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Abstract 

 

Driven by global warming and the increasing frequency of high temperature anomalies, 

the collapse of the cnidarian-dinoflagellate symbiosis (known as "bleaching" due to the 

whitening of host tissues) is contributing to worldwide coral reef decline. Much is 

known about the consequences of bleaching, but despite over 20 years of effort, we still 

know little about the physiological mechanisms involved. This is particularly true when 

explaining the differential susceptibility of coral hosts and their algal partners (genus 

Symbiodinium) to rising temperatures. 

 

Work carried out over the past 10 years suggests that bleaching may represent an innate 

immune-like host response to dysfunctional symbionts. This response involves the 

synthesis of nitric oxide (NO), a signalling molecule widely dispersed throughout the 

tree of life and implicated in diverse cellular phenomena. However, the source(s) of NO 

in the cnidarian-dinoflagellate association have been the subject of debate, and almost 

nothing is known of the capacity for differential NO synthesis among different host 

species or symbiont types. 

 

The aim of this study was to elucidate the role of NO in the temperature-induced 

breakdown of the cnidarian-dinoflagellate symbiosis and to assess differences in NO-

mediated physiology at the level of both symbiont and host. The specific objectives 

were (i) to quantify NO synthesis in different types of symbiotic dinoflagellates, (ii) to 

determine a role for NO in the collapse of the cnidarian-dinoflagellate symbiosis, (iii) to 

confirm whether NO itself - as opposed to its more reactive derivatives - is capable of 

mediating cnidarian bleaching, and (iv) to measure the synthesis of NO and the 

regulation of associated pathways in different reef corals undergoing bleaching. 

 

This thesis demonstrates that both partners of the symbiosis have a capacity for 

synthesising NO when stimulated by elevated temperature. However, their contributions 

to NO synthesis in the intact symbiosis may not be equal, as heightened symbiont NO 

production invariably occurred after that of the host, and at a time when bleaching had 

already commenced. Closer examination of host-derived NO in the model anemone 

Aiptasia pulchella revealed that the compound most likely mediates bleaching through 
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apoptotic-like cell death pathways, as either removing NO or inhibiting the activity of 

an important apoptosis-regulating enzyme could alleviate bleaching. NO's involvement 

in thermal bleaching also seems to be independent of its conversion to more toxic 

radicals such as peroxynitrite (ONOO-), which, although present at elevated 

temperature, had little influence on symbiont loss in A. pulchella.  

 

Different Symbiodinium types displayed significant variability in terms of their NO 

synthesis, tolerance and associated downstream pathways. For instance, a ten-fold 

increase in NO donor concentration (between types) was required to induce comparable 

declines in the photosynthetic yields of types A1 (a thermally robust type) and B1 (more 

sensitive). Synthesis of NO and activation of apoptotic pathways also differed 

significantly among differentially sensitive coral species. The thermally sensitive corals 

Acropora millepora and Pocillopora damicornis exhibited elevated NO production and 

host apoptosis during thermal bleaching, whereas Montipora digitata (a comparatively 

heat-tolerant species) produced little NO and appeared to lack the enzymes responsible 

for regulating apoptosis.  

 

As is the case in a wide variety of animal-microbe interactions, NO appears to mediate 

the cnidarian-dinoflagellate symbiosis by influencing the activity of host apoptotic-like 

pathways. Interestingly, the activation of these host responses at elevated temperature 

may occur before the dinoflagellate becomes photosynthetically compromised. As such, 

the model of bleaching as simply a response to symbiont photoinhibition could require 

modification. Furthermore, the differential sensitivity of symbiont types to NO, coupled 

with the differential regulation of NO-synthetic and apoptotic pathways in the host, 

could contribute to corals' varying bleaching susceptibilities. 

 

This thesis provides vital insights into the cell biology of the coral-dinoflagellate 

symbiosis and the events underpinning its breakdown during temperature stress. It also 

encourages a greater research emphasis on understanding physiological responses at the 

level of the coral host as well as during the early stages of a bleaching event. 
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Chapter 1 

 

General Introduction 

 

1.1. Endosymbiosis in the animal kingdom. 

 

Symbiosis - the protracted association of individuals belonging to different species - is a 

ubiquitous phenomenon in the natural world. This is unsurprising, since in the "struggle 

for existence" (Darwin, 1859) it is almost inevitable that species should evolve to utilise 

each other and further their reproductive successes. To the layperson at least, alliances 

such as these - in which both partners benefit - are the very definition of symbiosis. 

However, these mutually beneficial relationships (known as mutualisms) represent only 

a fraction of possible symbioses (Douglas, 2010), as the term extends to parasitic (one 

partner existing at the expense of another) and commensal associations (where one 

partner receives neither benefit nor harm). Symbioses can also either be obligate or 

facultative depending on the partners’ reliance on the association for their survival. For 

example, lichens are the product of an obligate association between certain fungi and 

photosynthetic microalgae in which neither partner can survive alone (Douglas, 2010). 

The association between tropical sea anemones and Amphiprion spp. anemonefish, 

however, is far more beneficial for the latter than for the anemone (Fautin, 1991). Adult 

anemonefish rarely survive in the wild without a host (and are therefore obligate 

partners), but vacant anemones are common on Indo-Pacific coral reefs. In this case, the 

anemone's cooperation is facultative. 

 

Endosymbiotic relationships – in which one partner (the "symbiont") resides within the 

body of a larger "host" organism – are common in animals and particularly 

invertebrates. As well as spanning the range of symbioses described above, these 

associations can be divided further into two categories: intra- and extracellular. 

Intracellular symbionts exist within host cells whereas extracellular partners reside 

outside host cells, either in a specific organ or simply the body cavity. Probably the 

best-studied extracellular symbiosis in marine invertebrates is that of the bobtail squid 

(Euprymna scolopes) and its bioluminescent Vibrio bacteria. The squid acquires these 

bacteria during embryogenesis and concentrates its Vibrio population in a ventral organ 
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(Ruby, 1996) in order to provide a form of pelagic camouflage. In parallel with perhaps 

the most famous intracellular association - the cnidarian-microalgal symbiosis, 

described in detail below – E. scolopes shows remarkable selectivity regarding the 

species and strains of Vibrio with which it associates, and it can efficiently reject 

unsuitable, dysfunctional or potentially pathogenic bacteria (Visick et al., 2000). 

 

1.2. Cnidarian-microalgal symbiosis. 

 

Cnidarians are among the simplest multicellular animals and one of the few metazoan 

phyla to lack a triploblastic (three tissue layer) body structure. They are also distinct 

from the majority of animals as they lack an alimentary canal - a cnidarian is essentially 

a blind sac with a single opening functioning both as a mouth and anus (Fig. 1.1). The 

presence of specialised stinging cells - nematocytes - is a diagnostic feature of Cnidaria, 

and these are distributed throughout the epidermal (outermost) tissue layer. By 

ensnaring small prey items such as zooplankters, cnidarians can feed heterotrophically. 

While all cnidarian species have this capacity for predation, a significant number gain 

much of their energy from symbiotic microalgae residing in their gastrodermal cells 

(Fig. 1.1). Early studies (e.g. Muscatine & Hand, 1958; Falkowski et al., 1984; Steen & 

Muscatine, 1984) demonstrated the translocation of photosynthetically fixed carbon 

from the algal symbionts to the host and, furthermore, observed its incorporation into 

animal tissues (Muscatine & Hand, 1958; Trench, 1971; Muscatine et al., 1984). Much 

of this work was carried out on the model organism Hydra, in which the symbionts are 

green algae of the genus Chlorella that are taken up alongside food particles before 

being selectively transported into the host's gastrodermis (see Muscatine et al., 1975a; 

Muscatine et al., 1975b; Trench, 1979; Davy et al., 2012 for reviews).  

 

The symbionts of Anthozoa (the class including corals and anemones) are acquired 

through pathways (see below) that are similar to those in Hydra (see Davy et al., 2012 

for review). Phylogenetically, however, the symbionts are quite different (Venn et al., 

2008). In the vast majority of symbiotic anthozoans (see Verde & McCloskey, 1996 for 

exceptions) the algal symbionts are photosynthetic dinoflagellates of the genus 

Symbiodinium (Fig. 1.2). Symbiotic anemones and corals benefit significantly from this 

arrangement and can acquire, given sufficient light, 100% or more of their energy 

requirements from algal photosynthesis (Falkowski et al., 1984). In return, the algae 
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reside in an environment that, due to the metabolic activities of the host, is 

comparatively enriched with inorganic nutrients relative to the surrounding seawater 

(Muller-Parker & D'Elia, 1997).  

 

 

 

 

 

Figure 1.1. Simplified schematic diagram of a symbiotic anthozoan (phylum Cnidaria) 

polyp, showing diploblastic (two layer) tissue organisation, the blind gastrovascular 

cavity, and symbiotic microalgae in the gastrodermal cell layer. 
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Figure 1.2. Bright field micrograph of Symbiodinium cells in culture (Culture ID 

A002), originally isolated from an Acropora sp. reef coral in Okinawa, Western Pacific.  

 

 

The photosynthetic products thought to be released from Symbiodinium cells may also 

differ from those of Chlorella; glycerol was originally proposed as the dominant 

compound (Trench, 1971; 1979; Venn et al., 2008) although this has been the subject of 

much debate and other photosynthetic products have since been suggested (Whitehead 

& Douglas, 2003; Burriesci et al., 2012). In fact, and despite decades of research in this 

area, we still know very little about the identity of organic compounds provided to the 

host (Davy et al., 2012). The regulation of their release is even less clear, with proteins, 

amino acids, and calcium/calmodulin antagonists all being suggested as possible 

mediators (see Venn et al., 2008; Davy et al., 2012 for reviews). In the other direction, 

the classic model of nutrient cycling in the cnidarian-dinoflagellate symbiosis proposes 

that ammonium produced by the host is assimilated by the alga during its 

photosynthetic activities and the nitrogen recycled back to the host as amino acids 

(Wilkerson & Muscatine, 1984; Trench, 1993). However, a study by Wang & Douglas 

(1998) found that ammonium release into the surrounding water declined when host 

organisms were incubated in the dark (to prevent symbiont photosynthesis) but 

supplemented with exogenous carbon. This suggests that, rather than the symbiont 
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simply acting as a sink for host-derived nitrogenous waste, its provision of 

photosynthetically-fixed carbon also allows for nitrogen conservation by the host 

(Wang & Douglas, 1998). We still know little about the physiology of inorganic 

nutrient cycling and carbon translocation in cnidarian-dinoflagellate associations and 

this remains a major area of current research (Davy et al., 2012). 

 

1.2.1. Establishment of anthozoan-dinoflagellate symbiosis. 

 

Some anthozoan species transmit their symbionts vertically between generations and, 

perhaps unsurprisingly, this mechanism prevails among the minority of species that 

brood their larvae (Trench, 1993; Diekmann et al., 2002; Baird et al., 2009). The 

majority, however, spawn aposymbiotic larvae that must acquire their symbionts 

horizontally - from the external environment - prior to settlement and metamorphosis 

(Fadlallah, 1983; Baird et al., 2009). The evolutionary advantages of this mode of 

transmission may seem at first unclear, but recent work has suggested that symbiotic 

larvae during planktonic life stages can incur significant physiological stresses 

associated with photosynthesis, and may be more susceptible to environmental stress 

(Yakovleva et al., 2009). Moreover, horizontal transmission might encourage a greater 

symbiotic flexibility through an increased opportunity for host-symbiont recombination 

(Little et al., 2004) and the establishment of novel "holobionts" (the symbiotic unit). 

This hypothesis appears to hold for most reef corals (Baird et al., 2007; Baird et al., 

2009; Fabina et al., 2012).  

 

Horizontally transmitting species have to be able to select their symbionts from a 

background community of potentially numerous types. This selectivity is an emergent 

property of a number of cellular mechanisms acting both pre- and post-uptake. 

Symbiotic cnidarians possess a variety of pattern recognition receptors (PRRs) that 

selectively recognise microbe-associated molecular patterns (MAMPs) and thus could 

enable a host to discern "acceptable non-self" (a suitable Symbiodinium type for 

example) from "unacceptable non-self" (an unsuitable symbiont type). PRRs with 

similarity to complement-3 receptors, toll-like receptors, scavenger receptors, and 

lectins have all been observed in various symbiotic cnidarian species (see Davy et al., 

2012 for review). Symbiont markers such as cell-surface glycans (Logan et al., 2010) 

and other glycoconjugates have also been characterised (reviewed by Davy et al., 2012). 
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Little is understood about the specifics of PRR-MAMP interactions in symbiotic 

Cnidaria, but these mechanisms may represent the initial stages of a complex process of 

selective uptake and sorting that ensures a level of specificity in the symbiosis. 

 

Following their successful phagocytic uptake, symbiont cells are selectively "packaged" 

into specialised vesicles ("symbiosomes" morphologically resembling the phagosomes 

of mammalian leukocytes) in gastrodermal cells within a matter of hours (Schwarz et 

al., 1999). It appears that symbiont retention is restricted only to live, functional 

symbionts; dead and dysfunctional cells are quickly rejected (Dunn & Weis, 2009). This 

ability to prevent infection by the background microbial community implies the 

existence of an effective immune system. Indeed, but not without much debate 

(Rinkevich, 2011), cnidarians are believed to possess innate immune-like pathways 

(Kimbrell & Beutler, 2001; Altincicek, 2009; Dunn, 2009; Detournay et al., 2012; 

Palmer et al., 2012; Palmer & Traylor-Knowles, 2012) and these must presumably be 

modified in order for successful endosymbiosis to be achieved. Symbiodinium cells can 

successfully evade destruction through the manipulation of lysosome trafficking and 

binding (Schwarz & Weis, 2003; Chen et al., 2005). Dead or photosynthetically 

compromised cells, however, have been seen to accumulate surface proteins that lead to 

lysosome targeting and eventual destruction (Chen et al., 2003). Dunn & Weis (2009) 

also showed that larvae of the solitary coral Fungia scutaria employ apoptotic-like 

pathways (reviewed in detail below) to prevent colonisation by unsuitable symbionts, 

and that inhibition of these pathways results in persistent infection of the host by these 

previously incompatible Symbiodinium cells.  

 

None of these phenomena are unique to mutualistic symbioses, however, as similar 

patterns of infection are seen in parasitisms including malaria and toxoplasmosis 

(Stevenson & Riley, 2004; Schwarz, 2008). The apicomplexan microbes responsible for 

these diseases (Plasmodium and Toxoplasma spp., respectively) are phylogenetically 

not far removed from dinoflagellates (Baldauf, 2003; Janouskovec et al., 2010; Fig. 

1.3). Moreover, with parasitism hypothesised to be an acquired characteristic in 

alveolates (Moore et al., 2008), it seems probable that natural selection would have 

favoured the modification of existing cellular invasion strategies for a novel task - in 

this case parasitising the host. Our collective understanding of many parasitic infections 

is undoubtedly more advanced than our knowledge of the cnidarian-Symbiodinium 
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association, so it would be beneficial to view these models as potential mines of 

information regarding the strategies employed by Symbiodinium cells to avoid 

recognition/destruction (Schwarz, 2008; Sibley, 2011). It might also shed much-needed 

light on the innate immune-like mechanisms underpinning the breakdown of the 

symbiosis (Weis, 2008). 

 

 

Figure 1.3. A phylogenetic examination of the origin of plastid structures in 

Apicomplexa and closely related taxa. Symbiotic dinoflagellates (green) group closely 

with some solely parasitic species (red) including Phytophthora infestans, Toxoplasma 

gondii and Plasmodium falciparum. The marine parasite Perkinsus marinus is itself 

descended from an early branch of the dinoflagellate lineage (Saldarriaga et al., 2003). 

Figure adapted from Janouskovec et al. (2010). 
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Figure 1.4. Diversity in the genus Symbiodinium [using the large ribosomal subunit to 

distinguish between clades (Rowan & Powers, 1991) and the internal transcribed 

spacer-2 - ITS2 - region as a within-clade "species" marker (LaJeunesse, 2002)]. Clade 

A appears to be descended directly from the ancestral group, with clades C and H the 

most recently derived groups. Adapted from Pochon et al. (2004) with additional 

information from Pochon & Gates (2010).  

 

Evolutionary relationships between the different Symbiodinium clades (Fig. 1.4) are 

only recently becoming apparent (Pochon et al., 2006; Stat et al., 2006), but it appears 

that clade A may be the most primitive, forming a sister lineage to all other clades 

(Coffroth & Santos, 2005). It could also have been the first to enter symbiosis with 

invertebrates (Stat et al., 2008). Clade C, on the other hand, represents the “crown of the 

Symbiodinium tree” (Pochon et al., 2006); even given its relatively recent evolution 

(Stat et al., 2006) it is the most diverse group by some distance (LaJeunesse, 2005). 

While diversity within clades A and B is less in comparison, they still dominate 

symbiont communities in the Caribbean Sea (LaJeunesse, 2002; Baker, 2003; 
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LaJeunesse et al., 2003; Coffroth & Santos, 2005; LaJeunesse, 2005). On Indo-Pacific 

reefs including the Great Barrier Reef (GBR) of eastern Australia, clades A and B are 

displaced by clade C symbionts (LaJeunesse, 2002; Baker, 2003) and inter-cladal 

diversity is consequently depressed (LaJeunesse et al., 2003; Goulet & Coffroth, 2004). 

Clade D is present at low levels in both regions (LaJeunesse, 2002; van Oppen et al., 

2005; Ulstrup et al., 2006) and is often regarded as opportunistic and tolerant of a wide 

range of environmental conditions (Baker, 2003; Berkelmans & van Oppen, 2006; 

Ulstrup et al., 2006; LaJeunesse et al., 2008; Lien et al., 2013). This is especially 

relevant in the context of oceanic warming and the breakdown of the coral-algal 

symbiosis, as described below. 

 

Symbionts are released from their host even under non-stressful conditions (e.g. 

Fagoonee et al., 1999), and this leads to a hypothetical “sink” of potentially infective 

symbionts in the surrounding seawater and sediment (Takabayashi et al., 2012). Indeed, 

surveys at Kane'ohe Bay, Hawai'i, and the Caribbean coast of Mexico observed 

Symbiodinium cells in the water column (Manning & Gates, 2008), and recent work 

suggests that these cells can persist outside their host for long periods, supplementing 

their photosynthesis by feeding on bacteria (Jeong et al., 2012). Interestingly, the water-

borne Symbiodinium types identified by Manning & Gates (2008) (C3 in Hawaii and 

C21 in Mexico) were different from those dominating the in hospite communities at 

each location [C15 in Kane'ohe Bay (Apprill & Gates, 2007) and B1 in the Caribbean 

(LaJeunesse et al., 2004)]. Together with laboratory observations of symbiont 

acquisition and sorting (described above), the distinctly non-random distribution of 

symbionts among host species (van Oppen et al., 2001; LaJeunesse et al., 2003; 

Coffroth & Santos, 2005; Sampayo et al., 2007; LaJeunesse et al., 2008; Macdonald et 

al., 2008; Thornhill et al., 2009) supports an impressive capacity for the host to 

selectively associate with particular symbiont types. The specificity of some coral 

species, for example Fungia scutaria (Weis et al., 2001), for individual symbiont types 

appears highly stable over geographic and temporal scales,  but a subject of much 

debate in the literature (Goulet, 2006; Baker & Romanski, 2007; Goulet, 2007) has been 

to extent to which this apparent specificity is simply an artefact of inadequate 

assessment methods (Silverstein et al., 2012). Indeed, the number of host species 

associating with multiple Symbiodinium types does appear to be ever-growing (Baker, 

2003; Fabricius et al., 2004). For reasons that remain unclear, this is particularly so in 
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the Caribbean where many dominant reef corals host multiple Symbiodinium clades 

(Rowan & Knowlton, 1995; Rowan, 1998; Baker, 2003; Knowlton & Rohwer, 2003). 

These associations often exhibit bathymetric zonation, possibly linked to differences in 

the light environment at different depths (Rowan et al., 1997). To a lesser extent, some 

Indo-Pacific communities also show depth-dependent changes in symbiont composition 

(albeit at a sub-cladal level) and Sampayo and co-workers (2007), studying the reef 

corals Pocillopora damicornis and Stylophora pistillata on the Great Barrier Reef, 

observed significant zonation of symbiont types from shallow (5-7 m) to deep (15-18 

m) reef areas. These observations all imply a physiological diversity among different 

Symbiodinium types that may, in times of stress, have a significant impact on the 

stability of some cnidarian-Symbiodinium associations (van Oppen et al., 2009). 

 

1.3. Coral reefs: A pinnacle of marine symbiosis. 

 

The cnidarian-dinoflagellate symbiosis underpins tropical coral reefs, the most 

biodiverse marine ecosystems on Earth. The efficient cycling of nutrients (see above) 

also neatly explains "Darwin's Paradox" - the once-intractable problem of how such 

high diversity and productivity could be maintained in the relatively nutrient-poor 

waters of the tropics (Muller-Parker & D'Elia, 1997; Sheppard et al., 2009). Coral reefs 

sustain food webs and economically important fishing and tourist industries throughout 

the tropics. Furthermore, by assisting the incorporation of dissolved inorganic carbon 

into a physical framework (the coral's calcium carbonate skeleton), the coral-

dinoflagellate association contributes significantly to geochemical and climate 

homeostasis. Recent climatic changes, however, are placing this mutualism under 

increasing strain (McClanahan et al., 2009; Pandolfi et al., 2011; De'ath et al., 2012; 

Perry et al., 2013) and the prognosis for reefs over the coming century is relatively 

bleak (van Hooidonk et al., 2013). 
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1.4. Coral bleaching: The collapse of a symbiosis. 

 

It has become clear over the past 30 years that coral reefs are becoming increasingly 

threatened (Glynn, 1983; 1984; Cortes & Risk, 1985; Liddell & Ohlhorst, 1986; Glynn 

& Dcroz, 1990; Done, 1992; Bythell et al., 1993; Hughes, 1994; Anthony et al., 2011; 

Perry et al., 2013). This is a worldwide phenomenon and even well managed reef 

systems have suffered dramatic losses in terms of coral cover and diversity (De'ath et 

al., 2012). Local and global stressors are implicated (Hughes, 1994; Hoegh-Guldberg et 

al., 2007; Hughes et al., 2010) and conservative projections have coral reefs, as we 

know them, not surviving far into the next century (Hoegh-Guldberg & Bruno, 2010; 

Hughes et al., 2010; Pandolfi et al., 2011; Perry et al., 2013).  

 

 

 

Figure 1.5. Thermal bleaching in reef corals in the Gulf of Thailand, 2010. Panel A) 

Bleached tabulate Acropora spp. corals; B) Fully bleached Acropora formosa colony; 

C) Partially bleached Porites lobata colony. Photos © Nathan Cook. 
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Out of the multitude of threats facing reefs, anthropogenic climate change is potentially 

the most pernicious. As the major driver of increasing sea surface temperatures, climate 

change is leading to more intense and damaging tropical storms (Webster et al., 2005; 

Knutson et al., 2010) as well as more frequent and intense episodes of coral “bleaching” 

(Hoegh-Guldberg, 1999; Fitt et al., 2001; McClanahan, 2004; van Hooidonk et al., 

2013). This latter phenomenon is a process in which corals visibly pale (Fig. 1.5) due to 

declining numbers of symbiont cells and/or the degradation of symbionts' 

photosynthetic pigments. Bleached corals experience energetic and nutritional shortfalls 

(Goreau & MacFarlane, 1990) and often become more susceptible to pathogens 

(Harvell et al., 1999; Mydlarz et al., 2009, 2010). This can have pronounced and far-

reaching impacts on the ecosystem as a whole and, although some species are able to 

compensate by increasing their heterotrophic activities (Grottoli et al., 2006), others, 

including many of the dominant contributors to the reef structure itself, lack this ability. 

For these species, rapid symbiont population recovery (either through growth of 

residual Symbiodinium populations, heightened pigment biosynthesis, or uptake of new 

symbionts from the environment) is critical if they are to avoid the reduced growth rates 

(Goreau, 1990), reproduction (Szmant & Gassman, 1990) and mortality (McClanahan, 

2004; Jones, 2008; McClanahan et al., 2009) associated with coral bleaching. This 

symbiotic collapse can even affect the reef structure itself, which persists as a fine 

balance between mineral accretion (to which the calcifying activity of corals is a major 

contributor) and erosion (Done, 1992). Any long-term decline in calcification due to 

bleaching can result in structural as well as trophic ecosystem breakdown (Hughes et 

al., 2007; Hoegh-Guldberg & Bruno, 2010; Perry et al., 2013).  

 

1.4.1. What causes coral bleaching? 

 

Research over the past two decades (e.g. Iglesias-Prieto et al., 1992; Warner et al., 

1996; Jones et al., 1998; Warner et al., 1999; Hennige et al., 2009) has strongly 

implicated the dinoflagellate symbiont in the initial stages of thermal bleaching. Direct 

temperature-induced damage to the host almost certainly occurs (Dykens et al., 1992), 

but coral bleaching appears to be a consequence of sustained damage to the symbiont’s 

photosynthetic apparatus (reviewed by Smith et al., 2005; Lesser, 2011) that associates 

with the overproduction of reactive oxygen species (ROS). The consequences of this are 

reviewed in detail below, but include oxidative stress (Dykens et al., 1992; Lesser, 
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1996; 1997; Downs et al., 2002; Lesser & Farrell, 2004; Lesser, 2006; Richier et al., 

2006) and the activation of host innate immune-like signalling pathways (Weis, 2008).  

 

 

 

Figure 1.6. Simplified model of reactive oxygen species (ROS; including singlet 

oxygen: 1O2; superoxide: O2
-; and hydrogen peroxide: H2O2) generation in 

Symbiodinium cells exposed to heat and light stress. ROS generation occurs at 

photosystems (PS) I and II with subsequent damage to PSII (I), thylakoid membranes 

(II) and the components of carbon fixation (III). ROS may also leak into host cells. 

(SOD: superoxide dismutase; APX: ascorbate peroxidase). Adapted from Venn et al. 

(2008).  
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The precise points of injury within Symbiodinium cells are slowly becoming clear (Fig. 

1.6) and include the D1 protein in photosystem II (PSII) (Warner et al., 1999; 

Takahashi et al., 2009; Ragni et al., 2010) and the thylakoid membranes (Tchernov et 

al., 2004). The Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase oxygenase 

(Rubisco) has also been shown to be inhibited at elevated temperature (Jones et al., 

1998). The order in which these components become dysfunctional is less clear, 

however, as events at one location often have downstream effects on others. Despite 

this, the oxidative component of cnidarian bleaching, due to the build-up of ROS, is 

now well recognised (Lesser et al., 1990; Dykens et al., 1992; Lesser, 1997; Downs et 

al., 2002; Lesser & Farrell, 2004; Lesser, 2006; Richier et al., 2006; Weis, 2008). 

Several studies have observed elevated ROS generation in Symbiodinium cells during 

thermal stress (e.g. Tchernov et al., 2004; Suggett et al., 2008; Saragosti et al., 2010; 

McGinty et al., 2012) and one particular ROS, hydrogen peroxide (H2O2), has a high 

potential for diffusion out of the symbiont (Halliwell & Gutteridge, 2007). Co-evolution 

with photosynthetic endosymbionts has equipped symbiotic cnidarians well and they 

possess a wide variety of antioxidant mechanisms (Dykens & Shick, 1982; Furla et al., 

2005; Richier et al., 2005; Bou-Abdallah et al., 2006; Palmer et al., 2009). Even so, 

influxes of H2O2 from stressed symbionts may be sufficient either to induce cell death 

directly or at least initiate signalling pathways within the host cell that eventually result 

in the loss of the symbionts (Martindale & Holbrook, 2002; Perez & Weis, 2006, 2008; 

Richier et al., 2006; Dunn et al., 2007; Perez & Weis, 2008; Weis, 2008).  

 

1.4.2. Variation in bleaching susceptibility.  

 

It has long been known that corals vary in their sensitivities to environmental stresses 

(Fig. 1.7), and while host-level physiological and anatomical differences (discussed 

below) have been identified (Baird et al., 2008; Bromage et al., 2009; Fitt et al., 2009; 

Kramer et al., 2013), their sensitivity is heavily influenced by the physiology of the 

resident Symbiodinium population (Rowan et al., 1997; Jones et al., 1998; Fabricius et 

al., 2004; Rowan, 2004; Tchernov et al., 2004; Berkelmans & van Oppen, 2006; 

Ulstrup et al., 2006; Sampayo et al., 2008; van Oppen et al., 2009).
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Figure 1.7. Differential bleaching in reef corals at Rarotonga, Cook Islands in 2011. 

Panel A) Partially bleached Pocillopora eydouxi colonies atop an unbleached massive 

Porites lobata colony; B) Bleached and unbleached encrusting Favites sp. colonies. 

 

 

The role of the symbiont: 

Many Symbiodinium ITS2 types such as A1 (e.g. from the jellyfish Cassiopeia 

xamachana), C15 (found in Montipora digitata and Porites spp.), and D1 (from 

numerous reef corals), are relatively robust in response to rising temperatures 

(Berkelmans & van Oppen, 2006; Robison & Warner, 2006; Suggett et al., 2008; Ragni 

et al., 2010; Fisher et al., 2012). Others, however, such as B1 (e.g. from the anemone 

Aiptasia), A1.1 (e.g. from the anemone Condylactis gigantea) and C3 (from numerous 

reef corals) can, depending on the extent of their recent exposure to elevated 

temperatures, suffer pronounced physiological dysfunction (Robison & Warner, 2006; 

Ragni et al., 2010; Fisher et al., 2012). Tchernov & co-workers (2004) proposed that 

this variability in thermal tolerance stemmed from the symbionts' thylakoid membrane 

composition and, subsequently, the differential generation of ROS. For example, the 

temperature-sensitive B1-type symbionts from Aiptasia sp. and the reef coral 

Stylophora pistillata suffered greater membrane disruption and exhibited higher levels 

of ROS production than did more tolerant strains when exposed to the same 

temperatures (Tchernov et al., 2004), a finding that has since been corroborated 
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(Suggett et al., 2008). The ability of cells to repair the important D1 protein in PSII has 

also been found to vary between differentially temperature-sensitive Symbiodinium 

types (Ragni et al., 2010). Furthermore, significant variation in accessory pigment 

concentration and the capacity for non-photochemical quenching (NPQ - the dissipation 

of excess light energy as heat) has recently been observed (Fisher et al., 2012), even 

among closely related ITS2 types (Hennige et al., 2009). Symbionts' capacities to 

detoxify ROS through its suite of antioxidants also vary taxonomically (McGinty et al., 

2012), and, together, these physiological characteristics all contribute to the 

physiological robustness of a holobiont and thus the likelihood of its collapse during a 

thermal stress event. 

