983). The specimens recovered in the present study were 91.7 and 254.7 

mm in length and within the known range of size and similar to the range of sizes 

recorded by Jamieson et al., (2013) in the in neighbouring Kermadec Trench (102-290 

mm). 

Although A. gigantea has a worldwide distribution, it has not been caught by traps at 

these depths in the Tonga Trench in the past (Blankenship et al., 2006; Jamieson et al., 

2011). Furthermore many of the locations where A. gigantea have been captured have 

been sites of repeated sampling (Barnard and Ingram, 1986; Hasegawa et al., 1986; De 

broyer and Thurston, 1987). It is possible that the time taken for A. gigantea to attend 

bait may have limited the chances for the species to be recovered previously in the Tonga 

Trench. In the Kermadec Trench, A. gigantea only attended bait after ~5 hours (Jamieson 

et al., 2013), and the maximum abundance was only achieved after 16 hours on the 

seafloor, however in the present study the large male was recovered in a trap that was 

deployed for only 2:46 hours somewhat contradicting this pattern. It is also possible that 

the species occurs in extremely low abundance with a scattered distribution. It is likely a 

combination of both that has resulted in the absence of A. gigantea from past sampling 

efforts and small sample size in the present study. 



26 
 

Table 2.3: Details of collected A. gigantea individuals. 

 

 
Figure 2.6: Male Alicella gigantea individual recovered from 6,253 m depth (Dive number 1-1, NIWA Catalog Number 
89965).  

 Bathycallisoma schellenbergi (Figure 2.7) were captured in both samples at the ~6,250 m 

depth, and none of the samples at the 10,800 m depth. Recovered individuals were all 

within the known size range of B. schellenbergi previously sampled in the Tonga Trench 

(Blankenship et al., 2006). A 15.6 mm female was the largest individual captured while 6.5 

mm was the smallest juvenile captured. No sexually mature males or females were 

captured and the ratio between males and females did not differ significantly from 1:1 (χ2 

(1,72) = 0.5, p = 0.48). 

A. gig 

20 mm 
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All the B. schellenbergi caught at 6,250 m were relatively young instars, and this is 

consistent with the lifestage assemblage recorded by Blankenship et al. (2006) at this 

depth. This pattern reinforces the observation of vertical ontogenetic structuring in B. 

schellenbergi (Blankenship et al., 2006).  

Scopelocheirus schellenbergi has often been referred to as a true hadal species being 

captured only in hadal depths. However a recent taxonomic revision has combined 

Scopelocheirus schellenbergi and Bathycallisoma pacifica into the latter genus. The 

combined records extend the depth range into the lower abyss and this species cannot be 

considered an exclusively hadal species (Kilgallen and Lowry, 2015). However recent 

genetic work indicated that there may be need for distinctions within B. schellenbergi into 

several species (Ritchie et al., 2015). Further analysis into this species is required to 

resolve the systematic status of this species and its taxonomy.  

 
Figure 2.7: Bathycallisoma schellenbergi recovered from 6,253 m (Dive number 1-2, NIWA Catalog Number 92765). (A) 
Female. (B) Male 

Hirondellea dubia (Figure 2.8) was recovered from a slightly deeper depth than the 

previous record (10,787 m in Blankenship et al., 2006). These new data also provide a new 

Tongan Trench shallow record of 6,253 for H. dubia. However H. dubia have been 

recorded at abyssal depths in the Tonga Trench (6,000 m in Jamieson et al., 2011), and a 

recent genetic study revealed that H. dubia can be found as shallow as 5,469 m (Ritchie et 

al., 2015). Hirondellea dubia were found at relatively low abundance at the ~6,250 m site 

when compared to the high abundance detected at the ~10,800 m site. Such high 



28 
 

abundance in hadal depths is typical of Hirondellea species across many trenches (France 

et al., 1993; Perrone et al., 2002; Horton and Thurston, 2013).  

When Blankenship et al., (2006) sampled a similar depth of 10,782-10,787 m, the 

abundance of H. dubia varied between 0 and ~800 individuals, and samples from the 

present study showed a similar degree of variability between 68 and 1763 individuals. 

However on average more amphipods at ~10,800 m were recovered in the present study 

than by Blankenship et al., (2006). Due to the high variability in abundance, it is difficult to 

determine whether the low number recorded in Blankenship et al., (2006) is 

representative of the H. dubia numbers at this depth. However our sampling techniques 

varied with regards to trap heights off the sea floor and size and shape of the traps 

deployed, therefore abundance data may not be comparable. The size structure, sex 

ratios, and population dynamics of this species are investigated further in Chapter 3 of 

this thesis.   

 
Figure 2.8: Hirondellea dubia recovered from 10,807 m (Dive number 2-3, NIWA Catalog Number 92767). (A) Female. 
(B) Male 

Eurethenes gryllus (Figure 2.9) was captured at the 6,250 m depth by the large trap 

deployed by the Shinkai 6500, and by the traps attached to the sediment sampling-

camera lander. No specimens were captured at the ~10,800 m depth, which is consistent 

with the findings of Blankenship et al., (2006). The 6,256 m depth is within the known 

range of E. gryllus, however it does provide a new depth limit for the Tonga Trench albeit 

only by a few metres (Blankenship et al., (2006) reported the species at 6,252 m). 
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The sizes of recovered E. gryllus ranged from a juvenile at 25.4 mm to a small female 62.2 

mm in length, and all of the individuals recovered would be considered medium to small-

sized based on the analysis of size structure by Ingram and Hessler (1987). Furthermore, 

all the E. gryllus were immature instars. The traps in the present study were not deployed 

to heights greater than 1.8 m off the seafloor, however the size and immaturity of 

individuals caught is consistent with past findings of E. gryllus, where there is an increase 

in body size with increasing height off the sea floor. In this species, the adults become 

more pelagic indicating some degree of ontogenetic structuring (Ingram and Hessler, 

1983; Christiansen et al., 1990; Jamieson et al., 2011). However, because the traps were 

only deployed to one depth off the sea floor (1.8m on the sediment sampling-camera 

lander), future study would need to compare traps across multiple heights off the sea 

floor to fully examine this vertical stratification.  

The ratio of sexes in recovered E. gryllus did not significantly differ from 1:1 for  (χ2 (1,94) = 

0.17, p = 0.680). This result is not surprising for an immature population of amphipods, as 

Thurston et al. (2002) stated that deviation from a 1:1 ratio is likely connected to 

reproductive behaviour, which we would not expect from an immature population of 

amphipods. This ratio is consistent with those detected in past studies at this depth in the 

Tonga Trench (Blankenship et al., 2006), and Kermadec Trench (Jamieson et al., 2011). 

Eurethenes gryllus was the only species to be captured by the larger trap deployed by the 

Shinkai 6500, and this was most likely due to the large mesh size (11 mm), providing a 

means of escape for smaller scavenging amphipods. In addition, the trap was only 

deployed for less than 3 hours on the seafloor due to limitations of the Shinkai 6500, and 

the amount of time deployed may not have been long enough to attract the larger bait 

attending scavengers as previously suggested also for A. gigantea (Jamieson et al., 2011). 

Eurethenes gryllus is a cold water stenotherm that is distributed to shallower waters in 

higher latitudes and at greater depths in lower latitudes (Thurston et al., 2002). The Tonga 

and Kermadec trenches are highly connected and the difference in temperature between 

the trenches is negligible (Beliaev and Brueggeman, 1989), however the distribution of E. 
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gryllus is restricted to ~6,000 m in the Kermadec Trench (Jamieson et al., 2011). The 

difference (~250 m) in the vertical distribution of E. gryllus between the trenches 

somewhat contradicts the theory of stenothermic driven distribution. The Peru-Chile 

Trench is approximately 0.75 0C warmer than the Kermadec Trench at comprable depths, 

however E. gryllus was found there at 8,074 m in the Peru-Chile Trench, almost ~2,000 m 

greater than in the Kermedec Trench (Fujii et al., 2013). The distribution of E. gryllus could 

be driven by environmental conditions as well as temperature. 

 

Figure 2.9: Eurythenes gryllus recovered from 6,253 m (Dive number 1-2, NIWA Catalog Number 92772). (A) Female. (B) 
Male 

The unkown Alicellid species (Figure 2.10) was the most abundant species captured at 

the ~6,250 site, but was not found at the deeper site. The species ranged in size from a 

7.5 mm juvenile, to a 23.5 mm male, and the ratio of males to females did not significantly 

differ from 1:1 (χ2 (1, 113) = 0.717, p = 0.397). Although it could not be identified beyond 

the family level during the course of the present study, this species most closely 

resembled a species of Paracella.  Several species of this genus were recorded in the 

neighbouring Kermadec Trench (Jamieson et al., 2011), and the size range of specimens 

found in the present study falls within the known size range of Paracella species (2-23 

mm, Shulenberger and Hessler, 1974; Barnard and Shulenberger, 1976; Thurston, 1979). If 

this species is indeed a Paracella, then the collection at ~6,250 would slightly extend the 

known depth record by ~250 m in the Kermadec Trench (Jamieson et al., 2011). This 

difference in depth may discredit the hypothesis that the unknown Alicellid is a Paracella 

species, however other benthopelagic scavengers such as E. gryllus are shown here to 

exist 250 m deeper in the Tonga Trench (Jamieson et al., 2011; Present study). 
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Figure 2.10: Alicellid species recovered from 6,256 m (Dive number 1-1, NIWA Catalog Number 92774). (A) Female. (B) 
Male 

The unidentified gammarid species (Figure 2.11) was recovered in both deployments to 

the ~6250 m depth. The species displayed very little range in size from 8.6 mm to 9.5 mm. 

Attempts to sex the species was impaired by the small body size, the extreme dorsal 

curvature and a rigid and brittle exterior. With further investigation the species might be 

classified as Uristes chastaini, which is known from depths of 7,349 – 9,274 m in the 

Kermadec Trench (Blankenship-Williams and Levin, 2009). Although the sampling depth in 

the present study was ~1,000 m shallower, this gammarid shares some morphological 

characteristics with U. chastaini. In addition, Blankenship et al. (2006) noted that U. 

chastaini was only found in samples that also recovered H. dubia and B. schellenbergi, 

which is consistent with the findings of the present study, although any significance of this 

pattern remains unclear. However, contrary to the findings of the present study, at each 

depth U. chastaini were recovered in the Kermadec Trench several individuals were 

ovigerous females (Blankenship et al., 2006).  
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Figure 2.11: Examples of the unidentified gammarid species recovered from 6,256 m (Dive number 1-1, NIWA Catalog 
Number 92774). 

