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Abstract 

 

Marine Isotope Stage 11 [424 to 374 ka] is unique compared to most other 

recent Quaternary interglacial periods due to its duration and orbital geometry, 

both of which have previously been cited as evidence that MIS 11 may be a 

suitable analogue to project future climate. This study aims to evaluate this 

prolonged warm period at a key site in the sparsely studied Southwest Pacific 

Ocean at Ocean Drilling Program [ODP] 1123. This cored site, situated at 3290 

m water depth on the northern flank of the Chatham Rise, straddles the 

northern limit of the modern Subtropical Front, 1100 km east of New Zealand, 

where sediments record strong subtropical and subpolar signals over 

interglacial to glacial cycles.  

Two species of planktonic foraminifera were analysed, Globigerinoides ruber 

and Globigerina bulloides [Gs. ruber and Gg. bulloides], for trace elements and 

size-normalised test weights [SNW; Gg. bulloides only] in order to reconstruct 

ocean temperature, chemistry, structure and circulation during MIS 11. Gg. 

bulloides was found to have anomalously low SNW [~50% compared to modern 

specimens] implying either [i] poor calcification environment due to low CO3
-2 

concentrations, or [ii] post-mortem alteration either in the deep water column 

or ocean floor environment. Traditional dissolution proxies for ODP 1123 do 

not indicate significant dissolution during MIS 11. Nevertheless, the inception of 

modern carbonate platforms and reefs at this time leads to the hypothesis that 

CO3
-2 concentrations in the surface ocean were low due to a shifting in the locus 

of carbonate production, and this is a potential cause, amongst other 

possibilities, of the low SNW in Gg. bulloides. However, calcification in a low CO3
-

2 concentration ocean does not appear to have significantly affected the 

geochemical proxies utilised in this study [Mg/Ca-derived paleo-ocean 

temperatures, δ18O and micro-nutrients Mn/Ca and Zn/Ca ratios as water-mass 

tracers] based on comparison with a similar study on younger sediments in the 

same core. The temperature difference between Gs. ruber and Gg. bulloides is 

the same as the modern temperature difference at ODP 1123, implying that Gs. 
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ruber was also not markedly affected by either low CO3
-2 concentrations during 

calcification or post-mortem dissolution.  

Laser ablation inductively coupled plasma mass spectrometry is utalised to 

measure in situ trace element ratios [Mg, Al, Ca, Mn, Zn and Sr/Ca], and 

reconstruct the thermal structure of the ocean’s upper 200 m. The main 

findings are [i] a well stratified upper ocean in warm periods punctuated by 

well mixed waters in cooler and presumably windier conditions;  [ii]  an 

invigorated South Pacific Gyre during the prolonged MIS 11 interglacial, 

resulting in a greater inflow of subtropical water to ODP 1123 as evinced by 

Mn/Ca and Zn/Ca ratios and supported by elevated subtropical foramiferal 

assemblages; [iii] paleo-ocean temperatures that indicate the mean MIS 11 sea 

surface temperature optimum was ca. 2°C warmer than present; and [iv] a spike 

in productivity is identified by elevated Mn/Ca and Zn/Ca ratios at ca. 400 ka, 

coinciding with a spike in eutrophic species abundance, indicating a period of 

significantly enhanced subtropical water influence.  

Records from other New Zealand sites reveal MIS 11 as a prolonged [up to 40 

kyr] interglacial period, following a rapid and pronounced 10°C warming from 

the MIS 12 glacial. Deglaciation occurred 13 kyr earlier than the global benthic 

record. This rise was punctuated by an Antarctic Cold Reversal-like cooling 

confirming episodic sub-polar influences at the site. Some differences between 

the orbital configurations of MIS 1 and 11, particularly at the precessional scale, 

coupled with apparently unusual ocean chemistry [e.g., low CO3
-2] during MIS 

11, suggest that MIS 11 may not be an ideal analogue for the Holocene. 
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Chapter 1: Introduction 

 

The primary motivation of this research was to determine the past oceanic 

conditions of the prolonged, interglacial period, marine isotope stage [MIS] 11 

in the Southwest Pacific Ocean, and assess the potential of MIS 11 to represent 

an analogue to the present interglacial period [Holocene], and hence the use of 

MIS 11 to guide projections of the Holocene’s future behaviour in a warming 

world. 

 

1.1 General background 

The ocean is the largest thermal reservoir on Earth and together with 

atmospheric processes controls the redistribution of the Sun’s energy from 

equatorial latitudes to the poles [Carter et al., 2008; Lea, 2003]. Debate exists as 

to how the ocean circulation system as a whole will respond to a warming 

climate in the future [e.g., Boning et al., 2008; Toggweiler and Russell, 2008] and 

part of this thesis research aims to address such questions and provide insights 

into future environmental change in the region of study, namely the Southwest 

Pacific Ocean off eastern New Zealand. 

MIS 11 occurred from 424–374 ka [Lisiecki and Raymo, 2005] and is often cited 

as an analogue to the present interglacial period as it is the most recent, long, 

stable warm period in Earth’s history that resembles the Holocene [e.g., Dickson 

et al., 2009; Loutre, 2003; Loutre and Berger, 2003]. During the Holocene and 

MIS 11, Earth’s orbital configuration was characterized by a nearly circular 

orbit around the Sun [low eccentricity], which resulted in a similar distribution 

of seasonal isolation to modern values [McManus and Tzedakis, 2006]. Ice core 
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records from Antarctica show that MIS 11 atmospheric greenhouse gas levels 

were comparable to pre-industrial levels [EPICA Community Members, 2004], 

and benthic oxygen isotope records and climate models suggest similar global 

ice volumes [Loutre and Berger, 2003; Pollard and DeConto, 2009]. The deglacial 

transition from MIS 12 to MIS 11 was the largest amplitude [Crundwell et al., 

2008; Droxler et al., 2003; Lisiecki and Raymo, 2005; Lüer et al., 2008; Zeigler et 

al., 2003] in the last 5 Myr [Fig. 1.1] and has been described as the major step in 

the global climate of the past 3 Myr [Droxler et al., 2003]. Moreover, the timing 

and magnitude of the MIS 12-11 transition was similar to the MIS 2-1 transition 

[Fig. 1.2; Dickson et al., 2009]. However, as discussed in Section 1.3, differences 

between MIS 11 and MIS 1 also suggest MIS 11 may not be an ideal analogue. 

  

 Figure 1.1. Benthic oxygen isotope record from ODP 849 in the east equatorial Pacific Ocean for the last 

5 Myr showing climatic evolution over this time, and the amplitude of the MIS 12-11 deglacial transition. 

Figure taken and modified from Zeigler et al. [2003].  
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Figure 1.2. Comparison between the MIS 12-11 and MIS 2-1 transitions in the Southeast Atlantic. Solid grey 

squares are MIS 2-1 from GeoB1720-2; open grey squares from GeoB1720-3; black lines and circles are 

MIS 12-11 from ODP 1085. Colour coding: black circles = MIS 11; grey squares = MIS 1. a, Orbital obliquity. 

b, Insolation July 65°N. c, Alkenone derived sea surface temperature [SST]. d, e, Benthic derived δ13C and 

δ18O. Dashed lines show the initial SST increase recorded by alkenones, termination 5/1 alignment and 

end of the MIS 11 carbon isotope excursion. Black arrows in d show benthic δ13C isotope excursion at ODP 

1085. Figure taken from Dickson et al. [2009].  

 

The ODP 1123 sediment core studied in this thesis was drilled on the northern 

limit of the modern Subtropical Front [STF] and in the path of the Deep Western 

Boundary Current [DWBC; Fig 1.3], the largest deepwater outflow of the 
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Antarctic Circumpolar Current [ACC] and density driven abyssal currents 

[Carter and McCave, 1994; McCave and Carter, 1997; Warren, 1973]. As such, the 

ODP 1123 core is situated in a climatically and oceanically sensitive region and 

has the potential to reveal the oceanic response to MIS 11.  

  

Figure 1.3. ODP 1123 [black dot] and CHAT 1K [red dot] core locations and major oceanic fronts and 

surface currents around New Zealand superimposed on a bathymetric chart. Gondwanic continental crust 

shown as warm coloured shallow plateaux, with cool colours showing relative deep water. Note the strong 

north-to-south water mass gradient from subtropical to subantarctic water over < 10° latitude. Figure 

taken and modified from Carter et al. [1998]. Acronyms as follows: ACC – Antarctic Circumpolar Current; 

EAUC – East Auckland Current; ECC – East Cape Current; DC – D’Urville Current; SAF – Subantarctic Front; 

SC – Southland Current; STF – Subtropical front; WAUC – West Auckland Current; WC – Westland Current.  
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1.2 Modern oceanographic setting 

The oceans surrounding New Zealand are strongly influenced by complex 

regional bathymetry [Figs. 1.3 and 1.4; Heath, 1981]. Emergent New Zealand 

spans over 12˚ of latitude and makes up ca. 10% of the total continental 

landmass of Zealandia, which is a remnant of the old Gondwana supercontinent 

[Mortimer, 2004]. This old continental crustal material has cooled and subsided, 

while recording the tectonic history of the changing plate boundary system 

between this section of the Pacific and Australian tectonic plates, which are 

converging at ca. 40mm/yr [Norris and Cooper, 2000]. The tectonically dynamic 

setting has exerted a first order control on the bathymetry around New Zealand, 

and by association the regional oceanography [Hayward et al., 2008; Orpin et al., 

2008; Sutherland, 1999].  
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Figure 1.4. Bathymetric map of undersea New Zealand where blue to pink colours represent depths of 

4000 to > 10,000 m of the SW Pacific basin and Kermadec Trench and red to yellow colours represent 

shallower depths of 120 to 1400 m on the 1: Campbell Plateau, 2: Chatham Rise and 3: Challenger Plateau. 

Yellow dot is the ODP 1123 core site. Figure taken and modified from CANZ [1996].  
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New Zealand intercepts two major oceanic fronts to the east and southeast, the 

Subantarctic Front [SAF] and the Subtropical Front [STF; Fig. 1.3; McCave et al., 

2008]. These fronts represent strong hydrographic gradients in ocean 

temperature, salinity and nutrient content, and define the interface between 

tropically- and polar-sourced water masses. 

Ocean circulation to the west of New Zealand is largely wind driven and less 

well defined compared to east of New Zealand. In the east, the ocean is 

dynamically influenced by opposing inflows of tropical and polar waters 

particularly the South Pacific Gyre locally represented by the Tasman Front [TF], 

and the Antarctic Circumpolar Current [ACC; Fig 3.1]. Off eastern Australia, the 

TF bifurcates from the East Australian Current [EAC] and delivers warm saline 

STW that feeds the East Auckland Current [EAUC]. The EAUC flows southeast 

along the eastern continental margin of the upper North Island and continues 

flowing southwest as the East Cape Current [ECC], off the central and lower 

North Island before turning eastwards along the northern flank of the Chatham 

Rise. At the Chatham Rise, the ECC constrains the STF, which is dynamically 

positioned along the rise crest, and the southern side of the STF is mainly 

affected by the eastward flowing Southland Current [SC; Carter et al., 1998].  

Directly east of New Zealand at 45˚S, the STF is aligned with the Chatham Rise, 

which has a shallow crest at 250–400 m water depth [Chiswell, 2002; Heath, 

1975]. The STF is a zone of intense mixing and high productivity as STW and 

SAW interact and mix through strong eddy activity [Chiswell, 2002]. This mixing 

is further facilitated by periodic breaches where southern- or northern-sourced 

water spills through relatively deep bathymetric features in the Chatham Rise, 

such as the Mernoo Saddle [Greig and Gilmour, 1992; Murphy et al., 2001; 
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Schaefer et al., 2005]. Modern observations show that the STF may migrate 

seasonally by up to 2˚ of latitude between 42 and 44˚S, with the extremes 

occurring in late summer and autumn [Chiswell, 1994; 2002]. It has been 

postulated that the STF is dynamically constrained by the East Cape Current 

along the northern flank of the rise, and the Southland Current [SC] along the 

southern rise [Fig. 1.5; McCave et al., 2008]. 

The STF reaches a depth of ca. 350 m [Heath, 1975] and defines a sharp 

gradient between relatively warm subtropical water [STW] and relatively cool 

subantarctic water [SAW]. STW is characterised by summer temperatures 

>15˚C, high salinity [ca. 35.7%₀] and is typically macronutrient-poor [e.g., 

nitrate, silica, phosphorus] and micronutrient-rich [e.g., iron, manganese, zinc, 

barium]. SAW has relatively lower summer temperatures < 15˚C and salinity 

[ca. 34.7%₀] and, in comparison with STW, is micronutrient-poor and 

macronutrient-rich [Boyd et al., 2004; Murphy et al., 2001]. Mixing of these two 

chemically distinct water masses is facilitated and enhanced by the bathymetric 

intrusion of the Chatham Rise and results in an area of high productivity 

[Murphy et al., 2001]. 
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Figure 1.5. Map of modern ocean currents showing the East Cape Current [ECC] and Southland Current 

[SC] flow paths along the north and south of the Chatham Rise, where these currents act to constrain the 

STF. Figure modified from Carter et al. [1998].  

 

Paleoceanographic reconstructions suggest that the restricted latitudinal 

migration of the frontal system was maintained throughout the Quaternary, 

although at the eastern and western limits of the Chatham Rise there was 

northward migration of the northern limit of the STF during glacial periods [e.g., 

Crundwell et al., 2008; McCave et al., 2008; Nelson et al., 1993; Weaver et al., 

1998]. Moreover, various lines of evidence suggest that on glacial-interglacial 

timescales this bathymetric barrier inhibits major latitudinal migration of the 

frontal system beyond the observed ca. 2˚ latitude of modern migration 

[Crundwell et al., 2008; McCave et al., 2008; Nelson et al., 1993 and 2000; 

Weaver et al., 1998]. 

During the last glaciation [MIS 2] the SAF intensified against the western 

boundary presented by the Campbell Plateau. A gap in the boundary allowed 

SAF water to jet northeastwards and contribute to a clockwise gyre in the 

Bounty Trough [e.g., Hayward et al., 2008; Neil et al., 2004]. Where the SAF was 

unconstrained by the plateau it migrated north. As the STF does not appear to 
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have left its general position along the Chatham Rise crest, this subantarctic 

incursion intensified the temperature gradient across the STF from ca. 4 to 8˚C 

over just 4˚ of latitude [Weaver et al., 1998]. Furthermore, Schaefer et al. [2005] 

and Hayward et al. [2008] suggested that during interglacial periods the STF 

may have periodically allowed subtropical waters to penetrate south from the 

Chatham Rise. This holds true for MIS 11 when modern analogue technique 

[MAT] paleo-ocean temperatures were similar north and south of Chatham Rise. 

In the open ocean away from these shallow bathymetric constraints, the STF 

may migrate by as much as 4 to 6˚ latitude during glacial-interglacial cycles, and 

is known to do so in the Indian Ocean [Howard and Prell, 1992] and the Tasman 

Sea [Sikes et al., 2009]. 

At ODP 1123, the surface oceanography is presently dominated by the STF with 

modern sea surface temperatures [SST] ranging seasonally between 12.1 and 

17.6°C with a mean annual average of 15.5°C [Locarnini et al., 2006; Schlitzer, 

2002].  According to the Conductivity-Temperature-Depth profiles taken just 

south of ODP 1123 by McCave and Carter [1997], the surface waters are 

underlain by Antarctic Intermediate Water [AAIW; ca. 600-1400 m water 

depth], Upper Circumpolar Deep Water [UCDW; ca. 1400-2700 m] and Lower 

Circumpolar Deep Water [LCDW: ca. 2700 m to the seabed at 3290 m depth]. 

This last water mass contains modified North Atlantic Deep Water [NADW] 

identified by its distinctive high salinity and low carbon isotope [δ13C] 

signatures. This occurrence of NADW has the potential to reveal if the nature of 

the meridional circulation changed during MIS 11 [Hall et al., 2001]. This 

circulation is associated with the largest deep water offshoot of the ACC, the 

Pacific DWBC which passes over ODP 1123 en route to the central Pacific Ocean. 
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Occupying water depths of ca. 2000 m, the Pacific DWBC transports ca. 20 Sv [1 

Sv = 106 m3 s-1]  to contribute 35 to 40% of the cold deep water entering the 

world’s ocean basins [McCave et al., 2008; Warren, 1973]. 

As the DWBC passes ODP 1123, it decelerates, depositing a major sediment drift 

comprising alternating hemipelagites and calcareous pelagites with both 

foraminiferal and nannofossil assemblages [Carter et al., 1999]. Biogenic 

carbonate contents are accordingly variable ranging from 10-84%. Dissolution 

and diagenesis do not appear to be significant [Hall et al., 2001; Crundwell et al., 

2008], except perhaps for MIS 11 and 9 [Elderfield et al., 2010; Greaves, 2008], 

and this is explored further in Section 4.1.2. 