 

The role of the host: 

Significant variability has also been observed among coral species hosting the same 

symbiont type. For example, the Symbiodinium ITS2 types C1 and C3 occur in 

temperature-sensitive Acropora, Seriatopora and Pocillopora spp. as well as in more 

thermally robust genera such as Favia, Goniastrea and Platygyra (LaJeunesse et al., 

2003). Kramer et al. (2013), in a recent study of Pocillopora damicornis and Pavona 

decussata reef corals, found that symbiont photosynthesis at elevated temperature 

differed significantly between the two species despite them both hosting type C1 

Symbiodinium (Hill et al., 2011). This suggests that the intracellular environment might 

differ between host species (Kramer et al., 2013). There is also increasing evidence that 

changes occur within the cells of the coral host before the symbionts become 

compromised (Ainsworth et al., 2008; Ainsworth et al., 2011; Dunn et al., 2012; Paxton 

et al., 2013). A number of mechanisms, both anatomical and physiological, exist by 

which coral hosts can determine their own bleaching thresholds (Baird et al., 2008). On 

an anatomical level, the morphology of a coral colony, together with the thickness of its 

tissues, strongly influences the internal light environment in which its symbionts reside 

and these characteristics can vary among differentially bleaching-susceptible taxa (Loya 

et al., 2001; Kramer et al., 2013). In terms of physiological mechanisms, fluorescent 

proteins (FPs), for example, are common in reef corals and are capable of absorbing 

much of the harmful excess radiation incident on shallow-water reef habitats (Salih et 

al., 2000). Recent work suggests that they may also play an antioxidant role (Palmer et 

al., 2009). Investment in FPs differs greatly among coral species and correlates with 

their bleaching susceptibilities (Salih et al., 2000). Corals also contain mycosporine-like 



 37 

amino acids (MAAs) that afford photoprotection by attenuating harmful UV radiation 

(Shick & Dunlap, 2002). In the context of heat stress, corals possess a range of heat 

shock proteins (HSP; molecular chaperones protecting vital enzymes and proteins from 

thermal degradation) that can be upregulated during exposure to high temperature 

(Brown et al., 2002; Leggat et al., 2011). Differential host expression of HSPs and the 

antioxidant enzyme superoxide dismutase (SOD) has been observed in corals from the 

genus Stylophora and Porites (Fitt et al., 2009), two genera with divergent bleaching 

sensitivities. As is the case for the symbionts, a significant opportunity exists for host 

physiology to affect the overall thermal sensitivity of the holobiont (Baird et al., 2008; 

Wicks et al., 2012). 

 

1.4.3. Mechanisms of bleaching - linking thermal stress to holobiont collapse. 

 

Despite the suite of protective measures acting at both symbiont and host levels, heat 

and light stresses can still destabilise the association. The transition to bleaching can 

proceed via a number of pathways (Fig. 1.8). Of particular interest in the context of this 

thesis are those pathways resulting in uncontrolled (necrotic) and programmed 

(including apoptotic) cell death of host cells, and the degradation of symbionts. 

Necrosis is often the result of the uncontrolled build-up of ROS, reactive nitrogen 

species (RNS), and harmful metabolites that eventually compromise a cell's 

physiological integrity (Cadenas, 1989; Lesser, 2006; Halliwell & Gutteridge, 2007). 

Programmed cell death [PCD; often referred to as apoptosis when cells display specific 

morphologies during death (Kerr et al., 1972)], however, is a tightly regulated process 

of cell deletion followed by the assimilation/recycling of cellular material by 

neighbouring cells (Aravind et al., 1999; Martindale & Holbrook, 2002; Bottger & 

David, 2003; Segovia, 2008). Bleaching has also been seen to involve autophagy-like 

pathways, whereby cells digest their own components through a complex procedure of 

organelle labelling, vesicle trafficking and lysosomal fusion (Gozuacik & Kimchi, 

2004).  
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Figure 1.8. Symbiotic anthozoans have been known to bleach via several mechanisms. 

Symbionts (S) may be degraded within their host cells (H) or ejected from the host 

through a process of exocytosis or “pinching off”. Host cells have also been observed 

undergoing programmed cell death (PCD) and necrosis, both of which lead to symbiont 

loss. Symbionts lost through PCD and necrosis can be either viable or degraded. 

Furthermore, entire host cells containing intact symbionts may be lost through 

detachment from the acellular mesogloea (M). Asterisks above pathways denote those 

most likely to be mediated by reactive oxygen species or nitric oxide and its derivatives. 

Re-drawn from Weis (2008) and Gates et al. 1992. 
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Characteristics of both PCD and necrosis have been observed in host and symbiont cells 

during thermal stress (Dunn et al., 2002; Dunn et al., 2004; Richier et al., 2006; Dunn et 

al., 2007; Bouchard & Yamasaki, 2009; Strychar & Sammarco, 2009), and enzymes 

with activities similar to those tasked with the execution of apoptosis in mammals 

(aspartate-specific cysteine proteases - "caspases") have been identified in symbiotic 

cnidarians (Cikala et al., 1999; David et al., 2005; Dunn et al., 2006; Richier et al., 

2006; Kvitt et al., 2011; Pernice et al., 2011; Tchernov et al., 2011) and their symbionts 

(Segovia, 2008; Bouchard & Yamasaki, 2009). While research into temperature-

induced stress and cell death is proceeding apace, comparatively little has been achieved 

with respect to linking the two. The implication of RNS (specifically nitric oxide - NO) 

in the breakdown of the cnidarian-dinoflagellate symbiosis (Trapido-Rosenthal et al., 

2001; Trapido-Rosenthal et al., 2005; Perez & Weis, 2006; Bouchard & Yamasaki, 

2008) provides an attractive avenue of enquiry in this regard and forms the basis for this 

thesis. 

 

1.5. Nitric oxide as a link in the bleaching cascade. 

 

Nitric oxide is among the smallest signalling molecules in biology (Beckman & 

Koppenol, 1996). Originally discovered as the "endothelium-derived relaxing factor" 

promoting vasodilation in mammals (Ignarro et al., 1987), and winning its discoverers a 

Nobel Prize in the process (Smith, 1998), NO is now recognised as ubiquitous in living 

organisms. 

 

There are many pathways for biosynthesis of NO in eukaryotes and most are enzymatic 

in nature (Griffith & Stuehr, 1995; Moroz, 2001). In animals, NO is synthesised through 

the activities of nitric oxide synthase (NOS) enzymes, which convert arginine to 

citrulline with NO as a second product (Griffith & Stuehr, 1995; Colasanti & Suzuki, 

2000). In mammals, three NOS isoforms are known: eNOS, responsible for 

endothelium-derived NO; nNOS, synthesising NO for neuronal signalling; and iNOS, 

responsible for synthesising NO in innate immune responses (Griffith & Stuehr, 1995). 

eNOS and nNOS are constitutive (expressed constantly at relatively low levels) and 

calcium-dependent, while iNOS is inducible, calcium-independent and capable of 

producing much greater quantities of NO than are the other two enzymes (Colasanti & 

Suzuki, 2000). Only one NOS isoform has been observed in any individual lower 
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invertebrate (Colasanti et al., 2010) and it often bears a resemblance to both constitutive 

(calcium-dependent) and inducible (stimulated by heat or in immune-like response) 

mammalian NOS (Morrall et al., 2000; Giovine et al., 2001; Moroz et al., 2004; Perez 

& Weis, 2006; Moroz & Kohn, 2007; Safavi-Hemami et al., 2010). Plant and microbial 

synthesis of NO is significantly more complicated than it is in animals (Beligni & 

Lamattina, 2001) and multiple pathways capable of synthesising NO exist. These 

include NOS-like enzymes as well as the conversion of inorganic nitrogen via nitrate 

reductase (NR) enzymes (Ghigo et al., 1995; Basu et al., 1997; Yamasaki et al., 1999; 

Yamasaki & Sakihama, 2000; Beligni & Lamattina, 2001; Sakihama et al., 2002; 

Chandok et al., 2003; Delledonne, 2005; Foresi et al., 2010). 

 

As expected for a molecule so widely distributed among taxa, NO plays a role in some 

diverse biological phenomena. These include neurotransmission (Colasanti et al., 1995; 

Jacklet, 1997; Moroz, 2001; Torreilles, 2001; Moroz et al., 2004; Cristino et al., 2008), 

the alleviation of environmental stress (Beligni & Lamattina, 1999a; Gould et al., 2003; 

Delledonne, 2005; Liu et al., 2010) and the regulation of cell death (Wink & Mitchell, 

1998; Brune et al., 1999; Liu & Stamler, 1999; Borutaite et al., 2000; Brookes et al., 

2000; Chung et al., 2001; Brown & Borutaite, 2002; Almeida et al., 2007; Snyder et al., 

2009). Importantly, given the context of this thesis, NO is also involved in a large 

number of symbiotic interactions (Wang & Ruby, 2011), described in more detail 

below. 

 

1.5.1. Nitric oxide, innate immunity and microbial symbiosis. 

 

As early as 1818 (Prout, 1818) it was observed that patients suffering acute fever 

displayed elevated levels of urinary nitrate (NO3
-), a biomarker of elevated nitric oxide 

synthesis (Ignarro et al., 1993). It is now widely recognised that NO is a critical 

component of innate immunity (Fang, 2004). For example, successful antimicrobial 

activity of mammalian macrophages is dependent on NOS enzymes (MacMicking et al., 

1997). These are upregulated in a wide variety of organisms during microbial infection 

(e.g. Eiserich et al., 1998; Chan et al., 2001; Villamil et al., 2007; Carton et al., 2009; 

Herrera-Ortiz et al., 2011) and the resultant NO has been shown to inhibit bacterial 

respiration (Wink et al., 2011), induce parasite cell death (Ali et al., 2010), and 

generally reduce the pathogen load (MacMicking et al., 1997; Leng et al., 2009). NO 
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produced in concert with H2O2 plays an important role in the response of the mosquito 

Anopheles spp. to Plasmodium berghei infection (Herrera-Ortiz et al., 2011), and 

heightened NOS activity in mice correlates with increased immunity to Leishmania 

major (Liew et al., 1991). Nitric oxide is required for the effective killing of the same 

parasite in humans (Vouldoukis et al., 1995). Conversely, inhibiting NOS has been 

shown to exacerbate diseases caused by Mycobacterium tuberculosis, Listeria 

monocytogenes, Toxoplasma gondii, Plasmodium and Leishmania spp., and Salmonella 

spp., as well as parasitic fungi and helminths (reviewed by MacMicking et al., 1997; 

Nathan & Shiloh, 2000). Nitric oxide is also involved in the responses of plants to 

pathogenic microbes (Nürnberger et al., 2004; Saito et al., 2006) although less is known 

about its specific roles in plant immunity. It is also important to note that heightened 

NO synthesis in the innate immune responses of animals often occurs against a 

backdrop of upregulated programmed cell death pathways and the induction of 

apoptosis (Kimbrell & Beutler, 2001; Wilson et al., 2009). Moreover, the modification 

of NO-synthetic pathways and apoptosis is an important strategy by intracellular 

parasites to avoid recognition and destruction by the host (Pannebakker et al., 2007; 

Laliberte & Carruthers, 2008; Hippe et al., 2009; Sibley, 2011). 

 

A number of preventative mechanisms have been evolved by intracellular symbionts 

(both parasitic and mutualist) in order to bypass or deal with host-derived NO. These 

include the inhibition of NOS as well as the direct detoxification of NO. Both strategies 

are employed extensively by the bacterial symbionts of the squid E. scolopes (see 

above). A decade of intensive investigation has revealed host-derived NO to be critical 

during the establishment of this symbiosis (Davidson et al., 2004), selectively 

"winnowing" (Nyholm & McFall-Ngai, 2004) the bacterial symbiont population by 

removing undesirable strains. Suitable Vibrio strains express a suite of attributes to 

either attenuate host NOS activity or detoxify NO (Wang & Ruby, 2011). These include 

specific MAMPs (Altura et al., 2011), haem-NO/oxygen (H-NOX) binding protein 

(Wang et al., 2010a), flavohaemoglobin (Wang et al., 2010b), and alternative oxidase 

(AOX) enzymes (Dunn et al., 2010). Haemoglobin (Hb)-like proteins also play a role in 

the plant-Rhizobium association (Shimoda et al., 2005). Here, production of NO occurs 

in both symbiotic partners (Meilhoc et al., 2011) - in the bacteria as a by-product of 

denitrification pathways (Zumft, 1997) and in the host as an immune response to 

symbiont or pathogen infection (Nagata et al., 2011). Plant Hb is expressed partly in 
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order to detoxify excess NO (Shimoda et al., 2005; Bustos-Sanmamed et al., 2011; 

Nagata et al., 2011) and the bacteria possess nitric oxide reductase (NOR) enzymes that 

perform a similar role (Sanchez et al., 2011). NO also plays a significant role in the 

aphid-bacteria mutualism, where it is employed by the host as a defensive response to 

initial infection (Ganassi et al., 2005). Interestingly, these authors proposed a role for 

NO similar to that in the squid-Vibrio association: mediating symbiotic specificity by 

selectively killing undesirable symbionts early in the onset of symbiosis (Ganassi et al., 

2005). 

 

The cnidarian-dinoflagellate symbiosis bears a close similarity to many of the mutualist 

and parasitic associations described above (Schwarz, 2008) and this might even extend 

to NO signalling (Weis, 2008; Detournay et al., 2012). A recent study observed an 

upregulation of NO synthesis in the anemone Aiptasia pallida in response to the MAMP 

lipopolysaccharide  (LPS), a reaction that was compromised when specimens were 

infected with symbionts (Detournay et al., 2012). However, a previous investigation 

showed that elevated host NO synthesis can be restored by exposing symbiotic A. 

pallida to elevated temperatures (Perez & Weis, 2006). Moreover, the same study found 

that removing NO at high temperature resulted in a lessening of bleaching intensity 

(Perez & Weis, 2006). Citing evidence from other metazoan systems (Chan et al., 2001; 

Mendes et al., 2003), the authors proposed NO as the “eviction notice”, stimulated by 

symbiont-derived ROS (Fig. 1.9), that could lead to an apoptotic-like form of host cell 

death and eventual symbiont release (Perez & Weis, 2006; Weis, 2008). Complicating 

matters, however, are recent findings that the symbionts can also synthesise NO; 

Bouchard & Yamasaki (2008) provided strong evidence of NOS- and NR-derived NO 

in cultured Symbiodinium cells. Again, the authors suggested a role for NO as a 

mediator of PCD (Bouchard & Yamasaki, 2009).  
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Figure 1.9. Hypothetical bleaching pathway proposed by Perez & Weis (2006). 

Excessive temperature/light stress-induced photoinhibition in the symbiont is associated 

with overproduction of ROS and the activation of host innate immune-like responses 

[e.g. nuclear factor-kappa B (NF-κB)-mediated pathways]. The upregulation of iNOS-

like enzyme leads to NO accumulation that can, in the presence of certain ROS, result 

in the generation of toxic peroxynitrite (ONOO-) and further damage to symbionts, host 

mitochondria, and DNA. This can lead to both apoptotic-like (programmed) and 

necrotic (uncontrolled) cell death. Adapted from Perez & Weis (2006) and Weis (2008). 
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Apoptotic-like PCD is a significant mechanism of symbiont loss during thermal stress 

(Dunn et al., 2002; Dunn et al., 2004; Richier et al., 2006; Dunn et al., 2007) and NO 

plays a major role in mediating this form of mortality (Brune et al., 1999; Borutaite et 

al., 2000; Chung et al., 2001; Almeida et al., 2007). The routes by which NO can 

regulate apoptosis are numerous, however, and include its direct action on mitochondria 

(Borutaite et al., 2000; Brookes et al., 2000; Shiva et al., 2001; Brown & Borutaite, 

2002), interactions with various pro- and anti-apoptotic molecules (Adams & Cory, 

1998; Snyder et al., 2009), and the diffusion-limited reaction of NO with O2
- to produce 

peroxynitrite (ONOO-) (Estevez & Jordan, 2002; Pacher et al., 2007). ONOO- can cause 

serious damage to mitochondria (Gadelha et al., 1997; Szabo et al., 2007; Ahmad et al., 

2009; Bolanos & Heales, 2010), DNA (Szabo & Ohshima, 1997) and proteins 

(Beckman et al., 1993; Ischiropoulos & Almehdi, 1995). Indeed it is possible that many 

of NO's effects during stress events are in fact due to its conversion to ONOO- (Radi et 

al., 2001; Pacher et al., 2007; Szabo et al., 2007). Empirical confirmation of 

peroxynitrite's involvement in cell mortality is hampered, however, by the difficulties 

associated with detecting such a reactive and transient compound (Ischiropoulos et al., 

1995; Crow & Ischiropoulos, 1996; Herce-Pagliai et al., 1998; Viera et al., 1999; Ueno 

et al., 2006; Chaki et al., 2009; Ferrer-Sueta & Radi, 2009; Lesser, 2011).  

 

1.6. Aim and scope of this study. 

 

The primary aim of this study was to elucidate the role of nitric oxide in the 

temperature-induced breakdown of the cnidarian-dinoflagellate symbiosis. In achieving 

this aim, the project had a number of specific objectives: 

 

1. Determine whether or not Symbiodinium cells (in vitro and in hospite) have the 

capacity to generate NO, and identify a role for the compound (if any) in 

temperature stress in these algae. Hypotheses: a) Biosynthesis of NO will be 

stimulated by exposure to high temperature; b) NO will adversely affect 

Symbiodinium cellular physiology. 

 

2. Determine whether different types of Symbiodinium differentially produce NO 

during thermal stress, and whether they vary in their susceptibility to the 

compound. Hypotheses: a) Synthesis of NO during thermal stress will differ 
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significantly between Symbiodinium genotypes; b) Different types of 

Symbiodinium will vary in their sensitivity to exogenous NO. 

 

3. Identify a specific role for NO in the breakdown of the Aiptasia pulchella-

Symbiodinium association. Hypothesis: NO is involved in the activation of 

apoptotic-like pathways leading to thermal bleaching. 

 

4. To determine whether NO and apoptosis might be critical events in the 

bleaching of A. pulchella treated with slow rather than rapid heating. 

Hypothesis: NO synthesis and apoptotic events in the host will correlate with 

algal photosynthetic dysfunction and symbiont loss during slow heating-induced 

bleaching. 

 

5. Identify the generation of highly toxic peroxynitrite (ONOO-) in thermally 

stressed cnidarians and confirm its importance for thermal bleaching. 

Hypotheses: a) Elevated temperature will induce ONOO- generation in A. 

pulchella; b) ONOO- is involved in the temperature-induced bleaching of 

symbiotic A. pulchella. 

 

6. Determine whether different species of reef corals produce NO during thermal 

stress and whether production of the compound correlates with the induction of 

apoptosis and bleaching. Hypotheses: a) Differentially heat-sensitive corals will 

generate NO to varying degrees; b) This will correlate with host apoptotic events 

and will follow pronounced physiological dysfunction in the symbionts. 

 

As a whole, this thesis sought to contribute to our knowledge of the cellular physiology 

of cnidarian bleaching by providing insights into the production and activity of reactive 

nitrogen species in various symbiotic cnidarians and their dinoflagellate symbionts. 

Drawing together previous cellular and biochemical research into an ecologically 

relevant framework will aid our understanding of the roles that cellular signalling might 

play in the breakdown of this important symbiotic association. 
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Chapter 2 

 

Nitric oxide production and tolerance differ among Symbiodinium 

types exposed to heat stress. 

 

 

2.1. Introduction 

 

A symbiotic association between scleractinian corals and photosynthetic dinoflagellates 

of the genus Symbiodinium underpins the existence of coral reefs (Muller-Parker & 

D'Elia, 1997). This relationship is highly sensitive to changes in temperature, however, 

and thermal anomalies associated with global warming are now driving its collapse 

throughout tropical oceans (Hoegh-Guldberg & Bruno, 2010; van Hooidonk et al., 

2013). The loss of Symbiodinium cells from their cnidarian host (a major component of 

"coral bleaching”) can result in colony mortality (Jones, 2008; McClanahan et al., 2009) 

and the decline of reef systems (Graham et al., 2008; Pratchett et al., 2009). Despite its 

increasing frequency, little is known of bleaching’s underlying physiological basis 

(Weis, 2008; Davy et al., 2012). Given the timescales of projected reef decline 

(Pandolfi et al., 2011), it is vital that this is addressed. 

 

The genus Symbiodinium is highly diverse (Coffroth & Santos, 2005; Stat et al., 2006), 

with nine distinct clades and numerous sub-clades (ITS2 "types") currently recognised 

(Pochon et al., 2006; Pochon & Gates, 2010). This diversity is reflected in the 

sensitivities of different types to environmental stress (Robison & Warner, 2006; 

Suggett et al., 2008; Takahashi et al., 2009; Ragni et al., 2010). Moreover, the presence 

of certain Symbiodinium types often correlates with the intensity of host bleaching 

responses (Berkelmans & van Oppen, 2006; Sampayo et al., 2008; van Oppen et al., 

2009). One of the initial events in the bleaching process appears to be the chronic 

photoinhibition of the Symbiodinium cells (Warner et al., 1999; Smith et al., 2005), 

which is associated with the overproduction of ROS (Suggett et al., 2008) and the onset 

of oxidative stress (Lesser, 1997; Lesser, 2006). If left unchecked, this can result in 

mortality (Dunn et al., 2004; Pernice et al., 2011) and/or the activation of immune-like 

responses that result in the symbionts' ejection (Perez & Weis, 2006; Weis, 2008). 
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PCD/apoptosis in particular has been proposed as a crucial step in coral bleaching 

(Dunn et al., 2007) and this process has been reported in symbiotic dinoflagellates 

(Dunn et al., 2004; Strychar et al., 2004a; Sammarco & Strychar, 2013). Linking the 

oxidative component of coral bleaching with observed patterns of cellular mortality is 

now a major area of research, and it is here that NO could play a significant role (Brune 

et al., 1999; Chung et al., 2001; Almeida et al., 2007).  

 

NO is one of the smallest signalling molecules in biology (Smith, 1998) and its 

involvement in cell death (Brune et al., 1999; Snyder et al., 2009), ROS-based 

signalling (Crawford & Guo, 2005), innate immunity (Nürnberger et al., 2004), and 

symbiosis (Trapido-Rosenthal et al., 2001; Davidson et al., 2004) has long been 

recognised. Perez & Weis (2006) proposed NO as an “eviction notice” in the bleaching 

of the sea anemone Aiptasia pallida during heat shock, and initial work suggested that 

symbiotic dinoflagellates possess their own nitric oxide synthase (Bhagooli et al., 2001; 

Buxton et al., 2002; Trapido-Rosenthal et al., 2005) although this has since been 

contradicted (Safavi-Hemami et al., 2010). Plants and green algae employ NOS-

independent NO pathways (Yamasaki et al., 1999; Sakihama et al., 2002; Delledonne, 

2005), however, and these appear to be present in symbiotic dinoflagellates isolated 

from the giant clam Tridacna crocea (Bouchard & Yamasaki, 2008). Furthermore, 

temperature-induced NO synthesis correlated with increasing caspase-like activity 

(enzymes involved in the execution of PCD), leading the authors to propose NO as a 

mediator of programmed cell death (Bouchard & Yamasaki, 2009). While NO has been 

shown to mediate mortality in some diatom species (Vardi et al., 2006; Chung et al., 

2008), Bouchard & Yamasaki (2009) did not apply an NO scavenger to the cells and 

thus any link between NO and cell death in Symbiodinium remains correlative at best. 

As is the case in other photosynthetic organisms (Beligni & Lamattina, 1999b), 

heightened NO synthesis may be a protective strategy - through the compound's 

scavenging of ROS and consequent attenuation of oxidative stress (Delledonne, 2005) - 

that is simply overwhelmed during prolonged stress.  

 

Whether protective or harmful, if temperature-induced synthesis of NO is widespread in 

the genus Symbiodinium then its production might vary with the differing thermal 

sensitivities of individual ITS2 types (Robison & Warner, 2006; Suggett et al., 2008; 

Ragni et al., 2010; Fisher et al., 2012). As a small lipophilic molecule, NO could 
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potentially diffuse across symbiont membranes into the host cells. With the cnidarian-

Symbiodinium association apparently sensitive to NO (Perez & Weis, 2006), in hospite 

leakage of the compound may have profound implications (Weis, 2008) and perhaps 

contribute to the differential bleaching of hosts containing different symbiont types 

(Perez et al., 2001; Sampayo et al., 2008; Weis, 2010). 

 

This study sought to determine the role of NO in the stress responses of symbiotic 

dinoflagellates by examining its production in three different Symbiodinium ITS2 types 

exposed to elevated temperature, as well as its effects on the photophysiology and 

viability of these algae. Further elucidation of the mechanisms underpinning the 

declining health of thermally stressed Symbiodinium will greatly improve our 

understanding of the cellular basis of coral bleaching, and the role that symbiont 

diversity may play in this phenomenon. 

 

2.2. Materials and Methods 

 

2.2.1. Culture of Symbiodinium dinoflagellates. 

 

The three Symbiodinium types used in this experiment were originally isolated from 

taxonomically and geographically distinct host populations (Table 2.1), and had been 

maintained in culture for at least 2 years. Their ITS2 types were identified by the 

methods of Logan et al. (2010). Prior to experimentation, Symbiodinium cell cultures 

were grown at 26°C under a 12 h light:12 h dark cycle (100-120 μmol photons m-2 s-1 

provided by cool white fluorescent tubing - OSRAM DULUX L 36W 4000 K). Flasks 

containing Guillard’s f/2 medium (- Si; AlgaBoost, AusAqua Pty Ltd, Wallaroo 

Austalia) were inoculated 20 days prior to experimental treatment and cells were 

maintained in exponential growth phase (50000-150000 cells mL-1) by regular dilution 

with fresh f/2 medium. Cultures were diluted to a concentration of 30000 cells mL-1 72 

h prior to treatment and left undiluted throughout each experiment.  

 

2.2.2. Experiments 

 

To investigate the effects of temperature on photosystem II, NO production and cell 

viability, Symbiodinium cell suspensions (three independent replicate cultures per ITS2 
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type) were transferred to an illuminated water bath set at 26°C and an irradiance of 100-

120 μmol photons m-2 s-1 (provided by a LED light bank - 20 RoHS 5W 6400 K - which 

provided illumination for all subsequent experiments), and allowed to acclimate for 48 

h. Assessments of symbiont photosystem II were made during the acclimation period to 

ensure stability prior to treatment. The temperature was then either maintained at 26°C 

(control) or increased over a short period (< 1 hour) to 32°C or 34°C (Bouchard & 

Yamasaki, 2008; Bouchard & Yamasaki, 2009). Cells were exposed to the new 

conditions for 48 h. 

 

Table 2.1. ITS2 type, original host species, and geographic origin of Symbiodinium 

cultures used in experiments. 

 

Culture name Original host 

Geographic 

origin ITS2 type 

CCMP2467 

Stylophora 

pistillata 

Gulf of Aqaba, 

Egypt. A1 

Ap1 

Aiptasia 

pulchella Hawaii, USA. B1 

CCMP2466 

Discosoma 

sanctithomae Jamaica. C1 

 

 

The extent to which NO production is dependent on photoinhibition was examined by 

exposing cells to the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea 

(DCMU; Sigma Aldrich, Auckland, New Zealand) at 26°C (20 μM final) for 24 h in 

100 mL f/2 medium at an irradiance of 100-120 μmol photons m-2 s-1 (see above). 

 

The effects of NO on photosynthetic performance were examined in a further set of 

experiments, by exposing Symbiodinium cells to different nitric oxide donor and 

scavenger combinations, at either control (26°C) or elevated temperatures for 3-6 h 

under an irradiance of 100-120 μmol photons m-2 s-1. The NO donors used were 

spermine NONOate (S-NONO; Life Technologies, Auckland, New Zealand) - known to 

release NO comparatively slowly and consistently (Miller et al., 2004) - and S-
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nitrosoglutathione (GSNO; Sigma-Aldrich, Auckland, New Zealand) - a donor 

specifically recommended for investigations into the influence of NO on photosynthetic 

pathways (Wodala et al., 2008). The specific NO scavenger 2-(4-carboxyphenyl)-4,5-

dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (c-PTIO; Life Technologies, 

Auckland, New Zealand) was used in order to examine the NO-dependency of a 

response. The NO donor sodium nitroprusside was also used in preliminary 

experiments, but its effects were mediated by compounds other than NO 

(Supplementary Fig. A1). Conditions for the elevated temperature + cPTIO treatment 

were determined by the responses of different Symbiodinium types to the 48-h high 

temperature treatments described above.  

 

To assess the effects of NO on cell mortality, type A1 and B1 cells were exposed to 

control (26°C) and elevated temperatures for 24 h with and without 2 mM cPTIO.  

 

All NO donor and scavenger treatments took place in 0.22-µm filtered seawater (FSW) 

in 1.5-ml tubes with cell suspensions (sourced from independent replicate cultures) at a 

concentration of ca. 1 × 106 cells mL-1. 

 

2.2.3. Fluorometric assessment of photosynthetic competence. 

 

Fluorescence induction curves were conducted using a Water-PAM fluorometer (Walz, 

Effeltrich, Germany). Cells were dark-adapted for 30 min prior to measurement. Thus, 

values were obtained for maximum quantum yield of photosystem II (PSII) (Fv/Fm). 

During induction curves, cells were exposed to 250 mol photons m-2 s-1 (irradiance 

increased to stimulate the cells' NPQ response) and the effective quantum yield of PSII 

(ΔF/Fm') was measured until steady state. Using these data, non-photochemical 

quenching (NPQ) was calculated as (Fm - Fm') / Fm', where Fm is maximum dark-adapted 

chlorophyll fluorescence and Fm' is maximum steady-state light-adapted chlorophyll 

fluorescence. 

 

In order to ensure consistency between treatments, comparisons of PSII fluorescence 

yields and NPQ refer to values relative to pre-treatment (t = 0) conditions. In all cases, 

only algal cultures with initial dark-adapted yields (Fv/Fm) greater than 0.5 were used. 
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2.2.4. Flow cytometric (FCM) assessment of nitric oxide in Symbiodinium cells. 

 

NO production was measured with the fluorescent nitric oxide indicator 4-amino-5-

methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM-DA; Molecular Probes, 

Eugene, OR, USA) at a final concentration of 15 μM in 0.22-µm filtered seawater 

(FSW). DAF-FM-DA is more sensitive (ca. 3 nM detection limit), photostable, and cell-

permeable than previously available fluorescent dyes and has been successfully used on 

a number of occasions to measure the low levels of NO present in microalgae (e.g. Kim 

et al., 2008; Thompson et al., 2008). After 90 min incubation in the dark (to prevent 

photobleaching of the DAF-FM fluorophore), cells were washed twice by repeated 

centrifugation (800 × g for 5 min) and resuspension in FSW. They were then kept in the 

dark for a further 30 min to allow cleavage of the DAF-FM-DA dye to its active DAF-

FM form (Nagano & Yoshimura, 2002). The fluorescent product of DAF-FM’s reaction 

with NO has an emission maximum at 515 nm when excited with blue light (Nagano & 

Yoshimura, 2002). This was measured using the FL1 (515-545 nm) channel on a 

FACScan 3-channel flow cytometer (Becton-Dickinson, Franklin Lakes, NJ, USA). 