 

2.3.2 Assemblage observations 

There is a clear relationship of decreasing diversity and increasing abundance with depth 

in the Tonga Trench, as has been previously observed in the hadal environment (Wolff, 

1960; Beliaev and Brueggeman, 1989). Amphipods completely dominated the bait 

attending scavenging fauna at both depths sampled during the present study, and were 

particularly abundant in the deeper depth of the trench, a finding consistent with many 

hadal studies (Wolff, 1960; Perrone et al., 2002; Thurston et al., 2002; Eustace et al., 

2013). However these relationships may not be representative of the true hadal 

assemblage composition as the methodology used may have excluded scavengers that 

were not trapped and recovered during the deployment (Hessler et al., 1978; Ingram and 

Hessler 1983; Blankenship et al., 2006).  

The diversity of scavenging amphipod species found in the present study was comparable 

to that of past studies in the Tonga Trench. For example, Blankenship et al. (2006) 

detected 5 amphipod species at ~6250m, a number close to the 6 species reported here 

at this depth. The assemblages of species detected in the present study are also 

comparable to sampling efforts conducted in the Kermadec Trench, sharing species such 

B. schellenbergi, H. dubia, and an alicellid, possibly a member of the Paracella genus 

(Blankenship et al., 2006; Jamieson et al., 2009a; Fujii et al., 2013). The similarity in 
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composition between the Tonga and Kermadec Trenches supports the characterization of 

these adjacent trenches as a single biological province with a similar hadal community 

(Vinogradova, 1979; Blankenship et al., 2006). This proposition is further supported by 

genetic analysis of H. dubia, which showed that individuals between these two trenches 

were more similar than those found in the New Hebrides or Mariana Trenches (Ritchie et 

al., 2015). However, there are variations between the Tonga and Kermadec trenches, such 

as the oligotrophic waters over the Tonga Trench and the shifts in vertical ranges of 

scavengers like E. gryllus (Longhurst et al., 1995). 

The Tonga Trench contains several cosmopolitan trench species such as E. gryllus and B. 

schellenbergi, while the genus Hirondellea is also widespread, generally dominating the 

deepest ranges of trenches around the world (Horton and Thurston, 2013; Fujii et al., 

2013; Eustace et al., 2013; Kilgallen, 2015; Ritchie et al., 2015). The present study 

contributes to the expansion of the vertical and geographical range of Hirondellea dubia.  

A recent genetic study on the superfamily Lysianassoidea revealed H. dubia occurred at 

depths as shallow as 5,369 m (Ritchie et al., 2015), making H. dubia’s known vertical range 

approximately 5.5 km, which is substantially larger than most hadal amphipods (Hessler et 

al., 1978; Ingram and Hessler 1983; Beliaev and Brueggeman, 1989).The same genetic 

analysis noted H. dubia in the New Hebrides and Mariana Trenches albeit in low numbers 

(Ritchie et al., 2015). Although no H. dubia have yet been detected in the Izu Bonin or 

Japan Trenches, H. dubia is distributed across a number of the trenches in the western 

Pacific Ocean. 

The scavenging amphipod assemblage of the Peru-Chile Trench in the eastern Pacific 

Ocean is similar to the Tonga Trench in that it contains several cosmopolitan shallow 

trench species such as E. gryllus and members of the Paracella genus, and also a high 

abundance of the Hirondellea genus in the greater depths of the trench (Fujii et al., 2013). 

However, in the Peru-Chile Trench E. gryllus persists throughout the trench and the 

Hirondellea genus is represented by three species H. sonne, H. thurstoni, and H. wagneri 

(Fujii et al., 2013; Kilgallen, 2015). Hydrostatic pressure and organic matter distribution 
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are considered key drivers in defining the composition of hadal scavenger communities 

(Wolff, 1960; Beliaev and Brueggeman, 1989). In the Peru-Chile Trench, temperature and 

organic matter quantity are higher than in the Tonga Trench (Longhurst et al., 1995; 

Daneri et al., 2000; Blankenship and Levin 2007; Fujii et al., 2013), and these factors may 

have driven the differences in the scavenging amphipod assemblage composition and 

structure between the trenches (Fujii et al., 2013).   

 

3.3.3 Conclusions 

The composition of the amphipod assemblage found in the present study was similar to 

past sampling efforts in the Tonga Trench. There were also similarities to the adjacent 

Kermadec Trench (Blankenship et al., 2006; Jamieson et al., 2011) and more limited 

similarities to the Peru-Chile Trench (Fujii et al., 2013). The present study extends the 

known range of H. dubia to 10,807 m depth, and provides new records of A. gigantea, E. 

gryllus, and H. dubia vertical ranges in the Tongan Trench. In addition this is the first 

recorded instance of A. gigantea in the Tonga Trench, and the second study to record A. 

gigantea in the south Pacific, as well as the second to record the species at hadal depths.  
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Chapter 3: Population structure of 

Hirondellea dubia from the Tonga Trench, 

and analysis of proxies for total length  

3.1 Introduction 

Scavenging amphipods are a defining element of hadal communities (Wolff, 1960; Hessler 

et al., 1978; Ingram and Hessler, 1983), where they act as key prey items to predators in 

the shallower depths of the hadal zone (Jamieson et al., 2009a), and dominate the 

scavenging community at carrion falls, particularly in the greater depths of a trench. 

Amphipods have been recovered by almost every instance of sampling by baited traps at 

hadal depths (Hessler et al., 1978; Blankenship et al., 2006; Eustace et al., 2013), and they 

are frequently recorded by baited cameras and trawl sampling efforts (Wolff, 1960; 

Jamieson et al., 2009b; Gallo et al., 2015). The scavenging amphipods rapidly detect, 

intercept, and consume carrion, and they attend bait in exceptionally high abundance. 

The success of amphipods at the deeper hadal depths has been attributed to their 

adaptations to hydrostatic pressure and limited supply of organic matter in the trench 

environment (Jamieson et al., 2010). 

Jamieson (2015) described the criteria that amphipods must meet to be prolific in this 

environment. These are primarily the ability to effectively extract resources from carrion 

falls and to survive large periods of starvation, however scavengers must also be capable 

of supplementing their diet between carrion fall events.  In the past hadal amphipods 

were thought to rely on necrophagy for sustenance (De Broyer et al, 2004), however it is 

likely that they also undertake detritivory, carnivory, and even cannibalism (Blankenship 

and Levin, 2007; Jamieson et al., 2010). The ability to supplement their diet also allows 
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species to partition food sources in order to co-exist at similar depths in the organic 

matter limited trenches (Blankenship et al., 2007). 

Hadal amphipods have adapted to a particular range of hydrostatic pressures and 85% of 

all known hadal fauna have a depth range that is less than 3 km (Beliaev & Brueggeman, 

1989; Blankenship et al., 2006). Oceanic trenches commonly exceed 3 km of depth range 

(for example the hadal zone in the Tonga Trench has a vertical range of ~5 km), and 

therefore trench amphipod assemblages are likely to be vertically stratified (Beliaev & 

Brueggeman, 1989, Blankenship et al., 2006). In the past, amphipods have often been 

sampled from a single depth, and so population structure has not been comprehensively 

analyzed in many trenches (Hessler et al., 1978; Thurston et al., 2002; Perrone et al., 

2002), however efforts to sample across depths have increased (Blankenship et al., 2006; 

Eustace et al., 2013; Jamieson, 2015). Vertical stratification of several amphipod species 

were recorded in the Tonga and Kermedec Trench (Blankenship et al., 2006), stratification 

was also detected between lifestages of Hirondellea dubia (Dahl, 1959) and 

Bathycallisoma schellenbergi (formerly Scopelocheirus schellenbergi) (Britein and 

Vinogradova, 1958). This vertical ontogenetic stratification was previously unknown in the 

hadal environment. 

The genus Hirondellea is found throughout the world’s ocean trenches (Hessler et al 1978; 

Blankenship et. al., 2006; Eustace et. al., 2013; Horton and Thurston, 2013; Kilgallen, 

2015). The genus often dominates assemblages in the deepest sections of trenches, 

occurring at baited traps, and has been visualized by cameras in extremely high 

abundance (Hessler et al., 1978; Blankenship et al., 2006). Hirondellea dubia inhabits 

depths from 7,349-10,787 m in the Tonga Trench and is the most adundant species caught 

in traps deeper than 7,500 m (Blankenship et al., 2006). Individuals caught in the upper 

portion of the depth range were almost exclusively early instars, and this may have been 

driven by a combination of hydrostatic pressure and distribution of food sources 

(Blankenship et al., 2006; Eustace et al., 2013).  More analyses of population and 
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assemblage structure between depths are needed to gain a better understanding of these 

relationships and the variables that drive them. 

Analysis of amphipod size structure between depths has suffered in the past due to 

inconsistencies in methodology (Chapelle, 1995; Thurston et al., 2002). Variations in life-

history trait measurement, trap design, trap position above the seafloor, and amphipod 

length measurements are found across many hadal scavenger studies (Hessler et al., 

1978; Ingram and Hessler,1983; Legeżyńska et al., 2000). Acquiring an accurate total 

length measurement from amphipods is challenging due to dorsal curvature, because 

dorsal segments may telescope into each other. Dorsal curvature can account for more 

than 10 % of the variation in length between amphipods (Charniaux-Cotton, 1957; 

Chapelle, 1995). This variation can be bypassed by measuring a portion of the amphipod 

as a proxy in place of measuring along the entire dorsal aspect (Chapelle, 1995), and a 

conspicuous proxy also allows for more individuals to be measured if a portion of the 

specimens are damaged, hence, giving a larger samples size per effort. A variety of proxies 

have been used in amphipods in the past (Hessler et al., 1978; Thurston et al., 2002), 

however none have been comprehensively examined for H. dubia, and a consensus for a 

single proxy to be used in hadal amphipods would be helpful in making future research in 

this area comparable. 

In October of 2013 the YOK 13-10 voyage was part of a series of trench investigations 

under the QUELLE (Quest for the Limit of Life) round-the-world expedition conducted by 

the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The YOK13-10 

voyage aimed to analyse benthic life within the Tonga Trench among other goals, and thus 

baited traps were deployed to the axis of the trench (Horizon Deep) and to the edge of 

the Trench. The species composition of the amphipods in these samples were described in 

Chapter 2 of this thesis.  In this chapter I analyse the size structure of H. dubia at these 

two depths. Vertical ontogenetic structuring of H. dubia in the Tonga Trench has been 

examined between depths of 7,349 m and 10,782 m (Blankenship et al., 2006), and the 

present study expands this analysis to the edges of the known range of H. dubia to depths 
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of ~6,250 m and ~10,800 m. The secondary objective of this chapter is the analysis and 

identification of a suitable proxy for total length of H. dubia. 
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3.2  Materials & Methods 

3.2.1 Study site, sample collection and identification 

For details of the study site and methods concerning the collection and identification of H. 

dubia see Chapter 2 (section 2.2). 

