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Abstract 
 

New Zealand has a long history of isolation and has evolved a unique biota. Spanning from a 

sub-tropical climate in the North to a sub-Antarctic climate in the far south New Zealand 

provides an interesting opportunity to study the processes that lead to evolution. This thesis 

attempts to study the evolution of Ostrea chilensis at a population genetics and molecular 

level.  

Chapter Two 

Microsatellite DNA loci represent an ideal marker for population genetics studies due to high 

levels of length polymorphism between individuals. Genomic sequencing technologies offer 

the potential to quickly identify thousands of loci, from which PCR primers can be developed 

and screened for polymorphisms. I aimed to develop PCR primers to amplify length 

polymorphic microsatellite loci and to use the genomic data set to elucidate patterns and 

processes of microsatellite evolution. DNA was extracted from a single Ostrea chilensis 

individual and used for a 1/8 plate sequencing run on a Roche 454. The subsequent quality 

checked DNA database was annotated for microsatellite loci. 6,208 dinucleotide, 7,326 

trinucleotide repeats, 2,414 tetranucleotide, 33 hexanucleotide and 356 pentanucleotides were 

annotated on the partial genome. Four microsatellite loci were successfully amplified and 

genotyped. The loci have a low number of alleles compared to other bivalve studies and two 

have significant departures from HWE (Fst = 0.126 and -0.348). There were a number of 

highly significant BLAST hits (< 1xE-20) with repetitive Oyster DNA sequences obtained 

from GenBank. Due to difficulties the microsatellite loci were abandoned as markers for later 

population genetic analysis. This work, however, provides the ground work for further 

developments of PCR primers for polymorphic microsatellite DNA and provides some 

observations of molecular evolution of repetitive DNA, which will lead to a greater 

understanding of these sequences.     

Chapter Three 

This chapter forms the first population genetic study of Ostrea chilensis using New Zealand 

and Chilean populations. The life history traits of O. chilensis are thought to reduce the 

dispersal of the species. Using randomly amplified polymorphic DNA (RAPD) I aimed to test 

the population genetic structure with the null hypothesis that there is panmixia (i.e. high 
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levels of gene flow and no barriers between populations). I then aimed to see if there was an 

isolation-by-distance (IBD) profile. Barriers to gene flow at around 420S have been identified 

in a number of studies around New Zealand. I aimed to see if those barriers were present in 

this study. Significant spatial genetic differentiation was found among populations (Fst = 

0.194, p<0.00001). Over all spatial scales a significant IBD was not found, until ‘outlier’ 

(those with two standard deviations from the mean Fst) were removed, then a slight IBE was 

found (rxy=0.324, p=0.030, r2 =0.1052). In an AWclust analysis two main clusters were 

revealed, but they did not correspond to above and below the 420S. It is possible that the 

brooding life style of Ostrea chilensis has resulted in reduced gene flow between populations. 

Much of the genetic structure was not congruent with geographic location; this apparent 

chaotic patchiness could be influenced by human mediated movements and/or environmental 

variables.  

Chapter Four 

The genetic structure found in the previous chapter was analysed in the context of near shore 

environmental and geo-spatial variables. My aim was to elucidate the environmental 

variables that best explain the apparent genetic structure of O. chilensis. Using genetic data 

from the previous chapter a Generalised Linear Model (GLM) was used to test the effect of 

ten environmental variables and two geospatial variables on average genetic distance (Fst and 

PHIst). A complimentary BEST analysis was used to test the effect of the same variables on 

the individual alleles for each population.  Using the BEST analysis the model that best 

explained the apparent genetic structure (Rs = 0.263) included the environmental variables 

Sediment (SED) and mean sea surface temperature (SSTGrad).  The GLM showed a more 

complicated model including most of the variables tested. Previous studies have shown that 

bivalve dispersal patterns are associated with sediment and spawning times can be influenced 

by temperature. This line of enquiry is important as it could lead to the identification of 

candidate genes for selection.  

Chapter Five 

Genomic datasets contain a wealth of data that can be used to further understand genome 

structure and arrangements. My aim was to discover mitochondrial gene fragments in the 

genomic data set, use them to assemble the Ostrea chilensis mitogenome, and then analyse 

the genome in a phylogenetic framework with other oyster mitogenomes. A custom BLAST 

database was created using the 454 genomic DNA data set; this was then BLASTED against 
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all available oyster mitogenomes on GenBank. The DNA sequences with good statistical 

support (<1 x E-20) where mapped against the mitogenome of Ostrea edulis. The O. edulis 

mitogenome was then used to annotate the resulting mitogenome. I was able to recover 10, 

086 bp of mitochondrial DNA – this represents around 65% of the full genome. The 

subsequent topology of the Bayesian phylogenetic tree was similar to that found in previous 

studies. PCR primers have been designed to sequence the gaps in the mitogenome. This will 

allow full annotation. Full genome annotation will aid further research into genome 

evolution.  

Chapter Six 

In the mitogenome, evolution is thought to mainly result in synonymous substitutions, due to 

functional constraints. I aimed to describe the selection pressures acting on each protein 

coding gene of the oyster mitogenome by comparing rates of non-synonymous (dN) and 

synonymous (dS) substitutions. I then aimed to discover if there was a codon bias in the 

oyster mitogenomes. Genetic distance was assessed using p-distance. The ratio of dN/dS was 

calculated using the method of Nei and Gojobori (1986). The overall ratio of dN/dS was <1 

for all protein coding genes, this would suggest that the genes are under purifying selection 

(non-synonymous mutations are selected against). A consistent codon bias was found across 

all protein coding genes, this could indicate translational selection. 

This multidisciplinary approach aimed to explain the patterns and processes of evolution in 

O. chilensis. This thesis research developed molecular tools, and provided information that 

will aid fisheries and aquaculture management.  
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An Introduction to the study species: 
Ostrea chilensis 
1.0 Aims  
 

The main objective of this thesis research was to gain an insight into the genetic structure 

around New Zealand and Chile of the commercially important oyster species Ostrea 

chilensis. This chapter describes the biology of the species, the biogeography of New 

Zealand, the problems that are particular to oyster fisheries in New Zealand, and the general 

problems that are faced by oysters around the World. 

1.1 Introduction 
 

Ostrea chilensis is a commercially and culturally important marine bivalve mollusc of the 

family Ostreidae. It is known variously as: the flat oyster, the mud oyster, the dredge oyster, 

and the Bluff oyster among other names. The species is commercially fished in two main 

locations in New Zealand: the Foveaux Strait and the Marlborough sounds (Figure 1.1). 

Ostrea chilensis is a protandrous hermaphrodite that brood its larvae for an incubation period 

lasting 2 to 9 weeks (Millar and Hollis, 1963; Toro and Morande, 1998). The fully developed 

larvae are able to settle within minutes of release, although a portion of them may remain in 

the plankton for up to 20 days (Cranfield 1968; Cranfield et al. 1968; DiSalvo et al. 1983; 

Cranfield and Michael, 1989). Ostrea chilensis larvae from incubating females were shown to 

be 0.45 – 0.49 mm long and to possess eye spots and a foot that other species develop only at 

the end of the pelagic phase (Millar and Hollis, 1963). An average of 70,000 eyed larvae can 

be expected per brooding female (Winter et al. 1984b). This is a much lower fecundity in 

comparison with other Ostrea species: the closely related flat oyster Ostrea edulis spawns as 

many as 1-2 million eggs per brood (Cole 1941; Walne, 1964). Ostrea edulis larvae are 

released from the female when they are 0.15 – 0.17 mm long and then undergo pelagic 

development, usually to a size of 6-14 mm that is influenced by water temperature and food 

supply, before settling and completing metamorphism.  The extended brooding strategy of O. 

chilensis is thought to increase the viability of embryos by reducing environmental stress; 

however, the process is associated with reduced fecundity in comparison to species whose  
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Figure 1.1: The New Zealand marine environment, showing the location of notable landforms, major current patterns and water masses, bathymetry and the New Zealand exclusive economic 
zone (EEZ). Abbreviations used for currents and water masses are as follows: Tasman Front (TF), East Auckland Current (EAUC), West Auckland Current (WAUC), North Cape Eddy (NCE), 
East Cape Eddy (ECE), East Coast Current (ECC), Wairarapa Eddy (WE), D’Urville Current (DC), Wairarapa Coastal Current (WCC), Westland Current (WC), Southland Current (SC), 
Subtropical Front (STF), Sub-Antarctic Front (SAF), Antarctic Circumpolar Current (ACC). Redrawn after Laing & Chiswell (2003) B: Dredge oyster management area (OYS5) – Foveaux 
Strait. C: Dredge oyster management area (OYS7) – Nelson/Marlborough Sounds. 
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gametes are dispersed into the environment. This brooding strategy is also thought to prevent 

long-distance larval dispersal (Toro and Chaparro, 1990). O. chilensis is, therefore, an 

interesting study species for which the effects of its life history can be compared and 

contrasted with other oyster species. 

Ostrea chilensis are found in New Zealand and Chile. The species is distributed throughout 

the near shore waters of New Zealand, including the Chatham Islands, to depths of 550 m 

(Jeffs and Creese, 1996). Some local populations have been known to become functionally 

extinct (for example Manukau harbour, personal communication with Professor Andrew 

Jeffs). The precise distribution of populations around New Zealand has not been quantified. 

The species is also found in the shallow sub-tidal zone of Southern Chile (Buroker et al. 

1983). The distribution for the Chilean populations is restricted to Chiloe Island and the 

Southern islands such as Las Guaitecas (Winter et al. 1984). The fossil record suggests that 

New Zealand is the centre of origin for the species (Beu and Maxwel, 1990). O’Foighil et al. 

(1999) used molecular and fossil data to conclude that the most likely explanation for their 

contemporary distribution is dispersal by rafting from New Zealand to Chile, and that the 

North Island is the source of the Chilean population. 

Jozefowicz and O’Foighil (1998) investigated the phylogenetic relationship of the flat oyster 

family Ostreidae based on partial mitochondrial 16S rDNA gene sequences. Ostrea chilensis 

is closely related to the geographically disparate taxa: the European Flat Oyster O. edulis and 

the Australian Flat Oyster O. angasi. However, in that study, the position of O. chilensis was 

only weakly supported. In a more recent study (O’Foighil and Taylor, 2000), place O. 

chilensis in the same position, more oyster species were used to construct the phylogeny and 

they used a different gene region: a partial 28S sequence. It is likely the position of O. 

chilensis would be better resolved using more gene regions and a greater range of oyster 

species that were not available at the time of previous studies.  

Within the genus Ostrea, brooding and settlement cycles are thought to be primarily 

influenced by changes in water temperature (Westerskov, 1980; Seale and Zacherl, 2009). In 

particular, cold seasonal water temperatures are believed to play a key role in synchronising 

larval production and settlement (Jeffs et al. 1996, 1997b), as they do in most species. 

Populations of O. chilensis from different geographical locations exhibit wide variation in 

temporal patterns of brooding and larval release. This is associated primarily with seasonal 

changes in water temperatures (Cranfield, 1968; Westerskov, 1980; DiSalvo et al. 1983; Jeffs 
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et al. 1996, 1997a). In New Zealand, the brooding period has been reported to range from a 

minimum of 16 days at temperatures of 18-20˚C (Hollis, 1963), to 38 days at temperatures of 

13-14˚C (Westerskov, 1980), while studies in Chilean waters (that average around 13˚C) 

have reported a brooding period between 40 and 62 days (Toro and Morande, 1998). In the 

warmer waters of the Manukau Harbour and Hauraki Gulf in Northern New Zealand, larval 

brooding and settlement among O. chilensis populations continues throughout the year (Jeffs 

et al. 1996; Jeffs et al. 1997b), whereas Southern New Zealand populations show a sharply 

defined and shorter breeding season during the summer months (Cranfield 1968; Westerskov 

1980; Jeffs and Hickman 2000). 

Oyster larvae use a type of cement for attachment (a highly organised complex of micro-

fibres), squeezing this from the byssal gland and then applying the left shell valve to the 

cement. Once settled, oysters are not capable of detaching. The attached larva undergoes 

metamorphosis, from a pelagic to a sessile existence, during this time there is complete loss 

of the foot. O. chilensis larvae will not settle on fine-grained sediment (Baker, 1995; 

Tamburri et al. 2008). They can however settle when the seafloor habitat has been stabilised 

by other species of macrofauna, and settlement is greatly increased in areas of complex 

biogenic reef (Cranfield et al. 2004). 

1.1.2 Oyster beds and reefs, their ecosystem services and anthropogenic threats world 
wide 
 

Globally oyster beds are one of the most threatened marine habitats on earth; they have 

declined >90% from historic levels in 70% of the bays and marine ecoregions, in 37% of 

estuaries and 28% of ecoregions they are functionally extinct (Thush and Dayton, 2002). 

Functional extinction refers to the situation where a species becomes so rare they do not fulfil 

the ecosystem roles that have evolved in the system (Thush and Dayton, 2002). Of particular 

concern, given the global threats to oysters, is that biogenic reefs - such as those created by 

oysters - are recognised as having important ecosystem functions. Among these many 

functions are: the provision of habitat structure that can provide refuge from predation for 

juvenile fish (Diaz et al. 2003), the creation of feeding habitats for juveniles and adults of 

mobile species, attachment sites for species with a sessile stage, and also provision of nesting 

habitats (Coen et al, 2007). In New Zealand, accumulation of mollusc shell debris has been 

shown to increase biodiversity when compared with similar environmental conditions that 

lack the shell debris (Hewitt et al, 2005). Further ecosystem services include the removal of 
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suspended solids from surrounding waters and subsequently increasing water clarity. This 

process reduces turbidity and allows light to reach down to further depths enabling sea grass 

and other macro-algae to grow (Newell and Koch, 2004). This same filtration process when 

carried out by the hard clam (Mercenaria mercenaria) has been shown to reduce the 

incidence of harmful algal blooms of the brown tide algae (Aureococcus anophagefferens) 

(Cerrato, 2004). Finally, shellfish can be used to absorb wave energy, protecting shorelines 

and reducing erosion. Therefore, restoration of Oyster beds (Crassostrea virginica) has the 

potential for use in coastal defence strategies (Piazza et al. 2005).  

Around the world numerous anthropogenic processes have led to a decline of oyster 

populations and the associated biogenic reefs. In Chesapeake Bay, USA Crassosstrea 

virginica numbers have massively declined due to overfishing and mechanical destruction of 

the reef by bottom trailing (Rothschild et al. 1994). These fishing methods destroy the 

biogenic reef and lead to functional extinction of benthic habitats (Thrush and Dayton, 2004). 

In Tasman Bay, New Zealand the oyster (Ostrea chilensis) fishery has declined 40-fold in the 

last 15 years (New Zealand Ministry of Fisheries, 2009). The sea bed here is largely 

dominated by mud, sand and some shell hash (Broekhuizen et al. 2011), it has been suggested 

that the original levels of productivity of this fishery are unable to be recovered as there is a 

lack of hard substrate for oyster larvae to attach. Work is being done to provide additional 

hard substrate onto which the larval oysters may settle (Powell and Klinck, 2007).  

1.1.3 The Biogeography of New Zealand 
 

New Zealand consists of three main islands (North Island, South Island and Stewart Island), a 

few hundred nearby islands, including Great Barrier, D’Urville and Resolution, and several 

offshore groups (Three Kings, Kermadecs, Chathams, Bounty, Antipodes, Campbell, 

Auckland, Snares) (Wallis and Trewick, 2009).  This archipelago of more than 700 islands, 

spans from the subtropical north (Kermadec Islands, 29°S) to the sub-Antarctic south 

(Campbell Island, 52°S) (Ross et al. 2009).   

New Zealand has a long history of isolation, Zealandia the land mass from which New 

Zealand is derived, separated from what are now Australia, Antarctica and South America at 

around 82 MYA (Wallis and Trewick, 2009). There has been much debate about the origin of 

New Zealand taxa. Current thought is that only a very small percentage of taxa are the result 

of this Gondwanan vicariance, more contemporary geological processes and dispersal are 
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thought to be the main factors involved in the speciation of New Zealand taxa (Wallis and 

Trewick, 2009). 

New Zealand has high levels of endemism, an estimated 65,000 known and un-described 

marine species with around 44% endemicity (MacDiarmid, 2007). The high level of 

endemism and geographical isolation provides an interesting and unique opportunity to study 

evolution and the micro-evolutionary events at the scale of populations. One aim of these 

biogeographic questions is to identify barriers to dispersal and describe their effects on the 

geographical distributions of species. New Zealand has a complex oceanography resulting 

from the interaction of subtropical and sub-Antarctic water masses, and deep water and 

surface currents (Figure 1.1). Currents have a strong influence on the connectivity among 

coastal species (White et al. 2010). 

1.1.4 An overview of marine population genetics and some key studies in New Zealand  
 

Geographical variation in genetic structuring results from an interaction of processes: 

mutation and genetic drift due to finite population size, and natural selection tend to create 

genetic heterogeneity; while gene flow between populations as a result of the movement of 

individuals, larvae or other stages is a force that will tend to create homogeneity in genetic 

structuring (Slatkin, 1987).   

Historically, due to the continuity of the sea as a medium for transport, the lack of obvious 

geographical barriers, the large population sizes and a pelagic larval stage in many marine 

taxa, it was assumed that populations within the marine environment would have a panmictic 

structure. It has since been shown that some marine taxa have much greater levels of genetic 

differentiation than expected, and there are much higher levels of speciation than would be 

expected in these supposed sympatric populations (Cowen et al. 2006). Long distance 

movements may be impeded by the existence of hydrological processes such as oceanic 

currents or ecological barriers such as habitat patchiness (Rocha-Olivares and Vetter, 1999). 

In addition, biological factors such as non-passive larval movements may increase local 

settlement (Taylor and Hellberg, 2003) and local selection may lead to genetic structuring 

(Zardi et al. 2011).  

Several studies of genetic structuring in marine invertebrates generally concluded that 

population subdivision is higher in species with direct development than those with 

planktonic development (e.g. Ayre and Hughes, 2000; Collin, 2001). Ostrea chilensis has 
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been found to settle almost immediately (Cranfield and Michael, 1989) this is thought to 

reduce its ability to disperse and hence increase levels of genetic structuring (Toro and 

Aguilla, 1996). Ross et al. (2009), in a review of the phylogeography of New Zealand’s 

coastal benthos, a significant negative relationship between planktonic larval duration (PLD) 

and population subdivision (Fst) was revealed. However, this is not an absolute rule in the 

marine environment. The stomapod Haptosquilla pulchella, which has a high estimated 

potential dispersal distance, exhibits significant genetic structure between oceanographic 

regions in Indonesia (Barber et al. 2000, 2002). In the same oceanographic region Kirkendale 

and Meyer (2004) found the opposite to be true in a study of the limpet Patelloida profunda, 

which has a short larval span and a presumed low dispersal potential when they discovered 

genetic homogeneity over a large area. 

Reviews of genetic structuring of New Zealand coastal populations have been independently 

published by Ross et al. (2009) and Gardner et al. (2010). Gardner et al. (2010) found a 

variety of patterns out of the 58 studies examined:  28% exhibited no structure (presumed 

panmixia), 16% found an isolation by distance (IBD) model, 21% found divergence within 

and/or among populations, one study found the existence of East-West differentiation, but the 

majority of the studies (around 33%) found differentiation between a northern group (that 

includes the North Island and the northern part of the South Island) and South Island. This 

north and south genetic differentiation has been found in many studies of marine 

invertebrates. Apte and Gardner (2002), in their phylogeographic study of the green shell 

mussel, Perna canaliculus, postulated a barrier to gene flow occurring, in an area of intense 

upwelling on the north-east and north-west of the coasts of the South Island. This putative 

barrier to gene flow has been supported by a number of studies: the sea star Patiriella 

regularis (Ayers and Waters, 2005), three limpet species in the genus Cellana (Goldstein and 

Gemmell 2006) and most recently the snakeskin chiton Sypharochiton pelliserpentis (Veale 

and Lavery, 2011).  

Each taxon has its own unique evolutionary history, as a result of vicariance or dispersal 

events. While it is unlikely there will be a unifying theory to explain the evolution of 

contemporary biodiversity in New Zealand; this study aimed to investigate the 

microevolutionary events that led to the formation of structure and connectivity between O. 

chilensis, this will fit into a broader description of the processes operating in New Zealand. 

1.1.5 Fishery of Ostrea chilensis in New Zealand and the threat of bonamiasis 
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The study of marine connectivity is crucial to our understanding of the replenishment of 

fisheries and maintenance of diversity. Palumbi (2003) suggested the design of marine 

reserves whether for conservation or effective fisheries management, should have an 

understanding of: (1) direction larval transport in and out of the reserves, (2) whether the 

reserves are self-seeding or they depend on recruitment from other areas and (3) whether 

there is an exchange of recruits between sites. The degree of connectivity among populations 

has direct consequences for species evolution, development of disease resistance, and 

capacity of a metapopulation to adapt to climate change (Levin, 2006; Cowen and Sponaugle, 

2009). Since an empirical study of larval movement is technically and logistically difficult 

population genetics can serve as a useful tool to estimate dispersal.  

In New Zealand, the main O. chilensis fishery is in Foveaux Strait. There are small 

commercially fished stocks occurring in Tasman Bay and Golden Bay. The Foveaux Strait 

fishery is a high value, iconic fishery and has been fished for around 140 years. The total 

annual commercial catch of oysters from the Foveaux Strait fluctuated from 16 – 26 million 

individuals from 1907 to 1927, rising to 97 million in 1960. There was a significant decline in 

catch between 1962 and 1963 with an outbreak of the parasite Bonamia exitosa that kills 

mature dredge oysters. As a result, stock size and catch have both dwindled compared to 

historic levels. 

The Foveaux Strait Oyster Fisheries Plan (2009) outlines a multi-disciplinary approach to 

management of the fishery. However, it did not include an analysis of the current population 

structuring or the levels of genetic diversity of oyster populations/stocks. This needs to be 

addressed given that a current assessment of genetic diversity can be used to assess the 

impact of future epizootics, or anthropogenic and environmental effects on genetic diversity 

and population structuring and also help inform current management policies. 

The cause of bonamiasis: Bonamia exitosa is a haplosporidian parasite; microcells belonging 

to the genus Bonamia infect the haemocytes of different oyster species around the world: B. 

ostreae affects the flat oyster Ostrea edulis in Europe, the United States, Canada and 

Morocco; B. angasi and B. roughleyi are two species that are present in Australian oysters. 

There is little understanding of the phylogenetic relationships within the Bonamia genus, but 

work is being done to identify morphological and molecular characters that will be 

phylogenetically informative (López-Flores et al. 2007). B. exitosa proliferates utilising the 

oysters’ energy reserves, especially late in the female reproductive cycle. Oysters are 
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exhausted to a point where they cannot maintain physiological functions or keep their shells 

closed, making them vulnerable to predation. The breakdown of dead oyster tissue releases 

infective particles that are dispersed by tidal currents. Infectious particles filtered from 

seawater by oysters during feeding pass through the gut to the blood stream and to the blood 

cells. B. exitosa multiplies rupturing haemocytes, exhausting the oysters’ energy reserves and 

leading to its death. In vitro tests indicate that intensity of infection is exacerbated by stress 

and by high temperatures (>15oC), but is reduced by lower salinity. This suggests that 

changes in habitat, sea and climate, primary productivity, or stress from disturbance are also 

likely to be important triggers of epizootics (Cranfield et al. 2005).  

Cranfield et al. (2005) found the presence of B. exitosa going back until 1964, which suggests 

that B. exitosa is endemic to the Foveaux Strait. Hine (1996) considered the annual infection 

of O. chilensis by B. exitosa, and the close life history of B. exitosa, the seasonal cycle and 

physiology of O. chilensis to be indicative of a long-term relationship between host and 

pathogen. If this is the case then it may be expected that O. chilensis has evolved some level 

of resistance, which could be of use for selective breeding strategies. Hine (1996) considered 

that the fishing practices had stressed the oysters, which reduced disease resistance; benthic 

modification and mechanical disturbance of the oysters could have caused this increased 

susceptibility (Cranfield et al. 2005). The epizootics were shown to commence in populations 

that have been fished intensely and ceased in populations around the margins that had been 

little fished until that time. A similar occurrence was found in Europe, where van Banning 

(1991) found much higher levels of infection in dredged beds compared to un-dredged beds 

of the European oyster Ostrea edulis.  

Work is being carried out by the National Institute of Water and Atmospheric Research 

(NIWA), the Bluff Oyster Management Company and the Ministry of Fisheries, with the 

overall goal to better understand the relationship between bonamiasis and oysters. Their 

specific objectives were set out in the Foveaux Strait Oyster Fisheries Plan (2009). The 

Foveaux Strait Oyster Fisheries Plan (2009) outlines a multi-disciplinary approach to 

management of the fishery. The main focus is to understand the relationship with the 

Bonamia parasite, but other measures include: restocking certain areas with spat and trials of 

returning shell material to enhance beds. However, it did not include an analysis of the 

current population structuring or the levels of genetic diversity of oyster populations/stocks. 

This needs to be addressed given that a baseline assessment of genetic diversity can be used 

to assess the impact of future epizootics, or anthropogenic and environmental effects on 
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genetic diversity and population structuring and also help inform current management 

policies. It would also help inform levels of local diversity, which could be useful in spat re-

stocking programmes.  

Oyster aquaculture work in New Zealand began with the native rock oyster: Saccostrea 

glomerata, but this was largely replaced by the Pacific oyster (Crassostrea gigas) as it has a 

faster growth rate. Aquaculture New Zealand aims to increase the aquaculture industry to $1 

Billion by the year 2020. The focus is on three main species: Green shell mussels, Pacific 

Oyster and King Salmon. But the management plan also outlines the need of diversification 

into new aquaculture shellfish species of which, O. chilensis is a potential candidate. This 

thesis research will develop new genetic markers and assess level of population genetic 

diversity, which could support the industry goals for O. chilensis breeding projects. 

 

1.1.6 Population genetics of Ostrea edulis, a closely related species with similar problems 
 

Similar to O. chilensis, Ostrea edulis is a commercially important species that has been 

affected by a Bonamia parasite. It is much more fecund and has a shorter larval duration than 

O. chilensis; the affects of this life history strategy on the population structure can be 

compared. Many studies of the population genetics of Ostrea edulis in Europe have been 

made, and the some progress has been made into selectively breeding bonamiosis resistance 

in this species. For these reasons the work conducted on O. edulis is relevant to the research 

proposed in this thesis.  

O. edulis is a hermaphroditic species that can be found in sub-tidal habitats. Its natural 

geographic ranges are along the European Atlantic coast from Norway to Morocco and all 

along the Mediterranean coastline, as well as in the Black Sea.  

Like O. chilensis it is also affected by a Bonamia parasite. Bonamia ostrea was first reported 

in France in 1979 (Comps et al. 1980). More recently the Bonamia parasite which affects O. 

chilensis (B. exitosa) has been found in Spain (Abollo et al. 2008) and Italy (Narcisi et al. 

2010). Dramatic stock decreases due to Bonamia outbreaks have been documented on the 

Atlantic coast of France (Brittany), the Netherlands, Spain, Denmark, Ireland and England. 

Due to fishing pressures and disease outbreaks O. edulis is said to be functionally extinct in 

Europe (Beck et al. 2011)  
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There is a larger body of work on the population genetics of O. edulis than O. chilensis. The 

nuclear genetic diversity and geographical structure of wild populations have been 

investigated using allozymes by Saavedra et al. (1995), although, the overall genetic 

differentiation was low (mean Fst = 0.062), at one allozyme locus (arginine-kinase, (ARK*)) 

there was a high degree of inter-population differentiation (Fst = 0.289) resulting in variation 

along a geographical cline on either side of the Straits of Gibraltar. This pattern was 

interpreted as the result of secondary contact of Atlantic and Mediterranean populations 

during an interglacial period. The authors suggested that this cline is maintained by an 

environmental variable, such as salinity or temperature. The low overall inter-population 

differentiation is thought to be due to a number of factors: commercial exploitation 

(Johannesson et al. 1989), the prolonged larval phase (Saavedra et al. 1993) and restocking of 

depleted populations. 

More recently, microsatellite loci have been used to study O. edulis populations. Launey et 

al. (2002) found high levels of polymorphism with an average of 18.5 alleles across five 

microsatellite loci. The Mediterranean populations were significantly more genetically 

diverse with a mean of 20.6 alleles per locus compared with the Atlantic population with 17.2 

alleles per locus. Most of the microsatellite loci showed heterozygote deficiencies relative to 

Hardy-Weinberg equilibrium (HWE) this is a common phenomenon in bivalves (Hedgecock, 

2007). The estimate of Fst was 0.019, indicating a heterogeneous distribution of genetic 

variability. Regression of Fst/ (1- Fst) over coastal distance in kilometres showed a positive 

correlation between genetic and geographical distances supporting an isolation by distance 

model. This finding was congruent with the allozyme data of Saavedra et al. (1995) but the 

study failed to reveal a genetic discontinuity between Atlantic and Mediterranean 

populations.  

Diaz-Almela et al. (2004) assessed the population structure of O. edulis using single-strand 

conformational polymorphism of a 313 base pair fragment of the mitochondrial 12S-rRNA 

gene using the same samples as Launey et al. (2002). Fourteen haplotypes were observed, 

with one being dominant in the Mediterranean samples and one in the Atlantic populations. 

The geographically extreme populations sampled in Norway and the Black Sea appeared to 

be differentiated and had a third group of haplotypes at high frequency. These data confirm 

the isolation by distance pattern found in the study by Launey et al. (2002) and Saavedra et 

al. (1993). The haplotype differences among populations were high, which might reflect the 

small effective population sizes in most locations. Also, a 10-fold difference was observed in 
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Fst values between mitochondrial and nuclear genomes this could be due to an unbalanced 

sex ratio or sex-based differential reproductive success between males and females. 

In Northern European populations (The British Isles, France, The Netherlands and Norway) 

of O. edulis, Sobolewska and Beaumont (2005) observed low levels of genetic subdivision 

(mean Fst = 0.039) using microsatellite markers and suggested that human-mediated transport 

of oysters played a significant role in the observed pattern.  

In the French Atlantic population, Tarris et al. (2009) tested predictions of the sweepstakes 

hypothesis. They assayed four microsatellite markers and a 12S mitochondrial DNA 

sequence fragment in four O. edulis recruitment cohorts. According to the sweepstakes 

hypothesis the temporal cohorts should be differentiated from each other (Hedgecock, 2011). 

However, while no differentiation was found, the authors did find differentiation between 

cohorts within the mitochondrial data set. This difference is thought to be due to lower 

effective population size of the mitochondrial genome, and hence its increased sensitivity to 

drift compared to the nuclear genome. The signal found in the mitochondrial DNA data might 

indicate a certain limitation in the number of contributing female parents in this species.  

Since there has been much work completed on O. edulis it serves as a useful guideline for the 

work that could be done with O. chilensis. It will also be interesting to compare and contrast 

the effect of life history traits on the population genetics of the two species.  

1.1.7 Aims of the present research  

There were two main goals of this thesis research: to investigate  the population genetic 

structure of O. chilensis and to use a genomic data set to developed bioinformatic resources 

for the species. Firstly, the research aimed to describe the population genetic structure of 

Ostrea chilensis. This was achieved by: (1) testing for genetic structure at different spatial 

scales, (2) testing if the genetic structure could be explained by an isolation-by-distance 

profile, and (3) testing for putative barriers to gene flow.  A further aim was to seek the 

environmental variables that best explain the apparent genetic structure. The overall findings 

were compared with other studies of O. chilensis, closely related oyster species, and other 

studies of New Zealand marine taxa aiming to compare patterns of apparent structure.  

The relevance of this part of the study is that it will contribute to the understanding of the 

patterns and processes that are generating genetic structure in New Zealand marine taxa. It 
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will also provide information that will aid the management of oyster fisheries and future 

aquaculture projects through the identification of genetic stocks.   

The second goal was to develop bioinformatic resources for O. chilensis and describe patterns 

of molecular evolution. This was achieved by: (1) identifying microsatellite loci in a genomic 

database and categorising them based on repeat motif, array length and contribution to the 

genome, (2) identification of potentially orthologous repetitive sequences, and (3) partial 

assembly of the O. chilensis mitogenome, using new gene regions from this partial genome 

the phylogenetic position of O. chilensis was tested. 

The relevance of this part of the study is that it will be the first to develop useful 

bioinformatic resources for this commercially important species, and it will contribute to 

studies that have investigated molecular evolution.  

1.1.7 Organisation of the thesis 
 

For ease of reference the citations and appendices are listed at the end of each chapter. This 

introductory chapter is followed by five data chapters and a final discussion.  

Chapter Two used genomic sequencing to develop novel microsatellite markers for O. 

chilensis. The microsatellite sequences were categorised and compared with other studies of 

microsatellite loci. Finally, the microsatellite loci were compared to loci from oysters with an 

aim to find orthologous loci.  

Chapter Three used randomly amplified polymorphic DNA (RAPD) to measure the genetic 

diversity, and determined the patterns of genetic structure among 11 O. chilensis sampling 

sites in Chile and New Zealand.  

Chapter Four used the levels of genetic variation measured for O. chilensis samples in 

chapter three to test for associations with geospatial and environmental variables. This aimed 

to find the set of environmental or geospatial variables that best explained the apparent 

genetic structure.  

Chapter Five further developed bioinformatic resources for O. chilensis: the partial 

mitochondrial genome was reconstructed from the genomic data set. This mitogenome was 

then used to analyse the phylogenetic position of O. chilensis by comparison to other oyster 

mitogenomes.  
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Chapter Six further analysed the evolutionary processes that act on mitochondrial genes by 

comparing protein coding genes from oyster mitogenomes. 

Chapter Seven summarises the major findings of the research and presents a synthesis of the 

results from each chapter. Relevance to New Zealand fisheries and Aquaculture is discussed. 