 

1.3 Quaternary climate cycles 

During the Cenozoic, global climate has gradually cooled from a “Greenhouse 

World” with no permanent polar ice to an “Icehouse World” with permanent 

polar ice sheets [Fig. 1.6]. The climate of the Quaternary is characterised by 

asymmetric glacial-interglacial climate cycles with rapid warmings from full 

glacial to interglacial states followed by a prolonged cooling into the next glacial 

period [Fig. 1.7; Lisiecki and Raymo, 2005; Zachos et al., 2001]. These climate 

cycles follow changes in the orbital geometry of the Earth on its axis and annual 

path around the Sun [i.e., Milankovitch cycles]. Many authors agree that global 

glacial-interglacial climate cyclicity is most likely driven by orbital cycles, 

however, the lack of any direct physical linking mechanism makes it unclear 

whether these cycles actually drive global climate or modulate it [e.g., Berger 

and Loutre, 2003; Howard and Prell, 1992; Miller et al., 2010; Raymo and 

Huybers, 2008]. 
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Figure 1.6. Stacked deep sea benthic global δ18O curve showing the climatic evolution of the Cenozoic from 

a ‘Greenhouse World’ to an ‘Icehouse World’. Superimposed on the long term cooling trend are various 

large magnitude transient climatic events of differing temporal and climatic magnitude, identifiable by 

their δ18O perturbation from the mean climatic state. PETM [ETM1 – Eocene Thermal Maximum 1] refers 

to the short-lived and abrupt Paleocene-Eocene Thermal Maximum; ETM2 refers to the Eocene Thermal 

Maximum 2. Figure modified from Zachos et al. [2008].  

 
 

 
 

Figure 1.7. Global benthic δ18O stack showing Quaternary climate cycles from 1400 ka. Blue bar shows the 

Mid-Pleistocene Transition after Imbrie et al. [1993], culminating at the mid-Brunhes event, which 

coincides with the MIS 12-11 transition [EPICA Community Members, 2004]. Grey shaded area shows 40 

kyr glacial-interglacial climate cycles; white area shows 100 kyr climate cycles. Numbers refer to marine 

oxygen isotope stages. Figure modified from Lisiecki and Raymo [2005].  

 

 
 



- 13 - 
 

K. Christiansen  2012 

For most of the Quaternary until the mid-Pleistocene transition [ca. 0.8 to 0.4 

Ma] these climate cycles show the strongest affinity with the 40 kyr obliquity 

frequency band [Imbrie et al., 1993]. After the mid-Pleistocene transition, the 

climate system appears to be responding more strongly to the 100 kyr 

eccentricity cycle [Fig. 1.7]. However, eccentricity only has a minor control on 

the distribution of incoming solar radiation, and primarily modulates the 19-23 

kyr precession cycle [Imbrie et al., 1993; Loutre and Berger, 2003; Raymo and 

Huybers, 2008]. This leads to the question as to how minor and relatively 

insignificant changes of incoming solar radiation can cause such significant 

global climate changes that result in the growth and decay of massive ice sheets 

[e.g., Howard, 1997; Imbrie et al., 1993; Raymo and Huybers, 2008]. As such, the 

role of internal non-linear feedbacks in the climate system [such as greenhouse 

gas and ice albedo feedbacks] is considered to be crucial in driving orbitally 

induced climate change [Imbrie et al., 1993; Prokopenko et al., 2010; Raymo and 

Huybers, 2008]. 

One significant problem with the orbital hypothesis of glaciation-deglaciation 

cycles is the precession signal. Precession has a marked influence on incoming 

solar radiation intensity compared to eccentricity and obliquity, yet glacial 

terminations do not appear to be caused by, or coincide with, changes in 

precession [Raymo and Huybers, 2008]. This has led to the hypothesis that rapid 

glacial terminations may occur at multiples of precession cycles [Maslin and 

Ridgwell, 2005] or at multiples of obliquity cycles [Huybers, 2007; Huybers and 

Wunsch, 2005]. Jouzel et al. [2007] argued that the insolation overlap between 

high obliquity and precession is associated with Quaternary interglacials, with 

the largest amplitude temperature changes occurring during deglacial 
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transitions in the EPICA Dome Concordia [EDC] core [e.g., MIS 1, 5, 9, 11 and 

19]. Less intense interglacial periods occur when northern and southern 

hemisphere insolation is antiphased [e.g., MIS 13, 15 and 17]. 

Hall et al. [2001] performed spectral analysis of stable isotope and grain size 

data from the ODP 1123 core and found that upper ocean conditions and the 

strength of the DWBC inflow were in-phase with orbitally-induced variations in 

global ice volume for the last 1.2 Myr on obliquity timescales with deglaciations 

occurring at multiples of obliquity cycles [two or three cycles corresponding to 

deglaciation every 80 to 120 kyr; Hall et al., 2001].  

Past climatic records are important to better identify climatic forcing 

mechanisms, rates of change and extremes. This thesis research focuses on MIS 

11 because the insolation geometry was similar to present MIS 1 conditions, 

with low eccentricity and precessional amplitude, and high obliquity [Dickson et 

al., 2009; Loutre and Berger, 2003]. However, after the glacial termination, 

insolation differed for MIS 11 and MIS 1 [Fig. 1.2; Dickson et al., 2009]. MIS 11 

spans two insolation maxima separated by a weak minimum [July 65˚N], which 

is a consequence of the coincidence of the 400 kyr eccentricity cycle and 

maximum in Earth’s axial tilt [Tzedakis, 2010]. In contrast, MIS 1 only spans one 

insolation maximum [July 65˚N]. Furthermore, all other typical interglacial 

periods since MIS 11 have terminated after one insolation maximum [EPICA 

Community Members, 2004; Jouzel et al., 2007; Loulergue et al., 2008; Rohling et 

al., 2010; Siegenthaler et al., 2005]. This raises the question as to whether the 

Holocene is likely to continue or enter a new glaciation in response to the 

coming insolation minimum in an undisturbed climate system. Ignoring any 

potential additional climate forcing by anthropogenic greenhouse gas [GHG] 
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emissions, the answer to this question depends on the temporal alignment of 

MIS 11 and MIS 1 and whether precession [Loutre, 2003; Loutre and Berger, 

2003] or obliquity parameters are aligned [Dickson et al., 2009; EPICA 

Community Members, 2004; Masson-Delmotte et al., 2006]. If precession is the 

dominant forcing effect on climate cycles, then the Holocene interglacial period 

should be ending. However as low eccentricity dampens the effect of precession 

then obliquity alignment [which coincidentally aligns terminations I and V] may 

be the more dominant effect [Masson-Delmotte et al., 2006]. The latter case 

would suggest that the Holocene may continue for another ca. 12 kyr in a 

natural world without the added complication of anthropogenic GHG emissions  

and attendant warming [Tzedakis, 2010]. 

 

1.3.1 Marine Isotope Stage 11 ice core and marine sedimentary records 

While most previous studies have argued that MIS 11 was an extended 

interglacial compared to more recent Quaternary interglacials [Droxler and 

Farrell, 2000; Droxler et al., 2003; Lisiecki and Raymo, 2005; Loutre and Berger, 

2003; McManus and Tzedakis, 2006; Miller et al., 2010; Rohling et al., 2010], its 

magnitude of warmth [Candy, 2009; Preece et al., 2007; Stanton-Frazee et al., 

1999] and sea level rise relative to the present, are widely debated [e.g., Olson 

and Hearty, 2009;  Raymo and Mitrovica, 2012].  

MIS 11 also marks a fundamental change in the nature of long-term climate 

cyclicity, the ‘mid-Bruhnes event’, sometimes also called the mid-Pleistocene 

transition [EPICA Community Members, 2004] when the climate system 

switched to larger amplitude climate cycles and favoured an overall warmer 
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state [Jouzel et al., 2007], which is believed to be a reflection of some change in 

climate forcing mechanisms or crossing of some internal threshold [Fig. 1.8].  

 

Figure 1.8. EDC δD-derived temperature with warm and cool colours representing relative temperatures, 

and the obliquity component extracted using a Gaussian filter within the frequency range 0.043 ± 0.015 

kyr. Red blocks indicate times when precession is decreasing and obliquity is increasing. Figure taken and 

modified from Jouzel et al. [2007].  

 
 

Some studies have argued for similar sea levels during MIS 11 and the present 

[Bowen, 2010], using evidence from seven different localities [Elmejdoub and 

Jedoui, 2009; Rohling et al., 2010; Zazo et al., 2003]. Somewhat controversially, 

other studies have suggested that sea level was ca. 20 m above present based on 

direct biological and sedimentological evidence from coastal shelf deposits 

[Hawaii and Bermuda; Hearty, 2002; Hearty and Olson, 2008; Hearty et al., 1999; 

Kindler and Hearty, 2000; Olson and Hearty, 2009].  

Such a sea level rise would require collapse of both the West Antarctic Ice Sheet 

and the Greenland Ice Sheet, plus a significant contribution from melting of the 

East Antarctic Ice Sheet. Sufficient sedimentological evidence, proximal to the 

southern hemisphere ice sheets, to support this high sea level hypothesis does 

not currently exist. Instead, an ice-rafted debris depositional anomaly favours 

the MIS 15-13 interval as a likely time of West Antarctic Ice Sheet collapse in the 

Quaternary [Hillenbrand et al., 2009].  
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Limited evidence for an ice-free Greenland during MIS 11 has been identified, 

such as a 23 kyr-long ice-rafted debris depositional absence at ODP 982 and an 

even more substantial and longer ice-rafted debris absence at ODP 980 both 

from offshore Greenland in the Northeast Atlantic, implying no ice available for 

iceberg calving [McManus et al., 1999; Stanton-Frazee et al., 1999]. Willerslev et 

al. [2007] analysed ice core basal silts for DNA to reveal that a forested south-

central Greenland may have existed at this time, although this event is not 

accurately dated. Pollen records from marine sediment core ODP 646 from the 

Labrador Sea, southwest of Greenland, indicate a significantly reduced 

Greenland ice sheet with an order of magnitude increase of Picea pollen, which 

also implies a forested southern Greenland during MIS 11 [de Vernal and 

Hillaire-Marcel, 2008].  

The EDC ice core revealed that atmospheric GHG levels and deuterium [δD]-

derived Antarctic air temperatures for MIS 11 were similar to pre-industrial 

levels [GHG] and unexceptional [air temperatures]. This ice core record does 

not support a warmer than present MIS 11, particularly as climate warming is 

generally thought to be amplified in polar regions [Rohling et al., 2012].  

 

1.3.2 Marine Isotope Stage 11 terrestrial records 

Continental records have raised more questions about MIS 11 climatic 

conditions, with results from different proxies and locations varying. 

Furthermore, terrestrial records often lack the temporal resolution and 

continuity offered by the ice and deep marine sediment cores. Some terrestrial 

proxies suggest local warming, superimposed on an generally wetter climate 

with greater biotic diversity, perhaps owing to the extended duration of MIS 11 
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[Preece et al., 2007]. Lacustrine sediments from Siberia also indicate generally 

humid and warm conditions during MIS 11, with the proportion of biogenic 

silica in Lake Baikal being the highest at this time in the last 450 kyr [Mackay et 

al., 2008]. Well developed paleosols from the Chinese Loess Plateau were 

originally interpreted to reflect extreme semi-humid and subtropical, warm MIS 

11 conditions relative to the present. However, other studies disagree that these 

paleosols formed under conditions that were significantly different to the 

modern environment [see Wu et al., 2007 for a review]. More recently Wu et al. 

[2007] identified two different climatic regimes based on terrestrial molluscs in 

the MIS 11 paleosols of the Chinese Loess Plateau, which reflect an early 

climatic optimum, more humid and warmer than the Holocene optimum, that 

lasted ca. 30 kyr and was characterised by significant diagenesis, followed by 

cooler conditions that were similar or even cooler than the Holocene. MIS 11 

appears generally to have been of extended duration relative to other 

Quaternary interglacials and shows regionally complex variations, with some 

areas showing similar temperatures and some areas appearing warmer than 

the present. A generally wetter trend implies warmer SST and enhanced 

evaporation, although marine records do not implicitly show this [Rousseau, 

2003].  

The key to reconciling the various lines of evidence for climatic variability 

during MIS 11 may lie in a multi-proxy approach, focusing on deep marine 

sediment cores with continuous resolution, and this was the aim of the research 

undertaken during this thesis study. However, evidence exists to suggest that 

during MIS 11 some perturbation occurred in the ocean carbon cycle, which led 

to a carbonate dissolution interval in the world’s oceans [Farrell and Prell, 1989; 
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Zeigler et al., 2003]. An important question is whether this ocean carbon cycle 

perturbation was the result of an extreme warm period relative to the present 

day. 

 

1.3.3 The latest Quaternary climate cycle 

The last glacial maximum occurred between 26.5 and 19-20 ka when southern 

and northern hemisphere ice sheets were at their maximum extent. Sea level 

was approximately 120 m below the present level and as a result major 

reorganisation of upper ocean circulation occurred. Termination I is strongly 

characterised in ice and marine cores by a marked rapid increase in greenhouse 

gas levels in ice cores and a decrease in δ18O values in foraminifera in marine 

cores [Fig. 1.7]. This warming was punctuated by the cooling reversals in both 

hemispheres, the Antarctic Cold Reversal [ACR] occurring from 14.1–12.4 ka 

and the Younger Dryas cooling event in the northern hemisphere occurring 13–

11.5 ka [Broecker, W., 2002]. As this study focuses on southern hemisphere 

climate, the Younger Dryas will not be discussed further.  

The ACR is identified in ice and marine core records by either a full climatic 

reversal of ~2 degrees [e.g. the EPICA ice core record; Jouzel et al., 2007] or a 

‘pause’ in the deglacial stable isotope trend [e.g. MD97-2121 on the Campbell 

Plateau; Carter et al., 2008]. Offshore New Zealand saw the ACR manifest as a 

temporary halt in the benthic δ18O lightening from 14.1 ka, however this change 

didn’t register in the upper ocean until the ACR was at its strongest at 13.5 ka. 

This resulted in merging of planktonic δ18O profiles, interpreted as a collapse in 

upper ocean structure [Carter et al., 2008].  
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1.4 Geochemical archives and proxies of past ocean 

temperature and global ice volume changes 

Determination of Mg/Ca-derived paleo-ocean temperatures has been an area of 

active research for 90 years, since Clark and Wheeler [1922] first identified the 

potential of the Mg content in biogenic carbonates to reveal growth 

temperatures.  

Urey [1947] first theorised that the fractionation of oxygen isotopes in biogenic 

carbonates was temperature-dependent. This was applied to natural samples 

by Epstein et al. [1953] who established the thermodynamic relationship 

between ocean temperature and oxygen isotope composition. The first cyclical 

variations in foraminiferal oxygen isotopes in a sediment core interpreted as 

climatic fluctuations were described by Emiliani [1955]. 

Subsequently, the potential for the accurate determination of paleo-ocean 

temperatures and past global ice volumes using Mg/Ca-derived paleo-ocean 

temperatures and oxygen isotopes on the same samples have been extensively 

developed [see Lea, 2003 for a review], and are the primary research tools 

utilised in this thesis study.  

 

1.4.1 Magnesium/calcium ratios in foraminifera as a proxy of paleo-ocean 

temperatures 

Foraminifera are unicellular protists, and in addition to temperature, other 

environmental conditions and biological factors also influence the 

biomineralization of trace elements into their tests [Erez, 2003; Lea, 2003]. 

Foraminifera secrete calcite tests in equilibrium with surrounding ocean water 

in which they inhabit and, therefore, incorporate trace elements such as Mg as 
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they progress through their life cycle [Anand et al., 2003; Lea, 2003]. Mg 

incorporation into foraminiferal calcite is strongly dependent on temperature, 

hence the Mg/Ca ratio is one of the most widely studied of all trace element 

ratios [e.g., Lea, 2003; Nürnberg et al., 1996; Rosenthal and Lohmann, 2002; 

Rosenthal et al., 1997]. Given the temperature, salinity and CO3
-2 concentration 

ranges identified at the ODP 1123 site, temperature has been shown to be the 

primary control on Mg incorporation in Gg. bulloides and Gs. ruber from the 

Southwest Pacific Ocean [Bolton et al., 2011; Marr et al., 2011]. 

 

1.4.2 Secondary influences on the trace element chemistry of foraminifera 

Factors other than temperature that influence trace element chemistry in 

foraminiferal calcite include: [1] vital effects, [2] ecology, [3] low carbonate ion 

[CO3
-2] concentration [4] preservation, [5] growth rates and [6] salinity. All of 

these can cause natural chemical heterogeneity through the test wall and are 

now discussed sequentially.  

 

Vital effects 

As foraminifera grow they sequentially add new chambers and an extra layer of 

calcite to the existing chambers [Fig. 1.10]. In addition, individual test layers are 

comprised of a primary inner high-Mg calcite and a larger proportion of 

primary outer low-Mg calcite [Anand and Elderfield, 2005; Eggins et al., 2003; 

2004; Erez, 2003; Sadekov et al., 2009]. Distribution of Mg throughout the test 

for the two species analysed in this study has not been well characterised, but 

the amount of chemical heterogeneity in the form of alternating high- and low-
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Mg bands may not be as important as other species such as Orbulina universa or 

Amphistegina lobifera [Eggins et al., 2004; Erez, 2003]. Furthermore, growth  

rates can vary over diurnal timescales, which provides an extra complication 

with high-Mg bands being secreted at night by certain symbiont-bearing species 

[Eggins et al., 2004]. Another inherent complication is the biological mediation 

of trace element uptake related to kinetic or taxonomic effects. These vital 

effects cause a departure from equilibrium and are species-specific, resulting in 

inorganically cultured calcite and cultured foraminifera differing in their uptake 

of trace elements, and therefore require the development of species-specific 

calibration equations [Stephenson et al., 2008]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Schematic illustration 

showing the sequential addition 

of new chambers and outer 

ontogenetic calcite layers, and 

gametogenic crust layer 

associated with reproduction. 