Hirondellea dubia individuals from all samples were sexed, imaged, and then analysed 

morphometrically. When the numbers of individuals in a sample exceeded 450, a random 

subset of 450 individuals were processed as outlined below. In samples that contained 

fewer than 450 individuals, all the individuals were processed. 

3.2.1 Determining sex  

Individuals were placed in a dish of 80% ethanol and examined under a stereoscopic 

microscope (LEICA MZ 8, Germany). Small dissected parts were examined at higher 

magnification under a compound microscope (Carl Zeiss, Germany). Sex and life stage 

were identified using criteria from Hessler et al. (1978), which targeted the scavenging 

amphipod Hirondellea gigas, however similar criteria are used to sex many gammaridean 

amphipods (Blankenship et al 2006; Eustace et. al., 2013). Each H. dubia was manipulated 

using tweezers under the microscope in order to examine genitalia. Hirondellea dubia 

were separated into 7 distinct life stages based on as the criteria shown in Table 3.1 

(Hessler et al., 1978, Blankenship et al., 2006; Eustace et al., 2013). The number 

associated with each lifestage represents the stage of development, and is not 

representative of age and cannot be compared across sexes (i.e. male 3 is the fully mature 

male, while female 3 is still immature).  
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Table 3.1: Criteria for assigning lifestage to H. dubia individuals. Juvenile lifestages are highlighted red, male lifestages 
in green, and female lifestages in blue. 

 

Males were identified when penile papillae were found on the ventral surface between 

the 7th pereonite and the 1st pleonite (Figure 3.1). Males were then further divided into 

M2 and M3 by detecting calceoli on the antennae (Figure 3.1).  

Sex/life 

stage 

Lifestage 

code 

Description 

Juvenile J No visible papillae or oöstegites 

Male♂ 2 M2 Penile papillae present, calceoli absent from 

antenna 

Male♂ 3 M3 Penile papillae present, calceoli present, slightly 

elongated second antenna 

Female♀ 2 F2 Short oöstegites trace can be found on 

pereiopods 3-5 

Female♀ 3 F3 Small oöstegites protrude from pereiopods 3-5 

Female♀ 3a F3a Oöstegites protrude out over the abdomen 

Female♀ 4 F4 Large oöstegites possessing setae 
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Figure 3.1: External morphology used to distinguish male H. dubia adapted from Hessler et al. 1978. (A) Ventral aspect 
of male, penal papillae are found between the pereonite 7 and pleonite 1 somites. (B) Second antenna of M3 amphipod, 
calceoli observed at joints of antenna segments.    

Oöstegites on pereopods 3-5 were used to classify an amphipod as female. Females were 

further split into F2, F3, F3a, and F4 based on the size and structure of the oöstegites 

(Table 3.1, Figure 3.2). In smaller individuals, pereiopods were amputated and examined 

at higher magnification under a compound microscope to identify the size of the 

oöstegites. 

A B 
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Figure 3.2: External morphology used to distinguish female H. dubia adapted from Hessler et al. 1978. (A, B, C, D) Refer 
to Table 3.1 for detailed description of these female lifestages. 

Juveniles were classified when an individual was too small to be sexed or when genitalia 

were indistinguishable. The lifestages of M1 and F1 were included under the classification 

of juveniles, and therefore calculating growth rates between the first and second stage of 

each sex was not possible.  

When individuals were damaged in areas that were important for sexual identification, an 

attempt was made to search for other evidence that indicated the sex of the individual. 

For example, the presence of calceoli on the antenna would be sufficient to classify the 

A: F2  B: F3  

C: F3a  D: F4  
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amphipod as M3 even if the penile papillae were damaged. Such individuals were always 

marked as damaged so that they could be removed later from data analysis if this damage 

caused significant inaccuracy. If male or female parts were detected then individuals were 

classified as that sex immediately and no further investigation was made into examining 

parts associated with the opposite sex. Consequently, inter-sex individuals may have been 

overlooked. 

3.2.2 Imaging 

Images were captured using either a U3CMOS series C-mount USB3.0 CMOS camera 

(ProSciTech, Australia) with C-mount 0.50X camera adapter or a ODCM0310C series C-

Mount USB2.0 CMOS camera (ProSciTech, Australia) with C-mount 0.50X adjustable 

camera adapter. 

A photograph of a cm scale was taken at the same standard magnification used for all 

photographs (x8 zoom), to calibrate morphometric measurements (Figure 3.3). All 

Individuals were laid on their side in a black dish filled with ethanol (80%) to make 

distinctions between segments easier during measurements (Figure 3.3). The limbs were 

extended before each image was taken. Several images at differing planes of focus were 

taken of each individual to obtain quality images of dorsal plate distinctions and the 

details of the limbs.  
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Figure 3.3: Example of H. dubia image alongside a calibrating scale. (A) Male amphipod collected from ~10,800 m. (B) 
Image of scale under 32x zoom. 

3.2.3 Morphometry 

All morphometric analyses were conducted using the image analysis software ImageJ 1.49 

(Abramoff et al., 2002). H. dubia individuals were measured for total length.  

Measurements were made along the dorsal aspect, separately recording lengths for; the 

head, pereonite 1, pereonite 2 to 7, the pleosome, the urosome, and these were then 

combined to create a total length value (Figure 3.4). Each measurement was conducted 

using the segmented straight line tool in ImageJ. Typically this composed of a single 

measurement from the start of the segment to the end, however for larger segments the 

line was broken up into a series of connected lines. Telson length was also recorded when 

possible, however because the telson generally contributes only marginally to total length 

its exclusion from total length was presumed to be negligible (Sainte Marie, 1992; 

Chapelle, 1995). 

A B 
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Figure 3.4: Anatomical diagram of H. dubia. Measured segments are highlighted by dark orange and bright yellow 
(alternating for contrast), pereonites 1-7 are notated with roman numerals.   

 

The segments measured are displayed in Figure 3.4;   

 Head: From base of antenna 1 to anterior part of pereonite 1 

 Pereonite 1:  From anterior to posterior margins of pereonite 1 

 Pereonite 2-7: From pereonite 2 to 7 in increments of 2 pereonites. i.e., 2-3,4-5,6-

7.  

 Pleosome: The three pleonites of the pleosome were measured separately then 

combined 

 Urosome: All pleonites in urosome in one straight line from the anterior margin of 

pleonite 4 to the base of the telson  

 Telson: From base to tip 
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These segments and the method by which they were measured were chosen to maximise 

the accuracy of the total length estimate while optimizing the effort to measure. This 

approach meant using as few measurements as possible while still maintaining a high 

level of precision. These segments were also chosen because they were easy to observe in 

the small H. dubia and would therefore make good proxies for future studies if any of the 

segments provided a close correlation to total length. When individuals were damaged or 

missing entire segments, all possible measurements were still made, however it was 

noted that the individual was damaged so that it could be excluded from the data analysis 

at a later time. 

Curvature of the dorsal aspect varied amoung individuals, and this reticulation was not 

possible to correct or keep consistent in the preserved amphipods without causing 

damage. In order to control for any exaggeration or variation in total length 

measurements caused by dorsal curvature, four categories ranging from 1- 4 were 

recorded. These categories were assigned to amphipods based on an angle calculated 

using imagej 1.49 (Abramoff et al 2002) from the 5th pereon between the head and the 

base of the telson( Figure 3.5). An angle of 200-1600 was categorised into curvature rating 

1; 160-120°, 120-90°, and < 90° were rated 2, 3, and 4 respectively (Figure 3.5).  

 
Figure 3.5: Examples of curvature recorded in H. dubia. (A) 91.18

o
 corresponds to a curvature rating of 3. (B) 142.27

o
 

corresponds to a curvature rating of 2.   
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Baited trap height off the seafloor varied between 0 m, 1.5 m, and 1.8 m (see section 

2.2.2). To investigate bias due to trap height off sea floor, the differences in amphipod 

size and abundance caught between traps of varying height were examined.  

3.2.4 Statistical analyses 

Statistical analyses were conducted using the IBM® SPSS® statistics software (version 22.0, 

2015), and all results were assessed at the 95% confidence level unless otherwise 

specified. Between-groups factorial Analysis of Variance (ANOVA) and Analysis of 

Covariance (ANCOVA) were used to compare means in all cases when assumptions of 

normality and homogeneity were met. In some cases normality was only approaching 

significance, however after evaluating the normal Q-Q plots these cases were considered 

acceptable for parametric analysis. 

A Pearson’s chi square test of contingencies was used to evaluate sex composition. The 

test used the whole dataset of sexed individuals transformed into percentage data that 

was calculated per depth/site. Female and male lifestages were each pooled into two 

groups called females and males, respectively, and sexual composition was then 

compared between the samples from depths of 6,250 m and 10,800 m.   

One way between groups ANOVA were conducted to assess if curvature or trap height 

impacted the variability of total length, and a Tukey’s HSD post hoc analysis was run to 

detect the nature of this relationship.  If curvature or trap height had a significant effect 

on amphipod total length it was included as a covariate of the size structure analysis of H. 

dubia. 

Factorial between-groups ANCOVA was used to analyse H. dubia size structure between 

the lifestages and between the sites at 6,250 m and 10,800 m depths. The ANCOVA was 

run with covariates of curvature and trap height if there was significant influence on total 

length. A simple effects analysis was then performed by running an ANOVA with split file 

groups based on lifestage. The ANOVA assessed how depth impacted the variability of 

total length in each lifestage. This test was interpreted at the 10% significance level to 
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control for the inflation of family-wise error rates that occurs when conducting multiple 

comparisons on the same set of data. 

A series of Pearson’s partial correlation tests were run examining correlation between 

each of the segments and total length. The best proxy was the segment that was most 

descriptive of the size structure patterns detected by total length.  In addition, ratios of 

each segment to total length were created to compare the proportion that each segment 

contributed to the total length. One way between groups ANOVA were run between sex 

and lifestage to detect variation in proxies due to sexual dimorphism. Post hoc analysis 

with Tukey HSD were run to detect the nature of these relationships. 
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3.3 Results 

Of the 3247 Hirondellea dubia collected, 1471 individuals were sexed, imaged, and then 

morphometrically analysed (Table 3.2). Of these 72 were collected from the ~6,250 m 

depth, and 1399 from the ~10,800 m depth. Specimens that displayed characters 

intermediate between F3 and F4 were designated F3a.  No brooding females or inter-sex 

amphipods were captured. It was not possible to determine the sex of the juveniles. 