Finally, developments in genomics are discussed with relevance to possible future studies.   
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Chapter Two: A study of the microsatellite 
loci of the Bluff Oyster (Ostrea chilensis) 

“Microsatellites: simple sequences with complex evolution” – Hans 

Ellegren 

2.0 Aims 
  

The aims of this chapter were to identify microsatellite DNA repeats in the partial genome 

sequence of Ostrea chilensis. The goal was to find length-polymorphic loci among the 

candidate microsatellite repeats that could be used for a population genetic study. Further 

aims were to use the sequence reads to answer the following questions: (1) what are the most 

common types of repeat? (2) What is the most common repeat motif across each type of 

repeat? (3) What are the length differences between different repeat motifs? And finally (4) 

what are the most common lengths of the array? The purpose of this is to seek to describe the 

processes that lead to microsatellite evolution, which could aid developments in the better use 

of microsatellites as genetic markers.  

2.1 Introduction 
 

Ostrea chilensis is a commercially important fisheries species in New Zealand, but there are 

currently limited genetic resources available for this species. This thesis research will be the 

first to identify and design microsatellite PCR-based markers using genomic fragments for 

this species. 

For studies of micro-evolutionary patterns and processes, microsatellites represent an ideal 

marker for detecting population isolation, levels of gene flow and inbreeding; because these 

loci are highly polymorphic. The use of DNA sequencing on - even just a fraction - of a 454 

DNA sequencer flow cell plate can provide a fast and efficient method of microsatellite loci 

discovery, for which primers can be designed to target the flanking region sequences. 

Another method used to identify useful polymorphic microsatellite markers is the transfer of 

markers from a closely related species. This approach could use microsatellite PCR primers 

developed for a closely related species to search the 454 DNA sequence data set for matches 

in the species of question. An analysis of potentially transferable markers is particularly 
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useful when investigating the evolutionary processes that generate microsatellites (e.g. 

Chambers and MacAvoy, 2000). They are also useful in the study of mechanisms involved in 

population divergence and speciation (e.g. Noor and Feder, 2006). Cross-species 

transferability has had variable levels of success (Zhang and Hewitt, 2003; reviewed by 

Barbara et al. 2007). In bivalves, Kang et al. (2013) successfully used microsatellite loci in a 

range of mussel species, although the levels of success varied depending on the species and 

the loci tested. There are many other examples of successful cross amplification in other 

bivalves including for example:  lampsilines (Galbraith et al. 2011) and scallops (Marín et al. 

2012).  

2.2.1 Microsatellites and their evolutionary patterns and processes 
 

Microsatellites are tandem repeats of 1-6 nucleotides found in high frequency in the nuclear 

genomes of every higher organisms tested to date (Toth et al. 2000; Mayer et al. 2010). 

Within a population a microsatellite motif can vary in length from around 5 to 40 repeats. 

Dinucleotide repeats account for the majority of microsatellite repeats in most species (Li et 

al. 2002). Microsatellites are not often associated with gene coding regions (although there 

are many examples where they do occur in genes such as the association with human diseases 

e.g. colorectal and endometrial cancer genomes Kim et al. (2013)) and, therefore, they are 

thought to be selectively neutral ‘junk DNA’. However, Li et al. (2002) reviewed the putative 

function of microsatellites, such as chromatin organisation, regulation of gene activity and 

recombination, which might mean that they do, from time to time, experience selection. 

Moreover, if a microsatellite locus is in close proximity to a gene, or genes, under selection 

then it might appear to be non-neutral due to the ‘hitchhiking’ effect (Slatkin, 1995).  

The primary mutational mechanisms leading to the generation of microsatellites were 

demonstrated empirically in Escherichia coli by Levinson and Gutman, (1987). They were 

shown to be a combination of polymerase slippage during replication, proofreading errors, 

and unequal crossing over. A mathematical model derived to explain the equilibrium 

distribution of allelic frequencies in a finite population, known as the step wise mutation 

model (SMM) (Kimura and Ohta, 1978) has been adapted to model microsatellite evolution. 

It postulates that mutations add or subtract one unit of the repetitive array independent of the 

length of the array. However, microsatellites have been shown to have an upper size limit and 

different mutabilities based on length, both of which are incompatible with the SMM 

(Ellegren, 2004). More sophisticated models have been developed that account for a genome 
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wide distribution of microsatellites being in a balance between length and point mutations 

(Kruglyak et al.  1998).The ‘birth’ (evolutionary origin) of microsatellites was demonstrated 

in the study of Messier et al. (1996). In this study microsatellite regions contained in the n-

globin pseudogene were examined in a phylogenetic context to show that a single nucleotide 

substitution occurred in the lineage leading to the African apes that created a tetra-nucleotide 

motif, which presumably allowed slippage to occur and then subsequently expanded. The 

‘death’ of a microsatellite was shown in the study of Taylor et al. (1999). In this study they 

demonstrate that a substitution mutation can interrupt the repeat, which prevents slippage and 

therefore stabilises the region. This study demonstrates that point mutations break up 

microsatellite repeats and reduces the mutation rate of the locus. A number of factors have 

been investigated that could account for mutation rate differences in different microsatellite 

loci. These include: (1) length of the microsatellite sequence, (2) flanking sequence, (3) 

repeat motif, (3) repeat type and (4) genome location. Studies in these areas have shown 

conflicting results. For example, in human tetranucleotide repeats the length of the 

microsatellite has been shown to be positively correlated with increased mutation rate 

(Leopoldino and Pena, 2003). Conversely, a downward bias has been shown in long 

microsatellite repeats in Drosophilia melanogaster (Harr and Schlötterer, 2000). There seems 

to be a relationship with the flanking sequence: allelic diversity was found to be negatively 

correlated with GC content of the flanking sequences in alligator microsatellites (Glen et al.  

1996). Studies have detected a high similarity of the flanking sequences regions of different 

microsatellite loci in Lepidoptera (Meglécz et al. 2004) and molluscs (McInerney et al.  

2010). The relationship between repeat motif and mutation rate is less clear. In D. 

melanogaster the (CA) n repeat appears to have the highest mutation rates and (AT) n appears 

to have the lowest mutation rate. Contrastingly, in humans and chimpanzees (CG) n has low 

and (AT) n has high mutability (Kelkar et al.  2008). In the study of Kelkar et al. (2008) 

mutability was found to increase with repeat type: mono-nucleotides had the lowest 

mutability and tetra-nucleotides had the highest mutability. Location in the genome of the 

microsatellite has also been shown to be a determinant of microsatellite mutability. 

Mononucleotides were shown to have a higher mutability on sex chromosomes than 

autosomes and inside rather than outside of Alu repeats (Kelkar et al.  2008).  

2.1.2 Applications 
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The development of genetic markers is becoming increasingly important in aquaculture 

because they have applications for marker assisted selection, linkage mapping and in 

identifying quantitative trait loci (QTL). Although the full utilisation of genomics has not 

been seen in aquaculture, it is likely in the future developments of genomic resources will 

support improvements to fisheries management and development of new species and varieties 

for aquaculture.  

2.1.3 Hypotheses 
 

Hypothesis One: Length of the microsatellite array. 

Short microsatellite arrays will be more common than long microsatellite arrays in the 454 

DNA database. This will indicate that there is a constraint on the length of a microsatellite 

locus. This pattern will be the same regardless of microsatellite type. 

Hypothesis Two: Contribution of microsatellite repeat unit to genomic DNA and the 

most common repeat motif. 

It is expected that di-nucleotide repeats will be the most numerous in the genome of O. 

chilensis. This pattern is expected because it has been reported in humans and many other 

species. Most studies have shown the repeat motif to be richer in (AT) n than (CG) n, this is 

thought to occur as there are three hydrogen bonds between Cysteine and Guanine creating 

more stability than the two hydrogen bonds between Adenine and Thymine. 

Hypothesis Three: Search for potentially orthologous microsatellite loci  

It is expected that some of the microsatellite flanking sequences identified in the 454 DNA 

sequences generated from O. chilensis will share some homology with flanking sequences of 

microsatellite loci identified in closely related species. A blast hit of ≤ E – 20 between 

flanking sequences could mean the microsatellite loci is either orthologous or paralogous.   
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2.2 Methods 
 

2.2.1 DNA extraction and 454 Pyrosequencing 
 

Using oyster tissue from individuals collected from the Marlborough Sounds (collection 

locality is detailed in Table 3.1) a small amount of the preserved mantle tissue (around 5 

mm3) was taken using flame/ethanol sterilized forceps and scissors. The DNA was extracted 

using a Genomic DNA extraction kit (Geneaid Biotech Ltd; Taiwan). Following the 

manufacturer’s instructions, tissue was homogenised with a micropestle, then digested using 

Proteinase K and chaotropic salt, which lysed the cells and degraded the proteins. This 

chaotropic salt forms a bridge and allows DNA to bind to a glass fibre matrix in a spin 

column and while it is bound contaminants are removed using several washes of the column 

with a salt-ethanol buffer. The DNA was then eluted from the glass fibre matrix using a low 

salt buffer.  

The extracted genomic DNA was electrophoresed in a 1.5% agarose gel and stained with 

ethidium bromide to check for a single band of DNA. Multiple bands and/or smears were 

indication that the genomic DNA had been degraded as a result of the preservation or 

extraction methodology and was not suitable for high-throughput sequencing. The quantity of 

DNA was estimated using a Nanodrop spectrophotometer. Genomic DNA from an individual 

that gave the best purity value (based on the ratio of absorbance at 260nm and 280nm) was 

sent for a 1/8 plate sequencing run on a Roche 454. The subsequent DNA database was 

examined using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc).  

2.2.2 Identification of microsatellite loci  
 

The 454 sequence reads were searched for microsatellite-type repeats using the software 

PHOBOS (Version 3.3.11 Mayer 2006-2010) using the following settings: perfect search 

with minimum thresholds of 100% repeat perfection, three repetitive units of 2-6 bp motifs 

and a total length of 10 bp (for example this would be five repeat units for a dinucleotide). 

This number of repeats was chosen as it represents the number of repeats in typical 

microsatellites. The mononucleotide repeats were excluded because the 454 DNA sequencing 

technique has difficulty accurately reading homopolymers and misreads could generate 

spurious results.  
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PHOBOS standardises the output automatically, therefore, there are only four types of 

dinucleotide repeat: AC = (CA = GT = TG), AG = (GA = CT = TC), AT = (TA), and GC = 

(CG). In this chapter comparisons of other studies will be standardised this way. The 

frequencies of each microsatellite type, motif for each type, and length of the arrays were 

summarised in an Excel spreadsheet. A possible bias of this method is that there could be 

overlapping or duplicate DNA sequences of the same repeat regions.  

2.2.3 Screening of reads for microsatellite sequences and development of PCR primers 
 

The sequences were screened for microsatellite loci using iQDD V1.3 (Meglecz et al.  2010). 

This is a PERL programme that uses Blast, Clustal and Primer3 to trim the sequences, detect 

microsatellites and design a range of suggested PCR primer pairs. These primer pairs were 

organised according to primer size in an Excel spreadsheet. The putative primers and 

microsatellite loci were mapped to the 454 data using GENEIOUS. The purpose of doing this 

is to make sure that the primers are not too close to the repeat region and to visually check the 

repeat motif to make sure it is not a compound repeat (which has not been identified as such 

by the program), or if there are multiple repeats between primer pairs, which can confuse 

later analysis. 

2.2.4 PCR amplification  
 

Following the advice of Leese and Held (2011), the PCR protocol was optimised on a range 

of geographically disparate individuals to increase the chance of finding polymorphism in the 

length of the microsatellite array. Specifically, one individual from each of the sampled 

populations detailed in Table 3.1 was used as a testing panel for the PCR primers. Each 

primer pair and individual were subjected to three different “touchdown protocols” modified 

from Korbie and Mattick (2008) (Table 2.1). Primers that did not work with one of these 

three protocols were then tested with a gradient thermal cycling profile with annealing 

temperatures ranging from 65-50°C. Primers were labelled with a 5’ M13 tag (Schuelke, 

2000). This technique requires the addition of an extra step in the thermal cycling profile to 

allow annealing of a 3rd fluorescently-labelled primer.  

PCR products were then electrophoresed in a 1% agarose gel (ethidium bromide stained) and 

visualised under UV light. Primer pairs that resulted in a single band at around the expected 

size region were further analysed. Those that still gave multiple bands were rejected because 
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the result of non-specific binding during PCR could make the loci difficult to size properly 

during the genotyping analysis.  

Table 2.1: PCR Protocol adapted from Korbie and Mattick (2008) 

Phase 1 Step Temperature ˚C Time 
1 Denature 95 3 min 
2 Denature 95 30 sec 
3 Anneal 70/62.5/55 30 sec 
4 Extension 72 30 sec 
Steps 2-4 are repeated x15 with a -0.5 ˚C drop each cycle  
Phase 2 Step Temperature ˚C Time (sec) 
1 Denature 95 30  
2 Anneal 62.5/55/47.5 45 
3 Extension 72 30 
Steps 1 – 3 are repeated x15 
M13 Phase Step Temperature ˚C Time (sec) 
1 Denature 95 30 
2 Anneal 53 45 
3 Extension 72 30 
Termination Step Temperature ˚C Time 
1 Extension 72 10 min 
2 Halt 4 ∞ 

2.2.5 Genotyping  
 

The PCR product that amplified a single band in the expected size region when compared to a 

known molecular weight size standard (i.e. a ladder) was sent to Massey Genome Service for 

Sequencing Capillary Separation Service.  The allele peaks were visually examined for 

conformity to the expected type of repeat unit and the expected size region using Peak 

Scanner v1.0 (Applied Biosystems). Following the advice of Leese and Held (2011) the loci 

that were difficult to interpret were amplified again with an extended final extension phase of 

30 minutes. 

2.2.6 Summary Statistics 
 

In instances where alleles could be identified for a particular primer pair, the size of the two 

alleles was recorded in an Excel spreadsheet. The expected heterozygosity (HE), observed 

heterozygosity (HO), p-values of two-tailed tests for deviations from Hardy-Weinberg 

Equilibrium (PHWE) and Weir and Cockerham (FIS) were then calculated in the Excel plugin 

GenAlEx (Smouse and Peakal, 2006, 2012). 
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2.2.7 Search for orthologous repetitive loci 
 

In order to study the evolution of microsatellite sequences in oysters and the possibility of 

transferring primers designed for microsatellite loci to O. chilensis, microsatellite containing 

sequences were compared to those available on GenBank. A custom 454 database was 

BLASTED against GenBank accessions that had the search terms ‘Oysters’ and ‘Repetitive 

DNA’, before this the repetitive sequences from the 454 DNA database were masked with a 

sting of N’s with the GENEIOUS plugin PHOBOS. This was done in order to minimise 

irrelevant BLAST hits. The maximum number of hits was set to 1 with a cut of 1 × e-20, so 

that only the one most probable hit was returned.  

2.3 Results  
 

2.3.1 Success of the 454 sequencing 
 

The run yielded 85,579 sequence reads that were between 39 and 1,185 bp long (Figure 

2.1).The 454 sequencing data were clipped using GENEIOUS (based on clipping information 

in the *sff file) and tested for potential problems using FastQC: the results are displayed in 

Table 2.2. After clipping, the mean sequence length was 319 bp (Figure 2.1). Some small 

problems were found in the sequencing: the phred score (this is a quality score based on the 

peak shape and peak resolution of each base of a sequencing reaction) was low at the ends of 

the sequences, but these bases can be removed from the database, and the GC content had a 

second peak which was higher than the expected distribution which could indicate 

contamination (Figure 2.2). Contamination in sequences of interest can be further examined 

by BLASTING the sequences against GenBank.   
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Table 2.2: Problems and warning suggested by the program FastQC for the clipped 454 
sequencing data set 

Fast QC Test Clipped data Comment 
Basic Statistics Good GC content = 35% 

Per base sequence quality  Problem 

Figure 2.2, at around 300 bp there 
is a drop in the average phred 
score. 

Per sequence quality scores Good 
However, most sequences have a 
good phred score 

Per base sequence content   Problem 
Only affected the first few bases 
and the last (500+ bp) 

Per base GC content Problem 
Only affected the first few bases 
and the last (500+ bp) 

Per sequence GC content Warning 
Secondary peak indicative of 
contamination 

Per Base N content Good - 

Sequence Length Distribution Problem 
Figure 2.2 no longer normally 
distributed (due to being clipped) 

Sequence Duplication Level Good Only 18.59% 
Over-represented sequences Good - 
Kmer Content Good - 
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Figure 2.1: Screen shot from GENEIOUS, length distribution of reads before clipping 
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Figure 2.2:  Screen shot from GENEIOUS, length distribution of reads after clipping 
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Figure 2.3: Screen shots of selected FastQC results. Left: Boxplot of Phred quality scores 
over all sequences, without cropping. Notice the changing proportions on the x axis. Right: 
Comparison between expected GC content per sequence (lower line) and the actual GC 
content. 

2.3.2 Identification of microsatellite loci and a description of the length of array, motif 
and contribution to the genome for each repeat type 
 

The software program PHOBOS identified 6,208 dinucleotide repeats, 7,326 trinucleotide 

repeats, 2,414 tetranucleotide repeats, 33 hexanucleotide repeats and 357 pentanucleotide 

repeats. These were annotated using the GENEIOUS software and placed in a separate 

database for further analysis. 

To assess the contribution of the microsatellite regions to the genome size of O. chilensis, the 

total lengths of microsatellite regions were calculated (Figure 2.5). In terms of their 

contribution to the total DNA of the genome, trinucleotide and dinucleotide repeats made the 

biggest contributions to the genome. Further analysis on repeat motif and length of the array 

was compared for each repeat type. Results for di-, tri- and tetra-repeats are shown in Figure 

2.6, hexa- and penta-nucleotides are shown in Appendix 2.1 and Appendix 2.2. The length of 

each microsatellite repeat array was analysed for di-, tri- and tetra-repeats (Figure 2.7). There 

was a common trend that most of the microsatellites were ≤ 30 bp, with longer repeat arrays 

decreasing in frequency.  
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Dinucleotide repeats  

The most abundant dinucleotide repeat in O. chilensis was (AT) n (Figure 2.6), the other 

repeats have a similar abundance but there were very few repeats of (CG) n. The mean length 

of dinucleotide repeats was 12 bp with a range of 378 bp.  

Trinucleotide repeats  

By far the most common tri-nucleotide repeat in O. chilensis was AAT (Figure 2.6). The 

mean length of trinucleotide repeats was 12 bp with a range of 512 bp. 

Tetranucleotide repeats  

ACGTwas the most common tetranucleotide repeat in O. chilensis (Figure 2.6), which seems 

unusual given that repeats containing G seem rare in the other repeat motifs. The mean length 

of tetranucleotide repeats was 12 bp with a range of 360 bp. 

Hexanucleotide repeats 

The most common repeats were AACGTT, AAACGT, ACACAT, AACGGT, AACCGT, 

AACCCT, AAAAAC, AAAAAT. The mean length of hexanucleotide repeats was 15 bp with 

a range of 285 bp.  

Pentanucleotide repeats 

The most common repeats were AACGT, ACCGT, ACTAT, AACTT, ACACT, AAACT, 

AACCT, AAAGT, ACTCT, AAACG. The mean length of pentanucleotide repeats was 12 bp 

with a range of 326 bp. 

2.3.3 Identification of polymorphic microsatellite loci 
 

The analysis using the software programme iQDD designed primers for 223 microsatellite 

loci (data not shown). Upon visual inspection of the primer binding sites there were many 

instances of suggested primers that were not optimal. For example, there were found to be in 

some cases, multiple microsatellite regions within the primer binding site. In other cases the 

primer annealed to part of the microsatellite region. Visual inspection of the suggested 

primers was an essential step when using iQDD due to problems with primer binding 

location. 
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In total, 125 primers were tested for consistent PCR amplification. Of these, 36 were shown 

to consistently amplify a single clear band of DNA around the expected size (PCR primers 

for these loci are displayed in Table 2.3).  Figures 2.4a to 2.4j show the outcome of a 

touchdown PCR with an initial annealing temperature of 62.5oC. It was found that if the 

primers did not produce a band of the expected size, then further optimisation of the PCR 

protocol would not improve the result; this included running a gradient PCR from 65oC to 

50oC. Of the 36 primers, four primers were shown to amplify a product that was possible to 

genotype. The reasons that most of the amplified products were unsuccessfully genotyped 

were due to no product being found in the expected size range, excessive stutter which made 

genotyping impossible to score, or monomorphic alleles either as a homozygote or the same 

heterozygote. 

Four primer sets were developed for loci that give interpretable and consistent results. 

Summary statistics for these polymorphic loci are displayed in Table 2.4 Loci Ost_chi_074 

and Ost_chi_084 were not in HWE. This is due to an excess of heterozygotes in Ost_chi_084 

and an excess of homozygotes in Ost_chi_074. However, these results should be interpreted 

with caution since the sample size was less than 50 individuals (Hedrick, 2000).  

2.3.4 Search for orthologous repetitive DNA in various oyster species 
 

Results of the BLAST search of the 454 DNA database against all oyster repetitive sequences 

are displayed in Table 2.5a to 2.5e. Many of the blast hits were downstream or upstream of 

the microsatellite repeat region so in many cases it was impossible to compare the repeat unit 

of the microsatellite to the database sequences, but given the very low e-values overall it is 

unlikely that these hits were matched by chance and they are likely to reflect conserved 

sequence regions which are homologous between species. It should also be noted that the 

‘best’ hits were restricted to single matches, therefore looking for more than one match with 

potentially lower e-values could reveal more coverage of the microsatellite regions and hence 

allow the comparison of repeat motifs. There was however one exception, where the query 

and reference sequences overlapped to show a common microsatellite loci (Figure 2.8). The 

figure illustrates an alignment between a sequence from the 454 data set and the 

microsatellite region Cvi2i20.fa from Crassostrea virginica. Here it is possible to see the 

BLAST hit is in the conserved flanking region and the query and reference sequences overlap 

to show a common microsatellite motif, in O. chilensis the repeat appears to have become a 

compound repeat.  
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content (highest line) per sequence in the clipped data set  

 
Figure 2.4b  Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 2 
and 3: Ost_chi_006.2; Lanes 4 and 5: Ost_chi 007.1, Lanes 6and7: Ost_chi 
007.2, Lanes 8 and 9 Ost_chi 008, Lanes 10 and 11 Ost_chi 009, Lanes 13and 14 
Ost_chi 010, Lanes 16 and 17 Ost_chi 011, Lanes 18 and 19 Ost_chi 012, Lanes 
20 and 21 Ost_chi 024, Lanes 22 and 23 Ost_chi 025, Lanes 24 and 25 Ost_chi 
026 Lanes 26 and 27 Ost_chi 028 

Figure 2. 4a Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 2 
and 3: Ost_chi_001; Lanes 4 and 5: Ost_chi 001.1, Lanes 6and7: Ost_chi 
001.9, Lanes 8 and 9 Ost_chi 001.5, Lanes 10 and 11 Ost_chi 002, Lanes 
13and 14 Ost_chi 002.3, Lanes 16 and 17 Ost_chi 002.4, Lanes 18 and 19 
Ost_chi 003.1, Lanes 20 and 21 Ost_chi 004, Lanes 22 and 23 Ost_chi 004.2, 
Lanes 24 and 25 Ost_chi 006, Lanes 26 and 27 
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Figure 2.4c Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 2 
and 3: Ost_chi_013.1; Lanes 4 and 5: Ost_chi 015.2, Lanses 6and7: Ost_chi 016, 
Lanes 8 and 9 Ost_chi 017, Lanes 10 and 11 Ost_chi 017.3, Lanes 13and 14 
Ost_chi 018.4, Lanes 16 and 17 Ost_chi 019, Lanes 18 and 19 Ost_chi 022, Lanes 
20 and 21 Ost_chi 022.1, Lanes 22 and 23 Ost_chi 023, 

Figure 2.4d Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 2 
and 3: Ost_chi_029; Lanes 4 and 5: Ost_chi 030.1, Lanes 6and7: Ost_chi 033, 
Lanes 8 and 9 Ost_chi 035, Lanes 10 and 11 Ost_chi 037, Lanes 13and 14 
Ost_chi 038, Lanes 16 and 17 Ost_chi 039, Lanes 18 and 19 Ost_chi 042, Lanes 
20 and 21 Ost_chi 042.1, Lanes 22 and 23 Ost_chi 043.1, Lanes 24 and 25 
Ost_chi 044.1 Lanes 26 and 27 Ost_chi 043 

 



Chapter Two: A study of the microsatellite loci of the Bluff Oyster (Ostrea chilensis) 

 
37 

 

  

Figure 2.4e Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 2 and 
3: Ost_chi_045; Lanes 4 and 5: Ost_chi 045.1, Lanes 6and7: Ost_chi 047.1, Lanes 
8 and 9 Ost_chi 049.1, Lanes 10 and 11 Ost_chi 050, Lanes 13and 14 Ost_chi 
051, Lanes 16 and 17 Ost_chi 051.1, Lanes 18 and 19 Ost_chi 053, Lanes 20 and 
21 Ost_chi 053.1, Lanes 22 and 23 Ost_chi 053.2, Lanes 24 and 25 Ost_chi 058 

      

 

Figure 2.4f Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 
2 and 3: Ost_chi_060; Lanes 4 and 5: Ost_chi 061, Lanses 6and7: Ost_chi 
062, Lanes 8 and 9 Ost_chi 063, Lanes 10 and 11 Ost_chi 064.1, Lanes 
13and 14 Ost_chi 064.2, Lanes 16 and 17 Ost_chi 65, Lanes 18 and 19 
Ost_chi 065.1, Lanes 20 and 21 Ost_chi 066, Lanes 22 and 23 Ost_chi 
066.3, Lanes 24 and 25 Ost chi 067 Lanes 26 and 27 Ost chi 068 

 



Chapter Two: A study of the microsatellite loci of the Bluff Oyster (Ostrea chilensis) 

 38 

 

  

Figure 2.4g Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 2 and 3: 
Ost_chi_068.1; Lanes 4 and 5: Ost_chi 068.3, Lanes 6and7: Ost_chi 070, Lanes 8 and 
9 Ost_chi 070.1, Lanes 10 and 11 Ost_chi 074, Lanes 13and 14 Ost_chi 075, Lanes 16 
and 17 Ost_chi 076.1, Lanes 18 and 19 Ost_chi 077, Lanes 20 and 21 Ost_chi 078, 
Lanes 22 and 23 Ost_chi 079, Lanes 24 and 25 Ost_chi 080Lanes 26 and 27 Ost_chi 
082 

 

Figure 2.4h Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. Lanes 2 and 
3: Ost_chi_083; Lanes 4 and 5: Ost_chi 084, Lanes 6and7: Ost_chi 087, Lanes 8 and 
9 Ost_chi 087.1, Lanes 10 and 11 Ost_chi 087.2, Lanes 13and 14 Ost_chi 088.1, 
Lanes 16 and 17 Ost_chi 089.2, Lanes 18 and 19 Ost_chi 084.3, Lanes 20 and 21 
Ost_chi 090, Lanes 22 and 23 Ost_chi 091, Lanes 24 and 25 Ost_chi 092, Lanes 26 
and 27 Ost_chi 095 
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Figure 2.4i Electrophoresis gel. Lanes 1, 14, 15, 28 Hyper ladder IV. 
Lanes 2 and 3: Ost_chi_096; Lanes 4 and 5: Ost_chi 096.1, Lanes 
6and7: Ost_chi 097.1, Lanes 8 and 9 Ost_chi 103, Lanes 10 and 11 
Ost_chi 104, Lanes 13and 14 Ost_chi 104.1, Lanes 16 and 17 Ost_chi 
104.2, Lanes 18 and 19 Ost_chi 105, Lanes 20 and 21 Ost_chi 106, 
Lanes 22 and 23 Ost_chi 109, Lanes 24 and 25 Ost_chi 110, Lanes 26 
and 27 Ost_chi 111 

 

Figure 2.4j Electrophoresis gel. Lanes 1, 28 Hyper ladder IV. Lanes 2 and 3: 
Ost_chi_113; Lanes 4 and 5: Ost_chi 114, Lanes 6and7: Ost_chi 116, Lanes 8 
and 9 Ost_chi 117, Lanes 10 and 11 Ost_chi 118, Lanes 12and 13 Ost_chi 
118.1, Lanes 14 and 15 Ost_chi 119, Lanes 16 and 17 Ost_chi 120, 
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Table 2.3: Primers that produced a clear band in the expected size region 

Primer 5’ to 3’ Forward Primer Sequence 5’ to 3’ Primer Sequence Reverse Repeat 
Motif 

Estimated 
product 
size (bp) 

Ost_chi_001.1 CTTTGGTCGAAATTGGCCT GCCGACCACTCTACGAGTAA (GA)9 ~ 60 
Ost_chi_001.5 TACAGTGGCGGATTTAAGCG AAACAAGAGACCACGATTTACCTT (CACC)5 ~95 
Ost_chi_001.9 AGTAGGTAACTTAAGTACGAGTAACCG CGTTACGTTCGTTACGGTTCG (AACGT)5 ~ 60 
Ost_chi_002 GGCTGCAAAATTTGGGTCTA CGGATGAGACCGAAATAACC (AG)5 ~100 
Ost_chi_002.4 AGACATTACTAGAAGGTCCACAGAA GACATTATCATTTTGAAAGTTGTCTT (TGAT)9 ~100 
Ost_chi_003.1 AGCCTCCAAATAGGTCACCA ATTGTGAGGGGACTCATGGA (ATC)9 ~110 
Ost_chi_007.2 CCCACCATATCCCCATCTTA GGTAGTACAACAAGATGACGAACAA (TA)13 ~100 
Ost_chi_013.1  TTGGAATATTCGGCATTGTG TCCAGAAAAGAAAGACTGAATGA (ATCT)6 ~119 
Ost_chi_015.2 CGACGAACTCGAAATAAAGGA TTGTCAGTCTGCCATTAGAGTCA (AT)11 ~120 
Ost_chi_016  GGATCGCCTCCAACTACAGA TTCGTTTGGTTTGGTTTTACG (AT)18 ~120 
Ost_chi_017  AAAAGGAGCCTCATGGTGAA ATAGTAACGTACACCGCCGC (AT)20 ~150 
Ost_chi_017.3 AAACGTACGGACCAACAACC CTCGACTTCACTGTACTGTCTCG (AG)12 ~100 
Ost_chi_018.4 GCAAGAACTTGTAACCAATCCC AGAGCCAATTTCGTGTTTGA (TTCAA)5 ~140 
Ost_chi_019  ACCTGACGTCGGTTCTCAGT CCCGTCGCTGAGTTAGTAGG (AC)17 ~100 
Ost_chi_022  CTCGGGCTGTTTTCATGTTT AACCCAATCGAAACAACACC (GA)10 ~150 
Ost_chi_023  ACCCGTCGTAACCTCGTAAC TCCGTACTCGTACTACCGGTCT (GTAC)5 ~150 
Ost_chi_024 AAATAAGTTCACCCGACCCC TTACGTTCGGTTACGGTTACG (AAGT)5 ~110 
Ost_chi_026 ACACCCTCGACATGAGGATT GAAGACCACATTCGAGTCATTG (TGA)8 ~130 
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Table 2.3(continued): Primers that produced a clear band in the expected size region 

Primer Name  5’ to 3’ Forward Primer Sequence  5’ to 3’ Primer Sequence Reverse  Repeat 
Motif  

Estimated 
product 
size (bp) 

Ost_chi_028 GGGCCAATTGTTGATTGTTC AGGCAAAGGTCTCAGGGATT (GGT)6 ~130 
Ost_chi_030.1 TGAAACGACAATCTCAAAACC CGTTCGTTAGTGTGTTGTGTTAG (TA)24 ~180 
Ost_chi_037 GTTTGGACGAAGGAGCAATC CCCAAAAGGTTTCATTACATTTC (AAAC)5 ~190 
Ost_chi_043.1  AGGCCAATATACGCGAAGTC TCGTGTGCCTTGTAGAGACG (GA)10 ~150 
Ost_chi_047.1  TTCAGTTTGCATATAAACTCGTTG CGGTAGGTAGTAAGAACGTAGTAGTG (TA)13 ~140 
Ost_chi_051.1  TGGAAAAGAGAAAAGGTCATTG TTACGTTCCTTCTTCGTACCAT (TA)14 ~140 
Ost_chi_053.1  GCCAACAGACTAACCGGAGT GGTAAAGTTTTAAGTTCGTGTCTGTC (GA)23  ~150 
Ost_chi_068.1  TTTGGTACTCTCCGTCCGTC GTATCCTCCTGTCCCAACCA (CTGT)5 ~160 
Ost_chi_074 GCCGGTGATATCATCTTCGT AGGGTGCAGTCAACGTATCC (GCG)9  ~200 
Ost_chi_075 TGCGTACTCGTCTTGGATTG CCTATTGTACGGAGTACTACTAAACCT (AATC)9  ~200 
Ost_chi_076.1 CACTGAGCTAAGGGGTAAATCC AGCCGAATTCACTATGTGCC (TA)12 ~200 
Ost_chi_084 CGTGATGCGTATCGAAAGAA TCTTGTCATGGCTATCGTGC (AT)8  ~200 
Ost_chi_087 TCACACTTCGTCTCACCCTG CTAATGACCCGATGGTGCTT (AG)17 ~200 
Ost_chi_096.1  TTGCCAAAACGCTTAACTGA AGGACTCCACATGGAGACATAA (TTG)10 ~200 
Ost_chi_105 AAGCCTTATTAGGTCAAAAGGTCA CCAGAGAATCAACAACACATTTTC (TA)14 ~250 
Ost_chi_110 AATTTAAGATGCAATCTTGTAAATGTT GTCCCCACCTTCCATTGAC (CATG)6  ~250 
Ost_chi_113 CGACGTACGAAACGGTTAGG TTACGGGTAACGGTAACGGA (TAC)7 ~250 
Ost_chi_120  CCTTGGCCAGAGGTTAATTG TTACGTTACGTTAGTTTAGTTTCGTTT (AG)26 ~300 

