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Abstract  

Invasive species have been recognized as one of the greatest threats to global biodiversity and 

can have dire economic consequences. Yet rates of invasion are increasing due to the fast and 

growing network of transportation across the globe. The establishment, spread and impact of 

invasive species are affected by environmental conditions as well as resident species. Species 

respond differently to the same abiotic factors and different native species can respond either 

positively or negatively to invasion. 

 

The interaction between invasive and resident species, as well as the effect of temperature on 

invasive species, has gained much attention. The synergistic effect of suboptimal temperature 

and biotic resistance could have a much stronger limiting or controlling effect on invasive 

species than either factor alone. Linepithema humile (Argentine ants) are invasive species 

originally from a Mediterranean climate, but successfully spreading into extra range habitats.  

The establishment and spread of these ants in temperate New Zealand represents an ideal 

model system for studying invasion biology in terms of temperature limits and biotic resistance 

effects. 

 

I investigated the changing distribution of the invasive species the Argentine ants over multiple 

years at five sites in New Zealand. To test whether their rate of spread corresponds with 

microclimate I investigated their fine-scare distribution patterns and evaluated the number of 

generations they may develop seasonally and annually in different microhabitat types. I also 

evaluated their impact on other arthropod species. I conducted a laboratory experiment to 

evaluate the effect of temperature on their aggression towards other species, walking speed, 

and foraging abundance. Similarly, I tested the effect of biotic resistance from other ant species 

(Monomorium antarcticum and Prolasius advenus) with varying colony sizes. I investigated 

whether there was any interactive effect of temperature and biotic resistance on the Argentine 

ants.  

 

The distribution of Argentine ants had declined across many invasion fronts over the past 7-8 

years. They were more likely to be found in concrete, short grass and sandy habitats, which 

provide warm microsites. Degree-day calculations predicted that they could develop between 

2.5 to 3 generations in each of the above microhabitats per year in urban and rural sites while 

they were predicted to be unable to develop one generation under tree habitats.  In tall grass 

microhabitats they were predicted to develop between 1-1.5 generations per year.  

 

i 



The Argentine ants were hypothesised to adversely affect many other arthropod species. 

Richness and abundance of resident beetle species were negatively correlated with the invasion 

of the Argentine ants. Areas invaded by the Argentine ants were also associated with a greater 

number of exotic beetle species, which may imply secondary invasion. 

 

Laboratory experiments showed that lowering temperatures below 17°C negatively affected the 

Argentine ants‟ walking speed, foraging abundance, aggression and their resource control. A 

high colony size of M. antarcticum (the competing ant species) affected the foraging success of 

Argentine ants, and the effect was stronger when coupled with unsuitable temperature (17°C 

and below). Therefore, Argentine ants are weak competitors at low temperature levels. 

 
The results of my thesis underline the importance of biotic and abiotic resistances, their 

interactive effect as well as the effect of the Argentine ants on other species.  Based on climatic 

considerations and the habitat preferences of resident species it may be possible to predict 

future spread of the Argentine ants. More importantly, knowledge of microhabitat preferences 

and biotic resistance may help future control measures against Argentine ants based on 

management of vegetation structure and microhabitat availability. 
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Chapter 1 

Invasion impact and the effects of biotic or abiotic resistances 

1.1 Invasive species 

Understanding biodiversity is critical for informed environmental management and 

conservation. The current high rate of species extinction mainly caused by human activities has 

drawn attention of scientific and social endeavours to rectify the situation (Huston, 1994; 

Cartron et al., 2005). Ecologists are striving to understand the processes and factors involved 

in biodiversity deterioration. They are identifying ways and means for restoring and 

maintaining biodiversity (Miguel and Huerta, 2007). Three of the main issues are climatic 

change caused by human activities (Hagerman et al., 2010; Liu, 2008), habitat modification 

and the impact of invasive species (Tokeshi, 1999). Both climate change and biological 

invasions provide huge challenges to policies set to respond to future risks (Bardsley and 

Edwards-Jones, 2007). Invasive species are environmentally and economically damaging: for 

instance, in the United States alone, invasive species cause about 137 billion USD worth of 

damage per year due to loss of productivity and control measures (Pimentel et al. 2000). About 

42% of endangered species are at risk mainly due to the effects of invasive species (Pimentel et 

al., 2006). It is commonly observed that landscape alteration and habitat homogenization by 

human activities (Tokeshi, 1999; Karen et al., 2008) facilitate the establishment and 

proliferation of invasive species. In particular, human settlements are susceptible to invasion 

and have been common invasion fronts (Carpintero et al., 2003). An indirect threat of climate 

change is through facilitation of invasions as habitats previously unavailable to exotic species 

become within their climate tolerance range (Simberloff, 2000).  Biodiversity is also threatened 

directly by climate change (Nenzén and Araújo, 2011), thus suffering from the effects of 

climate change twice over through the facilitation of invasion and the loss or alteration of 

habitat. 

 

Although not all exotic species are harmful, a number of them are invasive. From an ecological 

perspective, invasive species can be defined as those that interact strongly with native species 

causing a major threat to biodiversity and ecosystem function (Bremner and Park, 2007; Jager 

et al., 2009). According to the definition of Williamson and Fitter (1996) exotic species 

brought into a country are called “imported” species, and those found in the wild are called 

“introduced” species. The self-sustaining species are recognized as established ones. According 

to the tens rule, Williamson and Fitter (1996) stated that the probability of transition from 

imported to introduced is approximately 10% and from introduced to established is 10%, and 
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finally only 10% of the established species become pests. The probability of establishment of 

non-native species is therefore often very low. However, those that do establish can disrupt 

endemic communities and consequently change the balance of species‟ relative abundance 

(Elton, 1958). Typically, this occurs when an invasive species interacts strongly with resident 

keystone species such as important predators and pollinator species (Cole et al., 1992). 

Removal or disturbance of keystone species causes community disintegration (Paine, 1971).  

