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Abstract

Although homogenous in appearance, Antarctic sea ice forms a complex habi-

tat that is characterised by steep vertical gradients of temperature, irradiance and

salinity. Despite these harsh and variable environmental conditions, numerous mi-

crobial organisms prosper within Antarctic sea ice. In 2010, bacteria bearing the

proteorhodopsin (PR) gene were found within Antarctic sea ice. PR is a photoactive

membrane protein that functions as a light-driven proton pump. The hydrogen ion

membrane gradient that PR establishes has the potential to drive ATP synthesis, thus

allowing PR-bearing bacteria to obtain energy from solar radiation. Although this

gene is present in up to 80% of marine bacteria, the active contribution of PR in vivo

is debatable. Light induced growth or enhanced survival is generally observed only

when PR-bearing bacteria are grown under sub-optimum conditions, such as limited

nutrients or carbon, or variations in salinity. This has lead to the general hypothe-

sis that PR has multiple functions, becoming most influential under conditions of

stress. In this way, Antarctic sea-ice bacteria may utilise PR to promote survival and

enhance energy inputs, when exposed to the harsh conditions of this environment.

To explore this hypothesis, potential PR-bearing isolates were cultured from sam-

ples of Antarctic sea-ice bacteria. Using 16S rRNA gene sequencing as well as a com-

parison of phenotypic and environmental characteristics, the isolates were identified

as; Psychrobacter nivimaris, Polaribacter dokdonensis, Paracoccus marcusii and Micrococ-

cus sp. These species, along with Psychroflexus torquis (an Antarctic sea-ice bacterium

known to possess PR) were examined for the presence of the PR gene. This gene

was identified in P. torquis, Ps. nivimaris and Po. dokdonensis. To my knowledge, this

is the first time PR has been found in Ps. nivimaris.

To assess the influence of irradiance on these species, a series of culture based ex-

periments were undertaken. In 2012, a preliminary field experiment was conducted

in which a mixed culture of PR-bearing and non PR-bearing bacteria; Ps. nivimaris,

Po. dokdonensis, Pa. marcusii and Micrococcus sp., was incubated in situ in the annual

sea ice surrounding Ross Island, Antarctica. The method developed for these exper-

iments is unique, in that cultures of sea-ice bacteria have not before been incubated

within their natural environment. No major differences in growth patterns were

observed when bacteria were incubated under different wavelengths and light in-

tensities, however, valuable insight into methodological improvement was obtained.

Using these refinements, a second in situ incubation experiment was conducted at
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the same field site, in 2013. Over this 2 week incubation, monocultures of P. torquis

grown in full strength media grew most readily under 50%- and blue-light treat-

ments, with red- and green-light yielding lower biomasses, and no growth occurring

in the dark. Ambient sea-ice irradiance resulted in highly variable growth, attributed

to high irradiance growth-inhibition. These results indicate that P. torquis utilises low

levels of light in order to increase its growth in Antarctic sea ice.

The influence of light on the growth of P. torquis, Ps. nivimaris and Po. dok-

donensis was examined in a laboratory-based experiment, in which media strength

and temperature were varied. When cultured at 12◦C, Ps. nivimaris grown un-

der constant irradiance reached a higher biomass than in darkness. This trend was

most pronounced when this species was cultured in a 10% media concentration. A

trend of decreased exponential-growth was observed in light-incubated cultures of

Ps. nivimaris, grown at 4◦C or -1◦C. Elevated maximum growth of Po. dokdonensis

was observed under irradiated conditions in the 10% media treatment. This species

however, only grew at 12◦C; an unexpected result for an Antarctic microbe. P. torquis

was not affected by irradiance under any culture conditions and did not grow at

-1◦C. This last result contrasts the results of the in situ incubations and may have

been affected by factors such as culture age.

This research demonstrates multiple examples of light-enhanced growth occur-

ring in PR-bearing Antarctic sea-ice bacteria, with the most prominent trends occur-

ring in reduced concentration media. Therefore, this work agrees with the overar-

ching hypothesis that PR is most influential under conditions of stress. The varying

effect of temperature on the influence of PR suggests that some species are able to use

this protein at low temperatures, whilst others cannot. Therefore, PR likely provides

a selective advantage to some species, depending on a variety of physicochemical

factors, including nutrient and carbon availability, salinity and temperature.
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CHAPTER 1

Introduction

1.1 The Antarctic Ecosystem

Antarctic sea ice provides a vast yet seasonally variable ecosystem, spanning up

to 20 million km2 during the austral winter, receding to less than 4 million km2 in

the summer (Horner, 1985). Despite its homogenous appearance, sea ice forms a

complex three dimensional habitat. Cool air temperatures cause unidirectional heat

extraction from surface waters, which results in the formation of vertically elon-

gated ice crystals. These crystals coalesce into a well structured ice matrix known as

columnar ice (Garrison et al., 1983; Ackley and Sullivan, 1994). During the freezing

process, salts are excluded from the ice and concentrated into brine pockets. Dense

brine may drain through columnar ice, developing into a labyrinth of brine channels

varying in size from micro- to millimeters (Ackley and Sullivan, 1994).

Steep vertical gradients are characteristic of columnar ice, the most prominent

of which is temperature. Air temperatures during summer in McMurdo Sound,

Antarctica typically range from 0◦C to -20◦C, and can drop below -50◦C during the

winter (Garrison, 1991; Thomas and Dieckmann, 2009). In contrast, temperature at

the ice-water interface remains constant (-1.87 ±0.09◦C) causing a rapidly decreas-

ing temperature gradient when moving upwards through the ice matrix (Fig. 1.1;

Littlepage, 1965; Thomas and Dieckmann, 2009). These variations in temperature

directly influence the osmotic environment of the ice matrix. The colder surface

temperatures cause more water to freeze whilst salts continue to be excluded. This

causes a reduction in brine volume and an increase in salt concentration towards

the surface (Fig. 1.1). Kottmeier and Sullivan (1988) reported surface ice brine chan-

nels of approximately -10◦C, reaching salinities of up to 150‰, while the constant

temperatures at the ice-water interface lead to stable salinities of ∼35‰(Fig. 1.1).

Furthermore, solar radiation is attenuated through the sea ice, resulting in light

regimes decreasing with depth at a variable rate depending on ice thickness, bio-

logical prevalence and the depth of snow cover (Fig. 1.1; Buckley and Trodahl, 1987;

Garrison, 1991). Due to a graduated attenuation of different wavelengths, blue-light

predominates throughout sea ice, with ∼1.5 m bottom-ice irradiance typically being

<5 µmol photons m−2 s−1 (Buckley and Trodahl, 1987; Ryan et al., 2009).
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Chapter 1: Introduction

Figure 1.1: Gradients of temperature (◦C), salinity (ppt), brine volume (% of ice matrix) and solar

irradiance (µmol photons m−2 s−1) established through a 1.5m ice column cross section. Adapted

and redrawn from Thomas and Dieckmann (2002).

1.1.1 Sea-ice microbial community

Despite the dynamic and harsh conditions of Antarctic sea ice, brine channels

throughout the entire ice matrix support microbial growth, with over 200 sympagic

(living within the sea ice) taxa identified prior to the majority of Antarctic genetic di-

versity studies (Garrison, 1991). The sea-ice microbial community (SIMCO) includes

phytoplankton, Bacteria, Archaea, protists, viruses and meroplankton, and can reach

biomasses up to two orders of magnitude higher than that of the underlying water

column (Sullivan and Palmisano, 1981; Garrison, 1991). The vertical distribution of

SIMCO members is dictated by both physicochemical and biological pressures. As

the bottom of an ice column has relatively stable conditions and increased exchange

with nutrient-rich underlying sea water, SIMCO abundance in the Ross Sea is corre-

lated with ice depth, with the bottom ∼20 cm of ice typically being coloured brown

by dense blooms of microalgae (Sullivan and Palmisano, 1981; Andreoli et al., 2000).

The Antarctic SIMCO comprises 25–30% of annual pack ice primary production

(Legendre et al., 1992), with potentially even higher levels in fast or perennial ice

(McMinn et al., 2010). Production levels can be so high that oxygen bubbles have

been observed forming at the ice-water interface (McMinn et al., 2010). Due to this

high level of productivity, the SIMCO is a critical Southern Ocean food source, being
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Section 1.1: The Antarctic Ecosystem

grazed by zooplankton and higher organisms such as the Antarctic krill Euphasia su-

perba (Daly, 1990; Lizotte, 2001). The continuous availability and widespread nature

of sympagic microorganisms allows the SIMCO to be utilised as the primary food

source during the winter, when light reduction limits pelagic (living in the open

ocean) phytoplankton (Stewart and Fritsen, 2004). Furthermore, the SIMCO may act

as an inoculum for the annual phytoplankton spring bloom (Garrison et al., 1987).

However, evidence supporting this hypothesis is circumstantial, in that there are

similarities between the microalgal species composition in SIMCO and successive

spring blooms (Lizotte, 2001). Furthermore, this hypothesis does not account for

the abundance or physiological condition of the seed population (Lizotte, 2001), nor

does it consider the influence of other sea-ice microbes, such as bacteria and viruses.

Sympagic bacteria growth rates have been estimated at ∼10% day-1 (Grossi et al.,

1984), resulting in bacterial abundances of 1.02 x 1012 cell m-3 in annual Antarctic

sea ice (Sullivan and Palmisano, 1984), greatly exceeding pelagic Southern Ocean

bacterioplankton estimates (Hanson et al., 1983). Additionally, bacteria have high

metabolic activities in Antarctic systems (Martin et al., 2008; Koh et al., 2010), ap-

proximately three times that of most temperate systems (Longnecker et al., 2005).

The high abundance and increased metabolic activity of sea-ice bacteria suggest that

they play a particularly important role in the microbial loop dynamics of the Antarc-

tic ecosystem.

Azam et al. (1983) proposed the microbial loop, a conceptual model in which

dissolved organic matter (DOM) is returned to the food web via a bacteria → flag-

ellate → microzooplankton feeding interaction (Fig. 1.2). The large surface area to

volume ratio of bacteria (compared to phytoplankton) allows the uptake of nutri-

ents and DOM at very low concentrations (Azam et al., 1983), from sources such as

exopolymeric substances, released photosynthate and ruptured cells (Thomas et al.,

2001; Stewart and Fritsen, 2004; Azam and Malfatti, 2007). Bacteria respond to mi-

croenvironmental DOM fluxes, forming spatial relationships with algae (Sullivan

and Palmisano, 1984) and marine snow (Kiorboe and Jackson, 2001; Azam and Mal-

fatti, 2007).

Antarctic microbial loop processes are fundamentally different than the mecha-

nisms employed in tropical or temperate oligotrophic (nutrient limited) waters. The

water column underlying Antarctic sea ice is generally high in nutrients, therefore

primary production is typically regulated by energy requirements, rather than nu-
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Chapter 1: Introduction

Figure 1.2: Simplified microbial loop diagram, showing movements of energy. DOM = dissolved

organic matter, POM = particulate organic matter. Adapted and redrawn from Azam et al. (1983).

trient limitation (Azam et al., 1991). Bacterial DOM uptake in the Southern Ocean

allows ∼30% of energy from primary production to be recycled to higher trophic

levels (Staley and Gosink, 1999) and the production rate of Antarctic sea-ice bacteria

is surprisingly high, equating to 10–15% of sea-ice primary production (Kottmeier

and Sullivan, 1987; Martin et al., 2011). Sea-ice bacteria become even more critical

during the winter, when typical bacteria-algae spatial relationships become uncou-

pled due to the absence of photosynthetic production (Stewart and Fritsen, 2004).

Therefore secondary production becomes the base of the Antarctic food web (Azam

et al., 1991), exemplified by stronger bacterial-DOM correlations in the winter (Azam

and Malfatti, 2007).

The main groups of sea-ice bacteria are the Alpha- and Gamma-proteobacteria,

and the Bacteroidetes, however other taxa including the Betaproteobacteria and Gram-

positive bacteria are found throughout sea ice (Bowman et al., 1997; Staley and

Gosink, 1999; Brown and Bowman, 2001; Brinkmeyer et al., 2003; Murray and Grzym-

ski, 2007; Cowie, 2011). Species distribution throughout the ice column is dictated

by habitat filtering (Pontarp et al., 2012), with the initial freezing process rapidly

reducing the cosmopolitan mixture of species found in Antarctic sea water (Martin

et al., 2011). Although some bacteria species are found throughout the entire ice col-
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Section 1.1: The Antarctic Ecosystem

umn, UV-B radiation and salinity-induced stress further control sea-ice assemblages

(Nichols et al., 1999b; Martin et al., 2009), resulting in higher bacterial concentrations

closer to the ice-water interface.

The geographic isolation and extreme environmental conditions of Antarctic sea

ice has given rise to a unique set of evolutionary pressures. These conditions are

detrimental to the majority of pelagic microbes, however those that are sufficiently

adapted may have a greater propensity for growth given the lack of competition

(Ackley and Sullivan, 1994). Low temperatures cause decreased membrane fluidity,

slowed enzymatic activity and cell rupture due to ice crystal formation (Morita, 1975;

Rothschild and Mancinelli, 2001; Trevors et al., 2012). Psychrophilic (cold adapted)

bacteria over come these challenges using high proportions of cellular membrane

polyunsaturated fatty acids (PUFA; Nichols et al., 1999a), stress resistant cell cy-

cles (Staley and Gosink, 1999) or antifreeze proteins (Gilbert et al., 2004). Some

psychrophilic bacteria have adapted to endure a wider range of pH and salinity

values (Nichols et al., 1999b) through production or association with exopolymeric

substances, which may buffer osmotic shock and physical damage by ice crystals

(Krembs et al., 2002). Furthermore, bacterial pigments such as carotenoids act as a

‘microbial sunscreen’ (Bowman et al., 1998; Fong et al., 2001), similar to the algal use

of mycosporine-like amino acids (Ryan et al., 2002). The broad range of microbial

adaption has been demonstrated, in that entire ice-column communities have the

potential to withstand complete inversion of vertical sea-ice profiles (Martin et al.,

2011). This concept is summarised well by Collins (2012): “Microbes rarely fail to

adapt when subjected to harsh environments.”

One diverse bacterial adaptation is phototrophism. Cyanobacteria are a large

global photosynthetic contributor, however the discovery of several alternative light-

based metabolic strategies has challenged the assumption that chl-a is the only eco-

logically significant light-harvesting pigment in prokaryotes. This is of particular

importance in the Southern Ocean where cyanobacteria are rare and the harvesting

of light energy may aid in the survival of heterotrophic bacteria (Koh et al., 2012). For

example, bacteriochlorophyll is utilised by many prokaryotic species, such as aerobic

anoxygenic phototrophic bacteria (Kolber et al., 2001), a prevalent bacterial group in

the Antarctic ecosystem (Koh et al., 2011). Additionally, many heterotrophic bacteria

possess microbial rhodopsins, proteins with the potential to exploit light without the

fixation of carbon or oxygen.
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Chapter 1: Introduction

1.2 Microbial Rhodopsins

Rhodopsins are light-absorbing pigments that are formed through the binding of

retinal (vitamin A aldehyde) with integral membrane proteins known as opsins (Béjà

et al., 2000). These proteins are found across all three domains of extant life, however

they fall into two distinct families; photosensory and microbial rhodopsins. In Eu-

karya, rhodopsins belong to the G-protein coupled receptor family (GPCR) and dis-

criminate different wavelengths of light (de la Torre et al., 2003; Gómez-Consarnau

et al., 2007). For example, rhodopsins are responsible for colour-differentiation in

human retina (Baldwin et al., 1997). Prokaryotes can contain both photosensory

rhodopsins as well as microbial rhodopsins, photoactive seven-helical membrane

proteins that function as a light-driven proton (bacteriorhodopsin) or chloride ion

(halorhodopsin) pumps (Béjà et al., 2000). Microbial rhodopsins are not bound to a

G-protein and contain covalently bound 13-trans retinal, rather than the 11-cis form

found in GPCR rhodopsins (Dioumaev et al., 2002; de la Torre et al., 2003). Similar

to microbial rhodopsins, chlorophyll based phototrophy (be it in plants, algae or

bacteria) also produces a proton gradient. However, the mechanism of establishing

this gradient (the electron transfer chain) is dramatically different.

Microbial rhodopsins were discovered in extreme halophiles belonging to the Ar-

chaea (Oesterhelt and Stoeckenius, 1971), suggesting the use of phototrophy may be

particularly useful in extreme environments, potentially allowing more energy to be

directed towards the maintenance of physical processes. Microbial rhodopsins were

thought to have been unique to the halophilic Archaea for almost three decades fol-

lowing their discovery, however a cloned marine Gammaproteobacteria genome frag-

ment was found to contain proteorhodopsin (PR), a bacterial homolog of microbial

rhodopsin (Béjà et al., 2000). PR has a similar photochemical cycle to archaeal micro-

bial rhodopsins (Dioumaev et al., 2002) despite these two protein families have low

sequence similarities (35–40%) and likely evolving independently (Béjà et al., 2000).

Further bacterial rhodopsin subsets have subsequently been found including xan-

thorhodopsin, a highly efficient microbial rhodopsin variant (Balashov et al., 2005),

and actinorhodopsin, a set of microbial rhopdopsins associated with fresh water

Actinobacteria (Sharma et al., 2008).

1.2.1 Proteorhodopsin

Since the discovery made by Béjà et al. (2000), PR-encoding genes have been

found in a variety of bacterial taxa (Béjà et al., 2001; de la Torre et al., 2003) includ-
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ing Pelagibacter ubique (SAR11), the most abundant marine bacterium on the planet

(Giovannoni et al., 2005), as well as being present across a diverse range of marine

habitats. For example, the recent Global Ocean Survey found PR in almost 4000

species and to occur across 41 different environments (Rusch et al., 2007). Abun-

dance estimates of PR-bearing bacteria range from 13% in the Mediterranean and

Red Seas (Sabehi et al., 2005) to 70–80% in environments including the Sargasso Sea

and Japanese waters (Venter et al., 2004; Yoshizawa et al., 2012), with a recent global

survey estimating genomic presence in 48% of bacteria (Finkel et al., 2013).