 

 

 



Chapter Two: A study of the microsatellite loci of the Bluff Oyster (Ostrea chilensis) 

 42 

 

 Figure 2.5: Contribution of each repeat type to genomic DNA  
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Figure 2.6: Frequency of repeat motif of each microsatellite type 
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Figure 2.7: Length distributions of the microsatellite arrays
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Table 2.4: Characterisation of microsatellite loci 

Primer Pair n Allele size range Na Ho He Fis pHWE 

Ost_chi_013.1 37 104-124 4 0.486 0.497 0.021 0 
Ost_chi_074 15 206 - 218 3 0.188 0.588 0.681 0.005 
Ost_chi_076.1 16 222-241 4 0.5 0.572 0.126 0.306 
Ost_chi_084 30 230-234 3 0.6 0.455 -0.348 0.675 
 

  

Table 2.5a: BLAST hits with published Ostrea edulis repetitive DNA on GenBank  

454 Sequence e-value Hit Accession Sequence information 
GQ6D37002JSVIY 5.44E-36 AF274886 Microsatellite Oe3/37 
GQ6D37002JR5Y7 1.40E-55 FJ236829 Microsatellite Oed315 
GQ6D37002JIVW8 3.40E-53 AF190985 Microsatellite Oe1/10 
GQ6D37002HJRD2 2.81E-91 AF297864 Microsatellite HA21 
GQ6D37002FBTPU 1.95E-41 FJ236824 Microsatellite Oed243 
GQ6D37002FHVWN 7.03E-24 AF297862 Microsatellite HA7 
GQ6D37002FR8MK 2.75E-49 FJ236825 Microsatellite Oed258 
GQ6D37002G2DIF 1.85E-85 AF297863 Microsatellite HA10 
GQ6D370021C6PR 1.34E-21 FJ236819 Microsatellite Oed202 
GQ6D37002GY4NP 1.06E-97 AF190986 Microsatellite Oe1/21 
GQ6D3700216UIE 1.32E-50 FJ236822 Microsatellite Oed234 
GQ6D3700212BVY 3.29E-27 FJ236816 Microsatellite Oed180 
GQ6D37002ILUPB 1.36E-21 AF297865 Microsatellite HA11a 
GQ6D37002IVCIS 2.79E-31 AF310010 Microsatellite OeduH15 
GQ6D37002J2M7H 1.55E-63 AJ864934 BclI repeat element 
GQ6D37002ILYOA 6.46E-48 AJ864931 BclI repeat element 
GQ6D37002IHAUN 4.06E-42 AJ864933 BclI repeat element 
GQ6D37002IB2DA 9.57E-69 AJ864927 BclI repeat element 
GQ6D37002I4UZJ 1.32E-56 AJ864929 BclI repeat element 
GQ6D37002FNKDL 9.57E-69 AJ864930 BclI repeat element 
GQ6D37002FNKDL 3.22E-72 AJ864928 BclI repeat element 
GQ6D37002F7LDL 8.44E-62 AJ864932 BclI repeat element 
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Table 2.5b: BLAST hits with published Ostrea conchaphila repetitive DNA on GenBank 

454 Sequence e-value Hit 
Accession Sequence information 

GQ6D37002F8V9W 1.20E-35 EU587420 A107 microsatellite sequence 
GQ6D37002FWYOP 3.33E-94 EU587488 D130 microsatellite sequence 
GQ6D37002G86QI 2.42E-52 EU587462 C130 microsatellite sequence 
GQ6D37002GPZXC 8.84E-41 EU587444 C102 microsatellite sequence 
GQ6D37002HHCC2 1.70E-59 EU587483 D123 microsatellite sequence 
GQ6D37002J08NF 1.84E-174 EU587454 C117 microsatellite sequence 
GQ6D37002JCZK0 3.52E-24 EU587485 D126 microsatellite sequence 
GQ6D37002JHQWV 1.85E-107 EU587410 A5 microsatellite sequence 
GQ6D37002JIJKU 2.31E-106 EU587477 D115 microsatellite sequence 
GQ6D37002JIJKU 2.02E-92 EU587405 D104 microsatellite sequence 
GQ6D37002JUJI9 1.25E-65 EU587459 C124 microsatellite sequence 
GQ6D37002JZOLO 3.65E-28 EU587478 D117 microsatellite sequence 
 

Table 2.5c: BLAST hits with published Crassostrea gigas repetitive DNA on GenBank 

454 Sequence e-value Hit Accession Sequence information 
GQ6D37002FNKDL 2.61E-66 AJ864912 BclI repeat element 
GQ6D37002FNUKH 7.00E-61 AJ864902 BclI repeat element 
GQ6D37002IM7ST 1.50E-37 AF051185 BZ72x microsatellite 
GQ6D37002JJ1BS 1.04E-45 AJ864913 BclI repeat element 
 

Table 2.5d: BLAST hits with published Crassostrea virginica repetitive DNA on GenBank 

454 Sequence e-value Hit Accession Sequence information 
GQ6D37002IBJDZ 5.99E-54 AY644659 Cvi2i20.fa microsatellite 
GQ6D37002G2EGR 3.32E-24 AF276251 Cvi-10 microsatellite 
GQ6D37002ILGW1 2.45E-58 AJ864923 BclI repeat element 
GQ6D37002ILGW1 2.45E-58 AJ864924 BclI repeat element 
GQ6D37002ILGW1 2.45E-58 AJ864925 BclI repeat element 
GQ6D37002ILGW1 2.45E-58 AJ864926 BclI repeat element 
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Table 2.5e BLAST hits with published Crassostrea hongkongensis repetitive DNA on 
GenBank 

454 Sequence e-value Hit Accession Sequence information 
GQ6D37002HJLEB 1.46E-71 GQ925415 CHK62 microsatellite sequence 
GQ6D37002HJLEB 1.20E-68 GU952821 Ch301 microsatellite sequence 
GQ6D37002HJLEB 2.29E-70 GU952836 Ch316 microsatellite sequence 
GQ6D37002JCC5O 5.54E-71 GU952824 Ch304 microsatellite sequence 
GQ6D37002HJLEB 1.01E-72 GQ925415 Chk62 microsatellite sequence 
GQ6D37002HJLEB 2.95E-47 GU952836 Ch316 microsatellite sequence 
GQ6D37002HJLEB 1.09E-72 HM461239 Ch306 microsatellite sequence 
GQ6D37002HJLEB 1.77E-33 HM461241 Ch308 microsatellite sequence 
GQ6D37002HJLEB 9.13E-36 HM461247 Ch314 microsatellite sequence 
 

`

 

Figure 2.8: Alignment of a potentially orthologous microsatellite repeat shared between 

Ostrea chilensis (GQ6D37002G2EGR) and Crassostrea virginica (AY644659). 
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2. 4 Discussion  
 

An abundance of microsatellite regions has been found in the genome of O. chilensis. The 

microsatellite loci were further examined to describe patterns, with an aim to describe 

mutational processes that are generating the microsatellites. Unexpectedly, tri- -nucleotide 

repeat motifs were the most common (Figure 2.5). In coding regions tri-repeats are found to 

be the most common repeat type in most taxonomic levels (Toth et al. 2000). The reason is 

because an addition or subtraction of a tri-repeat would not cause a change in the reading 

frame- meaning it is likely that it would not be under selection (although some diseases are 

caused by tri-nucleotide repeat expansions that could come under selection pressure). 

However the 454 sequencing was obtained from genomic DNA which includes both exons 

and introns. It is expected that the most common repeat in genomic DNA are dinucleotide 

repeats. The 454 sequencing could be biased towards exons or O. chilensis is un-usual in its 

microsatellite abundance. Microsatellites are thought to be generated by slippage of the DNA 

polymerase enzyme during replication. It may be possible that the polymerase enzyme may 

slip more often on different repeat types. However, in this study there seems to be no 

difference between the mean lengths of each repeat type - the mean length seems to be 

constrained to around 12 bp to 15 bp for all repeat types (Figure 2.7). This suggests that there 

could be a limit to the size of the microsatellite repeat length. Moreover, there was a clear 

pattern in the length of microsatellites with very few microsatellite regions being any longer 

than 30 bp. Some studies have suggested there is a general trend of increasing expansion of 

the length of the microsatellite repeat (Chambers and MacAvoy, 2000). However, there is 

clearly a limit to the length as is demonstrated in the present study. The reason for this upper 

size limit is thought to be evolution of point mutations within the microsatellite region, which 

can result in polymerase stability around the repeat sequence area (Kruglyak et al.  1998) this 

seems to be the case in Figure 2.8 (this is discussed later in the chapter).  

(AC) n, (AT) n and (AG) n are more common than (CG) n repeats (Figure 2.6). The (CG) n 

repeat has been found to be rare in many other studies ((Toth et al.  2000,  Subramanian et al.  

2002, Katti et al. 2001, Karaoglu et al. 2005, Kim et al. 2008, Castagnone-Sereno et al. 2010, 

Sonah et al. 2011 and Meglécz et al. 2012). It is likely that the finding in this thesis research 

and other studies that (CG) n repeats are rare is a genuine occurrence. This pattern cannot be 

explained by CG content of the genome in O. chilensis (CG content of the 454 database is 

35.7%). A possible reason for this is that there are three hydrogen bonds between C and G 
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and only two between A and T, which could increase the stability and hence reduce 

mutability. Furthermore, (CG) n repeats can undergo methylation of cytosine in most 

eukaryotic genomes, the methylated cytosine tends to mutate to thymine (Bird et al. 1986, 

Schorderet et al. 1992, Pelizzola et al. 2011). Toth et al. (2000) reported the patterns of 

repeat motif are not consistent across taxa; the most abundant di-repeat is (AC) n in mammals, 

whereas (AG) n is under-represented in Caenorhabditis elegans. Therefore, it is difficult to 

make further comparisons here as the finer details seem to be species specific. 

The most common tri-repeats in the present study are (AAT) n and (ATC) n, interestingly here 

the (CCG) n repeat is one of the rarest, but in the study of Toth et al. (2000) they found this 

repeat to be the most frequent in vertebrate groups, which again demonstrates that there is no 

common pattern of repeat motif across taxa. By far the most common tetranucleotide repeat 

in the O. chilensis data set is (ACGT) n. Toth et al. (2000) found that repeats that contained 

<50% GC were more abundant; there was, however, no common taxonomic pattern. These 

species-specific patterns indicate different forces acting on evolution of the repeats.  

In a recent study by Meglécz et al. (2012) the authors conducted a survey of 454 shotgun 

sequences from 154 non-model organisms. Their finding suggest that there is much 

heterogeneity in comparison of microsatellite sequences in evolutionary clades that are older 

than around 200 million years ago (MYA) – a phylogenetic signal was found in the 

comparisons that are more recent than this cut off point. This suggests that sampling within 

the oyster clade could reveal a phylogenetic signal, which could help further describe patterns 

and processes of evolution in this group. However, there are few comparative studies that 

have characterised microsatellite regions - these research questions need to be addressed as it 

will lead to a better understanding of the evolutionary mechanisms that are generating 

microsatellite loci. Of particular interest would be to compare the repeat motifs at different 

hierarchal levels in the Class Bivalvia to find out if there is any phylogenetic conservation of 

repeat motif. 

One limitation of this study is that a 454 genome sequence may be biased, and may to fully 

represent the entire genome of the species in question – therefore any comparisons of 

findings may not be biologically meaningful. However, this concern has been addressed by 

Meglécz et al. (2012), the authors found that while a 454 shotgun reads are not a perfect 

representation of the genome – they did find a high correlation of  variables generated 
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through 454 sequencing and their genomic counterparts. The authors conclude that inferences 

made using 454 shot gun reads are biologically meaningful.   

PCR primers for length polymorphic microsatellite loci have been designed for O. chilensis 

in this thesis study, however, for a robust population genetic study more work is needed to 

confirm their reliability. Loci Ost_chi_076.1 and Ost_chi_084 had significant deviations from 

HWE; the reasons could be null alleles. Molluscs have been shown to have a high proportion 

of null alleles (Li et al. 2003; Astanei et al. 2005). Null alleles are thought to result from 

substitutions in the flanking region, which could inhibit PCR primer binding. McInerney et 

al. (2011) found the occurrence of cryptic repetitive DNA in the flanking sequence, which 

cause multiple PCR primer binding making it difficult to interpret.  

The approach of using 454 sequencing, followed by touchdown PCR and M13 sequence 

tagging, has been shown to be a fast and cost effective method of generating novel 

microsatellite markers for a number of species. However, the process has been problematic 

with O. chilensis. A total of 125 primer pairs were tested but only four those primer pairs 

were shown to consistently amplify DNA of the expected size range. Other primer pairs had 

problems associated with: excessive stutter, the presence of monomorphic peaks, or simply 

did not amplify DNA. This is a very low success rate compared with other studies in our 

laboratory (e.g. Constable 2014; Hannan 2014; Silva and Gardner 2014).  Failure rates are 

generally not published in the literature (presumably due to the belief that generating robust 

markers from genomic sequencing data is now routine), so it is difficult to assess if other 

researchers have had similar problems.  

In a search for orthologous DNA sequences, the custom blast database was BLASTED 

against all repetitive elements found for oysters on GenBank. There were many highly 

significant (<e-20) matches between the 454 database and microsatellite sequences published 

for oyster species that were retrieved from GenBank (Table 2.5a to 2.5e). PCR primers 

already developed for these loci could be transferable to O. chilensis. Many of the blast hits 

were downstream or upstream of the microsatellite repeat region so in many cases it was 

impossible to compare the size or repeat unit of the microsatellite to the O. chilensis database 

sequences, but given the very low e-values overall, it is unlikely that these hits were matched 

by chance and they are likely to reflect conserved sequence regions which are homologous 

between species. It should also be noted that the ‘best’ hits were restricted to single matches, 

therefore, looking for more than one match with potentially lower e-values could reveal more 
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coverage of the microsatellite regions, and allow comparison of repeat motifs. There was, 

however, one exception: in one locus the query and reference sequences overlapped to show 

a common microsatellite loci (Figure 2.7). The figure illustrates an alignment between a 

sequence from the 454 data set and the microsatellite region Cvi2i20.fa from Crassostrea 

virginica. Here it is possible to see the BLAST hit is in the conserved flanking region, and the 

query and reference sequences overlap to review a common microsatellite motif. In O. 

chilensis the repeat appears to have become a compound repeat - the accumulation of 

substitutions in a microsatellite repeat have been postulated as the cause of limited expansion 

(death of the microsatellite). It should be noted that the BLAST hits are limited by a ‘bias’ on 

GenBank – not all oyster species have had their genomic sequences annotated for 

microsatellite loci – the identification of further orthologous sequences is expected if more 

research is conducted in non-commercial oyster species or when full genomes are annotated 

for microsatellite sequences.  

Many of the BLAST hits were for transposable elements, and there were many sequence 

matches to the transposon related satellite sequence BclI. This has been found in a number of 

oyster species (López-Flores, et al.  2004), but it is the first time BclI has been identified in 

O. chilensis. Closer investigation of the association of transposons with microsatellite loci is 

needed as it could be the reason for low success rate in the amplification of microsatellite loci 

in this thesis. This will provide an avenue for further research. 

Interpretation of microsatellite alleles has been problematic in some studies due to the 

occurrence of null alleles, homoplasy and deviations from Hardy-Weinberg expectations. 

Reece et al. (2004) found high levels of polymorphism in microsatellite flanking regions 

resulting in null (non-amplifying) alleles, and some markers were also found to depart from 

Mendelian ratios, both as heterozygote excess and deficit. Hedgecock et al. (2004) found 49 

of 96 microsatellite markers to contain null alleles in the Pacific Oyster (Crassostrea gigas). 

Li et al. (2003) tested microsatellite markers for inheritance patterns in the abalone Haliotis 

discus hannai, of the seven loci they tested four contained null alleles. Not conforming to 

HWE could mean that there are high levels of inbreeding, or selection at a particular locus, or 

it could be due to the Wahlund effect (Nielsen et al. 2003). Further work is therefore needed 

to determine the reason for a deviation from HWE of the loci developed in this study. This 

could follow the work of Brownlow et al. (2008), in this study they aimed to distinguish 

whether deviations from HWE were due to natural processes or null alleles. To achieve this 

they redesigned primers for loci that showed a heterozygote deficiency – in some individuals 



Chapter Two: A study of the microsatellite loci of the Bluff Oyster (Ostrea chilensis) 

 52 

they were able to amplify a second allele – demonstrating that the deviation from HWE was 

due to unreliable primers and not natural causes. This could be the case with Ost_chi_076.1 

due to there being fewer heterozygotes than expected. 

Another potential problem with microsatellite markers is homoplasy, which in microsatellite 

alleles of the same length can be a source of underestimation of allelic diversity. This may 

then overestimate the rate of gene flow when mutation rate is high (Epperson, 2004). There 

are two types of homoplasy: ‘detectable’ and ‘un-detectable’. Undetectable homoplasy could 

occur if the two alleles are identical by size but not by descent, detectable homoplasy occurs 

when there is a point mutation in the flanking region creating an allele the same size as an 

existing one. Adams et al. (2004) found homoplasy was only common for compound and 

interrupted repeats and that empirical estimates of detectable homoplasy reported only a 

slight (1-2%) underestimation of genetic differentiation. Sequencing of parental microsatellite 

alleles to establish actual allele sizes can reveal size homoplasy and the presence of more 

than one lineage. MacAvoy et al. (2008) found size homoplasy within most of their 

microsatellite loci for greenshell mussels, with one locus showing almost three times as many 

alleles by sequence as by size.  

2. 5 Summary 
 

1. This study has identified many microsatellite regions for the commercially important 

oyster species Ostrea chilensis. Four sets of PCR primers have been designed to amplify 

polymorphic microsatellite loci. More work is needed to develop a panel of reliable PCR 

primers for length polymorphic microsatellite loci. The data presented will aid that work. Due 

to the difficulties in developing reliable length polymorphic microsatellite primers for O. 

chilensis an alternative marker was employed for use in the population genetics study 

presented in the next chapter. 

2. The presence of orthologous microsatellite regions in different oyster species has been 

identified. They could be used to study the evolution of microsatellites in oysters, and they 

could have potential for marker transfer to O. chilensis for use in population genetic studies. 

3. Further study into the relationship between flanking regions of microsatellite repeats, and 

the association of transposons in the microsatellite containing sequences, could be an 

interesting area of further research, and a step towards identifying the reasons for the 

difficulties in this study. 
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2.7 Appendix 
 

Appendix 2.1: Hexanucleotide repeats  

Repeat Motif Frequency 
AACGTT 655 
AAACGT 346 
ACACAT 254 
AACGGT 239 
AACCGT 214 
AACCCT 142 
AAAAAC 110 
AAAAAT 110 
AACTAC 97 
AAACTT 95 
AAAGTT 81 
AAAAAG 78 
AAAACT 68 
ACTAGT 65 
AAAATT 61 
ACCCGT 61 
AATAGT 59 
AAGGTC 56 
ACCCCC 52 
AATACT 50 
AAACCT 48 
ACACGT 47 
ACGTAT 47 
ACATAT 42 
AAATAT 40 
AACCTT 40 
ACATGT 39 
AATTAC 36 
AAAAGT 33 
ACACAG 33 
ACGACT 32 
AAAGGT 30 
ACCGGT 30 
AAAATG 28 
ACGAGT 26 
AAATAC 22 
AAATCT 22 
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AAATTC 22 
AAATTT 21 
AAACGG 20 
AAACAG 19 
ACAGGT 19 
ACCACT 19 
AGATAT 19 
ACAGAG 18 
AAAATC 17 
ACATAG 17 
AAATGT 16 
AAGAGT 16 
AAGTAG 16 
ACGTAG 16 
AGGGGG 15 
AAAGAG 14 
AAAGAT 14 
AATTAG 14 
AAACAC 13 
AAGTAC 13 
AAAACC 12 
AACAAT 12 
AGAGCG 12 
ATCCCG 12 
AAATAG 11 
AATGAT 11 
ACAGAT 11 
AACTAT 10 
AAGGGT 10 
ACCCCT 10 
AAAAGG 9 
AAACAT 9 
AAATTG 9 
AACAGC 9 
AATTAT 9 
AAAGTG 8 
AACATT 8 
AAGAGG 8 
AAGTCT 8 
AAGTGT 8 
AAACTC 7 
AACACT 7 
AACGAC 7 
AACTTG 7 
AAGTAT 7 
AATCAT 7 
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AGAGAT 7 
ATCCCC 7 
AAAACG 6 
AAAGTC 6 
AACACC 6 
ACACTC 6 
ACTCCT 6 
AAACCC 5 
AAATGG 5 
AACAAG 5 
AACTGT 5 
AAGAAT 5 
AAGGAC 5 
AAGGAT 5 
AATGTC 5 
ACCTAT 5 
ACTCTC 5 
AAACCG 4 
AACAGT 4 
AACATC 4 
AACTAG 4 
AACTCT 4 
AACTTC 4 
AAGGGG 4 
AATATC 4 
AATGGT 4 
ACACCC 4 
AGATCG 4 
AAACTG 3 
AAAGAC 3 
AACCCC 3 
AACCCG 3 
AACGAG 3 
AAGATC 3 
AATATG 3 
AATATT 3 
AATCCC 3 
AATGAC 3 
AATGTG 3 
AATTCC 3 
ACCCTC 3 
ACGGAT 3 
AGGGAT 3 
CCCCCG 3 
AAAAGC 2 
AAATCG 2 
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AACACG 2 
AACATG 2 
AACCAC 2 
AACCAG 2 
AACCAT 2 
AACCGG 2 
AACGGG 2 
AACTGG 2 
AAGACG 2 
AAGACT 2 
AAGCAT 2 
AAGCGG 2 
AAGGAG 2 
AAGTCC 2 
AATACC 2 
AATACG 2 
AATCAG 2 
AATCCG 2 
AATCTC 2 
AATCTG 2 
AATTCG 2 
ACAGGG 2 
ACAGTC 2 
ACATCT 2 
ACATGG 2 
ACCACG 2 
ACCAGT 2 
ACCCCG 2 
ACCCTG 2 
ACCGAT 2 
ACCTAG 2 
ACCTCT 2 
ACTAGG 2 
ACTATC 2 
ACTCAT 2 
AGAGCT 2 
AGAGGG 2 
AGATGG 2 
AAAGCC 1 
AAAGCT 1 
AAAGGC 1 
AAAGGG 1 
AACAGG 1 
AACGAT 1 
AACGTC 1 
AACGTG 1 
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AACTCG 1 
AACTGC 1 
AAGATG 1 
AAGATT 1 
AAGCAC 1 
AAGCGT 1 
AAGGGC 1 
AAGTCG 1 
AATAGC 1 
AATAGG 1 
AATCAC 1 
AATCCT 1 
AATCGG 1 
AATCGT 1 
AATGAG 1 
ACACCT 1 
ACACTG 1 
ACAGCC 1 
ACAGCT 1 
ACAGTG 1 
ACATGC 1 
ACCATG 1 
ACCCAG 1 
ACCGAG 1 
ACCGCG 1 
ACCGGG 1 
ACCTCC 1 
ACCTGC 1 
ACGAGG 1 
ACGATC 1 
ACGATG 1 
ACGCAT 1 
ACGCGC 1 
ACGGGG 1 
ACGTCC 1 
ACGTCG 1 
ACTATG 1 
ACTGAT 1 
AGATCT 1 
AGCCGG 1 
AGGATC 1 
AGGATG 1 
AGGCCG 1 
AGGCCT 1 
AGGGCG 1 
ATATGC 1 
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ATCATG 1 
ATCGCC 1 
 

Appendix 2.2: Pentanucleotide repeats 

Motif Frequency 
AACGT 3433 
ACCGT 581 
ACTAT 246 
AACTT 232 
ACACT 222 
AAACT 199 
AACCT 114 
AAAGT 110 
ACTCT 109 
AAACG 87 
AAAAT 82 
AAAAC 67 
AAATC 67 
AAGAG 62 
AAGGT 60 
AAATT 44 
ACCCT 44 
AAAAG 41 
AATAT 41 
AACAC 31 
AATTC 31 
AATAC 30 
ACCCC 30 
ACGAG 30 
AAATG 21 
ACACG 16 
AATGT 15 
AACGG 13 
AACAG 11 
AACCG 11 
AAGAT 11 
AGAGG 11 
AACTG 10 
ACAGT 9 
ACTAG 8 
AACAT 7 
ACGCG 7 
AGGCC 7 
AGGGG 7 
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ACACC 6 
AAACC 5 
AACCC 5 
ACAGG 5 
ACTCC 5 
AAAGG 4 
AATAG 4 
AATCT 4 
ACCGG 4 
ATATC 4 
AATCG 3 
ACCAG 3 
ACCAT 3 
ACTGC 3 
AAAGC 2 
AAGTC 2 
ACCCG 2 
ACGGG 2 
AGATG 2 
AGCCG 2 
AGCGG 2 
AGGAT 2 
CCGCG 2 
AAGAC 1 
AAGCG 1 
AAGGG 1 
AAGTG 1 
AATGC 1 
AATGG 1 
ACATC 1 
ACCTG 1 
ACGAT 1 
AGCCC 1 
AGCCT 1 
ATCCC 1 
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Chapter Three: A Population Genetics 
Analysis of Ostrea chilensis Using 
Randomly Amplified Polymorphic DNA  

 

 “Nothing in Biology makes sense except in the light of evolution” – Theodosius Dobzhansky 

"Nothing in evolution makes sense except in the light of population genetics." – Michael 
Lynch 

3.0 Aims 
 

This is the first study into the population genetic structure of the commercially important 

oyster, Ostrea chilensis, using samples from New Zealand and Chilean sites. The aims of the 

study are to: (1) develop genetic markers for the species, (2) investigate patterns of genetic 

structuring in this species, (3) test for the presence of boundaries to gene flow in New 

Zealand, and (4) determining the level of gene flow between New Zealand and Chile.  

3.1 Introduction  
 

Understanding a species population genetic structure is important for a number of reasons: it 

provides a base line measure of genetic diversity, this can be used to monitor subsequent 

genetic changes; it also identifies genetic resources that can potentially be used for selective 

breeding and aquaculture. At a broader scale, it can provide an insight into the larger scale 

patterns and processes that generate biodiversity. The evolutionary potential of a species and 

its adaptability is assumed to be higher with increased genetic variation, therefore, it should 

be monitored over time, and used to inform management, and conservation plans. 

3.1.1 Spatial genetics in the marine environment 
 

There are three spatial patterns that are used to describe the population genetic structure of a 

species: (1) Panmixia, the complete mixing of alleles among individuals that make up a 

single population; (2) Distinct populations, whereby individuals will breed mainly with 

individuals from their local area creating genetically distinct groups; (3) isolation-by-

distance, based on an island model of dispersal, populations that are adjacent to each other 
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are more closely related than geographically distant populations (Wright, 1943); and (4) 

Chaotic patchiness, where the patterns of genetic structure do not reflect geographic 

proximity – this fourth spatial pattern is thought to be the result of stochastic processes.  

Despite the lack of any obvious barriers to gene flow, and the vast dispersal capabilities of 

many marine organisms, it is not uncommon for populations to display significant levels of 

genetic differentiation (Neilsen et al. 2009a). The processes that generate this differentiation 

involve a complex interaction of the organisms’ biology with environmental and physical 

variables, which may generate barriers to gene flow and/or create selection gradients. 

The biology and behaviour of an organism are a major influence to the population genetic 

structure of the species. Shanks and Brink, (2005) found that larvae of the Tellina spp. and 

Mulinia lateralis were able to avoid being swept off shore and on shore by adjusting their 

swimming behaviours to reflect times of upwelling and down welling. In marine organisms, 

and particularly marine invertebrates, pelagic larval duration (PLD) is thought to be an 

important factor that determines the levels of genetic differentiation. Previous studies have 

suggested that population subdivision is higher in species with direct development  rather 

than planktonic development; and that increasing dispersal duration should facilitate 

increased gene flow among populations, this assumption is generally true. The Brittle Star 

Amphipholis squamata, is a brooding species, which is thought to limit dispersal. In New 

Zealand it has been shown to have distinct population subdivision (Roy and Sponer, 2002). 

Despite having the longest known PLD of any known species (>2 years), the New Zealand 

rock lobster (Jasus edwardsii)  has three distinct populations within New Zealand (Thomas 

and Bell, 2013). Recently, in a large-scale analysis of the effects of geography and life history 

traits in benthic marine fishes, PLD was found to be unable to account for genetic variation 

(Riginos et al. 2011). Also, Weersing and Toonen (2009) analysed 300 peer reviewed studies, 

they did not find a relationship with PLD and genetic structure after direct developers were 

removed from the study. These results suggested that other factors such as larval behaviour or 

oceanographic features are more influential in creating genetic structure. However, Faurby 

and Barber (2012) in a theoretical analysis of the correlation between PLD and estimates of 

population genetic structure found that a weak correlation between PLD and genetic structure 

could be the result of variation and uncertainty in the terms associated with inferring genetic 

structure from Fst estimates. Two dispersal mechanisms that have received less attention are: 

sperm dispersal and post-larval dispersal by drifting or rafting. Sperm dispersal has been 

identified as the main strategy of connectivity between fragmented populations of the sponge 
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Scopalina lophyropoda (Blanquer and Uriz, 2010). Sperm dispersal could be an important 

mechanism of gene flow in brooding organisms such as O. chilensis. Although empirical 

studies of the colonial hydroid Hydractinia echinata have shown sperm dispersal only 

contributes to gene flow over small spatial scales (3 metres) (Yund, 1990). Dispersal by 

rafting invertebrates has achieved much more attention (Grantam et al. 2003; Highsmith, 

1985). Dispersal by rafting on kelp has been suggested for the occurrence in Chile of O. 

chilensis, which is thought to have originated in New Zealand (Foighil et al. 1999).  

The sea appears to be an open environment without barriers to gene flow, however, a number 

of studies have reported strong barriers to gene flow in the ocean. Thornhill et al. (2008) 

found a barrier to intercontinental movements at the Arctic Polar Front, for the nemertean 

worm, Parborlasia corrugatus. In New Zealand, upwelling in the Cook Strait has been 

posited as a barrier to gene flow in a number of studies of different species: in the 

echinoderm Patiriella regularis (Waters and Roy, 2004); the New Zealand green shell mussel 

Perna canaliculus (Apte and Gardener, 2001); the brittle star Ampholis squamata (Sponer, 

2002); and in three limpet species Cellana ornata, Cellana radians and Cellana flava 

(Goldstein et al. 2006). Although, the mechanistic cause is unknown anthropogenic 

influences have be implicated as barriers to gene flow. Puritz and Toonen (2011) in a study of 

the Bat Star (Patiria miniata) found the coastal populations of the Southern Californian Bight 

land runoff and pollution are not only increasing population genetic structure,  but also 

decreasing genetic diversity in populations closest to the pollution.  

Studies that tested for correlations between environmental factors and genetic structure in the 

marine environment (termed seascape genetics), have identified selection gradients that may 

shape population genetic structure despite high levels of migration (Selkoe et al. 2010). 

Persistent environmental gradients or complex mosaics of environmental variables may 

impose divergent selection on populations. This may result in individuals becoming locally 

adapted. The selection pressures may overwhelm the effects of gene flow from other non-

adapted, distant populations - especially if they are large populations. It is important to 

appreciate that molecular subdivision is not needed for local adaptation. In populations with 

high gene flow there can be homogeneity of neutral allele frequencies among populations, but 

not all loci are necessarily homogeneous if they are under selection. Therefore, a different 

population structure could be found when comparing neutral loci with those under selection. 

There has been a growing awareness that there are fine scale environmental gradients in the 

sea;  recent studies have shown persistent environmental variables that can generate fine scale 



Chapter Three: A Population Genetics Analysis of Ostrea chilensis Using Randomly 
Amplified Polymorphic DNA 

 
69 

differences in genetic variation. Clines of environmental variation in the sea may promote 

local adaptation – although this is not an accepted fact. For example, the patterns of variation 

at the rhodopsin gene (RH1), which is crucial for dim light vision in vertebrates was found to 

match the characteristics of specific light environment suggesting local adaptation acting on 

the RH1 gene (Larmuseau et al. 2010). 

Often the pattern of genetic structure in marine species fits a model that has been described as 

‘chaotic genetic patchiness’. Although marine populations have significant levels of pairwise 

genetic differentiation they are often not correlated with geography, and/or the genetic 

structure can display temporal instability (Johnson and Black 1982; Hedgecock 1994; Selkoe 

et al. 2006; Arnaud-Haond et al. 2008). An unresolved question is whether this apparent 

‘chaos’ could be explained with better models.  

3.1.2 Previous work on the study species 
 

Oysters are an interesting group for studying the comparative effects of parental care. Oysters 

show a graduation of parental care from broadcast spawners to brooding species that release 

their young either as early planktotrophic larval stages, or as advanced larvae capable of 

immediate metamorphosis (Buroker, 1985). All oysters in the genus Ostrea brood their 

oysters in the pallial cavity (Buroker, 1985). O. chilensis has the longest brooding period 

lasting 8 weeks (Toro, 1990). The fully developed larvae are able to settle within minutes of 

release - although a portion of them may remain in the plankton for up to 20 days (Cranfield 

et al. 1968; DiSalvo et al. 1983; Cranfield and Michael 1989). This brooding strategy is also 

thought to prevent high larval dispersal (Toro and Gonzalez, 1990). An average of 70,000 

larvae can be expected per brooding female; this is low fecundity in comparison with other 

Ostrea species (Winter et al. 1984). The closely related flat oyster Ostrea edulis is a highly 

fecund species, with females spawning as many as 1-2 million eggs per brood (Cole, 1941). 