 

1.2 Abiotic constraints on species’ distribution 

Environmental conditions are recognized as some of the most prominent predictors in the 

establishment and distribution patterns of species (Huston 1994; May and Maclean, 2007; 

Krebs, 1994). Environmental conditions may vary from place to place. Most striking is the 

variation in temperature that occurs with changes in latitude (Huston, 1994), which correlates 

strongly with the well-known gradient in species richness (Rosenzweig, 1995). Another 

important cause of variation in temperature is altitude (Sparrow, 1925). Some other factors also 

contribute to temperature differences. Soil and air temperature close to the surface are affected 

by incoming solar radiation, which is also dependent on slope and aspect. In turn, differences 

in soil temperature interact with rates of precipitation to result in different soil moisture 

contents (Bennie et al., 2008). Temperature differences across habitats also arise as a result of 

variation in radiation across different vegetation structures and cover (Martens, 2000). It also 

varies within microhabitats, for example average degree-days measured in soil are 25% greater 

than air degree-days (Hartley and Lester, 2003). Apart from those species uniquely adapted to 

particular extreme conditions (Worland and Block, 2003), most species are stressed upon 

exposure to extra-range temperature limits (Laluette et al., 2011). Accordingly, climate 

variation between different habitats plays an important role in influencing the establishment 

potential of invasive species (Lester 2005; Hartley et al., 2006). However, individual 

organisms experience broad-scale climate variation at the microhabitat level. Hence difference 

in microhabitat structures can be important in species fine-scale distribution (James and 

M’Closkey, 2003), especially for small-bodied species such as insects. Most often, species 

distribution patterns are uneven due to variation in microhabitat structure, for example, 

variations induced by grazing (Lindsay and Cunningham, 2009). A number of exotic species 

distributions are regulated by microhabitat structure. In warmer habitats, for example, 

Argentine ants prefer moist riparian corridors rather than adjacent dry scrubs (Holway, 2005), 

whereas in cool-wet climates they prefer to nest in open, bare soil situations (Hartley et al., 

2010). In either case, unfavourable microhabitat types may restrict the local spread of exotic 

species.  
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1.3 Biotic constraints on species’ distribution 

In addition to the abiotic environment, biotic constraints may negatively affect establishment 

and spread of invasive species.  Population dynamics take place in a community context. Local 

community structure of species is affected by a series of factors such as competition, predation 

and abiotic factors (Simberloff, 2004). Density and behaviour of predators are of great 

importance in population regulation (Perez-Matus and Shima, 2010). In communities driven by 

top-down effects the patterns of abundance of organisms and their dynamics are regulated by 

the trophic level above. Predators control the trophic level below them and herbivores control 

primary producers; however, organisms whose resources scarce are regulated in a bottom-up 

trophic level (Hairston et al., 1960).  

 

Competition for food and space is perhaps the most significant biotic constraint. During 

competition organisms may employ interference or exploitative strategies of competition 

(Huang, 2010; Jensen, 1987); either way, abundances of less competitive species decline 

(Wieters et al., 2009; Kath and Dunn, 2009). Interaction between species favours 

competitively successful species to assemble in an area. High species diversity is thought to 

shrink niches over evolutionary time, and this allows coexistence of more species locally 

(Rosenzweig and Ziv, 1999). As a result, areas of high species richness are considered to be 

less vulnerable to invasions as there is presumably less empty “niche space” available 

(Stachowicz et al., 1999); an idea first introduced by Elton (1958) by the name “biotic 

resistance”.  The effect of biotic resistance and its application has been an important part of 

ecological studies in addressing exotic species establishment and control measures (e.g. Levine 

et al., 2004; Walters and Mackay, 2005). One of the developments is the enemies-release 

hypothesis (Keane and Crawley, 2002). This hypothesis proposes that invading species are 

successful partly because they are released from the top-down pressure of their natural enemies 

as the enemies (herbivores or predators) are rarely introduced with the invasive species into 

new invasion fronts. However, resident predators are still important components of the 

application of biotic resistance (Derivera et al., 2005). The establishment and rate of spread of 

a novel species may depend on density of predators (Amarasekare, 2004). High predator 

density decreases prey density and can cause collapse of the prey species population if they are 

driven to such low levels that Allee effects takes hold (Boukal et al., 2007). Allee effect is a 

condition where organisms find it difficult to encounter mates due to low species density 

(Myers et al., 1995). Exotic or invasive species are likely to be susceptible to Allee effects 

immediately after their arrival and during the early stages of establishment; at this stage 

predators may have a prominent effect on their establishment success. However, contrary to 
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our common sense invasive species are less likely to be regulated by Allee effect as at the time 

of establishment their initial population size is usually above the critical size (Mistro et al., 

2012). To overcome the effect of competition and predation, high propagule pressure is often 

necessary for an invasive species to establish which usually depends on the mode of dispersal 

generating entry into the new region (Wilson et al. 2008).  

 

Long-distance dispersal is critical for rapid range expansions and establishment of pioneer 

populations (Hampe 2011). In addition to human-assisted dispersal (Vitt et al, 2010), wind and 

rivers are important natural vectors for long-distance plant dispersals (Saumel and Kowarik, 

2010). Moreover, rivers play an important role in long-distance fish dispersal (Rempel and 

Smith, 1998). Introduction of species into new sites by humans is typically by “jump dispersal” 

compared to slow natural movement more often akin to “diffusion” (Suarez et al., 2001). 

Wilson et al. (2008) have reviewed in detail different pathways and their contribution to 

establishment success. Human-mediated mass dispersal or multiple entries were implicated in 

high success of invasive species establishment in extra range habitats. This is due to the need 

for high propagule pressure to overcome endemic species resistance and predator pressure as 

discussed above. For example, in Southern Australia the invasive species, Linepithema humile 

requires population sizes 5 to 10 times greater than that of Iridomyrmex „rufoniger’ to 

overcome the competitive interaction (Walters and Mackay, 2005). However, multiple 

constraints at a time pose strong controls on exotic species establishments. Assisted dispersal 

pathways and the availability of suitable diet enhance establishment of exotic species (Dighton, 

1997). Models assessing species distribution patterns indicate that distribution is predictable 

when there is strong immigration and weak stochasticity (Haegeman and Loreau, 2011). 