PR genes, although present across a diverse array of bacteria, fall mainly into

three phyla: Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes (Béjà et al.,

2001; Yoshizawa et al., 2012). Bacteroidetes is a complex phylum consisting of anaero-

bic, gut-associated bacteria as well as a large number of genera that live freely, often

aggregating with organic matter (Zhao et al., 2009). The Flavobacteria, Polaribacter

sp. (MED152) was one of the first Bacteroides to be sequenced (Kirchman, 2008) and

phototrophy in this clade is due to PR activity (Gómez-Consarnau et al., 2007). It

is commonly accepted that PR is spread across many bacterial species due to lateral

gene transfer (Giovannoni et al., 2005). Concurrently, horizontal gene transfer of PR

from Bacteria to Archaea (Frigaard et al., 2006), eukaryotes (Slamovits et al., 2011)

and viruses (Yutin and Koonin, 2012) has also occurred.

A vast number of PR-containing bacteria cannot be cultured, making traditional

culture-based assessment of these organisms difficult. However, recent use of high-

throughput screening methods has helped identify and quantify PR genes in new

habitats, including those that do not conform to traditional marine conditions. Ex-

amples include the amplification of PR genes from DNA extracts found in German

and Canadian freshwater lakes, as well as brackish peat lakes in the Netherlands

(Atamna-Ismaeel et al., 2008). PR-bearing bacteria also inhabit the psychrophilic wa-

ters of both the Arctic and Antarctic oceans (Cottrell and Kirchman, 2009) and have

recently been found within the brine channels of annual Antarctic sea ice (Koh et al.,

2010). The latter study found known PR sequences clustering within the both Pro-

teobacteria and the Bacteroidetes, as well as a new PR analogue belonging to another

member of the Bacteroidetes. Koh et al. (2010) also found geographical region and

depth within the ice sheet were major factors in determining grouping of PR-bearing

bacteria. In addition, Zhao et al. (2009) found the effect of temperature on photocy-

cle kinetics is particularly important in determining the geographic distributions of

PR-bearing bacteria.
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PR-bearing bacteria fall into two broad categories that are adapted to either green

or blue light (Béjà et al., 2001). The differences between these two PR variants arises

from the substitution of a single amino acid at position 105 in the PR protein (Man

et al., 2003). Position 105 in green-light adapted PR (G-PR) is occupied by a leucine,

whereas blue-light adapted PR (B-PR) have glutamine in this position. This results in

a G-PR to B-PR absorption maximum shift from 530 nm to 490 nm (Man et al., 2003),

with B-PR having a 10-fold slower photocycle rate (Wang et al., 2003). Furthermore,

a varient PR family (RS29) found in the Red Sea has an absorption maximum of 515

nm, due to a single blue- and two red-shifted peaks (Man-Aharonovich et al., 2004).

This is accounted for by amino acid substitutions at positions 65 and 70, and results

in the photocycle of this PR-bearing bacteria being ∼100 times slower than a typical

G-PR (Man-Aharonovich et al., 2004).

PR variants are not divided monophyletically, as both G-PR- and B-PR-bearing

bacteria are spread across multiple clades. Rather, spectral tuning is the result of

Darwinian selection due to depth stratification (Bielawski et al., 2004). Relatively

high energy blue light penetrates deeper waters than other wavelengths and con-

sequently a higher proportion of B-PR are found at depth. Conversely, G-PR are

more typical of turbulent, algae-rich, surface and coastal waters (Béjà et al., 2001;

Man et al., 2003). When surveying the PR-bearing bacteria of Antarctic annual sea

ice, Koh et al. (2010) found the highest concentration of G-PR at the ice-water inter-

face, whereas B-PR was primarily in the mid-section of the ice column. This is due

to blue light being dominant throughout an ice sheet (Buckley and Trodahl, 1987),

with a high biomass of sympagic microalgae present in the bottom ∼20 cm reflect-

ing large amounts of green light. Therefore, despite the inverse depth-distribution

trends observed in Antarctic sea ice and the open ocean, both observations support

the light-based Darwinian selection explanation. In contrast, little or no G-BP have

been found in the Caribbean and Sargasso Seas (Rusch et al., 2007; Sabehi et al.,

2007), suggesting the spectral tuning of PR is complicated by other environmental

parameters. Wang et al. (2003) and Fuhrman et al. (2008) suggest that the slower

photocycle rate of B-PR may make it more suitable under oligotrophic conditions.

Regardless of spectral tuning, PR-bearing bacteria can possess up to 25,000 PR

proteins per µm2 of cell surface (Giovannoni et al., 2005; Yoshizawa et al., 2012),

resulting in PR occupying ∼20% of the membrane surface of a PR-bearing bacteria

(Giovannoni et al., 2005). Upon light absorption, the retinal molecule of each PR

absorbs a photon, causing a conformational shift to a 13-cis isomer. This change
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Figure 1.3: Simplified view of transmembrane proton fluxes in a PR-bearing bacterium. Sources of

proton efflux (blue) include respiration and PR, and sources of proton inflow (red) include the flagellar

motor and ATP synthesis. I. = solar irradiance. Adapted and redrawn from Walter et al. (2007) and

Martinez et al. (2007).

in protein conformation causes the translocation of a proton from the cytoplasm,

across the cell membrane (Béjà et al., 2000, 2001; Friedrich et al., 2002; Váró et al.,

2003). This ‘pumping’ of protons generates an electrochemical membrane potential,

which has the potential to drive adenosine triphosphate (ATP) synthesis as protons

re-enter the cell through the ATP synthase complex, H+-ATPase (Fig. 1.3; Béjà et al.,

2000, 2001; Fuhrman et al., 2008). Each photocycle of PR is fairly rapid (∼20 ms),

despite transitioning through several intermediate products (Dioumaev et al., 2002;

Váró et al., 2003).

Dioumaev et al. (2002) reported that PR photocycling only occurs under alkaline

pH. The alkaline pumping of PR was supported by Friedrich et al. (2002), who found

a proton was pumped out of the cell for every two photons absorbed. However,

when placed under acidic conditions, protonation of the acceptor molecule results

in a reversal of the pumping mechanism, with protons being transported into the

cell. Inward pumping can potentially still result in ATP production and in fact only

requires one photon to complete a pump cycle (Friedrich et al., 2002). The ability to

invert pumping direction broadens the range of PR bacteria and may prove to be a
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valuable feature given predicted changes in ocean chemistry.

The influence of PR has been explored through in vitro expression in Escherichia

coli, resulting in light-induced generation of energy for cellular growth, resistance to

environmental respiratory challenges, photophosphorylation and increases in cellu-

lar activities such as flagellar motion (Fig 1.3 Martinez et al., 2007; Walter et al., 2007;

González et al., 2008). However, few researchers have demonstrated an active con-

tribution from PR in vivo. For example, cultures of the PR-bearing bacteria P. ubique

(SAR11 and SAR92) as well as Dokdonia donghaensis (PRO95) express no measurable

response to light (Giovannoni et al., 2005; Gómez-Consarnau et al., 2007; González

et al., 2008; Riedel et al., 2010, 2013). This has caused a significant divide in opinion.

Some authors are doubtful of PR making any significant contribution to solar energy

capture (Wang et al., 2003), whereas others state PR phototrophy has the potential

to meet all cellular energy requirements in the presence of light (Walter et al., 2007).

The widespread and multi-species distribution of PR provides indirect evidence

for the benefits of this photo-protein (Sharma et al., 2008; Yoshizawa et al., 2012). The

first instance of a naturally PR-possessing bacterium demonstrating light-induced

growth occurred when the Bacteroides, D. donghaensis (MED134) was cultured under

conditions of limited DOM (Gómez-Consarnau et al., 2007). Increases in abundance

and cellular size were observed when this species was exposed to light (180 µmol

photons m-2 s-1). Furthermore, light-induced growth of D. donghaensis (MED134)

was primarily stimulated by green light with a recorded absorption maximum of

532 nm, correlating well with the green-shifted nature of this PR (Gómez-Consarnau

et al., 2007).

In the Antarctic Flavobacterium, Psychroflexus torquis, cellular abundance of PR

was stimulated by both salinity and illumination. Light stimulated growth under

conditions of salinity stress (at both sub- and supra-optimal concentrations), but not

under carbon limitation (Feng et al., 2013). Direct proton pumping (a decline in pH)

in light-exposed conditions has been observed in P. torquis (Feng et al., 2013), along

with eight other Flavobacteria members (Yoshizawa et al., 2012). In light intensities

greater than 27.7 µmol photos m-2 s-1, P. torquis had no growth yield differences,

suggesting a photo-inhibitory effect at high levels of irradiation (Feng et al., 2013).

Upregulation of PR gene expression and transcription has been observed in P.

ubique (SAR11) and D. donghaensis (MED134) cultured in the light (Lami et al., 2009;
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Table 1.1: A summarised timeline of the key findings in PR research.

Date Key finding Source

2000 PR is first discovered in the uncultured marine bacteria SAR86.

Light-driven proton pumping is confirmed in E. coli cells.

Béjà et al. (2000)

2001 The presence of PR directly in the ocean is confirmed. PR is

found to be spectrally tuned to blue or green wavelengths.

Béjà et al. (2001)

2003 PR is found in multiple bacteria taxa. de la Torre et al. (2003)

The spectral tuning of PR is accounted for by a single amino acid

change.

Man et al. (2003)

Deeply evolutionary branching PR variants are discovered in the

Mediterranean and Red Seas.

Sabehi et al. (2003)

B-PR has a slower photocycle rate than G-PR. Wang et al. (2003)

2004 The depth stratification of PR variants is tuned by Darwinian

selection.

Bielawski et al. (2004)

A metagenomics study reveals an extremely large diversity of PR

genes in the Sargasso Sea, being present in up to 80% of bacteria.

Venter et al. (2004)

2005 The PR gene is found in P. ubique (SAR11), the most abundant

marine bacterium. Light-induced growth does not occur.

Giovannoni et al.

(2005)

PR-bearing bacteria account for 13% of microorganisms in the

Mediterranean and Red Sea photic zones.

Sabehi et al. (2005)

2006 PR genes are found in uncultured marine Archaea. Frigaard et al. (2006)

2007 The first instance of light-dependant growth occurs in D. dong-

haensis (MED134), cultured under oligotrophic conditions.

Gómez-Consarnau

et al. (2007)

PR proton pumping results in photophosphorylation in E. coli. Martinez et al. (2007)

B-PR and G-PR variants inhabit different geographic locations. Rusch et al. (2007)

Spectrally tuned PR variants have different geographic distribu-

tions, seasonal dependencies and are not dictated by taxa.

Sabehi et al. (2007)

PR replaces respiration in E. coli, creating a proton motive force

that can turn the flagella motor.

Walter et al. (2007)

2008 PR is found in non-marine environments, including freshwater

and brackish ecosystems.

Atamna-Ismaeel et al.

(2008)

Growth in the light causes Po. dokdonensis (MED152) to fix more

bicarbonate, however no growth increases occur.

González et al. (2008)

The PR variant AR is discovered and is mostly present in non-

marine environments.

Sharma et al. (2008)

2009 P. ubique (SAR11) and D. donghaensis (MED134) show light-

induced upregulation of PR expression and transcription.

Lami et al. (2009)

2010 The PR-bearing Vibrio sp. (AND4) increases survival during star-

vation periods, when exposed to light.

Gómez-Consarnau

et al. (2010)

Increased electrical current generation occurs in illuminated cells

of the engineered PR-bearing bacterium S. oneidensis (MR-1).

Johnson et al. (2010)

PR-bearing bacteria are found in Antarctic sea ice. Koh et al. (2010)

Light-induced growth does not occur in D. donghaensis (PRO95). Riedel et al. (2010)

Continued
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Date Key finding Source

2011 PR enzymes and other light-associated proteins are upregulated in

D. donghaensis (MED134) grown in the light.

Kimura et al. (2011)

Eukrayotes are found to have acquired PR through horizontal gene

transfer.

Slamovits et al.

(2011)

PR supports the metabolic processes of P. ubique (SAR11) during

periods of carbon starvation.

Steindler et al.

(2011)

2012 PR communities cluster by geographic location rather than depth. Wei (2012)

Light-driven proton pumping occurs in multiple PR-bearing

Flavobacteria.

Yoshizawa et al.

(2012)

Viruses are found to have acquired PR through horizontal gene

transfer.

Yutin and Koonin

(2012)

2013 PR phototrophy promotes the survival of Vibrio sp. (AND4) in

stationary-phase but did not influence active growth. Differential

PR expression is dictated by nutrient limitation, not light exposure.

Akram et al. (2013)

Light-induced growth occurs in the PR-bearing bacteria P. torquis,

under conditions of salinity stress, not nutrient limitation.

Feng et al. (2013)

The global genomic abundance of microbial rhodopsins is esti-

mated at 48% of microbes.

Finkel et al. (2013)

The first sodium-pumping rhodopsin is discovered in the marine

bacteria Krokinobacter eikastus.

Inoue et al. (2013)

D. donghaensis (PRO95) contains and transcribes both PR and XR

proteins. Light does not enhance growth.

Riedel et al. (2013)

2014 The first chloride ion pumping bacterial rhodopsin (similar to ar-

chaeal halorhodopsins) is discovered in a marine bacteria, Non-

labens marinus.

Yoshizawa et al.

(2014)

Kimura et al., 2011). During periods of starvation, light exposed Vibro sp. (AND4)

increased in survival during the stationary-phase (Gómez-Consarnau et al., 2010)

whilst active growth of this species remained unaffected (Akram et al., 2013). When

illuminated, both P. ubique (SAR11) and Polaribacter dokdonensis (MED152) demon-

strated increases in metabolic processes (including respiration rate, ATP content,

bicarbonate fixation and cellular size) during periods of carbon starvation, with no

light-induced differences in biomasses occurring (González et al., 2008; Steindler

et al., 2011). Johnson et al. (2010) observed increased electrical current generation

in illuminated cells of the engineered PR-bearing bacteria Shewanella oneidensis (M-

R1), suggesting a potential application of PR in the manufacturing of biofuels. A

summarised timeline of the key findings in PR research is presented in Table 1.1.
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Based on this evidence, it is generally accepted that ATP derived from PR-

mediated proton gradients allows carbon to be diverted from oxidation to biosynthe-

sis (Kirchman, 2008). Béjà et al. (2001) hypothesised that PR may be particularly ben-

eficial under oligotrophic conditions, however the inconsistency of both culture and

field based reports does not generally support this model. For instance, Yoshizawa

et al. (2012) demonstrated that protein expression of PR occurred regardless of or-

ganic matter concentrations. The role of PR may be subtle, becoming more prevalent

under conditions of cellular stress, promoting survival and enhancing energy inputs

(Giovannoni et al., 2005; Campbell et al., 2008; González et al., 2011). Fuhrman et al.

(2008) proposed that PR may have multiple functions, including novel physiological

uses, such as a survival mechanism used to assist PR-bearing bacteria exposed to

harsh conditions.

The widespread nature and vast biomass of PR-bearing bacteria suggests this

protein may be having a large influence on the energy acquisition and carbon cycling

of heterotrophic microbes. Although previous research has yielded a mixture of

results, a trend is beginning to develop, wherein PR is perceived to have the greatest

influence under stress inducing conditions. Given the recent discovery of PR with

Antarctic sea ice (Koh et al., 2010), the bacteria that possess this gene may be utilising

light to enhance their growth and survival under these harsh conditions. Therefore,

the aim of this thesis is to establish the influence of light on the growth of Antarctic

PR-bearing bacteria, when exposed to environmental stressors.

Using previously collected samples of Antarctic sea-ice bacteria (Cowie, 2011),

along with the Antarctic PR-bearing bacteria P. torquis, this thesis addressed three

main research questions:

1. What cultivable bacteria are present in the previously collected samples of

Antarctic sea-ice bacteria?

2. Do these isolated taxa contain the PR gene?

3. How is the growth of these PR-bearing bacteria affected by light under varying

conditions of environmental stress?
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1.3 Thesis Structure

Chapter 2 details the methods involved in the culture and isolation of the Antarc-

tic sea-ice bacteria. Using 16S rRNA gene sequencing and a comparison of pheno-

typic properties, several isolates were identified. Growth curves were constructed

and each species was examined for the presence of the PR gene.

The light-responses of PR-bearing, Antarctic bacteria were explored in Chapter 3.

Novel methods were employed, in which cultures of Antarctic sea-ice bacteria were

incubated in situ. This incubation experiment exposed these cultures to several of

the natural environmental stressors of Antarctic sea ice, while controlling the culture

medium and available wavelength. This experiment was paralleled by a laboratory-

based incubation, using the PR-containing species identified in Chapter 2. The light

responses of these species were explored under a variety of conditions similar to

those of Antarctica sea ice. The results of this chapter are currently under prepara-

tion for submission to an internationally peer-reviewed journal.

Finally, Chapter 4 provides an summary and evaluation of the preceding chapters

and an outline for future research directions. Literature cited in the course of this

study has been documented in the bibliography.
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CHAPTER 2

Identification and Investigation of

Cultured Antarctic Sea-ice Bacteria

2.1 Introduction

Approximately 14,000 prokaryotic species have been formally described (http:

//bacterio.net/-number.html), typically from studies of pure bacterial isolates.

Phenotypic features can be utilised along with genetic information in order to ac-

curately classify an organism. Using the ribosomal RNA (rRNA) small subunit, the

phylogenetic diversity of all organisms can be compared (Woese et al., 1990). The

16S rRNA gene is comprised of eight conserved and nine variable regions, which

evolve at different rates (Olsen et al., 1986). Comparison of the sequence similarity

of this gene is the most common approach to classifying prokaryotes. Depending

on the organisms and the target gene, the degree of sequence dissimilarity used to

classify genus or species remains the subject of debate. Typically, 3% sequence di-

vergence is used as a conservative measure of species differentiation (Stackebrandt

and Goebel, 1994), although this can differ depending on the organism (Nakamura,

1984; Fox et al., 1992).