Excitation light was provided by a 488 nm argon laser and cells were gated on the basis 

of chlorophyll fluorescence (measured with a > 650 nm detector, see Fig. 2.1). Blank 

unlabelled samples were processed alongside probed cells to control for 

autofluorescence. Briefly, NO-dependent fluorescence was calculated by subtracting the 

mean fluorescence intensity (MFI) signal of ca. 50000 "blank" cells from the MFI value 

of the equivalent DAF-FM-incubated sample (Fig. 2.1). Positive controls, incubated for 

30 min with 1 mM of the NO donor sodium nitroprusside (SNP) were prepared to 

ensure successful loading of the DAF-FM dye. NO-dependent fluorescence was 

standardised across treatments and genotypes by dividing the increase in MFI (DAF-

FM MFI − blank MFI) by the mean cell volume of each sample. Volumetric 

measurements of individual cells (modelled as ellipsoids) were carried out using an 

eyepiece graticule and a ×100, 1.25 numerical aperture (NA) oil-immersion objective. 

At least 50 cells were measured per sample and final values for NO-dependent 

fluorescence were recorded as MFI µm-3. 
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2.2.5. FCM assessment of cell death. 

 

Propidium iodide (PI; Sigma Aldrich, Auckland, New Zealand) and annexin-V 

Alexafluor 488 (AV-fluor; Molecular Probes, Eugene, OR, USA) were used to identify 

different modes of mortality in Symbiodinium cells (Strychar et al., 2004a; Sammarco & 

Strychar, 2013). PI cannot permeate live cells' plasma membranes, but diffuses through 

the dysfunctional membranes of non-viable cells wherein it binds strongly to nucleic 

acids and displays increased fluorescence. AV-fluor specifically binds 

phosphatidylserine (PS) residues. Translocation of PS to the outer plasma membrane 

surface is one of the earliest indicators of apoptosis and is highly conserved in 

eukaryotes (Li et al., 2003). As such, live cells undergoing apoptotic-like cell death can 

be distinguished through the binding of AV-fluor only, while non-viable cells (whether 

due to necrosis or very late-stage apoptosis) are labelled with both PI and AV-fluor. 

Briefly, cells were centrifuged (800 × g for 5 min) and resuspended in 10 μg mL-1 PI 

and 50 µL mL-1 AV-fluor in calcium-enriched FSW (3 mM CaCl2). Cells were 

incubated in 1.5-ml tubes (in the dark) for 30 min and additional calcium-enriched FSW 

was added prior to FCM processing. Upon excitation with a 488 nm argon laser and 

gating by chlorophyll fluorescence (Fig. 2.1), AV-fluor and PI fluorescence were 

detected at 515-545 nm and 560-605 nm, respectively. Gain, threshold, and 

compensation settings were kept constant throughout the experiment and blank 

unlabelled samples were processed alongside to control for autofluorescence (Fig. 2.1). 

Percentages of PI-positive ("non-viable") and AV-fluor-positive/PI-negative 

("apoptotic-like") cells were calculated using graphical analysis of probed and blank 

samples (Weasel FCM analysis software, Walter & Eliza Hall Institute, Melbourne, 

Australia).  
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Figure 2.1. Flow cytometric (FCM) analysis of Symbiodinium cells of ITS2 type A1 

(middle column) and B1 (right column). Cells were gated on the basis of their size and 

chlorophyll autofluorescence ("chlorophyll gate", left column) - thus, non-viable cells 

that were bleached or fragmented were not analysed. Samples were incubated in either 

FSW (top row - "blank"), 15 µM NO indicator DAF-FM-DA (middle row), or with a 

propidium iodide (PI) / Annexin-V fluor mix (bottom row). Each dot represents a single 

Symbiodinium cell, and dots are coloured according to their density (50000 cells per 

plot; red for individual cells, yellow-orange for > 100 cells, green-purple for > 500 

cells). Shifts along the X-axis only (DAF-FM or AV-fluor signal) relative to blank 

samples represent NO synthesis or phosphatidylserine externalisation (apoptotic-like 

mortality), respectively. Upward shifts (Y-axis, PI fluorescence) indicate non-viability 

(either due to late-stage apoptotic-like mortality or necrosis).  
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2.2.6. Confocal microscopy of Symbiodinium cells. 

 

To confirm cellular localisation of fluorescence, the dyes were visualised using an 

Olympus Fluoview FV-1000 inverted confocal laser scanning microscope (LSM; 

Olympus, Center Valley, PA, USA) and a ×100 1.45 NA oil immersion lens. Cells were 

aliquoted onto poly-l-lysine-coated glass-bottom dishes (MatTek Corporation, Ashland, 

MA, USA) and left to settle for 15 min. The medium was then replaced with 1% w/v 

carboxymethylcellulose in FSW in order to immobilize the cells. DAF-FM and AV-

fluor were excited with a 473 nm diode laser (which was also used to capture the 

confocal “phase contrast” TD1 image) and their fluorescence was detected at 485-545 

nm. PI was excited by a 559 nm diode laser and fluorescence was detected at 595-645 

nm. A 635 nm diode laser was used to visualise chlorophyll autofluorescence, which 

was detected at 655-755 nm (see Supplementary Figs. A2-A4 for separate confocal 

LSM filter images). Laser intensity, pinhole aperture (1 Airy unit), and all LSM detector 

settings were kept constant between blank and probed samples. 

 

2.2.7. Statistical analyses. 

 

Data analyses were carried out using a PASW Statistics 18.0 package (IBM, Armonk, 

NY, USA). Repeated measures analysis of variance (RMANOVA) was used to test null 

hypotheses regarding photosynthetic yields, NO production, and cell death for the three 

ITS2 types and treatments. One-way ANOVA was used to examine the effects of NO 

on cell physiology. Post-hoc analyses represent least significant difference (LSD) pair-

wise comparisons of estimated marginal means between treatments and controls at a 

particular time point, unless otherwise indicated. Data were examined for normality and 

equal variance prior to any parametric analysis, and were transformed where necessary 

to fulfill these assumptions. In the case of sphericity (the variance parameter for 

RMANOVA), the Greenhouse-Geisser correction was used whenever Mauchly’s Test 

returned a significant result.  
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2.3. Results 

 

2.3.1. PSII fluorescence at elevated temperature. 

 

Responses differed significantly between Symbiodinium types exposed to elevated 

temperatures (Table 2.2, Fig. 2.2). Types A1 and C1 were tolerant of moderate 

temperature stress (32°C) and A1 maintained dark-adapted yields at control levels even 

after 48 h at 34°C (p = 0.606). Fv/Fm of type C1 declined slightly at 34°C (p < 0.001), 

and type B1 exhibited significant and dramatic reductions in Fv/Fm, declining to near 

zero within 36 h at both 32°C and 34°C (p < 0.001). 

 

Table 2.2. Statistical analysis of physiological parameters in three Symbiodinium ITS2 

types exposed to temperature stress. Asterisks denote statistical significant (p < 0.05). 

 

 

Parameter  

(treatment) 

Test (interaction) Statistic P-value 

Fv/Fm 

(heat stress) 

RMANOVA (time × 

temperature × type) 

F5.475, 25.853 = 48.888 < 0.001* 

Nitric oxide 

(background) 

One-way ANOVA 

(type) 

F2, 27 = 59.617 < 0.001* 

Nitric oxide 

(heat stress) 

RMANOVA (time × 

temperature × type) 

F8, 42 = 12.022 < 0.001* 

Necrotic-like 

mortality 

(heat stress) 

RMANOVA (time × 

temperature × type) 

F8, 36 = 5.073 < 0.001* 

Apoptotic-like 

mortality 

(heat stress) 

RMANOVA (time × 

temperature × type) 

F5.742, 25.839 = 2. 465 0.053 
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Figure 2.2. Effect of elevated temperature (under 100-120 μmol photons m-2 s-1 cool 

white LED light) on maximum quantum yield of PSII in Symbiodinium ITS2 types A1 

(Panel A), B1 (B), and C1 (C). Values are means ± s.e.m. and asterisks indicate 

significant differences between each treatment and the control (26°C) group 

(RMANOVA with LSD pair-wise post-hoc, n = 3 independent cultures per time-point, 

*** p < 0.001). 
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2.3.2. Nitric oxide synthesis in Symbiodinium cells. 

 

All cultures were capable of generating NO (Fig. 2.3), and pre-treatment levels differed 

significantly among types (Table 2.2). Responses to temperature stress also differed 

significantly (Table 2.2) with two distinct trends apparent. Types A1 and B1 up-

regulated NO synthesis over 24 h at 32°C (A1: p = 0.002; B1: p = 0.026) and, while B1 

cells sustained this increase over 48 h (p < 0.001), the response was transient in type A1 

wherein NO levels declined to control levels after 48 h (p = 0.458). After 48 h at 34°C, 

however, both A1 and B1 cells showed elevated NO production (A1: p = 0.021; B1: p < 

0.001). Type C1 cells behaved differently, with exposure to 32°C for 48 h or 34°C for 

24 h resulting in a significant down-regulation of NO synthesis relative to controls 

(32°C: p = 0.011; 34°C: p = 0.048). 

 

Exposure to the photosynthetic inhibitor DCMU (20 μM) at 26°C for 24 h resulted in 

significant increases in NO production in type A1 and B1 cells (t-tests on natural log-

transformed data, A1: t7 = -5.012, p = 0.002; B1: t2.095 = -13.806, p = 0.004), which 

occurred alongside dramatic declines in dark-adapted photosynthetic yield (Fig. 2.4). 

Fv/Fm in type C1 also declined during incubation with DCMU (Fig. 2.4), but NO 

production in these cells decreased relative to the control (t-test, t4 = 3.430, p = 0.027). 

 



 59 

 

 

 

 

Figure 2.3. Effect of temperature (under 100-120 μmol photons m-2 s-1 cool white LED 

light) on the regulation of NO production in Symbiodinium ITS2 types A1 (Panel A), 

B1 (B), and C1 (C). Values are means ± s.e.m. and asterisks indicate significant 

differences between each treatment and the 26°C control group (RM-ANOVA with 

LSD pair-wise post-hoc, n = 3 independent cultures per time-point except for A1 at 

26°C where n = 6, * p < 0.05, ** p < 0.01, *** p < 0.001). Inset: Phase contrast/TD1 

and confocal LSM micrographs of Symbiodinium cells exposed to 34°C for 48 h and 

incubated with either FSW or 15 µM of the NO-sensitive probe DAF-FM-DA. NO-

dependent fluorescence (485-545 nm) is labelled green and cells' chlorophyll 

autofluorescence (> 700 nm) is labelled red. Scale bar = 10 µm. 
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Figure 2.4. Effects of 24 h exposure to DCMU (20 µM) on maximum quantum yields 

of PSII (A) and NO production (B) in three Symbiodinium genotypes. Values are means 

± s.e.m and significant differences between DCMU-treated (open symbols) and control 

samples (closed symbols) are indicated by asterisks (t-tests, n = 3 independent cultures 

except for A1 control where n = 6, * p < 0.05, ** p < 0.01, *** p < 0.001). 

 

 

2.3.3. Effects of NO on chlorophyll a fluorescence. 

 

Treatment with the NO donors S-NONO and GSNO adversely affected PSII 

fluorescence yields and revealed differences in the nitric oxide-sensitivity of different 

Symbiodinium ITS2 types. The addition of NO donors at 100 μM caused Fv/Fm to 

decline only in types B1 and C1; a higher concentration (1 mM) was required to induce 

significant declines in type A1 (Table 2.3, Fig. 2.5). Furthermore, GSNO appeared to be 

a much more potent photosynthetic inhibitor than S-NONO. The specific NO scavenger 

cPTIO was able to completely block the effects of 100 µM S-NONO and GSNO on 

Fv/Fm in B1 and C1 type cells, and of 1 mM S-NONO and GSNO in A1 cells (Fig. 2.5), 

confirming the NO-dependent nature of the effects. To determine whether a cell’s own 

NO production might affect its PSII fluorescence, cultures were exposed to elevated 

temperature (36°C for A1 - increased from 34°C to ensure photoinhibition of PSII - and 

34°C for B1) with and without 2 mM cPTIO. Fv/Fm declined in both types at the higher 

temperature and this was prevented to an extent by the addition of cPTIO (Fig. 2.5).  
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Table 2.3. Statistical analysis (one-way ANOVA, effect of treatment) of physiological 

parameters in three Symbiodinium ITS2 types exposed to combinations of NO donors, 

scavengers, and heat stress. Asterisks denote statistical significance (p < 0.05) 

 

 

 

The application of NO donors also affected light-adapted PSII fluorescence and 

significant declines in effective quantum yield (∆F/Fm) similar to those seen for Fv/Fm 

were observed (Table 2.3, Fig. 2.6). Non-photochemical quenching was inhibited by S-

NONO in all three Symbiodinium types, although declines in type C1 were typically less 

dramatic than for A1 or B1 (Table 2.3, Fig. 2.6) and were absent in the GSNO 

treatment. Only in type A1 could the effects on NPQ of both NO donors be completely 

reversed by the addition of the NO scavenger cPTIO (Fig. 2.6). 

 

Treatment ITS2 type Parameter Statistic P-value 

NO donors +/- 

cPTIO 

A1, B1, C1 Fv/Fm 

 

F4, 30 = 245.983 < 0.001* 

  ∆F/Fm' F4, 30 = 285.909 < 0.001* 

  NPQ F4, 30  = 25.832 < 0.001* 

NO donor 

concentrations 

A1, B1, C1 Fv/Fm F4, 30 = 193.048 < 0.001* 

High temp. +/- 

cPTIO 

A1, B1 Fv/Fm F2, 12 = 173.141 < 0.001* 

 A1, B1 Cell viability F2,12  = 112.885 < 0.001* 
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Figure 2.5. Effects of NO on the relative maximum quantum yields of PSII (Fv/Fm) in 

Symbiodinium cells under 100-120 μmol photons m-2 s-1 cool white LED light and 

(Panel A) treated with differing concentrations of S-NONO and GSNO for 3 h; (B) 

exposed to the nitric oxide donors S-NONO and GSNO (1 mM for ITS2 type A1, 100 

µM for B1 and C1) for 3 h with and without the NO scavenger cPTIO (at equal 

concentrations to the donor);  and (C) incubated at elevated temperature (36°C for A1 – 

increased from 34°C to ensure significant photoinhibition – and 34°C for B1) for 6 h 

with and without 2 mM cPTIO (scavenger concentration increased to raise the 

likelihood of scavenging all temperature-induced NO). Values are means ± s.e.m. and 

letters represent bars that are significantly different within each type (ANOVA with 

LSD pair-wise post-hoc, n = 3 independent cultures, p < 0.01 for all comparisons). 
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Figure 2.6. Effects of NO donors on (Panel A) the relative effective quantum yield of 

PSII (∆F/Fm) and (B) relative non-photochemical quenching (NPQ) in Symbiodinium 

cells exposed to the nitric oxide donors S-NONO and GSNO (1 mM for ITS2 type A1, 

100 µM for B1 and C1) for 3 h under 100-120 μmol photons m-2 s-1 cool white LED 

light, with and without the NO scavenger cPTIO (at equal concentrations to the donor). 

Values are means ± s.e.m. and letters represent bars that are significantly different 

within each type (ANOVA with LSD pair-wise post-hoc, n = 3 independent cultures, p 

< 0.01 for all comparisons). 

 

 

2.3.4. Effects of temperature and NO on cell viability. 

 

Cell mortality differed among the three types exposed to elevated temperatures (Fig. 

2.7, Table 2.2). At 32°C only B1 displayed increases relative to controls (p < 0.001), 

and this was more dramatic at 34oC with up to 30% of cells being labelled as non-viable 

(p < 0.001). Increasing levels of cell death in other types were apparent only in type A1 

exposed to 34°C for 48 h (p = 0.012), and even at this temperature mortality was 

relatively low (around 7% of treated cells). No significant changes were seen in the C1 

population at either of the elevated temperatures (Fig. 2.7). 
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Figure 2.7. Effect of temperature (under 100-120 μmol photons m-2 s-1 cool white LED 

light) on the viability of Symbiodinium ITS2 types A1 (Panel A), B1 (B), and C1 (C) 

assessed using flow cytometric analysis of propidium iodide-labelled cells. Values are 

means ± s.e.m. Asterisks indicate significant differences between each treatment and the 

control (26°C) group (RM-ANOVA with LSD pair-wise post-hoc, n = 3 independent 

cultures, * p < 0.05, *** p < 0.001). Inset: Phase contrast/TD1 and confocal LSM 

micrographs of viable (a) and non-viable (b) Symbiodinium cells. Non-viable cells can 

be distinguished through the binding of propidium iodide (yellow, 560-605 nm) to 

nucleic acids. Chlorophyll autofluorescence (> 700 nm) is labelled red. Scale bar = 10 

µm. 
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Figure 2.8. Effect of temperature (under 100-120 μmol photons m-2 s-1 cool white LED 

light) on apoptotic-like characteristics of Symbiodinium ITS2 types A1 (Panel A), B1 

(B), and C1 (C) assessed using flow cytometric analysis of cells labelled with Annexin-

V-fluor (488 nm), which selectively binds phosphatidylserine (PS) externalised during 

the earliest stages of apoptosis. Values are means ± s.e.m. Asterisks indicate significant 

differences between each treatment and the control (26°C) group (t-tests between 

"control" and treatments at each time point, n = 3 independent cultures, * p < 0.05, ** p 

< 0.01). Inset: Phase contrast/TD1 and confocal LSM micrographs of Symbiodinium 

cells identified as viable (a; not labelled), apoptotic-like (b; green AV-fluor only), and 

non-viable (c; orange-white propidium iodide and green AV-fluor). Chlorophyll 

autofluorescence (> 700 nm) is labelled red. Scale bar = 10 µm. 
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Baseline levels of AV-fluor-labelling were highly variable among genotypes (one-way 

ANOVA with Welch correction, F2, 11.921 = 13.915, p < 0.001), with type A1 displaying 

significantly higher percentages of cells labelled with AV-fluor (Tukey HSD post-hoc, 

p < 0.01). Analysis of AV-fluor-binding at elevated temperature revealed no significant 

time × temperature × type interaction, and pair-wise comparisons between treatments 

were therefore conducted with t-tests at each time point. The proportion of AV-fluor-

labelled cells only increased significantly in type A1 after 24 h (t-tests, 32°C: t4 = -

4.384, p = 0.008; 34°C: t4 = -3.605, p = 0.023). By 48 h, however, this had declined to 

control levels (Fig. 2.8). No significant changes were seen in the B1 or C1 populations 

(Fig. 2.8). 

 

 

 

Figure 2.9. Effect of NO on the temperature-induced mortality of Symbiodinium types 

A1 and B1 under 100-120 μmol photons m-2 s-1 cool white LED light. Cells were 

exposed to control (26°C) and high temperature conditions (34°C for A1, 32°C for B1) 

for 48 h with and without 2 mM of the NO scavenger cPTIO. Non-viability was 

determined by incubating cells with the vital fluorescent dye propidium iodide, which 

selectively permeates through dysfunctional plasma membranes, and analysing samples 

using flow cytometry. Values are means ± s.e.m. and letters represent bars that are 

significantly different within each type (two-way ANOVA with LSD pair-wise post-

hoc, n = 3 independent cultures, p < 0.01 for all comparisons). 
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Incubating cell suspensions at high temperature with the NO scavenger cPTIO 

confirmed NO as a causative agent of mortality in types A1 and B1 (Fig. 2.9, Table 

2.3), where increases in the number of non-viable cells after 48 h at 32°C (B1) or 34°C 

(A1) were attenuated by cPTIO.  

 

2.4. Discussion 

 

Nitric oxide may be integral to the temperature-induced breakdown of the cnidarian-

dinoflagellate symbiosis (Trapido-Rosenthal et al., 2005; Perez & Weis, 2006; Weis, 

2008; Bouchard & Yamasaki, 2009). This study confirms that symbiotic dinoflagellates 

produce NO and suggests that it could mediate their heat stress responses. It also 

highlights the physiological diversity of the genus Symbiodinium, even in the case of 

strongly conserved phenomena such as NO signalling.  

 

2.4.1. Differential NO production in Symbiodinium ITS2 types. 

 

Little is known about the activities of NO in microalgae, although its existence in these 

organisms has been recognised for some time (Sakihama et al., 2002; Vardi et al., 2006; 

Kim et al., 2008; Thompson et al., 2008). Heightened NO production in types A1 and 

B1, as seen in this study, supports the conclusions of recent investigations into NO 

synthesis by clade A Symbiodinium cells (Bouchard & Yamasaki, 2008; Bouchard & 

Yamasaki, 2009). Interestingly, the clade A cells used in the current work behaved 

differently to those examined in the study of Bouchard & Yamasaki (2009), in which 

exposure to 32°C induced chronic photoinhibition and persistent rather than transient 

increases in NO production. Bouchard & Yamasaki (2009) acknowledged that their 

cells were approaching stationary growth phase, and it is possible that the stresses 

associated with ageing algal cultures could account for their reduced thermal tolerance. 

Murik & Kaplan (2009) reported that the ability of Peridinium sp. dinoflagellates to 

withstand oxidative insults varied significantly with the population growth phase, and 

preliminary work carried out for this investigation suggests that Symbiodinium cells in 

stationary phase may produce higher levels of NO than do younger populations (see 

Supplementary Fig. A5). Of course, it is also possible that these discrepancies simply 

reflect differences in thermal tolerance at a sub-cladal level (Robison & Warner, 2006). 
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In spite of this, it seems likely that with both relatively ancestral (A) and derived (B and 

C) clades (Stat et al., 2006) producing NO, the ability to generate the compound is 

widespread in symbiotic dinoflagellates. Inabilities to detect NO in Symbiodinium in 

other studies (e.g. Perez & Weis, 2006) might therefore reflect methodological 

differences. Genotypical differences in population-level expression of NO synthesis 

might have contributed to this. It appears from that the heightened DAF-FM signal from 

type A1 cells in this study was driven by a few cells fluorescing highly, while in type 

B1 there was a less obvious increase among a greater proportion of cells (Fig. 2.1). B1 

would likely have been the genotype examined by these previous investigators – as it is 

a resident symbiont of Aiptasia pallida – and these relatively minor increases in 

individual cell DAF-FM fluorescence (Fig. 2.1) could have been missed in a confocal 

microscopy-only approach (Perez & Weis, 2006). In any case, additional work on a 

wider range of Symbiodinium types would enable further phylogenetic patterns of NO 

synthesis to be determined.  

 

2.4.2. Effects of NO on Symbiodinium cells. 

 

Research into NO synthesis in protists may be in its infancy, but even less is known 

about NO's physiological functions in these organisms. As is the case in plants, for 

example, NO might act as a potent antioxidant, preventing the overaccumulation of 

ROS and reducing the likelihood of the downstream generation of harmful agents such 

as the hydroxyl (OH.) radical (Caro & Puntarulo, 1998; Beligni & Lamattina, 1999a; b; 

Mittler, 2002; Besson-Bard et al., 2008; Misra et al., 2011; Yang et al., 2011). While it 

cannot be discounted that, at low concentrations or under non-stressful conditions, 

similar phenomena could occur in Symbiodinium cells, this investigation proposes a 

cytotoxic capability for NO in some symbiotic dinoflagellate types. Exogenous NO 

affected both dark- and light-adapted photosynthetic parameters of Symbiodinium, and 

Takahashi & Yamasaki (2002) and Wodala & co-workers (2008) reported a similar 

pattern in plants, with the latter authors concluding that NO could inhibit electron 

transport between quinone A (QA) and QB. This is consistent with the data presented 

here, as a blockage of electron flow at QA would cause immediate reductions in 

effective quantum yield (ΔF/Fm’). This inhibition of electron transport could stall the 

thylakoid membrane H+ pump, leading to the collapse of NPQ (Genty et al., 1989). 

NPQ is a major photoprotective mechanism in symbiotic dinoflagellates (Gorbunov et 
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al., 2001) and was affected by NO. Blockage of electron flow and the inhibition of NPQ 

could eventually lead to damage to the D1 protein in PSII (Hill et al., 2011) and a 

declining maximum quantum yield (Fv/Fm). Furthermore, the alleviation of temperature-

induced declines in maximum PSII fluorescence yields in the presence of an NO 

scavenger suggests that some symbiont types' own NO production at elevated 

temperatures may be playing a role in the photoinactivation of PSII. Further work is 

required, however, before any specific mechanistic conclusions can be drawn with 

confidence; in particular whether NO's apparent inhibition of Symbiodinium PSII is due 

to its direct actions on photosynthetic machinery or more generalised cellular damage. 

In addition, the situation appears different for type C1, as this displayed progressive 

photoinhibition at 34°C alongside decreasing NO synthesis. The observed inactivation 

of PSII in these cells may therefore have been purely temperature-driven, while in types 

A1 and B1 it could have resulted from increasing NO synthesis (as a general 

temperature response) exacerbating thermal photoinhibition. This is supported by the 

fact that Fv/Fm in these types could not be restored to control levels at high temperature 

even following the addition of an NO scavenger. 

 

Bouchard & Yamasaki (2009) proposed NO as a cytotoxic molecule mediating 

apoptotic-like death in Symbiodinium cells and, although the results of this investigation 

support this hypothesis, it is clear that not all temperature-induced mortality in 

symbiotic dinoflagellates is apoptotic-like. While A1- and B1-type Symbiodinium cells 

produced similar levels of NO at elevated temperature, their modes of cell death 

differed markedly. B1 cells suffered acute uncontrolled necrotic-like mortality with 

little evidence of any apoptotic-like response. Conversely, type A1 displayed distinct 

apoptotic-like bursts at 32°C and 34°C coincident with heightened NO production. Use 

of an NO scavenger confirmed the NO-dependency of temperature-induced mortality in 

types A1 and B1. Given that these types were differentially susceptible to NO, it is 

unsurprising that the dominant form of mortality displayed by B1 – the least tolerant 

type – was necrosis. The more robust A1 cells, however, remained photosynthetically 

competent at 34°C despite significant increases in NO and this might have enabled a 

more regulated form of cell death (PCD/apoptosis) to be maintained.  
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2.4.3. Conclusions 

 

NO appears harmful to Symbiodinium cells' photosynthetic function during heat stress 

and this may be important in the context of coral bleaching, as chronic photoinhibition 

can lead to oxidative stress (Liu et al., 2004; Suggett et al., 2008) that may, alongside 

symbiont-derived NO, trigger host responses resulting in symbiont ejection (Perez & 

Weis, 2006; Weis, 2008). Together with the varying NO production of different 

symbiont types, their differential NO tolerance may affect the levels of ROS leakage in 

hospite, cell mortality, and, potentially, the host’s bleaching response. 

 

This study is the first to examine NO production by different types of symbiotic 

dinoflagellate, and it is clear that the genetic diversity of these algae is reflected in their 

physiology even in the case of the strongly conserved phenomenon of NO signalling. 

Despite this, NO seems to be involved in the temperature-induced photoinhibition and 

mortality of some Symbiodinium types. As such, symbiont-derived NO may play a 

significant role in the coral bleaching phenomenon whether directly – inducing 

mortality in the symbionts (Strychar et al., 2004a) – or indirectly, through leakage of 

itself or ROS into the host leading to an immune-like rejection response (Perez & Weis, 

2006; Weis, 2008). The significance of NO in the longer-term and during the less acute 

temperature stresses that characterise most natural coral bleaching events, however, 

remains unclear. Further investigation of intact symbioses would yield vital information 

regarding the involvement of NO in the cnidarian bleaching phenomenon. 
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Chapter 3 

 

Nitric oxide mediates coral bleaching through an apoptotic-like cell 

death pathway: Evidence from a model sea anemone-dinoflagellate 

symbiosis 

 

3.1. Introduction 

 

The collapse of a symbiosis can have devastating consequences not only for the 

organisms involved but also for the wider community. This is becoming increasingly 

apparent on tropical coral reefs, where the dominant ecosystem engineers, scleractinian 

corals, are undergoing a widespread decline. One of the most serious threats is global 

warming (Hoegh-Guldberg et al., 2007; van Hooidonk et al., 2013), as the associated 

increases in seawater temperatures are leading to a collapse of the coral-dinoflagellate 

symbiosis (Hoegh-Guldberg, 1999). While corals in shallow water are often exposed to 

temperature fluctuations of several degrees celsius over the course of a day, sustained 

increases (over several days / weeks) of only a few degrees can lead to "bleaching". 

Defined as the loss of symbiotic dinoflagellates (genus Symbiodinium) and/or their 

photosynthetic pigments from a coral host, bleaching can result in corals experiencing 

nutritional shortfalls (Goreau & MacFarlane, 1990) and mortality (McClanahan, 2004). 

Over longer timescales, it can also lead to the decline of whole reef systems (Graham et 

al., 2006; Hoegh-Guldberg & Bruno, 2010; De'ath et al., 2012). Despite the magnitude 

of the threat posed by coral bleaching, our knowledge of the physiological basis of this 

symbiotic breakdown remains limited (Weis, 2008).  

 

The current model of bleaching proposes chronic photoinhibition arising in the 

symbiont alongside the overproduction of ROS (Suggett et al., 2008). Depending on its 

severity, the resulting stress can not only harm the symbiont (Dunn et al., 2004), but 

may also stimulate a host innate immune-like response leading to symbiont destruction 

or ejection (Weis, 2008). This response includes the upregulation of NO synthesis 

(Perez & Weis, 2006). NO is a ubiquitous signalling molecule that plays a vital role 

mediating microbial endosymbioses (Davidson et al., 2004; Catala et al., 2010; Wang & 

Ruby, 2011) and regulating intrinsic (mitochondria-mediated) apoptosis (Brune et al., 
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1999; Tait & Green, 2010). This latter phenomenon is essentially a controlled "cellular 

suicide" mediated by cysteinyl proteases known as caspases. Recent work has identified 

a potential suite of caspase-like enzymes in various symbiotic cnidarians (Sunagawa et 

al., 2009; Meyer & Weis, 2012), and apoptotic-like mortality is a major component of 

coral bleaching (Dunn et al., 2004; Richier et al., 2006; Dunn et al., 2007; Dunn et al., 

2012). However, little is known about the specific molecular machinery of apoptotic-

like death in cnidarians, and how extensive the similarities are to mammalian systems.   

The role of NO in the collapse of this symbiotic association is also currently unknown, 

although a plausible hypothesis involves its actions on cell death pathways in the 

presence of ROS. Furthermore, there is growing evidence that symbiotic dinoflagellates 

can produce NO during thermal stress (Trapido-Rosenthal et al., 2005; Bouchard & 

Yamasaki, 2008; Bouchard & Yamasaki, 2009; Chapter 2), and the importance of this 

symbiont-derived NO during bleaching is also unclear. NO synthesis by endosymbionts 

is comparatively rare (Wang & Ruby, 2011), and with most research on Symbiodinium 

having been carried out on cultured (Bouchard & Yamasaki, 2008; Bouchard & 

Yamasaki, 2009; Chapter 2) or freshly isolated (Trapido-Rosenthal et al., 2001) cells, it 

remains to be seen whether symbiont NO synthesis occurs in hospite (i.e. in the intact 

symbiosis). 