However, random movement of species may positively or negatively confound the effect of 

other deterministic factors (Lv and Pitchford, 2007; Kac, 1983).  

 

1.4 Invasive ants 

Insects are abundant members of virtually all terrestrial ecosystems, due in part to their small 

size, their high rate of reproduction and rapid adaptation to environmental changes (Schiwlter, 

2006; Speight et al., 2008). Ants are among the world‟s worst invasive species (Holway and 

Case, 2000; Moller, 1996).  Many species of invasive ants have established colonies in extra 

range habitats because of human-mediated dispersal (McGlynn, 1999). Among the mechanisms 

enabling them to succeed in spread is their colony partitioning (Masse et al., 2011; Holway & 

Case, 2000) and competitive strategy, such as employing chemical secretions to overcome 

competitors (Dejean et al., 2008). Other characteristics of invasive ant species include general 
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nesting habit, diverse diets, and reduced intraspecific aggression, in addition to aggression, 

high propagule pressure, and high territoriality (Holway et al., 2002). A striking characteristic 

observed in ants is their quick genetic change with introduction into a new environment that 

promotes their invasion success through rapid adaptation (Tsutsui and Suarez, 2003). Some of 

the highly successful invasive ants are Wasmannia auropunctata (see Masse et al., 2011), red 

imported fire ants (Solenopsis invicta Burn) (see Showler et al., 1990) and Pheidole 

megacephala (see Dejean et al., 2008).  Another invasive ant species that shares similar 

characteristics with the aforementioned ants is Linepithema humile (the Argentine ant) 

(Holway et al., 2002). The distribution patterns of this species are regulated by both biotic and 

abiotic factors. For example, biotic resistance by endemic species affects the establishment and 

spread of Argentine ants in Australia (Walters and Mackay, 2005) and their successful 

competition depends on their own colony size relative to competitors (Holway and Case, 2001). 

Moreover, their developmental processes are highly regulated by temperature (Hartley and 

Lester, 2003; Abril et al., 2008), which further governs their distribution patterns (Speight et al., 

2008). 

 

1.5 Argentine ants (Linepithema humile) and other ants in New Zealand 

Introduced by human-assisted transportation, invasive species have caused serious damage 

especially, in island biota (Lodge, 1993; Cole et al., 1992). To prevent this effect New Zealand 

has long implemented strong border control against invasive species. Examining records of ant 

species intercepted at New Zealand border from 1955 to 2005, Ward et al. (2006) reported that 

115 species were identified. However, only 20 species account for 90% of the records. 

Although small ant body size is important for establishment, rate of interception and climate 

were also secondarily important (Lester, 2005). The New Zealand‟s border intercept of 

invasive species covers only 48-78% of the trade routes and thus there may be more ant species 

entering undetected (Ward et al., 2006). To date, studies confirm that within New Zealand 

there are 11 endemic species (7 genera) of ants, 24 exotic which are established species (17 

genera), 6 species (5 genera) recently arrived, and 7 to 8 species (5 genera) in doubt of 

establishment (Don, 2007). While most of the exotic ant species seem to be localized in the 

northern part of the North Island, Technomyrmex jocosus (formerly identified as 

Technomyrmex albipes) are widely distributed in both Islands of New Zealand (Don, 2007). A 

globally important invasive ant species, the Argentine ants, have also established colonies in 

New Zealand.   
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The Argentine ant is native to South America (Suarez et al., 2001), though it is now a globally 

distributed invasive species (Holway et al., 2002). First detected in New Zealand in 1990 in 

Auckland (Green, 1990), the Argentine ant has invaded a wide range of areas in the North 

Island of New Zealand, and some parts of the South Island (Hartley and Lester, 2003; Don, 

2007, Ward et al., 2010). Argentine ants are predicted to farther spread even to the southern 

part of the South island on the basis of temperature requirements (Hartley and Lester, 2003). 

Their dispersal mainly depends on human mediated transport (Ward et al., 2010), as naturally 

their diffusion into adjacent habitat is less than hundred meters a year (Ingram and Gordon, 

2003; Krushelnycky et al., 2004). In the Mediterranean, Argentine ants were found to displace 

virtually all other ant species (Holway and Suarez, 2006) and also negatively impact other 

species of arthropods (Cole et al., 1992). However, there was a contrasting result showing that 

the Argentine ants did not affect other non-ant arthropods in northern California riparian 

woodlands (Holway, 1998). In New Zealand, though thought to be at an earlier stage of 

expansion, Argentine ants have generated extreme concern in agriculture, conservation and 

social lives, and have inflicted economic damage due to cost of treatment and loss of 

productivity (Ward et al., 2010). Argentine ants can reach extremely high density. A study 

shows that they can reach over 1.3 million queens in a 19-acre (7.7-ha) in a one year period 

(quoted in Tsutsui and Suarez, 2003) in Louisiana.  In some cases in New Zealand, people have 

sold their houses, children were unable to play in their backyards, and caged pets have died 

because of the Argentine ants‟ infestation (Ward et al., 2010).  

 

1.6 Aims  

The aim of my study is to investigate how biotic and abiotic factors contribute to the invasion 

and establishment processes of invasive species, particularly the Argentine ant. To understand 

the likely cause and effect of relationships leading to establishment, I will evaluate patterns of 

distribution and the mechanisms shaping the patterns. Because most of New Zealand is thought 

to be close to the cool-wet limit of the Argentine ant‟s climate envelope (Hartley and Lester 

2003; Hartley et al., 2006), I expect the abundance of the Argentine ants to be less in forested 

and shady habitat types. I predict that their distribution will be partly affected by their 

reproduction and developmental processes. At lower temperatures the Argentine ants should be 

less active and thereby become less competitive. On the other hand, I predict that native ant 

species will be less sensitive to bushy and similar habitat types and thus they may successfully 

defend these habitats. 
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Brief descriptions of aims of each data chapter follow below. Each chapter is written in the 

style of a scientific article with its own list of references and appendix section. 