Restriction fragment length polymorphism (RFLP) can also be applied to 16S

rDNA, as a means of genetic differentiation. This technique uses a restriction diges-

tion enzyme to ‘cut’ the DNA at a specific binding site. The number and position of

these binding sites varies between taxa, resulting in combinations of DNA fragments

that can be visualised using gel electrophoresis (Laguerre et al., 1994). Although

RFLP is a useful tool for the rapid differentiation of genotypes, it often needs to be

supported by other techniques, such as 16S rRNA gene sequencing or DNA-DNA

hybridisation, to accurately distinguish taxa to a species level (Laguerre et al., 1994).

The diversity of Antarctic sea-ice communities has traditionally been investigated

using culture-based methods (Delille, 1992; Staley and Gosink, 1999; Bowman et al.,

1997). However, nucleic acids can be extracted directly from environmental sam-

ples, with the amplification process of a polymerase chain reaction (PCR) resulting

in small amounts of DNA being amplified. The first sequencing of 16S rRNA genes
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obtained from Antarctic sea-ice was conducted by Brown and Bowman (2001). Fur-

ther studies have utilised a combination of culture-based and molecular techniques

(Brinkmeyer et al., 2003), with the first 454 pyrosequencing study of sea-ice microbes

being conducted in 2010 (Cowie, 2011). Sea-ice bacteria are predominantly Gram-

negative, often pigmented, rods (Delille, 1992; Bowman et al., 1997; Brinkmeyer et al.,

2003), of which the majority are halotolerant and psychrophilic or psychrotolerant

(Brown and Bowman, 2001; Junge et al., 2002). Although a general trend of increas-

ing diversity with sophistication of sampling technique is observed (i.e. diversity

using 454 pyrosequencing > culture-based sequencing), the dominant taxa; the Al-

pha- and Gamma-proteobacteria, and the Bacteroidetes remained consistently abundant

regardless of sampling technique (Brown and Bowman, 2001; Brinkmeyer et al., 2003;

Cowie, 2011). These taxa are the major groups in both Antarctic and Arctic sea ice,

implying similar environmental pressures are the most influential drivers in shaping

the sea-ice bacteria community (Brinkmeyer et al., 2003).

To prosper under such harsh environmental conditions, sea-ice bacterial utilise

several adaptations. High proportions of PUFAs in the lipid bilayer allow membrane

fluidity to be maintained at low temperatures (Nichols et al., 1999a), and increased

osmotic tolerances promote survival in both high salinity brine channels and at low

salinities, such as those following the spring melt period (Nichols et al., 1999b).

Furthermore, bacteria bearing the PR gene were recently discovered within Antarctic

sea-ice (Koh et al., 2010). This protein is most influential under conditions of stress

(Gómez-Consarnau et al., 2007, 2010; Steindler et al., 2011; Feng et al., 2013), therefore

PR may be a significant energetic contributor in the harsh conditions of the Antarctic

sea-ice ecosystem.

Colonies of the PR-bearing, Antarctic sea-ice bacteria, P. torquis are viscous and

pigmented, composed of Gram-negative, rod bacteria (Bowman et al., 1998). Six iso-

lates from Antarctic sea ice were sequenced and tentatively identified as P. torquis

by Cowie (2011). The isolates were cyropreserved at -80◦C; labelled as C1, C1∗, C4,

C4∗, C34, and C73, all of which had identical RFLP profiles and showed 98.6–100%

16S rRNA sequence similarity to one another. However, some features such as cel-

lular shape, oxidase and catalase production, and glucose utilisation were subtly

different among these isolates. Cowie (2011) suggested that these phenotypic dif-

ferences may mean the isolates differ at the strain level, or in fact may be separate

species. This study originally aimed to investigate these isolates further using DNA-

∗differentiates duplicate samples
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DNA hybridisation and amplification of alternative genes. However, after recovery

from cryopreservation, preliminary plate-culturing revealed these samples contained

mixed colonies ranging from off-white to bright orange in colour.

In order for subsequent chapters to explore how these Antarctic sea-ice bacte-

ria are influenced by light (under varying physicochemical conditions), this chapter

addressed three research goals:

1. Isolate, describe and genetically identify the cultivable taxa of Antarctic sea-ice

bacteria from samples originally reported as P. torquis.

2. Identify whether the PR gene is present in any of these Antarctic sea-ice bacte-

ria.

3. Quantify the differences in the growth patterns of each Antarctic sea-ice bacte-

ria.

As Antarctic bacteria are generally slow growing psychrophiles, incubation con-

ditions will run at relatively cold temperatures, over long time periods. ZoBell’s Ma-

rine Medium is widely used for bacterial cultures (Bowman et al., 1997; Brinkmeyer

et al., 2003), however this medium has approximately 170 times more dissolved or-

ganic carbon (DOC) than seawater. To maximise observable diversity, a variety of

media were utilised for initial growth conditions. Isolates were genetically identified

based on the sequencing of the 16S rRNA gene, and the construction of an RFLP

fingerprint library. As, the PR gene typically amplifies at a low annealing tempera-

ture (<50◦C; Atamna-Ismaeel et al., 2008; Koh et al., 2010; Cowie, 2011), non-specific

annealing and amplification presented a potential a challenge in this amplification

(Baumforth et al., 1999). Due to the high sensitivity, real time visualisation and ease

in which reaction conditions (such as the annealing temperature) can be manipu-

lated, quantitative PCR (qPCR) was used to amplify the PR gene.

2.2 Materials and Methods

In 2008 and 2009, Antarctic sea-ice bacteria samples from Cape Evans, Granite

Harbour, Cape Roberts, Terra Nova Bay and McMurdo Station were collected and

cryopreserved. For full sampling and culture methods see Cowie (2011). Of these

collections, samples C1, C1∗, C4, C4∗, C34, C73 were used in this study. All samples

were handled using aseptic technique throughout this study. Unless stated other-

wise, all reagents were purchased from Sigma-Aldrich (USA).
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2.2.1 Growth conditions

Using a sterile inoculation loop, cryopreserved bacteria were inoculated in du-

plicate, into 10 mL of sterile nutrient broth. Four different media treatments were

prepared: Difco™ Marine Broth 2216 (MB) at full strength and 10%, Reasoner’s 2A

broth (R2A) and Seawater Complete broth (SWC). For full culture media methods

see Appendix A. Bacterial cultures were then incubated for 6 days, at 12◦C, under

constant illumination (5–20 µmol photons m−2 s−1, provided by 30 W fluorescent

lamps), rotating at 70 rpm. Duplicate 10 mL volumes of un-inoculated nutrient

broth were incubated under the same conditions, acting as a negative control.

All cultures (regardless of whether visible growth was present) were streak plated

onto sterile Difco™ Marine Agar 2216 plates (MA) and incubated under the previ-

ously described conditions. MA was chosen as the most suitable solid media due

to the highest visible community growth being present in MB cultures (as described

in Section 2.3.1). After a minimum of 9 days incubation, bacterial colonies were ob-

served using microscopic examination. Individual colonies were aseptically removed

from the medium and streak plated onto fresh MA. The process of incubation and

re-streaking was repeated until each plate contained a bacterial monoculture. A

colony was deemed pure after visual examination under a stereomicroscope (Nikon,

Japan) using the colony description criteria outlined by Harley and Prescott (1993),

and through the presence of only a singular cell type after Gram staining.

2.2.2 Biochemical tests

All biochemical tests were performed in duplicate, on isolated bacterial colonies

grown on MA, incubated at 12◦C, under constant illumination (5–20 µmol photons

m−2 s−1).

Gram stain

A sterile inoculation loop was used to remove a single colony of bacteria from its

agar plate. The colony was diluted with a small drop of sterile double distilled water

(ddH2O), and heat-fixed onto a glass microscope slide. Slides were then flooded with

crystal violet solution for 1 min before rinsing with a minimal volume of ddH2O. The

slides were again flooded for 1 min, using Gram’s iodine solution, and rinsed with

ddH2O. Slides were destained with 95% ethanol for 30 s and rinsed with ddH2O

once again. Finally, safranin solution was used as a counter-stain, flooding the slides

for 30 s before a final ddH2O rinse. Slides were gently blotted and left to dry. For
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full protocol see Holt et al. (1994).

Slides were examined under a Labophot-2 compound light microscope (Nikon,

Japan), using x1000 total magnification (oil immersion). Gram-positive bacteria were

characterised by a dark purple colourisation, where as Gram-negative bacteria were

light pink in colour (Holt et al., 1994). Bacterial morphologies were described using

the criteria outlined by Harley and Prescott (1993).

Oxidase reaction

A single colony of bacteria was removed from its medium and smeared onto an

Oxidase Strip (Oxoid, UK). A positive reaction was characterised by the appearance

of a dark purple colour within 10 s (Cowan and Steel, 1965).

Catalase reaction

A single colony of bacteria was removed from its medium and covered with a

drop of 3% hydrogen peroxide solution. A positive reaction was characterised by the

rapid formation of bubbles (Cowan and Steel, 1965).

2.2.3 DNA extraction

Genomic DNA (gDNA) templates to be used in 16S rRNA amplification, were

prepared by removing 2–3 isolated colonies from their media and resuspended them

in 100 µL of UltraPure™ DNase/RNase free H2O (Life Technologies, USA). The bac-

terial cells were lysed by heating the solution to 99◦C for 15 min. The cellular sus-

pension was then centrifuged at 5000 xg for 1 min, and 5 µL of gDNA template

was collected from as close as possible to the cellular pellet, without disturbing it.

If amplification was not achieved, fresh samples were re-lysed, with the addition of

6 µL of 1% proteinase K and <1 mg lysosome (Roche, USA) to the reaction vessel.

Following a 37◦C, 30 min incubation, 10 µL of 10% sodium dodecyl sulphate (SDS)

was added to the solution. The solution was again incubated for 30 min at 37◦C,

before pelleting and extracting the gDNA template.

gDNA templates used in qPCR analyses were extracted and quantified using the

following phenol-chloroform extraction method (Wilson, 1987): 2–3 isolated colonies

were removed from their media and were suspended in 500 µL of tris EDTA (TE)

buffer (pH 8), 6 µL of 1% proteinase K and <1 mg of lysosome. The mixture was

then incubated at 56◦C for 2 hours. 15 µL of 20% SDS was added, followed by a 1

hour incubation at 37◦C. Following the addition of 100 µL of 5 M NaCl and 80 µL of
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preheated 10% cetyltrimethylammonium bromide/0.7 M NaCl solution, the mixture

was incubated for 10 min at 65◦C. 800 µL of 24:1 chloroform:isoamyl alcohol was

added (in a fume hood) and the mixture was rotated for 30 min, after which it was

centrifuged at 4◦C at 13,000 xg for 5 min. The supernatant was pipetted into a

new Eppendorf tube and 800 µL of 25:24:1 phenol:chloroform:isoamyl alcohol was

added. The mixture was again rotated for 30 min and centrifuged at 4◦C at 13,000

xg for 5 min. The supernatant was transferred into a new Eppendorf tube and 800

µL of 24:1 chloroform:isoamyl alcohol was added. Following a final 30 min rotation

the supernatant was pipetted into a new Eppendorf tube where 480 µL of ice-cold

isopropanol was gently mixed through the solution. The mixture was centrifuged

at 4◦C at 13,000 xg for 20 min before the supernatant was removed using a speed

vacuum system, leaving behind the DNA pellet. 300 µL of ice-cold ethanol was

added and the mixture was centrifuged at 4◦C at 13,000 xg for 15 min. The speed

vacuum system was used to remove the ethanol and the pellet was allowed to air

dry. Finally, DNA pellets were dissolved in 20 µL of UltraPure™ H2O.

A Quanti-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen, USA) was used to de-

termine DNA concentrations obtained. Reagents were prepared according to the

manufacturer’s instructions and were used immediately, to prevent photodegrada-

tion. Assays were performed in triplicate, in a flat top 96-well microplate (Axygen

Scientific, USA). Each reaction contained 2 µL of DNA extract, 98 µL of TE working

buffer and 100 µL of PicoGreen working reagent (SYBR-based fluorescence). The

fluorescence of each DNA extract was compared against DNA standards, ranging

from 0–100 ng of DNA. Fluorescence was measured using a FLUOstar OPTIMA

microplate reader (BMG Labtech, Germany; λmax = 480 nm). Following quantifi-

cation, DNA extracts were diluted (using UltraPure™ H2O) to 10 ng/µL. All DNA

extractions were stored at -20◦C.

2.2.4 16S rRNA gene amplification and sequencing

PCR amplification was conducted using an Applied Biosystems® 2720 Thermal

Cycler (Life Technologies, USA). All PCRs were performed in 25 µL volumes con-

taining 5 µL of gDNA template, 5 µL of x5 HOT FIREPol® Blend Master Mix (So-

lis BioDyne, Estonia), 500 nL of each primer (Table 2.1: 16S27F, 16S1492R), and

14 µL UltraPure™ H2O. Negative controls (substitution of gDNA template with

UltraPure™ H2O) were included for every reaction. All PCRs were performed under

the following conditions: an initial denaturation step at 95◦C for 15 min; 30 cycles of
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Table 2.1: Primers used for 16S rRNA gene amplification.

Primers Sequence (5’→3’) Source

16S27F AGAGTTTGATCMTGGCTCAG

16S1492R TACGGYTACCTTGTTACGACTT Lane, 1991

16S1391R CAACAGGGTTTCGAAAATAAGG

F: forward
R: reverse

denaturation, annealing and extension at 95◦C for 30 s, 50◦C for 30 s and 72◦C for

1 min 30 s, respectively; a final extension step for 7 min at 72◦C before holding at

15◦C.

3 µL of each PCR product was run on a 1.0% (w/v) DNA grade agarose elec-

trophoresis gel (Lonza, Switzerland) containing 10 µL/mL ethidium bromide for

DNA staining. 3 µL of Invitrogen™ 1 kb Plus DNA Ladder (Life Technologies,

USA) was run in conjunction to the samples. Using a PowerPac™ Basic Power Sup-

ply (Bio-Rad, USA), electrophoresis was run at 90 V in x1 tris-borate ethylenedi-

aminetetraacetic acid (TBE) buffer at room temperature for 45 min. The gel was

then visualised and photographed using a MultiDoc-It™ UV trans-illuminator (UVP

BioImaging Systems, USA). Successful amplification produced bands in the ∼1450

bp region (Lane, 1991). Unsuccessful amplifications were reattempted, using the

16S1391R primer (Table 2.1).

Following successful amplification, 10 µL of sample was sequenced by Macrogen

Inc. (Korea). Corresponding forward and reverse sequences were end trimmed and

assembled using DNA Baser (version 3.5.1). Sequence mismatches were manually

corrected through comparison of chromatograms. Assembled sequences were im-

ported into the ARB software package (version November, 2012; Ludwig et al., 2004)

and were automatically aligned according to the SILVA reference alignment (SSURef

NR 99; Pruesse et al., 2007). Alignments were manually refined, taking into account

the alignment of neighbouring species as well as the secondary structure information

of the rRNA gene (Peplies et al., 2008).

DNA distance matrixes were constructed (PHYLIP, version 3.695), comparing

isolates of this study against members of similar species (with varying genetic sim-

ilarity), previously identified isolates (Cowie, 2011) and a member of an outgroup
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species. Using these comparisons phylogenetic tree reconstruction was performed

using both the neighbour joining and maximum likelihood methods (PHYLIP, ver-

sion 3.695), rooted using the outgroup species. 1000 bootstrap replicates were cal-

culated using the majority rule, majority rule extended and strict methods (PHYLIP,

version 3.695). Use of multiple tree building methods allows the stability of resulting

topologies to be compared (Peplies et al., 2008). Dendrograms and DNA distance

matrixes presented were divided into four respective genetic clades; Gammaproteobac-

teria, Alphaproteobacteria, Bacteroidetes and Actinobacteria. The DNA distance matrixes

presented only show data of similar species.

2.2.5 PR gene amplification

A preliminary PCR was run in order to test the suitability of a variety of PR-

specific primer combinations (Table 2.2) and gDNA extracts (10 ng/µL) of samples

know to express PR, including HTCC 1062 (U. Stingl, pers. comm., 2009); 31A8 (Béjà

et al., 2000); LK (O. Béjà, pers. comm., 2009); PR+ctrl, a combined sample of 31A8

and LK gDNA (Y. Koh, pers. comm., 2013); and cultures of P. torquis (ATCC 700755).

Cultures of P. torquis (generously supplied by Assoc/Prof. John Bowman, University

of Tasmania) were grown on MA, incubated under constant illumination (5–20 µmol

photons m−2 s−1), at 4◦C (J. Bowman, pers. comm., 2013).

PCRs were performed in 25 µL volumes containing 1 µL of gDNA template (10

ng/µL), 12.5 µL of x2 iProof™ HF Master Mix (Bio-Rad, USA), 500 nL of each primer

(Table 2.2), and 10.5 µL UltraPure™ H2O. Negative controls (substitution of gDNA

template with UltraPure™ H2O) were included for every PCR. PCRs were run for 40

cycles under the reaction conditions outlined earlier (Section 2.2.4). PCR products

were visualised using gel electrophoresis (loading gels with 5 µL of 3:5 x3 bromophe-

nol blue 50% glycerol loading dye:PCR product mixture) and UV trans-illumination,

as described previously (Section 2.2.4). Successful amplification produced bands

300–500 bp in length (Béjà et al., 2001).