Table 3.2: Quantity of morphometricly analysed H. dubia from depths and lifestages/sexes 
 

Sex ~6,250 m ~10,800 m Total 

Female 

F4 0 40 40 

F3a 2 140 142 

F3 0 288 288 

F2 4 420 424 

Total 6 888 892 

Juvenile J 65 18 83 

Male 

M2 1 383 384 

M3 0 110 110 

Total 1 493 494 

Total  72 1399 1471 

3.3.1 Sex and lifestage composition  

Juveniles made up 90% of the population at ~6,250 m compared to 1% at the ~10,800 m 

depth (Figure 3.6). Overall the sexual composition was significantly different between 

depths, (χ2 2,200 = 1018.7, p <0.001), with 80% of the variability in composition being 

described by depth (Cramer’s Ѵ = 0.82). At both depths females were more abundant than 

males. At the ~6,250 m depth, females and males made up 8% and 2% respectively, while 
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at ~10,800 m depth these percentages were higher, at 63% and 36% respectively (Figure 

3.6). Generally the younger lifestages (F2, J, and M2) made up a larger proportion of 

individuals at both depths, with 97% at ~6,250 m and 59% at ~10,800 m (Figure 3.6). 

Furthermore, no fully mature lifestages (M3 & F4) were recorded from ~6,250 m depth. 

 
Figure 3.6: Frequency in percentage of H. dubia sexes and Lifestages across two depths, ~6,250 m (n = 72) and ~10,800 
m (n = 1399). 

 

3.3.2 Size structure analysis 

3.3.2.1 Curvature 

Amphipods with higher curvature ratings had significantly higher total lengths (Figure 3.7), 

(F 3,1173 = 46.563, p < 0.001). Individuals with curvature ratings of 1 ( = 13.38, SD = 2.27) 

and 2 ( = 13.98, SD = 2.54) had a significantly lower mean total length than those with 

curvature ratings 3 ( = 15.57, SD = 2.68) and 4 ( = 16.14, SD = 3.81). Based on this result, 

the effect of curvature was considered to be an important influence to include as a 

covariate in all analyses examining total length. 

Female Male 

Female Male Juvenile 

Juvenile 
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Figure 3.7: The effect of body curvature on total length of H. dubia from all depths and lifestages .A Curvature rating of 
1 corresponds to least curved, 4 to the greatest curvature. Error bars are standard error. Lowercase letters that are 
different indicate statistically significant differences at p < 0.05. 

 3.3.2.2 Trap height 

 In order to explore bias due to trap height off the sea floor, the possible effect between 

samples collected at ~10,800 m was examined (at ~6,250 m only 1.8 m trap  height was 

used). Traps set 0 m off the seafloor caught significantly larger amphipods (  = 15.8mm) 

than those set at 1.5 (  = 14.14 mm) and 1.8 m (  = 15.11 mm) (F 2,1130 = 39.487, p < 

0.001) (Figure 3.8). The abundance of H. dubia also varied significantly between trap 

heights (F 2,10 = 6.966, p < 0.018). In traps at 0 m the mean abundance per trap was much 

greater than the higher 1.5 m and 1.8 m trap heights (  = 690 vs 95 and 171, respectively). 

The mean abundances in the upper traps did not vary significantly from each other. The 

effect of trap height was considered to be an important influence to include as a covariate 

in all analyses examining total length. 
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Figure 3.8: Average lengths of H. dubia at trap heights at 10,800 m; A: Frequency bar graphs comparing trap heights 0 
m (blue), 1.5 m (green), and 1.8 m (red). B: Error bars used are standard deviation, Lowercase letters that are different 
indicate statistically significant differences at p < 0.05.  

3.3.2.3 Size structure between depths and lifestages 

 Hirondellea dubia ranged in size from 4.8 mm for the smallest juvenile, to 22.4 mm for 

adults, with males reaching 21.7 mm and females reaching 22.4 mm length (Table 3.3).  

 

A 

B 

a 

c 

b 
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Table 3.3: Length (mm) data for each lifestage of H. dubia at depths of 6,250 m and 10,800 m 

Depth 
Length 

(mm) 
F4 F3a F3 F2 J M2 M3 

6,250 m 

Min 

na 

14.6 

na 

10.6 4.8 

11.1 na Mean 15.1 11.3 6.2 

Max 15.7 12.2 7.8 

10,800 m 

Min 15 12.1 11.7 8.7 9.1 9.2 11.7 

Mean 18.3 17.2 16.1 13.8 10.1 14.3 16.5 

Max 22 22.4 22.4 19 11.1 21.7 19.9 

 

The total lengths of H. dubia at ~10,800 m depth (  = 15.26) were significantly greater 

than at ~6,250 m (  = 6.98), (F 1,1164 = 16.2, p < 0.001) (Figure 3.9). Total length also varied 

significantly among lifestages, (F 6,1164 =80.549, p < 0.001), each lifestage was distinct in 

size from the lifestage that came before it, for example, F3 and M3 were significantly 

larger than F2 and M2 respectively. In addition, the mean total length of lifestages M2 and 

F2 were not significantly different from each other. Similarly, the male M3 was not distinct 

from female lifestages F3 and F3a (Figure 3.9; Table 3.3).  

The change in average size between depths was significantly greater in juveniles (J) and 

M2 than in the other lifestages. This significant interaction (F 3,1164 = 2.968, p = 0.03), was 

further examined by a simple effects analysis to determine the nature of this relationship. 

The combination of depth and lifestage significantly influenced the between-depth 

difference between some of the lifestages; J (F 1,1164 = 70.155, p < 0.01),  and M2 (F 1,1164 = 

6.776, p < 0.01) were significantly smaller in the ~6,250 m compared to the ~10,800 m 

depth, relative to differences between depths seen in lifestages F2 and F3a.  

Female growth rates were analysed from F2-F4. Juveniles could not be sexed in the 

present study and were therefore excluded from sex-based growth rates. The rate of 

growth in females appears log-linear as there is a decrease in percentage growth with 
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increasing developmental stage. Female growth decreased from a 16% increase between 

stage 2-3 to a 6% increase in total length between stages 3-5 (Figure 3.9); male growth 

rate was not projected given that only 2 stages in male growth could be distinguished in 

the present. 

 

 
Figure 3.9:  Profile plot of H. dubia size structure across depths and lifestages. The adjusted mean total length on the y 
axis is an estimated value based on the influence of covariates. Covariates appearing in the graph are evaluated at the 
following values: Curve rating (1-4) = 2.591, trapheight(m) = 0.850. Means of lifestages absent from the ~6,250 m site 
were non-estimable and were not plotted. Error bars are standard error. 

 

 3.3.3 Proxy Analysis 

3.3.3.1 Total length correlation  

The diameter of the 4th coxa has been used previously as a proxy for total length 

(Blankenship et al., 2006; Eusstace et al., 2013), however the 4th coxa could not be 

Female Male 
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measured as a proxy in the present study because it was often damaged and difficult to 

photograph with clarity.  

The combined depth data indicated that the strength of the correlation between segment 

and total length increased with a segment’s average length. Consequently the two longest 

segments, pereonite 2-7 and pleosome, were the most descriptive of total length (Table 

3.4). These correlations did not vary with depths, however the segments did vary 

significantly in relative size between sexes (see section 3.3.3.2).       

The three strongest correlating segments, pereonite 1, pereonite 2-7, and pleosome, were 

examined more closely to evaluate their efficiency as proxies by running the same factorial 

between groups ANCOVA used to analyse differences in lifestage size structure of H. dubia 

between depths (see section 3.2.4 and Figure 3.9).   

Table 3.4: Correlations between H. dubia segments and total length in mm  

 Head Pereonite 1 Pereonite 2-7 Pleosome Urosome 

Person’s 

correlation 
0.819 0.851 0.953 0.902 0.819 

p Value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

N 1177 1177 1177 1177 1177 

 

All of the proxies showed results that varied to some degree from the original analysis on 

size structure (Compare Figure 3.10 A, B, and C, with Figure 3.9). Pereonite 1 most closely 

resembled the pattern in the original analysis with length significantly varying between 

depth (F 1, 1164 = 10.657, p = 0.001) and lifestage (F 6, 1164 = 44.444, p < 0.001), the only 

difference being the interactive effect of depth and lifestage, which was not significant (F 3, 

1164 = 1.959, p = 0.118). A simple effects analysis on the pereonite 1 revealed the same 

pattern as the original analysis, with J and M2 showing the largest difference in size 

between depths and all life stages at the deep site significantly larger than at the shallow 
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site (Figure 3.10A). Pereonite 2-7 varied from the original analysis substantially. Depth had 

no significant effect on pereonite 2-7 length (F 1, 1164 = 3.062, p = 0.080) (Figure 3.10B). 

Pleosome length varied significantly with depth and lifestage, (F 1, 1164 = 21.58, p < 0.001) 

and (F 6, 1164 = 53.9, p < 0.001) respectively. The key difference between the pleosome and 

total length analysis was the patterns extracted from the simple effects analysis.  Female 

lifestage F3a demonstrated the largest difference in size between depths (F3a, F = 22.808; 

F2, F = 6.709) (Figure 3.10C). 

Curvature had a significant influence on total length (Figure 3.9) and all three of the 

proxies examined here: pereonite 1 (F 3, 1173 = 6.662, p < 0.001); pereonite 2-7 (F 3, 1173 = 

85.541, p < 0.001); and pleosome (F 3, 1173 = 19.766, p < 0.001). In all cases, increasing 

curvature generally correlated to increasing length, however the strength of this 

relationship varied between segments. 10% of the variability in total length could be 

attributed to curvature, (Eta-Squared,  N2 = 0.106), which is a medium-large effect (Cohen, 

2013). In pereonite 1, this variation was at its smallest, only 1% of the variability in total 

length could be attributed to curvature, (Eta-Squared, N2 = 0.017), which is a small effect 

(Cohen, 2013). There was a large effect of calculated body length with Pereonite 2-7 

where almost 20% of the variability was associated with curvature, (Eta-Squared, N2 = 

0.179) (Cohen, 2013). Finally the pleosome demonstrated a medium amount of variability 

caused by curvature, (Eta-Squared, N2 = 0.048) (Cohen, 2013).  
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Figure 3.10: Profile plot of H. dubia size structure across depths and lifestages using potential proxies, mean segment 
length on all y axes is an estimated value based on influence of covariates. Covariates appearing in the model are 
evaluated at the following values: Curve rating (1-4) = 2.591, trapheight(m) = 0.850. Means of lifestages absent from the 
~6,250 m site were non-estimable and were not plotted. Error bars are standard error.  
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3.3.3.2 Total-length ratio comparisons across lifestages 

The segments of pereonite 2-7 and pleosome contributed the most to amphipod total 

length (Figure 3.11); however the relative proportion that each segment contributed to 

total length varied between sexes and lifestages.  

Head length made up a significantly greater proportion of total length in younger 

lifestages, (F 6,1170 = 5.929, p < 0.01) (Figure 3.11B). Juveniles (J) had a significantly higher 

ratio of head to total length than that of lifestages F3, F3a, F4, and M3. The lifestage F4 

had the lowest mean ratio, and was significantly smaller than the lifestages F2 and J.  