 

This study sought to address these issues using the model symbiotic cnidarian Aiptasia 

pulchella. In particular, I examined the hypothesis that temperature stress-induced NO 

is involved in the induction of host apoptotic-like pathways (Weis, 2008) and is a 

consequence of symbiont photoinhibition (Perez & Weis, 2006). These questions were 

investigated using the rapid-heating methods similar to those employed by previous 

researchers (Dunn et al., 2004, Perez & Weis, 2006; Detournay et al. 2011; Dunn et al., 

2012). However, of equal importance is the question of whether cellular events induced 

by these "heat shock" conditions accurately reflect those that occur during slower, more 

ecologically relevant rates of heating. To examine this question, I exposed symbiotic A. 

pulchella to a heating regime more similar to that experienced by bleaching corals in the 

field (Middlebrook & Anthony, 2010).  
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3.2. Materials and methods 

 

Except where otherwise noted, all reagents were obtained from Sigma-Aldrich, 

Auckland, New Zealand. 

 

3.2.1. Culture and treatment of Aiptasia pulchella anemones 

 

Anemones (Aiptasia pulchella) were sampled from a laboratory-maintained, clonal 

population incubated under a 12 h light:12 h dark cycle (80-100 µmol photons m-2 s-1 

provided by cool white fluorescent lamps - OSRAM DULUX L 36W 4000 K) at a 

temperature of 26°C, and fed twice weekly with freshly hatched Artemia sp. nauplii. 

Prior to rapid heating, anemones were starved for 48 h. Slow-heated anemones were fed 

twice weekly during acclimation and again immediately after the start of the 

experiment; they remained unfed for the remainder of the experiment. 

 

 

 

Figure 3.1. Temperature treatments of Aiptasia pulchella. Panel A) High temperature 

stress (HTS - 33°C) followed by a further 24 h at control (26°C) temperatures. The 

return to control temperatures for 24 h is required to induce symbiont release 

(Detournay & Weis, 2011); B) Slow heating (ramping of ca. 1°C day-1). Green lines 

indicate sampling points. 
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The ability of A. pulchella to produce NO was confirmed by subjecting anemones to 

high temperature shock (HTS). Eight small (ca. 2 mm oral disc diameter) anemones 

were transferred to 25-mL glass beakers (one anemone per beaker) containing FSW, 

and maintained in a water bath at 26°C on a 12 h light:12 h dark cycle (70-90 µmol 

photons m-2 s-1,  LED light bank - 20 RoHS 5W 6400 K). The anemones were 

acclimated for 48 h and fluorometric assessments of PS II (see below) of the 

dinoflagellate symbionts were conducted every 12 h to confirm stability under the new 

photic regime. Temperature was then increased rapidly (over < 1 h) at midday to 33°C 

or kept constant at 26°C (control). The anemones were exposed to these conditions for 

24 h.  

 

To examine the interactions between high temperature shock, host NO synthesis, 

caspase-like enzyme activation and bleaching, a second batch of A. pulchella (5-7 mm 

oral disc diameter, n = 6 anemones for each of three time points) was acclimated in a 

water bath (see above). After removing one of the three anemones in each beaker (for 

initial symbiont density assays, n = 6, see below) the remainder were exposed for 24 h 

to control conditions (26°C), HTS, or HTS with one of the following reagents: a) 2 mM 

of the specific NO scavenger cPTIO (Life Technologies, Auckland, New Zealand); b) 

100 µM of the initiator-caspase-9 inhibitor acetyl-Leu-Glu-His-Asp-aldehyde (Ac-

LEHD-CHO); or c) 0.1% v/v DMSO (the solvent for Ac-LEHD-CHO). A third batch of 

anemones (n = 5 per time point) were treated for 24 h at 26°C with 1 mM of the NO 

donor GSNO in the presence and absence of 1 mM cPTIO or 100 µM Ac-LEHD-CHO. 

Assessments of host caspase-like enzyme activity were conducted on anemones (n = 6) 

sampled after 24-h exposure to the treatment or control conditions (see Dunn et al., 

2007; Detournay & Weis, 2011). As a positive control for caspase-like activity, 

anemones (n = 4) were incubated at 26°C for 24 h with 0.05% w/v colchicine (a 

microtubule inhibitor and apoptosis-inducer) in FSW (Pernice et al., 2011). After both 

HTS and NO-donor treatments, remaining anemones were returned to control 

conditions for a further 24 h - to allow time for bleaching to occur (see Detournay & 

Weis, 2011) - and were then sampled for analysis of symbiont loss (see below).  

 

To determine whether cellular responses in A. pulchella are affected by the rate of 

heating, eight 100-mL beakers each containing 10 anemones (one anemone for confocal 

assessments of NO and one for caspase enzyme and bleaching assays, for each of five 
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time points) were transferred to a water bath (see above) and acclimated for 7 days. 

Again, symbiont PSII performance was monitored to ensure stability prior to treatment. 

Temperature was then either kept constant at 26°C or increased by ca. 1°C per day 

(shortly after the start of the light cycle, with the new temperature reached within 1 h) to 

33°C ± 0.3°C (SD) and maintained at this maximum for 4 days. Seawater was replaced 

daily to prevent a build-up of metabolic wastes. 

 

3.2.2. Real-time visualisation of NO synthesis in Aiptasia pulchella. 

 

Nitric oxide was detected in situ using the fluorescent dye DAF-FM-DA (Molecular 

Probes, Eugene, OR, USA). The seawater medium of anemones was replaced with 15 

µM DAF-FM-DA in "relaxing solution" [50% FSW, 50% 0.37 M magnesium chloride 

(MgCl2)]. Anemones were incubated in the dark for 90 min. After 60 min, Hoechst 

33342 stain was added (10 µg mL-1 final) to label host cell nuclei and aid visualisation 

of gastrodermis tissue. Anemones were then washed twice to remove excess dye and 

left for a further 30 min to allow the DAF-FM-DA to be cleaved to its active DAF-FM 

form. Individual anemones were transferred to glass-bottom dishes (MatTek 

Corporation, Ashland, MA, USA) and immobilised by adding a few drops of 1% (w/v) 

low-melting agarose in relaxing solution (boiled and cooled to ca. 28°C beforehand). 

Anemones were then visualised using an Olympus Fluoview FV-1000 inverted confocal 

LSM (Olympus, Center Valley, PA, USA) and ×40 0.9 NA water immersion lens. NO-

dependent fluorescence was detected at 510-530 nm, with excitation provided by a 473 

nm diode laser. Hoechst 33342 fluorescence was detected using a DAPI filter (430-460 

nm) and 405 nm excitation, and symbiont chlorophyll autofluorescence was detected 

using a 635 nm laser and 655-755 nm emission filter. Fifteen images in the z-plane were 

acquired for each of three tentacles per replicate anemone (45 images in total per 

anemone) and NO-dependent fluorescence was quantified by measuring the 510-530 

nm mean fluorescence intensity (MFI) of tentacle gastrodermis (positive for symbiont 

chlorophyll fluorescence, see Supplementary Fig. A6) using ImageJ software (National 

Institutes of Health, Bethesda, USA). Blank anemones (stained only with Hoechst 

33342) were also visualized in order to control for host tissue autofluorescence. All 

instrument settings were kept constant and successful loading of DAF-FM-DA was 

confirmed by incubating non-fluorescing anemones in 1 mM SNP for 30 min. 
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3.2.3. Preparation of tissue homogenates and extraction of Symbiodinium cells. 

 

Anemones were removed from experimental conditions at midday, rinsed with 0.37 M 

MgCl2, immediately flash-frozen in liquid nitrogen and stored at -80°C. 

 

Individual anemones were thawed on ice and homogenised in a 1.5-mL tube with a 

small tissue grinder and a known volume of homogenisation buffer (HB; 50 mM 

potassium phosphate, pH 7.8, 1 mM EDTA). A 50-µL aliquot was removed for 

symbiont counts (and to confirm that symbiont cells remained intact during the 

homogenisation process) and the remainder was centrifuged (1500 × g for 5 min) to 

pellet the algal cells. Aliqouts of supernatant (host fraction, to be used for analysis of 

caspase-like enzyme activity and NO2
- content - see below) were then transferred to 

fresh 1.5-mL tubes, flash frozen and stored alongside the algal pellets at -80°C. 

 

3.2.4. Symbiont density and pigment analysis, and fluorometric assessment of PSII. 

 

Maximum quantum yields of PSII (Fv/Fm) were measured daily 30 min after lights-off 

using pulse amplitude modulated fluorometry (Diving-PAM, Walz, Effeltrich, 

Germany). Triplicate in vivo measurements of PSII yield were recorded for each 

replicate anemone at each time point. 

 

Symbiont densities were quantified using Improved Neubauer haemocytometer counts 

(six replicate counts per sample; Boeco, Germany) normalised to host protein content, 

measured using the Bradford assay (Bradford, 1976) with bovine serum albumin as a 

standard. For anemones used in the short-term experiment, the percentage of symbionts 

lost over the 48-h experimental period was calculated relative to mean initial values. 

 

Symbiont chlorophyll a (Chl a) content was quantified by N, N-dimethylformamide 

(DMF) extraction carried out in darkness over 48 h at 4°C. Extracts were then 

centrifuged (16000 × g for 5 min) and triplicate 200-µL aliquots were measured in 96-

well plates (UVStar, Greiner Bio-One GmbH, Germany) at 646.8 nm, 663.8 nm and 

750 nm using a microplate reader (Enspire® 2300, Perkin-Elmer, Waltham, MA, USA). 

Chl a concentrations were determined after optical path length correction (0.555 cm) 

using the equations of Porra et al. (1989). 
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3.2.5. Assessments of nitric oxide (NO) production using 2,3-diaminonaphthalene 

(DAN). 

 

Confocal LSM analysis of symbiont NO synthesis is hampered by the confounding 

effects of host fluorescence and the likelihood of inducing stress during the preparation 

steps (repeated washing and centrifugation) required to remove this host contamination. 

Moreover, the removal of symbionts from their host has been shown to be highly 

deleterious to the cells (Wang et al., 2011). As such, analysis of NO production by 

slow-heated Symbiodinium cells in hospite was carried out on cells isolated from flash-

frozen anemones.  

 

Frozen algal pellets were thawed on ice and washed four times with chilled (4°C) HB 

by repeated centrifugation (1500 × g for 5 min), before resuspension in 250 µL HB. 

Cells were transferred to a 1.5-ml tube containing 50 mg glass beads (710-1180 µm 

diameter; Sigma-Aldrich, Auckland, New Zealand) and lysed in a Beadmill (Tissuelyser 

LT, Qiagen Inc., Hilden, Germany) for eight minutes at a frequency of 50 Hz. 

Disruption of cells was confirmed using visual haemocytometer counts of the lysate, 

which was then directly analysed (see below). Aliquots of anemone host fraction were 

analysed alongside symbiont cell lysates. 

 

Nitric oxide has a short half-life in biological fluids and is quickly oxidised to nitrite 

(NO2
-), which is comparatively stable and a reliable reflection of NO synthesis (Nussler 

et al., 2006). Symbiodinium cell lysate and host homogenate NO2
- content was 

quantified using the fluorescent indicator 2,3-diaminonaphthalene (DAN, Life 

Technologies, Auckland, New Zealand; Nussler et al., 2006) according to the methods 

of Detournay & Weis (2011), with some modification. Briefly, after centrifugation 

(16000 × g for 20 min), proteins were removed by precipitation with 15 mg mL-1 zinc 

sulphate (Ghasemi et al., 2007), vortexing for 20 s, and further centrifugation (16000 × 

g for 10 min). Aliquots (225 µL) of supernatant were then incubated with an equal 

volume of 158 mM DAN in 0.62 N HCl for 10 min at 28°C. NaOH (105 µL of a 2 N 

solution) was then added and samples were centrifuged again (16000 × g for 5 min). 

Triplicate aliquots (150 µL) of supernatant were then removed and NO2
- content was 

calculated from DAN fluorescence (ex: 365 nm, em: 410 nm) measured using a plate 
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reader (see above) and a calibration curve of 10-10000 nM NaNO2 in HB. As positive 

controls, cell lysates/homogenates (n = 8) were incubated with 1 mM NO donor sodium 

nitroprusside (SNP) for 4 h at 26°C. 

 

3.2.6. Assessments of host caspase-like enzyme activity in Aiptasia pulchella. 

 

Enzyme activities resembling those of mammalian caspase-3 (an "executioner" caspase; 

Nicholson, 1999; Lasi et al., 2010) and caspase-9 (an "initiator" caspase in the intrinsic 

pathway; Lasi et al., 2010, Tait et al., 2012) were quantified using a colorimetric assay 

kit (Sigma-Aldrich, Auckland, New Zealand) with the substrates Ac-Asp-Glu-Val-Asp-

pNA (Ac-DEVD-pNA) and Ac-Leu-Glu-His-Asp-pNA (Ac-LEHD-pNA), respectively. 

Caspase enzymes cleave the terminal aspartic acid residue in the tetrapeptide substrate 

with a specificity determined by the identity of the preceding three amino acid residues. 

Anemone homogenates were thawed on ice and centrifuged (16000 × g for 20 min). 

Aliquots of the supernatant were removed for protein quantification [Bradford assay 

with bovine serum albumin (BSA) as a standard (Bradford, 1976)] and the remainder 

was analysed in duplicate. Briefly, 10 µL caspase substrate (2 mM) was added to 40 µL 

"assay buffer" [20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 

pH 7.4, 2 mM EDTA, 0.1% 3-[(3-cholamidopropyl)-dimethylammonio]-1-

propanesulfonate (CHAPS), 5 mM dithiothreitol (DTT)]. A 50-µl aliquot of centrifuged 

anemone homogenate was then added. After gentle shaking for 10 s, samples were 

incubated for 3 h at 37°C according to the manufacturer's instructions. Sample blanks 

were prepared alongside and, to control for non-specific substrate hydrolysis, some 

homogenates were pre-incubated for 30 min with 20 µM DEVD- or LEHD-aldehyde (-

CHO), reversible inhibitors of caspases-3 and -9 respectively. 

 

3.2.7. Statistical analyses 

 

Data analysis was carried out using PASW Statistics 18.0 (IBM, Armonk, NY, USA). 

Where appropriate, data were analysed using repeated measures analysis of variance 

(RMANOVA) and transformed where necessary. The Greenhouse-Geisser correction 

was used whenever Mauchly's test returned a significant result. RMAMOVA outputs 

are for time × treatment interactions, and post-hoc reports represent pair-wise 

comparisons between treatments with Bonferroni correction. Other analyses were 



 79 

carried out using uni- and multivariate ANOVA and t-tests. Where data did not meet 

assumptions of normality, Kruskall-Wallis non-parametric tests were conducted. 

 

3.3. Results 

 

3.3.1. NO synthesis, host caspase-like enzyme activation and bleaching during rapid 

high temperature stress in Aiptasia pulchella. 

 

Exposure of symbiotic A. pulchella to HTS or the NO donor SNP for 24 h (Fig. 3.2A) 

resulted in significant increases in tentacle gastrodermis DAF-FM fluorescence (one-

way ANOVA, F2, 10 = 15.98, p = 0.002) and tissue NO2
- content (one-way ANOVA, F2, 

11 = 52.34, p < 0.001). Treatment with 0.05% (w/v) colchicine in FSW caused 

heightened caspase-like enzyme activity (Kruskall-Wallis Tests, DEVDase: p = 0.018; 

LEHDase: p = 0.02) that was reversed in the presence of 20 µM caspase inhibitor (Fig. 

3.2B). 

 

Table 3.1. Statistical analysis of caspase-like enzyme activity and symbiont loss 

(MANOVA and ANOVA, respectively) in Aiptasia pulchella exposed to heating and 

the NO donor and scavenger GSNO and cPTIO, respectively. 

 

 

 

 

Treatment Variable F-value P-value 

Nitric oxide donor LEHDase F2, 11 = 22.841 < 0.001 

 DEVDase F2, 11 = 50.792 < 0.001 

 Symbiont loss F3, 17 = 6.848 0.003 

High temperature LEHDase F2, 10  = 25.273 < 0.001 

 DEVDase F2, 10 = 21.833 < 0.001 

 Symbiont loss F4, 24 = 18.995 < 0.001 
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Figure 3.2. Detection of NO synthesis and caspase-like enzyme activity in Aiptasia 

pulchella (under 70-90 µmol photons m-2 s-1). Panel A) NO synthesis (DAF-FM 

fluorescence intensity and tissue NO2
- content) after HTS treatment (33°C for 24 h) or 

supplementation with an NO donor (1 mM SNP). B) Caspase-like enzyme activity of 

anemones treated with the microtubule inhibitor and apoptosis inducer colchicine 

(0.05% w/v for 24 h) in the presence and absence of caspase inhibitors. Values are 

means ± s.e.m. and letters indicate bars that are significantly different from each other 

within each parameter (A: n = 8 anemones, one-way ANOVA, Tukey HSD post-hoc; B: 

n = 4 anemones, Kruskall-Wallis test). 

 

Addition of the NO donor GSNO (1 mM in FSW) also induced significant increases in 

caspase-like activity (Table 3.1), and these were reduced or absent in the presence of 1 

mM cPTIO (Fig. 3.3A). Caspase-like activity increased at high temperature (Table 3.1, 

Fig. 3.3B) and in the case of LEHDase (caspase-9-like) this response was partially 

alleviated by the NO scavenger cPTIO (Fig. 3.3B). cPTIO had no significant effect on 

the activity of DEVDase (caspase-3-like) activity (Fig. 3.3B) 
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Figure 3.3. Cellular responses of symbiotic Aiptasia pulchella to short-term treatments.  

A) Caspase-like enzyme activity in anemones treated for 24 h with 1 mM of the NO 

donor GSNO in the presence or absence of 1 mM of the NO scavenger cPTIO. B) 

Caspase-like activity in heat-shocked anemones with and without 2 mM cPTIO. C) 

Bleaching (relative symbiont loss over 48 h) of heat-shocked anemones in the presence 

of 2 mM cPTIO, 20 µM of the caspase-9 inhibitor Ac-LEHD-CHO, or 0.1% (w/v) 

DMSO. D) Bleaching of GSNO-treated anemones with and without cPTIO and Ac-

LEHD-CHO. Values are means +/- s.e.m. and letters indicate bars that are significantly 

different from each other (Tukey's HSD post hoc: A, B, D: p < 0.01; C: p < 0.05) within 

each parameter (A, B: one-way MANOVA, n = 5 anemones and n = 6, respectively; C, 

D: one-way ANOVA, n = 6 anemones and n = 5, respectively). 
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High temperature shock resulted in the loss of 47.0 ± 2.9% of symbiont cells from A. 

pulchella, and this was significantly reduced in the presence of the NO scavenger 

cPTIO (2 mM in FSW) or the LEHDase inhibitor Ac-LEHD-CHO (100 µM in FSW; 

Table 3.1, Fig. 3.3C). Interestingly, and as with the caspase-9-like activity described 

above, the alleviation of bleaching with cPTIO was not 100%. DMSO, the solvent for 

Ac-LEHD-CHO, had a negligible effect (Fig. 3.3C). The removal of NO with cPTIO 

also alleviated the temperature-induced declines in PSII fluorescence yield of 

Symbiodinium cells in hospite (RMANOVA, F8, 56 = 19.465, p < 0.001, Fig. 3.4). 

Furthermore, the addition of exogenous NO by GSNO (1 mM GSNO in FSW) at 26°C 

induced significantly heightened symbiont losses (20.5 ± 2.2%) (Fig. 3.3D) relative to 

controls maintained in FSW. This was not apparent when anemones were treated with 1 

mM GSNO and either 1 mM cPTIO or 100 µM Ac-LEHD-CHO. 

 

 

 

Figure 3.4. In hospite quantum yields of PSII in Symbiodinium cells in Aiptasia 

pulchella anemones exposed to HTS (under 70-90 µmol photons m-2 s-1) with and 

without the NO scavenger cPTIO (2 mM final). Shaded areas indicate periods of 

darkness and the dotted line at 24 h indicates the time at which temperature was 

returned to 26°C (control conditions). Values are means ± s.e.m. and asterisks indicate 

significant differences relative to controls (RMANOVA, pair-wise post-hoc with 

Bonferroni correction, n = 6 anemones per time point, * p < 0.05, *** p < 0.001). 
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3.3.2. Photoinhibition and bleaching in slow-heated Aiptasia pulchella. 

 

Slow heating resulted in significant reductions in the maximum quantum yield of 

symbiont PSII (RMANOVA, F4.2, 55.5 = 63.85, p < 0.001, Fig. 3.5A) from 0.60 ± 0.01 to 

0.37 ± 0.01. This preceded significant declines in symbiont Chl a content (RMANOVA, 

F2.5, 35.3 = 8.32, p < 0.001, Fig 3.5B) - from 1.05 ± 0.06 pg per cell to 0.39 ± 0.02 pg per 

cell - and symbiont density within the host (RMANOVA, F4, 36 = 4.38, p = 0.005, Fig. 

3.5C), which decreased from 6.13 ± 0.21 to 3.52 ± 0.29 million cells per milligram of 

soluble host protein. 

 

 

Figure 3.5. Photosynthetic dysfunction and bleaching of slow-heated Aiptasia pulchella 

(under 70-90 µmol photons m-2 s-1). Panel A) Maximum quantum yield of PSII; B) 

Symbiont chlorophyll a content per cell; C) Symbiont density per mg soluble host 

protein. Values are means ± s.e.m. and asterisks indicate significant differences relative 

to controls at each time point (RMANOVA, pair-wise post-hoc with Bonferroni 

correction, n = 8 anemones per time point, * p < 0.05, ** p < 0.01, *** p < 0.001). 
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3.3.3. NO synthesis and host caspase-like enzyme activity in slow-heated Aiptasia 

pulchella. 

 

Confocal visualisation of NO in A. pulchella tentacle gastrodermis (Fig. 3.6) revealed 

that levels of NO increased significantly at elevated temperature (RMANOVA, F4, 44 = 

6.216, p < 0.001), becoming 2.5-fold higher on Days 4 and 6 than in controls (Fig. 

3.7A). NO synthesis at 33°C subsequently declined and, by Day 10, had returned to pre-

treatment levels (Figs. 3.7A). A similar pattern was observed in the nitrite (NO2
-) 

content of host anemone tissue (Fig. 3.7B), where a peak was observed on Day 6 and 

levels subsequently declined (RMANOVA, F4, 40 = 3.658, p = 0.012). These data were 

significantly more variable than those obtained through direct visualisation of NO, and 

the initial increase on Day 4 was missing in the NO2
- analysis. Apparent NO synthesis 

in the algal symbionts (quantified as cellular NO2
- accumulation) also responded to slow 

heating (RMANOVA, F4, 36 = 4.377, p = 0.005) although significant increases relative 

to pre-treatment values were only apparent after Day 10 (Fig. 3.7D).  

 

Caspase-like enzyme activities were significantly affected by slow heating 

(RMANOVAs, DEVDase: F4, 40 = 4.431, p = 0.005; LEHDase: F4, 44 = 12.263, p < 

0.001) and after 4 days at elevated temperature both enzymes' activities were at least 

two-fold greater than those of the control group (Fig. 3.7C). Further heating resulted in 

declining enzyme activity, although there was a secondary increase relative to the 

controls on Day 8 (Fig. 3.7C). 
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Figure 3.6. Confocal visualisation of nitric oxide (NO) production in Aiptasia pulchella 

anemones maintained for 10 days under either control or slow heating conditions (70-90 

µmol photons m-2 s-1 irradiance) and loaded with 15 µM NO-sensitive dye DAF-FM-

DA. NO-dependent fluorescence (510-530 nm, green) is superimposed on Hoechst 

33342 (440-490 nm, blue) and symbiont chlorophyll (> 655-755 nm, red) fluorescence. 

Inset: Symbiodinium cells released from anemone tissue during slow heating, and 

displaying evidence of NO synthesis around their periphery (likely representative of 

host material). Scale bars for main images: 100 µm; for inset: 20 µm. 
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Figure 3.7. Cellular responses of Aiptasia pulchella to slow heating (under 70-90 µmol 

photons m-2 s-1). Panel A) NO-dependent fluorescence of live anemone gastrodermis. 

B) nitrite (NO2
-) content of host tissue . C) Activity of host caspase-like enzymes in 

anemone tissue. D) NO2
- content of symbiont cells. Values are means ± s.e.m. and 

asterisks indicate significant differences relative to control values within each parameter 

(RMANOVA, pair-wise post-hoc with Bonferroni correction, n = 8 anemones per time 

point, * p < 0.05, ** p < 0.01, *** p < 0.001). 
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3.4. Discussion 

 

This study develops the role of the ubiquitous antimicrobial and signalling compound 

nitric oxide in the breakdown of an ecologically important endosymbiosis. While NO 

possesses significant antioxidant and anti-inflammatory properties in some biological 

systems (Wink et al., 2011), its synthesis in heat stressed symbiotic cnidarians appears 

to be a deleterious phenomenon. Indeed, NO's involvement in the collapse of the 

cnidarian-dinoflagellate association arises through the activation of an enzyme closely 

linked with the initiation of apoptosis. This finding is significant in the context of 

intracellular symbioses in general, as the modification of host NO synthesis and cell 

death pathways is a common strategy employed by mutualistic and pathogenic microbes 

in order to persist within the host's internal environment (Carmen & Sinai, 2007; 

Pannebakker et al., 2007; Wang & Ruby, 2011). To the authors' knowledge, this study 

also provides the first quantitative evidence of in hospite NO synthesis by an 

intracellular eukaryotic symbiont. 

 

3.4.1. Temperature stress induces bleaching in Aiptasia pulchella through a caspase-

mediated, NO-dependent pathway. 

 

Exposing A. pulchella to elevated temperature led to elevated NO synthesis similar to 

that described previously (Perez & Weis, 2006). Through its interactions with important 

components of the intrinsic apoptotic pathway (Brookes et al., 2000), NO has a capacity 

to regulate programmed cell death and thus form part of a host innate immune-like 

response (Perez & Weis, 2006; Weis, 2008). 

 

The activity of caspase-like enzymes, often necessary for the initiation and execution of 

apoptotic cell death (Nicholson, 1999; Tait & Green, 2010), increased significantly in A. 

pulchella under heat stress conditions and when exposed to a nitric oxide donor. 

Although a range of potentially non-apoptotic functions exists for caspases (Kuranaga 

& Miura, 2007) and direct assessments of apoptosis were not carried out for this study, 

these findings are consistent with the hypothesised involvement of apoptosis in 

cnidarian bleaching (Dunn et al., 2004; Richier et al., 2006; Dunn et al., 2007; Pernice 

et al., 2011). The enzyme activities reported here are also likely to be those of two 

different proteases. Mammalian caspase-9 is an "initiator" caspase (Nicholson, 1999) 
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and its role lies in the induction of apoptosis following mitochondrial dysfunction (Tait 

& Green, 2010). Caspase-3, however, is an "executioner" caspase(Nicholson, 1999) 

activated downstream of caspase-9 or alternatively through the receptor-mediated (non-

mitochondrial) pathway (Nicholson, 1999). While caution must be taken in inferring the 

existence of multiple caspase-like enzymes in A. pulchella from the observations of 

differential substrate cleavage, recent genomic analyses have revealed a number of 

caspase-like genes including those similar to mammalian caspases-3 and -9 (Meyer & 

Weis, 2012). Furthermore, sponges possess enzymes similar to caspases-3 and -9 

(Wiens et al., 2003), the anemone Anemonia viridis has a caspase-8-like enzyme 

(Richier et al., 2006), and the cnidarian Hydra has a suite of caspase-like proteases 

(Lasi et al., 2010b). It is likely, therefore, that more than one is present in A. pulchella. 

This hypothesis is supported by our observations that DEVDase and LEHDase activities 

responded to differing extents to colchicine, heat stress, and the experimental removal 

of NO. The differing influence of NO on apparent caspase-9- and caspase-3-like activity 

is surprising, as the activities of mammalian caspase-9 are thought to be exerted solely 

through its activation of caspase-3 (Kumar & Cakouros, 2003).  

 

The differential effects of the NO scavenger cPTIO on temperature-induced caspase-9- 

and 3-like activity and bleaching raise another interesting question. The fact that 

removing NO alleviated thermal bleaching (and caspase-9-like activity) without 

affecting caspase-3-like activity implies an executioner-like role for A. pulchella 

"caspase-9-like" enzyme. Lower invertebrate caspases are known to possess 

characteristics of both initiator and executioner caspases (Bottger & David, 2003; 

Wiens et al., 2003; Dunn et al., 2006; Lasi et al., 2010b) so this is a distinct possibility. 

It is also important to note that, while levels of caspase-like enzyme activity responded 

much more strongly to exogenous NO than to high temperature, this was not reflected 

in the relative intensities of bleaching. At this early stage, we do not know to what 

extent this might reflect the additional actions of NO (such as the S-nitrosylation of 

critical enzymes) - caused by the relatively high dosage of 1 mM GSNO - that might 

have affected the mechanisms of bleaching downstream of caspase-like enzyme 

activation. In any case, further work in this area would be greatly beneficial to our 

understanding of cell death regulation in symbiotic cnidarians. It would also be 

desirable to repeat some of these experiments using aposymbiotic A. pulchella. Treating 

the host with an NO donor in the absence of symbionts would allow us to determine 



 89 

whether activation of host apoptosis by NO occurs directly (as outlined above) or 

whether the additional effects of NO on symbiont physiology (see Chapter 2) might 

play a role. 

 

The findings here - that NO appears to be involved temperature-induced caspase-9-like 

enzyme activation, and that both NO and caspase-9-like enzyme are required for 

symbiont loss - are consistent with a developing paradigm of coral bleaching. This 

model proposes that temperature-induced ROS and NO generation could lead to 

intrinsic apoptotic-like cell death (Dunn et al., 2004; Perez & Weis, 2006; Weis 2008), 

stimulated by the release from mitochondria of pro-apoptotic molecules such as 

cytochrome c (Dunn et al., 2012). Our investigation measured caspase-like enzyme 

activity rather than apoptosis itself, but NO and its toxic breakdown product 

peroxynitrite [ONOO-, produced through NO-ROS interactions (Radi et al., 2001)] both 

have a well-known capacity to stimulate apoptosis by inducing the release of 

cytochrome c from mitochondria (Radi et al., 2002a) or inhibiting anti-apoptotic Bcl-2 

proteins (Snyder et al., 2009). The subsequent activation of caspase-9 (Li et al., 1997) 

might then initiate an apoptotic cascade. While this investigation did not extend to 

assessments of mitochondrial integrity, temperature-induced mitochondrial dysfunction 

and cell death have been observed in A. pulchella (Dunn et al., 2012) and the reef coral 

Pocillopora damicornis (Downs et al., 2010).  