In order to optimise PR gene amplification, an annealing-temperature gradient

qPCR was run using the successful PR gene amplification primer sets and gDNA

extracts. qPCRs were run in an CFX96™ Real-Time System C1000™ Thermal Cycler

(Bio-Rad, USA). Reactions were performed in 20 µL volumes, containing 500 nL of

gDNA template (10 ng/µL), 10 µL of SsoFast™ EvaGreen® Supermix (Bio-Rad, USA),

500 nL of each primer (Table 2.2: ∗RYIDWF, ∗GWSIYPR), and 8.5 µL UltraPure™

H2O. Negative controls (substitution of gDNA template with UltraPure™ H2O) were
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Table 2.2: Primers used for PR gene amplification.

Primer Set Primer Sequence (5’→3’) Source

PR1
RYIDWF MGNTAYATHGAYTGG

Atamna-Ismaeel et al., 2008
GWSIYPR GGNTGGWSNATHTAYCCN

PRMod

∗RYIDWF ∗MGNTAYATHGAYTGG
Y. Koh, pers. comm., 2013∗GWSIYPR ∗GGNTGGWSNATHTAYCCN

PRSav
RYVDWF MGNTAYGCNGAYTGG

R. Cowie, pers. comm., 2013
GWVIYPR GGNTGGGTNATHTAYCCN

∗ indicates the addition of an EcoR1 restriction enzyme sequence.
F: forward
R: reverse

included for every qPCR.

qPCR consisted of an initial enzyme activation step at 98◦C for 3 min, followed by

40 cycles of denaturation, annealing and extension. Denaturation was run at 98◦C

for 10 s. The annealing step occurred at one of 8 different temperatures (45.0◦C,

45.5◦C, 46.6◦C, 48.1◦C, 50.1◦C, 51.7◦C, 52.6◦C, 53.0◦C) and was held for 30 s. A 1

min extension ran at 72◦C, followed by a fluorescence read (λmax = 520 nm). qPCR

results were plotted using the CFX Manager™ Software (version 3.1; Bio-Rad, USA),

with the SYBR autofluorescence threshold limit set to 200 relative fluorescence units

(RFU).

The taxa identified from samples of Antarctic sea-ice bacteria were examined for

the presence of the PR gene. PR-qPCR were run in triplicate using P. torquis and

31A8 as positive controls (see Section 2.3.5). Reactions were prepared following the

method outlined above, and cycling conditions are the same as for gradient qPCR,

using only the optimum annealing temperature (48.1◦C). Melt curve profiles were

constructed, comparing the qPCR amplification products of each isolate against the

positive controls, with the SYBR autofluorescence threshold limit set to a change of

100 RFU.

2.2.6 Restriction fragment length polymorphism profiling

5 µL of 16S rRNA amplification product was added to a solution of 1 µL Fermen-

tas TaqI (10 U/µL, 3000U, recognition site: T∧CGA) restriction enzyme (Thermo

Scientific, USA), 1 µL Fermentas TaqI buffer (Thermo Scientific, USA) and 3 µL

UltraPure™ H2O. RFLP reactions were incubated at 65◦C for a minimum of 3 hours.
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10 µL of each RFLP product, along with 3 µL of 1 kb Plus DNA Ladder was

loaded onto a 2.0% (w/v) MetaPhor™ agarose electrophoresis gel (Lonza, Switzer-

land). Electrophoresis was run at 90 V in TBE buffer at room temperature for 2

hours. The gel was stained for 15 min in a 0.01% ethidium bromide solution, before

destaining in TBE for 5 min. The gel was then visualised and photographed, under

the same conditions as 16S rRNA amplification product electrophoresis gels.

2.2.7 Growth curves

The growth patterns of each identified species was investigated. 20 mL stock

cultures were grown to log-phase at 12◦C, rotating at 70 rpm, under 5–20 µmol

photons m−2 s−1. 100 µL of stock culture was used to inoculate 10 mL of sterile

MB or 10% MB, in 15 mL Corning™ Pyrex™ glass screw cap culture tubes (Fisher

Scientific, USA). All cultures were grown under the previously described incubation

conditions, in triplicate, for 150 hours, along with duplicate negative controls (un-

inoculated media samples). As bacterial abundance in suspension typically forms a

linearly proportional relationship with absorbance (Koch, 1968), the absorbance of

each sample was measured as a proxy for biomass. Absorbance measurements were

made at 590 nm, using a Jenway Genova Life Science Analyser (Bibby Scientific,

UK) spectrophotometer, and an un-inoculated sample of each media was used for

calibration. Following incubation, all samples were streak-plated and incubated on

MA in order to confirm that samples remained free of contamination.

2.2.8 Statistical Analysis

The statistical methods used by Zwietering et al. (1990), Wang and Bushman

(2006) and Chase and Harwood (2011) were adapted to quantify the bacterial growth

patterns observed. This examined the duration of the lag-phase, the rate of bac-

terial growth (the gradient of the exponential phase) and the maximum biomass

(the height of the log-phase). Initial analyses and graph construction was per-

formed using GraphPad Prism® (version 5.01, 2007), and factorial analysis of vari-

ance (ANOVA) tests were conducted in IBM® SPSS® Statistics (version 20, 2011).

In order to ensure that the negative controls remained free of growth, linear

regressions were plotted against each negative control data series and a runs test

was performed to determine whether the slope of this line deviated from zero. A

repeated measures (mixed model) two-way ANOVA, with a Bonferroni post-hoc test

was used to determine if and when a treatment deviated from its respective negative
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control. The lag-phase ended when the growth curve consistently deviated from the

negative control, to at least a 99% confidence level.

The growth of each culture was plotted against a logistic model based on the

following equation:

y =
ym × y0

(ym − y0) ebx + y0

where ym = maximum cellular growth (abs cm-1), y0 = minimum cellular growth

and b = the exponential line slope (the rate of cellular growth). If necessary, lag- or

log-phases were either trimmed or extended in order to gain the most accurate fit

(R2).

Two-way factorial ANOVA tests were used to assess the effect of species and

media (plus any interaction effect) on the ym and b values. Scheffe post-hoc tests were

used (due to differences in group size) to determine differences between samples.

Finally, all b values were transformed into mean generation times (MGT) using the

following equation (Powell, 1956):

y = aebx µ = k× 0.693

k =
b

0.301
MGT =

0.693
µ

2.2.9 Storage of bacterial isolates

For use in future culture-based studies, all isolates were cryopreserved. 1.5 mL of

log-phase broth culture was centrifuged at 13,000 xg for 15 min and the supernatant

was discarded. The pellet was resuspended in 1.5 mL of MB glycerol mix (Appendix

A) and stored at -80◦C.
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2.3 Results

2.3.1 Bacterial growth and colony morphology

Full strength MB was the most suitable liquid medium, yielding visible colloidal

suspensions from all samples, with the exception of sample C4. 10% MB sustained

growth of samples C34, C4∗ and C73, though growth was minimal for the later

two. In both R2A and SWC media, a minimal amount of growth was visible only in

sample C34 (Table 2.3). Negative controls remained free of visible growth. Sample

C4∗ formed bright orange colonies, following 15 days of incubation on MA. When

samples C1, C1∗ and C73 were grown on MA, these all formed circular, off-white

colonies, with a pearlescent shine, after 22 days of incubation. As with the liquid

media samples, C4 did not grow on MA plates. See Supplementary Table 1 for full

colony morphology descriptions.

Sample C34 was the fastest growing sample, producing colonies after 9 days of

incubation on MA. Initial colonies were circular, off-white in colour with a pearles-

cent shine. However, after another 5 days of incubation, colonies of various shades of

orange were also evident (Fig. 2.1A). In total, 6 isolates were recovered (in duplicate)

from sample C34. After 7 days of growth on MA plates, isolate 1 formed many large

(∼1 mm), off-white colonies with a pearlescent shine. Isolates 2–5 all showed similar

growth patterns, producing a relatively high number of small (∼0.5–1 mm) colonies,

however 2 different colours were identified. Isolates 2 and 5 formed bright

Table 2.3: Growth of bacterial samples under different media conditions.

Sample MB 10% MB R2A SWC MA

C1 + - - - +

C1∗ + - - - +

C4 - - - - -

C4∗ ++ + - - ++

C34 ++ ++ + + ++

C73 + + - - +

– = no growth
+ = sparse growth
++ = strong growth

26



Section 2.3: Results

Fi
gu

re
2.

1:
B

ac
te

ri
al

co
lo

ni
es

gr
ow

n
fo

r
14

da
ys

on
M

A
pl

at
es

.
A

:s
am

pl
e

C
34

,B
:i

so
la

te
1a

,C
:i

so
la

te
3b

,D
:i

so
la

te
5a

,E
:i

so
la

te
6a

.
Sc

al
e

ba
r

is
eq

ua
lt

o
1

cm

(A
)

or
2

cm
(B

-E
).

27



Chapter 2: Identification and Investigation of Cultured Antarctic Sea-ice Bacteria

Table 2.4: Colony morphology of bacterial isolates originating from sample C34.

Isolate Colour Texture Form Elevation Margin Size (mm)

1a Off-white, pearl Glossy Circular Convex Entire ≥2

1b Off-white, pearl Glossy Circular Convex Entire 1–2

2a Bright orange Glossy Punctiform Pulvinate Lobate 0.5–1

2b Bright orange Glossy Punctiform Pulvinate Entire 0.5–1

3a Dark orange Glossy Circular Pulvinate Entire 0.5–1

3b Dark orange Glossy Circular Convex Entire ≤0.5

4a Dark orange Glossy Circular Pulvinate Entire 0.5–1

4b Dark orange Glossy Circular Pulvinate Entire 1–2

5a Bright orange Glossy Punctiform Pulvinate Entire 1–2

5b Bright orange Glossy Punctiform Pulvinate Lobate 0.5–1

6a Pale yellow Matt Punctiform Pulvinate Entire ≤0.5

6b Pale yellow Matt Punctiform Pulvinate Entire ≤0.5

orange colonies (visually identical to those in sample C4∗), whereas isolates 3 and 4

were a much darker shade of orange and produced a clear area in the agar surround-

ing each colony (Fig. 2.1A). Isolates 4 and 5 grew in close proximity to each other,

despite their distinctly different colouring. Isolate 6 was extremely slow growing,

yielding only a few bright yellow colonies, all ≤0.5 mm. Each isolate is described

in Table 2.4 and photographs of phenotypically distinct isolates are show in Fig-

ure 2.1B-E.

2.3.2 Biochemical tests and cellular morphology

Gram stains

Samples C1, C1∗, C73 and isolate 1 were all Gram-negative cocci. Sample C4∗,

as well as isolates 2 and 5 were Gram-negative long filamentous bacilli. Isolates 3

and 4 formed clusters of Gram-negative cocci, that ranged from dipilo- to staphylo-

cocci morphologies. Isolate 6 was the only Gram-positive bacteria, forming groups

of coccoid tetrads (Table 2.5; Sup. Table 2).

Oxidase and catalase reactions

All samples and isolates were both oxidase and catalase positive.
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Table 2.5: Cellular morphology of bacterial isolates originating from sample C34. Size is given in

width × length of an individual cell.

Isolate Gram stain Cell type Size (µm)

1a – Coccus 1×1

1b – Coccus 1×1

2a – Curled filament 1×varied

2b – Curled filament 2×varied

3a – Clustered cocci 2×2

3b – Clustered cocci 2×2

4a – Clustered cocci 2×2

4b – Clustered cocci 2×2

5a – Curled filament 1×varied

5b – Curled filament 2×varied

6a + Coccoid tetrad 1×1

6b + Coccoid tetrad 1×1

– = negative
+ = positive

2.3.3 16S rRNA gene amplification and phylogenetic analysis

16S rRNA gene amplification was successful in samples C1, C1∗, C4∗ and C73,

as well as isolates 1, 3, 4 and 6, all producing bright electrophoresis bands at ∼1500

bp (Fig. 2.2Ai, Aii). Under normal conditions, isolates 2 and 5 produced very lit-

tle to no amplification product (Fig. 2.2Aii). Re-amplified of these isolates, using

16S1391R as an alternative reverse primer also yielded minimal amplification product

(Fig. 2.2B), however strong amplification was achieved using the alternative lysing

method (Fig. 2.2C).

The 16S rRNA gene sequences of samples C1, C1∗ and C73 clustered within the

Gammaproteobacteria, showing 99.6–100% sequence similarity to Psychrobacter nivi-

maris (Table 2.6A). Sample C4∗ had 97.1–98.1% sequence similarity to Polaribacter

dokdonensis, a member of the Flavobacteriaceae (Table 2.6C). 16S rDNA sequencing

revealed four distinct species from sample C34. Isolate 1 clustered closely with sam-

ples C1, C1∗ and C73, showing 99.7–100% sequence similarity to Ps. nivimaris (Ta-

ble 2.6A). Isolates 3 and 4 grouped with the Alphaproteobacterium, Paracoccus marcusii
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Figure 2.2: Electrophoresis gel showing 16s rRNA gene amplification bands. Ai and Aii show ampli-

fication results using the standard amplification protocol; B, amplification results using the alternate

reverse primer (16S1391R); C, amplification results using the modified lysing protocol. Bp positions of

1 kb Plus DNA Ladder are shown.

(97.7–100% and 97.9–100% respective sequence similarities; Table 2.6B). Isolates 2

and 5 had 96.6–98.1% and 97.0–98.1% sequence similarity, respectively to Po. dok-

donensis, clustering closely with sample C4∗ (Table 2.6C). Finally, isolate 6 grouped

within the Gram-positive Actinobactium genus Micrococcus, sharing 99.6–99.9% se-

quence similarity with M. antarcticus and 98.49–98.73 sequence similarity with M.

luteus (Table 2.6D).

Four phylogenetic trees were constructed, grouping samples within the

Gammaproteobacteria, the Alphaproteobacteria, the Bacteroidetes or the Actinobacteria

(Fig. 2.3A-D). No major differences were observed between tree construction meth-

ods, thus the dendrograms presented in Figure 2.3A-D were built using neighbour-

joining algorithms, with bootstrap values calculated through the majority rule ex-

tended method.

2.3.4 Restriction fragment length polymorphism analysis

RFLP profiles were created (in duplicate) for the four phylotypes identified

through 16S rDNA sequencing; isolates 1, 2, 3 and 6. Each phylotype created a

unique profiles consisting of 3–5 distinct bands ranging from ∼75–925 bp in length

(Sup. Fig. 2).
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Figure 2.4: Electrophoresis gel showing PR gene amplification bands. Gel is divided into sections for

each primer set used. Abbreviated species names are shown. Bp positions of 1 kb Plus DNA Ladder

are shown.

2.3.5 PR gene amplification

DNA extraction

All preparations of DNA template using the phenol-chloroform extraction

method were successful, with DNA concentrations varying from 0.360–89.862 ng/µL

(Sup. Table 3). P. torquis replicate b and both replicates of Pa. marcusii yielded less

than 10 ng/µL of DNA, and consequently were not diluted.

PCR optimisation

PR rRNA gene amplification was successful using primer set PRMod, however no

amplification was achieved using either the PR1 or the PRSav primer sets. Of the

known PR-positive samples, PR rRNA gene amplification was only achieved using

gDNA extracts from P. torquis and sample 31A8, with electrophoresis bands observed

at ∼400 bp (Fig. 2.4). Several other faint bands were observed, however these were

deemed to be artefacts (as discussed in Section 2.4). Using an annealing temperature

gradient qPCR, the earliest amplification for both 31A8 (19.8 cycles) and P. torquis

(30.95 cycles) occurred at 48.1◦C (Sup. Fig. 1; Sup. Table 4). This was deemed

to be the optimum annealing temperature, and hence was used for all subsequent

PR-qPCRs.

qPCR of the PR gene

Samples 31A8, P. torquis, Ps. nivimaris and Po. dokdonensis yielded positive PR

gene amplification. The melt curve data supports this, with the amplification prod-

ucts of 31A8, P. torquis and Po. dokdonensis all melting at 79◦C (±1◦C). Ps. nivimaris

differs slightly from this, melting at 83◦C (Fig. 2.5; Sup. Table 5). Although Pa.

marcusii showed a similar melting range (80.2◦C), a very low yield of PCR product
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Figure 2.5: qPCR PR gene amplification. Melt curves profiles of each amplification product are pre-

sented in the insert. Sample 31A8 is shown in black, P. torquis red, Ps. nivimaris green, Po. dokdonensis

blue, Pa. marcusii orange, Micrococcus sp. purple, and negative controls are in grey. All replicates are

shown. SYBR autofluorescence threshold limit is set to 200 relative fluorescence units (RFU) in the PR

gene amplification plot, and a change of 100 RFU [-d(RFU)/dT] for the melt curve profile insert.

was produced after ∼35 cycles (Fig. 2.5; Sup. Table 5). Similarly, Micrococcus sp.

yielded very low volumes of product, and did not begin to amplify until 36 cycles.

In contrast to the other products, the melt profile of Micrococcus sp. was dramatically

higher (91◦C; Fig. 2.5; Sup. Table 5).

2.3.6 Growth curves

Positive growth occurred in all samples over the 150 hour incubation. Neither

the mean (MB: M = 0.004, SE = <0.001; 10% MB: M = 0.003, SE = 0.001) nor the

line slope (MB: F1, 22 = 2.099, p = 0.162; 10% MB: F1, 22 = 1.143, p = 0.297; Fig 2.6) of

either negative control differed from zero. Plate streaking revealed replicate b of Ps.

nivimaris, grown in 10% MB to contain a fungal contaminant, therefore this sample

was excluded from all further analyses. The logistic model showed an extremely

strong fit to all data sets, with all R2 values being >0.95 (Table 2.7).
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Figure 2.6: Mean growth curves of Antarctic sea-ice bacteria isolates grown in: A. full strength MB

and B. 10% MB. Ps. nivimaris is shown in red, Po. dokdonensis blue, Pa. marcusii green, Micrococcus sp.

purple, and negative controls are in grey. Error bars represent standard errors.
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Table 2.7: Variables derived from growth curve experiments. Values are means of data fitted to the

logistical model, with standard errors in parentheses. Abbreviated species names are shown.