Letters denote the chamber age, 

with [f] referring to the youngest 

and [f-3] referring to the oldest 

chamber. IL refers to the inside 

calcareous lining; POM refers to 

the primary organic membrane 

where calcification initiates and 

OL refers to the outer calcareous 

lamella. Figure taken and 

modified from Kozden et al. 

[2009]. 
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Ecology 

Some non-symbiont-bearing planktic foraminiferal species also migrate 

through the water column throughout their lifecycle, which results in a lower 

overall Mg/Ca value, reflecting cooler temperatures at depth. Similarly, the 

secretion of gametogenic calcite with reproduction at the end of the lifecycle at 

greater depth, can also cause a significant cool temperature bias [Caron et al., 

1990; Eggins et al., 2003].  

 

Carbonate ion concentration  

Low CO3
-2 concentration can affect foraminifera’s ability to calcify and maintain 

a strong healthy test, both during ontogeny and post-mortem [Barker and 

Elderfield, 2002]. The CO3
-2 effect is species specific and correlates with a linear 

decrease in Mg/Ca ratios below a threshold CO3
-2 concentration [Regenberg et 

al., 2006]. The influence of low CO3
-2 concentration on Mg/Ca ratios in the 

foraminifera in this study is considered in more detail in Chapter 3.   

 

Preservation 

Post-mortem diagenetic change can also affect Mg/Ca ratios, due to the 

preferential dissolution of less stable Mg-rich calcite and recrystallisation at 

depth, biasing the calculated Mg/Ca-derived paleo-ocean temperatures towards 

cooler values [Brown and Elderfield, 1996; Lea, 2003; Rosenthal and Lohmann, 

2002]. Planktic foraminifera are more susceptible to this process due to greater 

micro-porosity in the test compared to benthic species [Pearson et al., 2001; 

Sexton et al., 2006]. The extent to which Gg. bulloides and Gs. ruber are 
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susceptible to dissolution of Mg-rich portions of the test is not known. Perfect 

‘glassy’ preservation is often found only in foraminifers recovered from clay-

rich hemipelagic sediments [Sexton et al., 2006]. However, the section of the 

ODP 1123 core studied in this thesis is foraminiferal-bearing nannofossil ooze 

[Carter et al., 1999], which may be problematic when geochemically analysing 

foraminifera due to the possibility of diagenetic effects [Pearson et al., 2001].  

 

Growth rates 

Variable growth rates have been suggested to affect trace element 

incorporation in foraminifera [e.g., Elderfield et al., 1996; Elderfield et al., 2002], 

where faster growth rate equals higher trace element incorporation. However, 

Erez [2003] has shown the variable incorporation of trace elements does not 

vary with growth rates and instead is likely to be of biologically mediated by the 

organism. Aldridge et al. [2012] suggested that greater nutrient availability 

causes faster growth rates in Gg. bulloides resulting in thinner, less dense, 

calcite tests.   

 

Salinity 

Establishing to what extent salinity controls Mg/Ca uptake in planktonic 

foraminifera is important because varying salinity gradients may produce a 

paleotemperature bias. Due to a semi-enclosed geography, a large salinity 

gradient [36-40 psu] exists in the Mediterranean Sea, providing a natural 

laboratory to study the effect of varying salinity on Mg/Ca ratios in 

foraminifera. In the highly saline East Mediterranean Sea, Mg/Ca ratios in 

planktonic foraminifera are higher than the in situ ocean temperature would 
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suggest [Ferguson et al., 2008]. However the range of salinities at ODP 1123 is 

not sufficiently elevated to cause significant Mg/Ca bias in foraminiferal calcite 

[34.7-35.7 psu; Boyd et al., 2001]. 

 

1.4.3 Oxygen and carbon isotopes  

The δ18O signature preserved in the tests of planktic foraminifera reflects ocean 

temperature and the δ18O composition of seawater, with the latter in turn 

reflecting global ice volume and local salinity [Emiliani, 1955; Shackleton, 1987; 

Urey, 1947]. δ18O measurements of foraminifera are particularly useful when 

combined with Mg/Ca-derived paleo-ocean thermometry, which allows the 

identification of ocean temperature, and thus changes in δ18O of seawater 

through time that can be related to changes in global ice volume [Lear et al., 

2000; Mashiotta et al., 1999; Nürnberg et al., 1996; Rosenthal et al., 2000]. The 

δ18O value recorded in biogenic carbonate is the most widely used paleo-

climate proxy as it is relatively easy to measure accurately with modern mass 

spectrometry techniques [Lea, 2003].  

Foraminifera record the ratio of 12C/13C [normalised to a standard as δ13C] in 

seawater in their calcite tests. δ13C can be utilised as a productivity indicator as 

algal photosynthesis favours the preferential uptake of lighter 12C, resulting in 

more positive δ13C in surface waters, although this proxy is complicated by 

other factors, such as the pre-formed carbon signature of the water mass. The 

carbon isotopic signature of a water mass can also act as a circulation tracer and 

the inverse relationship between high productivity and lower benthic δ13C 

[Mackensen et al., 2001]. As a water mass ages, respiration liberates oxygen and 

releases CO2, which causes a subsequent negative δ13C signature, and this is a 
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first-order indicator to distinguish between Pacific and Atlantic deep water 

[Kroopnick, 1985; Spero, 1992].  

 

1.4.4 Geochemical archives and proxies utilised in this thesis 

Two planktic foraminiferal species, Gg. bulloides and Gs. ruber [Fig. 1.11] were 

analysed in this study by LA-ICPMS to determine their trace element 

geochemistry. The primary focus of this work was to measure Mg/Ca ratios to 

derive paleo-ocean temperatures, although other trace elements [Mn and Zn] 

were also measured to assess their potential to trace changes in water mass 

chemistry, paleo-productivity and ocean circulation. Recently, Marr [2009] 

analysed these elements in Gg. bulloides from core-top sediments in the 

Southwest Pacific Ocean and suggested it is possible to differentiate between 

modern SAW and STW based on the Mn/Ca, Zn/Ca and Ba/Ca ratios. 

 

Figure 1.10. Scanning electron microscope [SEM] images of the two foraminiferal species analysed by LA-

ICPMS in this study, Gg. bulloides [left] and Gs. ruber [right]. Chamber ages are annotated as in Figure 1.10, 

where the youngest final chamber is [f], and sequentially older chambers are denoted by higher f values [f-

1, f-2 etc.]. Left image was taken from Marr et al. [2011] and the right image was taken from Bolton et al. 

[2011].  
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The time period studied is 445–375 ka, which encompasses the deglaciation 

from MIS 12 through to the climatic optimum of MIS 11. Gg. bulloides is a 

eutrophic, temperate species and is relatively abundant throughout this time 

interval. Peak abundance precedes the deglaciation and decreases notably 

during the early deglacial transition at ca. 435 kyr [Crundwell et al., 2008]. Gs. 

ruber is a tropical-subtropical species [Crundwell et al., 2008] and, thus, is very 

low in abundance during colder environmental conditions and so was only 

analysed for the “warm” period from 428–394 ka.  

Trace element data were complemented with previously acquired stable oxygen 

isotope analyses of the foraminifera [Federici et al., unpubl. data], in order to 

reconstruct changes in ocean salinity and global ice volume [δ18O] and identify 

large-scale changes in paleo-circulation, specifically the relative influence of 

different water masses at ODP Site 1123. 

 

1.5 Thesis objectives and key research questions 

This thesis applies geochemical proxies to determine the oceanic response to 

MIS 11 [Lisiecki and Raymo, 2005; Rohling et al., 2010; Ruddiman, 2005]. As 

noted previously, debate exists as to the magnitude of warming during MIS 11 

as compared to the present. MIS 11 has previously been considered to have 

been markedly warmer than the present [Droxler and Farrell, 2000; Hays et al., 

1976; Lea et al., 2000; McManus et al., 1999], although this has been challenged 

as subsequent research has modified this picture of extreme warmth [e.g., 

Crundwell et al., 2008; Kolodziej, 2010; Mackay et al., 2008; Preece et al., 2007; 

Wu et al., 2007]. These recent studies reveal MIS 11 temperatures were similar 
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or slightly warmer than present, and lasted ca. 30 kyr.  Encapsulated by the 

fundamental question: “How did the Southwest Pacific Ocean respond to the 

prolonged warming associated with MIS 11?” there are several second order 

objectives to this thesis study.  

1. Determine the timing and pattern of the MIS 11 interglacial. 

2. Determine a paleo-ocean temperature record for MIS 11 using Mg/Ca 

based thermometry. 

3. Identify changes in water masses and ocean structure from peak glacial 

MIS 12 conditions to the end of MIS 11 using trace element foraminiferal 

test chemistry. 

4. Investigate the ocean carbon response to MIS 11 via analysis of size-

normalised test weights of foraminiferal tests. 

5. Determine New Zealand’s oceanic regional response to MIS 11. 

6. Compare MIS 11 to MIS 1 and assess the suitability of the former as an a 

analogue for the future. 

 

In order to address these research questions, LA-ICPMS trace element analyses 

were complemented by previously unpublished [Federici et al., unpubl. data] 

stable oxygen isotope analyses on planktonic foraminifera species [Gg. 

bulloides] and one benthic species [Uvigerina spp.] from the same ODP 1123 

core. These data are compared with other published information on MIS 11 

[Crundwell et al., 2008, Hayward et al. 2012; Kolodziej, 2010; Prebble, 2012], to 

determine the regional response to MIS 11.  
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1.6 Thesis structure 

This thesis is structured into six chapters and a set of appendices as follows: 

 

Chapter 1 – Introduction: This chapter presents a description of MIS 11 and 

the general setting of ODP 1123. A review of Quaternary climatic cycles and the 

geochemical proxies used to study these follow, finishing with the thesis 

research objectives and questions.  

 

Chapter 2 – Materials and methods: This chapter describes the location of the 

sediment core and its dating. The second part of this chapter documents the 

sample preparation techniques and the analytical methods.  

 

Chapter 3 – Results: This chapter presents the main results of the research 

carried out in this thesis.  

 

Chapter 4 – Discussion: This chapter discusses the implications of the 

previous chapter.  

 

Chapter 5 – Regional overview: MIS 11 paleo-ocean temperatures in the 

Southwest Pacific Ocean. This chapter synthesises available data that 

constrain the environmental conditions around New Zealand during MIS 11 

using a range of proxies from multiple sites.  

 

Chapter 6 – Conclusions and suggestions for future work 
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Appendix 1: SEM images of a selection of analysed foraminifera.  

 

Appendix 2: A data file containing details of samples including depth/age, and 

all geochemical data [foraminifera test weights, stable isotopes, trace elements] 

and calculated paleo-ocean temperatures acquired in this thesis research.  

 

Appendix 3: A data file containing the sample size error determinations for 

Mg/Ca-derived paleo-ocean temperatures.  

 

Appendix 4: Age model data file.  
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Chapter 2: Materials and methods  

 

2.1 ODP 1123 sediment core 

The studied sediment core was drilled at 3290 m water depth into contourite 

drifts during Leg 181 of the Ocean Drilling Program in 1998. The core is 

situated on the northeastern edge of the Chatham Rise, 410 km northeast of the 

Chatham Islands [41˚47.15’S, 171˚29.94’W]. ODP 1123 is located in an 

oceanographically important region near the northern edge of the modern STF, 

and also in the path of the DWBC the main outflow, and largest offshoot of, 

Antarctic Bottom Water [AABW] into the Pacific Ocean via the ACC [Fig. 2.1; 

Warren, 1973]. The section of the core studied is Hole B, core 3H, section 3-2 to 

3-4, 15.15 to 17.50 m below sea floor [mbsf] and is primarily cyclic alternating 

greenish grey clayey nannofossil ooze with white nannofossil ooze, with 

carbonate content oscillating around 65% [Carter et al., 1999].  
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Figure 2.1. Major western boundary ocean currents including the surface to seabed ACC, underlying DWBC 

and the location of ODP 1123 in the path of the DWBC. Figure modified from Carter et al. [1998]. 
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2.2 Dating of the sediment core 

The upper 47 m of the core were initially dated by tuning a coarse resolution 

[1.2-2.5 kyr] stable isotope record obtained by Hall et al. [2001] to the ice-

volume model of Imbrie and Imbrie [1980] using July 65˚N insolation values. 

This work was subsequently refined by Elderfield et al. [2010] by retuning the 

entire core to the Lisiecki and Raymo [2005] global benthic stack, although this 

only made a small difference to the earlier age model. The age model in this 

thesis was obtained by tuning high resolution unpublished stable isotope data 

[Federici et al., unpubl. data] on the benthic foraminifera Uvigerina sp. from 

15.15 to 17.02 mbsf to the Lisiecki and Raymo global benthic stack. 

 

 

 

Figure 2.2. Age model constructed utilising benthic δ18O measurements during MIS 12-11 for the global 

benthic stack [Lisiecki and Raymo, 2005; red] and the data used in this study [Federici et al., unpublished; 

green]. Data included in Appendix four.  
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2.3 Separation, preparation and cleaning of foraminifera 

Sample preparation was primarily undertaken at GNS Science. The core was 

sectioned into 2 cm intervals and rehydrated for 24 h, after which the sample 

underwent ultrasonication in Calgon to disaggregate any clay material. The 

samples were then rinsed through a 63 µm sieve to remove excess clay and silt 

material, and dried for 24 h at 40°C. After dry sieving, single species samples 

were picked from the > 150 µm size fraction. The majority of foraminifera were 

picked from the 212-300 µm size fraction. Two species of planktic foraminifera 

were separated for analysis [Fig. 1.11]; the eutrophic species Gg. bulloides for 

the entire period studied [444–374 ka] and the tropical/subtropical species Gs. 

ruber for the peak interglacial period [428-392 ka]. 

However, the abundance of Gg. bulloides and other eutrophic taxa is 

significantly lower during the deglacial transition [ca. 420 ka] at ODP 1123 and, 

therefore, picking a smaller size fraction [150-212 µm] was necessary to obtain 

enough individuals [n = 50] required for LA-ICPMS analysis.  

The foraminifera cleaning procedure used prior to LA-ICPMS trace element 

analysis generally follows that of Eggins et al. [2003], except for some samples 

from MIS 11, which proved to be extremely fragile and could not withstand 

ultrasonication. The majority of the samples received ultrasonication rinses for 

2-3 s in > 18.2 MΩ ultraclean water and AR-grade methanol in order to remove 

adhering detritus and clays. Ultrasonication proved difficult on the fragile tests 

frequently causing shattering and fracturing along chamber suture lines. The 

fragility of these samples meant that even short ultrasonication sometimes 

resulted in > 80% sample loss [i.e., a reduction from 50 to < 10 intact 

individuals], and so these samples were transferred to 1.5 mL microcentrifuge 
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tubes and received three 30 s vigorous agitation rinses in 1 mL  of > 18.2 MΩ 

ultraclean water, which was allowed to settle for 3 s and then any excess fluid 

and contaminant phases [such as suspended clays] were removed with a 

pipette. The samples were then subjected to one 30 s vigorous agitation rinse in 

1 mL of methanol, again followed by a 3 s settling time and removal of the 

supernatant. This technique is based on that of Barker et al. [2003]. The cleaned 

foraminifera samples were then dried in an oven for 24 h at 40 ̊C. After drying, 

the samples were then inspected under a binocular microscope to check for any 

obvious signs of contaminants [e.g., Fe-Mn oxide coatings]. If contaminants 

were identified, the sample material was discarded. 

 

2.4 Determination of size-normalised weights [SNW] 

After cleaning and drying, Gg. bulloides samples were weighed using a Mettler 

Toledo [MX/UMX 2] ultramicrobalance, before being mounted onto an adhesive 

medium attached to a circular wafer of the NIST SRM 610 glass standard 

[Pearce et al., 1997] for trace element analysis. Size-normalised weights [SNW] 

in core top Gg. bulloides follow a predictable exponential negative correlation 

with temperature where warmer temperatures lead to a lower test mass [Fig. 

2.2], following the equation derived by Marr et al. [2011]: 

 

T[°C] = 31.8 x e -30.5 x SNW [r2 = 0.90] 
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Following this relationship, SNW is used as a first order proxy to assess the 

possibility of dissolution of a given sample.  