Fecundity and brooding strategy are important drivers of genetic structure and have achieved 

much attention in the literature.  

Previous work on the population genetics of O. chilensis has been carried out in Chile. In 

Chile the distribution of O. chilensis is restricted to the Isle of Chiloé and the Islands of 

Guaitecas. Toro and Aguilla (1996) conducted a study using allozymes as genetic markers in 

populations of O. chilensis that covered the whole distribution of this species in Chile. They 

found significant deficiencies of heterozygotes at some loci, as has been observed in a 
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number of bivalve studies (eg. Gaffney et al 1990). The work of Toro and Vergara (1996) 

suggests that post-settlement selection against heterozygotes may be a cause of these 

deficiencies. The mean value of Nei’s genetic distance (I) (Nei, 1972) was 0.846 that 

suggests differentiation between populations. The authors proposed that this is due to the 

shortened larval life stage and hence limited dispersal resulting in population structuring.  

More recently, Toro and Gonzalez (2009) investigated the genetic variation in natural 

populations in Chile. They used Randomly Amplified Polymorphic DNA (RAPDs) to analyse 

the levels of population differentiation. The authors sampled individuals from the same five 

wild populations along the inland coast of Chiloé and Guaitecas Islands as the previous study 

by Toro and Vergara (1995). Two of these populations have not been restocked, the other 

three populations had been stocked by the transfer of juveniles. Values of Nei’s genetic 

distance did not reveal significant differences among populations with an average of 0.113. 

The range of genetic differences is 0.0713 (between Caulin and Quempillen populations) to 

0.1549 (between Rilan and Melinka populations). They found levels of gene flow to be high 

(Nm = 1.587), this is high enough to break down genetic structuring caused by drift, given 

that genetic drift will result in substantial local differentiation if Nm <1 but not if Nm is >1 

(Slatkin, 1987). However, they did find a significant correlation between geographical 

distance and genetic distance supporting an isolation-by-distance model of population 

structure. The authors suggest the high levels of gene flow could either be a consequence of 

anthropogenic movement of juvenile (seed) for stocking or the influence of oceanographic 

processes.  

3.1.3 Genetic Markers 
 

To elucidate the pattern of genetic structuring in O. chilensis samples in Chile and New 

Zealand, randomly amplified polymorphic DNA (RAPD) markers were used in this thesis 

research. Although RAPDs can have the problem of difficult interpretation, and concerns of 

limited reproducibility; they are simple to use, because no prior genomic information is 

needed, they only require a small amount of development effort, and the alleles can be 

quickly identified using gel electrophoresis. Also, a large number of markers that can enable 

high coverage of the genome can be quickly generated. Despite their limitations, RAPDs 

have been successfully used to study a range of marine species for example, the endemic 

New Zealand mussel Perna canaliculus (Star et al. 2003), two species of New Zealand 



Chapter Three: A Population Genetics Analysis of Ostrea chilensis Using Randomly 
Amplified Polymorphic DNA 

 
71 

endemic limpets (Scutellastra kermadecensis and Siphonaria raoulensis) (Wood and 

Gardner, 2007) and in Chilean populations of Ostrea chilensis (Toro and Gonzalez, 2007). 

3.1.4 Hypothesis  
 

Hypothesis One: genetic structure 

A very short pelagic larval duration results in limited dispersal potential, this results in 

genetic difference among populations, populations have limited exchange resulting in genetic 

differentiation (Fst >0, or ΦPT >0).  

Hypothesis Two: Isolation by distance 

When a Mantel test is conducted between geographical distance and genetic distance, there is 

a positive relationship (Rxy > 0). This would suggest that the population genetic structure 

around New Zealand can be explained by an isolation-by-distance model.  

Hypothesis Three: Barriers to gene flow 

Using the AWclust method to analyse the number of possible groups within the multilocus 

genotype data set for all individuals in all sampling sites, the most likely grouping will divide 

sampling sites into the a priori grouping of above and below 42°S as found in a number of 

other New Zealand studies of population genetics (e.g. Wei et al. 2013b).  
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3.2 Methods  
 

3.2.1 Sample collection 
 

Frozen and live samples were collected from locations around New Zealand and Chile (Table 

3.1) and sent to the laboratory. Approximately 60 – 100 mg of mantle tissue from each 

individual oyster was dissected, and then transferred to and stored in sterile 1.5 ml cryovials 

containing 70% ethanol and stored 4°C for later processing. Figures 3.1 and 3.2 show the 

locations of sampling sites in New Zealand and Chile. 

Table 3.1: Sampling size and localities 

Sampling site  n Decimal degrees   
   Latitude Longitude 
Northern group       
Cloudy Bay (CLO) 24 -412620 1740407 

Marlborough Sounds (MARL) 37 -411143 1735806 

Eastern group     
Chatham Island (CHAT)  35 -435443 -1763235 

Akaroa penisula (AKA) 22 -433652 1724304 

Chilean group     
Chiloé Island, Chile (CHI_1) 23 -422248 -732510 

Chiloé Island, Chile (CHI_2) 22 -430140 -732930 

Southern group     
Foveaux Strait (FOV_1) 23 -465551 1677118 

Foveaux Strait (FOV_2) 39 -466646 1681403 

Stewart Island (STEW_1) 34 -465349 1681024 

Stewart Island (STEW_2) 33 -464053 1675448 

Awarua Estuary (AWA) 33 -463428 1682459 
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Figure 3.1: Sampling locations around New Zealand 
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3.2.2 DNA Extraction  
 

The DNA extraction procedure was as follows: 600 μl of cell lysis buffer (100 mM Tris-HCl, 

pH 8.0, 50 mM EDTA, pH 8.0, 1% SDS (Sodium Dodecyl Sulfate)) was added to 1.5 ml 

tube. Approximately 15 mg of mantle tissue was added to the tube containing the lysis buffer 

and 6.0 μl  of proteinase K (20 mg/ml) was added to the tube; this was incubated at 65°C 

until the tissue was thoroughly dissolved. The tubes were then cooled to 4°C. Then 200 μl of 

Ammonium acetate was added to the tube, mixed thoroughly, cooled to 4°C for 10 min; the 

tubes were then spun in a centrifuge at 12,000 rpm for 10 min at 4°C. The supernatant was 

transferred to a new tube, and then centrifuged at 12,000 rpm for 10 min at 4°C. The 

supernatant was transferred to a new tube, and an equal volume of isopropanol (~600 μl ) was 

added, mixed and left to rest of 2 minutes. It was then spun in the centrifuge at 12,000rpm for 

10 minutes. The supernatant was removed and discarded with care to keep DNA at the 

bottom of the tube; 1 ml 70% ethanol was then added and inverted a number of times to wash 

the pellet. This was then spun in centrifuge at 12,000 rpm for 10 min. The ethanol was then 

discarded, the pellet was air dried for 10-20 min by leaving the cap of the tube open. The 

pellet was then resuspended in 100 μl water. The solution was then stored at -20°C until 

further analysis.  

 

Figure 3.2: Location of Chilean samples relative to New Zealand 
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3.2.3 Primer Screening 
 

Initial screening was performed using three individuals from disparate geographic locations 

and 30 decamer RAPD primers (Appendix 3.1) from Operon Technologies and 4 RAPD 

primers that were designed by Toro and Gonzalez (2007). Each individual was tested twice 

with the same primer. Primers that were retained for further analysis were those that showed 

reproducible, polymorphic and clear bands.  

3.2.4 PCR protocol 
 

For all PCRs the 12.5μl reaction mixture contained 6μl of MyTaQ red mix (Bioline), 3μl of a 

single decamer primer, and 1μl of DNA (around 10ng/μl). All amplifications were performed 

in a thermocycler (Labnet model: multigene gradient) The thermocycler was preheated to 

94°C and programmed for 40°C cycles: 4 initial cycles of 3 minutes at 94°C, 3 minutes at 

36°C and 3 minutes at 72°C; followed by 36 cycles of 30 seconds at 94°C, 1 minute at 36°C, 

2 minutes at 72°C; and then a final extension period of 8 minutes at 72°C. This PCR product 

was then held at 4°C until further analysis.  

3.2.5 Analysis of RAPD-PCR products 
  

PCR products were separated by electrophoresis in agarose gels. 10 µl of each PCR reaction 

was loaded to a 2% agarose in 0.5 TBE (0.045 M Tris, 0,045 M boric acid, 0.001 M EDTA) 

containing 0.5 µg/ml ethidium bromide; Hyperladder II (Bioline) was added to multiple lanes 

as a size standard. Electrophoresis was performed at 70 V for 3 hours. The DNA of the PCR 

product was visualised using UV illumination and the gels were photographed using a gel 

docking system (Uvitech Cambridge). The gels were inverted to a negative using built in 

software, and images were then analysed using GelAnalyzer (www.gelanalyzer.com), which 

estimates the size of each band by producing a calibration curve using the ladder of known 

fragments. This programme automates the process of genotyping making the determination of 

loci less subjective.  

Loci were named by the RAPD primer used and the estimated size. For example 

OPC_09_1600 is the loci/band amplified by the primer OCP 9 and 1600 is the estimated band 

size (in base pairs) (see Appendix 3.1 for a list of the loci). The bands were assessed for 

presence or absence in each DNA sample.  
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3.3 Data Analysis 
 

The following assumptions have been made about the data: (1) all of the loci have two alleles 

(presence of band and absence of band); (2) the bands do not co-migrate to the same position 

on the gel; (3) the populations are in Hardy-Weinberg Equilibrium (HWE) (4) the loci are 

from neutral parts of the genome (5) the loci are independent (there is no linkage 

disequilibrium). Where individual loci give very different values (2 standard deviations from 

the mean Fst) they have been excluded and the data set re-tested to examine their effects. 

Since it is difficult to test for HWE with dominant markers some of the later analysis is 

frequency based which does not assume HWE.   

A data set of presence or absence of homologous bands was created using all individuals. To 

test the reproducibility of the bands and the scoring error, a second data set was generated 

using 24 DNA samples taken from a range of sampling sites, and scored using the same 

protocols. The DNA samples were selected at random from unknown sampling sites and 

unknown oysters by another person. The samples were assayed for RAPD band diversity 

using all the primers as described above. The identity of the RAPD bands was compared to 

that of the original RAPD bands, and a scoring error rate of 2.5% was obtained, this was 

attributed to 5 loci that were scored differently. Once these loci were removed from the 

second data set an error rate of 0.01% was obtained. These loci were removed from the 

original data set before further analysis as they were determined to not give reproducible 

results. 

3.3.1 Genetic diversity 
 

Each RAPD band was treated as an individual locus with two alleles (absence and presence 

of band). Allele frequencies were estimated using the Bayesian method of Zhivotovsky 

(Zhivotovsky, 1999), with a non-uniform prior distribution implemented in the programme 

AFLP_SURV v1.0 (Vekemans et al. 2002). This method gives an unbiased estimate of gene 

diversity and population genetic structure from dominant markers (Zhivotovsky, 1999; 

Krauss, 2000). The number of polymorphic markers at the 5% level, i.e. with allele 

frequencies within the range of 0.05 to 0.95, and Nei’s gene diversity (H) were also computed 

in AFLP_SUR.  
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3.3.2 Outlier loci 
 

Fst was calculated using the allele frequencies generated from the AFLP_SUR analysis. Loci 

that had values that were two standard deviations away from the mean Fst over all loci were 

determined to be outliers. This analysis was used to identify single presumed neutral loci that 

maybe subject to diversifying selection, systematic scoring errors, or other factors that could 

affect their usefulness as markers of gene flow and drift. A global analysis was carried out 

using all loci and then for comparison the analysis was carried out with outlier loci removed.  

This analysis is basically an exploratory data analysis, rather than a method to identify loci 

under selection, which would require different assumptions.  

3.3.3 Spatial genetic analysis 
 

Wrights fixation index, Fst and Nei’s genetic distance was computed in AFLP_SURV and 

genetic differentiation among populations was tested using a permutation test of 5000 

pseudoreplicates. P-values were corrected using the false discovery rate correction (FDR) 

(Verhoeven et al. 2005). 

AMOVA (Excoffier et al. 1992) calculates an Fst analogue (ΦPT) which estimates variation 

within populations, among populations, and among regions. This analysis was implemented 

in GenAlEx v6.5 (Peakall and Smouse 2006, 2012). A matrix of squared Euclidean distances 

was computed from individual phenotypes (presence or absence of a band, rather than allele 

frequency). AMOVA gives estimates of population genetic structure from dominant markers 

concordant with those estimated from co-dominant markers (Isabel et al. 1999). Since it is a 

frequency based analysis it also has the advantage of not assuming HWE.  

Pairwise population ΦPT values were calculated using GenAlEx. Estimates of gene flow 

(Nm) were also calculated using the formula 0.25((1/ΦPT)-1). Measurement of Nm is an 

estimate of the gene flow over many generations. Indirect estimation of Nm from ΦPT 

involves numerous assumptions: constant population size; random migration; no selection; 

mutation or spatial structure, these are often violated in natural populations (Whitlock and 

McCauley, 1999). These indirect estimates of Nm must be interpreted with caution - but they 

can still provide useful information about the approximate magnitude of gene flow (Neigel, 

2002).  
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3.3.4 Ordination 
 

Principal Coordinate analysis is a way to describe patterns in data of high dimensions. It has 

the benefit over other methods which visualise the relationship in data sets – such as tree 

building methods which assume a hierarchical genetic structure; while this is a reasonable 

assumption at taxonomic levels above species, it is not always true at the level of population 

(Smouse, 1998). The PCoA was carried out using a distance matrix of pairwise Nei’s genetic 

distance; this was implemented in the GenAlEx package.  

3.3.5 Test of isolation by distance using the partial Mantel test  
 

The association between genetic distance and geographic distance was analysed at different 

geographic scales, firstly over a large scale including sampling sites from Chile and New 

Zealand, and then at smaller scales first just including sampling sites around New Zealand 

and finally those samples found in the Southern grouping. Spatial genetic distance was 

assessed at the population level, by testing the association between pairwise estimates of 

population genetic differentiation and the natural logarithm of distances (km) between 

sampling sites. This was conducted using a partial Mantel test of matrix correspondence, 

using the procedure of Smouse et al. (1986). The measure of genetic differentiation (Fst) was 

linearized (Fst/ (1-Fst) following Rousset (1997). Geographical distance was measured using 

the minimum coastline distance using Google Earth. The statistical significance was obtained 

via 999 random permutations of the genetic distance matrix. The partial Mantel test was 

carried out using GenAlEx.  

3.3.6 Assignment test 
 

To provide a direct measurement of contemporary dispersal the probability of identity was 

estimated. This method assumes HWE and no linkage disequilibrium between loci. The test 

gives estimates of dispersal that are comparable to mark-recapture data (Berry et al. 2004). 

To assess probability of identity the assignment calculator DOH was used 

(http://www2.biology.ualberta.ca/jbrzusto/Doh.php). This test takes genotypes of individuals 

from several populations and determines from which population each individual is most 

likely to derive from (Paetkau et al. 1997). The individual is assigned to the population in 

which the individual genotype has the highest expected frequency based on the observed 

http://www2.biology.ualberta.ca/jbrzusto/Doh.php
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distributions of alleles (Patkeau et al. 1995, 1997). When analysed using all individuals, a 

probability of correct assignment for each nominal population can be calculated.  

3.3.7 Population genetic structure 
 

The software package AWclust (Gao and Starmer, 2008) was used to examine the multilocus 

similarity among individuals and to estimate the probable number of genetically 

differentiated groups within the data set. This non-parametric method does not make 

assumptions about HWE or linkage disequilibrium (LD). This approach is useful for molluscs 

because there have been a number of reports that have found large heterozygote deficiencies 

in molluscs. AWclust is specifically designed for the analysis of SNPs, but since they are 

usually bi-allelic they are essentially genotyped in the same way as RAPDs, meaning the 

RAPD data set can easily be analysed using this software. 

The data was first assessed using the MDS facility to confirm there were no outliers. The gap 

statistic function was then used to test for the presence of groups from 2 to 8 within the data 

set. The individual-specific assignment information was used to examine the assignment 

success of this test and to quantify the likely existence of n groups based on the analysis. 

Here the a priori hypothesis that there is a barrier to gene flow around the cook Strait around 

42°S which would result in a population division of populations north and south of this 

divide. The data was divided into three groups: 1) All New Zealand populations excluding 

the Chatham Islands; 2) all New Zealand populations excluding the Chatham Islands and 

excluding the outlier loci; and 3) all populations. 
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3.4 Results 
 

3.4.1 Genetic diversity  
 

Total number of loci retained for analysis for each primer were OPC_09 = 13 bands, OST_02 

= 9 bands, OPE_05 = 10 bands, and OPE_02 = 9 bands. Private bands were not detected for 

any sampling sites. For clarity when referring to the individual phenotype: the PCR products 

as visualised on the electrophoresis gel are termed as bands, when the bands are interpreted as 

genotypes they are termed loci each with two alleles ‘dominant’ being the presence of  a band 

and ‘recessive’ being the absence of a band.  

A total of 41 loci were scored for 360 individuals across 11 populations (Table 3.2). The 

average number of bands per individual scored was 13.3 ± 4.2 (mean ± standard deviation). 

The number of polymorphic loci at the 5% level ranged from 92.7% in the Foveaux Strait 2 

population to 43.9% in the Stewart Island population. Average Nei’s gene diversity (Hj) 

across all populations was 0.26 ± 0.09.  

3.4.2 Outlier loci  
 

Two loci were shown to have large Fst values that were more than two standard deviations 

away from the mean. The two loci were OPE_02_100 and OPE_05_2000. These loci were 

included in a global analysis; they were then removed in separate analysis to explore their 

effects. 

3.4.3 Spatial genetic analysis 
 

Significant genetic differentiation among populations was revealed (Fst = 0.194, p < 0.0001; 

ΦPT = 0.243 p < 0.0001). The highest pairwise ΦPT value of 0.401 (Table 3.3) was between 

MARL and AKA, the next highest was between MARL and CHI_2. The lowest values of 

0.015 are between FOV_1 and FOV_2, the values of between FOV_1 and AWA and FOV_2 

and AWA are also comparatively low at 0.060 and 0.075 respectively. Pairwise population 

levels of gene flow ranged from comparatively low 0.373 migrants per generation between 

AKA and MARL up to comparatively high levels between FOV_1 and FOV_2 at 16.406 

migrants per generation.  
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Hierarchical AMOVA analysis was used to assess the level of genetic variation between the a 

priori groupings of northern, eastern, southern and Chilean sampling sites (Table 3.5). The 

AMOVA analysis revealed most of the variation (76%) was found to be within sampling 

localities, 22% was found among populations, and the final 2% of variation was revealed to 

be among the regions. 

3.4.4 Partial Mantel test 
 

Results of the partial Mantel test are shown in Figures 3.3a to 3.3h. Tests for associations 

between genetic divergence ((Fst/ (1-Fst)) and the natural log of geographic distance at the 

population level were carried out over a range of geographical divisions.  

Using all geographical locations revealed a statistically non-significant association between 

geographical distance and genetic distance (rxy = 0.265, p = 0.120, r2= 0.0704) (Figure 3.3a). 

The analysis over the New Zealand scale again revealed an insignificant association (rxy = 

0.002, p = 0.464, r2= 0.006) (Figure 3.3b). The Chatham Islands sampling site was removed 

from the analysis and an insignificant association was revealed (rxy = 0.064, p 0.3511, r2= 

0.0041) (Figure 3.3c). The small-scale analysis of the southern sample sites revealed an 

insignificant association with genetic distance and geographic distance (rxy = -0.174, p = 

0.421, r2 = 0.0304) (Figure 3.3d). Outlier loci were removed and the mantel test was 

conducted using the new pairwise Fst values. Again, there was an insignificant association 

when all sampling sites were compared (rxy = 0.230, p = 0.142, r2 = 0.0531) (Figure 3.3e). 

However, using only New Zealand populations a significant isolation by distance profile was 

found (rxy = 0.324, p = 0.030, r2 = 0.1052) (Figure 3.3f). With the Chatham Islands removed 

there was still a significant isolation by distance profile (rxy = 0.341, p = 0.043, r2 = 0.1166) 

(Figure 3.3g). In the southern sampling site the association between geographical and genetic 

distance was still insignificant (rxy = -0.173, p = 0.4288, r2 = 0.03). However, the low r2 

values showed that only a small portion of the data (0.06% to 11.6 %) was explained by the 

regression line. 

3.4.5 Population assignment test 
 

Using all loci, the results of the assignment test suggest there is population structuring, given 

that most of the individuals were assigned to their correct populations (Table 3.6a). 100 % of 

the Chilean (Chi_1) individuals were assigned to the correct population. Individuals from 

Foveux_1, Foveaux_2 and Awarua were assigned to the correct population (42%, 41% and 
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56% respectively) these lower success rates of assigning samples suggest that they should be 

treated as one population. A very similar pattern was found when the outlier loci were 

removed, the values of correct assignment remained the same except for Marlborough, which 

went from 97% to 95% correct assignment, and Stew_2 which went from 90 to 92% correct 

assignment (Table 3.6b). 

Overall the assignment success was very high: 78.9% for both data sets of all loci and with 

the outlier loci removed.  

3.4.6 Ordination 
 

The first two co-ordinates of the PCoA of Nei’s genetic distance explained 57.61% of the 

variation in the data set (Figure 3.4). Overall the PCoA has not separated the populations into 

groups that reflect geographical location, that is, populations that have a close geographical 

affinity are not grouped together in the analysis. The Foveaux Strait and Stewart Island 

populations, and those that have a large geographical distance between them seem to have 

clustered together on the PCoA, such as Chile and the Akaroa peninsula. However, the two 

Foveaux Strait populations (Fov_1 and Fov_2) have clustered together with a close 

association with the Awarua Estuary population, suggesting that they could be grouped 

together as one population. Also, the Cloudy Bay (CLO) sampling site and Chatham Island 

sampling site have a close association to the exclusion on the Marlbourough Sounds (MARL) 

sampling site. The same relationship among sampling sites was found when the outlier loci 

were removed from the analysis so the relationship is not shown.                      
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Table 3.2: Summary of randomly amplified polymorphic DNA marker (RAPD) loci and Nei's gene diversity for each sampling site. 

Sampling site  Population 
size 

Number of 
polymorphic loci 

Number of bands scored per individual 
(mean ± SD) 

H (Nei's gene diversity mean 
± SD) 

Northern group         
Cloudy 24 33 11.931 ± 3.316  0.255 ± 0.024 
Marlborough 37 27 14.205 ± 2.419  0.243 ± 0.029 
Eastern group         
Chathams 35 33 14.051  ± 4.279    0.269 ± 0.028  
Akaroa 22 30 13.667 ± 3.017  0.270 ± 0.028 
Chilean group         
Chile_1 23 21 10.542 ±  1.668  0.182 ± 0.026 
Chile_2 22 30 13.958 ±  2.596  0.255 ± 0.027 
Southern group         
Foveaux_1 23 35 17.750  ± 2.608  0.312 ± 0.026 
Foveaux_2 39 38 17.667 ± 4.453  0.398 ± 0.020 
Stewart_1 34 18 7.386 ± 2.255  0.171 ± 0.028 
Stewart_2 33 33 11.795 ± 3.533  0.252 ± 0.025 
Awarua 35 33 14.077 ± 3.770  0.283 ± 0.028  
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Table 3.3a: Global data set, ΦPT values below diagonal based on 9999 permutations is shown below the diagonal. Number of migrants (Nm) is 
shown above the diagonal. ΦPT values given in bold were not statistically significant after false discovery correction for multiple testing.  

  CLO MARL CHAT CHI_1 AKA CHI_2 FOV_1 FOV_2 STEW_1 STEW_2 AWA 
CLO - 0.676 1.232 0.904 0.632 0.577 1.193 1.083 0.684 1.131 2.764 
MARL 0.27 - 0.567 0.443 0.373 0.385 0.545 0.446 0.437 0.967 0.769 
CHAT 0.169 0.306 - 1.014 0.535 0.567 1.179 0.937 0.764 1.243 1.754 
CHI_1 0.217 0.361 0.198 - 0.758 0.986 0.987 0.97 0.851 0.94 1.131 
AKA 0.284 0.401 0.319 0.248 - 0.581 0.579 0.485 0.517 0.721 0.69 
CHI_2 0.302 0.394 0.306 0.202 0.301 - 0.814 0.825 0.819 0.822 0.825 
FOV_1 0.173 0.315 0.175 0.202 0.302 0.235 - 16.406 0.517 0.927 3.903 
FOV_2 0.188 0.359 0.211 0.205 0.34 0.233 0.015 - 0.516 0.814 3.066 
STEW_1 0.268 0.364 0.246 0.227 0.326 0.234 0.326 0.326 - 0.834 0.797 
STEW_2 0.181 0.205 0.167 0.21 0.258 0.233 0.212 0.235 0.231 - 1.347 
AWA 0.083 0.245 0.125 0.181 0.266 0.233 0.06 0.075 0.239 0.156 - 
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Table 3.3b: Outlier loci removed, ΦPT values below diagonal based on 9999 permutations is shown below the diagonal. Number of migrants 
(Nm) is shown above the diagonal. ΦPT values given in bold were not statistically significant after false discovery correction for multiple testing.  

  CLO MARL CHAT CHI_1 AKA CHI_2 FOV_1 FOV_2 STEW_1 STEW_2 AWA 
CLO 

 
0.748 1.279 0.651 0.904 0.578 1.267 1.147 0.698 1.114 2.919 

MARL 0.251 
 

0.615 0.479 0.49 0.428 0.639 0.511 0.494 1.031 0.905 
CHAT 0.164 0.289 

 
0.604 0.996 0.559 1.172 0.93 0.757 1.219 1.734 

CHI_1 0.278 0.343 0.293 
 

0.925 0.691 0.67 0.563 0.594 0.814 0.787 
AKA 0.217 0.338 0.201 0.213 

 
0.973 0.975 0.963 0.841 0.928 1.099 

CHI_2 0.302 0.369 0.309 0.266 0.204 
 

0.807 0.822 0.813 0.819 0.81 
FOV_1 0.165 0.281 0.176 0.272 0.204 0.236 

 
16.522 0.513 0.93 3.921 

FOV_2 0.179 0.329 0.212 0.308 0.206 0.233 0.015 
 

0.514 0.815 3.092 
STEW_1 0.264 0.336 0.248 0.296 0.229 0.235 0.328 0.327 

 
0.837 0.785 

STEW_2 0.183 0.195 0.17 0.235 0.212 0.234 0.212 0.235 0.23 
 

0.837 
AWA 0.079 0.216 0.126 0.241 0.185 0.236 0.06 0.075 0.242 0.158   
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Table 3.4: Pairwise Fst between sampling sites using global data set below the diagonal and with outlier loci removed above the diagonal.  

  CLO MARL CHAT CHI_1 AKA CHI_2 FOV_1 FOV_2 STEW_1 STEW_2 AWA 
CLO  0.192 0.071 0.215 0.203 0.281 0.112 0.128 0.251 0.171 0.062 
MARL 0.221  0.221 0.257 0.267 0.29 0.202 0.188 0.293 0.175 0.157 
CHAT 0.071 0.244  0.239 0.193 0.294 0.131 0.136 0.267 0.187 0.09 
CHI_1 0.222 0.316 0.261  0.136 0.186 0.169 0.193 0.248 0.187 0.16 
AKA 0.202 0.297 0.193 0.168  0.165 0.153 0.125 0.204 0.2 0.152 
CHI_2 0.278 0.319 0.293 0.216 0.167  0.176 0.151 0.231 0.237 0.199 
FOV_1 0.113 0.235 0.131 0.196 0.155 0.178  0.02 0.292 0.185 0.041 
FOV_2 0.128 0.218 0.136 0.214 0.127 0.153 0.019  0.258 0.166 0.068 
STEW_1 0.247 0.328 0.265 0.279 0.205 0.232 0.294 0.261  0.246 0.221 
STEW_2 0.167 0.194 0.183 0.216 0.2 0.237 0.186 0.168 0.245  0.125 
AWA 0.063 0.197 0.09 0.19 0.153 0.201 0.041 0.069 0.222 0.126   
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Table 3.5: AMOVA using binary distance matrix using 4 regions (Northern, Eastern, Southern and Chilean) 

Source of 
variation df Sums of Squares  Mean Variance Estimated Variance % Variation Φ statistics    P* 

Among 
Regions 

3 286.884 95.628 0.264 3% ΦRT 0.027 0.001 

        
Among Pops 7 540.787 77.255 2.125 22% ΦPR 0.222 0.001 

        
Within Pops 348 2587.11 7.434 7.434 76% ΦPT 0.243 0.001 

        
Total  358 3414.79  9.824 100%    
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Figures show Mantel test of Geographic distance vs ((Fst/ (1-Fst)) genetic distance Figure 3.3a (top left): All samples Figure 3.3b (top 

right): New Zealand only samples. Figure 3.3c (bottom right): New Zealand only samples not including Chatham Islands samples. Figure 

3.3d (bottom right): Southern populations.  
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Figures show Mantel test of Geographic distance vs ((Fst/ (1-Fst)) genetic distance Figure 3.3e (top left): All sampling sites with outlier loci 

removed. Figure 3.3f (top right): New Zealand sampling sites with outlier loci removed. Figure 3.3g (bottom left): New Zealand minus the 

Chatham Islands sampling sites with outlier loci removed. Figure 3.3h (bottom right): Southern sampling sites with outlier loci removed. 
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Figure 3.4: Global data set. Nei’s genetic distance Principal Co-ordinate analysis 
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Table 3.6a: Global data set. Assignment test results for individuals from each population. Values are percentage of from each collection site  

 

CLO MARL CHAT CHI_1 AKA CHI_2 FOV_1 FOV_2 STEW_1 STEW_2 AWA 

CLO 76 0 3 0 3 0 7 0 0 3 7 

MARL 0 97 3 0 0 0 0 0 0 0 0 

CHAT 10 0 79 0 3 0 0 0 0 5 3 

CHI_1 0 0 0 100 0 0 0 0 0 0 0 

AKA 0 0 0 0 96 0 0 4 0 0 0 

CHI_2 0 0 0 0 0 96 0 4 0 0 0 

FOV_1 4 0 0 0 0 0 42 33 0 0 21 

FOV_2 0 0 0 0 0 0 46 41 0 0 13 

STEW_1 3 0 0 0 0 3 0 0 95 0 0 

STEW_2 0 3 3 0 0 0 3 0 0 90 3 

AWA 15 0 8 0 0 0 15 3 0 3 56 
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Table 3.6b: Outlier loci removed. Assignment test results for individuals from each population. Values are percentage of from each collection 
site. Correct assignments are in bold. 

 

CLO MARL CHAT CHI_1 AKA CHI_2 FOV_1 FOV_2 STEW_1 STEW_2 AWA 

            

CLO 76 0 7 0 3 0 7 0 0 3 3 

MARL 3 95 0 0 0 0 0 3 0 0 0 

CHAT 8 0 79 0 3 0 0 0 0 5 5 

CHI_1 0 0 0 100 0 0 0 0 0 0 0 

AKA 0 0 0 0 96 0 0 4 0 0 0 

CHI_2 0 0 0 0 0 96 0 4 0 0 0 

FOV_1 4 0 0 0 0 0 42 33 0 0 21 

FOV_2 0 0 0 0 0 0 46 41 0 0 13 

STEW_1 3 0 0 0 0 3 0 0 95 0 0 

STEW_2 0 3 3 0 0 0 0 0 0 92 3 

AWA 15 0 8 0 0 0 15 3 0 3 56 
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3.4.7 Population Structure 
 

The AWclust nonparametric analysis of possible groups within the multilocus genotype data 

set for all individuals in all sampling sites, excluding the Chilean and Chatham Island 

sampling sites, revealed the highest gap value (1.4) at K = 2 (Figure 3.5a). This analysis 

indicates the presence of two groups. However, the results do not support the a posteriori 

hypothesis of a barrier to gene flow in the Cook Strait region around 42°S  Although most of 

the populations do split into a grouping that suggests there is a barrier as shown in Table 3.10 

the two Stewart Island populations cluster with the two populations above the 42°S  divide.  

With the outlier loci removed the number of clusters with the highest gap statistic was 6 

(Figure 3.5b).  