Media Species n df R2 Lag (h) Ym (abs cm-1) b (abs cm-1) MGT (h)

MB

Ps. niv. 3 9 0.987 21.75 0.972 (0.013) 0.008 (<0.001) 38.2

Po. dok. 3 9 0.995 44.75 0.713 (0.024) 0.013 (<0.001) 22.5

Pa. mar. 3 9 0.991 28.5 0.821 (0.007) 0.009 (<0.001) 33.3

Microc. 3 8 0.993 44.75 0.607 (0.026) 0.006 (<0.001) 52.8

10% MB

Ps. niv. 2 9 0.967 21.75 0.229 (0.005) 0.029 (0.010) 10.2

Po. dok. 3 10 0.995 69.5 0.293 (0.008) 0.005 (<0.001) 56.1

Pa. mar. 3 8 0.977 21.75 0.294 (0.003) 0.004 (<0.001) 73.0

Microc. 3 8 0.983 44.75 0.249 (0.009) 0.005 (<0.001) 58.7

Regardless of media treatment, Ps. nivimaris and Pa. marcusii showed similar lag-

phases, lasting for ∼20–30 hours. The lag-phases of Po. dokdonensis and Micrococcus

sp. were also similar across media strengths, ranging from ∼45–55 hours (Fig. 2.6;

Table 2.7).

Media strength had a major effect on the maximum biomass across species (F1, 15

= 2324, p <0.001), such that the mean maximum biomass was more than twice as

high in full strength MB (M = 0.778 abs cm-1, SE = 0.041) than in 10% MB (M =

0.270 abs cm-1, SE = 0.009). The effect of species (F3, 15 = 47.97, p <0.001) and the

interaction effect (F3, 15 =58.36, p <0.001) were both significant, indicating that the

media strength affected species differently. This was confirmed by the Scheffe post-

hoc test, showing that the maximum biomass differed for every species when grown

in full strength MB (p <0.001), as opposed to 10% MB where the Po. dokdonensis

and Pa. marcusii exhibited only slightly higher biomasses than Ps. nivimaris (p <0.05;

Fig. 2.6; Sup. Table 6).

In contrast to the maximum biomass, the rate of growth was unaffected by the

media concentration (F1, 15 = 1.620, p = 0.2225). Both the species (F3, 15 = 12.93, p =

0.0002) and the interaction (F3, 15 = 52.75, p <0.0001) yielded a main effect. Post-hoc

tests revealed the rate of growth in Ps. nivimaris grown in 10% MB to be significantly

higher than all other cultures, regardless of species or media strength (p <0.001;

Fig. 2.6; Sup. Table 6).
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2.4 Discussion

When culturing samples of Antarctic sea-ice bacteria, full strength MB was the

most suitable growth media, yielding growth in all samples with the exception of

sample C4. Although no growth occurred, that does not necessarily mean no bacte-

ria were present in this sample, rather the conditions investigated in this experiment

were not favourable for growth of any species that may be present. There is poten-

tial to find bacteria in sample C4 using different incubation conditions, or through

culture-independent sequencing techniques.

Using colony morphology and Gram staining, six isolates were separated from

within sample C34. Dendrograms comparing the 16S rRNA gene sequences of these

isolates confirmed that the initial phenotypic characterisations adequately distin-

guished different bacterial taxa. Furthermore, the unique RFLP fingerprints created

for each isolate mirrored the results of the 16S rRNA gene sequencing. Interestingly,

samples obtained from a mixed colony contained both the bright orange isolate 5

(grouping closely with Po. dokdonensis) and the darker orange isolate 4 (grouping

with Pa. marcusii). These two strains were isolated twice (i.e. isolates 2 and 5: Po.

dokdonensis, and isolates 3 and 4: Pa. marcusii) due to their tendency to grow in close

proximity to one another (Fig. 2.1A).

The majority of the isolates grouped within three dominant Antarctic taxa; the

Bacteroidetes, Alpha- and Gamma-proteobacteria. These three groups have also been

identified as the dominant bacterial taxa present in Antarctic sea ice regardless of

culture-based (Bowman et al., 1997; Staley and Gosink, 1999; Murray and Grzymski,

2007) or culture-independent (Brown and Bowman, 2001; Brinkmeyer et al., 2003;

Cowie, 2011) methodology. Isolate 6, grouped within the Actinobacteria genus Micro-

coccus, a taxon that has also been previously identified in Antarctic sea-ice samples

(Liu et al., 2000). The 3% sequence dissimilarity criterion used in this study is typ-

ically indicative of species differentiation (Stackebrandt and Goebel, 1994), however

sequence data alone can be misleading. For example Bacillus globisporus and Bacillus

psychrophilus share 99.8% 16S rRNA gene similarity (Fox et al., 1992) despite very

low levels (23%) of DNA-DNA hybridisation similarity that indicate they are sepa-

rate species (Nakamura, 1984). To confirm the species identifications made thus far, a

comparison of the phenotypic information and environmental ranges of genetically

similar species were made:
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Ps. nivimaris is formally described as a Gram-negative, oxidase and catalase

positive, psychro- and halo-tolerant coccoid which forms circular, cream coloured

colonies (Heuchert et al., 2004); features that are all shared by samples C1, C1∗, C73

and isolate 1. Ps. nivimaris was first isolated from POM originating from the South-

ern Ocean (Heuchert et al., 2004), with the Psychrobacter genus being wide spread

across the Antarctic environment (Bowman et al., 1997).

Despite being initially isolated from the seawaters of Korea and growing opti-

mally at 25-28◦C, Po. dokdonensis is a common Antarctic species (Yoon et al., 2006).

In fact, the Polaribacter genus accounted for ∼37% of the bacterial diversity in the

Antarctic microbial survey of Cowie (2011). Interestingly, Po. dokdonensis (MED152)

possesses a PR gene and fixes more bicarbonate when grown under light-exposed

conditions (González et al., 2008). Yoon et al. (2006) described Po. dokdonensis as

an oxidase and catalase positive, Gram-negative rod which forms circular, orange

colonies; matching the phenotypic description of sample C4∗ and isolates 2 and 5.

However, the percent divergence of these isolates 16S rRNA gene sequences from

that of Po. dokdonensis ranged from 1.94–3.36% (Table 2.6C). This implies that these

isolates may represent a different strain or perhaps species, than the Po. dokdonensis

to which they were compared.

In general, the Paracoccus genus is highly metabolically versatile, with some

members undergoing chemotrophic growth through use of hydrogen as an elec-

tron donor (Friedrich and Mitrenga, 1981). Pa. marcusii is unique amongst this

genus, being the only species to synthesise carotenoids, giving this species its dis-

tinctive orange pigment (Harker et al., 1998). Pa. marcusii is formally described as

a Gram-negative, oxidase and catalase positive, short chain forming coccoid or rod

that grows as smooth, flat and bright orange colonies (Harker et al., 1998). Cellular

morphology descriptions of isolates 3 and 4 are identical to this, however colonies

of these isolates were raised to a convex-pulvinate level. Although this slightly dif-

fering phenotypic property suggest that isolates 3 and 4 do not group within Pa.

marcusii, the distinct orange pigment provides evidence to the contrary. Perhaps

differentiation occurs at the strain level.

M. antarcticus utilises a unique cellular fatty acid profile allowing it to be the

only cold adapted species of the Micrococcus genus (Liu et al., 2000). Despite this

specialisation, M. antarcticus shares almost all of its phenotypic traits with its close

relative, M. luteus. Both these species are oxidase, catalase and Gram-positive, both
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grow as coccoid tetrads and form bright yellow colonies (Liu et al., 2000; Wieser

et al., 2002). Isolate 6 groups phenotypically and genetically with both of these

species. Given that isolate 6 was isolated from Antarctic sea ice, combined with

the small differences in 16S rRNA gene sequencing similarities, it is likely that this

bacterium is M. antarcticus. Interestingly, Micrococcus is one of the few genera that

Cowie (2011) identified in culture and not through use of pyrosequencing.

This last example emphasises the importance of utilising a polyphasic approach

to characterisation (Pedrós-Alió, 2006; Donachie et al., 2007). As the genotypic, phe-

notypic and environmental evidence are for the most part in support of one another, I

am confident in the identifications made, however further genetic investigation such

as DNA-DNA hybridisation, is needed if these assignments are to be confirmed

to the species level. Cowie (2011) cultured similar taxa, with six isolates grouping

within the Psychrobacter, two identified as Po. dokdonensis, one likely to be Paracoccus

sp. and three isolates classified as Micrococcus. However, as Cowie (2011) had ini-

tially identified all samples used throughout this study as pure cultures of P. torquis,

it is peculiar that this species was not found in any of the samples investigated. Per-

haps the culture conditions examined in this study were not advantageous to this

particular species, resulting in P. torquis being outcompeted by the other species in

these samples. There is also potential that P. torquis did not survive cryopreservation,

or that the incubation time was not long enough for this species to come out of lag-

phase. Isolates of P. torquis have previously been cultured successfully when grown

at 4◦C over periods of time >two weeks (Bowman et al., 1998; Feng et al., 2013).

Highly varied concentrations of gDNA template were obtained using the phenol-

chloroform extraction (0.360–89.862 ng/µL). Similarly, when gDNA templates were

extracted for 16S rRNA gene amplification, isolates 2 and 5 failed to amplify

(Fig. 2.2Aii and B). Successful amplification was achieved when an ‘enhanced lysing’

(using proteinase K, lysosome and SDS) method was used (Fig. 2.2C). However,

these isolates grouped closely with sample C4∗, which was successfully amplified

using the standard 16S rRNA gene amplification method, and it is likely members

of the same species would amplify under the same conditions. Extraction of genetic

material may have been affected by the metabolic capabilities or specific cellular pro-

cesses (such as production of exopolysaccharides) of each species, or perhaps due to

the age of the culture. Some species, such as Po. dokdonensis are highly viscous, and

the suspension of these colonies in UltraPure™ H2O may not have been conducted

uniformly.
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Using qPCR, I identified the PR gene in P. torquis, Ps. nivimaris and Po. dokdonen-

sis (Fig. 2.5). PR has been previously documented in P. torquis (Feng et al., 2013) and

specific strains of Po. dokdonensis (Gómez-Consarnau et al., 2007; González et al.,

2008). To my knowledge, this is the first time the PR gene has been found in Ps.

nivimaris. Melt curve analyses have the potential to differentiate single bp changes

(Ansevin et al., 1976), therefore the ∼4◦C shift in the melt curve profile of Ps. nivi-

maris suggests that the gene sequence of this species differs from the others exam-

ined. As Po. dokdonensis and P. torquis are known to possess G-PR (González et al.,

2008; Koh et al., 2010), I expect that Ps. nivimaris contains a B-PR variant. This is

a likely assumption, given that other sea-ice Gammaproteobacteria, such as Glaciecola

punicea possess B-PR (Qin et al., 2012). However, the PR assignment of Ps. nivimaris

will need to be confirmed through gene sequencing and subsequent examination of

amino acid position 105.

PR gene amplification results for Pa. marcusii were inconclusive, in that amplifica-

tion did not begin until ∼35 cycles. This product showed a similar melt temperature

to PR-positive products, however due to the minute amount of amplification, the

melt curves for this species barely breached the SYBR threshold limit (Fig. 2.5). It is

likely that this species does possess a PR gene, however specific PCR optimisation

and primer design are necessary to confirm this.

Micrococcus sp. also did not begin to amplify until ∼35 cycles, and after 40 cy-

cles each replicate had produced a variable amount (∼500-750 RFU) of amplification

product (Fig. 2.5). Furthermore, the melt temperatures of Micrococcus sp. PR-qPCR

products were ∼10◦C higher than all other amplification products. Based on these

observations Micrococcus sp. does not possess a PR gene, and the amplification is

likely due to production of primer-dimer or non-specific primer annealing. Am-

biguous annealing is a likely possibility due to the low annealing temperature used

(Baumforth et al., 1999); ∼2◦C lower than other PR-PCR (Atamna-Ismaeel et al., 2008;

Koh et al., 2010; Cowie, 2011).

PR gene amplification was only achieved using the PRMod primer set (Fig. 2.4).

This result is curious as the only difference between this and the PR1 primer set is

the addition of an EcoR1 restriction enzyme sequence (used for enzymatic diges-

tion) to the 5’ end of each primer (Koh, E., pers. comm., 2013). Therefore, this

should not have affected the primers performance in regards to product amplifi-

cation. There is potential that the PR1 primer set ordered may have been vitiated
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during creation, transport or storage, reducing its effectivity. All the primers used

contain a very high proportion of ambiguous bases (M, N, S, W, Y), even being

present at the ends of primers (Table 2.2). These are features that should be avoided

when designing a primer as they can result in non-specific primer annealing (Baum-

forth et al., 1999). In Figure 2.4 multiple faint bands can be observed ranging from

∼650–1500 bp (particularly in sample HTCC). These small amounts of amplification

are likely due to the ambiguous nature of the primers being used. A primer set

that avoids ambiguous bases, in favour of annealing specifically to the PR gene se-

quence, should result in greater amplification levels. Although the consistent melt

temperatures and relatively high yields of PR amplification product suggest that

my target gene was amplified, future PR gene identification studies should use a

more specific primer design. For example, the primer set used by Feng et al. (2013)

to amplify the PR gene of P. torquis: 5’TATGGCCATGTTGGCTGCAT3’ (forward),
5’CTGAAGCTAGACCCCACTGC3’ (reverse) may be a possible first step.

Data sets of the growth curves experiment have an excellent fit to the logistic

model, with R2 values >0.95. This provides confidence in the growth rates and

maximum biomass values obtained. As one replicate of Ps. nivimaris grown in

10% media was excluded (due to contamination), this lowered the replication of this

treatment to two. Although this reduces confidence in the strength of this data, little

variation was seen across replicates (Fig. 2.6) allowing for strong comparisons to still

be made. To avoid this issue, future growth curves experiments will replicate to at

least an n value of four.

The relatively long lag-phases (>20 hours) observed in this culture experiment

parallel trends seen in other bacterial species where downshifts in temperature in-

creased lag-phases (Mellefont and Ross, 2003). The lag-phases observed during the

growth curve experiment were highly similar across species, possibly as a result of

the sampling frequency during this initial growth period. Increased sampling res-

olution has the potential to reveal finer differences between samples. For example,

observations of Figure 2.6 indicate that Ps. nivimaris enters the exponential-phase

before the first time-point measurement (21.75 hours).

The MGTs observed in this experiment (∼10–70 hours; Table 2.7) show a signif-

icantly broader and longer range than those observed for similar Antarctic sea-ice

bacteria cultured at 13◦C by Cowie (2011). For example, the MGT of Po. dokdonensis

grown by Cowie (2011) was more than twice as fast as the MGT documented for
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the same species in this study, with the only differences in incubation conditions

being one degree in temperature and the use of tryptic soy broth rather than MB.

Perhaps another factor, such as the age of the inoculate culture could be responsible

for this disparity (Kolter et al., 1993). Future studies, prior to growth curve analysis

should passage the cultures serval times through a medium that results in success-

ful growth. This will likely reduced the lag-phase variability and result in more

consistent MGT calculations (J. Bowman, pers. comm., 2014).

When grown in full strength MB, large differences in the maximum biomasses

of each species were observed. In contrast, when samples were grown in 10% MB

only minimal differences occurred. This indicates that the reduced strength of the

media has become the limiting factor in growth across species. Interestingly, all

species (regardless of media strength) reach their maximum growth after ∼75 hours

of growth, with the notable exception of Ps. nivimaris grown in 10% media. The rate

of growth is much faster in this treatment, reaching its maximum growth after only

∼25 hours. This, along with the apparent short lag-phase of Ps. nivimaris provides

this species with a distinct competitive advantage.

This study combines genetic, phenotypic, biochemical and ecological informa-

tion, to identify the cultivable members of Antarctic sea-ice bacteria samples. The

growth curves experiment provided an excellent baseline study, which is expanded

through the manipulation of physicochemical variables in Chapter 3. As this is the

first discovery of the PR gene in Ps. nivimaris, any light-response experiments using

this isolate will be of great interest.
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CHAPTER 3

Light Enhanced Growth of

PR-bearing, Antarctic Sea-ice

Bacteria

3.1 Introduction

Heterotrophic bacteria that possess PR can theoretically use solar radiation to

drive ATP synthesis, hence increasing their growth (Béjà et al., 2001; Fuhrman et al.,

2008). Due to the lack of cultivable PR-bearing species, the in vivo influence of PR

remains difficult to quantify. Several studies show that no light-induced growth oc-

curs in PR-bearing bacteria (Giovannoni et al., 2005; Riedel et al., 2010), while other

studies have reported a variety of irradiance effects, such as greater bicarbonate fixa-

tion (González et al., 2008), the upregulation of metabolic processes (Steindler et al.,

2011), increased PR gene expression and transcription (Lami et al., 2009; Kimura

et al., 2011), or the direct pumping of hydrogen ions (Yoshizawa et al., 2012). Fur-

thermore, light-exposed PR-bearing bacteria increase in growth and survival when

starved of nutrients or organic matter (Gómez-Consarnau et al., 2007, 2010). This has

led to the general hypothesis that PR has the greatest influence under oligotrophic

conditions. However, increased growth has recently been observed in light-treated

samples of the PR-bearing bacteria, P. torquis, when grown under sub- or supra-

optimal salinities (Feng et al., 2013). Therefore, PR may act as a broad response to

physicochemical stressors.

As PR-bearing bacteria are prevalent throughout Antarctic sea ice (Koh et al.,

2010), I suggest this protein may be increasing the growth of Antarctic sea-ice bac-

teria, as a response to the cold. As steep vertical gradients of light, temperature

and salinity, as well as fluctuations in nutrients and organic matter are characteristic

of annual Antarctic sea ice (Kottmeier and Sullivan, 1988; Thomas and Dieckmann,

2009), it is likely that PR contributes significantly to the ecology of this ecosystem.