 

Chapter 2  

Rate of Argentine ants’ spread  

In this chapter, I surveyed several field sites to evaluate whether the Argentine ants were 

spreading into new areas or retracting from already colonized habitats. I also evaluated the 

average rate of change in occupation.  

 

Chapter 3 

 Microhabitat Structures and Ant Species Assemblages 

The aim of this chapter was to study the distribution patterns of the Argentine ant as well as 

other common ant species in different microhabitats. I hypothesized that all ants species should 

be positively associated with warmer short grass/herbs and concrete microhabitat types. 

However, I expected native ant species to be less affected by relatively cooler microhabitats. 

To determine whether temperature (specifically different rates of development) could explain 

the observed distribution patterns I recorded soil temperatures and calculated the number of 

generations the Argentine ants could develop in different microhabitat types in a year.  

 

Chapter 4 

Effect of Argentine ant invasion on beetle species richness and composition in the face of 

different microhabitats 

The community-level effect of the Argentine ant on other arthropods was assessed in two 

coastal dune sites in northern New Zealand. The assessment was conducted at the order and 

species level. Invasion impact at the species level was specifically evaluated based on beetle 

species responses. Beetle species were chosen due to their high abundance and species richness. 

In this study I expected that beetles, which were unable to resist the invasion of the Argentine 

ants, would have a refuge in microhabitats unavailable to the Argentine ants. However, there 

may be some species that strictly prefer the same habitat types as the Argentine ants so that 

they may be at greater risk of extirpation if they cannot coexist with Argentine ants.  

 

Chapter 5 

 Role of interspecific competition and temperature in resisting invasion  

The effect of multiple factors on the invasion of the Argentine ants was investigated in this 

chapter. In a controlled laboratory setting I tested the foraging activity and walking speed of 
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Argentine ants at different temperature levels in the absence of other interacting species. Their 

competitive and aggressive behaviours interacting against varying colony sizes of other 

competing species (Monomorium antarcticum and Prolasius advenus) were also tested at 

different temperature levels. I hypothesized that at low temperature (17°C and below) the 

Argentine ants would be weak competitors as their developmental threshold is 15.9°C (Hartley 

and Lester 2003). My prediction was that the mechanisms underlying their weakness would be 

decrease in abundance of foragers, slowed walking speed and decreased aggression towards the 

other species. I expected that native ants would be less affected by low temperatures than 

Argentine ants and thus would be more successful during competition at these lower 

temperatures. 

  



9 
 

1.7 References 

Abril S., J. Oliveras, and C. Gomez, 2008. Effect of temperature on the oviposition rate of 

Argentine ant queens (Linepithema humile Mayr) under monogynous and polygynous 

experimental conditions. Journal of Insect Physiology 54: 265-272. 

 

Amarasekare, P., 2004. The role of density-dependent dispersal in source-sink dynamics. 

Journal of Theoretical Biology 226:159-168.  

 

Bardsley, D. K. and G. Edwards-Jones, 2007. Invasive species policy and climate change: 

social perceptions of environmental change in the Mediterranean. Environmental Science 

and policy 10: 230-242.  

 
Bennie, J., B. Huntley, A. Wltshire, M. O. Hill, and R. Baxter, 2008. Slope, aspect and climate: 

Spatially explicit and implicit models of topographic microclimate in chalk grassland. 

Ecological Modelling 216: 47-59.  

 

Boukal, D. S., M. W. Sabelis, and L. Berec, 2007. How predator functional responses and Allee 

effects in prey affect the paradox of enrichment and population collapses. Theoretical 

Population Biology 72: 136-147. 

 

Bremner, A. and K. Park, 2007. Public attitudes to the management of invasive non-native 

species in Scotland. Biological Conservation 139: 306-314. 

 

Carpintero, S., J. Reyes-Lopez, and L. A. Reyna, 2003. Impact of human dwellings on the 

distribution of the exotic Argentine ant: a case study in the Donana National Park, Spain. 

Biological Conservation 115: 279-289. 

 

Cole, F. R., A. C. Medeiros, L. L. Loope, and W. W. Zuehlke, 1992. Effect of the Argentine ant 

on arthropod fauna of Hawaiian high-elevation shrubland. Ecology 73: 1313-1322. 

 

Dejean, A., C. S. Moreau, M. Kenne, and M. Leponce, 2008. The raiding success of Pheidole 

megacephala on other ants in both its native and introduced ranges. Comtes Rendus 

Biologies 331: 631-635. 

 

Derivera, C. E., G. M. Ruiz, A. H. Hines, and P. Jivoff, 2005. Biotic resistance to invasion: 

native predator limits abundance of an introduced crab. Ecology 86: 3364-3376. 

 

Dighton, J., H. E. Jones, C. H. Robinson, and J. Beckett, 1997. The role of abiotic actors, 

cultivation practices and soil fauna in the dispersal of genetically modified microorganisms 

in soils. Applied Soil Ecology 5: 109-131.  

 

Don, W., 2007. Ants of New Zealand.  University of Otago Press in association with the Otago 

Museum, Dunedin. 

 

Elton, C. S., 1958. The ecology of invasions by animals and plants. Methuen and Co. Ltd. 

London. 

 

Green, O. R., 1990. Entomologist sets new record at Mt Smart for Iridomyrmex humilis 

established in New Zealand. Weta 13:14-16.  

  



10 
 

Grover, C. D., K. C. Dayton, S. B. Menke, and D. A. Holway, 2008. Effects of aphids on foliar 

foraging by Argentine ants and the resulting effects on other arthropods. Ecological 

Entomology 33: 101-106.     

 

Haegeman, B. and M. Loreau, 2011. A mathematical synthesis of niche and neutral theories in 

community ecology. Journal of Theoretical Biology 269: 150-165.  