 

Our finding that activation of a caspase-like enzyme is critical for bleaching contrasts 

with that of Dunn et al. (2007), who observed, in the presence of a general caspase 

inhibitor, an upregulation of autophagy-like cell death that restored the bleaching 

response. Inhibition both of autophagic pathways and of caspase activity was required 

to alleviate bleaching. One possible explanation for this disparity may lie with the 

severity of bleaching in this earlier study, which was much higher [ca. 80% of 

symbionts lost (Dunn et al., 2007)] than in the present investigation. This implies an 

increased intensity of thermal stress and thus a greater scope for the activation of 

additional cell death mechanisms. Furthermore, NO is known to be a potent inhibitor of 

autophagy (Sarkar et al., 2011; Shen et al., 2013) and the alleviation of bleaching when 

NO was scavenged implies a reduced role for this pathway in the responses of the 

organisms examined here.  
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3.4.2. Slow heating induces host caspase-like enzyme activation and both host- and 

symbiont NO synthesis. 

 

The effects of slow heating reported here are consistent with those observed under rapid 

heat stress, both in this and other studies (Bhagooli et al., 2001; Buxton et al., 2002; 

Dunn et al., 2004; Trapido-Rosenthal et al., 2005; Perez & Weis, 2006; Richier et al., 

2006; Hawkins & Davy, 2012). Experimental heating resulted in heightened NO 

synthesis in both host and symbiont and led to increased expression of host apoptotic-

like pathways. Interestingly, initial increases in NO synthesis preceded bleaching and 

appeared to be driven by host rather than symbiont physiology. For example, little 

change in symbiont Fv/Fm or NO2
- content was apparent on Days 4 and 6 of the 

treatment, yet NO-dependent fluorescence of anemone gastrodermis increased 

markedly. This finding supports Perez & Weis' (2006) assertion that NO in bleaching 

Aiptasia sp. is primarily host-derived. 

 

After 10 days of treatment, however, and at a time at which anemones had visibly 

bleached, there was evidence of elevated symbiont NO generation. While it cannot be 

discounted that this reflects contamination with host-derived material, the fact that algal 

pellets were washed repeatedly prior to cell lysing does reduce this possibility. Levels 

of symbiont NO2
- on Day 10 were also an order of magnitude greater than those of the 

host and are thus unlikely to be driven by the latter. Moreover, there was little evidence 

of NO-dependent fluorescence in host gastrodermal tissue after 10 days, while algal 

cells did appear to display heightened green (510-530 nm) fluorescence (Fig. 3.6). 

Despite supporting the findings of previous investigations (e.g. Bouchard & Yamasaki, 

2008), therefore, the timing of symbiont NO production in this study suggests that it 

might only exaggerate thermal bleaching. This could occur either through the further 

stimulation of already-active pathways in the host (Dunn et al., 2007, Weis 2008) or by 

inducing further symbiont stress and mortality (Yamasaki et al., 2000; Bouchard & 

Yamasaki, 2009; Chapter 2).  

 

These observations are also interesting in a wider context. Many organisms produce NO 

in response to infection by parasitic or pathogenic microbes (MacMicking et al., 1997; 

Fang, 2004; Wink et al., 2011; Singh et al., 2013). At the cellular level, at least, the 

cnidarian-dinoflagellate mutualism displays a remarkable similarity to many parasitic 
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associations (Schwarz, 2008). This study, together with other recent investigations 

(Perez & Weis, 2006; Detournay & Weis, 2011; Detournay et al., 2012), suggests that 

this similarity extends to the phenomenon of nitric oxide signalling. An antimicrobial 

defensive compound such as NO might be evolutionarily valuable to a symbiotic 

cnidarian host such as A. pulchella, where there may be physiological costs associated 

with excessive growth of a symbiotic microbial population. In this context, our 

observations of stressed intracellular symbionts apparently producing NO in hospite is 

intriguing, as it implies that symbiont NO synthesis may, alongside host innate-immune 

like responses (Weis, 2008; Vidal-Dupiol et al., 2009), contribute to the breakdown of 

this symbiosis. 

 

3.4.3. Conclusions 

 

NO seems to be necessary for the temperature-induced breakdown of the cnidarian-

dinoflagellate symbiosis and appears to be involved in the activation of a host enzyme 

associated with apoptosis. However, the timing of NO production under slow heating 

suggests that a sizeable gap exists between initial NO synthesis and subsequent 

bleaching. Furthermore, the induction of NO and apoptotic pathways prior to algal 

photoinhibition implies that these may represent host responses to something other than 

ROS leakage from compromised symbionts. Perhaps they represent responses to 

metabolic dysfunction or mitochondrial disruption in the host itself (Dunn et al., 2012)? 

The contribution of symbiont-derived NO is even less clear. While elevated NO 

production alongside photoinhibition and chlorophyll degradation is consistent with a 

general stress response for the B1-type symbionts present in A. pulchella (see Chapter 

2), the fact that bleaching had already commenced suggests that the extent to which it 

can be influenced by symbiont-derived NO may be less significant than previously 

thought. Further examination of NO production in cnidarians and their symbionts, as 

well as the numerous pathways that NO can influence, would shed much-needed light 

on the communication dysfunction that leads to the collapse of this important 

symbiosis. 
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Chapter 4 

 

Nitric oxide and coral bleaching: Is peroxynitrite generation required 

for symbiosis collapse? 

 

4.1. Introduction 

 

Microbial symbioses are ubiquitous in the natural world and sustain some of the most 

diverse ecosystems on Earth (Muller-Parker & D'Elia, 1997). One of the most 

ecologically important associations is between reef corals (Cnidaria; Scleractinia) and 

photosynthetic dinoflagellates. The dinoflagellate symbionts (genus Symbiodinium) 

provide fixed carbon to the host in exchange for inorganic nutrients that are typically 

absent from the surrounding seawater (Davy et al., 2012). This association underpins 

the existence of coral reefs but is being placed under increasing strain by global 

warming (Hoegh-Guldberg & Bruno, 2010). It has long been known that excessive 

heating of corals can result in the loss of their symbiotic dinoflagellates, yet we still 

know little about the physiological events underpinning this symbiosis collapse (Weis, 

2008; Lesser, 2011). 

 

The collapse of the cnidarian-dinoflagellate association has been linked to the 

overproduction of ROS (Lesser, 1996; 1997; Lesser, 2006; Richier et al., 2006). Often 

associated with chronic photosynthetic dysfunction in the symbiont (Tchernov et al., 

2004; Suggett et al., 2008; McGinty et al., 2012), ROS have a well-known capacity for 

cellular damage (Halliwell & Gutteridge, 2007), but at low concentrations may also act 

as important cellular signalling compounds (Martindale & Holbrook, 2002; 

Winterbourn, 2008; Wink et al., 2011). It has been hypothesised that ROS leakage from 

dysfunctional symbionts could stimulate an innate immune-like signalling pathway 

resulting in host NO synthesis (Perez & Weis, 2006; Weis 2008), but very few data 

exist regarding ROS and cnidarian innate immunity. NO is a ubiquitous signalling 

compound (Moroz, 2001)) implicated in the regulation of numerous microbial 

endosymbioses (Wang & Ruby, 2011). At sufficiently high concentrations, however, 

NO can react with ROS (specifically superoxide) to generate peroxynitrite (ONOO-), 
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which is much more toxic and has a capacity to irreversibly inhibit mitochondrial 

respiration as well as cause damage to enzymes, DNA, and lipid membranes (Beckman 

& Koppenol, 1996; Estevez & Jordan, 2002). In fact, the reaction between NO and O2
- 

occurs faster than that of O2
- with superoxide dismutase, thus the formation of ONOO- 

highly probable when NO and O2
- are produced simultaneously (Radi et al., 2001). The 

likelihood of its generation under thermal stress has therefore led to ONOO- being 

proposed as the effector of NO-mediated cnidarian bleaching (Perez & Weis, 2006; 

Weis 2008). 

 

Using the model symbiotic cnidarian Aiptasia pulchella, this investigation sought to test 

the hypothesis that cnidarian bleaching is dependent on NO's conversion to ONOO- 

during thermal stress. Filling this gap in our knowledge is important if we are to better 

understand the cellular basis of coral bleaching and the breakdown of intracellular 

mutualisms in general. 

 

4.2. Materials and Methods 

 

Cultures of symbiotic A. pulchella were maintained as described in Chapter 3.  

 

4.2.1. Experimental induction of ONOO- in Aiptasia pulchella and its fluorometric 

assessment. 

 

Peroxynitrite was detected using the fluorescent probe aminophenyl fluorescein (APF; 

Molecular Probes, Eugene, OR, USA). APF is specific for highly reactive oxygen and 

nitrogen species and detects, alongside peroxynitrite, hydroxyl (OH.) and hypochlorite 

(OCl-) radicals (Setsukinai et al., 2003). By using scavengers of peroxynitrite and nitric 

oxide, however, one can determine the extent to which APF fluorescence is ONOO--

dependent.  

 

The suitability of APF was determined by preparing 100 µL solutions of 10 µM APF in 

‘anemone relaxing solution’ (see Chapter 3) with and without 2 mM urate (Sigma-

Aldrich, Auckland, New Zealand), a peroxynitrite scavenger that has been employed 

successfully in fluorescence-based assays (Saito et al., 2006; Tewari et al., 2013). The 

peroxynitrite donor 3-morpholinosydnonimine (SIN-1; Life Technologies, Auckland, 
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New Zealand), which generates ONOO- through the simultaneous release of O2
- and 

NO, was then added (0 - 1 mM final SIN-1 concentration). APF fluorescence (ex: 490 

nm, em: 515 nm) was monitored over 2 h using a fluorescent microplate reader 

(Enspire® 2300, Perkin-Elmer, Waltham, MA, USA). To determine whether the effects 

of urate on APF signal were truly due to scavenging of ONOO- (rather than quenching 

of APF fluorescence), the SIN-1/APF incubation was repeated with 2 mM urate added 

30 min after SIN-1. 

 

The ability of APF to detect peroxynitrite in the tissues of A. pulchella was assessed by 

incubating individual anemones for 60 min with 10 µM APF in a) relaxing solution 

only, b) 1 mM SIN-1, c) 1 mM SIN-1 with 2 mM urate, and d) 1 mM SIN-1 with 1 mM 

of the specific NO scavenger cPTIO (Life Technologies, Auckland, New Zealand).  

 

Endogenous production of ONOO- by A. pulchella was investigated using the high 

temperature shock (HTS) method. Briefly, anemones (2-3 mm oral disc diameter) in 

FSW (n = 6 per treatment in individual glass beakers) were transferred to a 26°C water 

bath under 12-h light:12-h dark cycle, (light: 70-90 µmol photons m-2 s-1 provided by a 

LED light bank 20 RoHS 5 W 6400 K) and allowed to acclimate for 48 h (fluorometric 

assessments of symbiont photosynthesis - see below - were conducted to ensure stability 

prior to treatment). Temperature was then increased (over < 1 h) to 33°C or kept 

constant at 26°C (control) and anemones were exposed to these conditions for 24 h. 

Some additional anemones (n = 6 per treatment) were HTS-treated in the presence of 2 

mM urate or 1 mM cPTIO.  

 

To quantify ONOO- in live A. pulchella, the FSW of experimental anemones was 

replaced with 10 µM APF in relaxing solution and anemones were incubated in the dark 

for 60 min in order to prevent the photobleaching of the APF fluorophore. Individual 

anemones were prepared as described in Chapter 3 and visualised using an Olympus 

Fluoview FV-1000 inverted confocal LSM (Olympus, Center Valley, PA, USA) and 

×40 0.9 NA water immersion lens. A 473 nm laser was used to excite APF, the 

fluorescence of which was measured at 510-530 nm. Symbiont chlorophyll 

autofluorescence was detected using 635 nm excitation and a 655-755 nm emission 

filter. Image acquisition and analysis followed the methods described in Chapter 3 and 
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any non-fluorescing anemones were incubated for 30 min with 1 mM SIN-1 to confirm 

successful loading of APF.  

 

4.2.2. Examining the role of ONOO- in thermal bleaching of Aiptasia pulchella. 

 

The role of ONOO- in temperature-induced bleaching was investigated by incubating A. 

pulchella (n = 5 in individual glass beakers) for 24 h at 26°C in FSW containing 1 mM 

SIN-1 with and without 2 mM urate. In addition, six replicate anemones were HTS-

treated with and without 2 mM urate. After 24 h exposure to high temperature or SIN-

1/urate, anemones were returned to control conditions for a further 24 h [to allow time 

for bleaching; Detournay & Weis (2011)] and then processed for symbiont density 

assays as described below. 

 

4.2.3. Assessments of symbiont photosystem II fluorescence and host bleaching. 

 

Fluorescence yields of photosystem II (PSII) were monitored regularly (midday and 30 

min after lights-off) using pulse amplitude modulation fluorometry (Diving-PAM, 

Walz, Germany). Symbiont densities were determined as follows. Whole anemones 

were homogenised using a tissue grinder (Raylab NZ Ltd., Glendene, Auckland, New 

Zealand) in a 1.5-mL tube with a small volume of buffer (50 mM potassium phosphate, 

pH 7.8, 1 mM EDTA). An aliquot was removed for haemocytometer counts (at least 6 

per sample, until coefficients of variation were ≤ 15%; Improved Neubauer, Boeco, 

Germany) and the remainder was centrifuged (16000 × g for 20 min) and analysed for 

soluble protein content (Bradford assay; Bradford, 1976) with bovine serum albumin as 

a standard. Changes in symbiont density relative to host soluble protein ("% symbiont 

loss") after 48 h were calculated relative to mean pre-treatment (t = 0) values. 
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4.2.4. Statistical analysis. 

 

Data analysis was carried out using PASW Statistics 18.0 (IBM, Armonk, NY, USA). 

Where appropriate, data were analysed using RMANOVA and transformed where 

necessary. RMANOVA reports represent time × treatment interactions with pair-wise 

post-hoc comparisons (Bonferroni correction for multiple comparisons). Other analyses 

were carried out using one-way ANOVA.  

 

4.3. Results 

 

4.3.1. Detection of ONOO- in aqueous buffer using APF. 

 

Aminophenyl fluorescein fluorescence (515 nm) successfully responded to SIN-1-

derived peroxynitrite in a dose-dependent manner (Fig. 4.1A). Addition of the ONOO- 

scavenger urate (2 mM) prevented this increase, and adding urate after 30 min 

confirmed that this was due to ONOO- scavenging rather than quenching of 

fluorescence (Fig. 4.1B). Adding heat-treated (33°C for 24 h) urate had a similar 

inhibitory effect on APF fluorescence as freshly prepared urate (Fig. 4.1C), confirming 

that urate retained its ONOO--scavenging properties even under conditions used to 

induce bleaching in A. pulchella. 

 

4.3.2. Confocal visualisation of ONOO- in live Aiptasia pulchella. 

 

Incubation of APF-loaded A. pulchella with the peroxynitrite donor SIN-1 resulted in 

significant increases in tissue 510-530 nm fluorescence (one-way ANOVA, F3, 20 = 

59.753, p < 0.001) that were absent in the presence of 2 mM urate or 1 mM cPTIO (Fig. 

4.2A). HTS treatment of A. pulchella also induced increases (one-way ANOVA, F3, 19 = 

14.679, p < 0.001), which were absent in the presence of urate or cPTIO (Fig. 4.2B). 

The decline in fluorescence intensity when anemones were treated with scavengers 

either of ONOO- itself (urate) or its precursor NO (cPTIO) confirmed that APF signal in 

A. pulchella was an accurate reflection of ONOO- generation rather than the dye's 

interactions with other highly reactive compounds. 
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Figure 4.1. The suitability of aminophenyl fluorescein (APF) for detection of 

peroxynitrite (ONOO-). Panel A) Fluorescence kinetics after addition of various 

concentrations of the ONOO- donor SIN-1 to APF (10 µM in relaxing solution - see 

text). B) Fluorescence kinetics of APF after addition of 1 mM SIN-1 in the presence or 

absence of 2 mM urate (a peroxynitrite scavenger), which was added 30 min after SIN-

1. C) Fluorescence kinetics of APF after addition of 1 mM SIN-1 with either fresh or 

heat-treated urate (2 mM). Values are means ± s.e.m. (n = 4 independent experiments). 
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Figure 4.2. Detection of peroxynitrite (ONOO-) in  

live Aiptasia pulchella. Fluorescence intensities of 

anemone gastrodermis loaded with aminophenyl 

fluorescein (APF). Panel A) Incubated with and without 

1 mM of the ONOO- donor SIN-1, 2 mM of the ONOO- 

scavenger urate, or 1 mM of the NO scavenger cPTIO;  

B) Exposed to high temperature shock (HTS) with and without 2 mM urate or 1 mM 

cPTIO. Values are means ± s.e.m. and asterisks denote significant differences relative to 

the control group (one-way ANOVA with Tukey HSD post-hoc, n = 6 anemones, * p < 

0.05, ** p < 0.01, *** p < 0.001). C) Confocal LSM micrographs of anemone tentacles 

exposed to control conditions, HTS, HTS + 2 mM urate, and HTS + 1 mM cPTIO. 

Green indicates APF fluorescence, while symbiont chlorophyll autofluorescence is 

labelled red. Scale bar: 100 µm. Arrows indicate fluorescence of nematocytes. 
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Figure 4.3. Effects of peroxynitrite (ONOO-) on thermal photoinhibition and bleaching 

in Aiptasia pulchella. Panel A) Quantum yields of PSII over 48 h. Shaded areas 

represent periods of darkness and the broken line indicates the time at which anemones 

were returned to control (26°C) conditions from 33°C. B) Bleaching of anemones (% 

symbionts lost over 48 h) exposed to high temperature shock (HTS - 33°C) or 1 mM of 

the ONOO - donor SIN-1 at 26°C, both treatments with and without 2 mM urate. 

Treatments lasted 24 h before anemones were returned to control conditions. Values in 

both panels are means ± s.e.m. and asterisks denote significant differences relative to 

the control group (A: RMANOVA, pair-wise post-hoc with Bonferroni correction, n = 6 

anemones per time point B: one-way ANOVA with Tukey HSD post-hoc, n = 6 for 

control and 33°C-treatments, n = 5 for SIN-1 incubations, ** p < 0.01, *** p < 0.001). 

 

 

4.3.3. Effects of peroxynitrite on photoinhibition and bleaching. 

 

The addition of the peroxynitrite scavenger urate (2 mM) significantly alleviated 

temperature-induced declines in PSII quantum yield (RMANOVA, F8, 60 = 12.491, p < 

0.001, Fig. 4.3A) and, after 24 h at 33°C, quantum yield was significantly higher in the 

presence of urate (p = 0.003). Addition of the peroxynitrite donor SIN-1 (1 mM in 

FSW) induced significant bleaching of A. pulchella at control temperatures (one-way 

ANOVA, F4, 27 = 20.94, p < 0.001; Tukey HSD post-hoc vs. "control", p = 0.006; Fig. 

4.3B) and the ONOO- scavenger urate restored levels of symbiont loss to those of the 

controls (Tukey HSD post-hoc vs. "control", p = 0.365). Symbiont losses were also 
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significantly higher after HTS treatment but urate had no effect on bleaching intensity 

(Tukey HSD post-hoc vs. "HTS", p > 0.999; Fig. 4.3B). 

 

4.4. Discussion 

 

The generation of peroxynitrite (ONOO-) has been proposed as a significant step in the 

cellular cascade underpinning coral bleaching (Perez & Weis, 2006; Weis, 2008) and 

this study provides strong evidence that ONOO- generation occurs in thermally stressed 

cnidarians. To the authors' knowledge, it also represents the first observation of ONOO- 

in either a lower invertebrate (e.g. Porifera, Cnidaria, or Ctenophora) or an intracellular 

mutualism.  

 

Peroxynitrite has the potential to cause cellular damage in numerous ways 

(Ischiropoulos & Almehdi, 1995; Szabo & Ohshima, 1997; Estevez & Jordan, 2002; 

Kim et al., 2005; Pacher et al., 2007; Szabo et al., 2007; Ahmad et al., 2009) but, in the 

light of recent investigations (e.g. Dunn et al., 2012), it is the compound's interactions 

with mitochondria that may be most important. Due to differences in the diffusivity and 

reactivity of NO and O2
-, peroxynitrite generation in animal cells occurs primarily at the 

sites of O2
- production (Radi et al., 2001), the most significant of which is the 

respiratory chain on the inner mitochondrial membrane (Halliwell & Gutteridge, 2007). 

ONOO- can irreversibly inhibit most mitochondrial complexes (Radi et al., 2002a; Radi 

et al., 2002b) and current research links mitochondrial dysfunction and the associated 

apoptotic pathways to bleaching in symbiotic cnidarians (DeSalvo et al., 2010; Dunn et 

al., 2012). Whether this can occur at physiologically relevant ONOO- concentrations 

has been the subject of debate (Fukuto & Ignarro, 1997), however, and we still know 

little about in vivo ONOO- generation outside of mammals.  

 

It would appear from the data obtained using SIN-1 that addition of ONOO- to A. 

pulchella can stimulate bleaching at control temperatures. This isn't entirely surprising, 

as a bolus dose of an NO and O2
- donor would be expected to induce significant 

physiological stress (Lesser, 2006; Perez & Weis, 2006; Weis, 2008). The absence of 

any alleviation of bleaching intensity when heat-treated anemones were incubated with 

the ONOO- scavenger urate, however, implies that ONOO- may not play such a 

significant role thermal bleaching. Taken together, these findings suggest that while 
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ONOO- has a bleaching-inducing capacity, either the levels of ONOO- generated in vivo 

are not sufficient to influence symbiont loss, or alternative pathways (perhaps involving 

NO or ROS directly) are more critical. 

 

The removal of ONOO- did have a significant positive effect on the performance of 

symbiont PSII at elevated temperature. Given what we already know about NO 

synthesis by symbiotic dinoflagellates (Trapido-Rosenthal et al., 2005; Bouchard & 

Yamasaki, 2008; Bouchard & Yamasaki, 2009; Chapter 2) their production of ONOO- 

and its apparent effects on photosystem II could represent an attractive avenue of 

inquiry into the thermal stress responses in these algae. Recent observations of 

naturally-occuring uric acid deposits in Symbiodinium cells (Kopp et al., 2013) may 

have implications for such ONOO--mediated events, particularly regarding the 

localisation of ONOO- generation and scavenging. It should be noted, however, that 

urate is also a potent scavenger of superoxide radicals, and with ROS strongly 

implicated in the photosynthetic dysfunction of Symbiodinium cells, it remains to be 

seen how much of the urate-induced recovery in PSII yield is due to ONOO--

scavenging rather than general antioxidant activity. Moreover, it would be greatly 

informative to conduct an experiment quantifying the bleaching of anemones exposed 

to SIN-1 alongside the NO scavenger cPTIO. This would enable us to discern the 

relative effects of NO and ROS more reliably. 

 

In conclusion, it appears likely that any mediation of temperature-induced cnidarian 

bleaching by nitric oxide occurs independently of its conversion to peroxynitrite. NO 

has the capacity to directly influence the cell death pathways implicated in bleaching 

(Snyder et al., 2009) so ONOO- generation may be unnecessary in this regard. The 

situation may of course be different in reef corals undergoing bleaching in the field, 

where light intensities greater than those employed in the present study could 

exaggerate NO / ROS synthesis in both host and symbiont. In any case, investigating 

where in the symbiosis ONOO- is produced, and how such a potent radical can have 

such modest effects during temperature stress are important subjects for future study. 
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Chapter 5 

 

Differential coral bleaching at a cellular level: Evidence of nitric 

oxide synthesis and host apoptosis in three reef corals. 

 

5.1. Introduction 

 

Coral reefs as we know them may not survive the 21st century (Hoegh-Guldberg & 

Bruno, 2010; van Hooidonk et al., 2013) as a number of factors, both local and global, 

are placing reefs under increasing stress (Perry et al., 2013). Perhaps the most 

significant of these is global warming (van Hooidonk et al., 2013). Reef-building corals 

live close to their upper thermal thresholds, and warming of only a few degrees can 

have significant consequences (Fitt et al., 2001). This often becomes apparent as a 

"whitening" of the coral tissue resulting from the expulsion or degradation of the coral’s 

intracellular symbionts and/or their photosynthetic pigments. It is these symbionts 

(dinoflagellates of the genus Symbiodinium) that, under normal circumstances, provide 

the host with photosynthetically-fixed carbon, and thus enable calcification and reef 

accretion by scleractinian corals (Davy et al., 2012). Thermal bleaching can cause coral 

mortality directly, through the stresses associated with high temperature (Jones, 2008), 

or indirectly, as a result of depressed growth rates (Goreau & MacFarlane, 1990) or the 

ability to resist pathogens (Mydlarz et al., 2010). While much is known of the 

ecological patterns and consequences of bleaching (e.g. Pratchett et al., 2009), 

comparatively little is understood regarding its physiological and cellular basis (Weis, 

2008; Lesser, 2011). This is especially true for differential bleaching, wherein corals of 

different species (or harbouring distinct types of Symbiodinium) display variation in 

their susceptibility to elevated temperatures (van Oppen et al., 2009; Weis, 2010). It is 

vital, given the predictions for coral reefs over coming decades (van Hooidonk et al., 

2013), that we improve our understanding of corals' responses to warming oceans. 

 

A number of mechanisms have been proposed as being vital to the bleaching process 

(Weis, 2008), but a critical factor is likely to be the development of oxidative stress 

(Lesser, 2006; Richier et al., 2006; Lesser, 2011), a phenomenon caused by the 

overproduction of ROS. Often associated with thermal photoinhibition in the symbionts 
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(Tchernov et al., 2004; Suggett et al., 2008), ROS generation might lead to symbiont 

dysfunction and mortality (Dunn et al., 2004; Sammarco & Strychar, 2013). It may also 

induce host innate immune-like responses (Perez & Weis, 2006; Dunn et al., 2007; 

Weis, 2008) similar to those seen in organisms challenged by microbial pathogens 

(Nürnberger et al., 2004; Rivero, 2006; Villamil et al., 2007). However, few data exist 

regarding host signalling during temperature-induced ROS generation. 

 

One host response involves the heightened synthesis of the signalling molecule nitric 

oxide (NO; Trapido-Rosenthal et al., 2005; Perez & Weis, 2006; Detournay & Weis, 

2011) and an upregulation of apoptotic-like programmed cell death pathways (Dunn et 

al., 2004; Richier et al., 2006; Dunn et al., 2007; Paxton et al., 2013). Ubiquitous in 

living organisms, NO is involved in a number of processes relevant to coral bleaching. 

These include cell death (Wink & Mitchell, 1998) - particularly apoptosis (Brune et al., 

1999; Almeida et al., 2007) - innate immune responses to pathogenic infections (Liew 

et al., 1991; MacMicking et al., 1997; Fang, 2004; Nürnberger et al., 2004; Leng et al., 

2009; Herrera-Ortiz et al., 2011), ROS-based signalling and oxidative stress (Crawford 

& Guo, 2005; Catala et al., 2010; Wink et al., 2011), and the maintenance of microbial 

symbioses (reviewed by Wang & Ruby, 2011). The possible roles for NO in the 

breakdown of the coral-Symbiodinium association are various, but, given recent work 

on model symbiotic cnidarians (Perez & Weis, 2006; Detournay & Weis, 2011; 

Detournay et al., 2012) its involvement in apoptosis is plausible. NO has a well-known 

capacity to induce apoptosis through the intrinsic (mitochondria-mediated) pathway 

(Brown & Borutaite, 2002; Pacher et al., 2007), and recent investigations have observed 

evidence of mitochondrial dysfunction (Desalvo et al., 2008; Downs et al., 2010; Dunn 

et al., 2012) as well as the modified expression of apoptosis-regulating genes 

(Bellantuono et al., 2012a; Barshis et al., 2013) in thermally-stressed cnidarians. The 

activity of enzymes similar to the aspartate-specific cysteine proteases (caspases), that 

are tasked with initiating and executing apoptosis has also been observed in corals 

(Dunn & Weis, 2009; Kvitt et al., 2011; Pernice et al., 2011; Tchernov et al., 2011). 

Moreover, variation in their expression has been proposed as a possible cellular basis 

for the differential survival of bleached corals at elevated temperatures (Tchernov et al., 

2011). In the model symbiotic cnidarian Aiptasia sp., apoptotic activity has been 

hypothesised to result from temperature-induced NO synthesis (Perez & Weis, 2006; 

Chapter 3), and differential NO production has been observed in heat-stressed 
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anemones (Aiptasia pallida) hosting heat-tolerant and -sensitive Symbiodinium types 

(Perez, 2007). However, the hypothesis that the differential induction of NO 

synthesis/apoptosis could contribute to the varying bleaching susceptibilities of corals 

has yet to be examined in any reef-building species. 

 

Physiological characteristics of both symbiont and host contribute to the overall 

stability of the holobiont during stress (Baird et al., 2008; Weis, 2010; Wicks et al., 

2012), but variability in coral bleaching has, more often than not, been attributed to 

differences in the in hospite symbiont population (Rowan et al., 1997; Berkelmans & 

van Oppen, 2006; van Oppen et al., 2009; Weis, 2010). The genus Symbiodinium is 

highly diverse (Stat et al., 2006) and nine clades (A-I; identified using the ITS2 region 

of the nuclear ribosomal DNA) are currently recognised (LaJeunesse, 2002; Pochon & 

Gates, 2010). Moreover, it is clear that the physiology of different Symbiodinium ITS2 

"types" can be highly variable (Tchernov et al., 2004; Suggett et al., 2008; Fisher et al., 

2012; McGinty et al., 2012). This extends to the symbiont’s own synthesis of NO (see 

Chapter 2), a phenomenon that has been the subject of some debate (Trapido-Rosenthal 

et al., 2005; Perez & Weis, 2006; Bouchard & Yamasaki, 2008). However, little is 

known of the potential for NO synthesis by symbionts in hospite. Some early 

investigations (Bhagooli et al., 2001; Buxton et al., 2002) suggested that Symbiodinium 

cells could generate NO within their host. If this differs among coral species then it 

might contribute to their varying responses to thermal stress. 