A photoheterotrophic lifestyle would be a large competitive advantage in a polar

ecosystem, given the seasonal availability of light.
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Ice attenuates wavelengths at different rates, resulting in blue-light being pre-

dominant throughout an ice column (Buckley and Trodahl, 1987). This is an inter-

esting variable for PR-bearing bacteria in Antarctic sea ice, theoretically favoring the

B-PR variant. Koh et al. (2010) investigated the vertical distribution of PR variants, in

annual Antarctic sea ice, finding a higher proportion of B-PR in the mid and top sec-

tions of the ice column, with G-PR bacteria being most prevalent at the bottom. Koh

et al. (2010) attributed this bottom-associated G-PR dominance with a high accumu-

lation of microalgae in the bottom ∼20 cm (Sullivan and Palmisano, 1981) reflecting

a large amount of green light. Furthermore, the light enhanced growth of D. dong-

haensis (a G-PR-bearing, close relative of Po. dokdonensis) is caused almost exclusively

the by absorption of green-light (Gómez-Consarnau et al., 2007).

Of the PR-bearing, Antarctic sea-ice bacteria isolated in Chapter 2, P. torquis and

Po. dokdonensis both possess G-PR (González et al., 2008; Koh et al., 2010; Feng et al.,

2013). The PR variant of Ps. nivimaris is unknown, as the PR gene of this species

is yet to be sequenced. However, as the melt curve profile of the Ps. nivimaris PR

amplification product is shifted (in comparison to P. torquis and Po. dokdonensis;

Chapter 2, Fig. 2.5), this species may posses a B-PR. Furthermore, all three of these

species are not known to possess any photo-pigments (such as bacteriochlorophyll)

other than PR. Therefore, any light responses of these species is likely due to the

influence of PR.

This study aimed to assess the influence of light on the growth of these PR-

bearing bacteria, previously isolated from Antarctic sea ice. To explore the hypothe-

sis that PR is most influential under conditions of stress, incubations were conducted

in a variety of media and across several temperatures. Furthermore, cultures were

grown under specific wavelengths, assessing the influence of PR spectral tuning.

This study developed a novel method, in which bacterial cultures were incubated

within annual Antarctic sea ice. This exposed cultures to the typical fluctuations of

light and temperature of their natural environment, whilst still allowing the manip-

ulation of test factors, such as media strength. Laboratory-based incubations were

run concurrently, allowing finer manipulation of variables.
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3.2 Materials and Methods

This study used a mixed sample of Antarctic sea-ice bacteria [sample C34; Cowie

(2011)] containing Ps. nivimaris, Po. dokdonensis, Pa. marcusii and Micrococcus sp. (as

identified in Chapter 2), as well as isolated cultures of the PR-bearing, Antarctic sea-

ice bacteria P. torquis, Ps. nivimaris and Po. dokdonensis. All samples were handled

using aseptic technique throughout this study. Unless stated otherwise, all reagents

were purchased from Sigma-Aldrich (USA).

3.2.1 In situ incubations

Study site

Incubations were undertaken within the annual sea ice at Cape Evans, Antarc-

tica (77◦ 38’S, 166◦ 24’E; Fig. 3.1). To minimise spatial variation, experiments were

performed in adjacent sections of 1.7 m annual ice.

2012 incubation experiment

From late November to early December 2012, the growth of the mixed Antarctic

sea-ice bacteria culture was investigated. A 20 mL stock culture was grown to log-

phase at 12◦C, under constant illumination (5–20 µmol photons m−2 s−1), rotating at

70 rpm. In order to reduce cold shock, this culture was subsequently maintained at

4◦C for >7 days. Following this period, 100 µL of stock culture was used to inoculate

10 mL of sterile media, in 15 mL Corning™ Pyrex™ glass screw cap culture tubes

(Fisher Scientific, USA) sealed with parafilm, replicated four times. The media used

in this experiment were M0 (DOC and NaCl concentrations equivalent to MB), M1

(reduced NaCl), M2 (increased NaCl) and M3 (reduced DOC). Concurrent to media

treatments, cultures were incubated under the following light treatments: ambient-

light, complete darkness, red-light (‘021 Gold Amber’ 640 nm), green-light (‘122 Fern

Green’ 490 nm) and blue-light (‘141 Bright Blue’ 440 nm) using Live Performance

polycarbonate filters (Chris James Lighting Filters). All light filters resulted in a

∼50% photon reduction from ambient light.

Using a 14 cm diameter Kovacs ice corer (Kovacs Enterprise, USA), a series of ice

cores were drilled to depths of 0.3 m, 0.7 m and 1.0 m, and extracted from the ice.

A variety of methods were assessed as a means of sealing and preventing refreezing

of these ice-core holes (Sup. Fig. 3), with a bung made from clear polyurethane

and ice-shavings being utilised during these experiments. Bacterial cultures were

grouped into light-treatment sets and incubated within these ice-core holes for 11
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Figure 3.1: In situ incubation study site, Ross island, Antarctica. A: Antarctic continent; B: Ross Sea

shoreline; C: Ross Island; D: Cape Evans. Adapted and redrawn from http://lima.usgs.gov.

days. Duplicate negative controls (un-inoculated samples of each media type) were

also incubated in situ, under ambient-light conditions at each depth.

Samples were periodically removed from the ice and their absorbance was mea-

sured at 590 nm, using the methods outlined in Chapter 2. A 250 µL and duplicate

750 µL subsamples were taken from each culture at each time point. 250 µL subsam-

ples were suspended in 50% glycerol and stored at -80◦C, and 750 µL subsamples

were fixed in 2% formalin and stored at -20◦C. To minimise variation during this

sampling period, cultures were stored in an insulated, light proof container, and

were promptly returned to their ice-core holes afterwards.

2013 incubation experiment

The growth of P. torquis was investigated, from late November to early Decem-
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Figure 3.2: 2013 in situ incubation method. A: light treatments; B: sample being inserted into an ice

auger hole; C: sample suspended within an ice core (shown in transection); D: Drilling ice auger holes

in preparation for sample suspension.

ber, 2013. Samples of P. torquis were cultured in either MB or 10% MB, replicated five

times, prepared under the conditions described previously. An additional light treat-

ment was added using ‘209 0.3 Neutral Density’ Live Performance polycarbonate

filters (Chris James Lighting Filters; Fig. 3.2A-C), reducing ambient light by ∼50%,

whilst maintaining the proportions of ambient wavelengths.

Using a 5 cm diameter Kovacs ice auger (Kovacs Enterprise, USA), a series of

holes were drilled to a depth of 0.7 m (Fig. 3.2D). Each sample was randomly allo-

cated to an auger hole and suspended at 0.5 m within the sea ice (Fig. 3.2B). Each

hole was then partially refilled using the ice shavings produced during the drilling

process, ‘sealing’ the samples within the auger holes. This process was replicated

for three separate incubation times: 6 days, 10 days and 13 days, allowing for in-

dependent sampling to occur at these different time points. This resulted in 180

independent bacterial cultures being incubated within the sea ice. Duplicate nega-

tive controls (un-inoculated samples of each media type) were also incubated in situ,

under ambient light conditions for 13 days.

Following their incubation period, samples were removed from the ice by cen-

tring a Kovacs ice corer above each auger hole and extracting a 14 cm diameter

ice core containing the suspended sample (Fig. 3.2C). Following extraction, the ab-

sorbance (590 nm) of each sample was measured, as previously described. A 4 mL
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and two 2 mL subsamples were taken from each culture. The first was fixed in 2%

formalin, and the later two were fixed in 1% formalin and suspended in 30% glycerol,

respectively. Formalin-fixed subsamples were stored at -20◦C, whereas subsamples

in glycerol were stored at -80◦C.

Metadata including light, cloud cover and snow depth was collected daily. See

Supplementary Table 7.

3.2.2 Laboratory-based incubations

The growth of pure cultures of Antarctic sea-ice bacteria possessing a PR gene

(P. torquis, Ps. nivimaris and Po. dokdonensis) was investigated. Samples were cul-

tured in either MB or 10% MB, prepared under the conditions described previously

(Section 3.2.1). Cultures were incubated for up to 870 hours, at three different tem-

peratures (12◦C, 4◦C and -1◦C), either constantly illuminated (5–20 µmol photons

m−2 s−1) or in complete darkness, replicated four times. Duplicate negative controls

(un-inoculated media samples) were incubated under the same conditions.

The absorbance (590 nm) of each sample was regularly measured, as previously

described. 750 µL subsamples were taken from each sample at exponential-phase.

These subsamples were centrifuged at 13,000 xg for 15 min and the supernatant was

discarded. The pellet was resuspended in 50 µL of RNAlater® (Life Technologies,

USA) and stored at -80◦C. Following incubation, all samples were streak-plated and

incubated on MA in order to confirm that samples remained free of contamination.

3.2.3 Statistical analysis

Initial analyses and graph construction was performed using GraphPad Prism®

(version 5.01, 2007), and factorial ANOVA tests were conducted in IBM® SPSS®

Statistics (version 20, 2011). Growth curves obtained from laboratory-based incuba-

tions were analysed using the method outlined in Chapter 2. Samples that exhibited

a secondary stage of exponential growth (marked in text with an asterisk) were anal-

ysed in the same manner, with each stage of exponential growth individually fitted

to the logistic model. In situ incubations had only four data points per treatment,

meaning the logistic model could not be fitted to these data sets. Consequently, only

factorial ANOVA tests were conducted using the final time point biomass for each

treatment, rather than the ym value.
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3.3 Results

3.3.1 2012 in situ incubation

The mean absorbance of all negative controls were consistently elevated above

the zero measurements (Fig. 3.3), indicating that the process of in situ incubation has

caused a small artefact, likely due to condensation or salt build up (as discussed in

Section 3.4). However, the slope of each negative control did not differ from zero

(Fig. 3.3; Sup. Table 8A), and as statistical analyses were performed by comparing

treatments against negative controls (rather than the zero measurement), the results

of this experiment were unaffected by this artefact. Cultures grown in M3 did not

differ from their respective negative controls (t = 0.7934, p >0.05), therefore this media

treatment was excluded from further analyses. Depth had no major effect when

compared within each light and media treatment (Sup. Table 8A), therefore depth

treatments were amalgamated.

Across light treatments, media had a significant effect (F2, 85 = 9.70, p <0.001),

with ∼1.5 times greater absorbance occurring in M0 than in M1 and M2 (Fig. 3.3; Ta-

ble 3.1). Light-treatment also had an effect (F4, 85 = 20.08, p <0.001), with a significant

interaction suggesting that the effect of light differs between media treatments (F2, 85

= 5.29, p = 0.007). Post-hoc testing revealed the least growth of M0-cultures consis-

tently occurred under ambient-light incubation conditions, with all other irradiance

treatments having similar levels of growth (Fig. 3.3A; Table 3.1). Cultures grown

in both M1 and M2 also showed reduced growth under ambient-light (Fig. 3.3B;

Table 3.1).

3.3.2 2013 in situ incubation

As in the previous in situ incubation, the absorbance slope of each negative con-

trol did not differ from zero despite the means being consistently elevated above zero

(Fig. 3.4; Sup. Table 8B). Cultures grown 10% media showed no differences between

treatments and negative controls (F6, 24 = 0.649, p = 0.690; Fig. 3.4B), subsequently,

all 10% MB cultures were excluded from further analyses.

In cultures grown in full strength media, light had a significant effect (F6, 24 =

3.57, p = 0.011), with elevated growth occurring in blue- and 50% light treatments

(Fig. 3.4; Table 3.2). Cultures grown in ambient-light reached a similar mean biomass

to blue- and 50% light treatments, but showed a large amount of variation, meaning
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Figure 3.3: Mean growth curves of mixed cultures of Antarctic sea-ice bacteria, incubated in situ,

in: A. M0 media and B. M1 and M2 media, under varying light treatments. Orange: ambient-light;

black: complete darkness; red: red-light; green: green-light; blue: blue-light; grey: negative control. In

B, solid line: M1 media; dashed line: M2 media. Error bars represent standard errors.
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Table 3.1: Statistical information derived from 2012 in situ incubation experiments. Mean ab-

sorbance (at final time point) values and standard errors are presented.

Treatment n M (abs cm-1) SE

M0

Light 11 0.059 0.004

Dark 10 0.117 0.009

Red 10 0.121 0.008

Green 11 0.108 0.009

Blue 7 0.119 0.004

Neg. ctrl 6 0.017 0.002

M1
Light 11 0.060 0.004

Dark 12 0.088 0.005

Neg. ctrl 6 0.019 0.004

M2
Light 11 0.052 0.004

Dark 11 0.072 0.004

Neg. ctrl 5 0.017 0.004

Table 3.2: Statistical information derived from 2013 in situ incubation experiments. Mean ab-

sorbance (at final time point) values and standard errors are presented.

Treatment n M (abs cm-1) SE

MB

Light 5 0.082 0.026

50% light 4 0.096 0.014

Dark 5 0.033 0.014

Red 5 0.042 0.007

Green 5 0.048 0.008

Blue 5 0.077 0.004

Neg. ctrl 2 0.010 0.004

10% MB

Light 5 0.025 0.007

50% light 5 0.028 0.006

Dark 5 0.038 0.010

Red 4 0.033 0.003

Green 5 0.033 0.006

Blue 5 0.034 0.010

Neg. ctrl 2 0.015 0.007
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Figure 3.4: Mean growth curves of P. torquis, incubated in situ in: A. MB and B. 10% MB, under

varying light treatments. Orange: ambient-light; purple: 50% light; black: complete darkness; red:

red-light; green: green-light; blue: blue-light; grey: negative control. Error bars represent standard

errors. Final data points are offset to show error bars.
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this treatment did not statistically differ from any other light treatments. Further-

more, cultures grown in complete darkness did not differ significantly from negative

controls (Fig. 3.4; Table 3.2).

3.3.3 Laboratory-based incubations

Neither the means nor the line slope of the negative controls differed from zero

(Fig. 3.5–3.7; Sup. Fig. 4; Sup. Table 8C), and streak-plating revealed that all samples

remained free from contamination. The logistical model showed an extremely strong

fit to all data sets, with all R2 values >0.95 (excluding Ps. nivimaris, 10% MB, light*;

Table 3.3). The maximum biomass and rate of growth both differed significantly

across all four treatments and the majority of subsequent interactions (Sup. Table 9).

Across species, cultures grown in 10% media reached absorbance values of ∼0.3 abs

cm-1, whereas full strength media resulted in typical absorbance values more than

twice as high at that (Fig. 3.5–3.7; Table 3.3).

When cultured at 12◦C, Ps. nivimaris grew more in the light than the dark (ym:

F2, 69 = 35.49, p <0.001; b: F2, 69 = 88.49, p <0.001). This effect was most pronounced

when samples were grown in 10% media, with cultures entering a secondary expo-

nential growth phase after ∼75 hours, raising the mean absorbance from 0.22 abs

cm-1 to 0.35 abs cm-1 (Fig 3.5B; Table 3.3 ‘Light*’). Illuminated samples of Ps. nivi-

maris grown in full strength media also reached a higher biomass than those grown

in the dark, however a secondary growth phase did not occur (Fig. 3.5A). Decreasing

temperature resulted in cultures of Ps. nivimaris increasing in lag-time and decreas-

ing in the rate of growth. At both 4◦C and -1◦C (regardless of media strength), P.

nivimaris showed trends of increased growth in the dark, however this trend was only

apparent during the exponential-phase (Fig. 3.5). Minor trends of diauxic growth

also occurred at colder temperatures, regardless of illumination or media strength.

Furthermore, the rate of growth of this species was unaffected by media strength,

and the maximum biomass was not influenced by temperature (Fig. 3.5; Table 3.3).

Light-induced growth also occurred in cultures of Po. dokdonensis grown in 10%

media (ym: F1, 10 = 192.0, p <0.001), but not in full strength media (ym: F1, 18 = 0.669,

p <0.425). This species only grew at 12◦C (see Supplementary Figure 4A for plots

of cultures grown at 4◦C and -1◦C). Po. dokdonensis grown in full strength media

had faster rates of growth and reached higher maximum biomasses, than cultures

in 10% media. 67.5 hour lag-phases occurred across both media treatments (Fig. 3.6;

Table 3.3)
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Figure 3.5: Mean growth curves of Ps. nivimaris, incubated in: A. MB or B. 10% MB, under vary-

ing light and temperature treatments. Solid line: light (5–20 µmol photons m−2 s−1); dashed line:

complete darkness. Red: 12◦C; blue: 4◦C; green: -1◦C; grey: negative control. Error bars represent

standard errors.
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Figure 3.6: Mean growth curves of Po. dokdonensis, incubated at 12◦C, under varying light and

media treatments. Solid line: light (5–20 µmol photons m−2 s−1); dashed line: complete darkness.

Red: MB; blue: 10% MB; grey: negative control. Error bars represent standard errors.

Figure 3.7: Mean growth curves of P. torquis, incubated under varying light, media and temperature

treatments. Solid line: light (5–20 µmol photons m−2 s−1); dashed line: complete darkness. Red: 12◦C,

MB; blue: 12◦C, 10% MB; green: 4◦C, MB; grey: negative control. Error bars represent standard errors.

Data is trimmed to begin at 200 hours.
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Section 3.4: Discussion

P. torquis grew at 12◦C regardless of media treatment, and at 4◦C in full strength

media only (see Supplementary Figure 4B for plots of cultures grown at -1◦C and at

4◦C, in 10% MB), however no effect of light-treatment occurred (Fig. 3.7; Table 3.3).

This species had a remarkably long lag-phase (>275 hours), which increased with a

reduction in temperature but was unaffected by media strength. Temperature also

affected the maximum biomass and rate of growth of P. torquis, with cultures grown

in full strength media at 4◦C producing a similar growth pattern to those grown in

10% media at 12◦C (Fig. 3.7; Table 3.3).