Using the whole data set revealed the highest gap value (1.3) at K = 2 (Figure 3.7). This 

division is largely attributed to a Chilean grouping and a New Zealand grouping. (Table 3.11) 

 

Figure 3.5a: Number of populations assigned by the AWclust analysis using global data set 
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Figure 3.5b: Number of populations assigned by the AWclust analysis when outlier loci are 
removed 

 

Table 3.10: Percentage of individuals assigned to each cluster. Correct a priori assignment in 
bold 

Population Assigned to Population 1 (%) Assigned to Population 2 (%) 
  

72.4 27.6 Above 42°S 
Cloudy Bay 
Marlborough Sounds 92.6 7.4 
     
Below 42°S 0 100 Akaroa peninsula 
Foveaux Strait 1 0 100 
Foveaux Strait 2 2.6 97.4 
Stewart Island 1  100 0 
Stewart Island 2 92 8 
Awarua Estuary  0 96.7 
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Table 3.11: Assignment to the most parsimonious cluster of k=3 produced without the outlier 
loci included 

Population  Assigned to pop 1 (%) 
(%) 

Assigned to Pop 2 
(%) 

Assigned to Pop 
3(%) 

  
  

  
Above 42°S 

  
  

Cloudy Bay 34 52 14 
Marlborough 
Sounds 87 5 8 

  
   Below 42°S 
   Akaroa peninsula 100 0 0 

Foveaux Strait 1 100 0 0 
Foveaux Strait 2 0 0 100 
Stewart Island 1  0 0 0 
Stewart Island 2 0 100 0 
Awarua Estuary  0 0 100 
 

 

Figure 3.6: Frequency of band presence of outlier loci by population 
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Figure 3.7: Number of populations assigned by the AWclust using the whole data set 

 

 

Table 3.12: Assignment to the most parsimonious cluster of k=2 using the whole data set  

Population Assigned to Population 1 (%) Assigned to Population 2 (%) 
Cloudy Bay 79 21 
Marlborough Sounds 97 3 
Chatham Island 31 69 
Akaroa peninsula 0 100 
Chile_1 25 75 
Chile_2 0 100 
Foveaux Strait 1 96 4 
Foveaux Strait 2 97 3 
Stewart Island 1  100 0 
Stewart Island 2 97 3 
Awarua Estuary  72 28 
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3.5 Discussion  
 

In any population genetic investigation whether on land or in the sea, there are three models 

that are used explain the apparent structure: (1) Panmixia; (2) isolation-by-distance, and (3) 

population divergence within or among populations. The outcome of the present analysis 

largely fits with the third model, since there is evidence of significant differences between 

populations, and only a weak isolation by distance profile was found among the New Zealand 

sampling sites when the outlier loci were removed. There is significant and comparatively 

high levels of population genetic structuring (Fst = 0.1941, p < 0.0001; ΦPT = 0.243 p < 

0.0001). In a similar study using RAPDs to investigate the population genetics of O. chilensis 

in Chile, Toro and Gonzalez (2007) found the inter-population genetic diversity of O. 

chilensis was Fst = 0.2846. In both the present study and that of Toro and Gonzalez, (2007) 

the inter-population genetic diversity is approximately one order of magnitude larger than has 

been reported for the sister taxa Ostrea edulis (the European oyster), which has been shown 

to be around Fst = 0.019, (Launey, 2001). This difference has been attributed to the greatly 

reduced PLD in O. chilensis, which could cause reduced gene flow and increased inbreeding 

leading to genetically distinct populations. With the outlier loci removed the population 

differentiation was still comparatively high (Fst = 0.1834, p < 0.0001; ΦPT = 0.238, p = p < 

0.0001).  

Gene flow between the Foveaux Strait sampling sites and the geographically close Awarua 

Estuary sampling sites was high (Table 3.3a) (Between Nm = 16.4 and Nm = 3.06), this 

indicates that gene flow is reducing the effect of genetic drift, preventing differentiation 

among populations (Slatkin, 1987). Between most of the sampling sites the Nm = < 1, 

therefore, the effects of genetic drift and mutation are not balanced out by gene flow - over 

generations there would be an accumulation of genetic differentiation. From a genetic 

standpoint, the concept of stock is defined as a population of individuals that are part of the 

same reproductive process, and genetically distinct from other populations of the same 

species (Shaklee and Bentzen, 1998). Although there are only two sampling sites in the 

Foveaux Strait the finding of high gene flow suggests they could be treated as the same 

genetic stock. In other sampling sites around New Zealand gene flow is much lower, 

suggesting the presence of genetically distinct stocks.  

The results of the Mantel test found no association between genetic difference and 

geographic distance across most of the divisions. When the outlier loci were removed an IBD 
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profile was found in the New Zealand only samples (Figure 3.3f), this was also found when 

the Chatham Islands samples were removed (Figure 3.3g). However, the R2 values are very 

low around 0.06 to 0.02, only a very small proportion of the variation in the data set can be 

explained by the regression line. Perhaps this could be resolved using greater sampling in 

new locations, particularly in regions between the sample sites to improve the geographic 

spread of sites - this would better fit the stepping stone model which is a requirement for an 

IBD profile. Historically, O. chilensis spat has been moved around New Zealand this could 

have disrupted the historical patterns of differentiation. Loss of genetic signal due to 

historical movements of Chilean populations of O. chilensis was attributed to the lack of 

geographical structure found by Toro and Gonzalez, (2007).  

The PCoA was used to visualise the relationship between pairwise genetic distances of 

sampling locations. Some of the sampling locations cluster in a pattern that is not congruent 

with geographical location, for example the Akaroa peninsula has clustered with the Chilean 

samples, and the two Stewart Island populations are far away from their geographic 

neighbours in the Foveaux Strait, also the Cloudy Bay sampling site and the Marlbourgh 

Sounds sampling site have not clustered close to each other. However, there is a pattern that 

correlates with geographic location of some of the populations. The two Foveux Strait 

populations and the geographically close population the Awarua Estuary have clustered 

together. Between the two Foveux Strait populations the estimated Nm is three orders of 

magnitude higher than observed for other pairwise comparisons; also the assignment test did 

not perform well between these two populations - suggesting that they should be treated as 

one population. An explanation for the apparent incongruence between genetic structure and 

geographic location is the phenomenon of chaotic genetic patchiness. Further study is needed 

here to assess genetic structure on a temporal scale or to compare the population genetic 

structure to environmental variables in a seascape genetics framework – if a different 

population structure were to be found it is likely to be result of stochastic processes.  

The results of the AWClust analysis (Figure 3.5a) revealed two distinct groups. Table 3.10 

presents the division of the populations into these two groups, this grouping is attributed to a 

north/south divide of the South Island, with the exception of the Stewart Island populations 

that cluster with the northern Samples - despite being the southernmost New Zealand 

populations. This is not consistent with a larger scale but similar study by Wei et al. (2013a), 

a north/south divide among populations of Perna canaliculus was found, here the genetic 

subdivision was found to occur at South of the Cook Strait around 42°S. Many population 
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genetic studies in New Zealand have documented the existence of this particular discontinuity 

(as reviewed by Ross et al. 2009; Gardner et al. 2010). This study has not identified the 

barrier to gene flow. The possible reasons for this are that the barrier to gene flow is due to 

historical influences and O. chilensis populations have reached equilibrium; or the barrier to 

gene flow is still present but cannot be detected due to human mediated stock movements. 

When the outlier loci were removed from the analysis (OPE_02_100 and OPE_05_2000), a 

different geographical pattern was found (Table 3.11 and Figure 3.5b). The frequency of band 

presence (that is amplified product) for the outlier loci is plotted in Figure 3.6, the division 

into two groups is largely due to the presence of these particular bands. Interestingly, Wei et 

al. (2013a) found that the genetic discontinuity was present only when a locus that was 

thought to be under selection was included, suggesting that the genetic discontinuity was due 

to a selection gradient rather than a physical barrier to gene flow. Using all populations 

(Figure 3.7) (the inclusion of the Chilean populations and the Chatham Islands) the AWClust 

analysis revealed two groups: most of the individuals appeared in group one, while 100% of 

the Chilean samples appeared in group two – demonstrating that the Chilean populations are 

divergent from the New Zealand populations. Although the barrier to gene flow has not been 

found in this study – a question that still needs to be addressed is why does it occur in some 

species and not others? A future research focus could seek to determine whether the multi-

species pattern of genetic discontinuity is due to the same selection pressures, if any. 

Reciprocal transplant of organisms found above and below the divide could be a way to test 

for local adaptation. Addressing this question is important in order to increase understanding 

of community ecology, the impacts of climate change, and the spatial management of marine 

ecosystems (Sanford and Kelly, 2011). A further hypothesis to explain this division observed 

in multiple species, is that the discontinuity is due to secondary contact of glacial refugia, if 

this is the case then it would be likely to see a similar pattern in other organisms occurring in 

this locality.  

The analyses showed that there was significant population structure with a high level of 

correctly assigned individuals to populations. This population genetic structuring in some 

cases reflects the geographical distribution of the species, but in other regions the results were 

unexpected. One possible explanation for this is that oyster spat has been moved around New 

Zealand to form harvestable populations, which would explain the lack of a geographic 

pattern. The assignment tests tend to reflect contemporary patterns of gene flow; a high level 

of correct assignment would suggest that there is reduced contemporary gene flow. Low 
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levels of gene flow could be the result of the very short PLD. This apparent genetic structure 

seems to be largely the result of self-recruitment in populations, when the individual 

genotypes are randomised into 3, 6 and 8 populations panmixia was found (Appendix  3.4 to 

3.9)  - supporting the hypothesis of population structure.  

The Stewart Island populations do not seem to cluster with geographical neighbouring 

populations (Figure 3.4). This could be the result of stochastic processes or human mediated 

influences. The impact of stochastic influences of the apparent genetic structure should in 

future studies, be tested by conducting temporal sampling. A potential problem that may have 

affected some sampling sites is the presence of cryptic speciation; this could be an issue in 

the Stewart Island population that were collected in the shallow intertidal region, this is an 

area that is not a commercial fishery and perhaps could be a sympatric cryptic species. It is 

not uncommon for cryptic mollusc species to be found living in sympatry. For example Baker 

et al. (2003) found cryptic speciation had occurred in sympatrically occurring freshwater 

molluscs. Cryptic speciation would add to the difficultly of identifying discrete stocks for 

management, this has been a problem in well-studied commercially important species for 

example, the squids of the genus Doryteuthis (Sales et al. 2013). This presence of cryptic 

speciation in Stewart Island could easily be tested by sequencing mitochondrial genes and 

testing them in a phylogenetic context with other oyster populations.  

The development of genetic markers such as randomly amplified polymorphic DNA (RAPD), 

short tandem repeats (STR or microsatellites) and single nucleotide polymorphisms (SNP) 

among others, are increasingly being applied to aquaculture research for not only measuring 

levels of genetic variability between populations, but also to assess levels of inbreeding, 

parentage assignment, species and strain identification. In the present study, the objective was 

to assess the levels of genetic variation among natural populations of O. chilensis, it should 

be taken as a starting point for future genetic monitoring in the same localities these findings 

will assist effective management programmes of this species. 
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3.6 Summary  
 

1. The brooding life strategy of Ostrea chilensis appears to have resulted in reduced 

gene flow between populations compared to the sister taxa Ostrea edulis. This was 

first documented by Toro and Gonzalez (2007) in Chilean populations, and is 

supported here. The brooding strategy and limited gene flow could explain the limited 

distribution of Ostrea chilensis in New Zealand.  

2. The presence of a divide around 42°S in the Tasman Strait has been documented in a 

number of New Zealand studies. Its presence has been not been found in the present 

study. This could be due to a number of reasons: the barrier is due to historical 

influences and O. chilensis has reached equilibrium frequencies, or the apparent 

genetic structure is due to human mediated stock movements. 

3. More work is needed to investigate the potential of chaotic genetic patchiness, or to 

compare the genetic structure to environmental variables in a seascape genetics 

framework. The seascape genetics will be addressed in the preceding chapter.  
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3.8 Appendix 
 

Appendix 3.1: RAPD primers tested those in bold were kept for further analysis 

RAPD Primer Sequence  Band Pattern 

OST 1 GGGCGCGAGT monomorphic bands 

OST 2 GCGGCTGGAG polymorphic bands 

OST 3 TAGCCCGCTT monomorphic bands 

OST 4 AACACACGAG monomorphic bands 

OP C-01 TTCGAGCCAG weak amplification  

OP C-02 GTGAGGCGTC weak amplification  

OP C-03 GGGGGTCTTT bands not clear 

OP C-05 GATGACCGCC bands not clear 

OP C-06 GAACGGACTC bands not clear 

OP C-07 GTCCCGACGA polymorphic bands 

OP C-08 TGGACCGGTG bands not clear 

OP C-09 CTCACCGTCC polymorphic bands 

OP C-11 AAAGCTGCGG bands not clear 

OP C-12 TGTCATCCCC bands not clear 

OP C-13 AAGCCTCGTC bands not clear 

OP C-14 TGCGTGCTTG bands not clear 

OP C-15 GACGGATCAG bands not clear 

OP C-16 CACACTCCAG bands not clear 

OP C-17 TTCCCCCCAG bands not clear 

OP C-18 TGAGTGGGTG bands not clear 

OP C-19 GTTGCCAGCC bands not clear 

OP E-02 GGTGCGGGAA polymorphic bands 

OP E-03 CCAGATGCAC polymorphic bands 

OP E-04 GTGACATGCC polymorphic bands 

OP E-05 TCAGGGAGGT polymorphic bands 

OP E-06 AAGACCCCTC bands not clear 

OP E-07 AGATGCAGCC polymorphic bands 

OP E-08 TCACCACGGT monomorphic bands 

OPE_09 CTTCACCCGA monomorphic bands 
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OPE_10 CACCAGGTGA monomorphic bands 

OPE_11 GAGTCTCAGG monomorphic bands 

OPE_12 TTATCGCCCC monomorphic bands 

OPE_13 CCCGATTCGG band not clear 

OPE_14 TGCGGCTGAG monomorphic bands 

OPE_15 ACGCACAACC monomorphic bands 

OPE_16 GGTGACTGTG monomorphic bands 

OPE_17 CTACTGCCGT monomorphic bands 

OPE_18 GGACTGCAGA monomorphic bands 

OPI_01 ACCTGGACAC monomorphic bands 

OPI_02 GGAGGAGAGG monomorphic bands 

OPI_03 CAGAAGCCCA monomorphic bands 

OPI_04 CCGCCTAGTC monomorphic bands 

OPI_05 TGTTCCACGG monomorphic bands 

OPI_06 AAGGCGGCAG monomorphic bands 

OPI_07 CAGCGACAAG monomorphic bands 

OPI_08 TTTGCCCGGT monomorphic bands 

OPI_09 TGGAGAGCAG monomorphic bands 

OPI_10 ACAACGCGAG monomorphic bands 

OPI_11 ACATGCCGTG monomorphic bands 

OPI_12 AGAGGGCACA monomorphic bands 

OPI_13 CTGGGGCTGA bands not clear 

OPI_14 TGACGGCGGT monomorphic bands 

OPI_15 TCATCCGAGG monomorphic bands 

OPI_16 TCTCCGCCCT monomorphic bands 

OPI_17 GGTGGTGATG monomorphic bands 

OPI_18 TGCCCAGCCT bands not clear 

OPI_19 AATGCGGGAG monomorphic bands 

OPI_20 AAAGTGCGGG monomorphic bands 

OPG_06 GTGCCTAACC monomorphic bands 

OPG_08 TCACGTCCAC monomorphic bands 
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Appendix 3.2: Allele frequency estimates using the Bayesian method of Zhivotovsky (1999). 

‘a’ represents the ‘dominant’ allele (presence of a band) and ‘b’ represents the ‘recessive’ 

allele (absence of a band).  

Allele     CLO MAR
L CHAT CHI_1 AKA CHI_2 FOV_

1 
FOV_
2 

STEW
_1 

STEW
_2 AWA 

OPC_
09_16
00 

a 0.2 0.005 0.138 0.184 0.032 0.01 0.142 0.256 0.051 0.069 0.009 

  b 0.8 0.995 0.862 0.816 0.968 0.99 0.858 0.744 0.949 0.931 0.991 
OPC_
09_14
00 

a 0.045 0.005 0.07 0.005 0.306 0.032 0.075 0.256 0.005 0.009 0.022 

  b 0.955 0.995 0.93 0.995 0.694 0.968 0.925 0.744 0.995 0.991 0.978 
OPC_
09 
_1200 

a 0.453 0.044 0.156 0.046 0.01 0.078 0.49 0.418 0.307 0.069 0.35 

  b 0.547 0.956 0.844 0.954 0.99 0.922 0.51 0.582 0.693 0.931 0.65 
OPC_
09 
_1100 

a 0.244 0.018 0.07 0.184 0.306 0.291 0.119 0.359 0.02 0.054 0.093 

  b 0.756 0.982 0.93 0.816 0.694 0.709 0.881 0.641 0.98 0.946 0.907 
OPC_
09 
_900 

a 0.138 0.058 0.07 0.005 0.739 0.178 0.267 0.483 0.035 0.117 0.138 

  b 0.862 0.942 0.93 0.995 0.261 0.822 0.733 0.517 0.965 0.883 0.862 
OPC_
09_85
0 

a 0.027 0.018 0.336 0.068 0.291 0.232 0.097 0.24 0.005 0.259 0.078 

  b 0.973 0.982 0.664 0.932 0.709 0.768 0.903 0.76 0.995 0.741 0.922 
OPC_
09 
_730 

a 0.29 0.031 0.12 0.068 0.032 0.466 0.49 0.483 0.035 0.203 0.255 

  b 0.71 0.969 0.88 0.932 0.968 0.534 0.51 0.517 0.965 0.797 0.746 
OPC_
09 
_670 

a 0.063 0.626 0.138 0.09 0.01 0.261 0.097 0.071 0.005 0.203 0.154 

  b 0.937 0.374 0.862 0.91 0.99 0.739 0.903 0.929 0.995 0.797 0.846 
OPC_
09 
_570 

a 0.158 0.072 0.251 0.136 0.402 0.261 0.267 0.398 0.425 0.101 0.291 

  b 0.842 0.928 0.749 0.864 0.598 0.739 0.733 0.602 0.575 0.899 0.709 
OPC_
09 
_440 

a 0.081 0.144 0.409 0.113 0.17 0.291 0.49 0.531 0.134 0.32 0.462 

  b 0.919 0.856 0.591 0.888 0.83 0.709 0.51 0.469 0.866 0.68 0.538 
OPC_
09 
_350 

a 0.556 0.563 0.555 0.685 0.276 0.427 0.749 0.722 0.005 0.101 0.543 

  b 0.444 0.437 0.445 0.315 0.724 0.573 0.251 0.278 0.995 0.899 0.457 
OPC_
09 
_200 

a 0.2 0.311 0.555 0.489 0.562 0.427 0.033 0.021 0.698 0.15 0.064 

  b 0.8 0.689 0.445 0.511 0.438 0.573 0.967 0.979 0.302 0.85 0.936 

OST_ a 0.186 0.018 0.186 0.005 0.594 0.078 0.19 0.289 0.253 0.009 0.217 
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02_12
00 
  b 0.814 0.982 0.814 0.995 0.406 0.922 0.81 0.711 0.747 0.991 0.783 
OST_
02_10
00 

a 0.065 0.031 0.068 0.005 0.107 0.607 0.267 0.359 0.365 0.023 0.336 

  b 0.935 0.969 0.932 0.995 0.893 0.393 0.733 0.641 0.635 0.977 0.664 
OST_
02_85
0 

a 0.383 0.1 0.47 0.209 0.215 0.01 0.417 0.398 0.213 0.098 0.415 

  b 0.617 0.9 0.53 0.791 0.785 0.99 0.583 0.602 0.787 0.902 0.585 
OST_
02_70
0 

a 0.103 0.223 0.1 0.005 0.307 0.39 0.119 0.256 0.233 0.27 0.086 

  b 0.897 0.777 0.9 0.995 0.693 0.61 0.881 0.744 0.767 0.73 0.914 
OST_
02_68
0 

a 0.065 0.257 0.068 0.184 0.133 0.232 0.119 0.256 0.103 0.762 0.099 

  b 0.935 0.743 0.932 0.816 0.867 0.768 0.881 0.744 0.897 0.238 0.901 
OST_
02_50
0 

a 0.443 0.507 0.499 0.005 0.16 0.078 0.452 0.289 0.175 0.146 0.375 

  b 0.557 0.493 0.501 0.995 0.84 0.922 0.548 0.711 0.825 0.854 0.625 
OST_
02_43
0 

a 0.589 0.311 0.529 0.005 0.058 0.032 0.417 0.439 0.296 0.373 0.415 

  b 0.411 0.689 0.471 0.995 0.942 0.968 0.583 0.561 0.704 0.627 0.585 
OST_
02_30
0 

a 0.748 0.626 0.726 0.159 0.307 0.152 0.624 0.682 0.021 0.42 0.589 

  b 0.252 0.374 0.274 0.841 0.693 0.848 0.376 0.318 0.979 0.58 0.411 
OST_
02_20
0 

a 0.748 0.39 0.869 0.025 0.244 0.078 0.353 0.359 0.037 0.162 0.355 

  b 0.252 0.61 0.131 0.975 0.756 0.922 0.647 0.641 0.963 0.838 0.645 
OST_
02_10
0 

a 0.065 0.311 0.1 0.005 0.011 0.01 0.054 0.24 0.005 0.33 0.059 

  b 0.935 0.689 0.9 0.995 0.989 0.99 0.946 0.76 0.995 0.67 0.941 
OPE_
05_ 
2000 

a 0.195 0.005 0.019 0.685 0.01 0.009 0.015 0.021 0.004 0.01 0.009 

  b 0.805 0.995 0.981 0.315 0.99 0.991 0.985 0.979 0.996 0.99 0.991 
OPE_
05_ 
1600 

a 0.032 0.005 0.071 0.005 0.053 0.139 0.038 0.18 0.042 0.026 0.009 

  b 0.968 0.995 0.929 0.995 0.947 0.861 0.962 0.82 0.958 0.974 0.991 
OPE_
05_ 
1400 

a 0.032 0.091 0.006 0.005 0.053 0.264 0.248 0.306 0.004 0.076 0.066 

  b 0.968 0.909 0.994 0.995 0.947 0.736 0.752 0.694 0.996 0.924 0.934 
OPE_
05_ 
1200 

a 0.032 0.185 0.006 0.209 0.336 0.116 0.219 0.272 0.004 0.129 0.037 

  b 0.968 0.815 0.994 0.791 0.664 0.884 0.781 0.728 0.996 0.871 0.963 
OPE_
05_10
00 

a 0.032 0.047 0.217 0.046 0.098 0.35 0.416 0.378 0.004 0.129 0.111 

  b 0.968 0.953 0.783 0.954 0.902 0.65 0.584 0.622 0.996 0.871 0.889 

OPE_ a 0.054 0.047 0.566 0.025 0.195 0.162 0.31 0.418 0.029 0.076 0.244 
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05_ 
880 
  b 0.946 0.953 0.434 0.975 0.805 0.838 0.69 0.582 0.971 0.924 0.756 
OPE_
05_ 
680 

a 0.121 0.137 0.126 0.025 0.145 0.05 0.038 0.209 0.123 0.01 0.066 

  b 0.879 0.863 0.874 0.975 0.855 0.95 0.962 0.791 0.877 0.99 0.934 
OPE_
05_45
0 

a 0.304 0.494 0.338 0.757 0.739 0.847 0.599 0.531 0.37 0.692 0.636 

  b 0.696 0.506 0.662 0.243 0.261 0.153 0.401 0.469 0.63 0.308 0.364 
OPE_
05_ 
250 

a 0.817 0.616 0.747 0.685 0.517 0.116 0.835 0.585 0.004 0.82 0.846 

  b 0.183 0.384 0.253 0.315 0.483 0.884 0.165 0.415 0.996 0.18 0.154 
OPE_
05_ 
160 

a 0.145 0.088 0.006 0.046 0.01 0.75 0.015 0.209 0.244 0.166 0.051 

  b 0.855 0.912 0.994 0.954 0.99 0.25 0.985 0.791 0.756 0.834 0.949 
OPE_
02_14
00 

a 0.015 0.005 0.019 0.048 0.133 0.009 0.054 0.194 0.004 0.021 0.024 

  b 0.985 0.995 0.981 0.952 0.867 0.991 0.946 0.806 0.996 0.979 0.976 
OPE_
02_12
00 

a 0.133 0.81 0.019 0.305 0.375 0.674 0.68 0.615 0.219 0.021 0.312 

  b 0.867 0.19 0.981 0.695 0.625 0.326 0.32 0.385 0.781 0.979 0.688 
OPE_
02_80
0 

a 0.165 0.03 0.377 0.752 0.727 0.615 0.749 0.682 0.202 0.206 0.291 

  b 0.835 0.97 0.623 0.248 0.273 0.385 0.251 0.318 0.798 0.794 0.709 
OPE_
02_60
0 

a 0.438 0.057 0.418 0.567 0.594 0.844 0.749 0.585 0.03 0.427 0.548 

  b 0.562 0.944 0.582 0.433 0.406 0.156 0.251 0.415 0.97 0.573 0.452 
OPE_
02_40
0 

a 0.308 0.301 0.628 0.094 0.275 0.145 0.384 0.418 0.362 0.473 0.458 

  b 0.692 0.699 0.372 0.906 0.725 0.855 0.616 0.582 0.638 0.527 0.542 
OPE_
02_36
0 

a 0.015 0.631 0.019 0.005 0.011 0.009 0.142 0.289 0.004 0.115 0.334 

  b 0.985 0.369 0.981 0.995 0.989 0.991 0.858 0.711 0.996 0.885 0.666 
OPE_
02_26
0 

a 0.102 0.111 0.019 0.048 0.034 0.031 0.142 0.24 0.004 0.206 0.25 

  b 0.898 0.889 0.981 0.952 0.966 0.969 0.858 0.76 0.996 0.794 0.75 
OPE_
02_22
0 

a 0.102 0.667 0.17 0.142 0.011 0.031 0.19 0.289 0.004 0.523 0.04 

  b 0.898 0.333 0.83 0.858 0.989 0.969 0.81 0.711 0.996 0.477 0.96 
OPE_
02_10
0 

a 0.072 0.81 0.112 0.005 0.011 0.009 0.013 0.021 0.004 0.206 0.01 

  b 0.928 0.19 0.888 0.995 0.989 0.991 0.987 0.979 0.996 0.794 0.99 
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Appendix 3.3: Individual locus Fst. Loci highlighted in bold are outlier loci 

RAPD Locus Fst 
OPC_09_1600 0.07925 
OPC_09_1400 0.14442 
OPC_09 0.18134 
OPC_09 0.10226 
OPC_09 0.27666 
OPC_09_850 0.10673 
OPC_09 0.18097 
OPC_09 0.20879 
OPC_09 0.07398 
OPC_09 0.12376 
OPC_09 0.222 
OPC_09_200 0.24129 
OST_02_1200 0.17379 
OST_02_1000 0.21545 
OST_02_850 0.11549 
OST_02_700 0.07859 
OST_02_680 0.21565 
OST_02_500 0.14512 
OST_02_430 0.16972 
OST_02_300 0.24818 
OST_02_200 0.3083 
OST_02_100 0.14644 
OPE_05_2000 0.47099 
OPE_05_1600 0.056 
OPE_05_1400 0.12278 
OPE_05_1400 0.09661 
OPE_05_1000 0.14808 
OPE_05_880 0.18426 
OPE_05_680 0.03997 
OPE_05_450 0.12346 
OPE_05_250 0.31703 
OPE_05_160 0.31194 
OPE_02_1400 0.0743 
OPE_02_1200 0.29907 
OPE_02_800 0.27574 
OPE_02_600 0.23014 
OPE_02_400 0.09088 
OPE_02_360 0.29793 
OPE_02_260 0.07751 
OPE_02_220 0.27125 
OPE_02_100 0.50614 
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Appendix 3.4 Pairwise ΦPT values for randomised individuals in four populations based on 9999 
permutations is shown below the diagonal 

Pop1 Pop2 Pop3 Pop4  

0.001 - 

  

Pop1 

0.001 0.001 - 

 

Pop2 

0.001 0.001 0.001 - Pop3 

0.001 0.001 0.001 0.001 Pop4 

 

Appendix 3.5 AMOVA table for the four random populations 

Source df SS MS Est. Var. % 

Among Pops 3 19.207 6.402 0.000 0% 

Within Pops 355 2818.403 7.939 7.939 100% 

Total 358 2837.610 

 

7.939 100% 

 

Appendix 3.6 Pairwise ΦPT values for randomised individuals in six populations based on 9999 
permutations is shown below the diagonal 

Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6 

 0.001 

     

Pop 1 

0.008 0.001 

    

Pop 2 

0.001 0.006 0.001 

   

Pop 3 

0.001 0.001 0.001 0.001 

  

Pop 4 

0.001 0.001 0.001 0.001 0.001 

 

Pop 5 

0.001 0.009 0.001 0.001 0.001 0.001 Pop 6 

 

Appendix 3.7 AMOVA table for the six random populations 

Source df SS MS Est. Var. % 

Among Pops 5 35.700 7.140 0.000 0% 

Within Pops 353 2801.910 7.937 7.937 100% 

Total 358 2837.610 

 

7.937 100% 
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Appendix 3.8 AMOVA table for the eight random populations 

Source df SS MS Est. Var. % 

Among Pops 7 45.933 6.562 0.000 0% 

Within Pops 351 2791.677 7.953 7.953 100% 

Total 358 2837.610 

 

7.953 100% 

 

Appendix 3.9 Pairwise ΦPT values for randomised individuals in eight populations based on 9999 
permutations is shown below the diagonal 

Pop1 Pop2 Pop3 Pop4 Pop5 Pop6 Pop7 Pop8 

 0.001 

       

Pop1 

0.004 0.001 

      

Pop2 

0.001 0.001 0.001 

     

Pop3 

0.001 0.001 0.001 0.001 

    

Pop4 

0.001 0.001 0.001 0.001 0.001 

   

Pop5 

0.001 0.001 0.001 0.001 0.001 0.001 

  

Pop6 

0.001 0.001 0.001 0.001 0.001 0.004 0.001 

 

Pop7 

0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 Pop8 
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Chapter Four: A Seascape Genetics 
Analysis of New Zealand Populations of 
Ostrea chilensis 
 

4.0 Aims 
 

This chapter made use of the Marine Environmental Classification system (Snelder et al. 

2005). This system was developed for the entire New Zealand Exclusive Economic Zone 

(EEZ). Using this data set, the aims of this chapter were to examine the genetic structuring of 

Ostrea chilensis - as described in Chapter Three - in the context of near shore coastal 

oceanographic and geospatial variables. The influence of environmental variability on 

macrogeographic genetic variation was assessed. This study will complement a number of 

studies that are beginning to elucidate the effect of environmental and geospatial variables on 

the genetic structuring of a range of New Zealand marine taxa.  

4.1 Introduction 
 

Two fundamental goals of a population genetic analysis should be to seek explanations for 

apparent genetic structure and to identify candidate genes that are under selection. In order to 

reach these goals the population genetics data set should be analysed within a framework that 

considers environmental and geophysical variables. In marine biology, this interdisciplinary 

approach has been termed ‘seascape genetics’ (Galindo et al. 2006; Selkoe et al. 2008). 

Selkoe et al. (2008) stated that one of the major limitations in the study of marine population 

genetics is the poor fit with the three traditional models of (1) panmixia, (2) population 

subdivision, and (3) an isolation-by-distance model. It is because of the lack of a good fit to 

these models that marine population genetic structure is often explained by a fourth model: 

chaotic patchiness - which is thought to be the result of different selection pressures in each 

population, or the result of stochastic influences such as weather patterns influencing larval 

dispersal, or variance in reproductive success (sweepstakes hypothesis) (Hedgecock, 2011).  

A seascape analysis attempts to explain apparent genetic structure through correlation with 

environmental and geophysical variables. This addresses the problem where there seems to 

be incongruence between genetic structure and geographical location. Furthermore, it seeks 
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to elucidate the environmental variables that are having the most influence on genetic 

structure, this could lead to the identification of loci under selection.  

Euclidean distance between two sites in some cases is not helpful in estimating realised 

pelagic larval dispersal - since oceanographic features such as fronts, eddies and currents can 

prevent dispersal. Seemingly close populations are actually very distant in terms of 

connectivity (Weersing and Toonen, 2009). Particle studies have shown that even along 

straight coast lines oceanographic processes can generate high patchiness in larval dispersal 

(Johnson and Black, 2006). These processes can lead to patterns that cannot be explained by 

an IBD model (using Euclidean distance), or generating a population structure that appears to 

be incongruent with geographical location (such as distantly situated populations being more 

genetically similar than closely situated populations) (White et al. 2010). A recent meta-

analysis by Shafer and Wolf (2013) found the widespread presence of what they term 

isolation by ecology (IBE)). An IBE was recently found in the marine environment by 

Nanninga et al. (2014) that explains the correlation of mean chlorophyll-a concentration 

(used here as a proxy for an environmental gradient) and genetic structure of the anemone 

fish (Amphiprion bicinctus). Selkoe et al. (2010) found kelp cover to be a strong predictor of 

genetic structure across three species (kelp bass (Paralabrax clathratus), Kellet’s whelk 

(Kelletia kelletii), and the California spiny lobster (Panulirus interruptus)).  

Specific environmental variables may produce selection gradients that could prevent 

settlement or survival. There is a growing body of research that has found evidence of local 

adaptation in marine invertebrates (Sanford and Kelly, 2011). Environmental heterogeneity 

between populations is expected to reduce the fitness of dispersers thereby leading to 

divergent selection (Marshall and Morgan, 2011; Bonte, 2012), generating seemingly chaotic 

patchiness. There is much evidence for changes in allele frequencies that correlate with 

environmental gradients in the marine systems (reviewed by Schmidt et al. 2008) this is 

indicative of the influence of selection pressures under an IBE model (Riginos and Liggins, 

2013).  
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4.1.1 Recent studies in New Zealand 
 

New Zealand has a diverse range of environments with heterogeneous habitats interacting 

with complex geophysical factors. This provides a range of variables to test the correlation of 

genetic structure with the environment. The mainland of New Zealand spans 13 degrees of 

latitude ranging from sub-tropical in the far north to sub-Antarctic in far south. The 

oceanography consists of a complex current system characterized by a predominantly 

westward flowing Tasman Current, with the separation of the North and South islands by the 

D’Urville Current that flows through the Cook Strait (Wallis and Trewick 2009). Strong tidal 

flows, turbulent mixing of water masses and upwelling occurring in the Cook Strait is 

thought to cause biogeographic discontinuities between northern groups and southern groups 

(Apte and Gardner 2002, Waters and Roy 2004).  