 

Hagerman, S., H. Dowlatabadi, T. Satterfield, and T. McDaniels, 2010. Expert views on 

biodiversity conservation in an era of climate change. Global Environmental Change 20: 

192-207. 

 

Hampe, A., 2011. Plants on the move: The role of seed dispersal and initial population 

establishment for climate-driven range expansions. Acta Oecologica 37: 666-673. 

 

Hairston, N. G., F. E. Smith, and S. L. Slobodkin, 1960. Community structure, population 

control, and competition. American Naturalist 94: 421-425. 

 

Harris, R. J. and G. Barker, 2007. Relative risk of invasive ants (Hymenoptera: Formicidae) 

establishing in New Zealand. New Zealand Journal of Zoology 34: 161-178. 

  

Hartley, S. and P. Lester, 2003. Temperature-dependent development of the Argentine ant, 

Linepithema humile (Mayr) (Hymenoptera: Formicidae): a degree-day model with 

implication of range limits in New Zealand. New Zealand Entomologist 26: 91-100. 

 

Hartley, S., R. Harris, and P. J. Lester, 2006. Quantifying uncertainty in the potential 

distribution of an invasive species: climate and the Argentine ant. Ecology Letters 9: 1068-

079. 

 

Holway, D. A., 2005. Edge effects of an invasive species across a natural ecological boundary. 

Biological Conservation 121: 561-567.  

 

Holway, D. A., 1998. Effect of Argentine ant invasions on ground-dwelling arthropods in 

Northern California riparian woodlands. Oecologia 116:252-258. 

 

Holway, D. A. and A. V. Suarez, 2006. Homogenization of ant communities in Mediterranean 

California: The effects of urbanization and invasion. Biological Conservation 127: 319-326. 

 

Holway, D. A., L. Lach, A. V. Suarez, N. D. Tsutsui, and T. J. Case, 2002. The ecological 

causes and consequences of ant invasions. Annual Review of Ecology and Systematics 

33:181-233. 

 

Holway, D. A. and T. J. Case, 2001. Effects of colony-level variation on competitive ability in 

the invasive Argentine ant. Animal Behaviour 61: 1181-1192. 

 

Holway, D. A. and T. J. Case, 2000. Mechanisms of dispersed central-place foraging in 

polydomous colonies of the Argentine ant. Animal Behaviour 59: 433-441. 

 

Huston, M. A., 1994. Biological Diversity: The coexistence of species on changing landscapes. 

Cambridge University Press, New York. 

 

Huang, W., 2010. Foraging behaviours of two sympatric ant species in response to lizard eggs. 

Zoology 113: 85-90. 



11 
 

Ingram, K. K. and D. M. Gordon, 2003. Genetic analysis of dispersal dynamics in an invading 

population of Argentine Ants. Ecology 84: 2832-2842. 

 

Jager, H., I. Kowarik, and A. Tye, 2009. Destruction without extinction: long-term impacts of 

an invasive tree species on Galapagos highland vegetation. Journal of Ecology 97: 1252-

1263.  

 

James, S. E. and R. T. M‟Closkey, 2003. Lizard microhabitat and fire fuel management. 

Biological Conservation 114: 293-297. 

 

Jensen A. L., 1987. Simple Model for exploitative and interference competition. Ecological 

Modelling 35: 113-121. 

 
Kac M., 1983. When is random random? Mathematical Social Science 4: 181-188.  

 

Karen, M., O. John, B. John, G. Paul, P. Josephine, and K. Thomas, 2008. Distribution and 

composition of carabid beetle (Coleoptera, Carabidae) communities across the plantation 

forest cycle-implications for management. Forest Ecology and Management 256: 624-632. 

 

Kath, J., M. Maron, and P. K. Dunn, 2009. Interspecific competition and small bird diversity in 

an urbanizing landscape. Landscape and Urban Planning 92: 72-79. 

 

Keane, R. M. and M. J. Crawley, 2002. Exotic plant invasions and the enemy release 

hypothesis. Trends in Ecology and Evolution 17: 164-170. 

 

Krebs, C. J., 1994. Ecology: The experimental analysis of distribution and abundance. Harper 

Collins College Publishers, New York.  

 

Krushelnycky, P. D., L. L. Loope, and S. M. Joe, 2004. Limiting spread of a unicolonial 

invasive insect and characterization of seasonal patterns of range expansion. Biological 

Invasions 6: 47-57. 

 

Lalouette, L., C. M. Williams, F. Hervant, B. J. Sinclair, and D. Renault, 2011. Metabolic rate 

and oxidative stress in insects exposed to low temperature thermal fluctuations. 

Comparative Biochemistry and Physiology 158: 229-234.  

 

Lester, P. J., 2005. Determinants for the successful establishment of exotic ants in New 

Zealand. Diversity and Distribution 11: 279-288. 

 

Levine, J. M, P. B. Adler, and S. G. Yelenik, 2004. A meta-analysis of biotic resistance to exotic 

plant invasions. Ecology Letters 7: 975-989.  

 

Lindsay, E. A. and S. A. Cunningham, 2009. Livestock grazing exclusion and microhabitat 

variation affect invertebrates and litter decomposition rates in woodland remnants. Forest 

Ecology and Management 258: 178-187. 

 

Liu, X., A. Vedlitz, and L. Alston, 2008. Regional news portrayals of global warming and 

climate change. Environmental Science and Policy 11: 379-393. 

 

Lodge, D. M., 1993. Biological invasions: lesson for ecology. Trends in Ecology and   

   Evolution 8: 133-137. 

  



12 
 

Lv, Q. and J. W. Pitchford, 2007. Stochastic von Bertalanffy models, with applications     

   to fish recruitment. Journal of Theoretical Biology 244: 640-655.  

 

MacArthur, R. H. and F. O. Wilson, 1963. An equilibrium theory of insular zoogeography. 

Evolution 17: 373-387. 