Pereonite 1 length made up a significantly greater proportion of total length in juveniles 

(J) than in any other lifestage, (F 6, 1170 = 9.361, p < 0.001; Figure 3.11C). The ratio of 

pereonite 1 to total lenght was statistically the same in all other lifestages (Figure 3.11C).  

In Figure 3.11(D and E) lifestages were pooled by sex because the proportion that 

pereonite 2-7 and the pleosome contributed to total length did not differ significantly 

within lifestages of female or males. Pereonite 2-7 length made up a significantly greater 

proportion of total length in females than in juveniles (F 2, 1174 = 10.733, p < 0.001; Figure 

3.11). Pleosome length made up a significantly greater proportion of total length in males 

than in females (F 2, 1174 = 20.193, p < 0.001; Figure 3.11).  

Urosome length made up a significantly different proportion of total length between 

lifestages, (F 6, 1170 = 4.686, p < 0.001). F3a had a significantly higher ratio of urosome to 

total length than that of the J and M2 lifestages, but no further significant difference was 

detected between any other lifestage. Figure 3.10 contains all the Tukey results for the 

head, pereonite 1, pereonite 2-7, and pleosome analysis, with significantly similar 

groupings are annotated with a shared lowercase letter.  
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Figure 3.11: Ratios of segments:total length across lifestages and sexes. Shades of blue represent female lifestages, red 
represents juveniles, and shades of green represent male lifestages. In D and E, lifestages are combined into groups 
based on sex. In B, C, D, E: Insert highlights in red the segment being compared to total length. The results of a Tukey 
pairwise analysis are displayed with lowercase letters signifying significantly distinct groups, all erorr bars are standard 
erorr. 
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3.4 Discussion  

3.4.1 Population structure 

The results of the present study support the current understanding that H. dubia exhibits 

ontogenetic vertical distribution. At the uppermost extent of H. dubia’s vertical range in 

the Tonga Trench (~6250 m), the proportion of juveniles was much greater than at 

~10,800 m. In addition, no fully mature lifestages (M3, F4) were found at the ~6,250 m 

depth, and the proportion of younger lifestages (F2, J, M2) was higher at both depths.  

Hadal amphipods have typically been collected from only one site or depth within a 

trench, and ontogenetic structuring has likely been overlooked (Hessler et al., 1978; 

Perrone et al., 2002; Thurston et al., 2002). More recently, studies sampling across a 

range of depths have revealed ontogenetic structuring in Hirondellea gigas, a 

necrophagous amphipod that inhabits depths exceeding 6,500 m in the Mariana Trench in 

the north east Pacific Ocean (Eustace et al., 2013). Ontogenetic vertical structuring has 

also previously been examined in H. dubia in the Tonga Trench (Blankenship et.al., 2006). 

The present study adds two more depths to the analysis of H. dubia population structure, 

and both of the new depths most likely represent the limits of H. dubia’s vertical range in 

the Tonga Trench and are therefore valuable in uncovering distribution patterns and the 

drivers behind them (Blankenship et al., 2006; Jamieson et al., 2011).  

A number of factors may be driving forces of ontogenetic structure in hadal depths: 

hydrostatic pressure, dissolved oxygen, salinity, temperature, and food availability are all 

environmental variables that can control distribution in marine fauna. Hydrostatic 

pressure has required significant adaptation for species to inhabit the deeper depths of 

the oceans especially in the hadal environment (Somero, 1992; Tamburri and Barry, 

1999). For example, amphipod metabolic rate slows down with increasing pressure/depth 

(Blankenship et al., 2006, Jamieson et al., 2010, Eustace et al., 2015). Hirondellea spp. are 

the only amphipods found at depths exceeding 9 km and their known vertical range now 

exceeds 4.5 km of depth, and this range is among the top 15 % largest of all hadal fauna, 

demonstrating the genus is well adapted to pressure (Beliaev & Brueggeman, 1989; 
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Blankenship et.al, 2006; Jamison et al., 2011). However, adaptation to hydrostatic 

pressure is common (Wolff, 1960; Somero, 1992; Jamieson et al., 2010), and pressure by 

itself has a greater impact on the distribution of shallow water organisms than on deep 

sea species (Beliaev & Brueggeman, 1989). This is because the relative change in pressure 

is much larger at the surface where a small distance can increase pressure by many orders 

of magnitude (Jamieson et al., 2010). H. dubia’s tolerance to a range of hydrostatic 

pressures in tandem with the presence of juveniles at both depths is a strong indicator 

that pressure alone does not drive ontogenetic structuring; instead a combination of 

pressure and other trench variables may be more likely (Blankenship et.al., 2006; Eustace 

et al., 2013). 

Circulating deep ocean water masses, such as the Lower Circumpolar Deep Water (LCDW) 

current, prevent the waters in hadal depths from becoming stagnant (Warren, 1981; 

Johnson, 1998; Siedler et al., 2004; Seibel and Drazen, 2007; Jamieson et al., 2010); the 

LCDW current thereby ensures that dissolved oxygen is not a limiting factor to Tongan 

Trench scavenging amphipods like H. dubia. Temperature usually decreases with 

increasing depth (Wolff, 1960), however this relationship changes at depths greater than 

4 km because temperature slowly rises with depth due to increasing pressure (adiabatic 

heating, Jamieson et al., 2010). A ~1° C increase in temperature from depths of ~6,250 to 

~10,800 has been observed in the Tonga Trench (Jamison et al., 2011; Fujii et al., 2013). 

Although changes in temperature impair the vertical distribution and migrations of deep 

sea biota (Danovaro et al., 2004), such an increase is small and is unlikely to be the lone 

driver of ontogenetic distribution patterns for H. dubia (Danovaro et al., 2004; Gibson et 

al., 2005).  

Below 4000 m, salinity near the seafloor generally remains constant at between 34-35 

PSU (Tyler, 1995), which is very similar to that of the abyssal plain depth. Consistent 

salinity levels make it unlikely that salinity strongly influences vertical distribution of 

amphipods at hadal depths (Beliaev & Brueggeman, 1989; Tyler, 1995).  
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All of the described environmental variables are relatively stable in the hadal 

environment. In addition, ontogenetic vertical structuring appears to be a pattern 

exclusive to scavenging benthopelagic amphipods (Blankenship et al., 2006; Jamieson et 

al., 2010). The lack of this structuring in non-benthopelagic scavengers suggests that food 

distribution may have a larger influence in driving this pattern of population structure 

(Eustace et al., 2013). The distribution of food sources varies throughout the trench 

environment (Wolff, 1960; Tyler, 1995; Thurston et al., 2002). Although exceptions such 

as in situ chemosynthesis are possible in trenches (Fujikura et al., 1999; Rathburn et al., 

2009; Ohara et al., 2012), most food is derived from waters above the hadal environment 

in the form of particulate organic matter (POM) or larger carrion falls (Stockton and 

DeLaca, 1982; Fabiano et al., 2001; Honjo et al., 2008; Romankevich, 2009). The latter 

loses relatively little nutrient value during descent through the water column, because the 

large surface area to volume ratio of a carcass prevents pelagic heterotrophic bacteria and 

zooplankton from exploiting all the high quality organic matter (Christina and Passow, 

2007; Buesseler and Boyd, 2009). In contrast, POM usually decreases in nutrient value and 

quantity with depth due to longer exposure to heterotrophic organisms (Sokolova, 1994; 

Jamieson et al., 2010; Eustace et al., 2013). In a trench environment, the sharp angle of 

the trench slope influences the sedimentation process resulting in organic matter (i.e., 

POM and carrion falls) accumulating at the deepest point of the trench, the axis. This 

produces a pattern of increasing detritus quantity with depth (Sokolova, 1994; Jamieson 

et al., 2010; Glud et al., 2013). The accumulation of organic matter at the axis of a trench 

could also be supplemented by independent seismic activity causing mass movement of 

organic matter down the slope of a trench (Itou et al., 2000; Itou et al., 2011). Such 

displacement of organic sediment has been reported in various trenches in the north-

western pacific trenches (Itou et al., 2000; Itou et al., 2011; Eustace et al., 2013).  

Sedimentation of organic matter to the trench axis may be depriving the trench slopes of 

organic matter (Jamieson et al., 2010), and if this is the case we expect to observe fewer 

sediment-dependent detritivores on the slopes of trenches. Hirondellea dubia rely more 

heavily on detritus at the trench axis (Blankenship and Levin, 2007), and data from the 
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present study show that the abundance of amphipods was much higher at the axis of the 

trench compared to the outer slope. Stable isotope analysis showed that juvenile H. dubia 

rely heavily on detritus on the upper slopes of trenches (Blankenship and Levin, 2007), 

and as they mature and migrate to the intermediate depths, the reliance on detritus 

decreases. However, in mature H. dubia at the trench axis this reliance on detritus seems 

to increase again (Blankenship and Levin, 2007). Therefore the middle of the trench slope 

may represent a POM deprived habitat while the shallower depths of the trench are still 

able to support detritivores due to the higher quality of POM at these depths (Honjo et 

al., 2008; Romankevich, 2009). Mature H. dubia may occupy greater depths to benefit 

from the increase in detritus quantity, while juveniles may dominate shallower depths to 

benefit from higher quality POM. 

While the number and proportion of juveniles was much greater at 6,250 m, the 

difference in juvenile size between depths was significantly greater than in other 

lifestages. Juveniles at 6,250 m were smaller than expected based on the decreases 

observed in other lifestages with depth. The rate of growth should be higher for juveniles 

in the shallower ~6,250 m depth because the POM is higher in quality and their metabolic 

rate is faster (Blankenship et.al, 2006; Romankevich, 2009). Therefore juveniles at the 

~6,250 m depth may be younger than those recorded at the ~10,800 m depth. This 

suggests that ontogenetically distributed H. dubia migrate to greater depths with age 

(Eustace et al., 2013). 

In Blankenship et al.’s (2006) study in the Tonga Trench, H. dubia male to female sex 

ratios were 1:1 between the depths of 7,349 and 10,787 m, while at 9,000-10,000 m, the 

proportion of females increased. However, beyond 10,000 m the ratio of males to females 

returned to 1:1 (Blankenship et al., 2006). The present study indicates that trend of 

increasing proportion of females continues to the deepest extent of H. dubia’s known 

range (10,800 m). The change in sex ratio between the depths of 9,000 – 10,000 m needs 

to be further examined, although it is likely that the change in this ratio at these depths is 

associated with reproduction (Thurston et al., 2002; Ingram and Hessler, 1987). Data from 
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the present study suggest that the ideal mating depths may cover the deepest part of H. 

dubia’s vertical range. 