The mounted samples were then photographed using an Olympus SZX12 

microscope with an Olympus DP70 camera, to provide an image to guide LA-

ICPMS trace element analyses and to provide individual foraminifera images to 

measure test sizes using Semafore software, in order to calculate sample SNW 

using the equation: 

 

SNW = mean test weight [µg]/mean test length [µm] 

 

The mean SNW calculated for the samples analysed in this study were 

approximately a factor of two lighter than predicted by the Mg/Ca-derived 

paleo-ocean temperatures, and so further visual investigation using SEM 

Figure 2.3. Exponential negative 

correlation between Mg/Ca and 

temperature [°C], and SNW. 

Symbol shading denotes sample 

location with open triangles 

representing sites bathed in 

warm STW and filled triangles 

representing SAW sites. Grey 

triangles represent mixed sites. 

Figure  taken from Marr et al. 

[2011]  
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imaging was carried out to assess if the samples had been affected significantly 

by dissolution. 

 

2.5 LA-ICPMS trace element analysis and data reduction 

LA-ICPMS trace element analysis was carried out by high-resolution depth 

profiling utilising a New Wave deep-UV Nd:YAG [193 nm] solid state laser 

coupled to an Agilent 7500cs ICPMS at Victoria University of Wellington, New 

Zealand. A detailed description of these analytical methods is given in Bolton et 

al. [2011] and Marr et al. [2011]. In brief, data acquisition was achieved during 

ablation of a 35 µm spot for 60-120 s followed by 30 s of ablation cell washout, 

on both NIST SRM 610 standards and foraminifera samples. Isotopes of six trace 

elements [25Mg, 27Al, 43Ca, 55Mn, 66Zn, 88Sr] were monitored.  

 

Mean background values were subtracted from raw data before normalising to 

the NIST SRM 610 values to correct for instrumental trace element fractionation 

effects. This raw data reduction was completed using a MATLAB script written 

by Prof. Euan Smith. Trace element depth profiles [Fig. 2.3] were produced 

automatically in Microsoft Excel using macros developed by Annette Bolton and 

John Creech to individually scrutinize profiles. This allowed the exclusion of 

outer trace-element-enriched surface veneers [Eggins et al., 2003], contaminant 

phases inside the test cavity and altered calcite identifiable by elevated 

contaminant phases throughout the test [e.g., elevated Al and Mn].  
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The in situ LA-ICPMS technique has two main advantages over conventional 

solution-based ICPMS techniques for analysing Mg/Ca in foraminiferal calcite: 

(1) Foraminifera specimens do not need to be crushed and undergo 

vigorous cleaning procedures such as oxidative or reductive techniques 

[e.g., Barker et al., 2003] to remove trace element-rich surface veneers, 

adhering clays, and sediment filling inner test cavities, which all have the 

potential to bias calculated paleo-ocean temperatures [Eggins et al., 

2003]. Elimination of the effects of these contaminants can be achieved 

through examination of LA-ICPMS trace element depth profiles through 

the foraminifera test wall. 

(2) Intra- and inter-individual variations in foraminifera geochemistry 

potentially related to  factors such as ontogeny, seasonality and 

diagenetic effects can be identified and examined and, where 

appropriate, excluded from mean sample data [Bolton et al., 2011; Marr 

et al., 2011] 

 

2.6 Calculation of Mg/Ca-derived paleo-ocean temperatures 

Mg incorporation into foraminiferal calcite follows an exponential endothermic 

relationship with a temperature sensitivity of ca. 10 ± 1% change in Mg/Ca per 

degree Celsius temperature change [e.g., Eggins et al., 2003; Nürnberg et al., 

1996; Rosenthal et al., 1997]. This sensitivity is about three times more than 

observed in experiments of Mg partitioning into inorganic calcite, suggesting 

that some factor other than temperature, probably of biological origin, also 

affects Mg incorporation into foraminiferal calcite. Furthermore, this effect has 
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been shown to be species-specific [e.g., Eggins et al., 2003 and 2004; Lea et al., 

1999; Rosenthal, 2007]. Secondary controls on Mg incorporation into 

foraminifera calcite such as salinity and pH have also been demonstrated [Lea, 

2003], however, temperature is most likely to be the first order control of 

average Mg incorporation into foraminiferal calcite for the two species [Gg. 

bulloides and Gs. ruber] analysed in this thesis [Bolton et al., 2011; Marr et al., 

2011]. 

 

Mg incorporation into foraminiferal calcite has a relationship with temperature, 

which is expressed as: 

 

Mg/Ca [mmol/mol] = A  exp [BT] 

 

where T is temperature and A and B are species-specific constants derived by 

calibrations from analyses of modern foraminifera that lived in known 

environmental conditions [e.g., Anand et al., 2003; Bolton et al., 2011; Eggins et 

al., 2003; Elderfield and Ganssen, 2000; Marr et al., 2011]. Such calibrations are 

ideally established by making multiple analyses of a single species of modern 

“core top” foraminifera from several localities in close proximity with known 

environmental conditions [e.g., Anand et al., 2003; Bolton et al., 2011; Elderfield 

and Ganssen, 2000; Marr et al., 2011]. These data are then plotted on a log-

linear graph with known temperature on the x-axis and Mg/Ca [mmol/mol] on 

the y-axis, with the intercept and slope yielding the constants A and B, 

respectively. When a calibration is derived it can then be applied to fossil 
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foraminifera of the same species from the same region to obtain paleo-ocean 

temperatures. 

Species-specific calibrations are necessary for Mg/Ca paleo-ocean 

thermometry, as Lea et al. [1999] have shown with culturing experiments that 

different species of planktonic foraminifera incorporate differing amounts of Mg 

by up to a factor of two [this range is larger if benthic foraminifera are 

included]. Multi-species calibrations can be applied, but may lead to the 

introduction of systematic errors, and therefore multi-species calibrations 

should only be employed when no species-specific calibration exists such as for 

the analysis of an extinct species [Anand et al., 2003; Creech et al., 2010; Lea, 

2003]. 

This study utilizes the calibration derived by Marr et al. [2011] for Gg. bulloides 

[Fig. 1.9]: 

Mg/Ca [mmol/mol] = 0.952 x e0.068 x T [r2 = 0.95] 

 

and the calibration derived by Bolton et al. [2011] for Gs. ruber [Fig. 1.9]: 

 

Mg/Ca [mmol/mol] = 0.891 x e0.067 x T [r2 = 0.89] 

 

 

 

 

 

 

 

 

 

Figure 2.5. Exponential relationship 

between Mg/Ca [mmol/mol] and 

temperature [°C] for Gg. bulloides and 

Gs. ruber, derived from multiple 

foraminiferal analyses of modern core 

top samples of known temperatures 

for the offshore New Zealand region. 

Figure taken from Marr et al. [in prep]. 
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These calibrations are specific to the analytical methodology applied in this 

study, as well as being derived from a similar location in the Southwest Pacific 

Ocean. For analysis of Gg. bulloides, the antepenultimate chamber [f-2] 

measurement was used to calculate paleo-ocean temperatures as this chamber 

has been shown to display the least intra-specimen variability and appears to 

record the ‘average’ growth conditions [Marr, 2009] in the shallow ocean 

[depth preference 50 to 200m, Hemleben et al., 1985]. For Gs. ruber, Bolton et al. 

[2011] found no statistically distinguishable difference between the 

penultimate and antepenultimate chambers [f-1 and f-2, respectively] and so for 

this species either chamber was analysed. 

 

2.7 Scanning electron microscopy [SEM] imaging 

As noted previously, measurement of SNW revealed that test weights were 

lower than expected for the Mg/Ca-derived paleo-ocean temperatures following 

the SNW calibration of Marr et al. [2011], particularly during MIS 11. Given this, 

after LA-ICPMS trace element analysis, selected samples were transferred to a 

metal stub and carbon coated for SEM imaging on a JEOL JSM 6500F Scanning 

Electron Microscope at Victoria University of Wellington. The resultant high-

resolution images were then examined for signs of diagenetic recrystallisation 

and dissolution. 

 

2.8 Stable isotope analysis 

High-resolution stable isotope analysis of Gg. bulloides and the benthic genus 

Uvigerina spp. was previously carried out on a sample subset by Federici et al, 

[unpubl. data]. For each analysed sample, between three and six individuals 
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were picked from the > 150 µm size fraction. The samples were dissolved in 

three drops of phosphoric acid [H3PO4] at 75°C and analyses were carried out 

on a Finnigan MAT 252 mass spectrometer equipped with an automated 

individual carbonate reaction “Kiel Device” at the National Institute of Water 

and Atmospheric Research [NIWA], Wellington. Internal precision was 

determined by running carbonate standards [NBS-19] as  0.06‰ for 18O and 

 0.03‰ for 13C and external precision [between runs] of  0.03‰ for 18O 

and  0.02‰ for 13C.  All values are normalized to Standard Mean Ocean Water 

[SMOW].  
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Chapter 3: Results 

 

3.1 Trends in foraminiferal trace element/Ca ratios during MIS 

12 to 11 

Although two planktonic foraminifera species were analysed only the trace 

element/Ca data for Gg. bulloides are plotted and discussed in this section, due 

to the sporadic occurrence of Gs. ruber through the record [429-395 ka]. Gs. 

ruber is considered in Sections 3.2.4, 4.1.2 and 4.1.4 with reference to this 

species susceptibility to dissolution and comparison with the modern day 

temperature-depth relationship with Gg. bulloides.  

Mg/Ca ratios for Gg. bulloides are highest in the interglacial showing the 

greatest magnitude of change [~1.25–2.75 mmol/mol; mean glacial and 

interglacial values, respectively] through the deglacial transition from 437 to 

424 ka [Fig. 3.1a]. In general, chamber f-2 of Gg. bulloides shows consistently 

slightly higher Mg/Ca values relative to chamber f, [Fig. 3.1a]. The percent 

difference between Mg/Ca values for chamber f-2 and f during MIS 11 is 5% and 

during MIS 12 is 7% [Table 3.1]. The relatively higher Mg/Ca values  of chamber 

f-2 over f is consistent with modern core-top values obtained from the New 

Zealand region [Marr, 2009]. Offsets in Mg/Ca [Fig. 3.1a] between the two 

chambers most likely indicate migration with ontogeny to relatively cooler 

deeper water, apart from MIS 12, when this relationship appears reversed, and 

again during the interval ca. 400–405 ka, which may indicate enhanced thermal 

mixing of the upper water column encompassing the entire depth range of Gg. 

bulloides. During the deglacial transition the two chambers show only a small 

difference in Mg/Ca which may indicate either changes in the behaviour of Gg. 
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bulloides [minimal downward migration with ontogeny], or mixing and collapse 

in the upper water column thermal structure. 

Al/Ca values in Gg. bulloides are generally slightly elevated in chamber f-2 

compared with f and show no clear changes over the studied time period, 

oscillating around 0.15 ± 0.05 mmol/mol [Fig. 3.1b]. The percent difference 

between Al/Ca values for chamber f-2 and f during MIS 11 is 7% and in MIS 12 

is 36% [Table 3.1]. Al/Ca is analysed as a contamination indicator for the 

presence of clay phases. 

Mn/Ca values in Gg. bulloides exhibit a strong shift between average glacial and 

interglacial ratios [~0.08 and 0.23 mmol/mol, respectively], and the variability 

about these mean values is greater in the interglacial period [Fig. 3.1c]. During 

MIS 11, Mn/Ca values are consistently higher in chamber f relative to f-2 by an 

average of 0.10 ± 0.05 mmol/mol [i.e., 22 and 25% during MIS 11 and the 

deglacial transition, respectively]. The greatest difference between the Mn/Ca 

values of the two chambers occurs intermittently throughout the time period, 

but most notably during MIS 12 [51%; Table 3.1].  

Zn/Ca values in Gg. bulloides also show a strong shift between average glacial 

and interglacial ratios [~0.007 and 0.035 mmol/mol, respectively], with more 

variability observed during the interglacial [Fig. 3.1d]. This decreased 

variability during the glacial period may potentially reflect differences in 

sampling resolution between the glacial and interglacial periods. Like Mn/Ca  

values, Zn/Ca ratios show consistently higher values in chamber f relative to f2 

of approximately 0.07 ± 0.04 mmol/mol, with the greatest difference between 

the two chambers characterising MIS 12 [48%; Table 3.1]. During MIS 11 and 
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the deglacial transition the percent difference in Zn/Ca ratios between 

chambers f-2 and f was 22 and 24% respectively; Table 3.1.  

Mn and Zn/Ca ratios [Fig. 3.1c and d] show conflicting results, with Zn/Ca 

converging in the two chambers at 435 to 420 ka, and Mn/Ca remaining more 

or less consistently offset, converging at 398 ka. This suggests that the 

process[es] which control the distribution and bio-availability of these trace 

elements in the upper water column differ. 

Sr/Ca values in Gg. bulloides show little variability throughout the record [~1.37 

± 0.06 mmol/mol]. Sr/Ca is measured for analytical control and is expected to 

be uniform throughout profiles due to the long residence times and efficient 

mixing of both elements in seawater.  

 

 

MIS 11 
interglacial      

[374–427 ka] 
Deglacial 

[428-434 ka] 

MIS 12 
glacial [435-

453 ka] 
Total % 

difference 
Mg/Ca 5 4 7 4 
Al/Ca 7 3 36 3 
Mn/Ca 22 25 51 25 
Zn/Ca 22 24 48 24 
Sr/Ca 1 1 3 1 
 

Table 3.1 Percent difference in the trace element/Ca ratio between chambers f-2 and f of Gg. bulloides. The 

larger percent differences during MIS 12 may, in part, reflect the smaller number of samples analysed for 

MIS 12 than for MIS 11 [n=8 and 60, respectively].  
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Figure 3.1. Nested trace element/Ca [mmol/mol] graphs for Gg. bulloides showing data for the 

antepenultimate chamber [f-2; red line] and final chamber [f; blue line]. The range of error in Mg/Ca 

[mmol/mol] for varying sample sizes is shown as different sized red diamonds.  

 

 

 

3.2 Stable isotope data 

Stable oxygen isotope data were previously acquired [Federici et al., unpubl. 

data] on a high-resolution sample subset of planktonic Gg. bulloides and benthic 

Uvigerina spp. [Fig. 3.2]. δ18O begins to increase first in Gg. bulloides at ca. 431 

kyr, followed 3 ka later by Uvigerina spp. The absolute change between glacial 

and interglacial values is similar for both species; ca. 2.4 ‰ for Gg. bulloides and 

2.2 ‰ for Uvigerina spp. The early interglacial δ18O record [431-402 ka] of Gg. 
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bulloides is characterised by ca. 10 kyr oscillations, which become more rapid 

on the order of several thousand years during the late interglacial. Such 

oscillations are not clearly observed in the benthic record. 

 

 

 

 

 

3.3 Size normalised test weights 

Gg. bulloides samples were weighed and individual foraminifera were measured 

along the long axis, to determine the mean sample size-normalised test weight 

[SNW]. All samples appeared abnormally light for their size, with the MIS 11 

interglacial samples up to 65 % lighter than expected for their size fraction, 

according to the calibration of Marr et al. [2011]. The MIS 12 glacial samples 

were less different to modern subantarctic samples compared with the 

differences between MIS 11 and modern subtropical samples [Fig. 3.3d]. 

 

 

 

Fig. 3.2. δ18O data for planktonic Gg. bulloides and benthic Uvigerina spp. [Federici et al., unpubl. data].  
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3.4 Mg/Ca and size-normalised weight-derived temperatures 

In Gg. bulloides, mean foraminiferal weight has been thought to be primarily 

controlled by CO3
-2 concentration where the availability of carbonate ions in the 

surface and deep ocean, controls the growth and preservation of CaCO3 [e.g., 

Barker and Elderfield, 2002]. Calcification temperature is a secondary control 

and follows an inverse relationship with mean sample SNW in pristine 

unaltered specimens, with samples associated with warmer temperatures 

weighing less than those that calcified in cooler waters, as expressed by the 

relationship of Marr et al. [2011]  for modern core-top assemblages [Fig 3.3d].  

Mg/Ca-derived paleo-ocean temperatures calculated for MIS 12-11 and SNW-

predicted temperatures show a large offset of 3 to 10°C i.e., the foraminiferal 

tests were lighter than they should be considering the Mg/Ca-derived 

temperatures [Fig. 3.3a]. The maximum difference of 65% occurred after the 

initial interglacial optimum warm period at 415 ka, while the remainder of MIS 

11 is characterised by a ~50% difference. The minimum difference between 

SNW-predicted temperatures and Mg/Ca-derived temperatures occurred 

during MIS 12 and the deglacial transition [~30%; Fig. 3.3b].  
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Figure 3.3. [a] SNW-predicted temperature compared with 

Mg/Ca-derived temperature, black line indicates modern 

temperature at nearby R623 core top at 200 m on which Gg. 

bulloides calibration is based.  [b] percent difference 

between the two temperature proxies in [a]; [c] mean 

foraminifera test weight; [d] generalised figure taken and 

modified from Marr et al. [2011] showing the exponential 

relationship between calcification temperature and mean 

sample weight in modern core top samples from the New 

Zealand region [red line], and the exponential relationship 

between calcification temperature and mean sample weight 

in the samples analysed in this study [black line]. This 

indicates that the cooler samples analysed in this study are 

more similar to modern specimens, whereas samples from 

the warm MIS 11 period are considerably lighter [ca. 50-60 

%] than expected.  
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3.5 Trace element/Ca error determination  

Errors for natural Mg/Ca sample heterogeneity [i.e., inter-individual variations] 

were estimated by randomly selecting several samples throughout the MIS 12-

11 to provide baseline Mg/Ca ranges [e.g., Sadekov et al., 2008]. These baseline 

ranges for each sample were used to generate twenty random numbers and 

then the average standard deviation on a range of simulated sample sizes [n = 

1-15; i.e., the number of foraminifera in a sample] was calculated to ascertain 

the size of the error [2 sd] associated with varying sample sizes. The 2sd follows 

a power law distribution [Appendix 3; Fig. 3.4]. These Mg/Ca [mmol/mol] 

errors can then be converted to a paleo-ocean temperature error, so the data 

obtained from smaller samples could be included in the final dataset, albeit with 

larger associated errors [Fig. 3.1a]. Errors for natural sample variability in the 

other trace elements measured were not calculated because the absolute 

concentrations of these other trace elements are much lower than Mg, and 

natural sample variability is not resolvable from analytical uncertainty. 