 

As outlined above, NO synthesis and apoptosis are common innate immune strategies in 

metazoans and NO appears to be involved in cnidarian apoptosis during heat stress. The 

aim of this investigation, therefore, was to quantify the expression of these innate 

immune-like responses in different reef corals exposed to high temperature stress. As 

such, there were two specific objectives to this study: firstly, to quantify host and in 

hospite symbiont NO synthesis, and secondly, to assess the expression of host apoptotic 

pathways. The species examined were Acropora millepora, Montipora digitata and 

Pocillopora damicornis. M. digitata, with its Symbiodinium C15-type symbiont 

(LaJeunesse, 2005), represents a physiologically robust Indo-Pacific coral species 

(Fisher et al., 2012), while Acropora and Pocillopora are comparatively temperature-

sensitive genera (Guest et al., 2012). In addition A. millepora is a horizontally 

transmitting species and is comparatively flexible with respect to the types of symbionts 
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with which it associates (Tonk et al., 2013). M. digitata, by contrast, is a vertically 

transmitting species which associates with only a few symbiont types (Baird et al., 

2009; Fabina et al., 2012). P. damicornis uses vertical transmission, but is still 

somewhat flexible in its choice of symbionts (Tonk et al., 2013) and indeed some 

evidence of horizontal uptake has been recorded for this species (Marlow & Martindale, 

2007). By extending laboratory work carried out in this as well as previous 

investigations (Perez & Weis, 2006; Richier et al., 2006) to reef corals in the field, we 

can gain physiological data of ecological significance, and further investigate the 

cellular basis for the varying responses of corals to climate change. 

 

5.2. Materials and Methods 

 

Unless otherwise stated, all reagents were obtained from Sigma-Aldrich, Auckland, 

New Zealand, and were of the highest analytical grade available. 

 

5.2.1. Collection and treatment of reef coral fragments. 

 

Individual fragments (ca. 5 cm; n = 5 colonies per species) of A. millepora (cream 

colour morph), P. damicornis (pink colour morph), and M. digitata (green colour 

morph) were collected from Heron Island reef flat (23°26'43" S, 151°54'53" E) at low 

tide, mounted onto racks and transferred to experimental 30-L tanks under shade cloth 

(reducing incident midday photosynthetically active radiation (PAR) from ca. 2000 to 

400-600 µmol photons m-2 s-1). Treatment tanks contained four fragments (one per time 

point) from each of the five replicate colonies. A continuous flow system (ca. 1.5 L 

min-1) ensured a constant turnover of seawater (from Heron Island reef flat), and 

fragments were acclimated for 6 days at 28.5°C (± 0.9°C; one standard deviation), 

conditions characteristic of summer daytime conditions on the Heron Island reef flat 

(AIMS; http://data.aims.gov.au/aimsrtds/station.xhtml?station=130). The temperature of 

two of the tanks was then increased by approximately 1°C per day and stabilised at 

either 31.5°C (± 0.6°C) or 33°C (± 0.8°C). Water temperatures were monitored using 

HOBO data loggers (Onset Corporation, Bourne, MA, USA), and treatment conditions 

were maintained for a maximum of 6 days for 31.5°C and 4 days for 33°C (Fig. 5.1). 
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Corals were sampled at midday immediately prior to heating, 5 days afterwards, and 

then every 48 h for a maximum of 4 days. 

 

 

Figure 5.1. Acclimation and temperature treatments of coral fragments (ramping of ca. 

1°C day-1). Vertical green lines indicate sampling points. 

 

 

5.2.2. Fluorometric assessment of in hospite algal PSII. 

 

Quantum yields of algal PSII were measured using pulse amplitude modulation 

fluorometry (Diving-PAM, Walz, Effeltrich, Germany). Maximum (dark-adapted) 

quantum yields of PSII (Fv/Fm) were recorded 30 min after sunset, and presented values 

are means of three measurements of each coral fragment.  
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5.2.3. Coral fragment processing. 

 

Coral fragments were removed from experimental tanks at midday, immediately flash-

frozen in liquid nitrogen and stored at -80°C. All subsequent procedures were carried 

out at 4°C or on ice unless otherwise stated. 

 

Tissue was removed from frozen coral fragments by airbrushing into approximately 7 

mL of 50 mM potassium phosphate, pH 7.8, 1 mM EDTA homogenisation buffer (HB; 

prepared daily using 18.3 MΩ water). Tissue suspensions were homogenised with a 

sawtooth homogeniser (Labserv D-130, Thermo Fisher Scientific, Albany, New 

Zealand) for 10 s at 20000 rpm. Two 500-µl aliquots were removed for Symbiodinium 

cell counts (and to confirm the structural integrity of cells post-homogenisation) and 

photosynthetic pigment analysis (see below). Samples for cell counting were fixed with 

10 µL Lugols solution and stored at -20°C. Pigment samples were centrifuged (16000 × 

g for 5 min), the supernatant discarded, and the pellet frozen and stored at -20°C. The 

remaining tissue homogenate was centrifuged (1500 × g for 5 min) to separate 

remaining Symbiodinium cells from host material. The supernatant was removed and 

stored in 1 mL aliquots at -80°C alongside the algal pellet. 

 

5.2.4. Quantification of bleaching in reef coral fragments. 

 

Symbiodinium cell densities were quantified using Improved Neubauer haemocytometer 

counts (Boeco, Germany), with at least six counts carried out per sample (until 

coefficients of variability were < 15%). Cell density was normalised to coral fragment 

surface area, measured with the parafin wax method (Stimson & Kinzie, 1991). 

Symbiont chlorophyll a (Chl a) content was quantified according to methods described 

in Chapter 3. 

 

5.2.5. Symbiodinium genotyping. 

 

Symbiodinium aliquots for genotyping were washed three times in HB (2000 × g for 5 

min) and pellets were processed following the methods of Logan et al. (2010). PCR 

amplicons were obtained using the forward primer itsD (5'-

GTGAATTGCAGAACTCCGTG-3') and reverse primer its2rev2 (5'- 
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CCTCCGCCTACTTATATGCTT-3'). All PCR amplicons were checked for correct 

size via gel electrophoresis (1.5% [w/v] agarose gel), purified (ExoSAP-IT; GE 

Healthcare, Life Sciences) and sequenced in both directions at Macrogen Korea (Seoul, 

South Korea). Sequences were identified using the NCBI and GeoSymbio databases 

(Franklin et al., 2012). 

 

5.2.6. Preparation of Symbiodinium cell lysates. 

 

Algal pellets were processed and lysed according to methods described in Chapter 3. 

 

5.2.7. Assessments of NO production. 

 

With corals fragments having been flash-frozen immediately post-sampling, the live, 

real-time quantification of NO (with confocal LSM and fluorescent dyes, for example) 

was not possible. However, biogenic NO is quickly oxidised to nitrite (NO2
-) and nitrate 

(NO3
-). These stable products are reliable indicators of NO synthesis (Bryan & 

Grisham, 2007), and their relative contributions to total oxidised NO (NOx
-; the total of 

NO2
- and NO3

-) depend on the abundance and proximity of haem-proteins in the tissues 

of interest (Bryan & Grisham, 2007). As such, overall assessments of NO synthesis 

benefit from measurements both of NO2
- and total oxidised NO (NOx

-).  

 

NO2
- and NOx

- were quantified using the fluorescent indicator 2,3-diaminonaphthalene 

(DAN, Life Technologies, Auckland, New Zealand; Nussler et al., 2006) according to 

the methods of Detournay & Weis (2011), described in Chapter 3. Samples were 

analysed as outlined below. 

 

Nitrite (NO2
-) assay: 

NO2
- content was calculated from DAN fluorescence (ex: 365 nm, em: 410 nm) 

measured using an ELISA microplate reader (see Chapter 3) alongside a calibration 

curve of 10-10000 nM NaNO2 in HB (Detournay & Weis, 2011). Autofluorescence of 

host fractions was controlled for by preparing sample blanks. The autofluorescence of 

Symbiodinium cell lysates at 410 nm was negligible and 150 µL HB sufficed as a blank. 

 



 110 

Total oxidised NO (NOx
-) assay: 

Quantification of NOx
- with DAN requires the reduction of nitrate to nitrite, which was 

achieved by adding 0.1 M vanadium (III) chloride (VCl3) solution in 1 N HCl (Miranda 

et al., 2001) immediately prior to the DAN reagent. Host fractions were incubated as 

described previously (see Chapter 3) and DAN fluorescence was quantified using an 

ELISA microplate reader (see Chapter 3) and a calibration curve of 10-10000 nM 

NaNO3 in HB. Addition of DAN-HCl solution to Symbiodinium cell lysates in the 

presence of VCl3 promoted development of a persistent and interfering blue colour that 

could not be removed; these samples were therefore not included in the analysis.  

 

As positive controls for the DAN assay, raw coral homogenates were incubated with 1 

mM NO donor SNP at 25°C for 4 h. 

 

5.2.8. Assessment of host caspase-like enzyme activity. 

 

The activities of "executioner caspase-3"-like and "initiator caspase-9"-like enzymes 

(Nicholson, 1999) in the host were quantified according to the methods described in 

Chapter 3. Additionally, to confirm the absence of non-specific substrate hydrolysis, 

host fractions of homogenates (n = 3 untreated fragments per species) were pre-

incubated for 30 min with 20 µM of the caspase-3 or -9 inhibitors DEVD- or LEHD-

aldehyde (-CHO), respectively. 

 

5.2.9. Statistical analyses. 

 

Data analysis was carried out using a PASW 18.0 package (IBM, Armonk, NY, USA). 

Data regarding symbiont quantum yields, chl a content, cellular nitrite, and density 

within the host, and host tissue nitrite, nitrate, and caspase-like activity were analysed 

using RMANOVA with Greenhouse-Geisser correction used whenever Mauchly's test 

returned a significant result. RMANOVA post-hoc tests represent pair-wise 

comparisons between treatments at certain time points with Bonferroni correction. 

MANOVA was used to examine baseline caspase-like enzyme activity in M. digitata. 

Further analyses were carried out using one-way ANOVA and linear mixed models 

(LMM), with the latter employed to examine the correlation of coral fragments' host 

physiological parameters with bleaching in the context of a hierarchical experimental 
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design with repeated sampling. Each parameter was examined as a variable and the 

predictive power of putative upstream covariates was analysed individually. Data were 

transformed to fulfill assumptions of normality prior to any parametric analysis. 

 

5.3. Results 

 

5.3.1. Symbiodinium genotypes. 

 

ITS2 sequences of Symbiodinium cells most closely aligned with the following 

genotypes: Acropora millepora - C3; Montipora digitata - C15; and Pocillopora 

damicornis - C42 (type 2). All five replicate colonies of each species hosted the same 

ITS2 symbiont type, and there was no evidence of individual colonies hosting more 

than one ITS2 type simultaneously. 

 

Table 5.1. Statistical analysis (RMANOVA, time × temperature interaction) of 

symbiont physiological parameters in reef corals exposed to control (28.5°C) and 

elevated temperatures. Analysis of Fv/Fm values includes all three treatments (control, 

31.5°C and 33°C). Chlorophyll a and nitrite (NO2
-) analyses were carried out on control 

samples and either 31.5°C-treated (Pocillopora damicornis) or 33°C-treated (Acropora 

millepora and Montipora digitata) fragments. Asterisks denote statistical significance (p 

< 0.05). 

 

Species (ITS2 

type) 

Parameter Statistic P-value 

Acropora  Fv/Fm F3.898, 19.489 = 97.189 < 0.001* 

millepora (C3) Chl a content F3, 21 = 1.834 0.172 

 NO2
- content F3, 15 = 6.771 0.043* 

Montipora  Fv/Fm F16, 96 = 4.684 < 0.001* 

digitata (C15) Chl a content F3, 24 = 4.18 0.016* 

 NO2
- content F3, 15 = 0.407 0.75 

Pocillopora  Fv/Fm F1.71, 13.677 = 30.228 < 0.001* 

damicornis (C42) Chl a content F3, 21 = 0.84 0.487 

 NO2
- content F3, 18 = 1.137 0.361 
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5.3.2. PSII fluorescence and bleaching of reef corals at elevated temperature. 

 

Exposure to elevated temperature over 9 days led to significant declines in the dark-

adapted PSII quantum yields (Fv/Fm) of all three species (Table 5.1), and these differed 

significantly between species (RMANOVA, time × species × temperature, F7.615, 76.152 = 

44.013, p < 0.001). Fv/Fm in A. millepora and P. damicornis declined dramatically at the 

higher temperatures (Fig. 5.2A, C), while in M. digitata Fv/Fm was maintained at the 

control level until late in the experiment (Fig. 5.2B). Data are not available for P. 

damicornis after Day 6 at 33°C, when this species suffered 100% mortality (visible as 

tissue sloughing). Subsequent physiological analyses for P. damicornis were therefore 

carried out on fragments incubated at 31.5°C. 

 

Baseline chl a content differed between species (one-way ANOVA, F2, 28 = 23.667, p < 

0.001), with the C42-type symbionts of P. damicornis having the highest amount per 

cell (6.9 pg ± 0.1 [s.e.m.], Tukey HSD post-hoc, p < 0.01) and the C3-type symbionts of 

A. millepora the lowest (3.3 pg ± 0.2 [s.e.m.], Tukey HSD post-hoc, p < 0.05). C3 was 

also the only type to display any decline in chlorophyll content per cell at elevated 

temperature and, while there was no significant time × treatment interaction (Table 5.1), 

type C3 cells after 9 days at 33°C had a chl a content 58% lower than that the controls 

(Fig. 5.2D).  

 

Symbiont densities per unit of coral surface area varied significantly between species 

prior to treatment (one-way ANOVA with Welch correction, F2, 10.788 = 39.291, p < 

0.001); P. damicornis had at least 80% fewer Symbiodinium cells per cm2 than did the 

two other species (Tukey HSD post-hoc, p < 0.01). When incubated at elevated 

temperature (31.5°C for P. damicornis or 33°C for A. millepora and M. digitata) for 9 

days, symbiont densities declined significantly in A. millepora and P. damicornis (to ca. 

10% and 50% of initial densities, respectively) but no significant changes were 

observed in M. digitata (Table 5.2, Fig. 5.2G-I). 
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Figure 5.2. Quantum yields of photosystem II, symbiont chlorophyll a content and 

bleaching in Acropora millepora, Montipora digitata, and Pocillopora damicornis. 

Panels A-C) Maximum quantum yield of photosystem II (Fv/Fm); D-F) Chlorophyll a 

content per cell; G-I) Symbiont cell density normalised to coral fragment surface area. 

Values are means ± s.e.m. and asterisks denote significant differences relative to 

controls at each time point. (RMANOVA, pair-wise post-hoc with Bonferroni 

correction, n = 5 individual colonies per time point except A. millepora after 9 days at 

33°C where n = 4, * p < 0.05, ** p < 0.01, *** p < 0.001). Note the different y-axis scales 

in panels D-F and G-I. 
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5.3.3. NO synthesis in corals and their symbionts at elevated temperature. 

 

Nitrite (NO2
-) levels (nmol per unit soluble protein) in the type C3 Symbiodinium cells 

of A. millepora responded significantly to elevated temperature (Table 5.1, Fig. 5.3A) 

and this response was absent in the C15 symbionts of Montipora digitata (Fig. 5.3B). 

An increasing trend was apparent in the symbionts of Pocillopora damicornis but this 

was only significant relative to controls at Day 7 (Table 5.1, Fig. 5.3C). 

 

Table 5.2. Statistical analysis (RMANOVA, time × temperature interaction) of host 

physiological parameters in reef corals exposed to control (28.5°C) and elevated 

temperatures (31.5°C for Pocillopora damicornis; 33°C for Acropora millepora and 

Montipora digitata). Asterisks denote statistical significance (p < 0.05). 

 

Species Parameter Statistic P-value 

Acropora  NO2
- content F3, 18 = 0.89 0.465 

millepora NOx
- content F3, 18 = 6.614 0.031* 

 LEHDase (caspase-9-like) activity F3, 21 = 3.82 0.025* 

 DEVDase (caspase 3-like) activity F3, 21 = 7.313 0.002* 

 Symbiont density F3, 18  = 6.572 0.003* 

Montipora  NO2
- content F3, 18 = 0.232 0.873 

digitata NOx
- content F1.582, 9.459 = 1.228 0.321 

 LEHDase (caspase-9-like) activity F3, 24 = 0.085 0.968 

 DEVDase (caspase 3-like) activity F3, 24 = 0.464 0.633 

 Symbiont density F3, 18 = 1.426 0.268 

Pocillopora  NO2
- content F3, 18 = 1.672 0.209 

damicornis NOx
- content F3, 12 = 3.920 0.037* 

 LEHDase (caspase-9-like) activity F3, 24 = 5.416 0.005* 

 DEVDase (caspase 3-like) activity F1.465, 11.722 = 4.714 0.04* 

 Symbiont density F3, 21 = 4.779 0.011* 
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Host tissue NO2
- (nmol per unit soluble protein) differed significantly between species 

at the start of the experiment (one-way ANOVA with Welch correction, F2, 12.454 = 

28.553, p < 0.001), with A. millepora having significantly (approximately 2-fold) higher 

host tissue NO2
- than the other two species (Tukey HSD post-hoc, p < 0.01). However, 

tissue NO2
- content did not respond significantly to temperature in any of the coral 

species (Table 5.2, Fig. 5.3D-F).  

 

Baseline total oxidised NO (NOx
-) concentrations in the host also differed between 

species (one-way ANOVA with Welch correction, F2, 12.686 = 4.012, p = 0.045), but in 

this case A. millepora and M. digitata had similar NOx
- levels while those of P. 

damicornis were lower (≤ 35%; Tukey HSD post-hoc, p < 0.05). A. millepora and P. 

damicornis showed a significant temperature × time interaction for host tissue NOx
- 

(Table 5.2), with maximal NOx
- observed on Day 5 of the experiment (Fig. 5.3G, I). No 

significant changes to NOx
- content occurred in M. digitata (Table 5.2, Fig. 5.3H). 

 

5.3.4. Responses of host caspase-like enzymes to elevated temperature. 

 

Baseline host caspase-like enzyme activity was highly variable between the three coral 

species (Fig. 5.4); DEVDase (caspase-3-like) activity was at least 74% lower in M. 

digitata than in the other two species (one-way ANOVA, F2, 29 = 42.577, p < 0.001, Fig. 

5.4B). Further examination revealed no significant difference between M. digitata 

homogenates treated with and without caspase-like enzyme inhibitors (MANOVA, 

Pillai's Trace, F3, 12 = 0.899, p = 0.495; Tukey HSD post-hoc DEVDase: p = 0.867, 

LEHDase: p = 0.253; Fig. 5.5). 

 

Effects of heating on caspase-like enzyme activity differed depending on the species 

and the duration of treatment (Fig. 5.4). No changes in either DEVDase or LEHDase 

(caspase-9-like) activity were seen in M. digitata (Table 5.2, Fig. 5.4B). LEHDase 

activity in A. millepora and P. damicornis responded to increasing temperature (Table 

5.2, Fig. 5.4A, C). After 5 days at 33°C in A. millepora and on Day 7 in 31.5°C-treated 

P. damicornis fragments, LEHDase activity was at least 2-fold higher than that in 

control samples. Patterns of DEVDase activity were similar to those of LEHDase, in 

that a 3-fold increase in activity was seen in A. millepora over the initial 5 days of 
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heating (to 33°C; Fig. 5.4A) and increases in P. damicornis DEVDase activity were 

only apparent on Day 7 at 31.5°C (Fig. 5.4C).  

 

 

Figure 5.3. Nitric oxide synthesis in the reef corals Acropora millepora, Montipora 

digitata, and Pocillopora damicornis. Panels A-C) Symbiont nitrite (NO2
-) content 

(nmol per unit soluble protein); D-F) Host nitrite (NO2
-) content (nmol per unit soluble 

protein); G-I) Host total oxidised NO (NOx
-) content (nmol per unit soluble protein). 

Values are means ± s.e.m. and asterisks denote significant differences relative to 

controls at each time point. (RMANOVA, pair-wise post-hoc with Bonferroni 

correction, n = 5 individual colonies per time point except A. millepora after 9 days at 

33°C where n = 4, * p < 0.05, ** p < 0.01, *** p < 0.001). Note the different y-axis scales 

in panels A-C. 
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Figure 5.4. Host caspase-like enzyme activity in the reef corals Acropora millepora 

(Panel A), Montipora digitata (B), and Pocillopora damicornis (C). Values are means 

± s.e.m. and asterisks denote significant differences relative to controls at each time 

point. (RMANOVA, pair-wise post-hoc with Bonferroni correction, n = 5 individual 

colonies per time point except A. millepora after 9 days at 33°C where n = 4, * p < 0.05, 

** p < 0.01, *** p < 0.001). 

 

 

 

 

 

Figure 5.5. Baseline DEVDase (caspase-3-like) and LEHDase (caspase-9-like) enzyme 

activity in the reef coral Montipora digitata. Coral homogenates were incubated with 

various combinations of tetrapeptide-p-nitroanilide (-pNA) substrates and -aldehyde (-

CHO) inhibitors. Values are means ± s.e.m. (n = 3 per treatment). Note the y-axis 

values relative to Fig. 5.4. 
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5.3.5. Relationships between NO synthesis, caspase activity and bleaching in Acropora 

millepora and Pocillopora damicornis. 

 

LMM analysis of data from A. millepora (Table 5.3) revealed a number of significant 

findings regarding host tissue NOx
- accumulation, caspase-like enzyme activity and 

bleaching. When treatment, colony and time effects were taken into consideration, NOx
- 

was found to be a predictor only of DEVDase (caspase-3-like) activity. LEHDase 

activity was a significant predictor of DEVDase activity, but neither LEHDase nor 

DEVDase activity correlated significantly with symbiont density. In P. damicornis, 

LEHDase was a significant predictor of DEVDase activity (Table 5.4). P. damicornis 

host tissue NOx
- content correlated significantly with LEHDase activity but, as in A. 

millepora, it was not a significant predictor of symbiont density. 

 

Table 5.3. LMM analyses of log-transformed host physiological parameters in 

Acropora millepora. Each covariate (left column) was examined as a "predictor" of 

putative downstream "dependent" parameters. Asterisks denote statistical significance 

(p < 0.05) and the nature of any significant correlation is given in parentheses. 

 

 

Dependent > 

LEHDase 

(caspase-9-

like) activity 

DEVDase 

(caspase-3-like) 

activity 

 

Symbiont 

density 

Predictor 

∨ 

   

Tissue NOx
- content 

 

 

F1, 9.754 = 2.753 

p = 0.129 

F1, 12.664 = 5.267 

p = 0.040* 

(positive) 

F1, 9.412, = 0.078 

p = 0.787 

LEHDase 

(caspase-9-like) activity 

- F1, 10.107 = 23.400 

p = 0.001* 

(positive) 

F1, 5.447 = 0.058 

p = 0.818 

DEVDase 

(caspase-3-like) activity 

- - F1, 9.550 = 1.749 

p = 0.217 
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Table 5.4. LMM analyses of log-transformed host physiological parameters in 

Pocillopora damicornis. Each covariate (left column) was examined as a "predictor" of 

putative downstream "dependent" parameters. Asterisks denote statistical significance 

(p < 0.05) and the nature of any significant correlation is given in parentheses. 

 

 

Dependent > 

LEHDase 

(caspase-9-like) 

activity 

DEVDase 

(caspase-3-like) 

activity 

 

Symbiont 

density 

Predictor 

∨ 

   

Tissue NOx
- content 

 

 

F1, 9.299 = 8.965 

p = 0.015* 

(positive) 

F1, 11.764 = 0.682 

p = 0.425 

F1, 13.799 = 2.275 

p = 0.154 

LEHDase 

(caspase-9-like) activity 

- F1, 5.657 = 12.958 

p = 0.013* 

(positive) 

F1, 7.162 = 4.042 

p = 0.085 

 

DEVDase 

(caspase-3-like) activity 

- - F1, 16.789 = 0.364 

p = 0.554 

 

 

5.4. Discussion 

 

This investigation is the first to examine the production of the signalling molecule nitric 

oxide (NO) in different species of reef-building corals under experimental thermal 

stress. We report evidence of upregulated NO synthesis by reef corals and their 

symbiotic dinoflagellates during high temperature-induced bleaching. Secondly, these 

responses correlated with the activation of host apoptotic-like pathways. Furthermore, 

apoptotic events and NO synthesis in the host appeared to precede significant algal 

dysfunction and host bleaching. Perhaps most importantly, this study reports significant 

variability between differentially temperature-sensitive reef coral species in the apparent 

generation of NO and the constitutive and temperature-induced expression of apoptotic-
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like pathways. These findings could contribute to a developing physiological 

framework for the varying sensitivities of corals to warming oceans. 

 

5.4.1. Declining PSII functionality, symbiont NO synthesis, and bleaching in reef corals. 

 

Exposure to heating of ca. 1°C per day (to 3-5°C above ambient) revealed significant 

differences among the symbionts of the reef corals A. millepora, M. digitata and P. 

damicornis. This differential algal performance was reflected in the intensity of 

bleaching in the three coral species. As observed previously (Fisher et al., 2012), the M. 

digitata-C15 association was comparatively robust in response to heating while the A. 

millepora-C3 and P. damicornis-C42 (type 2) symbioses proved much more unstable.  

 

Consistent with the apparent absence of stress in M. digitata, there was no evidence of 

upregulated NO synthesis in its C15-type symbionts. In contrast, the symbionts in A. 

millepora and P. damicornis displayed evidence of heightened NO production. The 

only previous investigation of NO in a clade C Symbiodinium (see Chapter 2) revealed a 

significant downregulation of NO synthesis during high temperature stress. A number 

of factors could explain this disparity. Firstly, the previous work examined 

Symbiodinium cells in culture, and they may well behave differently when inside their 

host. The nature of the treatments used by the previous study (rapid exposure to 

elevated temperature) versus the slow heating used here may also have contributed. In 

spite of these differences, the observation that heightened in hospite symbiont NO 

synthesis occurred well after pronounced declines in PSII function and the onset of 

bleaching support the hypothesis that NO produced by the symbiont may not be 

involved in the initiation of bleaching pathways. 

 

5.4.2. Nitric oxide synthesis and apoptotic-like events in the coral host. 

 

Heightened NO production by thermally stressed cnidarian hosts has been proposed as a 

critical component of a host innate immune-like response resulting in bleaching (Perez 

& Weis, 2006; Weis, 2008). The findings of this investigation support this hypothesis 

but suggest that the situation in reef corals may be different to that in laboratory model 

systems. For example, host tissue NO2
- content - which responds to increasing 

temperature in the model cnidarian Aiptasia pulchella (Detournay & Weis, 2011) - 
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changed little in the coral species examined here. Only when total oxidised NO (NOx
-; 

including both nitrite and nitrate) was quantified did any temperature-induced response 

become apparent. This was most obvious in A. millepora and less so in P. damicornis. 

M. digitata, the only species of the three not to bleach, showed very little evidence of 

temperature-induced NO synthesis. In all cases, NO synthesis appeared to be sporadice 

and transient, indicating significant temporal variability within coral tissues. 

 

It could be argued that changes in host tissue NOx
- content reflect varying dissolved 

inorganic nitrogen (DIN) cycling by coral-associated microbial communities, whose 

physiology and composition can change dramatically with temperature (Bourne et al., 

2008). However, the differing responses of NOx
- among the three coral species and the 

strong positive effect of the NO donor SNP on tissue NOx
- content (Supplementary Fig. 

A8) support the suitability of NOx
- in assessing tissue NO synthesis. Detecting the 

biosynthesis of NO in biological systems is notoriously challenging (Bryan & Grisham, 

2007). This is especially so in reef corals, where fluorescent proteins and the presence 

of an internal calcium carbonate skeleton preclude the use of the live-tissue imaging 

techniques that have been successfully employed with sea anemones (Perez & Weis, 

2006). Future investigations could focus more closely on DIN cycling and accumulation 

in the tissues of heat-stressed corals, and this would certainly aid researchers in 

evaluating the suitability of NO2
- and NOx

- as markers of cnidarian NO synthesis. 

 

Differences among the three coral species were also apparent in the regulation of host 

caspase-like enzyme activity. The activity of these proteases, well-known as the 

initiators and executioners of apoptotic-like cell death in metazoans (see Nicholson, 

1999; Kumar & Cakouros, 2003 for reviews), has been observed previously in reef 

corals (Kvitt et al., 2011; Pernice et al., 2011; Tchernov et al., 2011). Their differential 

regulation at high temperature has also been proposed as a mechanism underpinning the 

differing susceptibilities of corals to bleaching-induced mortality (Tchernov et al., 

2011). Concomitant with an absence of temperature-induced host NO synthesis, 

caspase-like activities in the thermally tolerant coral M. digitata showed no response to 

elevated temperature. Furthermore, closer examination revealed caspase-like enzyme 

activity in this species to be almost non-existent. Baseline caspase-like activity was 

detectable in the two bleaching-susceptible species and these enzymes responded 

strongly to increasing temperature. NO in mammals is implicated in caspase activation 
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and apoptosis (Brune et al., 1999; Snyder et al., 2009) and it may influence caspase-like 

activity in the anemone A. pulchella (see Chapter 3). While NO's involvement in coral 

apoptosis is supported by an apparent association between NOx
- levels and caspase-like 

activities in A. millepora and P. damicornis, neither of these parameters were 

significant predictors of symbiont density. This might reflect a pre-bleaching induction 

of host NO synthesis/apoptosis, itself an interesting finding given the relative lack of 

attention that has been paid to host-level responses in bleaching corals (Baird et al., 

2008). Traditionally, the focus has been on symbiont sensitivity (van Oppen et al., 

2009) and the necessity of symbiont dysfunction and cell death (Warner et al., 1999; 

Strychar et al., 2004a; Smith et al., 2005; Sammarco & Strychar, 2013) for the thermal 

bleaching of symbiotic cnidarians. This symbiont-centric view has led to our knowledge 

of host stress responses being comparatively slight. Recent work (e.g. Hill & Ralph, 

2007; Ainsworth et al., 2008; Vidal-Dupiol et al., 2009; Ainsworth et al., 2011; Dunn et 

al., 2012; Paxton et al., 2013), however, is challenging this paradigm, and together with 

earlier investigations of physiological stress in cnidarians (Dykens et al., 1992; Nii & 

Muscatine, 1997), it is becoming clear that the host can mount significant cellular stress 

responses prior to algal dysfunction.  

 

5.4.3. Conclusions 

 

It is premature to conclude that innate immune-like responses such as elevated NO 

synthesis and apoptosis are essential for the bleaching of reef corals, but this 

investigation furthers our understanding in a number of areas. Firstly, our findings 

extend those of laboratory-based studies (Trapido-Rosenthal et al., 2005; Perez & Weis, 

2006; Richier et al., 2006) to a more ecologically relevant setting. We observed, in two 

bleaching-susceptible coral species, evidence of a significant upregulation of host NO 

synthesis occurring alongside apoptotic pathway activation and preceding bleaching. 