The mechanism by which juveniles are ontogenetically distributed to the shallower depths 

of their range is still uncertain (Blankenship et al., 2006). Either the ovigerous females 

migrate to shallower waters to disperse broods of juveniles (Eustace et al., 2013), or after 

dispersing the brood at the greater depths, the juveniles migrate to shallower waters 

unaided. For juvenile amphipods to make this migration, a large amount of lipids would 

need to be consumed in an environment where the quality of POM is low (Sokolova, 

1994; Honjo et al., 2008). The alternative theory requires mature females to consume 

enough carrion to make the migration themselves; this seems more likely given that 

under greater hydrostatic pressure, maturing females will experience a slowed 

metabolism, facilitating behavior to wait between nutrient-rich carrion falls (Blankenship 

et al., 2006). The gathering of these food reserves are of particular importance because 

brooding H. dubia do not attend bait and therefore may not be feeding during the 

oviparous period (Blankenship et al., 2006). However because no brooding H. dubia or any 

Hirondellea spp. have been captured to date (Blankenship et al., 2006; Eustace et al., 

2013; Fujii et al., 2013; Horton and Thurston, 2013), it is difficult to determine these 

processes with confidence.  

Interspecific interactions may be partially responsible for vertical stratification of hadal 

scavenging species (Ingram and Hessler, 1983; Iken et al., 2001; Blankenship and Levin, 

2007), and this may also be influencing vertical stratification between lifestages of H. 

dubia. The species is the only bait attending fauna at depths exceeding 9,000 m, allowing 

them to exclusively exploit large carrion falls that reach this depth (Blankenship et al., 

2006). However, the quality of POM is lower at these depths, and juveniles lack the fatty 

reserves of mature H. dubia to sustain themselves between the nutrient rich carrion 

events (Blankenship and Levin, 2007; Christina and Passow, 2007). Large predators such 

as decapods and fish have been observed in shallower hadal depths (Jamieson et al., 

2009a; Jamieson et al., 2009b; Jamieson et al., 2011), but these predators may 
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preferentially target larger prey items that provide greater energy return (Eustace et al., 

2013). In this way, small H. dubia juveniles may avoid predation and take advantage of the 

higher quality POM at shallower depth, migrating to greater depths as they grow to avoid 

these predators. Thus, interspecific interactions may provide a driver for ontogenetic 

stratification in H. dubia. 

Traps set at the sea floor (0 m) captured at least three times the number of H. dubia than 

those set at 1.5 or 1.8 m, and the average amphipod size was significantly larger at these 0 

m traps. One explanation for this pattern may be the partitioning of foraging strategies, 

where larger (older) individuals outcompete smaller individuals at carrion falls on the sea 

floor. Another hadal amphipod Eurythenes gryllus (Lichtenstein, 1822) displays partitioned 

vertical distribution, with individuals moving upwards in the water column with increases 

in body size, thereby transitioning to a more pelagic lifestyle (Ingram and Hessler, 1987; 

Christiansen et al., 1990; Jamieson et al., 2011). The mechanisms that attract high 

numbers of amphipods to bait appears to be highly specific, as amphipods may swarm 

particular pieces of baits while almost ignoring adjacent baits (Hessler et al., 1978). Future 

studies would benefit from analyzing how these mechanisms contribute to this 

stratification of amphipods sizes in differing trap heights. If a trend of increasing size with 

proximity to sea floor is expected, amphipods collected from the 1.5 m trap heights 

should be larger and more abundant that those collected in 1.8 m traps, however the 

opposite was the case in the present study, although the differences were very small  (1-2 

mm). One explanation for this may lie in the methodology employed during sampling. 

Although all 1.8 m traps were deployed independently, traps of heights 0 and 1.5 m were 

always deployed together, this may have provided a choice for the amphipods attending 

the bait at these traps. The choice between the two trap heights probably exaggerated 

any difference in sizes and abundances. Previous samplings have been taken at a single 

trap height off the sea floor, or combined data across a variety of trap heights to 

represent a single sample (Ingram and Hessler, 1987; Fujii et al., 2013), and may have 

overlooked the influence of trap height.  
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3.4.2 Proxy analysis 

Curvature has long been an issue in accurately measuring total amphipod length 

(Skadsheim, 1982; Beuchel and Lønne, 2002; Thurston et al., 2002; Chapelle and Peck 

2004; Arndt and Beuchel, 2006). Curvature describes the articulation of segments along 

an amphipod’s dorsal aspect, and the resulting telescoping of these segments influences 

the perceived length, thereby making true body length of amphipods difficult to define 

with certainty (Skadsheim 1982, Chapelle, 1995). In the past, solutions to the issue of 

curvature included labour intensive methods such as measuring an individual’s full length 

three times to get an average (Thurston et al., 2002), or extracting eyes to be used as a 

proxy (Von Westernhagen, 1976). An effective proxy should be representative of total 

length and display similar patterns in population size structure when analyzed, and it is 

therefore important to use a segment that is not sexually dimorphic. A good proxy should 

also require little prior experience or skill, and be easy to see and measure, even in lower 

resolution images or in individuals that have been damaged.  

Despite being the measurements with the highest correlation to total length, pereonite 2-

7 and the pleosome are considered poor proxies to use in future research. In both these 

measurements, the variability of segment length due to curvature was substantial, at 20 

and 5% for pereonite 2-7 and the pleosome respectively. These sections contain many 

overlapping segments so it is not surprising to observe such a large effect, and the high 

correlation of these segments is probably exaggerated due to total length not being 

adjusted for curvature. Pereonite 2-7 yielded some substantially different results in the 

simulated size structure analysis, the major difference being that the size of pereonite 2-7 

did not vary significantly with depth. This inaccuracy can be attributed partially to the 

larger variance caused by the larger influence of curvature but also to the variation 

between sexes observed. A larger pereon has been recorded for females in the past, and 

this difference is likely associated with reproduction as the pereon must be large enough 

to provide protection and support for brooding (Hessler et al., 1978; Arndt and Beuchel, 

2006). The pleosome also yielded variable results from the simulated size structure 

analysis, and these differences may also have been driven by variations between sexes. 
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Males had significantly larger pleosomes than females and juveniles, and this dimorphism 

may be necessary to support the male gonads on this section (Hessler et al., 1978; Arndt 

and Beuchel, 2006). Both the pereonites 2-7 and pleosome measurements displayed a 

level of sexual dimorphism that makes them inappropriate as proxies.  

The head and urosome were not further analyzed as proxies in the present study, 

although these segments have been used in estimates of total length in the past 

(Bourdillon, 1960; Von Westernhagen 1976; Chapelle, 1995).  In the present study the 

correlation found between total length and the head/urosome segments was low in both 

cases. When examining the proportional length of these segments between lifestages, the 

proportion length of the head decreased with maturity, while the urosome showed the 

opposite trend. These patterns of growth are not specific to sex, however they do still 

make these segments unreliable as proxies. 

When pereonite 1 was used in the simulated size structure analysis the interaction 

between depth and lifestage approached significance, and the general trends were the 

same as for the total length analysis. This segment has been used as a proxy in the past 

(Skadsheim, 1982; Beuchel and Lønne, 2002; Thurston et al., 2002; Chapelle and Peck 

2004; Temperoni et al., 2004; Arndt and Beuchel, 2006), where the preonite 1 segment 

often had a very high correlation with total length (e.g. Thurston et al., 2002). Thurston et 

al. (2002) recorded an R2 = 0.95, whereas the correlation in the present study was much 

lower (R2 = 0.72), and this is likely due to the higher resolution at which the data were 

gathered in the present study;  measurements were from 393 individuals in Thurston et 

al. (2002) compared to 1,177  for pereonite 1 in the present study. Amphipod length is 

sometimes used to define lifestages and to detect instars (Stebbing and Thomas, 1919; 

Hessler et al., 1978; Chapel, 1995), therefore disproportionately large juveniles may 

compromise the resolution of these distinctions. However the pereonite 1 proxy requires 

only a single measurement (from anterior to posterior dorsal margins), and studies that 

use a proxy composing of one segment have typically had more success in accurately 

detecting instars in a species (Chapelle, 1995).  
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The diagonal length of the 4th coxa is another commonly used proxy in size structure 

analyses (Blankenship et al., 2006 Eustace et al., 2013; Fujii et al., 2013). Chapelle (1995) 

argues that the 4th coxa is more conspicuous and easier to measure than the first 

pereonite, however the 4th coxa is quite a distinct feature of the Waldeckia obese 

(Chervreux, 1905) used to test these proxies Chapelle (1995). In many amphipods, 

pereonite 1 is more conspicuous and is less likely to be hidden or damaged during 

collection.  

3.4.3 Conclusions 

The ontogenetic vertical structuring of H. dubia in the Tonga Trench is confirmed by new 

data from the present study, and this distribution is likely driven by the distribution of 

food sources throughout the trench. There are strong incentives for juveniles to be 

distributed to shallower depths despite the presence of competing scavengers. The 

shallower depth provides a higher quality of POM and allows for a faster metabolic rate. 

The discovery that juveniles at the ~6,250 m depth were substantially smaller than at 

~10,800 m depth supports the theory that juveniles migrate down the trench slope with 

increasing age. It seems likely that juveniles are distributed to a shallower depth by 

brooding females but there is still uncertainty as no brooding females have been 

captured. Intraspecific competition for food is likely, and the results of the trap height 

analysis may be demonstrating intraspecific exclusion, however more research is needed 

in this area.  

Pereonite 1 fulfills the criteria for a good proxy. It bypasses curvature, is conspicuous and 

easy to measure, and is a single segment and is therefore stronger in detecting different 

lifestages (Chapelle, 1995). The use of an effective proxy such as peronite 1 allows for a 

greater proportion of samples to be measured thereby creating a higher resolution and 

more representative dataset from which to analyse size structure relationships. This in 

turn will help to elucidate the patterns and drivers behind the ontogenetic distribution 

observed in H. dubia from the Tonga Trench, and elsewhere. 
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Chapter 4: Overview and Conclusions  

4.1 Outline of research findings 

Hadal depths lack sufficient sampling and the communities within are not well 

understood. Scavenging amphipods have been examined in the past, however, often 

these samples are derived from a single depth and thus these studies were not able to 

analyse the trench habitat comprehensively. The YOK 13-10 voyage presented an 

opportunity to examine the scavenging community in the Tonga Trench. The voyage 

sampled depths of ~6,250 m and ~10,800 m from October 6 – October 21 in 2013. The 

present study has utilised the samples collected during this voyage, to address the four 

research questions proposed in Chapter 1 and summarised below.  