However Sr/Ca is present in sufficient levels, but inter-individual variability is 

low and therefore calculating errors is not necessary. Temperature errors for 

Gg. bulloides range from ± 5˚C where n = 2; ± 4˚C where n= 4; and ± 2˚C where n 

= 15. 
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3.6. Scanning electron microscopy images 

If the modern SNW-paleo-ocean temperature calibration of Marr et al. [2011] 

holds for Gg. bulloides during MIS 12-11 at ODP 1123, the SNW-predicted and 

the Mg/Ca-derived paleo-ocean temperatures should be similar, however, this 

is not the case [Fig. 3.3.a]. Thus, during MIS 12-11 some other factors may have 

influenced the SNW or Mg/Ca ratios, such as low CO3
-2 concentration or post-

mortem dissolution and recrystallisation. In that context, SEM imaging of a 

subset of Gg. bulloides tests was undertaken, examples of which are shown in 

Fig. 3.5. The surface textures appear to indicate that these samples have been 

affected by either unsatisfactory growth conditions and/or post-depositional 

alteration. The occurrence of one or both of these two phenomena has the 

potential to affect the geochemical proxies utilised in this thesis and this is 

discussed further in Section 3.5.2.    
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Figure 3.4. The associated error on natural intra-sample variability of Gg. bulloides with various 

sample sizes. Calculation details are described in the text and Appendix 3. Scales have been 

deliberately offset for ease. 
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Figure 3.5. Ontogenetic variability in surface ultrastructure associated with the gametogenic and pre-

gametogenic calcification of Gg. bulloides from NIWA plankton tow material [U2322] [a-d] and ODP 1123 

core [e-m]. Images a-c show the textural progression of surface ultrastructures on a single Gg. bulloides 

foraminifera from youngest to oldest chamber [f; f-2 & f-3; f-1 omitted]. The preservation of well defined 

spines and hexagonal pore pits in C shows that this specimen has not been affected by diagenetic change 

[dissolution or post-mortem crystallisation], and has likely not yet undergone reproduction as the pseudo-

cancellate surface ultra-structure is a primary feature associated with test growth. The lack of minute 

holes associated with re-absorption of spines at the tips of the pustules also supports the interpretation 

that this specimen has not undergone gametogenesis. Each successively older chamber has more well 

defined pseudo-cancellate ultrastructures reflecting the secretion of additional calcite layers to the entire 

test with the growth of each new chamber. d: f-1 chamber shows the globular appearance of gametogenic 

calcite associated with reproduction at the end of the foraminifera’s lifecycle, where a layer of secondary 

calcite is sourced from absorption of spines and secreted over the entire test having a smoothing effect on 

the primary surface ultrastructure. Image e is an f-1 chamber from ODP 1123 [16.61 m – 413.6 ka] 

showing good preservation with well defined spine holes. The pustulose [globular] appearance is 

associated with the addition of gametogenic calcite, however in older chambers the pustules partially fuse 

and form a poorly developed anastomosing pustulose-ultrastructure. Images f and j are from different 
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specimens in the same sample [15.67 m – 386.7 ka], with f showing dissolution with enlarged primary 

pore spaces, and j showing crystallisation where the surface ultrastructure is composed of well-developed 

interlocking crystallites, with euhedral crystal faces. Images h and i also belong to two different individuals 

from a single sample [16.61 m – 413.6 ka], with h again showing euhedral crystals and i showing etched 

textures associated with partial dissolution and recrystallisation.  k-m: three typical examples of Gg. 

bulloides test surface ultrastructure [k: 15.67m – 386.7 ka – good preservation; l: 16.46 m – 407.5 ka – 

moderate preservation; m: 16.16 m – 398.8 ka – moderate preservation].  

 

 

3.7 Timing of changes in geochemical proxies 

Irrespective of any diagenetically induced effects on the absolute values of 

Mg/Ca and δ18O, the timing and sequence of changes observed during the 

deglacial transition are still likely to be robust and significant. Figure 3.6 shows 

MIS 12-11 changes as portrayed by Mg/Ca-derived paleo-ocean temperatures, 

Zn/Ca and Mn/Ca measurements from the same Gg. bulloides individuals, and 

δ18O measurements of Gg. bulloides specimens from the same sediment 

samples.  

 
Figure 3.6. Orbital solutions, and timing and magnitude of changes in geochemical proxies during MIS12-

11 at ODP 1123. Obliquity [orange curve] after Paillard et al., [1996], precession [red curve] after Lasker 

[2004] and insolation at 43°S [yellow curve] generated by Peter Huybers. Green curve represents δ18O, 

blue curve represents Mg/Ca-derived paleo-ocean temperatures, red curve represents Zn/Ca and purple 

curve represents Mn/Ca all on the same Gg. bulloides samples. Vertical coloured bars are referred to in the 
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text and represent events associated with the sequence of deglaciation at this site. Shaded grey box 

indicates MIS 12 based on the global benthic stack [Lisiecki and Raymo, 2005].  

 

 

 

The deglacial transition is first noticeable at 437 ka when Gg. bulloides Mg/Ca 

ratios increase, [blue bar; Fig 3.6], rise steadily for 2.5 kyr then slow slightly 

until 430 ka. δ18O values begin to lighten from 433 ka [green bar] until 425 ka. 

Finally Zn/Ca and Mn/Ca ratios begin to increase at 430 ka [red bar], 

concomitant with a rapid rise of Mg/Ca ratios. From 430 ka onwards, all three 

proxies change coherently until an abrupt and pronounced ACR – like event [cf., 

Carter et al., 2008], is observed at the MIS 12-11 boundary [424 ka; Lisiecki and 

Raymo, 2005] in all three proxies.  

After this event at 424 ka, Mg/Ca ratios and δ18O values continue to change 

again, with Mg/Ca leading δ18O at 420 ka by 2 kyr. From 418 ka until 395 ka, 

δ18O oscillates around an interglacial mean of 1.6‰, with the exception of 

another excursion to lower Mg/Ca ratios and heavier δ18O values at 413 ka. For 

the remainder of MIS 11, δ18O increases to ca. 2.2‰. After reaching maximum 

values at 420 ka, Mg/Ca ratios record a cooling event at 413 ka, accompanied by 

increased δ18O values, followed by relatively stable conditions until 388 ka 

when Mg/Ca ratios begin to decrease markedly from paleo-ocean temperatures 

of 11° to 7°C. Zn/Ca and Mn/Ca ratios reached initial maxima at ca. 426 ka and 

then slowly increase to a strong peak at 395 ka, before gradually decreasing 

through the rest of the record. However, the youngest part of the Zn/Ca and 

Mn/Ca record [376–384 ka] still has higher Zn/Ca and Mn/Ca ratios than MIS 

12. 
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Superimposed on these relatively long-term trends are small scale 

perturbations where Mg/Ca, Zn/Ca and Mn/Ca show small increases, 

accompanied by reductions in δ18O at 413, 402, 396 and 378 ka.  
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Chapter 4:  Discussion 

 

4.1 Southwest Pacific Ocean marine carbonate system during 

MIS 11 

In the modern Southwest Pacific Ocean, SNW of Gg. bulloides follows a 

predictable exponential inverse relationship with calcification temperature [Fig. 

3.3d], with foraminifera that calcify in warmer waters consistently having lower 

SNW than those that calcify in cooler waters [Marr et al., 2011]. SNW has been 

utilised as a CO3
-2 concentration proxy [de Villiers et al., 2005 and references 

therein] and test weight appears to be, in part, strongly controlled by CO3
-2 

concentration in some foraminifera species including Gg. bulloides [Barker and 

Elderfield, 2002; Bijma et al., 2002]. However, measured SNW of Gg. bulloides in 

this study showed that its tests were on average ~35% lighter during the MIS 

12 glacial period and ~60% lighter than expected during the MIS 11 interglacial 

period, compared with modern Gg. bulloides.  

 

In addition to normal background glacial-interglacial variation in preservation 

of foraminifera, the varying preservation states [Fig. 3.5] throughout MIS 12-11 

from ODP 1123 may result from one or some combination of three different 

factors occurring in different oceanic and sedimentary environments: 

(1) Non-ideal or marginal growth conditions in the upper ocean and/or 

during transport to the sea floor may mean that foraminifers were 

calcifying at the edge of their tolerance range to form thinner tests 

[Bijma et al., 2002; Spero et al., 1997]. Enhanced global marine carbonate 

production and storage in shallow neritic environments such as coral 
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reefs during MIS 11, might have lowered the CO3
-2 concentration of 

ambient surface ocean water [Droxler et al., 2003; Zeigler et al., 2003], 

meaning that foraminifera ontogeny was taking place in conditions 

unsatisfactory for healthy unimpeded calcification. This could result in 

thinner test walls and therefore lower test mass overall as has been 

shown in laboratory experiments and modern natural environments 

[Barker and Elderfield, 2002; Zhong and Mucci, 1989; Zuddas and Mucci, 

1998]. Furthermore, low CO3
-2 concentration impedes Mg incorporation 

into the test, so not only would the tests be anomalously light, but they 

may also record erroneously low temperatures [Regenberg et al., 2006; 

Russell et al., 2004] and an anomalous δ13C signature. However, low CO3
-2 

concentration in the surface ocean should be detectable in the EDC ice 

core record as corresponding high atmospheric CO2 concentrations 

relative to pre-industrial levels [ca. 280 ppm for interglacials of the past 

850 kyr], and this is not the case [EPICA Community Members, 2004].  

Barker et al. [2006] were able to model the same CO3
-2 concentration 

lowering in the surface ocean during MIS 11 via coccolithophorid blooms 

without requiring excessive atmospheric CO2 levels relative to the pre-

industrial level. A similar rise in atmospheric CO2 and associated 

lowering in ocean CO3
-2 concentration is being observed in the modern 

ocean where excessive anthropogenic atmospheric CO2 concentrations 

are being absorbed by ventilation in surface and intermediate waters 

[ACE CRC, 2008; Bindoff et al., 2007; Orr et al., 2005]. This is likely to 

cause shoaling of the aragonite and calcite saturation horizons in the 

coming decades [Feely et al., 2002; Orr et al., 2005] narrowing the 
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environment where uninhibited test calcification can occur free from 

dissolution [Feely et al., 2002]. Based on measurements from the 

WOCE/JGOFS global CO2 survey [1991 to 1996] and previous studies, 

Feely et al. [2004] estimated that of the CaCO3 produced in the upper 

Pacific Ocean, 60-80% is dissolved in the top 1000 m of the water 

column before reaching the sea floor. 

Atmospheric pCO2 levels during MIS 11 do not suggest that the CO3
-2 

concentration of the upper ocean was significantly different from the 

modern ocean. This means that unless the atmosphere and ocean carbon 

system operated rather differently to modern times and were decoupled 

during MIS 11, the lower surface ocean CO3
-2 concentration is unlikely to 

be the cause of the consistently low SNW measured in Gg. bulloides.   

 

(2) Dissolution of foraminiferal tests can occur at the sea floor when cold, 

corrosive bottom waters are relatively enriched in dissolved CO2 and 

have a corresponding low CO3
-2 concentration. In this case, even if the 

organisms were able to calcify large, heavy thick-walled tests in the 

shallow ocean, they may experience dissolution in the benthic 

environment. ODP 1123 lies in 3290 m water depth, just below the 

modern calcite saturation horizon [~3100 m], beneath which ocean 

water becomes under-saturated with respect to calcite [Feely et al., 

2002]. The modern lysocline and carbonate compensation depths are 

4300 and 4600 m, respectively, although dissolution is known to occur at 

much shallower depths and is likely to be closer to the calcite saturation 

horizon [Bostock et al., 2011]. On the basis of some of the highest benthic  
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δ13C values during the MIS 11 interglacial for the last 1 Ma at ODP 1123, 

Hall et al. [2001] suggested that the enhancement of δ13C values 

reflected increased NADW production. It was argued that more NADW 

was delivered to the core site entrained within lower Circumpolar Deep 

Water [2800 to 3900 m water depth; McCave et al., 2008]. This influx of 

old CO2-rich waters could have displaced the calcite saturation horizon 

leading to corrosion and diagenetic alteration of the foraminiferal tests.  

In this case, diagenetically unaltered test weights in Gg. bulloides reflect 

CO3
-2 concentration and other second-order influencing factors such as 

nutrient bio-availability during calcification, whereas descent in the 

water column with ontogeny or pre-burial, post-mortem diagenetic 

alteration would cause secondary overprinting by the deep water CO3
-2 

signal [Barker and Elderfield, 2002]. For this study, the foraminifera have 

clearly experienced a degree of secondary alteration. However, without 

knowing the initial test mass and calcification conditions the ability to 

accurately quantify the amount of dissolution is not possible, except to 

note that when compared to the fragmentation ratio of Crundwell et al. 

[2008] on the same samples, the low degree of fragmentation [< 10%] 

suggests dissolution was not sufficiently pronounced to facilitate 

extensive test breakage. 

 

(3) Diagenetic alteration can be a post-burial process affecting foraminiferal 

preservation due to increasing pressure and temperature with 

increasing burial depth and anaerobic decomposition of organic matter 

producing an acidic environment causing in situ dissolution of CaCO3. 
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CaCO3 is less stable at higher pressures, so with increasing burial in the 

appropriate lithology [e.g., carbonate ooze is more susceptible than more 

impermeable clay] in situ localised dissolution and recrystallisation can 

occur [Lea, 2003]. Previous studies on the ODP 1123 core extend back to 

1.2 Ma, and do not show increasing influence of this diagenetic effect, 

suggesting that diagenesis in the sediment column after burial may not 

be important [Bolton, 2011; Crundwell et al., 2008; Elderfield et al., 2010; 

Hall et al. 2001]. In fact, traditional dissolution proxies such as 

foraminiferal fragmentation indices and planktonic/benthic ratios 

applied to the whole 1.2 Ma sediment column, do not identify dissolution 

to be either increasing down core or significant in MIS 11 [Crundwell et 

al., 2008].  

Decomposition of organic matter is also unlikely to be significant during 

MIS 11 as suggested by the findings of Lean and McCave [1998] who 

measured percent carbonate, percent carbon and magnetic susceptibility 

for the period MIS 6-1 on the CHAT 1K core which is close to ODP 1123 

[Fig. 1.3]. Lean and McCave [1998] showed that during interglacials MIS 

1 and 5e, the biogenic carbonate burial flux declined but this occurred in 

the presence of a low flux of organic carbon and elevated magnetotactic 

bacteria indicative of oxic conditions. Such an environment would not be 

favourable for reducing the benthic pH through decomposition of 

organic material. In contrast, glacial periods MIS 2 and 6 were 

accompanied by an elevated organic burial flux, low biogenic carbonate 

and less oxic conditions [Lean and McCave, 1998] that potentially 

favoured carbonate dissolution. Furthermore, as the organic carbon flux 
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declined over the MIS 2-1 and MIS 6-5 transitions, the carbonate flux 

peaked. Similar observations were made at DSDP 594 on the Campbell 

Plateau by Kowalski and Meyers [1997].  This leads to the conclusion that 

post-depositional dissolution under reduced pH instigated by decaying 

organic material was not likely to be a prominent post-depositional 

process during MIS 11. 

 

4.2 Dissolution and its potential effect on geochemical proxies  

Recognition of some alteration of foraminiferal tests [e.g., Fig. 3.5; Section 4.1.1] 

has possible implications for the geochemical proxies utilised in this study, as 

Mg/Ca and δ18O are thought to be affected by dissolution and recrystallisation 

[Lea, 2003]. δ18O in foraminiferal calcite is principally controlled by the 

calcification temperature and the δ18O of ambient seawater, which in turn 

reflect global ice volume and local salinity [Emiliani, 1955; Epstein et al., 1953]. 

Dissolution causes δ18O to bias towards heavier values, erroneously indicating 

some equivocal combination of lower calcification temperatures, greater global 

ice volume and/or increased local salinity [Lea, 2003].  