There are currently only three seascape analyses that have been conducted in New Zealand 

waters, these studies form a useful comparison for the influences on apparent genetic 

structure on O. chilensis. Wei et al. (2013b) examined the correlation between genetic 

structure and environmental variables in the endemic New Zealand greenshell mussel (Perna 

canaliculus). In previous studies they found pronounced genetic structure north and south of 

42°S in the Cook Strait Wei et al. (2013a). Wei et al. (2013b) hypothesised that this genetic 

discontinuity was due to global fluctuations in sea level approximately 1 MYA and the 

complex geological processes that created the Cook Strait. This is supported by estimated 

divergence times in the northern and southern populations of P. canaliculus being around 1.3 

MYA. In their study Wei et al. (2013b), did not find the discontinuity in the Cook Strait to be 

correlated with environmental variables, which supports the hypothesis that this is due to 

historical factors. However, they found that the overall genetic structuring around New 

Zealand is largely associated with various metrics of Sea Surface Temperature (SST). This 

suggests that genetic structure could be influenced by a number of factors both historical and 

contemporary in this species. Another complicating factor is that the genetic discontinuity 

was best supported with loci that were potentially under selection – this could indicate 

selection gradients rather than historical influences (Wei et al. 2013a).  

In a recent Seascape study by Constable (2014), of two endemic, sympatrically occurring 

flounder species in New Zealand. The environmental variables that best predicted the genetic 

structure of the Yellowbelly Flounder (Rhombosolea leporina) were a combination of 

latitude, sediment, mean orbital velocity and sea surface temperature. The genetic structure of 
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the Sand Flounder (Rhombosolea plebeia) was best explained by a combination of latitude, 

longitude, sea surface temperature, mean orbital velocity, the width of the estuary mouth and 

the sediment type. Although the species are closely related and existing sympatrically the 

seascape analysis suggested different environmental variables that could indicate previously 

undiscovered niche partitioning.  

Finally, Hannan (2013) found weak but significant population genetic structure in two 

mollusc species Paphies subtriangulata and Paphies australis this genetic structure was not 

congruent with expectations based on geographical location or life history traits of the 

species. There were differences in the apparent genetic population structure of these two 

species. Using a range of different spatial scales and measures of genetic diversity a common 

set of environmental variables were shown to be significant in shaping genetic structure: 

geographic distance, sea surface temperature, tidal currents and bed slope. These results 

suggest that local adaptation and restricted dispersal could be the forces that result in the 

apparent population genetic structure.  

An understanding of the environmental patterns and processes that have created the genetic 

structure of marine organisms is important area of research that could greater inform 

disciplines such as community ecology and climate change research, as well as informing 

managers of marine ecosystems.  

4.1.2 Hypothesis 
 

Hypothesis One: Environmental variables that influence genetic structure 

The genetic structure found in Ostrea chilensis is correlated with environmental variables. It 

is expected that the genetic split described in the Chapter Three will be explained by an 

environmental variable or a combination of environmental variables.  

Hypothesis Two: Explanatory power of outlier loci 

Separate seascape analysis with the a priori identified outlier loci identified in Chapter Three 

when removed from the data set will result in a similar pattern found in the all loci included 

data set (global data set). This will give some suggestion as to whether a selection gradient is 

affecting the outlier loci.  
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4.2 Methods  

4.2.1 Genetic data  
 

Sample collection, DNA extraction, PCR protocols, genotyping and data analysis are 

described in Chapter Three of this thesis. Population pairwise Fst and Фst values were 

averaged across sampling locations to produce a single descriptive value for each of the 

sampling locations for the Generalised Linear Model (GLZ) following Wei et al. (2013b). 

The BEST analysis made use of the allelic frequency data (presented in Appendix 3.2). 

4.2.2 Environmental and Geospatial data    
 

There are 15 environmental variables provided by the New Zealand Environmental 

classification (NZMEC) scheme (Appendix 4.1).  Site specific data were obtained for nine of 

those environmental variables (as data were not available for all sampling sites): (1) Annual 

amplitude of sea surface temperature (°C), (2) Annual mean solar radiation (W m-2), (3) 

Depth (m), (4) Extreme Orbital velocity (m/s), (5) Freshwater fraction (FW), (6) Mean orbital 

velocity (m/s), (7) Spatial gradient annual mean sea surface temperature (SSTGrad)(°C km-1), 

(8) Summertime sea surface temperature anomaly (°C), (9) Winter solar radiation (Wm). 

Each of the variables has a spatial resolution of around 1km, variables representing long term 

averages of different durations and from different periods, but are typically drawn from 

multiple years between 1983 and 2000, or derived from multiple years between 1983 and 

2000, or derived from NZ-specific models (New Zealand Ministry for the Environment 

2005). Two geospatial variables were obtained in Google Earth: (11) Latitude and, (12) 

Longitude (both in decimal degrees).  

4.2.3 Test of independence among variables 
 

A correlation analysis and a principal component analysis were carried out in order to find 

variables that were auto-correlated. Variables that were spatially auto-correlated at the 0.05 

level were removed from the analysis. Analysis was carried out in STATISTICA v10 (Stat 

Soft Inc. 2011).  

4.2.4 BEST (Biological Environmental Stepwise) 
 

The routine BEST from the software package PRIMER v6.0 (Clarke and Gorley 2005) was 

used to explore associations between population-specific genetic variation (allele frequencies 
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per locus) and site specific environmental/geospatial variation. The BEST analysis was 

performed using two data sets: (1) the global data set that included all loci; (2) the outlier loci 

removed (those that were shown to be more than two standard deviations from the mean Fst 

in Chapter Three).  

A Bray-Curtis resemblance matrix was calculated for the environmental/geospatial data. The 

BIOENV subroutine was used to test for an association between the genetic and 

environmental matrixes using Spearman correlation coefficient (Rs). All possible models 

were tested and then ranked according to which subset of environmental/geospatial variables 

best explained variation in the genetic data set (i.e. the model with the largest Rs). The genetic 

data used in this analysis is allele frequency data (calculation of which is described in 

Chapter Three).  

4.2.5 Generalised linear model   
 

A generalised linear model (GLZ) was calculated using the GLZ routine in STASTICA v10 

(Stat Soft Inc. 2011). A mean multilocus Fst or Фst values for each population was calculated 

and used as a dependent variable (e.g. Wei et al. 2013, Foll and Gaggiotti 2006, Selkoe et al., 

2010) this was used to test the effects of 11 independent geospatial variables that were 

recorded for all populations. GLM analysis was performed using the Akaike information 

criterion (AIC) to rank all possible models (combinations of independent variables). The AIC 

identifies the best sub set of variables to include in the model: low AIC values reflect a better 

fit of the variables in terms of explaining variation in the model. The best-fit models (lowest 

AIC values) are presented as are the results of a test all effects.  

4.3 Results  
 

4.3.1 BEST analysis 
 

In an analysis of the global data set the top model of the BEST analysis identified sediment 

(SED) and spatial gradient annual mean sea surface temperature (SSTGrad) as the 

environmental variables that were most likely to explain the apparent genetic structure (Rs = 

0.263) (Table 4.1a). Overall, SED is found in nine of the top ten models and SSTGrad is 

found in six of the top ten models. When additional variables were added to the model the 

correlation (Rs) is reduced, and the model with just one of these variables has a lower 

correlation. It is important to note that the model is best explained using a combination of 
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environmental variables, it is shown in two models that when each variable is considered 

alone there is a reduction in the correlation compared to when they are considered together 

(SED alone = Rs 0.179, SSTGrad alone = Rs 0.182) 

With the outlier loci were removed, SED and SSTGrad were present in the models with the 

highest correlation (Rs = 0.181) (Table 4.1b), although the overall correlation was reduced 

compared the global data set. This reduction could indicate that the two loci are important in 

describing the relationship between environmental and genetic variation. Table 4.1c shows 

the effects of removing two random loci – this was done in order to compare the effect of 

removing the outlier loci from the analysis. A similar pattern with a lower level of correlation 

(Rs = 0.167) was found. 
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Table 4.1a: 10 best fitting models using the BEST analysis using the global data set  

Number of Variables  Correlation (Rs)  Variables 

2 0.263 Sed + SSTGrad 

3 0.214 Sed + SSTGrad + Rad_Wint 

2 0.201 Sed + Rad_wint 

1 0.182 SSTGrad 

1 0.179 Sed 

3 0.168 Lat+ Sed + Rad_wint 

4 0.168 Lat + Sed + SSTGrad + Rad_wint 

3 0.164 Sed + SSTAnnAmp + SSTWint 

4 0.164 Sed + SSTAnnAmp + SSTGrad + SSTWint 

3 0.164 Lat + Sed + SSTGrad  
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Table 4.1b: 10 best fitting models using the BEST analysis with outlier loci removed 

Number of variables Correlation (Rs) Selections 

2 0.181 Sed + SSTGrad 

2 0.175 Sed 

2 0.175 Sed + SSTGrad + Latitude 

4 0.169 Sed + MOrbVel +Rad_wint + Tidal 

5 0.169 Sed + MOrbVel +  SSTGrad + Rad_wint + Tidal 

3 0.168 Sed + MOrbVel + Rad_wint 

4 0.168 Sed + MOrbVel +SSTGrad +Rad_wint 

5 0.168 Sed + MOrbVel +SSTAnnAmp +STTWint +Rad_wint 

5 0.168 Sed+ MOrbVel + SSTAnnAmp +Orb_v_95+Tidal 

6 0.168 Sed + MOrbVel + SSTAnnAMp+ STTWint +Rad_wint 
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Table 4.1c: 10 best fitting models using the BEST analysis two random loci removed 

Number of Variables  Correlation (Rs)  Variables 
2 0.167 Sed + SSTGrad 
3 0.165 Sed + SSTGrad + Rad_Wint 
2 0.165 Sed + Rad_wint 
1 0.161 SSTGrad 
1 0.159 Sed 
4 0.159 SSTGrad + Lat+ Sed + Rad_wint 
4 0.158 Lat + Sed + SSTGrad + Rad_wint 
3 0.158 Sed + SSTGrad + SSTWint 
4 0.158 Sed + SSTAnnAmp + SSTGrad + SSTWint 
3 0.158 Lat + Sed + SSTGrad 
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4.3.2 GLZ analysis  
 

In the comparison of environmental variables with the mean genetic distance (Fst), using all 

loci in the data set, the best fit model included: Lat, Long, MeanOrbVel, STTAnAmp, 

SSTWint, Orb_v_95, Depth and Tidal, with a p value of <0.0001 (Table 4.2a). With the 

outlier loci removed from the analysis Lat was no longer in the top model and SSTGrad was 

included, with a p value of <0.0001 (Table 4.2b). Overall, comparing the results of the two 

analyses the outcome is similar apart from the inclusion of Rad_wint in four of the top 

models when the outlier loci were excluded (Table 4.2b).  

The GLZ was repeated with another measure of genetic distance: mean Фst for comparison. 

The best fit model was the same as the analysis using Fst except for the exclusion of 

MeanOrbVel and the inclusion of SSTGrad (Table 4.3a). With the outlier loci removed the 

best fit model was the same as the global data set (Table 4.3b). Again, when the outlier loci 

were removed Rad_wint featured in four of the best fit models (Table 4.3b).  
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Table 4.2a: Results of the GLZ analysis using the global data set using Fst  

Rank AIC p-value Lat Long Sed MeanOrbVel SSTAnAmp SSTGrad SSTWint Depth Tidal 

1 -1.06E+14 0.000000 x 

 

x x x x x x x 

2 -2.20E+13 0.000000 x x x 

 

x x x x x 

3 -3.44E+11 0.000000 x x x x 

 

x x x x 

4 -1.89E+11 0.000000 x x x x x 

 

x x x 

5 -7E+09 0.000000 x x x x x x x 

 

x 

6 -3.2E+09 0.000000 x x 

 

x x x x x x 

7 -3.2E+09 0.000000 x x x x x x 

 

x x 

8 -4E+08 0.000000 x x x x x x x x 

 9 -4E+08 0.000000 x x x x x x x x x 

10 -524270 0.000000 

 

x x x x x x x x 

  

p-value 0.314207 0.838306 0.792872 0.792872 0.015834 0.517168 0.00193 0.00019 0.000000 
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Table 4.2b: Results of the GLZ analysis using the outlier removed data set using Fst 

Rank AIC p-value Lat Long Sed MeanOrbVel SSTAnAmp SSTGrad SSTWint Depth Tidal 

1 -7.04E+13 0.000000 x x x x x x x x 
 

2 -7.04E+13 0.000000 x x x x x x x x x 

3 -4.40E+12 0.000000 x x x x x 

 

x x x 

4 -1.12E+11 0.000000 x x x x x x 

 

x x 

5 -1073741806 0.000000 x 

 

x x x x x x x 

6 -402653166 0.000000 x x x 

 

x x x x x 

7 -125829102 0.000000 

 

x x x x x x x x 

8 -16777198 0.000000 x x 

 

x x x x x x 

9 -104.2215477 0.000000 x x x 

 

x x x 
 

x 

10 -90.82262246 0.000000 x x x x x 

 

x x 
 

  

p-value 0.20746 0.97118 0.673939 0.044699 0.358235 0.009607 0.000000 0.000000 0.000000 
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Table 4.3a: Results of the GLZ analysis using Фst and the global data set 

Rank AIC p-value Lat Long Sed MeanOrbVel SSTAnAmp SSTGrad SSTWint Depth Tidal 

1 -1.41E+14 0.000000 x x x x x x x x 
 

2 -1.41E+14 0.000000 

 

x x x x x x x x 

3 -1.41E+14 0.000000 x x x x x x x x x 

4 -3.52E+13 0.000000 x x x x x 
 

x x x 

5 -1.76E+13 0.000000 x x 

 

x x x x x x 

6 -9.90E+12 0.000000 x x x x x x x 

 

x 

7 -1.03E+11 0.000000 x x x x x x 

 

x x 

8 -8.59E+09 0.000000 x 
 

x x x x x x x 

9 -1.34E+09 0.000000 x x x x 

 

x x x x 

10 -1.68E+08 0.000000 x x x 

 

x x x x x 

  

p-value 0.111924 0.677079 0.133868 0.00054 0.203846 0.042563 0.000972 0.000000 0.000000 
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Table 4.3b: Results of the GLZ analysis using Фst and the global data set using phist 

Rank AIC p-value Lat Long Sed MeanOrbVel SSTAnAmp SSTGrad SSTWint Depth Tidal 

1 -4.93E+14 0.000000 x 

 

x x x x x x x 

2 -2.11E+14 0.000000 x x x 

 

x x x x x 

3 -6.16E+13 0.000000 x x x x 

 

x x x x 

4 -1.76E+13 0.000000 x x x x x 

 

x x x 

5 -4.40E+12 0.000000 x x x x x x x 

 

x 

6 -3.30E+12 0.000000 x x 

 

x x x x x x 

7 -8.93E+11 0.000000 x x x x x x 

 

x x 

8 -1.07E+09 0.000000 x x x x x x x x 

 9 -1.07E+09 0.000000 x x x x x x x x x 

10 -2.10E+07 0.000000 

 

x x x x x x x x 

  

p-value 0.32431 0.6991 0.78284 0.002186 0.606051 0.014028 0.000623 0.000000 0.000000 
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4.4 Discussion 
 

In Chapter Three population genetic structuring was identified in Ostrea chilensis. The 

genetic structure was not explained by an IBD model and the structure seemed to be 

incongruent with geographical location. This is often attributed to chaotic genetic patchiness, 

but it is likely this structure can be better explained by correlation with environmental 

variables. In the present study, I used geospatial modelling to seek the environmental or 

physical variables that were correlated with this apparent genetic structure.  

The results of the BEST analysis using the global data set suggest that a combination of two 

environmental variables: sediment (SED) and spatial gradient annual mean sea surface 

temperature (SSTGrad), SSTGrad are correlated with the apparent genetic structure as these 

were present in the top model (Rs = 0.263) (Table 4.1a). When the outlier loci were removed 

the two top models had the same environmental variables present, albeit with a lower 

correlation (Rs = 0.181) (Table 4.1b). Removing random variables resulted in a similar 

pattern with a lower correlation (Table 4.1c). I would expect that if the loci are under 

selection then a completely different set of variables would explain the genetic structure. 

However, since their removal causes a reduction in correlation it suggests these loci could be 

influential in generating overall genetic structure and they cannot be ruled out as not being 

under selection or at least linked to genes under selection. But it is more likely the correlation 

of genetic structure and environmental variables is due to a genome wide effect rather than 

specific loci as a similar pattern is found when removing random variables. 

The analysis presented in this chapter suggests that apparent genetic structure is correlated 

with combinations of environmental variables, and possibly due to interactions between these 

variables. Therefore, no one variable is responsible for the genetic structure. The 

environmental variables used in the Marine Environmental Classification system (Snelder et 

al. 2005) included four variables to capture sea surface temperature (SST). These variables 

capture specific oceanographic processes, both physical and chemical, that affect biological 

patterns (Snelder et al. 2001). These included winter time SST (WintSST), annual amplitude 

of SST (SSTanamp), summer time sea surface temperature anomaly (SSTanom) and spatial 

gradient of annual mean SST (GradSST). SSTGrad appeared in the top models of the BEST 

analysis (Table 4.1a/b/c) this variable is used to recognise fronts in oceanic water masses that 

are expected to correlate with variation in primary productivity. The two populations in the 

north of the South island have the highest values for this variable (Cloudy bay: 0.0358 °C  
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km-1 Marlborough Sounds: 0.09942 °C km-1) with the populations below 42°S in the Tasman 

Strait (and the Chatham Islands) having lower values.  

The sediment type is a factor that determines the composition of benthic communities. 

Variation in sediment type was derived from the New Zealand Region Sediments chart 

(Mitchel et al. 1989). There are 23 categories that are based on the dominant and 

subdominant sediment type. The sediment types were converted into effective particle size 

then averaged and ranked to give a continuous variable rank of sediment size, a variable that 

is suitable for correlation analysis. The sediment variable was not included in the final EEZ 

classification scheme as it was found to dominate classification schemes and was out of 

proportion to sediment’s actual value as a predictor as shown by validation analyses, 

furthermore it had a low resolution. However, the sediment variable was included in this 

analysis as it showed some relationships with previous biological data sets (see Image et al. 

2003). A closer look at the sediment types around New Zealand shows that the sediments are 

very similar around the Foveaux Strait and Stewart Island that are dominated by deep sea 

clay. The Akaroa population was quite different, which was dominated by Calcium sand, 

with mud being a sub-dominant type. Cloudy Bay and Marlborough sounds populations had 

similar sediments with clay being the dominate type, and with gravel sand and mud being 

sub-dominant types. Finally, the Chatham Islands samples had a dominant sediment type of 

clay and a sub- dominant type of sand. Given that there are very similar sediment types in the 

areas around the Foveaux Strait and a contrasting type of sediments in the Cloudy Bay and 

Marlborough Sounds populations it is not a surprise that sediment is a variable found in the 

top BEST models (Tables 4.1a/b/c). These populations have shown strong sub-division in the 

AWClust analysis of the previous chapter (Table 3.10 and 3.11). Unfortunately, I cannot 

compare my results to that of Wei et al. (2013b) as the sediment variable was not included in 

their analysis. However, many bivalves display dispersal patterns that are associated with 

sediment. For example, habitat selection experiments have shown that larvae of some species 

can choose to settle in favourable habitats, for example the work of Snelgrove et al. (1998) 

demonstrated that the bivalve Spisula solidissima was able to preferentially settle in sandy 

sediments. In the field Huxam and Richards, (2002) found that the bivalves Cerastoderma 

edule and Macoma balthica showed a strong association with sediment type. In this study 

sediment type was shown to be a strong factor in explaining the genetic structure of Ostrea 

chilensis: it remains for further investigation to see whether O. chilensis can select sediment 

type or whether there is any local adaptation to sediment type. This would also be important 
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knowledge for management of the species, because oyster dredging is known to affect the 

distribution of sediment (Cranfield et al. 2003).  

SSTgrad and other metrics of temperature were correlated with the apparent genetic structure. 

However, it is impossible to explain the mechanistic causes since the temperature variables 

interact to create complex biological and physical interactions, although some generalisations 

can be made. In O. chilensis spawning times, larval settlement and larval survival have been 

shown to be strongly influenced by temperature (Chaparro, 1990). In another study of O. 

chilensis Jeffs et al. (2002), found that warmer temperatures could be involved in 

synchronizing and initiating oogenesis. These studies support the finding that SSTgrad could 

be correlated with genetic variation. If this is the case then differences in temperature 

between sampling sites could result in spawning occurring at different times, potentially 

reducing gene flow between populations, increasing local recruitment and genetic difference 

between populations via genetic drift. 

The results of the GLZ indicated a more complicated correlation of genetic structure and 

environmental variables. Most of the environmental variables were present in the top ten 

models. Latitude was found in most of the top models; this may be a proxy variable for any 

number of environmental or oceanographic variables that change with latitude, including 

temperature, which is also present in the top models. This contrasting picture indicates that 

there was no single environmental variable contributing to the genetic structure. This could 

indicate that the apparent genetic structure is largely the result of neutral evolutionary forces 

such as drift and gene flow. However, the results of this analysis could be confounded by a 

loss of resolution in genetic information as the genetic diversity is described using a mean.  

A limitation with the use of RAPD loci for a seascape analysis is that there are only two 

alleles. The use of microsatellite loci for this type of analysis since they are generally multi-

allelic, which gives a higher resolution, using markers such as these with a higher information 

content leads towards the identification of loci under selection and the mechanisms of natural 

selection on these loci. This lower level of resolution of RAPDs means that the results of the 

study should be treated as exploratory. In the study of Wei et al.  (2013a), they identified a 

microsatellite locus that contributed substantially to the correlation between genetic structure 

and environmental variation. In the search for candidate genes for selection multi-allelic 

markers or markers with high genome coverage such as SNPs (single nucleotide 

polymorphisms) need to be developed for O. chilensis, this would also lead to a greater 

resolution in which to test the effects of environmental variables on genetic structure. 

Another limitation of this study is that environmental and geospatial variables that are being 



Chapter Four: A Seascape Genetics Analysis of New Zealand Populations of Ostrea chilensis 

 134 

tested here have no a priori expectations of associations with the genetic variable (e.g. Wei et 

al 2013b). It is possible that the actual causative variables of genetic diversity have not been 

included in the analysis, only those variables that are easily accessible have been included: 

those that are available from the NZMEC and those that are easy to obtain such as latitude 

and longitude. It is recognised here that there could be environmental variables that have 

more influence on the apparent genetic structure that have not been included.  

Since this is a relatively new technique, there is a lack of New Zealand seascape genetics 

studies. In furture more work needs to be done to investigate the effect of environmental 

variation on the genetic structure across multiple taxa. In this study environmental variables 

that contribute to genetic variation have been highlighted, they may not be the causal factors 

and, it they are, at present the mechanistic basis of the relationship cannot currently be 

explained. It should also be noted that impact of environmental variables on the apparent 

genetic structure cannot easily be separated from the effects of historical factors - such as sea 

level changes reducing gene flow between sub-populations. These results, however, provide 

the initial step to elucidating the relationship of functional genes and their relationship with 

environmental variables.  

 

4.5 Summary 
 

1. This exploratory analysis revealed that genetic structuring of Ostrea chilensis is 

correlated with sediment type and spatial gradient annual mean sea surface 

temperature. Sediment type is very different around sampling locations. Although this 

is an environmental variable with low resolution and has some limitations, it could 

explain the apparent genetic structure of O. chilensis.  

 

2. An environmental variable linked with sea surface temperature has been shown to 

correlate with genetic structure. SST has been implicated with explaining the genetic 

structure in the study of Wei et al. (2013a). This study provides further evidence that 

variables influencing SST are important in explaining genetic structure. 

 

3. More genetic makers with higher information content and greater genome coverage 

need to be developed in order to find loci that are under selection and better describe 

the influence of environmental variables on genetic structure.  
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4.7 Appendix 
 

Appendix 4.1: Environmental variables from the Marine Environment Classification (MEC). Variables highlighted in bold were not independent  

 

Name Abbreviation Units Description 

 

Tidal current  
Tidal 

m/s Depth averaged maximum tidal current 

Annual amplitude of sea 

surface temperature 
SSTAnnAmp °C Smoothed annual amplitude of SST 

Annual mean solar radiation RadMean W m-2 
Mean extra atmospheric solar radiation modified by mean annual cloud 

cover 

 Depth  
Depth 

 m   Bathymetry grid (1 km resolution) 

Extreme Orbital velocity 
Orb_v_95 

m/s 

Orbital velocity at the bed for the 95th percentile significant wave height 

calculated from a 20-year wave hindcast 

 Freshwater fraction 
FW 

proportion Proportion of fresh water based on river inputs    

Mean orbital velocity MOrbVel m/s 
Orbital velocity at the bed for the mean significant wave height calculated 

from a 20 year wave hindcast 

  Seabed curvature                        
Bed_curv 

0.01m-1 Curvature of the surface surrounding each grid cell  
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Seabed platform curvature 
Bed_plan 

 0.01m-1 Curvature of the surface perpendicular to the slope direction  

Seabed rate of change of slope 

(profile) 
Bed_prof 

 0.01m-1 The rate of change of slope for each cell 

Sediment Sed n/a Sediment type as a categorical variable 

Spatial gradient annual mean 

sea surface temperature 
SSTGrad °C km-1 Smoothed magnitude of the spatial gradient of annual mean SST 

Summertime sea surface 

temperature anomaly 
SSTAnom °C 

Spatial anomalies with scales between 20 and 450 km in late February 

when SST is typically highest 

Winter solar radiation  
Rad_wint 

Wm 

Extra atmospheric solar radiation in June, modified by mean annual 

cloud cover 

Wintertime sea surface 

temperature 
STTWint °C Mean of daily data from early September when SST is typically lowest 
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Chapter Five: Partial Assembly of the 
Ostrea chilensis Mitogenome and its 
Subsequent use in Phylogenetic 
Reconstruction 
 

5.0 Aims 
 

The aims of this chapter were, first, to identify mitochondrial DNA sequences within the 454 

DNA sequence reads, and assemble them into a genome sequence; and secondly, to use the 

mitochondrial genome data to examine the phylogenetic position of Ostrea chilensis 

5.1 Introduction 
 

Small PGM/454 DNA sequencing runs are often used in the field of population genetics to 

identify microsatellite DNA loci. However, these data sets also contain other DNA sequences 

that can be used to more thoroughly to understand genome structure and arrangements. For 

example, Rasmussen and Noor (2009) used 454 data to develop useful biological information 

and genomic resources for a non-model organism: the Scuttle Fly (Megaselia scalaris). 

Although the sequence data only represented 0.1 % of the genome they were able to: 

assemble the full mitogenome, identify repetitive elements (such as transposons and 

microsatellites), and identify gene homologs. Similar work was carried out by Leese et al. 

(2012), they found a positive correlation between the number of mitochondrial fragments and 

the total number of fragments within 454 data sets from a range of taxa. 

5.1.1 Mitochondrial DNA 
 

The mitogenome is the only extra-nuclear genome in animals (Boore, 1999). Typically the 

mitogenome is compact, within Ostreadae the size ranges from 16.2 kbp to 22.5kbp (Table 

5.1). The mitogenome usually codes for 13 proteins, 22 transfer RNAs and two ribosomal 

RNAs (Danic-Tchaleu et al. 2011). Within Bivalvia the gene order seems to be highly 

variable, and this heterogeneity can be phylogenetically informative (Yuan et al. 2012). 

However, in oysters the gene order seems to be conserved (Danic-Tchaleu et al. 2011, Ren et 
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al. 2010). There are often few intergenic regions except for a single large non-coding region 

that is thought to contain elements that control the initiation of replication and transcription 

(Shadel and Clayton, 1997). Size variation in the mitogenome is usually due to the different 

lengths of the non-coding region (Danic-Tchaleu et al. 2011). 

During the last few years, there has been a significant increase in the number of complete 

mitogenomes available for a range of species. Among the bivalves, there are currently 293 

mitogenomes available on GenBank for a range of individuals and species. Within Ostreidae 

there are eight Crassostrea species; three Ostrea species and one species from the genus 

Saccostrea which is Saccostrea mordax. The number of mitogenomes available on GenBank 

is expected to rapidly increase as researchers are beginning to use genomic data sets to 

assembly full mitogenomes from their sequencing data (e.g. Zeng et al. 2014). 

 

5.1.2 Oyster mitogenomes and phylogenetics   
 

Recently, the phylogenetic relationships of Ostrea and Crassostrea species have been studied 

using whole mitochondrial genomes sequences. Danic-Tchaleu et al. (2011) sequenced the 

complete mitogenome of the European flat oyster (Ostrea edulis) they then used all of the 

protein coding genes for all of the published oyster mitogenomes to reconstruct a phylogeny.  

The mitogenome of O. edulis was amplified in four overlapping fragments using species-

specific primers. These primers bound to particular gene regions and amplified a product of 

around 4193-5383bp. The purified products were then directly used as templates in cycle 

sequencing reactions with dye-labelled terminators. Specific primers were designed and used 

for primer-walking-sequencing, which was performed for both strands of each sample using 

an ABI genetic analyser. The sequences were then assembled into a contig. Subsequently, 

protein coding and ribosomal RNA genes were identified using BLAST searches of 

GenBank, and also by alignment with previously published mollusc mitogenomes. The amino 

acid sequences of protein coding genes were inferred with ORF Finder (Rombel et al. 2002). 

Transfer RNAs were identified using DOGMA (Wyman et al. 2004) and tRNAscan-SE 

(Lowe et al. 1997).  

Danic-Tchaleu et al. (2011) then conducted two phylogenetic analyses: one using twelve 

concatenated protein coding genes from 19 bivalve mitogenomes; the second analysis used 

COI sequences from all published oyster species from the genera: Ostrea, Ostreola, 
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Saccostrea and Crassostrea. The phylogenetic analysis was conducted by aligning the genes 

using the program MUSCLE (Edgar, 2004) the tree was produced using Maximum 

Likelihood (ML) implemented in MEGA5 (Tamura et al. 2013). The phylogenetic trees from 

the study of Danic-Tchaleu et al. (2011) are reproduced in Figure 5.1.  

The phylogenetic position of O. chilensis was examined in earlier work by Jozefowicz and Ó 

Foighil (1998) using a partial 16S rRNA sequence. In later work Ó Foighil (Ó Foighil, 2000) 

tested the phylogenetic relationships using 28S rRNA. The tree topology reported in these 

studies was subsequently confirmed by Danic-Tchaleu et al. (2011) with Ostrea chilensis 

being ancestral to the sister taxa Ostrea angasi and Ostrea edulis. Ó Foighil (Ó Foighil et al. 

1999) also conducted a phylogeographic analysis of O. chilensis using samples from the 

North Island, South Island and Chile to conclude (along with fossil evidence) that the most 

probable explanation for the presence of a Chilean population of O. chilensis is by rafting 

from an ancestral North Island population. 

There have not been any studies that have used multiple genes to determine the phylogenetic 

position of O. chilensis, even though the use of single gene regions has been criticised by a 

number of studies (for example, Brito and Edwards, 2009). Single-gene trees have been 

shown to have limited value because tree topology is often only weakly supported. Better 

statistical support tends to result from larger data sets that are comprised of several different 

gene regions.  

In addition to their applications to phylogenetic reconstruction, there are many other benefits 

that can be gained from mitochondrial sequence data. Because the mitogenome is inherited 

through the maternal line (although this is not always the case in some bivalves (see Doucet-

Beaupré, et al. 2010)) it enables sex-specific patterns of migration to be traced. Genetic drift 

occurs quicker in mtDNA due to a smaller effective population size than nuclear markers, 

meaning mtDNA markers can be more sensitive to bottlenecks (Moritz et al. 1987). 

Furthermore, mtDNA analyses tend to show monophyletic relationships whereas the nuclear 

genes often show poly- or paraphyletic relationships, which most likely arise because 

recombination can occur within genes in the nuclear genome (Zink and Barraclough, 2008).  
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Figure 5.1: The tree on the left was produced using 19 protein coding genes extracted from the full mitogenomes. The tree on the right was 
produced using COI fragments from all published Ostrea, Ostreola, Saccostrea and Crassostrea. Support values are the result of 100 Bootstraps 
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The goal of the research presented in this chapter is to provide the initial platform for future 

studies of O. chilensis that use mitochondrial DNA markers in areas such as phylogenetics, 

phylogeography and aquaculture genetics.  

5.1.3 Hypotheses 
 

Hypothesis One: Mitochondrial DNA  

Mitochondrial DNA is over-represented in 454 sequencing runs because there are multiple 

copies of the mitogenome in a cell compared to the nuclear genome. Therefore, it will be 

possible to recover many mitochondrial fragments. 

Hypothesis Two: The phylogenetic position of Ostrea chilensis  

The placement of O. chilensis using protein coding mitochondrial genes developed in this 

study and analysed using Bayesian methodology will support the findings of previous work 

using single gene regions (Jozefowicz and Ó Foighil, 1998; Ó Foighil, 2000) 

Hypothesis Three: Origin of the Chilean population 

The study of Ó Foighil et al. (1999) suggests that the Chilean population of O. chilensis was 

established by rafting from the North Island of New Zealand. The inclusion of data developed 

in this study and data available from GenBank will support this suggestion. 
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5.2 Methods 

5.2.1 Identification of mtDNA sequences 
 

Mitochondrial sequences were identified in the 454 data set by using the BLAST search 

procedure of the sequences in the 454 DNA database against the published genomes of 

closely related taxa. A custom BLAST database was made using the program GENEIOUS, a 

batch of mitogenomes was then blasted against this database, maximum e-value was set to 

1e-20, the e-value is a measure of the probability an alignment occurring by chance; 

increasing the e-value would increase the number of similar sequences (“hits”) that were 

returned, but are more likely to be biologically un-meaningful (not mitochondrial sequences).  

The mitogenomes used and the number of 454 sequences that matched with each 

mitogenome are shown in Table 5.1. 