 

Martens, S. N., D. D. Breshears, and C. W. Meyer, 2000. Spatial distributions of understorey 

light along the grassland/forest continuum: effects of cover, height, and spatial pattern of 

tree canopies. Ecological Modelling 126: 79-93. 

 

Masse, P. S. M., M. Kenne, R. Mony, A. Dejean, and M. Tindo, 2011. Initial behaviour in 

colony fragments of an introduced population of the invasive ant Wasmannia auropunctata. 

Comptes Rendus Biologies 334: 572-576. 

  

May, R. and A. Mclean, 2007. Theoretical ecology: principles and applications. Oxford 

University press, New York. 

 

McGlynn, T. P., 1999. The worldwide transfer of ants: geographical distribution and ecological 

invasions. Journal of Biogeography 26: 535-548. 

 

Miguel, A. and O. Huerta, 2007. Fragmentation patterns and implications for biodiversity 

conservation in three biosphere reserves and surrounding regional environments, North-

eastern Mexico. Biological Conservation 134: 83-95. 

 

Mistro, D. C., L. A. D. Rodrigues, and S. Petrovskii, 2012. Spatiotemporal complexity of 

biological invasion in a space- and time-discrete predator-prey system with the strong Allee 

effects. Ecological Complexity 9: 16-32. 

 

Moller, H., 1996. Lessons for invasion theory from social insects. Biological Conservation 78: 

125-142. 

 

Myers, R. A., N. J. Barrowman, J. A. Hutchings, A. A. Rosenberg, 1995. Population dynamics 

of exploited fish stocks at low population levels. Science 269: 1106-1108. 

 

Nenzén, H. K. and M. B. Araújo, 2011. Choice of threshold alters projections of species range 

shifts under climate change. Ecological Modelling 222: 3346-3354. 

 

Ohnishi, S., T. Miyoshi, and S. Shirai, 2010. Low temperature stress at different flower 

developmental stages affects pollen development, pollination, and pod set in soybean. 

Environmental and Experimental Botany 69: 56-62. 

 

Perez-Matus, A. and J. S. Shima, 2010. Density and trait-mediated effects of fish predators on 

amphipod grazers: indirect benefits for the giant kelp, Macrocystis pyrifera. Marine Ecology 

Progress Series 417:151-158. 

 

Pimentel, D., R. Zuniga, and D. Morrison, 2006. Update on the environmental and economic 

costs associated with alien-invasive species in the United States. Ecological Economics 52: 

273-288. 

 

Pimentel, D., L. Lach, R. Zuniga, and D. Morrison, 2000. Environmental and economic costs 

of nonindigenous species in the United States. Bioscience 50: 53-65.  

 



13 
 

Rempel, L .L. and D. G. Smith, 1998. Postglacial fish dispersal from the Mississippi refuge to 

the Mackenzie River basin. Canadian Journal of Fisheries and Aquatic Sciences 55(4): 893-

899. 

 

Ricketts, T. and M. Imhoff, 2003. Biodiversity, urban areas, and Agriculture: Locating priority 

ecoregions for conservation. Conservation Ecology 8:1-15. 

 

Rosenzweig, M. L., 1995. Patterns in space: species diversity in Space and time.     

Cambridge University Press, Cambridge. 

 

Rosenzweig, M. L. and Y. Ziv, 1999. The echo pattern of species diversity: Pattern and 

processes. Ecography 22:614-628. 

 

Saumel, I. and I. Kowarik, 2010. Urban rivers as dispersal corridors for primarily wind-

dispersed invasive tree species. Landscape and Urban Planning 94: 244-249.  

 

Showler, A. T., R. M. Knaus, and T. E. Reagan, 1990. Studies of the Territorial Dynamics of 

the Red Imported Fire Ant (Solenopsis invicta Burn, Hymenoptera: Formicidae). 

Agriculture, Ecosystems and Environment 30: 97-105. 

 

Simberloff, D., 2004. Community ecology: is it time to move on? American Naturalist 163: 

787-799. 

 

Simberloff, D., 2000. Global climate change and introduced species in United States forests. 

The Science of the Total Environment 262: 253-261. 

 

Sparrow, S. W., 1925. Aviation Engine Performance. Journal of The Franklin Institute 200: 

711-730.  

 

Speight, M. R., M. D. Hunter, and A. D. Watt, 2008. Ecology of Insects: Concepts and   

   Applications. Wiley-Blackwell, Chichester. 

 

Stachowicz, J. J., R. B. Whitlatch, and R. W. Osman, 1999. Species Diversity and Invasion 

Resistance in a Marine Ecosystem. Science 286: 1577-1579. 

 

Suarez, A. V., D. A. Holway, and T. J. Case, 2001. Patterns of spread in biological invasions 

dominated by long-distance jump dispersal: Insights from Argentine ants. Proceedings of 

Natural Academy of Sciences 98: 1095-1100.  

 

Tokeshi, M., 1999. Species coexistence, ecological and evolutionary perspective. Blackwell 

Science Ltd., London. 

 

Tsutsui, N. D. and A. V. Suarez 2003. The colony structure and population biology of      

   invasive ants. Conservation Biology 17: 2003: 48-58. 

 

Verberk, W. C. E. P., G. A. van Duinen, A. M. T. Brock, R. S. E. W. Leuven, H. Siepel, P. F. M. 

Verdonschot, G. van der Velde, and H. Esselink, 2006. Importance of landscape 

heterogeneity for the conservation of aquatic microinvertebrate diversity in bog landscapes. 

Journal for Nature Conservation 14: 78-90. 

 

Vitt, P., K. Havens, A. T. Kramer, D. Sollenberger, and E. Yates, 2010. Assisted migration of 

plants: changes in latitudes, changes in attitudes. Biological Conservation 143: 18-27. 



14 
 

Walters, A. C. and D. A. Mackay, 2005. Importance of large colony size for successful invasion 

by Argentine ants (Hymenoptera: Formicidae): evidence for biotic resistance by native ants. 

Austral Ecology 30: 395-406. 