These responses were conspicuously absent in a thermally tolerant species. Moreover, 

we report differences in the baseline expression of apoptotic pathways that correlated 

with thermal sensitivity and bleaching intensity among the three corals. This finding in 

particular could contribute to the developing model of bleaching as an out-of-control 

innate immune-like response varying in its intensity among differentially susceptible 

taxa (Perez, 2007; Weis, 2008; Tchernov et al., 2011). Extending this work to a wider 

range of coral species would greatly improve our understanding of the mechanisms 
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underpinning differential coral bleaching. Given the changes predicted for the oceans 

over the coming decades, it is vital that this is achieved. 
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Chapter 6 

 

General Discussion 

 

6.1. Summary 

 

Recent investigations have revealed nitric oxide (NO), a widespread gaseous signalling 

molecule, to be important in the regulation of the cnidarian-dinoflagellate symbiosis 

(Perez & Weis, 2008; Detournay & Weis, 2011; Detournay et al., 2012), particularly 

during its stress-induced collapse (Perez & Weis, 2006). Much progress has been made 

uncovering the cellular physiology and signalling pathways that underpin this symbiosis 

(e.g. Weis, 2008; Dunn & Weis, 2009; DeSalvo et al., 2010; Lesser, 2011; Venn et al., 

2011; Davy et al., 2012), but the role played by NO has received comparatively little 

attention. The findings presented here further our understanding in a number of areas.  

 

These include:  

(1) The physiological responses of different Symbiodinium types to thermal stress and 

nitric oxide. 

(2) The role of NO in the temperature-induced breakdown (bleaching) of the Aiptasia 

pulchella-Symbiodinium association.  

(3) The relative importance of the toxic radical peroxynitrite (ONOO-) in cnidarian 

bleaching. 

(4) The contribution of NO synthesis and potentially NO-mediated cell death to the 

differential bleaching of reef corals.  

 

In this chapter I will discuss more generally the findings of this thesis and formulate a 

framework describing the role of NO in coral bleaching. 
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6.2. Nitric oxide in symbiotic dinoflagellates. 

 

6.2.1. Biosynthesis of NO. 

 

As mentioned in Chapters 1 and 2, our knowledge of NO in photosynthetic microbes is 

extremely limited. A search of the literature may suggest that NO is common in 

microalgae, yet little is known of its functions or the pathways involved in its 

production. Yamasaki & Sakihama (2000) proposed that, in higher plants, stress-

induced disruption of photosynthesis results in NO generation by nitrate reductase 

(NR). This has also been observed in the unicellular alga Chlamydomonas reinhardtii 

(Sakihama et al., 2002), and by using a range of NR substrates and inhibitors Bouchard 

& Yamasaki (2008) provided strong evidence for a similar mechanism in symbiotic 

dinoflagellates.  The NO-generating activity of NR might also have implications beyond 

pathways mediated by NO. Depletion of nitrite levels due to the enzymatic reduction of 

NO2
- by NR could potentially affect the amount and nature of available inorganic 

nitrogen within a symbiont cell and, thus, its general metabolic activities during thermal 

stress. 

 

The finding that type B1 Symbiodinium cells (both in culture and in hospite) appeared to 

increase their NO production alongside declining photosynthetic competence supports 

Bouchard & Yamasaki's (2008) model of nitrate reductase-derived NO. However, 

production of NO in a thermally tolerant Symbiodinium type (A1; Chapter 2) also 

increased with temperature despite an absence of photoinhibition. This suggests that NO 

synthesis in these algae may not always reflect photosynthetic dysfunction, but could be 

a component of a thermal response occurring prior to PSII damage. This may involve 

heat shock proteins, which are differentially regulated in Symbiodinium during 

temperature stress (Leggat et al., 2011; Rosic et al., 2011) and are known to influence 

the activity of nitric oxide synthase (NOS) (Yoshida & Xia, 2003; Zhang et al., 2013). 

NOS-like genes and/or enzyme activity have been identified in unicellular algae (Kim et 

al., 2006; Foresi et al., 2010) and in a number of intracellular microbial parasites 

(Ghigo et al., 1995) that are closely related to Symbiodinium (see Chapter 1). It would 

be surprising therefore, if the Symbiodinium genome did not encode a NOS-like protein. 

Although a recent attempt to characterise a NOS enzyme in symbiotic dinoflagellates 

was unsuccessful (Safavi-Hemami et al., 2010), the NOS hypothesis receives strong 
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support from early studies (Buxton et al., 2002; Trapido-Rosenthal et al., 2005) as well 

as Bouchard & Yamasaki’s (2008) work, in which addition of NOS substrates resulted 

in increased NO production. Certainly much more work is required, looking at 

individual components of NO-synthetic pathways in Symbiodinium, before we can draw 

any solid conclusions regarding the nature of NO synthesis in these microbes. 

Notwithstanding these limitations, temperature-induced NO generation in 

Symbiodinium does appear to represent a pathological response to environmental stress. 

 

6.2.2. A working model for NO toxicity in symbiotic dinoflagellates. 

 

The relatively low reactivity and highly diffusive nature of NO mean that few cellular 

components in the cnidarian-dinoflagellate symbiosis are beyond its reach (Fig. 6.1). In 

the symbiont, NO's apparent cytotoxicity (see Chapter 2) could occur via two routes. 

Firstly, it is clear that sufficiently high concentrations of NO can inhibit photosynthesis 

and, therefore, potentially exaggerate the effects of temperature (Takahashi & 

Yamasaki, 2002; Wodala et al., 2008). Photosynthetic collapse would associate with 

increased ROS generation (Asada & Takahashi, 1987; Asada, 1999; Tchernov et al., 

2004; Halliwell, 2006; Lesser, 2006; Halliwell & Gutteridge, 2007) and potentially the 

further production of NO by nitrate reductase (Yamasaki, 2000; Yamasaki & Sakihama, 

2000; Sakihama et al., 2002; Bouchard & Yamasaki, 2008). As noted in Chapters 1 and 

2, NO possesses significant cytoprotective properties (Beligni & Lamattina, 1999a; 

Delledonne, 2005); at low concentrations its scavenging of superoxide can prevent the 

generation of more toxic ROS such as OH. and ameliorate O2
--mediated damage (Wink 

et al., 1993; Beligni & Lamattina, 1999b; Beligni et al., 2002; Wink et al., 2011). 

Excessive ROS and NO synthesis, however, could overwhelm a symbiont's antioxidant 

defences and/or react to produce highly toxic peroxynitrite (ONOO-) (Beckman & 

Koppenol, 1996). As noted in Chapter 4, ONOO- can irreversibly inhibit electron 

transport in chloroplasts and mitochondria (Ahmad et al., 2009). It also permanently 

damages antioxidant enzymes such as SOD and catalase, can contribute to the 

formation of hydroxyl (OH.) radicals (the most toxic ROS; Ischiropoulos & Almehdi, 

1995; Szabo & Ohshima, 1997; Radi et al., 2001; Halliwell & Gutteridge, 2007; Ahmad 

et al., 2009), and decay to the potent nitrosating agent N2O3 (Wink et al., 2011). 

Production of ONOO- is yet to be observed in photosynthetic microbes but its existence 



 128 

in Symbiodinium is suggested by the observations in Chapter 4 that removal of ONOO- 

alleviated temperature-induced declines in symbiont PSII quantum yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Cytotoxicity of nitric oxide (NO) in symbiotic dinoflagellates. Diffusion of 

host-derived NO across symbiont cell walls [inferred from studies that have detected 

NO in culture media (Bouchard & Yamasaki, 2008)], coupled with an upregulation of 

nitric oxide synthase (NOS)-like enzyme, could disrupt photosynthesis and modify cell 

death pathways. NO's effects could exacerbate those of high temperature and, in a 

sensitive genotype, lead to generation of reactive oxygen species (ROS) and further NO 

synthesis via nitrate reductase (NR). NO's presence alongside superoxide (O2
-) may 

result in peroxynitrite (ONOO-) formation. The high toxicity of ONOO- might cause 

widespread cellular dysfunction. Figure adapted from Bouchard & Yamasaki (2008). 

Green arrows indicate pathways supported by observations of Symbiodinium cells, blue 

arrows indicate events unknown in Symbiodinium cells but that have been observed in 

other photosynthetic organisms. 
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As outlined in Figure 6.1, ONOO--mediated damage to a symbiont's mitochondria 

(Brown & Borutaite, 2002) would likely amplify the consequences of PSII inhibition 

(by ROS and RNS) and could induce a widespread breakdown in cellular integrity. This 

might account for the uncontrolled (necrotic) mortality observed in type B1 cells in 

culture (see Chapter 2). Conversely, the more thermally robust nature of type A1 

Symbiodinium could have resulted in comparatively depressed ROS production and thus 

a reduced likelihood of ONOO- generation. On its own, NO rarely has the capability of 

inducing necrotic cell death (Bonfoco et al., 1995; Sandau et al., 1997), but it can 

actively regulate the programmed cell death-like pathways (Almeida et al., 2007) that 

appeared to be characteristic of temperature-induced mortality in type A1 cells (see 

Chapter 2). 

 

6.2.3. Adaptive benefits of NO synthesis in Symbiodinium. 

 

Exactly why a photosynthetic microbe should possess a capacity to synthesise a 

compound such as NO remains unclear. NO can be beneficial - through its antioxidant 

activities - and it is possible that, as is the case in mammalian systems (Michel & Feron, 

1997; Wink & Mitchell, 1998), there exists a mechanism for a cell’s constitutive NO 

synthesis (in order to scavenge ROS, for example) to be upregulated in an inducible 

response following a suitable stimulus (as observed here). The adaptive benefits of such 

a response, given NO's cytotoxic properties, are as yet unknown, but the compound's 

involvement in programmed cell death pathways could be a promising area for 

investigation. As outlined above, the regulation of PCD is one component of NO's 

activity in better-studied organisms under stress (Wink & Mitchell, 1998; Brune et al., 

1999; Brookes et al., 2000; Chung et al., 2001; Brown & Borutaite, 2002; Almeida et 

al., 2007; Snyder et al., 2009).  

 

Little is known about PCD in symbiotic dinoflagellates (Dunn et al., 2002; Strychar et 

al., 2004a; Strychar et al., 2004b; Bouchard & Yamasaki, 2009; Sammarco & Strychar, 

2013), and its widespread existence in microalgae (Moharikar et al., 2006; Zuppini et 

al., 2007; Deponte, 2008; Segovia, 2008; Bouchard & Purdie, 2011) has been 

something of an enigma (Nedelcu et al., 2011). Explaining cellular suicide in a 

unicellular organism is obviously challenging, but adaptive mechanisms have been 
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proposed and some are particularly relevant to an endosymbiosis. For example, the 

host's internal environment exerts strong selective pressures (e.g. nutrient availability 

and physical space) on the symbiont, and excessive symbiont population growth might 

lead to nutritional shortfalls or the build-up of toxic metabolites (Deponte & Becker, 

2004). Although host-level mechanisms such as the continuous ejection of symbionts 

(Hoegh-Guldberg et al., 1987; Baghdasarian & Muscatine, 2000) undoubtedly play a 

role, an opportunity exists for PCD to act as a symbiont-level population regulator 

(Vardi et al., 1999; Dunn et al., 2004). Furthermore, with genetic relatedness within a 

host's symbiont population likely to be high, genes promoting pseudoaltruistic suicide 

would be strongly selected for. Up-regulating PCD pathways (maybe via heightened 

NO synthesis) during temperature stress could eliminate mutated or sensitive cells 

(Murik & Kaplan, 2009) and prevent the uncontrolled leakage of harmful compounds 

(such as H2O2) that might lead to a wholesale ejection of symbionts by the host (Weis, 

2008). Interestingly, a similar model of sensitive cell PCD followed by replacement by 

more resilient cells has been proposed for cnidarian host cells during bleaching (Pernice 

et al., 2011; Tchernov et al., 2011).  

 

The importance of symbiont NO synthesis and associated cell death pathways during 

high temperature stress greatly depends on the sensitivity of the host's own signalling 

pathways (described below). The data in Chapters 3 and 5 suggest that in many cases, 

an upregulation of NO synthesis/PCD by the symbionts may occur too late to influence 

their ejection from the host. Further work on a wider range of cnidarian-dinoflagellate 

symbioses may confirm whether or not this is a general phenomenon and whether 

symbiont NO synthesis in hospite is redundant in terms of affecting host bleaching. 

 

6.2.4. A role for NO in the differential thermal sensitivity of Symbiodinium types. 

 

On an ecological level, a symbiont's tolerance of NO is perhaps more important than its 

synthesis of the compound. While this thesis examined the effects of NO on only three 

ITS2 types of Symbiodinium, it nevertheless uncovered an interesting level of 

physiological diversity. In particular, not only was NO differentially generated by types 

A1, B1 and C1 but these types varied in their sensitivity to the compound. This was 

most obvious when assessing symbiont PSII efficiency, but, as noted above, was also 

evident in the contrasting patterns of mortality exhibited by types A1 and B1. 
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It is important to remember that NO is a common antimicrobial agent employed by 

organisms when challenged by microbial infection (mutualist or otherwise) (Liew et al., 

1991; MacMicking et al., 1997; Nappi & Ottaviani, 2000; Torreilles, 2001; Davidson et 

al., 2004; Nyholm & McFall-Ngai, 2004; Villamil et al., 2007; Sorci & Faivre, 2009; 

Singh et al., 2013). Together with the findings of Perez & Weis (2006) and Detournay 

& coworkers (Detournay & Weis, 2011; Detournay et al., 2012), this thesis strongly 

supports the hypothesis that NO is produced by the host as part of an innate immune-

like response (discussed below). The observation that symbiont types are differentially 

sensitive to exogenous NO has major implications, therefore, for the stability of 

different host-symbiont combinations. A more NO-tolerant type, as well as being 

potentially more physiologically robust, may be better placed to resist host-derived NO 

during the early stages of heating and thus delay its destruction or ejection.  

 

We know almost nothing about how the varying tolerances observed in Chapter 2 may 

arise in symbiotic dinoflagellates, so this is obviously an important area for future work. 

In the squid-Vibrio symbiosis (see Chapter 1), the bacterial symbionts express an 

alternate oxidase (AOX) with a capacity to detoxify NO (Dunn et al., 2010; Spiro, 

2010), as well as MAMPs that attenuate the host's NO synthesis (Altura et al., 2011). 

Other symbiotic microbes possess haemoglobin-like proteins that scavenge NO and 

NO-derived radicals (reviewed by Poole & Hughes, 2000). These are particularly 

important in the Rhizobium-legume association where they detoxify RNS (including 

NO) in the root nodules (Ott et al., 2005; Shimoda et al., 2005). Recent work suggests 

that symbiotic dinoflagellates have haemoglobin-like proteins (Weston et al., 2012; 

Rosic et al., 2013), potentially ONOO--scavenging urate deposits (Kopp et al., 2013) 

and possibly an AOX protein (Suggett et al., 2008). Differential expression of these 

mechanisms in different symbiont types might influence their tolerance of NO and thus 

their ability to withstand a host's innate immune-like response during thermal stress. 

 

6.2.5. Nitric oxide in symbiotic dinoflagellates - conclusions and future work. 

 

In conclusion, NO appears to be cytotoxic in thermally stressed symbiotic 

dinoflagellates, and this finding concurs with those of Bouchard & Yamasaki (2009). 

However, it raises an interesting area for further investigation: to what extent might 
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differential NO synthesis or -tolerance contribute to the mortality (or ejection from a 

host) of different Symbiodinium types during thermal stress? Physiological differences 

between types of symbiotic dinoflagellate have long been recognised, but these 

differences now appear to extend to highly conserved phenomena such as NO-

signalling. Further investigation may reveal whether or not this is relevant during 

natural bleaching events and over a broader ecological scale.  

 

6.3. Reactive nitrogen and innate immune-like events in the symbiotic cnidarian 

host. 

 

6.3.1. The role of peroxynitrite in coral bleaching. 

 

Trapido-Rosenthal & coworkers (2001; 2005) and Perez & Weis (2006) provided the 

first observations of NO biosynthesis in bleaching cnidarians and this thesis has built 

upon their findings. Under rapid heat-induced stress, the significant increases in host 

NO synthesis and ONOO- generation observed here are consistent with previous 

hypotheses (Perez & Weis, 2006; Weis, 2008). However, the evidence regarding the 

generation of ONOO- and its subsequent effects (or lack thereof) runs counter to 

expectation. While we still know little of the specific activities of ONOO- in biological 

systems, its existence in organisms under stress has been confirmed by numerous 

investigations (Yamasaki & Sakihama, 2000; Torreilles & Romestand, 2001; Saito et 

al., 2006; Pacher et al., 2007; Chaki et al., 2009; Gaupels et al., 2011).  

 

ONOO- in mammals has been proposed as a significant mediator of NO-induced 

cytotoxicity (Beckman et al., 1993; Estevez & Jordan, 2002; Pacher et al., 2007; Szabo 

et al., 2007) so it was therefore reasonable to suspect that this highly toxic radical plays 

a role in the temperature-induced breakdown of the cnidarian-Symbiodinium 

association. The data in Chapter 4 suggest that this may not be the case, however, and it 

is not altogether surprising when the biochemical characteristics of ONOO- are taken 

into account. As noted above, its extremely high reactivity and short half-life in 

biological systems restricts its diffusion (Pacher et al., 2007; Ferrer-Sueta & Radi, 

2009), and thus the number of its potential targets. Nevertheless, a role for ONOO- in 

the thermal stress response of cnidarians cannot be discounted. It remains a possibility 

that the experimental conditions used here, while sufficient to induce ONOO- 
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generation and host bleaching, were not severe enough to result in widespread ONOO--

mediated damage that could be alleviated with an ONOO- scavenger. This hypothesis is 

supported by the fact that a millimolar dose of an ONOO- donor induced bleaching at 

control temperatures (Chapter 4). Furthermore, heat-treated A. pulchella appeared to 

mount an apoptotic-like response (Chapter 3), which, like all forms of PCD, requires 

adenosine trisphosphate (ATP) as an energy source (Bernardi et al., 2001; Elmore, 

2007). ATP synthesis is severely inhibited by ONOO- (Brown & Borutaite, 2002; Radi 

et al., 2002a) and apoptosis can become progressively more uncontrolled if ATP is 

depleted or the abiotic stimulus becomes too severe (Beltran et al., 2000; Bernardi et 

al., 2001; Dunn et al., 2002; Dunn et al., 2004; Nicotera & Melino, 2004; Elmore, 

2007). This has been explicitly demonstrated for NO and O2
- (Bonfoco et al., 1995; 

Sandau et al., 1997), the two "precursors" of ONOO-. Maybe a more intense or 

prolonged heating treatment would have induced sufficient ONOO- to influence 

bleaching in this study. It could also be hypothesised that the generation of ONOO- in 

thermal stressed A. pulchella might an antioxidant strategy through NO’s potent 

scavenging of superoxide radicals. The lack of any influence of ONOO- on thermal 

bleaching suggests that this pathway might actually be protective during thermal stress, 

ameliorating ROS buildup and the potential downstream oxidative stress. With very 

little known about peroxynitrite in invertebrates, this area is certainly one for future 

study. 

 

6.3.2. Mediation of host apoptosis and bleaching by NO. 

 

It appears to be the case, therefore, that elevated levels of NO can mediate thermal 

bleaching in A. pulchella independent of the compound's conversion to ONOO-. How 

might this occur? In mammals, NO is implicated in the regulation of intrinsic apoptosis, 

which depends on mitochondrial (outer) membrane permeabilisation (MMP; 

Armstrong, 2006; Kroemer et al., 2007; Tait & Green, 2010). Moreover, evidence of 

mitochondrial dysfunction in symbiotic cnidarians has been reported by recent 

investigations (Desalvo et al., 2008; Downs et al., 2010; Dunn et al., 2012). 

 

Nitric oxide has a capacity to mediate MMP via several mechanisms. Firstly, NO can 

inhibit mitochondrial respiration by blocking electron transport at complex IV 

(cytochrome oxidase) on the inner mitochondrial membrane (Cassina & Radi, 1996; 
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Brown, 1999; Beltran et al., 2000; Borutaite et al., 2000; Brown & Borutaite, 2002). 

Persistent inhibition of complex IV could lead to the termination of proton transport at 

complex V (ATP synthase) and the subsequent loss of mitochondrial membrane 

potential (ΔΨm) (Brown & Borutaite, 2002; Tait & Green, 2010). Rapid decreases in 

ΔΨm can result in mitochondrial swelling (Johnson et al., 1981; Brookes et al., 2000; 

Kroemer et al., 2007), outer membrane rupture and the subsequent release of 

cytochrome c (cyt c). The presence of cyt c in the cytosol stimulates the coupling of 

procaspase-9 with apoptotic protease activating factor (APAF)-1 and ATP (Fig. 6.2), 

and the activation of downstream executioner caspases (Brown & Borutaite, 2002). 

While the latter components of this pathway (downstream of cyt c release) are well-

established (in mammalian cells, at least), the requirement of inner mitochondrial 

membrane disruption for MMP and cyt c release remains a subject of debate (Kroemer 

et al., 2007). This would, however, represent a feasible strategy for investigating a 

model cnidarian system such as A. pulchella. Utilising cell isolation techniques (Gates 

& Muscatine, 1992; Paxton et al., 2013) in concert with real-time measurements of ΔΨm 

(Downs et al., 2010; Tsai et al., 2011), one could closely examine host mitochondrial 

membrane integrity under various conditions including high temperature and NO 

scavenger/donor combinations. 

 

It is also known (again, predominantly from work on mammalian cells) that NO can 

induce MMP through more indirect routes. Damage to DNA by RNS can affect the 

expression of p53 protein (Messmer et al., 1994), an cell-cycle regulator with an 

important role of determining cell survival or apoptosis (Brune et al., 1999; Chung et 

al., 2001). A change in p53 activity can shift the balance of Bcl-2 family proteins from 

anti- (Bcl-2, Bcl-xL) to pro- (Bak, Bax) apoptotic (Adams & Cory, 1998; Brune et al., 

1999; Chung et al., 2001). The activation of Bax protein would ultimately induce MMP 

(Wolter et al., 1997). There is evidence for the existence of p53 (Lesser & Farrell, 2004; 

Pankow & Bamberger, 2007) and an expanded Bcl-2 family in symbiotic cnidarians 

(Dunn et al., 2006; Lasi et al., 2010b; Pernice et al., 2011). NO's relatively low 

reactivity, however, means that DNA damage and p53 activation are more likely to be 

caused by ONOO- (Szabo & Ohshima, 1997; Szabo et al., 2007), which, as 

demonstrated in Chapter 4, may not be critical for cnidarian bleaching. A more likely 

scenario may involve NO's negative regulation of anti-apoptotic Bcl-2 family proteins 

(Fig. 6.2) without the need for ONOO- or DNA damage (Chae et al., 2004; Snyder et 
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al., 2009). Much more work is required before we fully understand the involvement of 

NO-mitochondria interactions in cnidarian bleaching, but as noted above, recent 

technical advances such as the ability to visualise individual host mitochondria in live 

cnidarian cells (Downs et al., 2010; Additional work Fig. B3, this thesis) will 

undoubtedly be of value. 

 

 

 

 

 

Figure 6.2. Putative apoptotic pathways in symbiotic cnidarians. Nitric oxide (NO) acts 

on the intrinsic pathway (see text for details). Pathways and components coloured green 

are supported by direct observations in symbiotic anthozoans, while blue indicates 

phenomena supported by evidence from other Cnidaria. Red indicates pathways yet to 

be observed in cnidarians. The green dashed lines represent the principle findings from 

Chapter 3 of this thesis. Adapted from Lasi et al. (2010b). 
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Whatever the mechanism of NO's involvement in MMP and cyt c release (and it 

remains to be seen whether or not NO is critical to cnidarian mitochondrial 

dysfunction), mitochondrial control of apoptosis is generally exerted through the 

recruitment of procaspase-9 to the apoptosome, and its subsequent activation (Kroemer 

& Reed, 2000; Kroemer et al., 2007; Tait & Green, 2010). The pro-apoptotic actions of 

mammalian caspase-9 are thought to be expressed exclusively through the activation of 

procaspase-3 (Nicholson, 1999; Kumar & Cakouros, 2003). However, the differing 

effects of removing NO on caspase-3- and 9-like activity and bleaching (Chapter 3) 

suggest that this A. pulchella "caspase-9-like" enzyme may also play a role in the 

execution of apoptosis. Lower metazoan caspases bear a similarity to both initiator- and 

executioner caspases in mammals (Aravind et al., 1999; Bottger & David, 2003; Wiens 

et al., 2003; Dunn et al., 2006; Lasi et al., 2010a; Lasi et al., 2010b; Podrabsky & 

Krumschnabel, 2010), and this may be the case for the enzyme activities observed here. 

As noted above, more research effort is needed before any mechanistic conclusions can 

be drawn regarding the suite of caspase-like enzymes present in symbiotic cnidarians. 

 

It is also important to note that a number of studies on mammalian cells suggest that NO 

can inhibit, as well as stimulate, cell death (Kim et al., 1997; Liu & Stamler, 1999; Zech 

et al., 2003). As mentioned in Chapter 2, NO is known to possess cytoprotective 

properties (Beligni & Lamattina, 1999a; b; Delledonne, 2005) in the context of 

oxidative and abiotic stress, and the compound is actually capable of inhibiting critical 

apoptotic enzymes (Zech et al., 2003). While the activation of host apoptotic-like cell 

death and bleaching pathways by NO remains the most parsimonious explanation for 

the results described in this thesis, a closer examination of the cell death machinery in 

symbiotic anthozoans will likely reveal a subtler situation in terms of NO-ROS-

apoptosis regulation. More sensitive detection techniques may also allow us to examine 

the role of NO under normal growth conditions or at concentrations lower than those 

generated during stress. 

 

6.3.3. Timing of host NO synthesis and apoptosis activation. 

 

One of the most important findings of this thesis concerns the timing of host innate 

immune-like events (such as NO synthesis and apoptotic enzyme activation) during 

heating-induced symbiotic collapse. In the species that bleached at elevated 
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temperature, these events in the host (apparently necessary for bleaching; see Chapter 3) 

often preceded serious photosynthetic dysfunction in the symbionts. Whether this 

contradicts the current model of bleaching as a response to symbiont-derived ROS 

(Warner et al., 1999; Smith et al., 2005; Weis, 2008; Lesser, 2011) depends on how 

early in a stress event ROS leakage from a symbiont occurs.  

 

Surprisingly, given the number of studies that invoke the oxidative theory of bleaching 

(see Lesser, 1996; Lesser, 2011 for reviews), relatively few investigators have looked at 

ROS leakage from Symbiodinium cells. Tchernov & coworkers (2004) observed 

evidence of heightened ROS generation/leakage occurring after symbiont maximum 

quantum yield of PSII (Fv/Fm) had declined to < 50% of pre-stress values. Saragosti et 

al. (2010) described elevated O2
- generation in the coral Stylophora pistillata and 

Suggett & coworkers (2008) reported elevated H2O2 production by cultured 

Symbiodinium cells, but both studies employed light stress (≥ 1000 µmol photons m-2 s-

1) greater than anything experienced by the organisms examined here. Initial NO 

synthesis and apoptotic-like events in A. pulchella (Chapter 3) and A. millepora 

(Chapter 5) occurred with symbiont Fv/Fm > 90% of control values and under 

irradiances at least 50% lower than in these previous studies. The absence of elevated in 

hospite symbiont NO synthesis - a marker of physiological dysfunction (Chapter 2) - 

until late in the experiment also supports the assertion that, in this study at least, the 

activation of host pathways preceded catastrophic symbiont dysfunction.  

 

Such early cellular changes in the host have been reported previously in reef corals 

(Ainsworth et al., 2008; Ainsworth et al., 2011) and a symbiotic anemone (Dunn et al., 

2012), and in earlier studies Dykens et al. (1992) and Nii & Muscatine (1997) observed 

primarily host-generated ROS in thermally stressed Anthopleura elegantissima and A. 

pulchella, respectively. Maybe these host-derived ROS are capable of inducing the NO-

synthetic and apoptotic pathways invoked by Perez & Weis (2006) and Weis (2008). A 

recent study by Paxton et al. (2013) suggests that host cell death can precede symbiont 

mortality, and may therefore be a critical event in cnidarian bleaching. Furthermore, 

symbionts released from bleaching corals have also been found to be viable (Glynn et 

al., 1985; Suharsono & Brown, 1992) and photosynthetically competent (Ralph et al., 

2001; Ralph et al., 2005; Hill & Ralph, 2007). As a result of this previous work it is 

becoming increasingly clear that, despite being comparatively neglected in a field 
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dominated by algal-centric hypotheses, host physiology plays a significant role in 

determining bleaching sensitivity (Flores-Ramirez & Linan-Cabello, 2007; Baird et al., 

2008; Csaszar et al., 2009; Fitt et al., 2009; Wicks et al., 2012). 

 

So what might be stimulating these early host innate immune-like responses, if not the 

widespread influx of ROS from dysfunctional symbionts? As noted above, host-derived 

ROS may play a role, and it is possible that heightened NO synthesis at elevated 

temperature reflects the direct action of heating on host NOS-like enzymes (perhaps 

through the activity of heat shock proteins; Yoshida & Xia, 2003; Zhang et al., 2013). 

However, if this was the case then one might expect NO synthesis to continue to 

increase with further heating rather than decline, as was the case in both A. pulchella 

(Chapter 3) and A. millepora (Chapter 5). It could be argued that declining NO 

generation after sustained heating reflects extensive metabolic dysfunction, but then 

energy-intensive pathways such as apoptosis should be similarly compromised. To the 

contrary, A. millepora caspase-like enzyme activity at 33°C was elevated throughout the 

9-day treatment period, while that of A. pulchella and P. damicornis was maintained at 

least at the same level as in controls.  

 

An attractive hypothesis involves processes invoked at the onset of symbiosis. Prior to 

the overproduction/leakage of ROS during thermal stress, perhaps the strategies 

employed by Symbiodinium to evade host innate immunity (Schwarz, 2008; Dunn, 

2009; Detournay & Weis, 2011; Sibley, 2011; Detournay et al., 2012) become 

compromised during the early stages of thermal stress, leaving symbiont cells 

vulnerable to recognition and rejection. Recent work on reef corals suggests that the 

expression of host lectins, involved in the onset of invertebrate endosymbioses 

(Bulgheresi et al., 2006; Wood-Charlson et al., 2006; Logan et al., 2010), becomes 

modified well before any symbiont loss occurs (Desalvo et al., 2008; Vidal-Dupiol et 

al., 2009; Bellantuono et al., 2012a; Barshis et al., 2013). Furthermore, a lectin gene in 

A. millepora was upregulated at high temperature in colonies that had been 

preconditioned to thermal stress [and were less susceptible to bleaching (Bellantuono et 

al., 2012b)], while the opposite (a lectin downregulation) was seen in non-

preconditioned, bleaching-sensitive corals (Bellantuono et al., 2012a). A. millepora 

lectin bears a close similarity to a mammalian CD23-like protein (Kijimoto-Ochiai, 

2002; Kvennefors et al., 2008), and the CD23-immunoglobulin E (IgE) pathway has a 
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capacity for regulating iNOS during innate immune-like responses to microbial 

infection (Dugas et al., 1995; Vouldoukis et al., 1995; MacMicking et al., 1997; Padua 

Queiroz et al., 2010). Could a dysfunction of lectin-glycan interactions alongside other 

symbiont "cloaking" mechanisms be sufficient to stimulate host an innate immune 

response prior to the inhibition of algal photosynthesis? 