With regards to Mg/Ca ratios, most species of planktonic foraminifera, to 

differing degrees, are thought to secrete their calcite test heterogeneously with 

alternating high- and low-Mg bands [e.g., Anand and Elderfield, 2005; Erez, 

2003; Sadekov, 2008]. The presence of the Mg2+ cation warps the delicate calcite 

crystal structure because of the large ionic size difference of Ca2+ and Mg2+, 

making the high-Mg calcite bands within the test inherently more unstable 

[Brown and Elderfield, 1996; Lohmann, 1995]. In theory and laboratory 

dissolution experiments on selected species, preferential dissolution of the 
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Mg/Ca-rich bands lowers the overall bulk Mg/Ca value, which results in a 

corresponding lower Mg/Ca-derived paleo-ocean temperature [Brown and 

Elderfield, 1996; Rosenthal et al., 2000]. More recently, using the same micro-

analytical technique as used in this study [LA-ICPMS], Sadekov et al. [2010] 

found that two well-banded species, Globigerinoides sacculifer and Orbulina 

universa, do not undergo preferential dissolution of the Mg-rich portions of the 

test. Both of these species are symbiont-bearing and previous studies [e.g., 

Anand and Elderfield, 2005; Erez, 2003] have shown that such species display 

more distinct high-Mg bands than non-symbiont-bearing species. Therefore, in 

theory, symbiont-bearing species are more prone to preferential dissolution 

[Sadekov, 2008]. The degree to which preferential dissolution of Mg-rich 

portions of the test affects the species analysed in this study [Gg. bulloides – 

non-symbiont bearing and Gs. ruber – symbiont bearing] is unclear.  

One of the key research questions of this thesis is whether the geochemical data 

are robust, when recognizing the low SNW in Gg. bulloides. Multiple lines of 

evidence suggest that this is the case, and the Mg/Ca-derived paleo-ocean 

temperatures are accurate and have not been significantly altered by either low 

CO3
-2 concentration or dissolution, and these points are now discussed 

sequentially.  

 

1, Comparison with other Quaternary interglacial periods in the ODP 1123 

core. 

2, Natural intra- and inter-test homogeneity in Gg. bulloides and Gs. ruber. 

3, Failure of traditional dissolution proxies to recognise dissolution during  

MIS 11. 
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4, Degree of absolute temperature change recorded in Gg. bulloides from 

MIS 12 to 11. 

5, Temperature difference between Gs. ruber and Gg. bulloides. 

6, Greater nutrient availability during MIS 11 and faster calcification rates. 

7, Comparison of test wall thickness in modern core top and MIS 11 Gg. 

bulloides. 

8, Subtle differences in trace element ratios between chambers f-2 and f in 

Gg. bulloides are preserved.  

 

1, Comparison with other Quaternary interglacial periods in the ODP 1123 core. 

Mg/Ca and δ18O values obtained by Greaves [2008] on the same species [Gg. 

bulloides] are similar throughout the ODP 1123 core from MIS 12, and 10 to 1. 

However, the SNW values from MIS 10-1 are not erroneously light [MIS 11 

samples were not analysed by Greaves [2008] due to a lack of Gg. bulloides in 

the 300-355 µm size fraction, interpreted as evidence for dissolution]. Peak 

interglacial Mg/Ca values for MIS 7 exceed both the modern Mg/Ca value [~ 2.2 

mmol/mol; Marr, 2009] and the mean MIS 11 Mg/Ca value [2.2 mmol/mol], but 

do not reach or exceed mean peak MIS 11 optima Mg/Ca values [2.6 mmol/mol 

ca. 422 ka]. MIS 11 stands out in the context of the Greaves [2008] study when 

compared to subsequent Quaternary interglacials as a prolonged interglacial 

period, similar or slightly warmer than the later interglacial periods [MIS 9, 7, 5 

and 1]. 

Peak MIS 11 has higher Mg/Ca ratios [2.6 mmol/mol] and if we assume that 

mean MIS 11 temperatures were only a few degrees warmer than the mean 

modern temperatures, as indeed our data and that of others suggest [e.g. 
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Crundwell et al., 2008], then this implies that the degree to which dissolution 

has actually reduced the original Mg/Ca values is likely to be small. Thus the 

temperature data generated in this study can be taken as a minimum estimate 

of temperature during MIS 11.  

2, Natural intra- and inter-test heterogeneity in Gg. bulloides and Gs. ruber. 

This in turn suggests that symbiont-barren Gg. bulloides may secrete their 

calcite tests more homogenously than other foraminifera species. The lack of 

symbionts may be responsible for the lack of alternating high and low-Mg bands 

[Sadekov, 2008], and thus any dissolution may not have significantly altered the 

original Mg/Ca values, as discussed in section x. 

Anand and Elderfield [2005] measured Mg/Ca ratios by element mapping on an 

electron microprobe in transects across chamber walls in three Gg. bulloides 

specimens. These authors found some evidence of heterogeneous intra-

chamber Mg/Ca variability in Gg. bulloides, but this was not as pronounced as 

other species such as symbiont-bearing O. universa [Eggins et al., 2004], Gs. 

ruber and Globigerinoides sacculifer [Sadekov, 2008], which showed systematic 

cyclic Mg/Ca variations through the test walls on the order of 4 mmol/mol. The 

intra-chamber Mg/Ca differences measured in three specimens of Gg. bulloides 

on chamber f-2 by Anand and Elderfield [2005] were variable, ranging from < 1 

to 5 mmol/mol. This suggests that natural intra-sample variability is large and 

any dissolution would serve to homogenise this natural variability. 

Foraminifera exhibit biological mediation over the incorporation of Mg into 

their calcite tests, as evinced by a higher temperature sensitivity and around 

three times less Mg incorporated than the thermodynamic predictions suggest. 

This biologic control or ‘vital effect’, is thought to be the main source of this 
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intra-chamber chemical variation, rather than measuring actual temperature 

change by vertical migration in the water column [Erez, 2003; Lea et al., 1999; 

Lea, 2003; Rosenthal et al., 1997]. If this is the case, and dissolution only serves 

to lessen the intra-test heterogeneity, then even the absolute Mg/Ca-derived 

paleo-ocean temperatures calculated from data obtained in the study for Gg. 

bulloides are relatively robust.  

Gs. ruber has a higher dissolution ranking than Gg. bulloides [Berger, 1968] and 

displays systematic cyclic high- and low-Mg bands through the test walls 

[Sadekov, 2008]. Thus, even small amounts of dissolution may lower the overall 

Mg/Ca ratio of Gs. ruber if preferential dissolution of the high-Mg bands does in 

fact occur in nature. This means that the paleo-ocean temperatures derived 

from Mg/Ca analyses on Gs. ruber may be less reliable than those derived for Gg. 

bulloides. However, Sadekov et al. [2010] did not observe significant bulk Mg/Ca 

values change when performing successive acid leaches of two symbiont-

bearing species with alternating high- and low-Mg bands similar to Gs. ruber. 

Therefore, it is important to compare other estimates of paleo-ocean 

temperature generated from the same core to assess if dissolution is a problem 

for this species.  

3, Failure of traditional dissolution proxies to recognise dissolution during MIS 11. 

 While the MIS 11 foraminifera studied in this thesis may be affected by either 

poor calcification conditions and/or post-mortem alteration as potentially 

suggested by low SNW and SEM images of tests [Figs. 3.5 and 3.7], traditional 

proxies used to assess dissolution fail to conclusively show this effect. Percent 

fragmentation index and planktonic/benthic ratios do not show any significant 

spikes during MIS 11 or 12 in the ODP 1123 core. Moreover, the percent 
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carbonate is high, varying between 60–80% [Crundwell et al., 2008]. Therefore, 

faunal assemblage derived SST together with the dissolution proxies provide a 

robust paleo-environmental framework, if the faunal assemblage has not 

changed significantly due to dissolution [Crundwell et al., 2008]. MIS 11 SST 

derived via transfer functions from the ODP 1123 MIS 11 faunal assemblages 

are similar or higher than MIS 11 SST from other, shallower depth cores in the 

region [Hayward et al., 2008; 2012] suggesting that the ODP 1123 assemblages 

are representative of the paleo-environmental conditions.     

4, Degree of absolute temperature change recorded in Gg. bulloides from MIS 12 

to 11. 

In addition, the degree of change in Mg/Ca ratios from MIS 12 to MIS 11 

confirms that a significant surface signal is still retained, with a 10°C 

temperature increase observed, which has not been erased by diagenetic 

overprinting in the benthic realm [ca. 3°C MIS 12-11 change in benthic 

Uvigerina spp. found by Elderfield et al. [2010] at ODP 1123]. Furthermore, this 

10°C change is similar in magnitude to the paleo-SST change for the same site 

calculated by Crundwell et al. [2008] and at other New Zealand sites [Hayward 

et al., 2008; 2012] all of which used the Artificial Neural Network 25 [ANN25] 

technique to estimate paleo-ocean temperatures.  

5, Temperature difference between Gs. ruber and Gg. bulloides. 

The difference between the Mg/Ca-derived SSTs from Gs. ruber and the ANN25 

SSTs from Crundwell et al. [2008] is variable [0-5°C; Fig. 4.1] providing some 

indication of the amount of dissolution that may have been experienced by the 

Gs. ruber samples analysed expressed as an absolute temperature difference, if 

one assumes the ANN25 SSTs are robust. However, comparison with the modern 



- 68 - 
 

K. Christiansen  2012 

temperature difference between Gs. ruber and Gg. bulloides at this core site by 

Bolton [2011] is the same as calculated in this study [ca. 4°C] suggesting that 

MIS 11 Gs. ruber may in fact be recording accurate paleo-ocean temperatures, 

and perhaps the ANN25 record is over estimating true paleo-ocean temperatures 

[Fig. 4.1].   

 

 

Figure 4.1. Two SST and one sub-SST record from ODP 1123. The offset between the ANN25 SST record 

[Crundwell et al., 2008] and the Gs. ruber Mg/Ca-derived paleo-ocean temperature record from this study 

may represent dissolution, which would result in erroneously low SST on the latter record. However, if an 

assumed depth of 200 m is assigned to Gg. bulloides, this suggests that the Gs. ruber record may not be 

erroneously low, as the temperature difference between the two records is similar to modern conditions 

[ca. 4°C], except perhaps for the period 425-415 ka. Green line represents modern SST [mean 0-50 m] at 

ODP 1123 core top on which Gs. ruber calibration is based [Bolton et al., 2011]. Blue line indicates modern 

temperature at nearby R623 core top at 200 m on which Gg. bulloides calibration is based [Marr et al., 

2011].  Solid line for both Mg/Ca records is a three point running mean.  

 

 

 

Berger [1968] ranked Gs. ruber as the most susceptible species of planktic 

foraminifera to dissolution. Gg. bulloides ranked 6th out of 15, with other 

subsequent studies more or less in agreement [e.g., Malmgren, 1983]. This 

suggests that if the samples analysed were affected by dissolution, the amount 
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experienced by Gg. bulloides is likely to be less than that of Gs. ruber, and the 

temperature range of the upper 200 m of ocean during MIS 11 between the 

known modern depth ranges of Gs. ruber [0-50 m; Wilke et al., 2009] and Gg. 

bulloides [50 - 200 m; Hemleben et al., 1985] may be greater than the Mg/Ca 

record generated in this study implies [e.g., modern temperature at 50 m = 16°C, 

100 m = 14°C and 200 m = 12°C; Fig. 4.2; Schlitzer, 2002] and the mean Mg/Ca 

temperature offset in this study between Gs. ruber and Gg. bulloides is 4°C.  

 

 

6, Greater nutrient availability during MIS 11 and faster calcification rates. 

Aldridge et al. [2012] found that macronutrient availability is a strong control 

on SNW variation in Gg. bulloides, where greater nutrient availability leads to 

lower SNW. This implies, not surprisingly, that the eutrophic species respond to 

greater macronutrient availability, calcifying thinner tests overall at a greater 

rate. During MIS 11, greater incursion of micronutrient-rich STW at the ODP 

1123 led to increased micronutrient availability [Sections 3.5.3 and 3.5.4], 

which may have resulted in lower SNW in Gg. bulloides.  

7, Comparison of test wall thickness in modern core top and MIS 11 Gg. bulloides.   

Following on from point 5 above, visual comparison of modern core top Gg. 

bulloides from the New Zealand region [Marr, 2009] and MIS 11 specimens from 

ODP 1123, shows that on average MIS 11 specimen test walls were ca. 50 % 

Figure 4.2. Modern upper ocean thermal 

structure near ODP 1123. Conductivity 

temperature depth point 41°S, 170°W 

[Schlitzer, 2002].  
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thinner but not as a clear result of dissolution. This supports the interpretation 

that the low SNW encountered in Gg. bulloides in this study is likely to be a 

primary feature and has not significantly affected the geochemical proxies.  

8, Subtle differences in trace element ratios between chambers f-2 and f in Gg. 

bulloides are preserved. 

Had the Gg. bulloides specimens been influenced by the amount of dissolution 

needed to remove up to half of their test mass, the subtle differences in 

chamber f-2 and f trace element ratios would have been homogenised, and this 

is not the case.  

 

4.3. Implications of unusual Southwest Pacific Ocean chemistry 

during MIS 11  

What are the implications of the low SNW found in Gg. bulloides for the chemical 

characteristics of the ocean during MIS 11 at ODP 1123? It is established that a 

global-scale dissolution event, the mid-Bruhnes dissolution interval, occurred 

from 600 to 200 ka with its peak centred on MIS 11 [e.g., Barker et al., 2006]. 

What is uncertain, however, is the cause of the mid-Bruhnes dissolution interval 

and how the global carbon cycle operated during that interval in order to cause 

widespread dissolution, without a corresponding rise in atmospheric CO2 

[EPICA Community Members, 2004]. Conditions were clearly different to the 

present and other Quaternary interglacial periods in the Southwest Pacific as 

evinced by the good preservation of foraminiferal tests and SNW range in line 

with the modern calibration in the majority of the ODP 1123 core [e.g., 

Crundwell et al., 2008; Elderfield et al., 2010; Greaves, 2008; Hall et al., 2001]. 

This raises the question as to whether, in the context of the mid-Bruhnes 
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dissolution interval, MIS 11 is a suitable analogue for the chemical response of 

the ocean to future climate warming? In the Pacific Ocean, the lysocline 

generally appears to follow a pattern of shoaling during interglacials and 

deepening during glacials [e.g., Hodell et al., 2001]. ODP 1123 sits just below the 

modern calcite saturation horizon and has been used to generate reliable 

geochemical paleoclimate proxy data in other studies [e.g., Bolton et al., 2011; 

Elderfield et al., 2010; Greaves, 2010]. However, intermittently throughout the 

ODP 1123 record, dissolution has occurred indicating possible episodic shoaling 

of the calcite saturation horizon [Greaves, 2008; Elderfield et al., 2010]. 

 

4.4 Mn and Zn/Ca records 

Both Mn/Ca and Zn/Ca ratios have been shown to be higher in foraminifers 

from modern Southwest Pacific core top assemblages located in STW, north of 

the STF, as compared with assemblages located in SAW to the south [Marr, 

2009]. Furthermore, a surface water mass transect across the Chatham Rise 

also shows Zn to be enriched in STW relative to SAW [Fig. 4.3; Ellwood, pers. 

comm., unpubl. data]. Although the exact pathway by which these elements are 

biomineralised into foraminiferal calcite is not well understood, there is a clear 

difference between foraminifera that calcified in STW and SAW. Moreover, the 

absolute Mn/Ca and Zn/Ca values obtained in this study are similar to the 

modern unaltered core top values obtained by Marr [2009] by the same LA-

ICPMS method [Fig. 4.4]. This indicates that these trace elements may be 

homogeneously distributed throughout the test as a single phase and any 

dissolution does not lower the overall Mn/Ca and Zn/Ca values.  
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Figure 4.3. Yellow vertical bar indicates transect of surface Zn concentrations measured southeast of New 

Zealand, which show enrichment in STW and a marked depletion across the high productivity zone of the 

Chatham Rise and in SAW. ODP 1123 core site is marked for reference. Unpublished Zn data were provided 

by Dr Michael Ellwood of Australia National University. Map taken and modified from Carter et al. [1998].  

  

 

 
 

 

 

 

 

 

 

 

 

 

 

As Mn/Ca and Zn/Ca have been shown to be enriched in foraminiferas that 

calcified in STW relative to those that calcified in SAW in the New Zealand 

region [Marr, 2009], enrichments in these two trace elements may indicate 

Figure 4.4. Zn and 

Mn/Ca data for Gg. 

bulloides chamber f-2 

generated in this study, 

compared with modern 

mean subtropical and 

subantarctic values from 

a range of core tops 

around New Zealand 

[Marr, 2009].  Grey 

shaded box indicates 

MIS 12 after Lisiecki and 

Raymo [2005]. 
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greater STW influence at the core site, especially when they coincide with 

higher Mg/Ca ratios. Zn and Mn are micronutrients [Anderson et al., 1978; 

Bruland and Lohan, 2003; Coale, 1991; Sunda et al., 1983] and both are 

considered to be productivity indicators.  Depth profiles of Zn concentrations in 

the water column indicate that Zn is a micronutrient in the Tasman Sea [Fig. 