 

Ward, D. F., J. R. Beggs, M. N. Clout, R. J. Harris, and S. O‟Connor, 2006. The diversity and 

origin of exotic ants arriving in New Zealand via human-mediated dispersal. Diversity and 

Distributions 12: 601-609. 

 

Ward, D. F, C. Green, R. J. Harris, S. Hartley P. J. Lester, M. Stanley, D. M. Suckling, and R. J. 

Toft, 2010. Twenty years of Argentine ants in New Zealand: past research and future 

priorities for applied management. New Zealand Entomologist 33:  68-78.  

 

Wieters, E. A., E. Salles, S. M. Januario, and S. A. Navarrete, 2009. Refuge utilization and 

preferences between competing intertidal crab species. Journal of Experimental Marine 

Biology and Ecology 374: 37-44. 

 

Williamson, M. and A. Fitter, 1996. The varying success of invaders. Ecology 77: 1661-1666. 

 

Wilson, J. R .U., E. E. Dormontt, P. J. Prentis, A. J. Lowe, and D. M. Richardson, 2008. 

Something in the way you move: dispersal pathways affect invasion success. Trends in 

Ecology and Evolution 24: 136-144. 

 

Worland, M. Roger and W. Block, 2003. Desiccation stress at sub-zero temperatures in polar 

terrestrial  Arthropods. Journal of Insect Physiology 49: 193-203. 

  



15 
 

Chapter 2 

Local scale spatio-temporal dynamics of Argentine ant populations 

2.1 Introduction 

Invasive species are increasingly recognized as one of the greatest threats to global biodiversity 

and can have dire economic consequences (Mack et al., 2000). There are multiple pathways for 

exotic species to gain extra range habitat, but they are more likely to establish in a novel area 

when the founder species has high propagule pressure and greater genetic diversity. This 

typically happens during human-mediated introduction in a mass dispersal or multiple entries 

(Wilson et al, 2008). One of the most important environmental factors to predict establishment 

of exotic ant species is temperature (Lester, 2005). Global species richness distribution is high 

towards the lower latitudes and is mainly associated with increases in temperature and 

precipitation (Huston, 1994). Countries like New Zealand have large temperature differences 

along their latitudinal gradient and this has a huge effect on species distribution patterns along 

the South and North Islands. Specifically, insects are sensitive to temperature changes as their 

physiology and behavioural responses are strongly regulated by temperature (Speight et al., 

2008). Accordingly, ant species abundance in New Zealand is greater in the North Island and 

this response is also observed in established exotic species (Don, 2007).  

 

One of the exotic ant species established in New Zealand is Linepithema humile (Argentine 

ants). Argentine ants are native to South America, mainly the drainage basin of Parana´ (Wild 

2004). They are believed to prefer a Mediterranean climate (Suarez et al., 2001). In the last 

century, assisted by human transport, they have successfully invaded ranges outside this 

climatic region except Antarctica (Suarez et al., 2001). Invasion by the Argentine ants has been 

associated with reduction of other arthropod communities in their invasion fronts (Cole et al., 

1992; Blancafort and Gómez 2005).  In New Zealand, Argentine ants were first detected in 

1990 in Auckland (Green, 1990) and have since invaded numerous areas across the country 

(Don, 2007; Ward et al 2010). There are on-going endeavours to build predictive models to 

foretell potential impacts and future distributions of invasive species (Austin, 2007). Hartley et 

al. (2006) developed a species-specific model to reflect the Argentine ant global future 

invasion frontiers. In another study, based on temperature requirements for developmental 

process, Hartley and Lester (2003) developed a degree-day model to predict distribution of the 

Argentine ants throughout New Zealand. This model predicts the persistence of the Argentine 

ants in the invaded localities and it also forecasts that this species would spread to the South 

Island as far as Otago. According to their findings, Argentine ants require 445 degree-days 

above 15.9°C to complete development from egg to adult stage. However, in spite of all these 
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endeavours, the actual trend of local spread of the Argentine ants in New Zealand remains 

untested. Therefore, the objective of the study is to use current and archived data to evaluate 

the rate of spread of this species across different habitat types in rural (coastal) as well as urban 

settings.   

  

2.2 Methods 

Study sites: the study was conducted in two types of habitats, rural (Piha and Baylys Beach) 

and urban (Dargaville, Hastings and Wellington) (Fig. 2.1). I conducted surveys in 2009 and 

2010. I also used pre-existing unpublished data obtained from Dr Stephen Hartley collected in 

2002, 2003, 2004 and 2005.  

  

 

Fig. 2.1. Location of study sites in the North Island, New Zealand. 

 

Sampling: Data were collected by Dr Stephen Hartley, Victoria University of Wellington from 

2002 to 2005 using the same sampling method as used in this study. These data allowed us to 

evaluate the invasion trend over an extended period of time. The location of baits in the earlier 

surveys were available as New Zealand Map Grid coordinates, and using a GPS for guidance, 

these were matched as closely as possible in the current survey (generally with an accuracy of 

+/- 10m). I sampled ants using non-toxic Xstinguish ant attractant bait and peanut butter in 

2008/09 and 2010. Vials of 65mm depth and 25mm diameter were used to collect ants. About 

5g of each bait type was put on opposite sides of the inner surface of the vials. The vials with 

baits were laid in the field and collected after 24hrs. In the urban habitats, about 200 baits were 

laid in each site over a 2x2km area, and in the rural coastal habitats 21 baits were laid along a 
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1km transect at each site each year. In Kelburn, Wellington the area of survey was intensified 

into a 0.5x0.5km area as the population was confined to this zone.  

 

Ant samples were frozen and then transferred to vials containing 70% alcohol for subsequent 

identification to their species level. Baited traps may not be an efficient method of collecting 

all ant species present in an area as different species respond differently to bait (Glotelli et al., 

2011; Vele et al., 2009).  However, combining both bait and visual search may enhance 

probability of ant capture. Accordingly, I conducted a visual survey for one minute at the time 

of collection of the bait tubes. The probability of detection ants by visual search is estimated to 

be 0.895 for ant sampling (Ward and Stanley, 2012).  