3.4 Discussion

Light affected the growth of PR-bearing, Antarctic sea-ice bacteria, having a var-

ied influence depending on the species, media, temperature and wavelength. The

strongest light responses occurred in cultures of Ps. nivimaris, grown at 12◦C. In 10%

MB, light and dark incubations had near identical growth patterns for the first ∼75

hours, however irradiated samples entered a secondary exponential growth phase,

almost doubling in biomass (Fig. 3.5B). This diauxic growth pattern suggests that PR

became active upon the depletion of nutrients (Narang and Pilyugin, 2007), causing

a shift to phototrophy. Furthermore, light also positively influenced the growth of

Ps. nivimaris grown at 12◦C, in full strength media (Fig. 3.5A). Samples stored in

RNAlater® may be used in the future to quantify the expression and activity of PR

during this phase. These results are of particular interest given that the PR gene was

found in Ps. nivimaris for the first time, as described in Chapter 2.

As a trend of reduced exponential-growth was observed when Ps. nivimaris was

incubated in the light and at colder temperatures (Fig. 3.5), it is unlikely that PR

influences the ecology of this species within Antarctic sea ice. However, when grown

at its optimal growth temperature (10–15◦C; Heuchert et al., 2004), PR likely has a

large affect on the growth of Ps. nivimaris. As cold temperatures become a greater

influence, perhaps this species focuses on the production of essential cold-survival

mechanisms, such as antifreeze proteins (Gilbert et al., 2004) or membrane associated

PUFA (Nichols et al., 1999a).

The maximum biomass of Ps. nivimaris was not affected by temperature, with

nutrient concentration being the limiting factor in the growth of this species (Fig. 3.5).

Prior to this study, the growth of Ps. nivimaris had been observed as low as 5◦C

(Heuchert et al., 2004). However, I have recorded strong growth of this species at
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Chapter 3: Light Enhanced Growth of PR-bearing, Antarctic Sea-ice Bacteria

-1◦C (Fig. 3.5A), extending the known lower threshold of Ps. nivimaris. Furthermore,

cold temperature appears to induce diauxic growth trends in Ps. nivimaris (Fig. 3.5).

This suggests that this species may be shifting metabolic processes (Narang and

Pilyugin, 2007) as a cold-response.

Light-enhanced growth also occurred in Po. dokdonensis grown in 10% media, but

not in full strength media (Fig. 3.6). This result is similar to the findings of Gómez-

Consarnau et al. (2007) who observed irradiated, low nutrient conditions resulted in

an increase in the growth of Dokdonia sp. (MED134), a PR-bearing bacteria and close

relative of Po. dokdonensis. González et al. (2008) also found Po. dokdonensis (MED152)

fixed more bicarbonate in the light than the dark, however growth was not affected

by irradiance. This disparity is likely the result of differences in culture conditions,

however the origin of the Po. dokdonensis isolate (Northwestern Mediterranean Sea

surface water) does differ between this study and that of González et al. (2008). The

isolate used in this study may be a different strain than that used by González et al.

(2008), potentially showing an adaptation of increased light use.

The lack of growth of Po. dokdonensis below 12◦C is surprising, given that this

is an Antarctic sea-ice isolate. However, as the optimal growth temperature of this

species is 25–28◦C (Yoon et al., 2006), it may enter a state of dormancy when exposed

to cold temperatures. Although light did affect the growth of Po. dokdonensis, it is

unclear how temperature affects the light-responses of this species. Furthermore,

the lack of sampling from ∼25–75 hours resulted in low resolution during the expo-

nential growth phase of Po. dokdonensis. This is reflected when recorded lag times

of 67.5 hours (regardless of treatment) are compared against Figure 3.6, where full

strength media treatments clearly enter the exponential-phase earlier.

Using laboratory-based incubations, P. torquis did not show any response to light,

regardless of treatment. Growth did not occur at -1◦C, and only occurred in full

strength media at 4◦C. Other studies show that under illuminated, high salinity con-

ditions, the PR pumping of this species increases and growth is stimulated (Feng

et al., 2013). Furthermore, Bowman et al. (1998) estimated the minimal growth tem-

perature of P. torquis to be -16◦C. This, along with the observed growth of P. torquis

during this studies in situ incubation experiment, suggests that the cultures used

during the laboratory-based incubation were impeded. It is possible that the stock

culture used had decreased metabolic viability, due to its age (Kolter et al., 1993).
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In contrast, light responses were observed when P. torquis was incubated in situ,

despite being exposed to an estimated minimum temperature of -7◦C (Ryan et al.,

2009). Elevated growth was observed under blue- and 50% light treatments, with

lower levels occurring in red- and green-light treatments. No significant growth

occurred in dark incubated samples. As wavelength attenuation through sea ice

results in blue light being predominant (Buckley and Trodahl, 1987), the blue- and

50% light treatments likely resulted in near identical growth conditions. Due to a

combination of sea-ice wavelength attenuation and the wavelength filtering of the

red- and green-light treatments, these two treatments would have resulted in very

low light levels. Therefore, the growth of P. torquis is correlated with light availability

(at low intensities), suggesting that PR positively influences the growth of P. torquis

when exposed to the physical stressors of Antarctic sea ice.

The growth of P. torquis in sea ice varied dramatically within samples grown

under ambient light. This is likely a photo-induced growth-inhibitory effect, as

Feng et al. (2013) has found the growth of this species is reduced in light greater

than 27.7 µmol photons m-2 s-1. Similarly, the 2012 in situ incubation experiment

showed the least growth of mixed cultures of Antarctic sea-ice bacteria occurred

under ambient-light treatments, across media treatments (Fig. 3.3). These results

suggest that growth-inhibition is occurring in multiple species, under the light con-

ditions up to 1 m deep in the ice column. Therefore, this study is consistent with

Thomas and Dieckmann (2002), in that members of the SIMCO are typically adapted

to low-light regimes. The vertical gradient of light through an ice column is likely

a key driver of biological distribution, with high light reducing upper-ice biological

abundances (Sullivan and Palmisano, 1981; Koh et al., 2010), and the lower light of

bottom sea ice allowing some species, such as P. torquis to adopt a photoheterotrophic

lifestyle.

Previous Antarctic research has utilised microcosms to investigate in situ re-

sponses, typically examining the influence of solar radiation on micro-algae incu-

bations (Davidson et al., 1996; McMinn et al., 2014). This study however, developed

and refined a novel method, whereby bacterial samples were incubated in situ in

Antarctic sea ice, allowing cultures to be exposed to natural fluctuations in tem-

perature and light, whilst using a defined media and without introducing foreign

species. This is an ecologically relevant microbial culture technique that is not lim-

ited to Antarctic microbiology. Fields such as marine, aquatic or soil microbiology

could easily adapt this technique to suit their specific requirements.
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There are several methodological differences between the 2012 and 2013 in situ

incubations, with the most important being a change from incubation of treatment

groups in a single ice corer hole (Sup. Fig. 3), to individual samples being incubated

in single ice auger holes (Fig. 3.2). This changed this experiment from an ‘unrepli-

cated block design’ (Ryan and Morgan, 2007) to each treatment being randomised

and independent of one another. In addition, shifting from a mixed population of

Antarctic sea-ice bacteria to monocultures of P. torquis, allowed the aims of this ex-

periment to be addressed more accurately. Furthermore, when fitted with a linear

regression, the slope of all negative controls used in both the 2012 and 2013 in situ in-

cubations did not differ from zero. The elevated means of these negative controls are

therefore an artefact, such as condensation or salt build-up on the sample vial. As

treatments were compared against negative controls (rather than a t0 measurement),

the results of these incubations would not have been affected.

It is likely that more growth (and hence more pronounced results) would occur

over a longer incubation period. As PR has the greatest influence at lower media con-

centrations (Gómez-Consarnau et al., 2007, 2010; Steindler et al., 2011), in situ growth

in 10% MB would be particularly interesting. However, long term incubations are

particularly challenging given that gas exchange between the culture medium and

the head space would eventually be exhausted (Kolter et al., 1993), potentially caus-

ing conditions to become anaerobic. Alternatively, the subsamples taken during

these experiments may allow future studies to obtain higher resolution data through

direct cell counts.

This study assessed the influence of light on the growth of PR-bearing, Antarctic

sea-ice bacteria, finding the irradiance effect varied with physicochemical factors and

among species. PR appears to enhance the growth of Ps. nivimaris and Po. dokdonen-

sis, particularly under limited nutrients and organic matter. In contrast to my initial

hypothesis, PR had no effect on the growth of Ps. nivimaris at colder temperatures,

with light at reduced temperatures being detrimental during the exponential-phase.

Finally, P. torquis demonstrated light-enhanced growth when incubated in situ. This

effect was negated at higher light levels, due to a light-induced growth-inhibitory ef-

fect. These results suggest that PR is utilised within Antarctic sea-ice, but to varying

efficiencies depending on species. The ability to adopt a photoheterotrophic lifestyle

would certainly provide a selective advantage in the highly competitive, lower sec-

tions of the ice column.
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CHAPTER 4

Overview and Conclusion

4.1 Outline of Research Findings

Bacterial harvesting of solar energy through the use of PR is a relatively recent

discovery (Béjà et al., 2000), with subsequent research offering mixed results regard-

ing the benefits of PR (Table 1.1). Several studies show that this protein is most

influential under conditions of environmental stress (Gómez-Consarnau et al., 2007,

2010; Steindler et al., 2011; Feng et al., 2013). The discovery of PR-bearing bacteria

in Antarctic sea ice (Koh et al., 2010) suggests that this protein may be utilised to

survive the stressors of this environment. To explore this hypothesis, I examined

the influence of light on PR-bearing bacteria found in Antarctic sea ice. Three re-

search questions were proposed in Chapter 1. The following sections address these

questions through a summary of the findings of this thesis.

4.1.1 What cultivable bacteria are present in the previously collected sam-
ples of Antarctic sea-ice bacteria?

Using 16S rRNA gene sequencing, along with a comparison of phenotypical and

environmental characteristics, four species were isolated from the Antarctic sea-ice

bacteria samples collected by Cowie (2011). These isolates included the common

Antarctic species Ps. nivimaris, Pa. marcusii and Po. dokdonensis, all members of the

three most common Antarctic taxa (the Gamma- and Alpha-proteobacteria, and the Bac-

teroidetes, respectively). A strain of the Gram-positive Micrococcus was also isolated.

This isolate grouped phenotypically and genetically (<3% sequence dissimilarity)

with both M. luteus and M. antarcticus. As M. antarcticus is the only known cold-

adapted Micrococcus species (Liu et al., 2000), isolate 6 is likely to be this species.

However, there is potential that this is a cold-adapted strain of M. luteus, or perhaps

a new species. The isolates identified are similar to those found in Antarctic sea-ice

surveys (Cowie, 2011), however it is peculiar that no P. torquis was cultured, given

that these samples were originally identified as monocultures of this species.

4.1.2 Do these isolated taxa contain the PR gene?

The four isolated Antarctic sea-ice bacteria, as well as additional monocultures

of P. torquis were examined for the presence of the PR gene. In accordance with
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previous studies (González et al., 2008; Feng et al., 2013), PR was identified in Po.

dokdonensis and P. torquis. I also demonstrated, for the first time, the presence of

the PR gene in Ps. nivimaris (Fig. 2.5). Identification of PR in these three cultivable

Antarctic sea-ice bacteria allowed for physiological experiments to be conducted,

examining the ecological influence of light.

4.1.3 Is the growth of these PR-bearing bacteria affected by light under
varying conditions of environmental stress?

Samples were suspended in situ, within annual Antarctic sea ice, utilising the

natural fluctuations of light and temperature that occur in this habitat. Based on the

measurements of Ryan et al. (2009), these in situ incubations may have occurred at

temperatures as cold as -7◦C and at an ambient irradiance ∼80 µmol photons m-2

s-1. To my knowledge, this the first time this approach has been used to culture

sea-ice bacteria. Due to a combination of wavelength attenuation through sea ice

(Buckley and Trodahl, 1987), and the polycarbonate light filters reducing photon

availability, light treatments fell into four broad categories; high irradiance (ambient-

light), moderate irradiance (blue- and 50% light), low irradiance (red- and green-

light) and complete darkness. In cultures of mixed Antarctic sea-ice bacteria, as

well as monocultures of P. torquis, ambient sea-ice irradiance resulted in growth-

inhibition or high variation in biomass. The highest growth of in situ incubated

P. torquis occurred under moderate-irradiance, with lower yields at low-irradiance

and no growth in the dark. This result complements the work of Feng et al. (2013),

who also found the growth of P. torquis increased under dim-illumination, with light

intensities >27.7 µmol photons m-2 s-1 resulting in growth-inhibition. These results

suggest that P. torquis utilises PR in the low light of bottom sea ice, providing this

species with an alternate means of energy capture.

In contrast, no growth of P. torquis occurred during laboratory-based incubations

at -1◦C in either media treatment, or when cultured at 4◦C in 10% media. Growth

did occur in both full strength MB and 10% MB at 12◦C, as well as in full strength MB

at 4◦C. However, lag-phases lasted more than 300 hours, and light had no influence

on the growth of these cultures. This suggests that initial cultures of mixed Antarctic

sea-ice bacteria (Chapter 2) may not have been incubated for long enough to reveal

P. torquis.

Strong light responses were observed in laboratory-based cultures of Ps. nivi-

maris grown at 12◦C, with no light-induced differences occurring at either 4◦C or
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-1◦C. The most pronounced light-effect occurred in 10% media, with light inducing

a secondary exponential growth phase in Ps. nivimaris cultures after ∼75 hours.

This resulted in almost twice the biomass in light-incubated, 10% media cultures,

than the dark (Fig. 3.5B). Light also positively influenced the growth of Ps. nivi-

maris grown in full strength media, although to much less extent. Furthermore, cold

temperatures induced trends of diauxic growth (regardless of media strength and

irradiance), suggesting that reduced temperatures induce a metabolic switch in Ps.

nivimaris.

During laboratory-based incubations, Po. dokdonensis only grew at 12◦C, however

a similar trend to the light-induced growth of Ps. nivimaris was observed. Po. dokdo-

nensis increased in growth in the light when incubated in 10% media, with no effect

of light evident in full strength MB (Fig. 3.6). The MGT and maximum biomass val-

ues of Po. dokdonensis and Ps. nivimaris are consistent with those obtained during the

preliminary incubation in Chapter 2. Thus, as both Ps. nivimaris and Po. dokdonensis

demonstrated light-induced growth more prevalently in dilute media, PR is most

influential under conditions of nutrient or carbon stress.

4.2 The Overall Picture

The sea-ice ecosystem is host to numerous microbial organisms, which support

many other marine life forms in the Southern Ocean. Understanding microbial re-

sponses to physicochemical changes is critical, particularly in a highly variable and

at risk ecosystem such as annual Antarctic sea ice (Petit et al., 1999; Vaughan et al.,

2003; Thomas and Dieckmann, 2009). As brine channels form a near-closed environ-

ment, nutrient cycling becomes essential for sustaining life. Therefore, the role of

heterotrophic bacteria, given their high metabolic activity (Martin et al., 2008; Koh

et al., 2010), must play a particularly important role in sea-ice microbial loop dynam-

ics. A photoheterotrophic lifestyle allows bacteria to acquire energy through solar

radiation, as well as through the consumption of organic matter. Photoheterotrophy

can theoretically be adopted by bacteria possessing a PR gene, however the limited

number of cultivable bacteria has resulted in few examples of PR conferring an in

vivo advantage (Table 1.1). My discovery of the PR gene in Ps. nivimaris provides an

easily cultivated species, which can be used to further study the ecological impact of

PR.

This thesis observed several examples of light-enhanced growth in PR-bearing,
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Antarctic sea-ice bacteria. The influence of this protein varied with species, as well

as with different physicochemical factors. The most prominent trends occurred in

cultures of Ps. nivimaris grown in 10% media, with light increasing growth when

samples were incubated at optimum temperatures (12◦C). There are few documented

examples of PR influencing growth as dramatically as this (Gómez-Consarnau et al.,

2007; Feng et al., 2013). As no light-induced growth occurred at colder temperatures,

Ps. nivimaris must increase PR activity specifically as a response to nutrient or carbon

limitation, rather than as a general stress response. As environmental nutrient and

carbon concentrations are typically lower than 10% MB (Bowman et al., 1997), the

effect of PR is potentially more pronounced in the natural environment.

The lack of light-response of Ps. nivimaris at lower temperatures, raises the ques-

tion as to why a bacterium extracted from Antarctic sea-ice would possess a gene

that cannot be used in this environment. Factors such as wavelength availability,

light intensity and diurnal light fluctuations differ between laboratory-based incu-

bations and in situ conditions. Perhaps these factors alter the activity of PR in Ps.

nivimaris. For example, PR may influence the growth of Ps. nivimaris at cold tempera-

tures only when this species is exposed to high salinity, blue-light or other conditions

typical of sea-ice brine channels. This theory is similar to the findings of Feng et al.

(2013), where PR only influenced P. torquis when exposed to a combination of dim-

light and sub- or supra-optimal salinities. The cold-temperature diauxic growth of

Ps. nivimaris (Fig. 3.5) suggests that reduced temperatures affect the metabolic pro-

cesses of this species. This provides circumstantial evidence for an alternate theory,

in that Ps. nivimaris may rely on heterotrophism whilst sympagic, and shift to a more

pronounced phototrophic lifestyle when in temperate waters.

In accord with previous studies (Gómez-Consarnau et al., 2007, 2010; Steindler

et al., 2011), Po. dokdonensis yielded a higher biomass when illuminated, but only

when grown in low concentration media. This is similar to the results of Ps. nivi-

maris, suggesting that PR-bearing bacteria obtain energy from solar radiation when

nutrients or organic matter are depleted. As Po. dokdonensis only grew at 12◦C, it

is unclear how temperature affects the activity of PR in this species. The optimal

growth of Po. dokdonensis is 25-28◦C (Yoon et al., 2006), suggesting that this species

may enter a state of dormancy in temperatures <12◦C. However, the isolates of Yoon

et al. (2006) were extracted from Korean seas, and their genetic divergence from the

isolates used in my study ranges from 1.9–3.4% (Table 2.6C). It is highly likely that

these isolates represent different strains (or species), adapted to different ecological
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conditions. Perhaps the cold-temperature lag-phases of the Po. dokdonensis isolates

used during this study, exceed the time of my incubations (>870 hours). Therefore,

no growth would be observed at low temperatures.