Once the 454 sequences of mitochondrial origin were identified the sequences were 

assembled - using the ‘de novo’ assembly function in GENEIOUS.  The contigs were then 

blasted against the 454 data set in an attempt to find additional sequence matches. The 

contigs from each assembly were then mapped to the published mitogenome of Ostrea edulis 

(Genbank Accession Number JF274008), which was used as a reference genome, finally the 

454 sequences where aligned - using the ‘align to reference’ function in GENEIOUS. The O. 

edulis genome was used as a reference genome as it had the highest number of hits from the 

454 database (Table 5.1). The annotations of genes on the mitochondrial genome of O. edulis 

were used as a guide for the annotation of the draft genome of O. chilensis.  

5.2.2 Phylogenetic reconstruction using oyster mitogenomes  
 

All oyster mitogenomes published on GenBank were used for phylogenetic construction 

(Table 5.1). The gene sequences for Cytochrome oxidase 1 (COI), Cytochrome oxidase 2 

(COII), ATP synthatase subunit 6 (ATP6), Cytochrome Oxidase 3 (COII), Nicotinamide 

adenine dinucleotide 1(ND 1), Nicotinamide adenine dinucleotide 2 (ND 2), Nicotinamide 

adenine dinucleotide 3 (ND3), Nicotinamide adenine dinucleotide 4 (ND4), Nicotinamide 

adenine dinucleotide 4l (ND 4l), Nicotinamide adenine dinucleotide 6 (ND6), Cytochrome B 

(CYTB) and were extracted from each of the published genomes using GENEIOUS. The 

partial gene sequences for ATP6, COX1, COX2, COX3, CYTB, NAD3, NAD4 and NAD4l 

were used for O. chilensis because not all genes on its mitogenome were recovered.  
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Each set of homologous gene regions were aligned separately using the alignment program 

ClustalW implemented in MEGA 6 (Tamura et al. 2013). The protein coding genes were 

analysed for the best fitting evolutionary model using jModeltest v 2.1.1 (Darriba et al. 2012) 

using four Gamma categories. The tree on which the models were optimised was produced 

using maximum likelihood. The corrected Akaike information criterion (AICc) was used to 

select the best models. The alignment was partitioned to take into account the different 

evolutionary models for each gene sequence. Partitions were chosen a priori based on gene 

identity, although more computationally intensive it has been shown to improve the estimated 

posterior probabilities for phylogenetic reconstruction (Brandley et al. 2005). 

MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) was used to for Bayesian inference. Two 

independent runs with two different starting trees consisting of four Markov chains per run 

(three heated chains and one cold chain) of 1,100,000 steps were implemented. The first 100, 

000 steps of each are discarded as the burn-in period, the chain is then sampled every 200th 

step. Convergence of the MCMC chain was tested in three ways (1) visual inspection of the 

trace file to make sure there is regular swapping between low and high likelihoods (2) the 

standard deviation of parameter estimates is >1 (3) by testing the null hypothesis that mean of 

the first 10 percent of the Markov chain (after burn in is removed) is equal to the mean of the 

final 50 percent of the Markov chain, the test statistic for this is the Geweke diagnostic 

(Geweke, 1992). If there is no difference between means, the null hypothesis that there is no 

significant difference between the means is accepted. These tests were implemented using the 

R package CODA (Plummer et al. 2005). 

Bayesian posterior probabilities of >95 were considered as significant support for a clade 

(Wilcox et al. 2002). The tree produced was a majority rule consensus tree, containing the 

posterior probability values for each clade these are the sum of posterior probabilities of all 

trees with that clade. 

5.2.3 Phylogeographic analysis of Ostrea chilensis Cytochrome Oxidase I sequences 
 

Following the study Ó Foighil, (1999) the phylogeographic relationship of O. chilensis was 

investigated. The analysis included the COI sequence obtained in this thesis research, the 

sequences used in the Ó Foighil study and sequences from a Chilean study (unpublished data) 

sourced from GenBank. Ostrea stentina and Ostrea angasi are used as outgroups as in the Ó 

Foighil study. GenBank accessions for this study are listed in Table 5.2. A Bayesian 
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phylogenetic reconstruction was implemented using the same steps outlined in the previous 

section. 

5.3 Results 

5.3.1 Mitochondrial Genome Construction 
 

The amount of mitochondrial DNA recovered from the 454 DNA database was compared to 

the work of Leese et al. (2012) and reproduced in Figure 5.2. A total of 10,086 bp of DNA 

sequence data from the 454 read set was aligned to the published mitochondrial genome of O. 

edulis. This represents 65.4 percent of the 16,320 bp O. edulis genome (Figure 5.3 and Table 

5.3). The mean depth of coverage is the number of sequence reads that overlap. The coverage 

of the reference sequence refers to the percentage of the total genes as compared to the 

Ostrea edulis genes and finally the percentage pairwise identity refers to the match of DNA 

bases between the Ostrea chilensis gene region and the reference gene. The overall depth of 

coverage had a mean of 1.2, and the maximum depth was 7 sequences, this was generated 

with 38 sequences with a mean length of 490 bp.  The levels of coverage for the 

mitochondrial coding regions are detailed in Table 5.3. Mean depth of coverage refers to the 

number of sequences that overlap a gene region from the 454 data, coverage to the reference 

sequence refers to the how much of the region is actually represented by the particular region 

compared to the reference sequence, the percentage pairwise identity refers to the similarity 

to the reference sequences and the 454 data. 

There were nine gaps identified in the mitochondrial genome. PCR primers were designed to 

amplify the DNA sequences between these gap regions (Table 5.4) and, if required, they can 

be used to close the gaps using standard PCR and Sanger sequencing methods.  

5.3.2 Best-fit models of gene evolution for oyster mitogenomes  
 

Table 5.5 shows the best-fit models of sequence evolution for each of the mitochondrial 

genes. For the concatenated alignment the best fitting model selected was the GTR+I+G 

model. However, this model does not apply to all genes, which justifies the use of a 

partitioned analysis.  
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5.3.3 Phylogenetic analysis based on all oyster mitogenomes 
 

Figure 5.4 shows a plot of the MCMC chain, after the burn-in was discarded. It shows regular 

mixing between high and low likelihoods. The standard deviation of the parameter estimates 

was 0.13. The Geweke diagnostic gave a value of 1.389 (values greater than two are usually 

taken as an indication of lack of convergence).  

The phylogenetic tree produced (Figure 5.6) has a similar topology to that produced by 

Danic-Tchaleu et al. (2011). With the addition of O. chilensis and O. lurida this analysis 

places O. deselamelonosa in a more basal position with O. lurida being ancestral to all Ostrea 

species.  

5.3.4 Phylogeographic analysis 
 

The best model for the alignment of COI genes was GTR+I+G. The trace file shown in 

Figure 5.5 shows a plot of the MCMC chain, after the burn in was discarded. It shows regular 

mixing between high and low likelihoods. The standard deviation of the parameter estimates 

was 0.12. The Geweke diagnostic was 1.069, demonstrating that the chains converged. The 

un-rooted tree produced by Bayesian analysis (Figure 5.7) shows three clades. One clade 

contains the two species O. angasi and O. stentina. A second clade containing South Island 

O. chilensis samples was split from a clade containing North Island and Chilean populations; 

however the support values are low for this split.  
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Table 5.1: Mitogenomes used in the study and the number of hits when each genome was 
blasted against the 454 database 

Species Accession Genome Size (bp) Number of BLAST hits 

Crassostrea spp.        

Crassostrea angulata NC_012648 18,225 16 

Crassostrea ariakensis NC_012650 18,414 16 

Crassostrea gigas NC_001276 18,224 16 

Crassostrea hongkongensis NC_011518 18,622 17 

Crassostrea iredalei NC_013997 22,446 15 

Crassostrea nippona NC_015248 20,030 14 

Crassostrea sikamea NC_012649 18,243 19 

Crassostrea virginica NC_007175 17,244 14 

Ostrea spp.       

Ostrea denselamellosa NC_015231 16,277 37 

Ostrea edulis JF274008 16,320 40 

Ostrea lurida NC_022688 16,344 38 

Saccostrea mordax NC_013998 16,532 19 

Outgroup       

Argopecten irradians NC_009687 16,221 NA 
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Figure 5.2: Total number (bp) of mitochondrial DNA sequences recovered compared to total genomic sequences from various next generation 

sequence datasets, adapted from Leese et al. (2012). Amount of mitochondrial DNA recovered for Ostrea chilensis is highlighted in red
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Table 5.2: partial COX1 sequences used in the phylogeographic study 

Species Location Accession Study 

O. chilensis 
Marlborough Sounds, South Island, 

NZ 
NA This study 

O. chilensis Foveaux Strait, South Island, NZ AF112285 Ó Foighil (1999) 

O. chilensis Moturekareka, North Island, NZ AF112289 Ó Foighil (1999) 

O. chilensis Quempillen, Chile AF112286 Ó Foighil (1999) 

O. chilensis Chile JF301917 Unpublished 

O. chilensis Chile JF301920 Unpublished 

O. chilensis Chile JF301921 Unpublished 

O. chilensis Chile JF301922 Unpublished 

O. chilensis Chile JF301924 Unpublished 

O. chilensis Chile JF301929 Unpublished 

O. chilensis Chile JF301931 Unpublished 

O. angasi NZ AF112287 Ó Foighil (1999) 

O. stentina  NZ AF112288 Ó Foighil (1999) 
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Table 5.3: Summary Statistics for mitochondrial genome coverage 

Coding Region Mean Depth of 
Coverage 

Coverage of 
Reference Sequence 

(bp) 

Percentage Pairwise 
Identity (bp) 

COI 2.6 61.8 79 

tRNA-Gly 3.4 100 79 

COII 1.2 59 58.1 

tRNA-Ile 0 0 0 

tRNA-Thr 1 71.8 93.5 

tRNA-Glu 1 100 89.9 

CYT B 3.8 76.7 83.5 

COIII 0 0 0 

tRNA-Met 0 0 0 

tRNA-Ser 0 0 0 

tRNA-Leu 0 0 0 

tRNA-Pro 0 0 0 

16 S RNA 1.1 47.5 64.3 

NAD 2 1.1 98.7 76 

tRNA-Cys 0 0 0 

tRNA-Tyr 0 0 0 

tRNA-Arg 2 100 94.9 

tRNA-Val 2 100 82.5 

tRNA-His 2 100 93.8 

APT 6 1 94.8 66.3 

tRNA-Asn 1 100 58.9 

NAD 4 1.2 100 79.7 

12 S RNA 0.1 6.5 98.3 

16  S RNA 2.2 100 87.1 

NAD 5 0 0 0 

NAD 6 0 0 0 

tRNA-Gln 0 0 0 
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NAD 3 0 0 0 

tRNA-Lys 0 0 0 

tRNA-Leu 0 0 0 

tRNA-Phe 0 0 0 

tRNA-Ala 0 0 0 

NAD 1 0.8 77.5 82.4 

NAD4l 1 100 84.2 

tRNA-Trp 1 62.5 75.6 

tRNA-Asp 0 0 0 
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Figure 5.3: partial draft mitochondrial genome of Ostrea chilensis 
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Table 5.4: PCR primers designed to amplify DNA in the gap regions found in the mitochondrial genome 

Gap Size (bp) Forward primers Sequence Reverse primers Sequence 

1 120 Ost_chi_Gap1.1F CCGCGTCGAGTTGTTGACTA Ost_chi_Gap1.1R ACATTCGCCGCCTTACATGA 

2 440 Ost_chi_Gap2.1F GCTCCGCTTACGACTAACACT Ost_chi_Gap.2.1R CATCTAGGCGGGGAACTTCC 

3 1614 Ost_chi_Gap3.1F GCAGATCCCTTACAGTGGCA Ost_chi_Gap.3.1R CAAGGCACACAGGGGATAGG 

4 281 Ost_chi_Gap4.1F GAGAGACGCCGACCACTCTA Ost_chi_Gap.4.1R CCACAAATGTAACTCTACCAAAAGA 

5 259 Ost_chi_Gap5.1F GAAACGTGTGCGGAGGAATG Ost_chi_Gap.5.1R CATACAGCAGCTGACGGGAA 

6 73 Ost_chi_Gap6.1F GGTCAGTGGTTCTGCTGGAT Ost_chi_Gap.6.1R GGTCAGTGGTTCTGCTGGAT 

7 935 Ost_chi_Gap7.1F ACTTAGTAGTGAGCGGGGGT Ost_chi_Gap.7.1R GGCGGCCGTTTACAACTTTT 

8 2923 Ost_chi_Gap8.1F TAGAGCTTGGCCATGTGTCC Ost_chi_Gap.8.1R GCAGAGAAGCCACTTGAAGG 

9 490 Ost_chi_Gap9.1F TAGCCAGGGGGAGTAAGCTT Ost_chi_Gap.9.1R TAGCCAGGGGGAGTAAGCTT 
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Table 5.5: Comparison of best fit models for each of the protein coding genes 

Gene Model InL p-inv gamma 

Concatenated Alignment  GTR+I+G 82201.3 0.041 0.399 

ATP6 TVM+I+G 4628.78 0.275 0.661 

COI GTR+I+G 9811.63 0.458 0.754 

COII TIM3+I+G 4316.94 0.44 0.918 

COIII TVM+I+G 6673.68 0.233 0.734 

CYTB GTR+I+G 8536.62 0.3 0.861 

NAD4l TVM+I+G 4628.78 0.275 0.661 

ND1 TVM+I+G 6601.22 0.296 0.891 

ND2 TVM+I+G 8921.33 0.152 1.198 

ND3 TVM+I+G 2600.6 0.3 1.073 

ND4 GTR+I+G 10667.5 0.266 0.947 
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Figure 5.4: Trace plot of the MCMC chain for the mitogenome phylogenetic reconstruction 
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Figure 5.5: Trace plot of the MCMC chain for phylogeography analysis 
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Figure 5.6: Phylogenetic tree produced using Bayesian methods. Branch supports are Bayesian posterior probabilities. Out group is Argopecten 

irradians
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Figure 5.7: Phylogenetic tree based on Bayesian analysis using partial cytochrome oxidase 1 

gene (COI) alignments for Ostrea chilensis. Ostrea stentina and Ostrea angasi are used as 

outgroups.  
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5.4 Discussion 
 

The first hypothesis is accepted, 10,086 bp of mitochondrial DNA was found in the 454 DNA 

database. Based on the size of the O. edulis mitogeneome, it was estimated that this 

represents around 65% of the full mitogenome sequence of O. chilensis. Leese et al. (2012) 

found a significantly positive linear correlation between genomic library size and amount of 

mitochondrial DNA sequences recovered. The amount of mitochondrial DNA recovered in 

the present study was compared to results reported by Leese et al. (2012) (Figure 5.1). The 

finding here suggests that around 1 x 108 bp of DNA sequence reads are required from a 

genomic sequencing run to recover the full mitogenome sequence for an average sized 

mitogenome of 16 – 20kbp.  

The second hypothesis was also accepted: the phylogenetic analysis using mitochondrial 

protein coding genes (Figure 5.6) showed that O. chilensis forms a sister taxa relationship 

with O. edulis. O. lurida and O. densellamellosa are ancestral to this relationship. However, 

O. angasi, was found to be sister taxa to O. edulis in the study of Danic-Tchaleu et al. (2011), 

using only the COI gene, this species was not included in the present study as it is yet to have 

its mitogenome fully sequenced. A greater taxonomic coverage within the genus is needed to 

clarify the phylogenetic position and test scenarios for the evolutionary origins of O. 

chilensis. These questions can be further investigated when the whole mitogenome of O. 

chilensis and all oyster species has been completed. A limitation of this part of study is that 

there are still many mitogenomes to be constructed within the oyster family; the final 

topology of the phylogenetic tree will be dependent on the taxa used and the level of genomic 

information obtained. The phylogenetic position of O. chilensis was determined using some 

missing data; it is unlikely the phylogenetic position of the species will change with greater 

genetic data as studies have shown that topology of a phylogeny does not change due to 

missing data (Lemmon et al. 2009). 

 

The phylogeographic tree reported in the present study (Figure 5.7) using a COI sequence 

recovered from the 454 DNA database (O. chilensis from Marlborough Sounds), and seven 

Chilean samples (from an unpublished study found on GenBank), supported the suggestion of 

Ó Foighil et al. (1999): that the Chilean population arrived by rafting from the North Island 

of New Zealand. The North Island sample (from Moturekaraka) is more closely related to the 
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Chilean individuals (from Quempillen) compared to the two South Island individuals 

(Marlborough Sounds and Foveaux Strait). Also, the Chilean samples cluster in a ‘star-like’ 

phylogeny this suggests a recent arrival from a limited number of individuals. Ó Foighil et al. 

(1999) used COI sequences to suggest that O. chilensis rafted to Chile from a North Island 

ancestor. The idea of a vicariant origin of this species was ruled out as the only fossil 

evidence found post-dates New Zealand’s separation from Gondwanaland. The possibility of 

anthropogenic transport was also ruled out because radio-carbon dating of Chilean fossils 

suggests they were present before the arrival of humans in New Zealand. Although to make 

the conclusion in the absence of fossil data that the Chilean population was established by 

rafting from the North Island, might rest on too many assumptions about the genetic data as 

the sample size is very small, and may not include the full extent of genetic variation of the 

species, inclusion of further samples could result in a different tree topology. More gene 

regions and a greater number of individuals would be needed to more thoroughly test this 

idea. 

Although the full mitogenome of O. chilensis has not yet been fully sequenced, this study 

was an important first step towards a greater understanding of mitochondrial genome 

evolution in oysters, and a step towards full mitogenome sequencing as primers have been 

designed to amplify the remaining gaps. The mitochondrial DNA can be used for further 

studies, such as the investigation of female mediated gene flow in O. chilensis, which could 

reveal patterns that are not apparent when using nuclear markers. In a study of the population 

genetics of Ostrea edulis using mitochondrial DNA (Hedgecock et al. 2007), mitochondrial 

haplotype diversity was found to have high among population variance, reflecting smaller 

effective population size in some locations. Also a ten-fold difference was observed in the 

same study between Fst obtained from mitochondrial and nuclear genomes. This could be due 

to variance in reproductive success between males and females. Analyses of mtDNA markers 

have been used to identify stock structure in a variety of fishes, including eels (Avise et al. 

1986), bluefish (Graves et al. 1992), red drum (Gold et al. 1993), and snapper (Chow et al. 

1993). More recently a combination of mitochondrial and microsatellite markers have been 

used to identify brood stock of grouper for aquaculture purposes (Kuo et al. 2014).  

Some studies have shown a link between mitochondrial DNA polymorphisms and 

performance traits such as meat quality (Mannen 2003) and fertility (Cummins et al. 2002) in 



Chapter Five: Partial Assembly of the Ostrea chilensis Mitogenome and its Subsequent use in 
Phylogenetic Reconstruction 

 
163 

Cattle. It remains to be seen whether mitochondrial polymorphism can be found to be 

associated with traits in aquaculture species.  

This chapter has demonstrated the utility of 454 DNA sequencing datasets for developing 

genomic resources. There are further avenues of research that could be explored within the 

454 data set, such as the identification of transposons, identification of rRNA genes and 

nuclear genes – there are a range options for further research.  

5.5 Summary 
 

1. This work provides a useful first step to full mitogenome sequencing and further 

studies into the evolution of the mitogenome in oysters. The analyses presented in this 

chapter showed that mitochondrial DNA fragments are present in the 454 DNA 

database – these fragments were used to assemble the partial mitogenome of Ostrea 

chilensis. PCR primers have been designed to amplify the remaining gaps in the 

genome 

 

2. Mitochondrial gene fragments developed in this study were used to test phylogenetic 

relationships reported in previous studies, this work confirmed earlier phylogenetic 

work concerning the phylogenetic position of Ostrea chilensis (Jozefowicz and Ó 

Foighil, 1998; Ó Foighil, 2000). 

 

3. A phylogeographic analysis supported the suggestion of Ó Foighil et al. (1999) that 

the Chilean populations of Ostrea chilensis arrived by rafting from an ancestral New 

Zealand population from the North Island. 
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Chapter 6: Molecular Evolution in Oyster 
Mitochondrial Genes 
 
‘As far as is known, synonymous mutations are truly neutral with respect to natural selection’ 

King and Jukes 

6.0 Aims  
 

The aims of this chapter were to describe the patterns and processes of molecular evolution in 

oyster mitogenomes. The focus is on the effect of transition and transversion mutations on 

evolutionary distance between oyster species and the codon usage in mitochondrial protein 

coding genes. The findings reported in this chapter will be compared to previously published 

studies of molecular evolution in other taxa in order to identify common patterns of genetic 

variation. 

6.1 Introduction 
 

An assumption about the mitochondrial genome (mtDNA) is its rate of DNA sequence 

evolution is constrained due to its products having important functions in the electron 

transport of cellular energy production. However, it has been shown that mtDNA appears to 

evolve more quickly than single copy nuclear DNA (Brown et al. 1979). Most of the 

evolutionary change is thought to be neutral to selection. The most common type of neutral 

changes to protein-coding DNA sequences are synonymous mutations, which do not change 

the type of amino acid encoded by a particular codon. A DNA substitution that results in an 

amino acid change is termed a non-synonymous mutation, and can either have no impact on 

fitness, or in some cases be deleterious or slightly deleterious. The neutral theory of 

molecular evolution suggests that most fixed alleles were never subjected to positive natural 

selection and that evolutionary change primarily occurs by neutral (or nearly-neutral) alleles 

randomly drifting to fixation (Kimura, 1984). 

A widely used test for selection is to compare the ratio of synonymous (dN) vs non-

synonymous (dS) mutations observed in a DNA sequence of a protein-coding gene. If there is 

no selection, synonymous and non-synonymous substitutions are expected to occur at the 

same rate; the expected ratio is dN/dS = 1. If dN/dS is >1 then positive selection is thought to 

have acted on the gene during its evolutionary history. It the dN/dS ratio is <1 then negative 
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selection is expected to have occurred (Mugal et al. 2013). Using this method positive 

selection was demonstrated to have acted on the atp-2 gene in Escherichia coli (Endo et al. 

1996) and in the COX4 gene of simian primates (Wu et al. 1997). 

Evolutionary distance between two species can be measured using the p-distance. This is 

simply the proportion of nucleotides that are different between two sequences. There are two 

types of substitution that can occur in a nucleotide strand depending on the chemical 

properties of the nucleotide base – that are either purines or pyrimidines. Substitutions within 

one structural class are termed transitions; substitution from one structural class to another 

are termed transversions. A transitional bias has been identified between most homologous 

sequences. Interestingly, this bias has been found to be more pronounced in mitochondrial 

genes than in nuclear genes (Wakeley, 1996). The investigation of differences between 

transitions and transversions is important in the understanding of patterns of molecular 

evolution, and the information can be used to inform phylogenetic methods aiding a greater 

understanding of sequence evolution. The p-distance can be calculated using just transitions 

or just transversions in order to compare the relative effect on the overall genetic distance 

between two species. This is useful, as rates of transistions and transversions are not always 

universal across evolutionary history.  

Finally, the research in this chapter seeks to describe the patterns of codon usage in the oyster 

mitochondrial genes. The 20 commonly occurring amino acids in proteins are encoded by 61 

different codons – this redundancy in the genetic code means that there are synonymous 

codons that encode the same amino acid. Codon usage bias is preference for a particular 

synonymous codon. It would seem logical codon usage would not come under selection since 

the resulting protein sequence is the same. However, the general consensus is that codon 

preference reflects a balance between mutation and selection for translational optimisation. 

Evidence for this has come from a number of studies: it has been shown that genomes have 

their own patterns of codon bias, in some genomes highly expressed genes – such as 

mitochondrial genes – have shifted there codon usage to a set of particular codons compared 

to other less expressed genes (Grantham et al. 1980). In many cases the pattern of codon 

usage has been shown to reflect the tRNA abundance in the cytoplasm (Ikemura, 1981). This 

seems to suggest that relative abundance of tRNA is the selective pressure driving codon 

usage.  
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In this chapter protein-coding genes will be examined and the patterns of evolution described 

using the full mitogenomes of Ostrea and Crassostrea species and comparing them to a 

model organism Drosophila melanogaster (this organism is used simply because it is a well-

known model organism). The patterns of molecular evolution are also compared using the 

alignment of a partial cytochrome oxidase I (COI) sequence using all the oyster species with 

a full mitogenome on GenBank, and the O. chilensis sequence obtained in this study.  

6.1.1 Hypotheses 
 

Hypothesis One: Levels of genetic distance are related to one of the positions in the 

codon.  

Transition mutations are more common when the evolutionary distance between species is 

small, transversion mutations become more common deeper into evolutionary history. 

Suggesting that, transition mutations reach a saturation point, because of back mutations 

and/or multiple mutations occurring at a site, or transversions become more common when 

evolutionary distance is larger. 

Hypothesis Two: Mitochondrial genes are not influenced by positive selection.  

Mitochondrial protein coding genes are functionally constrained and the majority of the DNA 

substitutions will be synonymous-type changes. A ratio of dN/dS  ≤ 1 is expected for protein-

coding genes of the oyster mitogenomes. 

Hypothesis Three: There is a taxon specific codon bias.  

Previous studies have reported a codon bias in some taxa, and this is thought to be due to 

variation in mRNA translation efficiency. The suggested mechanism is that it would be 

inefficient to produce a range of different tRNAs to translate the same amino acid. It is 

expected that when comparing the codon usage from the COI genes of all Ostrea, 

Crassostrea species and D. melanogaster there will be a different bias in each group.  

Furthermore, the codon bias is expected to be similar for each gene within the Ostrea 

mitogenomes. 
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6.2 Methods 

6.2.1 Assessment of codon bias  
 

To determine the pattern of non-random usage of synonymous codons in mitochondrial genes 

the relative synonymous codon usage (RSCU) was computed, this is the observed frequency 

of a codon divided by the expected frequency under the assumption of equal codon usage 

(Sharp et al. 1986). This is given by:  

 

RSCU =𝑋𝑖/𝑋.  

 

Xi is the observed number of the i-th codon for the amino acid, and 𝑋� is the average of Xi 

over all codons - that is -  𝑋� = ∑ 𝑖
𝑋𝑋

/𝑚 where m is the number of different codons for the 

particular amino acid (Nei and Kumar, 2000). An RSCU > 1 represents codons that are used 

more frequently than expected by chance whereas RSCU < 1 represents codons that are used 

less frequently than expected by chance. This analysis was implemented in MEGA6 (Tamura 

et al. 2013). 

The RSCU of individual codons was compared between the groups of species for each of the 

protein coding genes. The groups tested were all Ostrea/Saccostrea and Crassostrea species 

for which a full mitogenome has been sequenced and the model organism Drosophila 

melanogaster. The model organism D. melanogaster was used for comparison to see if a 

taxon specific bias could be detected (this species was chosen because it is a well-known 

invertebrate model species). Taxa used for this analysis are listed in chapter five (Table 5.1). 

The GenBank accession number for the D. melanogaster mitogenome is U37541.1. 

 

6.2.2 Comparison of genetic distances  
 

The measure of sequence divergence was assessed using p-distances, which is a simple 

measure of the number of amino acid differences between pairwise comparisons divided by 

the total number of amino acids in the sequence alignment. The p-distances were estimated 

using MEGA6.  
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The protein-coding genes from the mitogenomes of Crassostrea and Ostrea species were 

extracted from the full genome sequence using GENEIOUS and aligned using ClustalW 

(Larkin et al. 2007) using the codon alignment option implemented in MEGA6. The codons 

were converted into amino acids to check that there were no stop or nonsense codons within 

the sequence.  

The number of non-synonymous substitutions per non-synonymous site from averaging over 

all sequence pairs was estimated using MEGA6. Standard error estimates were obtained by a 

bootstrap procedure (500 replicates). Analyses were conducted using the Nei-Gojobori model 

(Nei and Gojobori, 1986). All ambiguous positions were removed for each sequence pair for 

each of the protein coding genes. 

6.3 Results 

6.3.1 Codon usage bias 
 

The codon biases that were calculated for each gene and compared between the three 

taxonomic groupings are presented in Table 6. 2 for the COI gene (summary statistics for all 

other genes are shown in the appendix). Table 6.3 shows a comparison of the codons that 

have the highest bias for each amino acid for each mitochondrial gene compared for all of the 

Ostrea species.  

6.3.2 Genetic distance 
 

Across all genes and taxa the pattern of base composition was very similar, and all genes 

were AT-rich. Figure 6.1a shows the base composition for the COI gene (all the other genes 

are shown in the appendix). The NAD2 gene had the highest number of variable sites (72%) 

among taxa and COI had the lowest number of variable sites among taxa (44%). In all genes 

the third codon position had the largest p-distance. Within in the Ostrea/Saccostrea taxa the 

gene COIII had the largest p-distance (0.290), this is contrasted within the Crassostrea group 

which has the largest p-distance for the gene NAD2 (0.328). Between the two groups 

Ostrea/Saccostrea and Crassostrea NAD2 had the largest p-distance (0.452).  
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6.3.3 Test of Neutrality - dN/dS ratios of mitochondrial genes among Ostrea and 
Crassostrea spp.  
 

For all of the protein coding genes examined the dN/dS ratio was less than 1 (Table 6.1a 

displays the dN/dS ratio for the COI gene data, all other genes are displayed in the appendix). 

The lowest ratio was 0.069 in the COII gene and the highest was 0.261 in the NAD2 gene.  
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Figure 6.1 a (left): Base composition of all CO1 genes compared for Ostrea and Crassostrea species. Figure 6.1b (right): pairwise comparison 
of all CO1 genes for all oyster species. Y-axis shows p-distance for either transitions or transversions the X axis shows the overall p-distance.  
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Table 6.1 a: Summary statistics for the COI gene compared between all oysters 

Length of C0I sequence % Conserved Sequences % Variable Sites  % Parsimony informative site % Singleton dN/dS 

1677 53 44 34 9 0.039 

 

Table 6.1b: Comparison of p-distance for the COI gene compared between different codon positions and at different taxonomic levels 

Overall Distance p-distance  SE 

All substitutions 0.1972 0.0006 

Transitions 0.1094 0.0040 

Transversions 0.0879 0.0038 

1st position 0.0889 0.0074 

2nd position 0.0401 0.0049 

3rd position 0.4627 0.0082 

Ostrea/Saccostrea within group mean 0.2007 0.0072 

Crassostrea within group mean 0.1542 0.0045 

Ostrea/Saccostrea vs Crassostrea 0.2454 0.0066 
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Table 6.2: Relative synonymous codon usage (RSCU) for the COI gene in two oyster genera and D. melangaster. The first column of RSCU 
values is the Ostrea group, the second is the Crassostrea group and the third column is D. melanogaster.  