 

Much work is needed in this area, particularly examining the subtle changes in the 

physiology of both partners that occur prior to photosynthetic dysfunction or cellular 

mortality. With research into the molecular communication in the cnidarian-

dinoflagellate symbiosis still in its infancy, the possible candidates for a host innate 

immune/iNOS elicitor are potentially numerous (see Dunn, 2009; Sunagawa et al., 

2009; Detournay et al., 2012). It will also be interesting to uncover where exactly NO 

acts in the cnidarian-dinoflagellate association and whether it possesses a cytoprotective 

capacity in addition to its involvement in mortality. Technical advances in cell culture 

(Khalesi, 2008), microscopy (Downs et al., 2010; Venn et al., 2011; Dunn et al., 2012), 

and reactive species detection (Ueno et al., 2006; Yang et al., 2006; Wardman, 2007; 

McQuade & Lippard, 2010) will no doubt provide unprecedented access to the inner 

workings of this symbiosis. Cell isolation techniques (Gates & Muscatine, 1992; Downs 

et al., 2010; Paxton et al., 2013) in concert with live cell imaging (Venn et al., 2009; 

Downs et al., 2010) will also enable us to examine, in real-time, the physiology of 

symbionts in hospite with no confounding influence of "fresh isolation" (Wang et al., 

2011). It would be particularly valuable to be able to directly assess the in vivo 

generation of RNS in corals (as opposed to relying on chemical proxies such as NOx
-, 

for example). Recent improvements in the sensitive electrochemical detection of trace 

physiological gases (Bourne et al., 2011; Glas et al., 2012) might also allow such a non-

destructive examination. The quantification of RNS in bleached and diseased corals in 

the field is an especially attractive area, as there appears to be convergence in the 

underlying cellular mechanisms of thermal stress and disease susceptibility in reef 

corals (Mydlarz et al., 2009; Mydlarz et al., 2010; Palmer et al., 2010; Palmer et al., 

2011). 
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6.4. Incorporating host innate immune-like responses into a model of bleaching 

susceptibility in corals. 

 

When developing a model of coral bleaching susceptibility that incorporates host innate 

immune-like responses, it is important that the numerous non-bleaching functions of 

such responses are acknowledged. This is particularly true for highly conserved 

phenomena such as ROS- and NO-signalling and apoptosis. As mentioned above, these 

are common host responses to infection by pathogens (MacMicking et al., 1997; Nappi 

& Ottaviani, 2000; Fang, 2004; Saito et al., 2006; Pannebakker et al., 2007; Villamil et 

al., 2007; Herrera-Ortiz et al., 2011; Liu et al., 2013; Singh et al., 2013) and mutualists 

(Ruby, 1996; Shimoda et al., 2005; Catala et al., 2010; del Giudice et al., 2011; 

Meilhoc et al., 2011; Wang & Ruby, 2011).  

 

Successful infection of A. pallida with homologous symbionts (those that occur 

naturally with that host) results in a downregulation of host NO production pathways 

(Detournay et al., 2012), while infection of aposymbiotic A. pulchella with unsuitable 

or dysfunctional symbiont cells may lead to heightened host NO synthesis (see 

Supplementary Fig. A9). Furthermore, the selective removal of unsuitable symbionts 

("winnowing" Nyholm & McFall-Ngai, 2004) in scleractinian coral larvae involves, 

among other mechanisms (Marlow & Martindale, 2007), an apoptotic-like pathway 

(Dunn & Weis, 2009). It seems that the more we learn about cnidarian-dinoflagellate 

symbiosis, the more we realise that the mechanisms underpinning both the onset and 

collapse of the association are homologous (Weis, 2008; Vidal-Dupiol et al., 2009; 

Schnitzler, 2010; Davy et al., 2012; Detournay et al., 2012).  

 

How might this be relevant to the phenomenon of differential coral bleaching? And 

could the pathways described above, which appear necessary for the selective uptake of 

suitable symbionts from the external environment, actually become a disadvantage 

during environmental stress? It is clear that many of the coral species most susceptible 

to bleaching, including A. millepora (Guest et al., 2012), rely on the uptake of a wide 

range of symbiont types from the external environment (Baird et al., 2009; Putnam et 

al., 2012). These species could therefore be expected to possess apoptotic or NO-

mediated "winnowing" mechanisms similar to those in the squid Euprymna scolopes 

(see Chapter 1), Aiptasia spp. and F. scutaria. As this thesis and other studies have 
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shown (Gloire et al., 2006; Perez & Weis, 2006; Dunn et al., 2007; Zuppini et al., 2007; 

Segovia, 2008; Weis, 2008 for review), however, these pathways appear highly 

sensitive to environmental stress. Perhaps their heightened baseline expression might 

leave horizontally-transmitting corals such as A. millepora susceptible to NO/apoptosis-

driven bleaching at high temperature.  

 

Conversely, a species such as M. digitata, which utilises maternal (vertical) symbiont 

transmission (Baird et al., 2009), and often has comparatively thick tissue (Loya et al., 

2001) and high symbiotic fidelity [associating with a specific symbiont type (Fabina et 

al., 2012)] would less frequently encounter (on a cellular level, at least) multiple 

infective Symbiodinium types. This species would presumably receive little adaptive 

benefit from a "winnowing" mechanism involving the heightened expression of host 

apoptotic and NO-synthetic pathways. In concert with the increased robustness of a 

C15-type symbiont (Fisher et al., 2012), M. digitata may therefore be more resistant to 

an overstimulation of these pathways that might eventually lead to bleaching. While this 

model remains hypothetical, it is supported by the fact that vertically transmitting coral 

species that associate with a few symbiont types are generally more resistant to 

increasing temperatures than are horizontally transmitting, more generalist species 

(Putnam et al., 2012).  

 

The hypothesis is complicated by the maternally transmitting coral P. damicornis (Baird 

et al., 2009), which expressed similar baseline caspase-like enzyme activity to that of A. 

millepora and, in this study as well as others (McClanahan et al., 2004; Guest et al., 

2012), was susceptible to thermal stress. However, pocilloporid corals are known to 

associate with a wide range of Symbiodinium types (Fabina et al., 2012; Putnam et al., 

2012; Byler et al., 2013) and, furthermore, horizontal uptake of symbionts has been 

observed in Pocillopora spp. during both adult (Glynn et al., 2001) and embryonic 

(Marlow & Martindale, 2007) life stages. Such a coral might benefit from a 

"winnowing"-type mechanism as described above - a mechanism that may also be 

sensitive to environmental stressors.  

 

This is speculative, of course, but could provide a valuable basis for future research. 

Assessments of baseline NOS/caspase activity and the expression of innate immune-like 

components across a range of differentially susceptible taxa - characterised by differing 
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life histories and resident Symbiodinium types - would be greatly beneficial in 

determining the plausibility of this model. It will be interesting more generally to see 

whether the cellular mechanisms underpinning bleaching are conserved across different 

coral functional groups and taxa. 

 

 

Figure 6.3. Simplified conceptual framework for the cellular basis of differential 

bleaching susceptibility in reef corals. Both the host's baseline expression of innate 

immune-like "winnowing" pathways (caspase-like enzymes and nitric oxide synthase - 

NOS; see text) and the symbiont's sensitivity to heat/light and host-derived NO 

contribute to the holobiont's stability during temperature disturbances. 
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6.5. The role of nitric oxide in cnidarian bleaching and the differential 

susceptibility of corals during thermal stress. 

 

This investigation has examined the role of NO in cnidarian bleaching on a number of 

levels, ranging from the purely mechanistic to the more ecologically relevant. It reports 

a number of significant findings: 

(1) NO is harmful to Symbiodinium cells in vitro and its effects (and their intensity) 

differ among Symbiodinium types. 

(2) NO appears to mediate temperature-induced cnidarian bleaching through the 

activation of intrinsic apoptotic-like pathways. 

(3) While toxic NO-derived radicals such as peroxynitrite (ONOO-) have a capacity to 

induce cnidarian bleaching, it appears that NO alone is sufficient to mediate bleaching 

at elevated temperature. 

(4) Host NO synthesis and apoptotic responses during thermal stress may occur prior to 

symbiont physiological dysfunction. 

(5) Temperature-induced synthesis of NO and both baseline and temperature-induced 

expression of apoptotic-like pathways differ significantly among differentially 

temperature-sensitive reef coral species. 

 

Drawing these findings together, this thesis proposes that prior to the development of 

cellular and physiological stresses in the symbiont (a phenomenon well-described in 

bleaching cnidarians; Smith et al., 2005; Lesser, 2011), activation of host innate 

immune-like pathways - in which nitric oxide appears to play a major role - sets the 

symbiosis on the road to collapse (Fig. 6.3). The mechanisms of activation are as yet 

unknown but, as discussed above, they may involve pathways similar to those employed 

at the onset of symbiosis. Moreover, the road to bleaching is by no means one-way and 

may be significantly modified by the presence of a temperature-tolerant symbiont, or 

one capable of withstanding high concentrations of NO (Fig. 6.3). In this case, NO-

driven apoptotic events in the host may result in sub-lethal bleaching, perhaps through 

the loss of host cells containing viable symbionts (Hill & Ralph, 2007) followed by re-

growth of more temperature- or apoptosis-resistant host tissue (Tchernov et al., 2011). 

Conversely, a sensitive symbiont might be unable to withstand the combined stresses of 

host-derived ROS, NO and heightened temperature, and would suffer significant 

oxidative stress and mortality (Lesser, 2006). Overproduction and leakage of symbiont-
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derived ROS and/or NO into the host could then exaggerate host NOS activity through 

the mechanisms described by Perez & Weis (2006), increasing the likelihood of 

uncontrolled cell death in both symbiont and host and, consequently, catastrophic 

symbiont loss.  

 

6.6. Cell biology of coral bleaching: physiological ecology predicting the reefs of 

the future? 

 

We still have much to learn about the cell biology of cnidarians in the context of 

environmental change, but it seems that the cnidarian-dinoflagellate symbiosis is far 

more complicated (and flexible) than was previously thought (Baird & Maynard, 2008; 

Mieog et al., 2009; Csaszar et al., 2010; Jones & Berkelmans, 2010; Weis, 2010; Wicks 

et al., 2010; Bellantuono et al., 2012a; Bellantuono et al., 2012b; Guest et al., 2012; 

Silverstein et al., 2012; Wicks et al., 2012; Barshis et al., 2013). The results of this 

thesis suggest, unsurprisingly, that multiple pathways exist for the determination of the 

thermal tolerance of corals and thus their scope for surviving the coming centuries. 

However, the physiological changes that are required for corals to remain as the 

dominant shallow marine ecosystem engineers in the tropics are substantial (Hoegh-

Guldberg et al., 2007; Hoegh-Guldberg & Bruno, 2010; Wild et al., 2011). In the 150-

200 years since the Industrial Revolution, atmospheric concentrations of CO2 and other 

greenhouse gases have increased to levels greater than anything seen for at least the last 

million years (IPCC, 2007). To survive the proposed increases in seawater temperature 

(Hoegh-Guldberg, 1999), corals will have to increase their thermal tolerances by at least 

0.2 - 1.0°C (Donner et al., 2005). As Hoegh-Guldberg (2010) notes, nothing that has 

occurred over the 30 years since coral bleaching first became an issue (Glynn, 1983; 

1984) suggests that this is achievable. Furthermore, the present rate of atmospheric CO2 

accumulation will soon see concentrations reaching 450 ppm, a level at which the 

catastrophic bleaching of coral reefs will become a regular occurrence (Hoegh-

Guldberg et al., 2007; Anthony et al., 2011; van Hooidonk et al., 2013). Coupled with 

ocean acidification (Orr et al., 2005; Silverman et al., 2009), it seems probable that only 

the hardiest species will exist as remnants of corals reefs' former biodiversity (Loya et 

al., 2001; Fabricius et al., 2011). Yet, the coral-algal association is evolutionarily 

ancient (Pandolfi et al., 2011) and will likely persist in some form or another well 

beyond the effects of industrialisation (Knowlton, 2001; Jackson, 2008; 2010). 
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Identifying what the reefs of the future will look like, and where those reefs will be, 

may depend on our ability to understand the complicated physiology of the cnidarian-

dinoflagellate symbiosis. 
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A: Supplementary Information 

 

Chapter 2 

 

A-2.1. Genotyping Symbiodinium cultures 

 

Sequences obtained for the ITS2 region were as follows: 

Culture CCMP2467: 

GGACCATATGGACGTGATTGGGCACTTGCCAATGCCTGAGAGCATGTCTGC

TTCAGTGCTTCTACTTTCATTTTCTGCTGCTCTTGTTATCAGGAGCAGTGTAT

GCTGCATGCTTCTGCCAGCGAGACTGACATGCTATATATCAAGTTTTGCTTG

CTGTTGTGACTGATCGACATCTCACGTCGGATCAGT. 

 

Culture Ap1: 

GCCGATACAACATTTATTACTGCAGAGCTTTAGCATATAAGTAGCGGAGGA

AGCTTCAATGCTTAGCATTATCTACCTGTGCTTGCAAGCAGCATGTATGTCT

GCATTGCTGCTTCGCTTTCCAACAAGTCATCGATCGCTTTTGTGTTCGTAAAT

GGCTTGTTTGCTGCCTGGCCCATGCGCCAAGCTTGAGCGTACTGTTGTTCCA

AGCTTTGCTTGCATCGTGCAGCTCAAGCGCGCAGCTGTCGGGATGCTGATGC

ATGCCCTTAGCATGAAGTCAGACAAGAGAACCCGCTGAATTTAAGCATATA

AGGTAAGCGGAGGAGCGCCCCCCCTCAAATAACAACCAGGCCCCCCGTGTT

TTTTTAGGGGGTCCTCCTCCCCCGGGTGTGTTAAAAAAAAAAAAAAGGTT 

 

Culture CCMP2466: 

GGGATACTTTAATTTACTGCAGAGTTAAGCATATAAGTAAGCGGAGGAAGC

TTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATAGGTTTCTGCCTTGC

GTTCTTATGAGCTATTGCCCTCTGAGCCAATGGCTTGTTAATTGCTTGGTTCT

TGCAAAATGCTTTGCGCGCTGTTATTCAGGTTTCTACCTTCGTGGTTTTACTT

GAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGCCTCTA

GCATGAAGTCAGACAAGTGAACCCGCTGAATTTAAGCATATAAGTAAAGCG

GAGGAACGCAGTTCTGTCAAATCACACGCCGCC 
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A-2.2. Effects of the NO donor SNP on Symbiodinium PSII quantum yields. 

 

 

Figure A1. Effect of the NO donor sodium nitroprusside (SNP; 1 mM for A1, 100 µM 

for B1) on maximum quantum yield (Fv/Fm) in two ITS types of Symbiodinium. The 

incomplete restoration of Fv/Fm upon application of the NO scavenger cPTIO suggests 

that SNP's effects are mediated only partly by NO. Values are means ± s.e.m. and 

asterisks indicate significant differences relative to the control group within each type 

(ANOVA with LSD pair-wise post-hoc, n = 3 independent cultures, * p < 0.05, ** p < 

0.01, *** p < 0.001). 
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A-2.3. Confocal LSM filter images of Symbiodinium cells loaded with fluorescent 

dyes to detect NO synthesis and cell death. 

 

 

Figure A2. Confocal visualisation of DAF-FM in Symbiodinium type B1. In the 

production of Figure 2.3, NO-dependent DAF-FM fluorescence (green, top-left) is 

superimposed on chlorophyll autofluorescence (red, top-right).  
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Figure A3. Confocal visualisation of propidium iodide in heat-killed (75°C for 4 h) 

cells of Symbiodinium type B1. In the production of Figure 2.7, propidium iodide 

fluorescence (yellow, top-left) is superimposed on chlorophyll autofluorescence (red, 

top-right).  
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Figure A4. Confocal visualisation of the fluorescent dyes Annexin-V fluor 488 and 

propidium iodide in Symbiodinium type A1. In the production of Figure 2.8, AV-fluor 

fluorescence (green, top-left) is superimposed on propidium iodide fluorescence 

(yellow, top-right) and chlorophyll autofluorescence (red, bottom-left). 
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A-2.4. NO synthesis in ageing Symbiodinium cultures 

 

Materials and methods 

 

Cultures of Ap1 (ITS2-B1) were grown in 350 mL f/2 media in conical flasks (n = 4) 

with an initial inoculation concentration of 10000 cells mL-1. Incubation conditions 

were as follows: 26°C constant temperature, 100-120 µmol photons m-2 s-1 (OSRAM 

DULUX L 36W 4000K) 12 h light:12 h dark cycle. Cells were removed for analysis on 

Days 4, 7, 10 and 14, and then weekly up to Day 42. At each sampling point, two 1-mL 

aliquots were removed for haemocytometer counts (Improved Neubauer, Boeco, 

Germany) and assessments of photosystem II fluorescence. After 30 min dark 

adaptation, the maximum quantum yield of PSII (Fv/Fm) was measured using a Water 

PAM (Walz, Effeltrich, Germany). 

 

An additional aliquot (10-50 mL depending on cell concentration) was removed, 

centrifuged twice (1500 × g for 5 min) and resuspended in 100 µL 15 µM DAF-FM-DA 

NO-sensitive fluorescent dye (Molecular Probes, Eugene, OR, USA) in FSW. Cells 

were incubated for 90 min in the dark, after which they were washed by repeated 

centrifugation (twice, 1500 × g for 5 min) and resuspension in 500 µL FSW. An aliquot 

was removed for cell counts, and after 30 min (to allow cleavage of the DAF-FM-DA to 

its active DAF-FM form) 150000 cells were transferred to wells in a black-sided 96-

well plate (CoStar®, Corning Inc. Life Sciences, Tewksbury, MA, USA). NO-dependent 

fluorescence was quantified using a fluorescent plate reader (Enspire® 2300, Perkin-

Elmer, Waltham, MA, USA) with excitation wavelength 495 nm and detection at 515 

nm. 
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Figure A5. Growth, PSII fluorescence and NO synthesis in Symbiodinium culture Ap1 

(ITS2-type B1) over 6 weeks. Panel A) Cell density per mL and maximum quantum 

yield of PSII (Fv/Fm). B) NO-dependent fluorescence of cells incubated with the NO-

sensitive dye DAF-FM-DA. Values are means ± s.e.m. and asterisks indicate significant 

differences relative to Day 0 within each parameter (Fv/Fm and NO-dependent 

fluorescence only; RMANOVA with Simple contrasts of each time point versus t = 0, n 

= 4 independent cultures, * p < 0.05, ** p < 0.01, *** p < 0.001). 
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Results 

 

Symbiodinium cells maintained logarithmic growth for the initial fourteen days, after 

which growth rates slowed considerably (Fig. A5A). Maximum quantum yield of PSII 

changed significantly over time (RMANOVA, time, F1.706, 5.118 = 9.007, p = 0.023), 

increasing to Day 10 and then subsequently declining (Fig. A5A). Fv/Fm at the end of 

the experiment (Day 42) was not significantly different to the initial (Day 0) value 

(Simple contrast, F1, 3 = 2.309, p = 0.226). 

 

NO-dependent fluorescence changed significantly over time (RMANOVA, time, F1.647, 

4.4 = 13.269, p = 0.016), declining over the initial ten days (Simple contrast, F1, 3 = 

16.311, p = 0.027) but then subsequently increasing (Fig. A5B). After forty-two days, 

levels of NO-dependent fluorescence were significantly higher than initial values 

(Simple contrast, F1, 3 = 24.7, p = 0.016). 
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Chapter 3 

 

A-3.1. Quantifying NO-dependent fluorescence in symbiotic Aiptasia pulchella 

using confocal LSM. 

 

 

Figure A6. Quantification of NO-dependent fluorescence in tentacles of A. pulchella 

using DAF-FM-DA and ImageJ software. Regions of in-focus gastrodermis (positive 

for the presence of symbiotic dinoflagellates and negative for Hoechst 33342 

fluorescence (blue) were selected as regions of interest (ROI). Mean 510-530 nm 

fluorescence intensity (MFI) of the ROI was then calculated for respective "blank" and 

"+DAF-FM-DA" images, with the former subtracted from the latter to give "NO-

dependent fluorescence". Scale bar: 100 µm. 
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Chapter 5 

 

A-5.1. ITS2 sequences of Symbiodinium cells isolated from reef corals 

 

Acropora millepora 

Colony 1 - C3 

AACCAATGGCCTCCTGAATGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCGTATGAGTTATTGCCCTCTGAGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 2 - C3 

AACCAATGGCCTCCTGAATGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCGTATGAGTTATTGCCCTCTGAGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 3 - C3 

AACCAATGGCCTCCTGAATGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCGTATGAGTTATTGCCCTCTGAGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 
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Colony 4 - C3 

AACCAATGGCCTCCTGAATGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCGTATGAGTTATTGCCCTCTGAGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 5 - C3 

AACCAATGGCCTCCTGAATGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCGTATGAGTTATTGCCCTCTGAGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCA------------- 

 

Montipora digitata 

Colony 1 - C15 

AACCAATGGCCTCCTGAACGTGCGTTGCACCCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCTTCTGCGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGCGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 2 - C15 

AACCAATGGCCTCCTGAACGTGCGTTGCACCCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCTTCTGCGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGCGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 
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Colony 3 - C15 

AACCAATGGCCTCCTGAACGTGCGTTGCACCCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCTTCTGCGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGCGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 4 - C15 

AACCAATGGCCTCCTGAACGTGCGTTGCACCCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCTTCTGCGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGCGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 5 - C15 

AACCAATGGCCTCCTGAACGTGCGTTGCACCCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCTTCTGCGCCAATGGCTTGTTAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAAGTTTCTACCTTCGCGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Pocillopora damicornis 

Colony 1 - C42 (type 2) 

AATCAATGGCCTCCTGAACGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCCTCTGAGCCAATGGCTTGTGAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAGGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 
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Colony 2 -C42 (type 2) 

AATCAATGGCCTCCTGAACGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCCTCTGAGCCAATGGCTTGTGAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAGGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 3 - C42 (type 2) 

AATCAATGGCCTCCTGAACGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCCTCTGAGCCAATGGCTTGTGAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAGGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 4 - C42 (type 2) 

AATCAATGGCCTCCTGAACGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCCTCTGAGCCAATGGCTTGTGAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAGGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 

 

Colony 5 - C42 (type 2) 

AATCAATGGCCTCCTGAACGTGCGTTGCACTCTTGGGATTTCCTGAGAGTAT

GTCTGCTTCAGTGCTTAACTTGCCCCAACTTTGCAAGCAGGATGTGTTTCTG

CCTTGCGTTCTTATGAGCTATTGCCCTCTGAGCCAATGGCTTGTGAATTGCTT

GGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCAGGTTTCTACCTTCGTGGTT

TTACTTGAGTGACGCTGCTCATGCTTGCAACCGCTGGGATGCAGGTGCATGC

CTCTAGCATGAAGTCAGACAA 
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A-5.2. Assessments of bleaching in reef corals. 

 

In addition to the quantification of bleaching as the density of Symbiodinium cells 

relative to coral fragment surface area, host soluble protein was also presented relative 

to coral fragment surface area, thus providing a proxy measurement for host tissue 

thickness. No significant changes in tissue thickness (time × temperature) were 

observed in any of the three species (Fig. A4). 

 

 

 

Figure A7. Changes in host tissue thickness (milligrams of protein per unit of fragment 

surface area) at elevated temperature in the reef corals Acropora millepora, Montipora 

damicornis, and Pocillopora damicornis. Parentheses indicate ITS2 types of 

Symbiodinium hosted by each species. Asterisks indicate significant differences relative 

to the controls (RMANOVA, pair-wise post-hoc with Bonferroni correction, n = 5 

except for A. millepora after nine days at 33°C where n = 4, * p < 0.05). 
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A-5.3. Quantifying NO in coral host tissues with 2,3-diaminonaphthalene. 

 

 

Figure A8. Detection of NO with 2,3-diaminonaphthalene (NOx
- assay - see Chapter 5). 

Acropora millepora, Montipora digitata and Pocillopora damicornis homogenates (host 

fractions) incubated for 4 h with the NO donor SNP. Values are means ± s.e.m. and 

asterisks indicate significant differences within each species (t-tests, n = 3, *** p < 

0.001). 
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Chapter 6 

 

A-6.1. Host nitric oxide synthesis in response to infection 

 

Aposymbiotic A. pulchella anemones were obtained as described above. Individual 

anemones (n = 3) were then injected (see above) with a suspension either of cultured 

homologous (ITS2 type B1) Symbiodinium, homologous Symbiodinium cells that had 

been heat-killed (80°C for 4 h), or cultured heterologous Symbiodinium cells (culture 

CCMP421, a "free-living" Symbiodinium type originally isolated from Wellington 

Harbour, New Zealand). Four hours post-injection, anemone synthesis of NO was 

visualised as described in Chapter 3. Unfortunately due to mortality of some A. 

pulchella specimens post-infection, data could only be obtained from one of the 

anemones infected with heat-killed algae and from two of the heterologous infections. 

Still, there appeared to be a trend in the data for elevated NO synthesis upon exposure 

to heterologous or non-viable symbiont cells (Fig. A7). 

 

 

 

Figure A9. Production of NO in Aiptasia pulchella 4 h after infection by homologous, 

heat-killed, or heterologous Symbiodinium cells. Values are means ± s.e.m. (n = 3 for 

"aposymbiotic" and "homologous", n = 2 for "heterologous free-living", n = 1 for 

"homologous heat-killed". 
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B: Additional work 

 

B-1. Reinfection of Aiptasia pulchella with different Symbiodinium types 

 

The original proposal for Chapter 3 was to experimentally obtain aposymbiotic A. 

pulchella and experimentally reinfect them with various types of Symbiodinium. The 

induction of NO synthesis upon exposure to high temperature shock was then to be 

compared between these different holobionts. 

 

Anemones were bleached following a standard cold-shock protocol alongside dark-

incubation and starvation. Briefly, A. pulchella specimens were exposed to pre-chilled 

(4°C) sterile (autoclaved) FSW for 6 h before being returned to 26°C for 72 h. 

Anemones were maintained in the dark throughout. This procedure was repeated twice 

weekly for at least 6 months. Invididual A. pulchella were transferred to wells on a 24-

well plate and placed under fluorescent lighting (100 µmol photons m-2 s-1) at 26°C in 

sterile FSW. Any anemones that failed to recover their Symbiodinium populations after 

4 weeks (visible as a developing colouration of tentacles) were then returned to dark-

incubation). Anemones that recovered their symbiont populations invariably did so with 

14 days and were discarded. 

 

Reinfection of anemones was achieved by concentrating Symbiodinium cultures (by 

centrifugation [800 × g for 5 min] of ca. 50 mL algal culture and resuspension in 100 

µL FSW) and then injecting a small volume into the anemones' mouths using a sterile 

Pasteur pipette drawn out to a fine tip. Uptake of Symbiodinium was assisted by 

providing a small quantity of Artemia nauplii alongside the algal cells. Anemones 

infected with differing symbiont types were maintained in separate bowls in sterile 

FSW. After at least 6 months, a subset of anemones was removed from each bowl and 

their resident Symbiodinium cells were extracted as described in Chapter 3 and 

processed for ITS2 genotyping (Logan et al., 2010). 

 

Single strand conformation polymorphism (SSCP) analyses (Fig. B1) suggested that all 

Aiptasia pulchella cultures other than those reinfected with homologous (ITS2 type B1) 

Symbiodinium contained mixed Symbiodinium populations. This was confirmed by 
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sequencing; only the B1-infected population had an ITS2 sequence that could reliably 

be compared to GenBank sequences. 

 

          8       7      6      5      4         3     2     1 

 

Figure B1. SSCP analysis of Symbiodinium ITS2 region extracted and amplified from 

cells isolated from reinfected Aiptasia pulchella populations. More than 2 bands on a 

lane indicates multiple Symbiodinium ITS2 genotypes. Location of bands can also 

distinguish different ITS2 types. 

Lane 1: DNA Hyperladder® 

Lane 2: Ap1 (ITS2 B1) reinfection 

Lane 3: CCMP2466 (C1) reinfection 

Lane 5: CCMP2467 (A1) reinfection 
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It appeared, therefore, that anemones were either hosting only B1-type Symbiodinium, 

or contained these B1-type algae alongside the introduced population. The cause of this 

contamination seemed to be a residual population of Symbiodinium that remained in the 

host over a period of at least 18 months in darkness, during cold-shock treatment, and 

that had not recovered over the 4-week period under lights (Fig. B2). Unfortunately, this 

meant that experiments comparing host NO synthesis at elevated temperature in 

different host-Symbiodinium combinations could not be carried out. 

 

 

 

 

Figure B2. Confocal LSM micrograph of an "aposymbiotic" Aiptasia pulchella tentacle 

incubated in the dark (with regular cold-shock treatment) for 18 months, and still 

containing residual Symbiodinium cells (red chlorophyll fluorescence). Green areas 

indicate fluorescence of the NO-sensitive probe DAF-FM-DA. 
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B-2. Visualisation of host mitochondria in isolated Aiptasia pulchella cells. 

 

 

 

Figure B3. Confocal LSM micrographs of isolated Aiptasia pulchella cells. Panel A) 

Cells incubated with fluorescein diacetate (green - stains the cytosol in live cells) B) 

Cells incubated with Hoechst 33342 and rhodamine 123 (green - stains functional 

mitochondria). Scale bar in each set of images is 10 µm. 

 

 

Intact live host cells of Aiptasia pulchella were obtained through tissue maceration 

(Gates & Muscatine, 1992). Briefly, anemones were incubated in calcium-free artificial 

seawater (Ca-FSW) for 1 h. A short length of tentacle (ca. 5 mm) was then removed and 

cut into 1 mm sections. Tissue sections were then subjected to tryptic maceration (0.1% 

w/v porcine trypsin in Ca-FSW) on an agitation platform for 45 min. The resulting 

tissue slurry was then transferred to poly-l-lysine-coated glass-bottom dishes and cells 

were allowed to settle for 10 min. Fluorescent dyes in Ca-FSW were then added, and 

cells were visualised on a confocal LSM (see Chapter 2). The ability of cells to survive 
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extraction and isolation was confirmed by incubating them with 5 µM fluorescein 

diacetate (FDA), which is cleaved to fluorescein (Fig. B3a; ex: 473 nm, em 510-530 

nm) by cytosolic esterases in live cells. Host mitochondria were then visualised (Fig. 

B3b) using 5 µM of the fluorescent dye rhodamine 123 (R123; ex; 473 nm, em: 510-

550 nm). Host nuclear material was stained with Hoechst 33342 (ex: 405 nm, em 440-

490 nm) at a concentration of 5 µg / mL. All fluorescent dyes were purchased from Life 

Technologies, Auckland, New Zealand. 

 

 

 

 
 
 