4.1.1 Identify scavenging amphipod species in the hadal environment of the 

Tonga Trench 

Six species of amphipods were identified from depths of ~6,250 m and ~10,800 m in the 

Tonga Trench. At ~6,250 m, Alicella gigantea, Eurythenes gryllus, Hirondellea dubia, 

Bathycallisoma schellenbergi, an alicellid species, and a gammarid species were 

recovered. In contrast, H. dubia was the only species recovered from ~10,800 m. The 

abundance of amphipods was higher at the ~10,800 m site resulting in a general trend of 

increasing abundance and decreasing diversity with depth.   

4.1.2 Compare the scavenging amphipod assemblage structure of the Tonga 

Trench with others of the South Pacific Ocean  

The assemblage of scavenging amphipods in the Tonga Trench was similar to the results 

from past sampling efforts in the same trench. There were also similarities to the 

assemblages in the adjacent Kermadec Trench supporting the classification of these 

trenches as a single biogeographic province. The similarity of the assemblages in the 
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Tonga Trench to the Peru-Chile Trench in the south eastern Pacific, was far lower. The 

present study provides new records of the vertical ranges of A. gigantea, E. gryllus, and H. 

dubia in the Tonga Trench. It also extends the maximum known range of H. dubia to 

10,807 m depth. In addition, this is the second study to record A. gigantea in the southern 

Pacific, and the second to record the species in hadal depths. The present study also 

provides the first recorded instance of A. gigantea in the Tonga Trench. 

4.1.3 Examine the population structure of Hirondellea dubia in the Tonga 

Trench 

An analysis of H. dubia population structure revealed ontogenetic vertical structuring in 

the Tonga Trench. Juveniles were substantially smaller at ~6,250 m compared to ~10,800 

m, and this suggests that juveniles migrate down the trench slope with increasing age. The 

most likely mechanism for distributing juveniles to the shallower depths is the ascending 

migration of brooding females. However there is still uncertainty as no brooding females 

have been captured. The proportion of females at ~10,800 m was greater than males, 

however this relationship could not be examined further in the scope of this thesis. 

Intraspecific competition for food is likely and the results of the trap height analysis may 

be demonstrating intraspecific exclusion, however more research is needed in this area. 

The shallower depth provides a higher quality of POM and the reduced hydrostatic 

pressure allows for a faster metabolic rate, and there are therefore strong incentives for 

juveniles to be distributed to shallower depths despite the presence of competing 

scavengers. Thus, this distribution is likely driven by the distribution of food sources 

throughout the trench in combination with hydrostatic pressure.   

4.1.4 Identify a total length proxy for Hirondellea dubia 

The dimensions of pereonite 1, peronite 2-7, and the pleosome were all evaluated as 

potential proxies for total length of H. dubia. Pereonite 2-7 had the strongest correlation 

to total length, however it was highly influenced by dorsal curvature. Both the pereonite 

2-7 and the pleosome showed a significant degree of sexual dimorphism making them 

inappropriate to use as proxies. Pereonite 1 was disproportionately larger in juveniles, 
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which could lower the resolution of length-based size classes in future analyses. Overall 

pereonite 1 was considered the strongest candidate for a proxy, because it was not 

affected by curvature and was a conspicuous segment that was easy to measure.   

4.2 Synthesis of findings 

Examining hadal fauna helps us to understand the age of these communities and how 

species were originally distributed to these environments (Beliaev and Brueggeman, 

1989). In the deep sea, environmental variables underwent significant changes during the 

Eocene-Oligocene boundary ~55 million years ago, when the deep sea cooled by ~15°, 

which likely resulted in extinction of many hadal species. Therefore, many of the present 

deep sea fauna are thought to have invaded from shallower habitats since this extinction 

event (Beliaev and Brueggeman, 1989; Rogers, 2000). These trench communities have 

since become isolated over time, and this might explain similarities observed between 

adjacent trenches. The Hirondellea genus dominates the deepest sections of trenches 

worldwide, and each species inhabit particular fragments of the Pacific, with H. dubia 

populating the Southwest Pacific Trenches (Kermadec, Tonga, New Hebrides; Blankenship 

et. al., 2006; Kilgallen, 2015; Ritchie et al., 2015). The limited distribution of H. dubia is an 

example that illustrates how trenches have become progressively isolated over time. 

Scavenging communities of hadal trenches are distinct from those of the abyssal zone 

(4,000-6,000 m; Vinogradova, 1959; Jamieson et al., 2010; Jamieson et al., 2011, Fuji et al. 

2013, Kitahashi et al., 2013, Gallo et al., 2015; Leduc et al., in press). The change in 

community structure between the two habitats was initially thought to be an ecocline, a 

gradual transition of fauna across a large area or depth (Wolff 1970; van der Maarel, 

1990;). However analysis of scavenging amphipod data from the Kermadec Trench region 

suggested the presence of an ecotone, or sharp transition of fauna across a small area, at 

the boundary of the abyssal and hadal zones (6,000-7,000 m; Jamieson et al., 2011). 

Samples collected at ~6,250 m in the present study are therefore instructive in this 

debate. The assemblage of scavenging amphipods collected at this depth contained a 
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combination of typical abyssal fauna, such as A. gigantea and E. gryllus, and typical hadal 

fauna, such as H. dubia and B. schellenbergi. By comparing results from the present study 

to that of Blankenship et al., (2006), there is a change from the hadal-abyssal fauna in our 

~6,250 m samples to the exclusively hadal species recorded from 6,834 m in Blankenship 

et al. (2006).  Together, these data provides strong evidence for an ecotone in the Tonga 

Trench somewhere between these two depths.  

This thesis also provides a new Tonga Trench shallow record of 6253 m for H. dubia. The 

species has been detected at 6,000 m in the Kermadec Trench (Jamieson et al., 2011), and 

has even been detected in depths as shallow as 5,469 m near the Mariana Trench (Ritchie 

et al., 2015). The detection of H. dubia at this shallow depth in the Tonga Trench provides 

new evidence that the populations of the Tonga and Kermadec trenches are likely 

connected. The main barrier to populations between the two trenches is the Capricorn 

Guyot, a sill of ~6,000 m depth separating the two hadal habitats (Jamieson et al., 2011). 

Deep sea amphipods can withstand changes in pressure greater than 100 atm, and H. 

dubia in particular have a depth range of over 450 atm (Bristein and Vinogradov, 1970; 

Yayanos, 1981; Jamison et al., 2011). High tolerance to pressure changes and the 

detection of both mature and juvenile lifestages of H. dubia at ~6,000-6,250 m in both 

trenches (Jamieson et al., 2011), suggest that the species is capable of migrating over the 

Capricorn Guyot. 

The finding of juveniles at both depths in the present study is in contrast to past analyses 

of H. dubia population structure in the Tonga Trench, which found that juvenile were 

excluded from greater depths (Blankenship et al., 2006). Blankenship et al. (2006) used 

estimates of length to define size classes, while the present study used a combination of 

length measurements and life stage assignment based on secondary sexual 

characteristics. The difference in methodology may have caused juveniles at the deeper 

sites and adults at the shallower sites to be overlooked by Blankenship et al. (2006). 

Mature life stages of H. dubia have also been detected at shallower depths in the 

Kermadec Trench (Jamieson et al., 2011), supporting the distribution observed in the 
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present study.  A change in approach to population analysis can further our understanding 

of this vertical structuring, and the detection of juveniles across both depths is a strong 

indicator that pressure alone does not drive ontogenetic structuring, and instead a 

combination of pressure and food availability is more likely (Eustace et al., 2013). 

Within deep sea scavengers, there is intense competition for food resources (Blankenship 

et al., 2006; Iken et al., 2001). This competition is partially relieved by the partitioning of 

vertical range among scavenger species, however where amphipod ranges overlap, 

partitioning of feeding strategies can also be observed, with some species relying more on 

detrivory than on carrion falls (Blankenship and Levin, 2007). A shift in feeding strategies 

of juvenile H. dubia may be connected to interspecific interactions at shallower trench 

depths where scavenging amphipod ranges overlap (Blankenship and Levin, 2007). An 

analysis of population structure in Hirondellea gigas considered reduced predation 

pressure as one of the driving forces of ontogenetic structuring (Eustace et al., 2013) Their 

reduced size may make the juveniles a less appealing target to larger predators (Eustace 

et al., 2013), however this is unlikely in the case for H. dubia. In the Tonga Trench the 

range of H. dubia overlaps with another ontogenetically distributed scavenger B. 

schellenbergi. These two species have distinct vertical ranges, yet are similar in size where 

their ranges overlap and are therefore likely to be targeted by the same predators 

(Blankenship et al., 2006). Therefore reduced predation is unlikely to be a strong driver of 

ontogenetic distribution or distribution in general. 

Identifying pereonite 1 as a good proxy for H. dubia length will allow a more efficient 

methodology in size structure studies. The proxy is easier to measure, and requires much 

less time and skill then taking a total length measurement along the dorsal aspect 

(Skadsheim 1982, Chapelle, 1995). The identification of this proxy will allow for more 

amphipods to be measured, revealing the size structure patterns to a much higher degree 

of accuracy and resolution. In addition, the proxy may allow for more size structure 

studies to be conducted overall (Chapelle, 1995). Many deep-sea lysianassoids are 

structurally similar (Havermans et al., 2010), and pereonite 1 might therefore provide a 
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strong proxy for other lysianassoids. Larger data sets and more studies in general are 

necessary to uncover the population structures of scavenging amphipods, and a 

consistent methodology would also allow cross comparisons of size structure to a greater 

degree. 

Although there appeared to be a trend of increasing abundance with depth, it is difficult 

to make accurate abundance estimates in hadal scavenging communities. Sampling 

methods can be highly selective and techniques such as baited traps and cameras attract 

mobile scavengers from the surrounding areas. Defining amphipod abundance is 

therefore difficult as the numbers at the bait may depend on the ability of each species to 

detect and locate the food source during deployment. In addition, none of the traps used 

had closure mechanisms, and so some trapped amphipods could escape and others could 

enter the traps during the descent and ascent of the landers/submersible. Escape of 

amphipods was considered likely, given the size and arrangement of trap openings and 

the wash experienced by the traps at the sea surface during recovery of the 

landers/submersible. Interspecific interactions at these bait events may also influence the 

composition and abundance perceived during sampling. These interactions include 

competitive exclusion, predation, and possibly a kind of succession of species attending 

bait (Jones et al., 1998). 