Phe  UUU 1.64 1.63 1.85 Ser UCU 2.64 2.41 2.20 Tyr UAU 1.21 1.46 1.44 Cys UGU 1.88 1.42 0.00 

 

UUC 0.36 0.37 0.15  UCC 0.21 0.14 0.20 
 

UAC 0.79 0.54 0.56 
 

UGC 0.12 0.58 0.00 

Leu UUA 2.46 1.82 4.89  UCA 2.05 2.01 3.60 STOP UAA 2.00 1.50 2.00 Trp UGA 1.38 1.22 2.00 

 UUG 1.15 1.05 0.09  UCG 0.21 0.2 0.20 
 

UAG 0.00 0.50 0.00 
 

UGG 0.62 0.78 0.00 

 CUU 1.05 2.12 0.37 Pro CCU 2.29 2.02 2.24 His CAU 1.33 1.38 1.78 Arg CGU 1.41 1.45 0.8 

 CUC 0.20 0.09 0.00  CCC 0.23 0.32 0.16 
 

CAC 0.67 0.62 0.22  CGC 0.15 0.18 0.00 

 CUA 0.71 0.70 0.65  CCA 0.91 1.25 1.44 Gln CAA 1.42 1.19 2.00  CGA 1.63 1.55 3.20 

 CUG 0.44 0.21 0.00  CCG 0.57 0.42 0.16 
 

CAG 0.58 0.81 0.00  CGG 0.81 0.82 0.00 

Ile AUU 1.87 1.8 1.96 Thr ACU 1.92 2.15 2.06 Asn AAU 1.52 1.40 2.00 Ser AGU 0.67 0.76 0.80 

 

AUC 0.13 0.2 0.04  ACC 0.47 0.38 0.24 
 

AAC 0.48 0.6 0.00  AGC 0.08 0.35 0.00 

Met AUA 0.92 0.9 1.91  ACA 1.14 1.06 1.58 Lys AAA 1.34 1.15 1.67  AGA 1.09 1.06 1.00 

 

AUG 1.08 1.1 0.09  ACG 0.47 0.41 0.12 
 

AAG 0.66 0.85 0.33  AGG 1.05 1.06 0.00 

Valine GUU 1.32 1.71 1.82 Ala GCU 1.98 1.53 3.14 Asp GAU 1.21 1.21 1.87 Gly GGU 1.31 0.99 0.51 

 GUC 0.39 0.45 0.00  GCC 0.6 0.32 0.00 
 

GAC 0.79 0.79 0.13  GGC 0.38 0.47 0.00 

 GUA 1.28 1.01 2.06  GCA 0.96 1.59 0.76 Glu GAA 1.28 1.00 2.00  GGA 1.02 1.24 3.40 

 GUG 1.02 0.84 0.12  GCG 0.45 0.55 0.11 
 

GAG 0.72 1.00 0.00  GGG 1.29 1.30 0.09 
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Table 6.2: Codon usage bias for the cytochrome oxidase II gene (COII) 

 

Ostrea 
edulis 

Ostrea 
chilensis 

Ostrea 
denselamell

-osa 
Crassostrea 
ariakensis 

Crassostrea 
gigas 

Crassostrea 
ariakensis 

Ostrea 
denselamellosa 

Crassostrea 
hongkongensis 

Crassostrea 
ariakensis 

Crassostrea 
virginica 

Saccostrea 
mordax 

Argopecten 
irradians 

Phe  UUU UUU UUU UUU UUU UUU UUU UUU UUU UUU UUU UUU 

Leu  UUG UUA UUG UUA UUA UUA UUA UUG UUG UUA UUG UUA 

Ile  AUU AUU AUU AUU AUU AUU AUU AUU AUU AUU AUU AUU 

Met AUG AUG AUG AUG AUG AUG AUG AUG AUG AUG AUG AUG 

Val GUU GUU GUA GUU GUU GUU GUU GUU GUU GUU GUU GUU 

Ser  UCU UCA UCU UCU UCU UCU UCU UCU UCU UCU UCU UCU 

Pro  CCU CCU CCU CCU CCU CCU CCU CCU CCU CCU CCU CCU 

Thr  ACA ACA ACU ACU ACU ACU ACU ACU ACU ACU ACU ACU 

Ala  GCU GCU GCU GCU GCU GCU GCU GCU GCU GCU GCU GCU 

Tyr  UAU UAC UAU UAU UAU UAU UAU UAU UAU UAU UAU UAU 

His  CAU CAU CAC CAU CAU CAU CAU CAU CAU CAU CAU CAU 

Gln  CAA CAG CAG CAA CAA CAA CAA CAA CAA CAA CAA CAA 

Asn  AAU AAU AAU AAU AAU AAU AAU AAU AAU AAU AAU AAU 

Lys  AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA 

Asp  GAU GAU GAU GAC GAC GAU GAU GAU GAU GAU GAU GAU 

Glu GAG GAG GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA 

Cys UGU UGU UGU UGU UGU UGC UGC UGC UGC UGC UGU UGC 

Trp  UGG UGG UGG UGG UGG UGG UGG UGG UGG UGG UGG UGG 

Arg CGU CGA CGG CGG CGG CGC CGC CGC CGC CGC CGC CGG 

Ser AGU AGC AGC AGC AGC AGC AGC CGC CGC CGC CGC AGU 

Gly  GGU GGU GGU GGU GGU GGG GGG GGG GGG GGG GGG GGG 
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Table 6.4: Comparison of the codon bias for each protein-coding gene from the 
mitochondrial genome of four Ostrea species. Codons shown are those with the highest 
RSCU values. Highlighted values are those which have a different codon to the other genes 

  COI COII COII ND1 ND2 ND4L CYTB ATP6 

Phe  UUU UUU UUU UUU UUU UUU UUU UUU 

Ile AUU AUU AUU AUU AUU AUU AUU AUU 

Met AUA AUA AUA AUA AUA AUA AUA AUG 

Valine GUU GUU GUU GUU GUU GUA GUA GUU 

Ser UCU UCU UCU UCU UCU UCU UCU UCU 

Pro CCU CCU CCU CCU CCU CCU CCU CCG 

Thr ACU ACA ACU ACU ACU ACU ACU ACU 

Ala GCU GCU GCU GCU GCU GCU ACU GCU 

Tyr UAU UAU UAU UAU UAU UAU UAU UAU 

His CAU CAU CAU CAU CAC CAU CAU CAU 

Gln CAA CAA CAA CAA CAA CAA CAA CAA 

Asn AAU AAU AAU AAU AAU AAU AAU AAU 

Lys AAA AAA AAA AAA AAG AAA AAA AAA/AAG 

Asp GAU GAU GAU GAU GAU GAU GAU GAU 

Glu GAA GAA GAA GAA GAG GAA GAG GAG 

Cys UGU UGU UGU UGC UGU UGC UGU UGU 

Trp UGA UGA UGA UGG UGA UGG UGA UGA 

Arg CGA CGA CGU CGA CGU CGA CGU CGA 

Ser AGA AGA AGU AGA AGU AGU AGG/AGA AGA 

Gly GGU GGU GGG GGG GGA GGU GGA/GGG GGG 
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6.4 Discussion 
 

As expected the overall p-distance among all taxa was largest for the 3rd codon position. The 

smallest p-distances were observed at the second codon position (Table 6.1b), which was also 

expected. Most substitutions in the 3rd codon position are synonymous, whereas all 2nd codon 

position substitutions are non-synonymous and these latter mutational-types are likely to be 

selected against. Across all taxa the gene NAD2 had the largest p-distance value (0.376), this 

pattern is not repeated at different taxonomic levels, within Ostrea and Saccostrea the gene 

with the highest p-distance value was COIII (0.290), this suggests that genes are evolving at 

different rates at different taxonomic levels. The typical pattern of more transitions compared 

to transversion mutations was observed in each of the genes: when the p-distance between 

taxa is small, this distance is mostly due to transition-type mutations between the more 

closely related species – the pattern becomes more complex between distantly related 

organisms as transversions tend to contribute equally or more to the overall distance (Figure 

6.1b). This suggests that  transition mutations reach a saturation point because of back 

mutations and/or multiple mutations occur at a site, or transversions become more common in 

deeper evolutionary history.  

When comparing Ostrea, Crassostrea and the model organism Drosophila melanogaster 

(although there are some exceptions), there appears to be a conservation of codon bias (Table 

6.2). The same codon bias seems to exist when comparing all protein coding mitochondrial 

genes in Ostrea (Table 6.3). The results found here with oysters are consistent with that 

found in other species: codon bias is a phenomenon found in many studies (for a review see 

Sharp et al. (1988)). The reasons for these biases was first discussed by Ikemura (1981, 1985) 

he showed in Escherichia coli that the frequency of codon usage is correlated with the 

relative abundance of isoaccepting tRNAs in the cell. This finding suggests that the 

translational machinery tends to use the most abundant tRNAs to produce the proteins. Other 

mechanisms of selection at the level of translation have been suggested.  Kudla (2009) 

showed that folding of mRNA strands can be altered by different codons and that strong 

folding around the binding site of the ribosome can inhibit transcription. Splice sites on the 

mRNA strand can be altered by codon usage – synonymous mutations can introduce splice 

sites that subsequently affect the phenotype, therefore, bringing codon usage under selection 

(Pagani and Baralle (2004)). However, the most widely supported mechanism of codon bias 

is that proposed by Ikemura (1981, 1985).  The mechanism predicts that the codon usage bias 
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should be the same across all genes. This prediction appears to be supported when comparing 

codon usage for each gene in the Ostrea species (Table 6.3), where there were exceptions and 

the difference between RSCU values was small (data not shown). This observation would 

support the hypothesis that the genes are under purifying selection - genes that accumulate 

mutations for non-synonymous mutations could still be eliminated by selection if they were 

inefficiently synthesising proteins. Purifying selection is also suggested by the consistent 

dN/dS = < 1, which was found for all gene regions in this study, this is consistent with the 

predictions of the neutral theory of evolution. Another possible cause of codon bias is 

mutational bias – mutational biases arise because there are underlying mechanisms that 

favour certain mutations. It has been shown that there is a correlation between the GC content 

of a genome and the GC content of codons (Muto and Osawa, 1987). Knight et al. (2001) 

found this relationship in the three major domains of life (archea, bacteria and eukaryotes) 

they suggest that the GC content of the genome drives the GC content of the codons. This 

theory could not be examined using the oyster mitogenomes because there were not large 

differences between the GC content of each genome.  

There was not a clear taxonomic pattern of codon bias within oysters, although this could be 

investigated using more sensitive statistical methods of ordination, for example, principle 

component analysis (PCA) or correspondence analysis (for example Zhang  et al. 2011). The 

one limitation of this study is that I was not able to include all the gene regions for O. 

chilensis in the analysis due to them not being completely sequenced (reported in Chapter 

Five). However, it is not likely that inclusion of the full mitogenome of O. chilensis .will 

greatly affect the results since a similar pattern of codon bias has been found when analysing 

a partial COII sequence from O. chilensis (Table 6.3). 

The quote at the beginning of this chapter does not seem to hold - a conservation of codon 

bias across species and between genes has been found - it seems likely that synonymous 

changes are under selection. The selective pressure that has caused the conservation of codon 

bias would need further study to investigate and properly describe the mechanisms.  
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6.5 Summary 
1. This study suggests that evolution of the oyster mitochondrial genes is non-neutral. 

There are codon biases in mitochondrial genes and these biases are likely to be the 

result of purifying selection. The mechanistic cause of this bias was not studied, but 

translational selection is the most likely explanation. 

 

2. As expected it has been shown that genetic distance varies depending on the gene 

region and codon position examined. This supports the suggestion made in the 

previous chapter that phylogenies should be produced using multiple gene regions due 

to different evolutionary rates.  

 
3. A similar codon bias has been found within oyster mitogenomes – this is likely to be 

driven by transitional selection. Further studies into the codon usage could be 

conducted to see whether there is a taxon specific bias using ordination methods.  
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6.7 Appendix 

 

Appendix 6.1: Summary statistics for the ATP6 mitochondrial gene 
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Appendix 6.2:  Summary statistics for the COI mitochondrial gene 
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Appendix 6.3: Summary statistics for the COII mitochondrial gene 
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Appendix 6.4: Summary statistics for the COIII mitochondrial gene 
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Appendix 6.5: Summary statistics for the CYTB mitochondrial gene 
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Appendix 6.6: Summary statistics for the NAD1 mitochondrial gene 
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Appendix 6.7: Summary statistics for the NAD2 mitochondrial gene 



Chapter 6: Molecular Evolution in Oyster Mitochondrial Genes 

 
191 

 

Appendix 6.8: Summary statistics for the NAD4 mitochondrial gene 
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Appendix 6.9: Summary statistics for the ATP6 mitochondrial gene 
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Chapter Seven: General Discussion  
7.0 Aims 
 

The overall aim of this thesis was to understand the evolutionary processes that are operating 

on Ostrea chilensis at a molecular and population genetics level. This Chapter assimilates the 

key findings of the thesis and compares them to other studies. While not the focus of this 

research I consider how the findings can inform management practices. I make suggestions 

for further research in the light of the findings of this thesis. Lastly, there have been rapid 

advances in technology since the onset of this thesis; recommendations for future research are 

based on the advances made with other important oyster species. 

7.1 Summary of Key Findings 
 

The genomic data set developed for O. chilensis has been annotated with 16,338 novel 

microsatellite sequences. There were, however, difficulties in designing PCR primers to 

amplify many of the DNA sequences. Most of the primers for candidate loci would not 

amplify a single, clear PCR product, those loci that did amplify, could not be properly 

genotyped without problems such as excessive stutter of the PCR on the alleles. This seems 

to be a common problem in molluscs (e.g. Reece et al. 2004). However, I did (despite these 

difficulties) develop a novel set of four pairs of microsatellite DNA markers for O. chilensis. 

Further comparisons revealed that some microsatellite loci were potentially orthologous as 

they were found in a number of other oyster species. Primers designed for these sequences 

can be used to test for the presence of length polymorphic loci in O. chilensis. Of particular 

interest is the presence of a potentially orthologous loci in Crassostrea virginica, on closer 

inspection of the BLAST hit I could see that the microsatellite loci of both species was well 

aligned between both species. The more recently derived species O. chilensis seems to have 

evolved substitutions in this sequence. PCR primers designed for C. virginica (in the study of 

Reece et al. 2004) are likely to amplify the potentially orthologous sequences in other oyster 

species, giving the opportunity to study the evolutionary processes at the phylogenetic level 

of this particular locus. Further analysis of the genomic data set revealed the presence of BclI 

satellite DNA. This is the first time this transposon-like sequence has been identified in O. 

chilensis and has potential to be used as a phylogenetic marker (e.g. López-Flores et al. 

2004), as well as for studies of transposon associated evolution of microsatellite sequences 
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(e.g. Zhang, 2004). However, due to the unresolvable problems with the microsatellite 

markers, which limited the number of useable loci, randomly amplified polymorphic DNA 

(RAPDs) were used as an alternative genetic marker to assess population genetic structure. 

Using RAPD markers I found significant levels of genetic differentiation between O. 

chilensis populations (Fst = 0.1941, p = <0.0001), gene flow between populations was mostly 

low (Nm = < 1), however, populations in the Foveaux strait are more open to gene flow (Nm = 

16.4). Using a matrix of Nei’s genetic distance to conduct a principle component analysis 

(PCA) showed that many of the populations appeared to be inconsistent with their 

geographical locations. At most spatial scales I found the genetic data was not explained by 

an isolation-by-distance profile except when outlier loci were removed. Overall, the genetic 

structure found in O. chilensis seems to be the result of local recruitment and limited to gene 

flow between sub-populations. The New Zealand wide genetic structure was then tested for a 

correlation with environmental variables that were obtained from the Marine Environmental 

Classification system (Snelder et al. 2005), using the routine BEST from the software 

package PRIMER v6.0 (Clarke and Gorley, 2005) revealed that the genetic structure 

correlates with a combination of two variables: sediment and a metric of sea surface 

temperature (Rs = 0.263), with outlier loci removed the most important environmental 

variables in explaining genetics structure were the same but the overall correlation was 

reduced (Rs = 0.181). A more complicated relationship was revealed when the data was 

analysed using a Generalised linear model – as most of the environmental variables were 

present in the top models. However, this more complicated relationship was attributed to the 

loss of resolution in the genetic data by using a mean of the population genetic diversity (Fst 

or Фst) rather than using the raw allelic frequencies that were used in the BEST analysis.  

The O. chilensis genomic dataset was searched for the presence of mitochondrial DNA 

sequences. Using a number of whole genome sequences that are available on GenBank for 

comparison, I was able to identify 10, 086 bp of mitochondrial DNA within the genomic data 

set. Using these sequences I assembled a partial mitogenome representing around 65% of the 

full mitogenome and PCR primers were designed to enable the remaining gaps to be closed 

by a Sanger DNA sequencing approach. The partial mitogenome was used to confirm the 

phylogenetic position of O. chilensis using a partitioned Bayesian reconstruction – this 

analysis confirmed earlier phylogenetic studies of oysters (Jozefowicz and Ó Foighil, 1998; 

Ó Foighil, 2000). The cytochrome oxidase I sequence (COI) found in the genomic data set 

was used to test the suggestion of Ó Foighil, (1999) that the Chilean populations of O. 
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chilensis were established by rafting from an ancestral North Island population. With the 

inclusion of new Chilean sequences from GenBank as well as genetic data from my analysis I 

produced a phylogenetic tree that supports this suggestion.  

Further analysis of the mitochondrial protein coding sequences revealed a codon bias that is 

probably influenced by transcriptional or translational selection pressures. Translational 

selection is thought to be a universal occurrence in all genomes of all species, and is found to 

be most strongly associated with highly expressed genes such as mitochondrial genes.  

7.2 Context  

(1) Comparison to other population genetic studies 
 

Overall, the factors that have shaped the population genetic structure in O. chilensis appear to 

be a combination of historical changes to habitats and the environment, restricted gene flow 

between populations (perhaps due to a limited pelagic larval duration (PLD), and the  

influence of environmental variability. 

Most of the studies of marine taxa sampled from around the New Zealand coast (reviewed by 

Ross et al. 2009; Gardner et al. 2010) show some form of population genetic structure. 

Studies that found panmixia tended to use less discriminatory markers such as allozymes (e.g. 

Apte and Gardner, 2001). Studies that previously found panmixia in two species of lobster 

(Jasus edwardsii and Jasus verreauxi) (e.g. Smith and McKoy 1980; Ovenden et al. 1992; 

Brasher et al. 1992) have since been superseded by a more recent study that found some 

evidence of population genetic structure in J. edwardsii populations using microsatellite loci 

(Thomas and Bell, 2013). An exception to this trend was the study of Waters and Roy (2003) 

they unexpectedly did not find not find structure for Coscinasterias muricata (which has PLD 

of around 30 days) based on an analysis of mtDNA markers. 

A phylogeographic break at around 42o south is a key finding for many NZ marine taxa 

(reviewed by Ross et al. 2009, Gardner et al. 2010). This phylogenetic break was not found 

in O. chilensis populations. The absence of this particular phylogenetic break could be due to 

a number of reasons: the species has reached equilibrium or there has been human-mediated 

stock transfer both of which would mask the phylogeographic break. 

In the present study two environmental variables were shown to be associated with genetic 

structure in O. chilensis. One of which: a metric of sea surface temperature SST (specifically 
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spatial gradient of annual mean SST) was also found to be correlated with the genetic 

structure of Perna canaliculus in the study of Wei et al. (2013b). Wei et al. (2013b) 

suggested a mode of action for temperature could be selection for tolerance to thermal stress, 

and the likely candidates could be the family of heat shock proteins. Because a similar 

association with sea surface temperature has been found in O. chilensis there could be similar 

thermal tolerance selection pressures. Further investigation of variation in genes that relate to 

thermal tolerance would be an interesting avenue for future research.  

Perhaps the main contribution to high levels of genetic structure in O. chilensis has been the 

extremely long brooding period of six to twelve weeks, which allows the larvae to settle 

almost immediately after their release into the environment (Videla et al.1998). In that study 

the global multi-locus measure of genetic differentiation was an order of magnitude higher 

(Fst = 0.194) compared to the closely related oyster species O. edulis (Fst = 0.019) (Launey, 

2002), which has a much shorter pelagic larval duration of 8-10 days.  

(2) Studies of molecular evolution of microsatellites 
 

An interesting finding was the many potentially orthologous microsatellite DNA sequences, 

there are a number of studies that have looked for orthologous sequences with the aim to 

make inferences about how the genomic region might have evolved. These approaches have 

been particularly informative when the sequences can be mapped onto a phylogeny (for 

example Messier et al. 1996; Orti et al. 1997; Angers and Bernatchez, 1997; Primmer and 

Ellegren, 1998; Harr et al. 2000). Studies such as these suggest that DNA microsatellites 

begin from a small number of repeats units and in more recently derived individuals in the 

phylogeny the loci tend to expand into larger sets of repeat units. While the findings reported 

in this thesis cannot be directly compared to the cited studies, potentially orthologous 

microsatellite sequences have been identified from many distantly related oysters that can be 

used to investigate whether this group has similar evolution patterns. Taylor et al. (1999) 

suggested that the ‘death’ of a microsatellite sequence occurs by two types of mutations, the 

first mutation interrupts the repeat, preventing slipped-strand miss-pairing stabilising the 

repeat, and the subsequent mutations involve large deletions of the repeat. My findings 

support the proposed mechanism as Figure 2.8 shows the presence of a substitution in the 

microsatellite region of the more recently derived O. chilensis individual, and this appears to 

be consistent with the first mutation in the process of ‘death’ of a microsatellite sequence. 

Although this type of sequence change could only be found in two species it would be 
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possible to extend this line of enquiry by using the primers designed to amplify that sequence 

and test for the presence of the repeat sequence in other oyster species – this avenue of 

research remains to be explored in future studies.  

7.3 Limitations common to population genetic studies 
 

The problems presented in this thesis are common to many studies of closely related species 

and other studies around New Zealand.  

(1) Problems with marker development and concerns of using RAPDs for populations genetics 
studies 
 

Microsatellite marker development has been shown to be particularly problematic in molluscs 

(e.g. McInerney et al. 2010). A large amount of time and resources were invested into the 

development of microsatellite markers, but due to several unresolvable technical problems I 

eventually had to develop an alternative genetic marker. However, further research into the 

reasons for difficulties of development marker in these taxa, and the evolutionary 

mechanisms acting on microsatellite loci have been identified, which are discussed in more 

detail in section 7.5.  

Randomly amplified polymorphic DNA (RAPD) was used as an alternative marker. Various 

concerns have previously been raised about the usefulness of RAPD markers due to their 

dominant nature, possible lack of reproducibility, and the consistency of interpretation of the 

amplified products. However, I addressed these issues using a rigorous data quality checking 

procedure, with independent and replicate band scoring, as well as the use of software to aid 

with the consistent interpretation of the amplified products. Despite the difficulties involved 

with using this marker a number of projects involving New Zealand species have successfully 

used RAPD markers (e.g. Wood and Gardner, 2007; Jones et al. 2008; Reisser et al. 2011). 

However, it should be stated that the is a low level of polymorphism when compared to data 

sets using more numerous markers (such as SNPs) or more polymorphic markers (such as 

microsatellites), therefore, the findings using RAPDs should be treated with caution. A 

potential way to overcome the lack of polymorphism in the data set would be to increase the 

number of RAPD primers used.  
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(2) Limited population sampling  
 

The study focused on eight sampled locations distributed around New Zealand’s South Island 

and one from the Chatham Islands. The study would benefit from more extensive sampling 

particularly on the North Island of New Zealand. The sampling sites however, represent the 

current known distribution in New Zealand, because many of the previously sampled 

populations in the North Island are now thought to be functionally extinct (personal 

communication with Professor Andrew Jeffs). The Manukau harbour in the North Island of 

New Zealand has been used as a sampling site for previous studies, however, only two 

individuals were found in that area, the samples were not used in the study due to the small 

sample size. 

The number of sampling sites was comparable to the number of sampling sites reported in the 

only other New Zealand wide population genetic study of a marine taxon using RAPDs 

(Jones et al. 2008). That study obtained a total of eight sampled locations distributed across 

the North and South Island of New Zealand – three of which were from the South Island. 

Therefore, it has been previously demonstrated that inferences can be made from this number 

of sampling of sites. 

 (4) A priori assumptions in the seascape genetics analysis 
 

The main limitation of the seascapes genetic analysis was that there are no a priori 

expectations that there is an influence of environmental variables on the distribution of 

genetic variation (e.g. Wei et al. 2013a). The environmental variables tested in the analysis 

may not directly influence the apparent genetic structure and be the key mechanism shaping 

variation, indeed the structure could be influenced by one or more un-sampled or unknown 

variables. Also, a large amount of environmental variables were used – this has the problem 

of creating a very complicated relationship – this is particularly true in the GLZ analysis 

where most to the environmental variables were used to explain the genetic structure, this has 

the problem of possibly masking the true environmental signal. However, there is a growing 

body of research that have used these methods; the strength of the approach is the ability for 

comparison with a number of other studies (e.g. Wei 2013b, Constable, 2014 and Hannan, 

2014).  
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7.4 Recommendations for further study  

(1) Further development of microsatellite DNA markers  
 

Microsatellite DNA markers have presented difficulties in some taxa (Lepidoptera: Meglecz 

et al. 2004; Coleoptera: Arthofer et al. 2007; Galatheids: Bailie et al. 2010). Molluscs are a 

group that have been particularly problematic for studies using microsatellite DNA (Reece et 

al. 2004; Weetman et al. 2001, 2005). Multi-copy microsatellite families with similar 

flanking regions are characteristic of taxa that have difficulties associated with microsatellite 

DNA marker development (Meglecz et al. 2004). Zhang (2004) suggested a mechanism for 

genomic dispersal of new microsatellites was via transposition of mobile elements, followed 

by accumulation of point mutations in the flanking regions. Therefore, some of the problems 

I found could be either the flanking regions being too similar between multi-copy loci, or the 

flanking regions being too different between individuals. Future research projects could seek 

to determine the copy number of microsatellite loci, with an aim to identifying single copy 

loci. I suggest to firstly identify microsatellite families (those with highly similar flanking 

regions), and secondly identify the microsatellite containing sequences that are associated 

with transposon sequences (this could be achieved using the genomic data developed in 

Chapter Two). Further PCR primer development should be conducted using sequences that 

do not have highly similar flanking regions or a known association with transposons. An 

initial search in Chapter Two identified orthologous transposon sequences, these sequences 

could be used to test the phylogenetic relationship between taxa (following the work of 

Lopez-Flores et al. 2004). Also, the phylogenetic relationship of the transposons within the 

O. chilensis genome could be tested, which could be used to test the theory of Zhang (2004).  

  

(2) Temporal sampling and Genetic monitoring of oyster populations 
 

One of the key findings of the thesis is that the population genetic structure would in O. 

chilensis populations are likely to be the result of local recruitment, with limited gene flow 

between populations. To confirm this finding a temporal sampling strategy should be 

conducted. If the population structure is under the influence of chaotic processes, then one 

would expect a different population structure to be found than the one found in this thesis. 

Genetic monitoring is the systematic, temporal study of genetic variation, within a particular 

species or population, with the aim to detect changes or losses that could compromise the 
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genetic diversity of a species or population (Laikre et al. 2008). While it is impossible to 

determine the extent of historic translocations of O. chilensis around New Zealand this thesis 

showed the current genetic structure is not one of panmixia, it cannot be assumed that the 

populations are not locally adapted, and such the levels of genetic diversity in local 

populations should be maintained. The findings of population genetics research are often over 

looked in conservation management plans (e.g. Laikre et al. 2010). Laikre et al. (2008) 

highlighted four main threats to gene level biodiversity: (1) loss of genetically distinct 

populations, (2) reduction of genetically effective population sizes caused by increased rates 

of loss of genetic variation through drift, (3) change of genetic composition and loss of 

genetic variation through human mediated selection, and (4) inflow of alien genes. Although 

currently not a threatened species, continued genetic monitoring is important in the 

understanding of the human impacts on a commercially exploited organism. Human 

exploitation of natural populations has the potential to change allele frequencies in 

populations – this could alter the effects of local adaptation and long term evolutionary 

potential of a population – the effects of these impacts are important to monitor (Allendorf et 

al. 2008). Such impacts on gene level diversity could result from stock enhancement 

measures (Ryman and Laike, 1991), therefore enhancement measures need to consider the 

current genetic structure of a population. Future impacts of climate change on level of genetic 

variation and the genetic structure of populations could also be monitored in this way, as well 

as the effects of future outbreaks of bonamiosis. It is important to note that note that not all 

genetic changes are anthropogenic in nature, an assessment of the population genetic 

structure over time could also reveal the effects of chaotic mechanisms (such as Hedgecocks 

sweepstakes hypothesis) on the stability of genetic structure. The population genetics 

research reported in this thesis can inform monitoring efforts and it establishes a base line for 

future comparisons.  

(3) Incorporate new genomic technologies 
 

There are many new areas of genomic research that could be investigated. The technologies 

used for genomics are making rapid advances, the costs continue to come down and quality 

of genomic sequencing is increasing. There will also be improvements in genotyping 

technologies and the associated statistical and computational framework as technologies 

advance. Additional ‘spill over’ benefits as advances will occur in the ‘genomic reference’ 

species such as Ostrea edulis and Crassostrea gigas.  
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The developments made with the flat oyster O. edulis (a closely related species to O. 

chilensis), is of particular relevance to this work since it is an important aquaculture species 

that is similarly affected by a Bonamia parasite. Therefore, developments in this species may 

serve as a useful guideline. Genetic linkage maps have also been developed using 20 

microsatellite markers and 246 AFLP markers (Lallias et al. 2007). The production of a 

genetic linkage map is the next step towards identifying quantitative trait loci (QTL), and 

then the subsequent use of these QTL for selective breeding through marker assisted selection 

(MAS). QTL have been found that appear to have a higher level of resistance to the parasite 

Bonamia ostreae in O. edulis (Lallias et al. 2009). These QTL will be valuable for supporting 

a number of selective breeding programmes, with the aim of developing resistance to 

bonamiosis in O. edulis; some progress in developing resistance has been made in France 

(Naciri-Graven et al. 1998) and in Ireland (Culloty et al. 2004).  

Candidate genes that are associated with levels of resistance have been identified (Morga et 

al. 2012). Elevated levels of seven expressed sequence tags (EST) showed a significant 

increase in Bonamiosis resistant oysters, the authors followed up with investigating two of 

the genes: OeFas-ligand and OelAP that were completely sequenced, these are involved in 

apoptosis and are up-regulated in resistant haemocytes. While I could not find homologs of 

these genes using a BLAST search procedure on the O.chilensis genomic data, it is likely 

there would be a similar pathway of immune response to Bonamiosis.   

The most recent development in the aqua-cultural genetics of O. edulis is the development of 

SNP arrays. In the work of (Lapegue et al. 2014) they used the large number of expressed 

sequence tags (EST) available in public data bases to ‘in silica’ discover and develop SNPs. 

These SNP arrays are intended for use in the characterisation of genetic diversity and 

structure of oyster populations, and to potentially identify discontinuities in the distribution of 

allele frequencies and signatures of selection. It will also be used to better characterise QTL 

associated with disease.   

(4) Complete mitochondrial genome and further analyse codon usage 
 

The work presented in Chapter Five reconstructed a partial mitochondrial genome for O. 

chilensis, primers have been designed to enable the complete sequencing of the genome by 

Sanger sequencing. Using a full genome sequence is unlikely to alter the presented 

phylogenetic positon of the species, but it will be useful for comparisons of genome 
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evolution. Unlike other molluscs the gene order in Oysters seems to be conserved (Danic-

Tchaleu et al. 2011), the full sequence of the O. chilensis genome will useful in order to 

compare gene order – this is currently impossible since the genome is in fragments that do 

not contain more than one gene. The complete sequence will also reveal the number and type 

of tRNAs that are present in the mitochondrial genome – this will allow the testing of the 

hypothesis that the codon bias found in Chapter Six is related to the type of tRNA present in 

the mitogenome.  

7.5 Implications 

 (1) Can the genetic data identify stocks for use in fisheries management/aquaculture?  
 

Although not the aim of the thesis research, identification of fisheries management units and 

genetic stock for use in aquaculture breeding programmes could be aided by the results of 

this study. Typically the goal is to identify potential reproductive independent units - in a 

genetic analysis of population structure there can be a range of genetic structures from minor 

divergence in allele frequencies to reciprocal monophyly at mtDNA haplotypes. Moritz 

(1994) gave a definition that allows the delimitation of populations at these two levels; these 

reflect the difference between historical processes, and more contemporary gene flow. 

Reflecting the influence of historical factors on genetic structure is the evolutionary 

significant unit (ESU), for a population to be defined as an ESU it should be reciprocally 

monophyletic for mtDNA haplotypes and show a significant level of divergence of allele 

frequencies at nuclear loci. Reflecting the influence of more contemporary processes are 

management units (MUs), MUs are populations with significant divergence of allele 

frequencies at nuclear or mitochondrial loci, regardless of phylogenetic distinctiveness of the 

alleles. MUs are therefore the logical unit for population monitoring and demographic study, 

since they are more applicable to short term management than ESUs. Genetic connectivity 

between populations is also part of the concept of stock. Theoretically, one migrant per 

generation is thought to be enough to maintain genetic connectivity (Spieth, 1974). However, 

this concept is based upon many simplifying assumptions that may not hold in the natural 

world (Mills and Allendorf, 1996). The authors stated circumstances where more than one 

migrant per generation could be necessary. Of relevance to a fisheries population is the fact 

that an increase above one migrant per generation could be desirable in populations where 

inbreeding is thought to be a problem. It is also important to seek a balance between the 
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effects of local adaptation and outbreeding depression – with that in mind the authors’ state 

that ten migrants per generation is unlikely to disrupt that balance. 

All of the O. chilensis populations except the two Foveaux Strait populations showed 

significant divergence between populations. Therefore they should all be considered separate 

management units according to the MUs definition, with the exception of the two Foveaux 

strait populations that should be considered as one management unit under this definition. 

There are very low levels of genetic connectivity between populations: migration rates 

between populations are all well below 10 migrants per generation. With the exception of the 

Foveaux Strait populations that have higher levels of connectivity, which further supports the 

suggestion that they should be considered separate management units. Therefore with the low 

levels of connectivity found in this study,  it is important to monitor the population for signs 

of inbreeding depression.  

(2) Integration of population genetics and Seascapes genetic knowledge into the design of 
Marine Protected Areas  
 

Recently some Marine Protected Areas (MPAs) are being designated with the aim to provide 

ecologically coherent networks (Johnson et al. 2008). An ecologically coherent network is 

one where each individual protected area supports the other, interacting with the habitat of 

the surrounding area. This study aimed to elucidate the processes that were generating 

population genetic structure of O. chilensis, and then test the influence of environmental 

variables on the apparent genetic structure - this can inform the design of ecological coherent 

MPAs.  Marine organisms have wide variation in dispersal potential due to different life 

history strategies hence there may not be a suitable MPA strategy that is ideal for all species. 

In this sense O. chilensis lends itself as a model organism with limited dispersal due to its 

much reduced PLD so findings here can reflect the needs of other organisms with reduced 

gene flow.  

Overall, this study has revealed three main processes that have influenced the genetic 

structure in O. chilensis. These patterns and processes should be considered in the design of 

Marine Protected Areas (MPAs). As previously discussed, genetic structure of O. chilensis 

has been revealed to be influenced by two main factors: (1) Life history traits, Ostrea 

chilensis is a species with short PLD, which implies it has limited dispersal capabilities. This 

is supported by the results of Chapter Three that showed there is reduced connectivity 

between , suggesting that populations are essentially self-recruiting; (2) Correlation with 
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environmental variables, the seascape analysis highlighted the importance of a sediment 

variable and a metric of sea surface temperature on the genetic structure.  

The similar findings reported in this study with other studies of New Zealand marine taxa can 

be integrated to make management decisions. The Seascapes genetics analysis from the 

studies of Constable (2014), Hannan (2014) and Wei et al. (2013b) have all pointed towards 

the influence of metrics associated with sea surface temperature – therefore in order for 

MPAs to fulfil the objective of an ecologically coherent network they should aim to capture 

the full scale of sea surface temperatures across New Zealand waters.  

 

7.6 Summary 
 

1. This study has made a number of new contributions to science. Previously unknown 

information concerning the genetic stock of O. chilensis in New Zealand has been identified. 

This information can be used to inform fisheries and aquaculture management. This 

information also fits into a body of research that allows for the comparison of patterns of 

genetic structure for a range of marine taxa around New Zealand.  

2. The study  provides novel genetic tools to study evolution at the molecular level. Some 

progress has been made to describe these patterns and processes, but many more questions 

have been raised. I have made recommendations for future studies based on the findings of 

this thesis, and the current progress being made in other commercially important oyster 

species.   

3. The work presented in this thesis focused on a commercially important and iconic species. 

The information generated here is of value to the future economic growth of the species in 

New Zealand. The tools and knowledge generated during this thesis research will support 

future economic growth of the species in terms of selective breeding and a greater 

understanding of fishery stock.  
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