When incubated in situ, ambient sea-ice irradiance resulted in reduced growth

of mixed cultures of Antarctic sea-ice bacteria and high variation in the growth of P.

torquis. As growth-inhibition of P. torquis occurs at irradiances >27.7 µmol photons

m-2 s-1 (Feng et al., 2013), a growth-inhibitory effect likely occurred during it situ

incubations. However, it is interesting that the outcome was an increase in varia-

tion, rather than uniform growth-inhibition. This suggests that despite selecting a

homogenously formed section of sea ice, the micro-habitat of each auger hole may

have differed, exposing some treatments to harsher conditions than others.

Excluding ambient-light treatments, the in situ growth of P. torquis was positively

correlated with irradiance. PR activation in this species is known to associated with

an increase in salinity, and not nutrient deprivation (Feng et al., 2013). Therefore,

P. torquis is likely adapted to use PR under the low light, relatively high salinity

and plentiful nutrient conditions in the lower sections of sea ice. This correlates

well with the vertical distribution survey conducted by Cowie (2011), in that 56.9%

of DNA obtained from lower-ice sections was from the same order as P. torquis,

(Flavobacteriales).

P. torquis grew during in situ incubations at estimated minimum temperature of

-7◦C. This is supported by minimum growth temperature estimates of this species

equalling -16◦C (Bowman et al., 1998). In contrast, the laboratory-based incubations

of this study found P. torquis grew at temperatures no colder than 4◦C and had

lag-phases in excess of 300 hours. Furthermore, no light responses occurred under

any treatments. There is potential that the differences in culture conditions are re-

sponsible for the disparity between the results of laboratory-based incubations and

those obtained during in situ incubations. However, this is unlikely due to the two

incubations using the same media, multiple temperatures, and similar irradiances.

These differences are more likely caused by the age of the stock culture used. As

bacteria in their natural environment rarely enter the log-phase, extended periods at

this growth stage may decrease metabolic activity (Kolter et al., 1993). Repetition of

these laboratory-based incubations, using new P. torquis stock culture would likely

produce similar results to those of the in situ incubation.
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This thesis provides evidence that PR is enhancing bacterial growth to a varying

level, depending on species and a variety of physicochemical factors. Specifically,

PR is used to enhance growth at low temperatures by P. torquis, but not Ps. nivimaris.

This suggests that P. torquis has a selective advantage in the Antarctic sea-ice ecosys-

tem. Therefore, it is likely that this species plays a critical role in Antarctic sea-ice

microbial loop dynamics (see Martin et al., 2008).

4.3 Future Research Directions

This thesis investigated the influence of PR on heterotrophic bacteria found in

Antarctic sea ice, and in doing so has provided a new and unique insight into the

physicochemical factors that affect phototrophism. Throughout the course of this

research a number of new questions have arisen, that may extend the findings of this

study.

Taxonomic assignments of the isolates of Antarctic sea-ice bacteria could be re-

fined further using information from additional biochemical tests (such as glucose

oxidation and fermentation, or sole carbon source testing) or DNA-DNA hybridisa-

tion (Moore et al., 1987). Variation in culture conditions, along with the investigation

of the un-cultivable diversity, may reveal a greater number of species in the samples

of Antarctic sea-ice bacteria (Brinkmeyer et al., 2003).

Sequencing of the PR gene of each species is an important step to follow this

study, potentially offering insight into the evolution and acquisition of PR. As this

study discovered PR in Ps. nivimaris for the first time, PR gene sequencing in this

species is of particular interest. Amino acid position 105 could be examined for

the presence of glutamine (Man et al., 2003), verifying my melt curve profile-based

assignment of Ps. nivimaris as a B-PR-bearing bacteria (Fig. 2.5). However, a more

specific PR primer set is needed to obtain a clean sequence from PR amplification

products (Baumforth et al., 1999).

Wavelength treatments were initially intended to be used in laboratory-based

incubations in addition to in situ incubations. However, the long incubation times

required to culture these Antarctic sea-ice bacteria, meant this work was beyond

the scope and time available for this thesis. As in situ incubations under different

wavelengths were confounded by the wavelength attenuation of sea ice (Buckley and

Trodahl, 1987), future laboratory-based incubations could correlate the PR variant of
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each species with growth under specific wavelengths. Furthermore, the influence of

PR on bacterial survival could be examined by extending incubations into the death-

phase (Kolter et al., 1993) and using epifluorescence dyes such as the LIVE/DEAD®

BacLight™ Bacterial viability kit (Life Technologies, USA) or 5-cyano-2,3-ditolyl tetra-

zolium chloride, to assess the proportions of live and dead bacteria (Créach et al.,

2003; Martin et al., 2008).

As subsamples from the laboratory-based incubation are stored in RNAlater®, PR

RNA expression could be correlated with the light-induced growth observed. The

formalin-fixed subsamples acquired during in situ incubations can be used for direct

cell counts, using flow cytometry or fluorescence microscopy (Martin et al., 2008).

This could be used to assess the accuracy of absorbance measurements, and in the

case of the 2012 mixed-species in situ incubation, changes in population dynamics

could be examined. Theoretically, the PR-bearing species in these culture would

become more prevalent with exposure to light.

There is potential to expand the in situ incubation method developed in this

study, in that a ‘natural culture medium’ could be utilised by melting and 0.22 µm

filtering sea-ice. This would result in conditions even more similar to that of the

natural sea-ice environment, hence incubations conducted using this method would

be highly ecologically relevant. Longer in situ incubations would likely produce

more growth, and hence more pronounced trends, however long-term incubations

are complicated by factors such as the lack of gas exchange, producing anaerobic

conditions. As P. torquis had an extremely long lag-phase and variable growth rates

during laboratory-based incubations, a faster growing and more robust PR-bearing

Antarctic sea-ice bacterium, such as Ps. nivimaris, would potentially be better suited

to this in situ incubation method. Ryan et al. (2002) fixed large UVB filters to the

surface of Antarctic sea ice and assessed changes in microalgae populations. Replac-

ing the UVB filters with the polycarbonate light filters used in my in situ incubation

provides an alternative method to long-term incubations. This would allow the in-

fluence of wavelength and irradiance to be tested in situ, on a large population of the

SIMCO.

Finally, the annual fluctuations in Antarctic light availability raises several ques-

tions in regards to the nature of PR in this environment. The proportions of PR-

bearing bacteria may vary with season, or individuals may adopt a heterotrophy-

based lifestyle during periods of reduced light availability in the winter. This could
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potentially affect the expression and transcription of PR. However, moonlight may

provide enough illumination to be utilised by PR-bearing bacteria in the upper sea

ice. If this did occur, there would likely be a change in vertical species distribution

of PR-bearing, Antarctic sea-ice bacteria. Furthermore, the high metabolic activity of

sea-ice bacteria observed by Martin et al. (2008) and Koh et al. (2010) has only been

observed in the summer. Therefore, there is potential that this metabolic activity is

linked with the contributions of PR.

4.4 Conclusion

This thesis provides new insights into the presence and contribution of PR in

Antarctic sea-ice bacteria. Quantifying the contribution of PR in vivo remains a

challenge, particularly given the limited number of cultivable PR-bearing species.

However, the discovery made in this study, of the PR-gene in Ps. nivimaris provides

another model organism in which to explore the physiological effects of PR. The de-

velopment of a novel, in situ incubation method offers a new tool that can be adapted

for use across several fields of microbiology. This study found light enhanced the

growth of several PR-bearing bacteria and in accord with other research, PR was

most influential under oligotrophic or carbon limited conditions. Temperature had a

varying influence on the effect of PR, suggesting the use of this protein in Antarctic

sea ice is limited to specially adapted species. Given the light-induced growth ob-

served in this study, along with the broad range of ecosystems and species bearing

PR, it is highly likely that PR provides a selective advantage, with species utilising

this protein to different efficiencies.
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Appendices

Appendix A: Media Recipes

Unless stated otherwise, all reagents were purchased from Sigma-Aldrich (USA).

All reagents were combined and heated until dissolved. Media were sterilised

through heating to 121◦C at 15 psi.

10% Marine Broth 2216
Difco™ Marine Broth 2216 3.75 g

ddH2O 1 L

Marine Broth 2216
Difco™ Marine Broth 2216 37.5 g

ddH2O 1 L

Marine Broth 2216 glycerol mix

Difco™ Marine Broth 2216 37.5 g

Glycerol 200 mL

ddH2O 1 L

Reasoner’s 2A broth
Yeast extract (Oxoid, UK) 0.5 g

Peptone (Oxoid, UK) 0.5 g

Casein (Oxoid, UK) 0.5 g

Glucose 0.5 g

Starch 0.5 g

Sodium pyruvate 0.3 g

Distilled sea water 750 mL

ddH2O 250 mL

Seawater Complete broth

Peptone (Oxoid, UK) 5 g

Yeast extract (Oxoid, UK) 3 g

Glycerol 3 mL

Distilled sea water 750 mL

ddH2O 250 mL

87



Modified Marine Broth 2216 stock solution
Magnesium chloride 5.9 g

Sodium sulfate 3.24 g

Calcium chloride 1.8 g

Ferric citrate 0.1 g

Potassium chloride 0.55 g

Sodium bicarbonate 0.16 g

Potassium bromide 0.08 g

Strontium chloride 0.034 g

Boric acid 0.022 g

Disodium phosphate 0.008 g

Sodium silicate 0.004 g

Sodium fluoride 0.0024 g

Ammonium nitrate 0.0016 g

ddH2O 1 L

Modified Marine Broth 2216 treatments
M0 M1 M2 M3

Sodium chloride 19.45 g 0 g 99.84 g 19.45 g

Peptone (Oxoid, UK) 5 g 5 g 5 g 0 g

Yeast extract (Oxoid, UK) 1 g 1 g 1 g 0 g

Modified MB stock solution 1 L 1 L 1 L 1 L

M0: MB control media
M1: Reduced sodium chloride media
M2: Increased sodium chloride media
M3: Reduced carbon media
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Appendix B: Supplementary Data

Chapter 2

Sup. Table 1: Colony morphology of bacterial samples originally labeled as P. torquis.

Isolate Colour Texture Form Elevation Margin Size (mm)

C1∗ Off-white, pearl Glossy Circular Convex Entire 1–2

C1∗ Off-white, pearl Glossy Circular Convex Entire 0.5–1

C4∗ Bright orange Glossy Punctiform Pulvinate Entire ≤0.5

C73 Off-white, pearl Glossy Circular Convex Entire 0.5–1

Sup. Table 2: Cellular morphology of bacterial samples originally labeled as P. torquis. Size is given

in width × length of an individual cell.

Isolate Gram stain Cell type Size (µm)

C1∗ – Coccus 1×1

C1∗ – Coccus 1×1

C4∗ – Curled filament 2×varied

C73 – Coccus 1×1

– = negative
+ = positive

Sup. Table 3: DNA concentrations following phenol-chloroform DNA extraction.

Species Replicate DNA (ng/µL)

P. torquis
a 13.448

b 4.431

Ps. nivimaris
a 71.124

b 44.524

Po. dokdonensis
a 15.149

b 89.862

Pa. marcusii
a 0.360

b 5.340

Micrococcus sp.
a 71.339

b 71.421
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Sup. Figure 1: Annealing temperature qPCR PR gene amplification results. Sample 31A8 is shown in

black, P. torquis in red, and negative controls in grey. All replicates are shown. SYBR autofluorescence

threshold limit is set to 200 RFU.

Sup. Table 4: Annealing temperature qPCR PR gene amplification results. Data presented is the

mean number of cycles before amplification occurred.

Temp (◦C) 31A8 P. torquis Neg ctrl

53 20.77 35.5 39.1

52.6 20.57 35.45 38.17

51.7 20.22 34.95 N/A

50.1 19.95 32.19 N/A

48.1 19.86 30.95 N/A

46.6 20.15 31.25 N/A

45.5 20.63 31.42 N/A

45 20.56 33.47 N/A
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Sup. Figure 2: Unique RFLP profiles of the four phylotypes isolated from sample C34 (in duplicate).

Bp positions of 1 kb Plus DNA Ladder are shown.

Sup. Table 5: qPCR PR gene amplification product melt curve profile data. Mean number of cycles

is presented, with standard errors in parentheses.

Sample Cycles Temp. (◦C) Peak Height (RFU)

31A8 21.07 (0.111) 80 597.21

P. torquis 34.16 (0.079) 79 376.81

Ps. nivimaris 31.37 (0.119) 83 370.01

Po. dokdonensis 29.38 (0.546) 78.5 606.78

Pa. marcusii 35.08 (0.778) 80.2 150.47

Micrococcus sp. 36.31 (0.850) 91 145.21

Sup. Table 6: Statistical interactions of ym (top-right section) and b (bottom-left section) from

bacterial growth curves, as determined by a Bonferroni post-test. ns: p >0.05, *: p <0.05, **: p <0.01,

***: p <0.001

MB 10% MB

Ps. niv. Po. dok. Pa. mar. Microc. Ps. niv. Po. dok. Pa. mar. Microc.

MB

Ps. niv. *** *** *** ***

Po. dok. ns *** *** ***

Pa. mar. ns ns *** ***

Microc. ns ns ns ***

10% MB

Ps. niv. *** * * ns

Po. dok. ns *** ns ns

Pa. mar. ns *** ns ns

Microc. ns *** ns ns
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Chapter 3

Sup. Figure 3: Experimental treatment of extracted and replaced ice cores used in the 2012 in situ

incubation experiment. A: no treatment; B: bound with twine; C: wrapped with clear polyurethane;

D: replaced with a ‘bung’ of clear polyurethane containing ice shavings.

Sup. Table 7: Daily weather measurements made at Cape Evans. Light was measured between 12pm

and 1pm. Cloud cover was estimated visually. Clear <10%, minimally overcast = 10–30%, partially

overcast = 31–60%, and overcast >60%.

Date Light (µmol photons m-2 s-1) Cloud cover Snow cover (cm)

19.11.13 1523.0 Clear 0

20.11.13 1043.7 Partially overcast 0

21.11.13 1371.9 Minimally overcast 0

22.11.13 713.4 Overcast 0

23.11.13 1199.3 Partially overcast 0

24.11.13 642.7 Overcast 0

25.11.13 1108.4 Partially overcast 0

26.11.13 NA Clear 0

27.11.13 915.2 Partially overcast 0

28.11.13 818.5 Overcast 0

29.11.13 1666.0 Clear <5

30.11.13 1304.9 Minimally overcast <5

01.12.13 1465.9 Clear 0

02.12.13 1182.6 Partially overcast 0

03.12.13 1151.5 Partially overcast 0
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Sup. Table 8: Statistical interactions of negative controls used in A. 2012 in situ incubation, B. 2013

in situ incubation, C. laboratory-based incubation experiments, as determined by a linear regression

runs test.

A

Treatment M (abs cm-1) SE df F p

0.3 m

M0 0.019 0.002 1, 6 3.709 0.102

M1 0.020 0.003 1, 6 0.021 0.889

M2 0.019 0.003 1, 6 0.582 0.475

M3 0.018 0.004 1, 6 1.629 0.249

0.7 m

M0 0.020 0.003 1, 6 0.018 0.897

M1 0.020 0.003 1, 6 0.004 0.951

M2 0.021 0.003 1, 6 0.745 0.421

M3 0.018 0.003 1, 6 1.814 0.227

1 m

M0 0.018 0.003 1, 6 0.044 0.841

M1 0.020 0.003 1, 6 0.848 0.393

M2 0.018 0.003 1, 4 0.096 0.772

M3 0.020 0.003 1, 5 3.187 0.134

B

MB 0.010 0.004 1, 9 4.288 0.068

10% MB 0.015 0.007 1, 9 0.621 0.451

C

12◦C

Light
MB 0.001 0.001 1, 26 1.119 0.300

10% MB -0.002 0.001 1, 26 0.390 0.538

Dark
MB 0.001 0.001 1, 26 2.797 0.107

10% MB 0.002 0.001 1, 26 0.728 0.401

4◦C

Light
MB 0.000 0.001 1, 50 3.198 0.080

10% MB 0.002 0.001 1, 50 0.309 0.581

Dark
MB 0.001 <0.001 1, 50 0.619 0.435

10% MB 0.003 <0.001 1, 50 0.369 0.546

-1◦C

Light
MB -0.001 0.001 1, 50 0.658 0.421

10% MB 0.004 0.001 1, 50 0.748 0.391

Dark
MB 0.002 0.001 1, 50 1.272 0.265

10% MB 0.002 0.001 1, 50 2.572 0.115
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Sup. Figure 4: Mean absorbance measurements of A. Ps. nivimaris and B. P. torquis cultures

lacking growth, incubated under varying light, media and temperature treatments. Solid line: light

(5-20 µmol photons m-2 s-1); dashed line: complete darkness. Oranage: 4◦C, MB; red: 4◦C, 10%MB;

blue: -1◦C, MB; green: -1◦C, 10%MB; grey: negative controls. Error bars represent standard errors.
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Sup. Table 9: Statistical interactions of treatments used in the laboratory-based incubation experi-

ment, as determined by a one-way, factorial ANOVA.

df F p

Temperature 2 168.139 0.000

Species 2 99.734 0.000

Media 1 38.909 0.000

Light 2 88.493 0.000

Temperature ∗ Species 1 1.493 0.226

Temperature ∗ Media 2 7.915 0.001

Temperature ∗ Light 2 3.637 0.032

Species ∗ Media 2 40.068 0.000

Species ∗ Light 2 0.809 0.449

Media ∗ Light 1 0.610 0.438

Temperature ∗ Species ∗ Light 1 7.238 0.009

Temperature ∗ Media ∗ Light 2 1.423 0.248

Species ∗ Media ∗ Light 2 2.265 0.111

Error 69

Move up table
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