In the present study, traps were baited with pieces of raw fish placed in fine mesh bags 

attached to an inside wall of the traps, thus the carrion itself may have been inaccessible 

to some scavengers due to the fine mesh of the baited bags. Hessler et al. (1978) found 

that amphipods did not settle randomly on bait but appeared to cluster in one spot, and 

this was attributed to the release of dissolved substances from the broken skin, or feeding 

waste products such as ammonia, both of which would have been impaired by the mesh 

bags used in the present study. Therefore, the use of mesh bags may have distorted the 

composition and abundance of scavengers in the baited traps and any other study in the 

past using similar trap design.  
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The patterns recorded here were based on samples collected from two sites in the Tonga 

Trench, one of the trench edge of the oceanic slope (~6,250 m) and one at the trench axis 

(~10,800 m). The oceanic slope of the trench is typically low-angled compared to the 

continental side of the trench, which can have a much steeper slope (Ichino et al., 2015).  

POM at the seafloor is not exclusively dependent on the overlying water productivity, and 

sedimentation varies with topography (Ichino et al., 2015). When analysing and 

comparing scavenging communities within trenches, it is important to consider the 

distinct topographies that characterise each slope of the trench (Leduc et al., in press). 

Further investigations may detect different trends within hadal communities when taking 

the bathymetry of differing sides of a trench into account (Ichino et al., 2015). 

The behaviour and distribution of mobile scavengers influence the wider hadal 

communities. For example, amphipods feeding on detritus stir up sediment. Nematodes 

are one of the most characteristic fauna of the meiobenthos in the hadal zone, and they 

have been frequently detected in sediment samples across the deep sea (Wolff, 1960; 

Jamieson, 2015). The higher abundance of scavenging amphipods at the Tonga trench axis 

relative to the trench slope is likely to increase vertical mixing of sediments thus 

facilitating deeper penetration of organisms into the sediment at the trench axis (Leduc et 

al., in press). 

Analysis of sediment samples from the YOK 13-10 voyage have shown there is pollen in 

the detritus at the axis of the Tonga Trench (Leduc, unpublished). Pollen may be ingested 

by marine protists (Leduc, unpublished), and H. dubia may also consume them. 

Hirondellea gigas may possess cellulase, an enzyme capable of digesting wood matter 

(Kobayashi et al, 2012). Hirondellea dubia may also possess this enzyme, and if proven, 

this finding would provide a direct link from terrestrial systems to the deepest parts of the 

oceans.  
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4.3 Future Directions 

The results of this thesis begin to fill the gaps in the knowledge of hadal and trench 

biology. However, repeated sampling in trenches is important to consolidate and extend 

our understanding of how scavenging communities change over temporal and spatial 

scales. The deepest spots in the ocean provide a unique and charismatic research site, and 

understanding these systems helps uncover the processes acting in the wider trench 

environment (Jamieson, 2015). For example, although A. gigantea was recovered from 

both samples at ~6,250 m, the species was not captured previously at similar depths 

(Blankenship et al., 2006). This inconsistency suggests that A. gigantea has a scattered 

distribution (Jamieson et al., 2013). The present study also detected H. dubia at a 

shallower depth than Blankenship et al. (2006). However very little is still known on how 

these communities vary seasonally or annually. Future studies would benefit from 

replication of samples over a temporal scale, and the revisiting of previously sampled sites 

and depths. 

Further classification of the allicelid species and the gammarid species recovered from 

~6,250 m would provide a clearer understanding of the amphipod assemblage 

composition at this depth, and allow more comparisons among trenches and across the 

abyssal-hadal transition. Morphological characteristics and genetic sequencing might 

allow for the identification of these individuals. The alicellid and the gammarid could also 

be compared to specimens collected by past sampling in the Tonga and Kermadec 

trenches (Blankenship et al., 2006; Jamieson et al., 2011) to confirm their identification as 

Paracella sp. and Uristes chastaini respectively. 

The present study found that females made up a larger proportion of the assemblage at 

~10,800 m. A change in sex ratio is likely associated with reproductive behaviour, however 

the nature of this behaviour is still unknown (Thurston et al., 2002; Ingram and Hessler, 

1987). There are still many gaps in knowledge surrounding reproduction in hadal 

amphipods. For example, brooding Hirondellea females have not been recovered in any 

samples known to date (Blankenship et al., 2006; Eustace et al., 2013), and it is not yet 



77 
 

understood if they migrate to shallower waters to disperse their brood. More quantitative 

sampling and improvements in observational technology are needed to yield information 

of hadal amphipod reproduction. 

Hadal amphipods may be hosts to parasitic nematodes (Leduc and Wilson, 2016). The 

nematodes were detected in the body cavity of H. dubia between depths of 7,018 and 

10,005 m in the Kermadec Trench (Leduc and Wilson, 2016). Although less than 1% of the 

H. dubia were host to the parasite, the ecological significance of this interaction remains 

unexplored (Leduc and Wilson, 2016). The low percentage of infected individuals coupled 

with the transition to a more opaque exoskeleton in fixed amphipods, may have 

influenced the lack of parasite detection in the past (Leduc and Wilson, 2016). 

Lysianassoid necrophagous amphipods exhibit some K selection traits, and it is possible 

that parasites limiting the amount of food the amphipod is receiving could delay maturity 

and reproduction in the host species (Ingram and Hessler, 1983; Blankenship et al., 2006; 

Leduc and Wilson, 2016). 

Although it could not be examined in the course of the present study, the 4th coxa has 

been used as a proxy in multiple hadal size structure analyses (Chapelle, 1995; 

Blankenship et al., 2006, Jamieson et al., 2011; Fujii et al., 2013; Eustace et al., 2013). 

Chapelle (1995) conducted an assessment of proxies for the Antarctic necrophagous 

amphipod Waldeckia obese (Chevreux, 1905). In this assessment, the 4th coxa was 

considered superior to pereonite 1 in terms of correlation to total length and variability 

between individuals. However, the correlation coefficients between the two segments 

were almost indistinguishable (R2 = 0.98 for 4th coxa, and R2 = 0.97 for pereonite 1 in 

Chapelle, 1995). Furthermore, the numbers of individuals included in the assessment of 

correlation were small (25 individuals). In addition, the 4th coxa is particularly prominent 

in W. obese, but this is not the case in all lysianassoid amphipods. Examining these proxies 

across a larger data set across multiple species will likely uncover the proxy that is the 

most appropriate for use in future analysis. 
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One of the main objectives of the YOK 13-10 voyage was to examine the genetic 

connectivity of amphipod populations among other hadal environments in the South 

Pacific, and connections to the Kermadec Trench in particular. This objective was not 

included in the scope of the present study, however a COI sequence was successfully 

extracted from a single H. dubia from the ~10,800 m site during the course of this thesis. 

Samples processed during the course of this thesis would be suitable for more extensive 

genetic sequencing, for comparison to H. dubia sequences reported by Ritchie et al. 

(2015) from various Southwest Pacific trenches.  In this way, a more complete 

understanding of the connectivity between the Kermadec and Tonga trenches would 

emerge. Furthermore, this type of analysis also has scope for examining the isolation of 

trenches over geological time.  

The Tonga and Kermadec trenches have been described as a single biological province 

with a similar hadal community (Vinogradova, 1979), however the extent of this 

connection is still unknown. The Capricorn Guyot (~6,000 m) represents a shallow barrier 

between the trenches (Jamieson et al., 2011), and should be the target of future sampling 

efforts. Baited traps and cameras at this sill may reveal those species that are capable of 

migrating over the barrier between trenches. Currently, H. dubia has a vertical range that 

suggests they are physiologically capable of crossing the Capricorn Guyot (Bristein and 

Vinogradov, 1970; Yayanos, 1981; Jamieson et al., 2011, present study), but there is a lack 

of empirical evidence.  

In the present study, traps placed at different heights above the sea floor at ~10,800 m 

collected different subsets of the H. dubia benthic population. This observation has not 

been recorded before and was quite unexpected, as it is hard to imagine that species with 

such impressive chemosensory capabilities could be confounded by such small variations 

in height. The influence of trap height could not be compared at the shallower depths 

because only one trap height was deployed to this depth (1.8 m), however comparison 

between trap heights at these depths will likely reveal interesting ecological behaviour in 

the future. There were multiple species at the ~6,250 m site, and any trap height based 
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influence between species might suggest further stratification of resources in this food-

limited environment.  

Alicella gigantea is a poorly understood deep sea scavenger, and although specimens 

recovered in the present study reveal new details on the species distribution there are still 

many gaps in our understanding. The distribution of A. gigantea appears to be relatively 

widespread across abyssal depths (Jamieson et al., 2013), and the recent discovery of the 

species in hadal depths (Jamieson et al., 2013; present study) confirms how little we know 

about the extent of its distribution. It is likely that as sampling effort and technological 

capabilities advance, recovery of A. gigantea will become more frequent, and 

understanding of this species’ distribution will improve. 

Most organic matter in trenches is derived from surface waters, and the hadal zone may 

therefore be intrinsically linked to the fluctuations in production at the ocean surface 

(Stockton and DeLaca, 1982; Sokolova, 1994). Both of the studies that have analysed 

population structure of H. dubia in the Tonga Trench took place in October (Blankenship 

et al., 2006; present study). This provides a good basis for comparison, however, it does 

demonstrate the gaps in sampling effort hadal research currently experiences. In a habitat 

that is so strongly influenced by the distribution of organic matter a fluctuation in POM 

input at different times of the year may have substantial impacts on the biological 

processes operating within trenches.   

Although sampling efforts have increased over recent years, the hadal environment still 

remains one of the most understudied habitats in the marine environment. More 

quantitative sampling is needed to better understand the diversity, abundance, and 

community structure in the hadal zone, and how environmental variables shape these 

communities (Jamieson, 2015).  
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4.4 Conclusions 

This thesis provides insights into the composition and structure of the scavenging 

amphipod communities in the Tonga Trench. Overall I found a trend of decreasing 

diversity and increasing abundance with depth, a trend that is consistent with past hadal 

community analysis. This thesis expands our current knowledge of A. gigantea, here we 

report the first instance of this large amphipod in the Tonga Trench, and the second 

known instance of the species at hadal depths. The present study provides new Tongan 

Trench records of A. gigantea, E. gryllus, and H. dubia vertical ranges. Examination of H. 

dubia lifestages revealed that the population were ontogenetically structured with depth 

in the Tonga Trench. Juveniles dominated the composition in the shallow end of the H. 

dubia vertical range, while very few juveniles were found at the deepest site. The 

shallower depth provides a higher quality of POM and the reduced hydrostatic pressure 

allows for a faster metabolic rate. There are therefore strong incentives for juveniles to be 

distributed to shallower depths despite the presence of competing scavengers. After 

consideration of multiple established proxies, the pereonite 1 segment was considered 

the strongest candidate for a H. dubia body length proxy. The segment provided a 

conspicuous single segment making it appropriate for distinguishing size classes and it 

provided the strongest resilience to curvature based variation.  Since the discovery of life 

in the hadal zone in 1951, understanding of the fauna that inhabits the deep oceanic 

trenches has come a long way, however there is still much to examine in these complex 

and extreme habitats. 
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