4.5]. Thus, in addition to acting as a water mass tracer at ODP 1123, these 

micronutrients are also likely recording a productivity signal. Moreover, the 

significant positive anomaly in both Zn/Ca and Mn/Ca at ca. 398 ka is 

coincident with an increase in eutrophic species abundance [Crundwell et al., 

2008]. However as productivity was reduced during MIS 11 relative to MIS 12 

[Kowalski and Meyers, 1997; Lean and McCave, 1998], it is likely that the overall 

enrichment in these trace elements associated with the MIS 11 interglacial does, 

in fact, primarily reflect changing water mass influences at ODP 1123, with a 

secondary superimposed productivity signal.  
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4.5 Paleoclimate reconstruction for MIS 12-11  

The earliest noticeable change in the four geochemical proxies [Fig. 3.6] 

occurred during MIS 12 at 437 ka when obliquity was at a minimum, Gg. 

bulloides Mg/Ca ratios reveal a surface ocean warming. No corresponding 

planktonic δ18O response was detected until 433 ka when δ18O in Gg. bulloides 

became lighter, implying that the initial 2°C warming recorded in the Mg/Ca 

record was insufficient to destabilise the global cryosphere, or there was a lag in 

response by the cryosphere, or that this warming was effectively hidden in the 

Fig 4.5. Zn concentration profiles in the upper 500 m of the 

Coral Sea [green] and the Tasman Sea [red]. Both sites are 

north and south of the Tasman Front, in the southern limb 

of the South Pacific Gyre. These profiles show Zn behaves 

as a micronutrient with lower concentrations in the upper 

ocean where primary productivity causes depletion, and 

decomposition and respiration during descent in the water 

column causes enrichment with depth. Map modified from 

Carter et al. [1998] and data provided by Dr Michael 

Ellwood of Australia National University.  
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local surface salinity signal. For this reason, the timing relationship between the 

planktonic δ18O and Mg/Ca-derived paleo-ocean temperatures is not considered 

further. In addition to this 4 kyr lag, there is a further delay of 2 kyr between 

planktonic and benthic foraminiferal δ18O signals [Appendix 4].  

Three thousand years after the δ18O change, Mg/Ca, Zn/Ca and Mn/Ca ratios 

[Fig. 3.6] increase to new levels at 430 ka. This change is interpreted to reflect 

an increasing presence of STW at ODP 1123 as supported by warming SST and 

changes in foraminiferal assemblages with increasing presence of subtropical 

and eutrophic species [Crundwell et al., 2008].  

The Mg/Ca, Mn/Ca and Zn/Ca records show coherent peaks, most notably at the 

end of the deglacial transition, when the climate semi-stabilises after the ACR-

like event at 424 ka, although Mn/Ca stays elevated for a longer duration during 

this period, and Mg/Ca ratios only show small increases for the last two peaks. 

Following the ACR-like event, the interglacial is characterised by a series of 

these warm peaks, where Zn/Ca, Mn/Ca, Mg/Ca-derived paleo-ocean 

temperatures, and to a lesser extent δ18O, are in phase, suggesting incursions of 

STW. These incursions are approximately 12 ky apart suggesting half-

precessional forcing [Scott et al., submitted]. The variability in the Zn/Ca and 

Mn/Ca record may also in part reflect productivity changes which would be 

consistent with the mixing of the incoming STW with SAW.  The large positive 

anomaly in both Zn/Ca and Mn/Ca at ca. 398 ka is likely to have been 

productivity driven as it is coincident with an increase in eutrophic species 

abundance [Crundwell et al., 2008].   

The occurrence of ACR-like events at the end of the deglacial is not unique to 

ODP 1123 and appears in other Southern Hemisphere Atlantic records [ODP 
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1093 and 1094, Bianchi and Gersonde, 2004 and Kunz-Pirrung et al., 2002; 2004 

and ODP 1089, Cortese et al., 2004; 2007] and Pacific records [MD06-2986, 

Kolodziej, 2010; MD97-2120; Pahnke and Zahn, 2005; 2010; DSDP 594, Prebble, 

2012; MD97-2121, Carter et al., 2008]. These reversals appear to be more 

pronounced south of the STF, and only appear at the end of Termination I and V 

in the EDC ice core record [EPICA Community Members, 2004; Jouzel et al., 

2007], confirming that this ACR – like event is forced from the south. The 

presence of this predominantly Southern Ocean feature in this study confirms 

that ODP 1123 records both subantarctic and subtropical signals. Furthermore, 

its widespread occurrence suggests it is likely to be orbitally forced rather than 

reflect non-linear ice dynamics. 

The coupled trace element change [Mg/Ca, Mn/Ca and Zn/Ca] during MIS 11 

may reflect a strengthening and southward migration of the South Pacific Gyre, 

as observed in the modern ocean with a warming climate [Cai et al., 2005; Cai, 

2006; Oke and England, 2004; Roemmich et al., 2007] and has also been noted in 

glacial to interglacial cycles in the Tasman Sea [Martinez, 1993; Sikes et al., 

2009]. In that context, the input of STW would be enhanced if the Tasman Front 

component of the gyre strengthened and migrated south to an optimal position 

for maximum jetting through the shallow bathymetric constraints northwest of 

New Zealand, providing more warm, Zn- and Mn-rich STW to the East Cape 

Current and ODP 1123. Moreover, subtropical species abundance peaks from ca. 

430 to 396 ka, coincident with the initial increases in both Mn/Ca and Zn/Ca, 

and a secondary increase in Mg/Ca [Fig 3.6], support the interpretation that 

increases in these micronutrients do in fact reflect an increase in STW at ODP 

1123 [e.g., Carter et al., 2008].  

A 

B 

C 

D 

E 
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Modern observations show that in the last 60+ years the East Australian 

Current [EAC] has warmed, strengthened and extended south by 350 km [Cai et 

al., 2005; Ridgway, 2007]. The Tasman Front is directly fed by the EAC and 

modern observations indicate that when the EAC intensifies, it potentially 

reduces the volume transport of the Tasman Front, but this may reflect decadal 

variability rather than an overall decrease [Hill et al., 2011]. Fernandez [2012] 

suggested that rather than declining, the flows associated with the STF and SAF 

off eastern New Zealand are increasing in response to local winds. Given this, it 

is hypothesised that during MIS 11, the South Pacific Gyre intensified during the 

protracted warm period, and this translated into an intensified STF, which 

underwent a series of flow perturbations that potentially are the result of half 

precessional forcing of the regional wind-driven ocean circulation as indicated 

by spectral analysis of the faunal assemblage based SST record from MIS 12-10 

at ODP 1123 by Scott et al. [submitted]. Evidence from ODP 1089 suggests that 

during MIS 11 the Agulhas spillage from the Indian to the Atlantic Oceans was 

intensified, perhaps resulting from a strengthened EAC that fed water warmed 

in the tropical Pacific and Indian Oceans into the Atlantic, via the southern 

hemisphere supergyre [Cortese et al., 2004; Ridgway and Dunn, 2007].  

 

4.6 Intra-test trace element convergence in Gg. bulloides 

Two periods occurred when the offset between Mg/Ca in chambers f-2 and f in 

Gg. bulloides significantly diminished [433–436 and 400-407 ka; Fig. 3.1]. This 

might imply either an ecological change in the depth habitat of Gg. bulloides, a 

shallowing of the thermocline, or periods of enhanced dissolution. If the 

foraminifera were not migrating downwards through the water column with 
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ontogeny, and given that both of these periods occur when Mn/Ca and Zn/Ca 

are steeply increasing, and Gg. bulloides is a eutrophic species [e.g., Crundwell et 

al., 2008], the increased availability of micronutrients may have inhibited 

migration with ontogeny. However, the secretion of additional layers of calcite 

associated with the natural progression through the foraminifera’s life cycle 

would serve to decrease buoyancy. If the thermocline shallowed, this could be 

forced either by enhanced winds or increased upwelling. Such upwelling would 

bring cooler nutrient-rich waters to shallower depths, which could account for 

the convergence in Mg/Ca ratios of chambers f-2 and f, and the increased 

micronutrient content. However, ODP 1123 is not a significant upwelling 

location as it is a remote deep-water site that is distant from bathymetric 

features promoting upwelling. Periods of enhanced wind stress are possible 

when considering the modern observations of Fernandez [2012]. The third 

possibility is preferential dissolution. If dissolution of Mg-rich portions of the 

test occurred, this would act to homogenize the Mg/Ca ratios in the two 

analysed chambers, as the f-2 chamber would likely be more susceptible to 

dissolution than the f chamber due to its originally higher Mg content. A brief 

convergence between chamber f-2 and f Mg/Ca values also occurs at 387 ka, 

which happens to coincide with foraminifera that appear to have experienced 

significant dissolution [Appendix 1; sample 15.67m].  

Unequivocally distinguishing whether the convergence in Mg/Ca ratio of 

chambers f-2 and f is an ecological and/or oceanographic signal is not possible 

with the data obtained in this study. However, the low SNW that characterise 

the entire record indicating that dissolution is unlikely to be the primary 

control. 
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Chapter 5: Regional overview – MIS 11 paleo-ocean 

temperatures in the Southwest Pacific Ocean 

 

5.1 Regional oceanographic response to MIS 11 

To reconstruct a regional paleo-oceanographic response of the Southwest 

Pacific Ocean to MIS 11, paleo-SST data have been compiled from seven sites 

around the New Zealand region including ODP 1123 [Table 5.1; Fig. 5.1]. 

Comparison between cores from different sites and utilising different proxies 

[e.g., Barrows et al., 2007; Sikes et al., 2009] such as those for paleo-ocean 

temperatures incorporates inherent errors associated with different dating 

methods, different sampling resolutions and the differing proxies themselves. 

These effects are particularly problematic when comparing short intervals [i.e., 

millennial changes], as is the case here. With these caveats in mind, MIS 11 

interglacial conditions at seven sites around New Zealand [Fig. 5.1] are 

examined to assess the regional oceanographic response to MIS 11.  

 

Figure 5.1. Regional modern SST chart with all core sites plotted. MD06-STACK refers to three cores: 

MD06-2987, MD06-2988 and MD06-2989, which have been presented as a stacked record due to their 

close proximity to minimise age uncertainty errors after Prebble [submitted]. Selected major 

oceanographic features are represented schematically as follows. The southwestern limb of the South 

Pacific Gyre is represented by the east Australian Current [EAC], which bifurcates and feeds the Tasman 
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Front [TF], and then passes northern New Zealand to eventually feed the East Cape Current, bringing STW 

to ODP 1123. The STF is shown by the dashed grey line and the Antarctic Circumpolar Current [ACC] is 

also shown, which marks the boundary between SAW and the southern ocean. Figure modified from 

Bolton [2011]. 

 

All sites north of the STF [Fig. 5.2 a, b, d and e] record similar SSTs throughout 

the peak of MIS 11 of between 17.7 and 19.3°C, with the exception of the 

alkenone record from the South Tasman Sea [FR1/94-GC3], which sits close to 

the southern extension of the EAC. This alkenone record has peak SSTs that are 

up to 5°C lower than the other paleo-SST records, but comparable to modern 

SSTs at that site. The difference may reflect the more southerly location of 

FRI/94-GC3 and position proximal to a dynamic STF, which provides the 

opportunity for the ready exchange of SAW with STW [e.g., Sikes et al., 2009]. 

At ODP 1123, ANN25 SST from planktic foraminiferal assemblages are similar to 

other sites, but the Gg. bulloides Mg/Ca peak temperatures are ca. 6°C cooler 

mainly reflecting the depth preference of this species between 50 and 200m 

deep in the water column [Hemleben et al., 1985; note: the modern temperature 

at ODP 1123 at 50 m is ca. 15°C and at 200 m is ca. 12°C, based on Schlitzer, 

2002]. As such, the temperature record generated by Mg/Ca analyses of Gg. 

bulloides is referred to herein as the sub-surface temperature [sub-SST]. In 

contrast, Gs. ruber SST are ca. 2°C cooler than the ANN25 SST, which may reflect 

the effects of dissolution or may suggest that the ANN25 SST are overestimating 

peak MIS 11 conditions [See section 4.1.2: Dissolution and its potential effect on 

geochemical proxies]. The two sites south of the STF both show consistently 

lower SSTs, between 11.7 and 16.4°C as would be expected for core sites bathed 

mainly in cooler SAW. The warmer 17.5°C reported at DSDP 594 by Schaefer et 

al. [2005] refers to the summer SST for MIS 11 when it is likely that STW 
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arrived at the site, possibly due to either southward leakage through the 

Mernoo Saddle or an enhanced SC introducing warm STW from the south.  

The two full records from ODP 1123 [this study = Mg/Ca Gg. bulloides derived 

sub-SST; Crundwell et al. [2008] = ANN25 derived SST] have been depth tuned to 

the Lisiecki and Raymo [2005] global benthic stack age model using the 

Uvigerina-based δ180 record [Federici et al., unpubl. data]. Ignoring the 

differences in resolution between the two planktonic records, the ANN25 SST 

record appears to begin warming gradually 5 kyr before the sub-SST Mg/Ca 

record. The ANN 25 SST plateaus after 429 ka to reach maximum SST of 19.3°C at 

419 ka. In contrast, the Gg. bulloides [i] exhibits an ACR-like event during the 

deglacial transition, [ii] reaches peak temperatures 2 kyr earlier at 421 ka, and 

[iii] shows a more distinct and prolonged warm period [427–388 ka] before 

descending into glacial conditions. The ACR-like event is likely to represent a 

widespread climatic signal. Ocean cooling has been identified in other SST 

records [e.g. Cortese et al., 2004; 2007; Kolodziej, 2010; Prebble, 2012] as well as 

occurring the EPICA Dome C ice core record [EPICA Community Members, 2004]. 

The coincidence of a cooler ocean and colder Antarctica is very similar to that 

observed during the ACR in Termination 1 [Carter et al., 2008; Pahnke and Zahn, 

2005]. At that time, SAW, as identified from faunal assemblages and SSTs, 

moved northwards at least as far as 40°S off eastern New Zealand. In that 

context, a similar mechanism is suggested for the cold reversal in Termination 

V: the fluctuating SSTs reflecting the interaction of SAW with STW. An 

alternative hypothesis that the fluctuating SSTs resulted from enhancement of 

the subtropical inflow is at odds with Termination V cooling. The Gs. ruber 

Mg/Ca SST record [Fig. 5.2.b] only covers the peak warm period from 427 to 
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395 ka, as this species lives in tropical-subtropical environments [Crundwell et 

al., 2008]. The entire Gs. ruber-derived SST record is consistently lower [ca. 2-

4˚C] that the ANN25 derived SST suggesting that dissolution may have affected 

Gs. ruber, or the ANN25 SST record is erroneously warm [See section 4.2: 

Dissolution and its potential effect on the geochemical proxies].  

The two South Island, West Coast records [Fig. 5.2d and e] display strong 

similarity, which is not unexpected by virtue of their close proximity. There is 

also some similarity of the timing of this West Coast deglaciation with the Gg. 

bulloides Mg/Ca-derived sub-SST record at ODP 1123 [Fig. 5.2c] when taking 

age model uncertainties into account. Nevertheless, small differences are 

evident that may simply reflect differences in age models. The West Coast 

records are based on age models where planktonic δ180 is tuned to the Lisiecki 

and Raymo [2005] benthic stack age model. If we assume the 2-3 kyr offset 

between planktonic and benthic signals, as observed at ODP 1123 [Appendix 4], 

is applicable to the West Coast cores, then the deglaciation between the cores 

west and east of New Zealand begins within about ca. 2 kyr of each other. The 

West Coast SST records both show late peaks at 414 and 389 ka [Figs. 5.2d and 

5.2e respectively], as well as a prolonged warm period that is similar to the ODP 

1123 Gg. bulloides sub-SST [Fig. 5.2c].  

The two records from DSDP 594 are also tuned using planktonic δ18O and the 

Lisiecki and Raymo [2005] age model [Hayward et al., 2008, 2012]. Again, this 

may result in assigned ages being 2-3 kyr younger that the true sediment age, 

assuming that the relationship between planktonic and benthic isotopes is 

similar to nearby ODP 1123 where the benthic/planktonic offset is identified.  

Interestingly, the deglaciation appears to begin earlier in the dinoflagellate 
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transfer function [DTF; Prebble, submitted] record [Fig. 5.2f] than the ANN25 

record [Fig. 5.2g]. The DTF SST reaches peak temperature early at 426 ka, while 

the ANN25 SST does not reach peak temperatures until 401 ka. The two DSDP 

594 records are dissimilar in terms of the timing and length of peak warm 

period. In addition, the DTF record [Fig. 5.2f] shows an ACR-like event towards 

the end of the termination, which is not recorded in the ANN25 SST record [Fig. 

5.2g].   

The duration of MIS 11 varies between the different regional sites, from 20 kyr 

at DSDP 594 [Fig 5.2g] below the STF, to 40 kyr at ODP 1123 [Fig. 5.2c] and the 

West Coast cores [Fig. 5.2d and e], both located north of the STF. While the 

amplitude of warming may have been greater south of the STF, this warming 

was short-lived, which may support the theory of subtropically sourced water 

episodically breaching the Chatham Rise during the prolonged warm period 

[e.g., Schaefer et al., 2005] or being introduced from the south by a STW-

dominant SC. This is also consistent with the elevated Mn/Ca and Zn/Ca ratios 

of Gg. bulloides at ODP 1123 at this time, together with a higher proportion of 

subtropical faunal assemblages noted by Crundwell et al. [2008] and interpreted 

to represent a strengthened South Pacific Gyre.  

The largest glacial-interglacial amplitude temperature change occurred south of 

the STF in the DSDP 594 records, with both proxies showing >10°C difference 

for Termination V [Figs. 5.2.f. and 5.2.g]. This is consistent with the findings of 

Schaefer et al. [2005] that the temperature gradient across the Chatham Rise 

likely decreased during MIS 11 due to a greater STW influence. The Gg. bulloides 

sub-SSTs [Fig. 5.2c] at ODP 1123 also show a large amplitude change between 

peak glacial and interglacial conditions of 10°C, compared with an 8°C change 
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recorded in the ANN25 SST record at the same site. This difference in absolute 

temperature change may also, in part, indicate a change in the habitat depth of 

Gg. bulloides, with a change in nutrient availability or thermocline depth. The 

two West Coast records are similar to the ANN25 SST ODP 1123 record and 

show a temperature change of 6 to 8˚C between peak glacial and interglacial 

conditions.  

A potential Antarctic influence is also evident north of the STF at ODP 1123 and 

in the West Coast stack. At ca. 424 ka, an ACR-like event occurs in the sub-SST 

ODP 1123 record, and can be observed ca. 2 kyr later in the West Coast record. 

This implies that although both of these sites are primarily bathed in 

subtropically sourced water they are both still influenced by polar waters and 

climate.  
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Kolodziej, 
[2010]   

M606-
STACK 

3 core stack, 
see caption 

DFT ANN25 
SST STW 15.0 14.5 

Prebble, 
submitted 

Dinoflagelate 
transfer 
function 

FR1/94-
GC3 

44°15'S,  
149°59'E UK37 STW 13.3 13.0 

Pelejero 
et al, 

[2006] 
Not included 
in Figure 4.2 

ODP 1119 
44°45.33'S,  
172°23.60'E ANN25 SST SAWᶱ 9.5 11.0 

Hayward 
et al, 

[2008]  

DSDP 594 
45°31.41'S,  
174°56.88'E ANN25 SST SAW 10.5 11.0 

Hayward 
et al, 

[2008]  

DSDP 594 
45°31.41'S,  
174°56.88'E 

DTF 
ANN25 SST SAW 13.0 11.0 

Prebble, 
submitted  

DSDP 594 
45°31.41'S,  
174°56.88'E MAT SAW 10.5ᵡ 11.0 

Schaefer 
et al, 

[2005] 
Not included 
in Figure 4.2 

 
Table 5.1. Compilation of SST records spanning 427 to 397 ka for the New Zealand region. * Northern tip of 

STF, ᶱ Southern tip of STF, ᵡ Summer SST. Certain records have not been included in Figure 4.2 as indicated 

in the final column as a means of simplicity. All SST records of Schaefer et al. [2005] are excluded as these 
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are summer SSTs. The ODP 1125 and 1119 records of Hayward et al. [2008] are excluded as they are either 

of very low or patchy resolution. The alkenone record from the south Tasman Sea reported by Pelejero et 

al. [2006] is excluded due to its distal position.  

 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.2. SST records and one sub-SST record [c] from the New Zealand region from ODP 1123 [a – c], west 

coast cores MD06–2986 [d] and the three core stack of MD06-2987, 2988 and 2989 denoted by * [e], and 

finally DSDP 594 [f & g]. MDO6-STACK* and DSDP 594 ANN25** records are dinoflagellate transfer 

function. Author details for all data can be found in Table 4.1. All temperature axes are on the same scale to 

facilitate simple comparison between records. The relative position of the STF is shown on the right hand 

side [black arrows]. Green line in [b] represents modern SST [mean 0-50 m] at ODP 1123 core top on which 

Gs. ruber calibration is based [Bolton et al., 2011]. Blue line in [c] indicates modern temperature at nearby 

R623 core top at 200 m on which Gg. bulloides calibration is based [Marr et al., 2011].  Horizontal solid dark 

lines show modern SST at each core site, which are located on Figure 4.1. Shaded grey box denotes MIS 12 

glacial period after Lisiecki and Raymo [2005]. 
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These data show that the STF likely operated in a similar way during MIS 11 to 

the modern oceanic setting, wrapping around the base of the South Island 

consistent with the interpretation of Hayward et al. [2012]. In addition, the 

DSDP 594 records also indicate a southerly incursion of subtropical waters 

between 422 and 399 ka. DSDP 594 is located near the southern end of the 

Mernoo Saddle that separates the Chatham Rise from the South Island. Modern 

observations reveal periodic southward incursions of STW towards DSDP 594 

[Greig and Gilmour, 1992; Shaw and Vennell, 2000], which the MIS 11 

microfaunal assemblages and SSTs suggest was a phenomenon that was 

sufficiently pronounced to leave its mark. However, as noted earlier, the 

introduction of warm water from the south via the SC with an enhanced STW 

content is not discounted. 

In summary, comparison of the climatic/oceanic expression of MIS 11 from 

several ocean sediment cores around New Zealand is limited by the inherent 

difficulties associated with different age models and sampling resolution. This 

effect is compounded when comparing multiple different proxies, as is the case 

here. With this in mind, the deglacial transition into MIS 11 began at 443 ka in 

the ANN25 ODP 1123 record, but was not recorded in the Gg. bulloides Mg/Ca-

derived paleo-ocean sub-SST until 6 kyr later at 437 ka. The deglaciation 

occurred over a period of ca. 10 kyr and the MIS 11 interglacial warm period 

lasted from ca. 425 to 388 ka, north of the STF. South of the STF, peak 

interglacial warmth appeared to last from ca. 423 to 400 ka and is likely to be 

associated with incursions of warm subtropically sourced water across the 

Chatham Rise, and/or via the SC. Mean MIS 11 SST was perhaps 2 - 4˚C warmer 

than present SST north of the STF, and similar to modern SST south of the STF.  
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Chapter 6: Conclusions 

6.1 Concluding remarks 

The main aim of this thesis was to reconstruct the ocean and climate of MIS 11 

in the Southwest Pacific Ocean at ODP 1123. Two species of planktonic 

foraminifera [Gs. ruber, which dwells at ca. 0-50 m and Gg. bulloides, which 

dwells at ca. 50 – 200 m] were analysed using laser ablation-inductively 

coupled plasma mass spectrometry [LA-ICPMS] to determine trace element 

chemistry and hence identify paleo-ocean temperature, upper ocean thermal 

stratification and circulation. Size-normalised weight [SNW] was measured in 

Gg. bulloides, to determine if the modern relationship between SNW and Mg/Ca-

derived paleo-ocean temperature holds for MIS 11, and the implications of this 

for ocean chemistry.  

Six key findings generated from this thesis research are presented: 

Finding 1: Determine the timing and pattern of the MIS 11 interglacial  

The sub-surface temperature [sub-SST] record generated by LA-ICPMS of Gg. 

bulloides, shows a long and well defined warm period, lasting approximately 40 

kyr, from 428 to 387 ka [Fig. 4.2.c].  

The MIS 12-11 deglacial transition manifested more than 10 kyr earlier than the 

global benthic δ18O stack [Lisiecki and Raymo, 2005; Fig. 4.2.a and c] in the 

Southwest Pacific Ocean. At ODP 1123, the sub-SST record shows rapid 

warming beginning at ca. 437 ka [Fig. 3.5]. The end of the deglacial transition is 

characterised by an ACR - like cooling event, close to the MIS 12-11 boundary at 

424 ka. This event is also noted by EPICA Community Members [2004] in the 

EDC ice core δD record. The occurrence of this event in MIS 11 as well as MIS 1 
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may suggest that the associated incursion of SAW may be a feature of 

deglaciations and hence is potentially orbitally driven rather than being a non-

linear response of ice dynamics. Following the cooling, MIS 11 reached its 

optimum at ca. 420 ka, after which the interglacial period is characterised by 

relatively stable warm conditions until ca. 387 ka, when the climate began to 

cool into MIS 10.  

 

Finding 2: Determine a paleo-ocean temperature record for MIS 11 using 

Mg/Ca-based thermometry 

The geochemical data show the MIS 12 – 11 deglacial transition was large.  Gg. 

bulloides sub-SST record a change of 10°C, which is similar to the ANN25 –based 

SST change of 8°C of Crundwell et al. [2008]. This large amplitude temperature 

change at the MIS 12 – 11 deglacial transition is also observed in other studies 

around the New Zealand region, north and south of the STF. Mean optimum SST 

during MIS 11 [Mg/Ca derived SSTs on Gs. ruber] were up to 2°C warmer than 

modern mean annual SST of 15.5°C 

 

Finding 3: Identify changes in water masses and ocean structure from peak 

glacial MIS 12 conditions to the end of MIS 11 using trace element 

foraminiferal test chemistry 

Four trace elements [Al, Mn, Zn and Sr/Ca] were analysed in addition to Mg/Ca.  

Of these four trace elements, Mn/Ca and Zn/Ca ratios increase greatly in 

concentration in the interglacial period reflecting an increase in the influence of 

STW at ODP 1123, as STW is enriched in these trace elements relative to SAW in 

the same foraminiferal species. This influx of STW is interpreted as a 
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strengthening of the South Pacific Gyre during MIS 11, which is consistent with 

modern observations.  

The difference between measured Mg/Ca in chambers f-2 and f in Gg. bulloides 

appears to represent the species migration down through the water column 

with ontogeny and hence provides information about the thermal stratification 

of the upper 200 m of the ocean. Periods of low stratification occurred at 436–

433 and 407–400 ka suggesting deeper mixing and marked shallowing of the 

thermocline under presumed windiness of these cool periods. In contrast, warm 

periods are characterised by well defined thermal stratification. However, it is 

possible that ecological factors such as changes in migration and depth habitat 

of Gg. bulloides may influence these results. 

 

Finding 4: Investigate the ocean carbon response to MIS 11 via size 

normalised weight [SNW] of foraminiferal tests 

Gg. bulloides samples from MIS 12-11 were found to have anomalously low 

SNW, implying that if the modern SNW-Mg/Ca temperature calibration of Marr 

et al. [2011] holds, then [i] calcification temperatures were up to 10˚C warmer 

than indicated by the Mg/Ca-derived paleo-ocean temperatures or [ii] if these 

paleo-ocean temperatures are robust, then Gg. bulloides samples have on 

average 50% lower SNW than expected.   

Regardless of the cause of the low SNW in Gg. bulloides, any potential effects on 

the geochemical proxies have been explored. Several lines of evidence suggest 

that the low SNW has not artificially lowered Mg/Ca ratios or biased stable 

isotope data.  
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1) When comparison is drawn with the earlier part of the ODP 1123 core 

[Greaves, 2008], MIS 11 Mg/Ca values and δ18O are not unusually low, as 

would be expected if they had been dramatically affected by low CO3
-2 

concentration or dissolution.  

2) Traditional dissolution proxies applied to ODP 1123 [Crundwell et al., 

2008], do not indicate significant dissolution and instead show normal 

background levels when compared with the rest of the core.  

3) The degree of absolute temperature change in Gg. bulloides from the MIS 

12 glacial to the MIS 11 interglacial is ca. 10˚C, which clearly has not 

been overprinted in the benthic realm. Moreover, at this core site bottom 

water changes recorded by benthic foraminiferal during MIS 12 to 11 are 

on the order of 3˚C [Elderfield et al., 2010].  

4) The temperature difference between Gs. ruber and Gg. bulloides [ca. 4˚C] 

during MIS 11 is similar to the modern temperature difference between 

these two species at ODP 1123 [Bolton, 2011]. Gs. ruber is more 

susceptible to dissolution than Gg. bulloides, and so if dissolution had 

affected these samples, the temperature difference between these two 

species would be erroneously low, which is not the case.  

5) Other trace elements acquired during LA-ICPMS analysis show greater 

concentrations during MIS 11, when eutrophic species Gg. bulloides has 

anomalously low SNW. Evidence suggests that these foraminifera may 

calcify faster when nutrient availability is high, and faster calcification is 

likely to result in lower test mass overall [Aldridge et al., 2012].  

6) Visual comparison of SEM images of MIS 11 and modern core top Gg. 

bulloides from the New Zealand region reveals that test walls are on 
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average around 50 % thinner during MIS 11, implying that poor 

calcification environment may be the reason for the low SNW. However, 

Mg/Ca-derived paleo-ocean temperatures are slightly warmer than 

modern SST at the ODP 1123, similar to other studies, confirming the 

robustness of the geochemical proxies.  

 

Finding 5: Determine the New Zealand oceanic regional response to MIS 11 

The regional oceanic response to MIS 11 was assessed by comparing seven 

ocean sediment cores. Caution is necessary in considering these results, as the 

accuracy of this comparison is limited to comparing different paleo-ocean 

thermometry techniques, sampling resolutions and age model determinations. 

However, with this caveat in mind, MIS 11 manifested as a rapid warming to 

temperatures that are similar or slightly warmer than present both north and 

south of the STF both to the east and west of New Zealand.  

 

Finding 6: Compare MIS 11 and MIS 1 to assess suitability of the former as 

an analogue for the future   

Ocean chemistry was fundamentally different during MIS 11 as compared with 

the Holocene. Specifically, the ocean carbon cycle operated in a different way 

causing the mid-Bruhnes dissolution interval with no associated detectable rise 

in atmospheric CO2 relative to pre-industrial levels [Barker et al., 2006]. 

However, the data generated in this study implies that a 2°C warming at 

southern mid-latitudes is sufficient to significantly affect marine calcifying 

organisms, and this change in the ocean carbon cycle is manifested in Gg. 

bulloides with its abnormally low SNW. While the MIS 11 and 1 orbital 
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parameters were similar during the terminations, orbits now differ; in the next 

few thousand years projected insolation will be low, compared with second 

insolation peak during MIS 11, for 65°N July insolation. In addition, a natural 

dissolution cycle occurred in the ocean. This implies that MIS 11 may not be the 

most suitable recent Quaternary interglacial analogue to MIS 1. 

  

6.2 Suggestions for future work 

A comparison study between solution-based and laser ablation-based Mg/Ca 

paleothermometry is needed, if long term, high-resolution temperature records 

are to be generated. Mg/Ca values complement routine δ18O measurements by 

providing an unequivocal temperature signal, uncomplicated by global ice 

volume. Obtaining such data by LA-ICPMS, while providing much more 

information than traditional solution-based-ICPMS, is a time consuming 

process. The resolution, length of the record, time available for analytical work 

and type of information sought must be considered first before choosing which 

method to employ. When certainty of comparable measurements between the 

two techniques can be assured, much finer resolution data may be acquired via 

solution-based-ICPMS providing more information about centennial-scale 

climate events, core resolution permitting.  

The low SNW encountered in Gg. bulloides in this study indicates that the MIS 

11 ocean was chemically different to modern ocean conditions, in the 

Southwest Pacific region. Successive acid leaches and weight measurements on 

modern core top specimens may quantify the amount of dissolution required to 

generate the low SNW. However, this approach assumes that the source of the 

low SNW is in fact post-mortem dissolution. If the low SNW is caused by low 
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CO3
-2 concentration in the surface ocean, this could be quantified by applying 

paleo-pH proxies to the samples to determine CO3
-2 concentration required to 

cause anomalously low SNW. This can be achieved using boron isotopes and 

B/Ca ratios, and a calibration for this needs to be developed for Gg. bulloides.  

Presuming the low SNW is either caused by low CO3
-2 concentration during 

calcification or post-morten, a simple way to assess the cause is to compare MIS 

11 data in samples from different water depths in the region. This would 

determine if the dissolved appearance of the foraminifera is due to low CO3
-2 

concentration in the surface ocean, or due to corrosive bottom water 

conditions. However, the relationship between nutrient availability and growth 

rates, and their effect on SNW needs to be quantified in the Southwest Pacific 

region, as has been carried out in the North Atlantic. This would require taking 

modern samples of live specimens, while conducting measurements to 

accurately determine in situ CO3
-2 concentration and nutrient concentrations. 

East of New Zealand, north and south of the STF is an area that provides an 

ideal natural laboratory for this due to the very different nutrient 

characteristics of the subtropical and subantarctic water masses.    

In this study, I have shown that MIS 11 was warmer than present in the South-

West Pacific Ocean, and natural dissolution occurred. This poses the question as 

to the validity of MIS 11 as an analogue to the Holocene, especially when 

considering the orbital similarities between these two time periods, previously 

hailed as one of the reasons for the MIS 11 analogue theory. In regards to the 

MIS 11 natural dissolution cycle, what are the implications of this, when applied 

to the modern warming climate? Will we see marine calcifying organisms 

affected in the future in the same way, and is MIS 11 a natural analogue for 



- 95 - 
 

K. Christiansen  2012 

anthropogenic ocean acidification? And if the case, what are the wider 

implications for the marine food web? 
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