 

Data analysis: The local range size (area of occupancy) in each year was estimated using GIS 

(geographic information system) by generating “Thiessen polygons” around each sample point. 

Area was calculated around each sample where Argentine ants were found and summed to 

estimate total area occupied in that year. Areas without Argentine ants were excluded. In 

calculating the Thiessen polygons a maximum diameter of 100m was used in the urban sites 

(Wellington, Hastings and Dargaville). The linear rate-of-spread of the Argentine ant 

population were calculated as the “radius” (r) of the change in invaded area, where r = (A/π)
0.5

.  

 

Surveys at Piha and Baylys Beach were conducted along linear transects. Calculating Thiessen 

polygons is not practical in such a situation. Because some of the baits were placed about 10m 

from edge of bare sand, the circular area calculation would include areas where ants would not 

inhabit. Therefore, I calculated the proportion of baits occupied rather than an area. Regression 

analysis (generalized linear model, GLM, assuming Poisson distribution) was used to test 

change in the number of bait stations occupied with time, separately in each study site.  

 

2.3 Results  

Rate and trend of spread: the area occupied by Argentine ants increased in Dargaville from 

2002 to 2005 (Fig. 2.7A) with an average rate of spread of 19567m
2 

/yr (a linear change of 

79m/yr). However, their distribution declined from 2005 to 2009 and the rate was found to be -

19713m
2
/yr (a linear change of -79m/yr).  There was an increase of 1766m

2
/yr from 2009 to 

2010 (a linear increase of 24m/yr). Their increase in spread in Hastings continued until 2004 

(Fig. 2.7B). The rate of increase from 2002 to 2003 was 42166m
2
/yr (a linear increase of 

116m/yr). They also increased their spread from 2003 to 2004 in a rate of 28218m
2
/yr (a linear 

increase of 95m/yr). However, they declined from 2004 to 2009 at a rate of -9812m
2
/yr (a 

linear decline of 56m/yr) and from 2009 to 2010 the decline was found to be -118544m
2
/yr (a 
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linear decrease of 196m/yr). In Wellington, there was a sharp decline in spread from 2002 to 

2003 and in the next period, from 2003 to 2004 they increased. However, their spread 

continued to decline from 2004 to 2010 and seems to be on the brink of extirpation from that 

locality (Fig. 2.7C). The average rate of change in spread in Wellington was -13474m
2
/yr over 

an 8-year period. 

  

At Piha, the comparison between 2002 and 2008 shows that their distribution declined, 

however, they spread slightly from 2008 to 2010 (Fig. 2.8A). At Baylys Beach the size of the 

invaded area was the greatest in 2002, however, starting from 2008 until last sltudy, 2010 their 

distribution appeared to increase slightly (Fig. 2.8B) (see Table 2.1).  Except at Piha and 

Baylys Beach declines have been found to be significant (GLM, p < 0.001) (see Table 2.2). 

The changes in spread of the Argentine ants for all sites are detailed in Fig. 2.2-2.6. Other ant 

species have been displayed in Fig. 2.2-2.6. This is to show the distribution patterns of the 

Argentine ants in the presence of other native and exotic ant species. 

 

 

Fig. 2.2. Change in distribution pattern over time of L. humile and other ant species in 

Dargaville. n≈200 baits each year,  with no repeat sampling within a year. 
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Fig. 2.3. Change in distribution patterns and spreads of L. humile and other ant species with 

time in Hastings. n≈200 baits each year. Each year represents one time sample i.e. no repeated 

sampling within a year. 

 

Fig. 2.4. Change in distribution patterns and spreads of L. humile and other ant species with 

time in Wellington. n≈200 baits in 2002 and 2005, n=100 baits in 2008 and in 2010. Each year 

represents one time sample i.e. no repeated sampling within a year. 
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Fig. 2.5. Change in distribution patterns and spreads of L. humile and other ant species with 

time at Baylys Beach. n=21 baits each year. Each year represents one time sample i.e. no 

repeated sampling within a year. 
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Fig. 2.6. Change in distribution patterns and spreads of L. humile and other ant species with 

time at Piha. n=21 baits each year. Each year represents one time sample i.e. no repeated 

sampling within a year. 
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Fig. 2.7. Area deemed occupied by Argentine ants in A) Dargaville, B) Hastings and C) 

Wellington. Sample size in each year was n≈200 “point” samples but samples with Argentine 

ant present were 20 or less. There was no repeated sampling in each year, so no standard errors 

were calculated. 

 

Fig. 2.8. Change over time in the percentage of baited tubes occupied by Argentine ants in A) 

Piha and B) Baylys Beach (B). n=21 baits each year.  
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Table 2.1. Long-term change in trend of L. humile. Data are percent of bait occupied by L. 

humile in total sample. The dashes indicate no data collected. 

 

 % presence of L. humile  

study site 02/03 03/04 04/05 05/06 08/09 09/10 10/11 

Baylys Beach 43.0 - - - 19.0 29.0 38.0 

Dargaville 9.9 - - 15.0 - 9.5 9.6 

Piha 38.0 - - - 14.0 19.0 23.8 

Hastings 28.0 30.0 32.8 - - 27.6 21.8 

Wellington 11.3 5.8 6.4 3.0 7.5 - 3.0 

 

 

Table 2.2. Regression (generalized linear model, GLM) results of change in spread among 

different years in each study site.  

 Study Site   Estimate 
Std. 

Error 
z value 

residual 

df 
Pr(>|z|) 

Baylys Beach Year -0.0155 0.0788 -0.197 2 0.844 

Dargaville Year -0.03 0.0004 -82.41 2 <0.00001 

Piha Year -0.157     0.09 -1.69 1 0.0907 

Hastings Year -0.03 0.0002 -119.6 3 <0.00001 

Wellington Year -0.35 0.0011 -302.1 4 <0.00001 

 

 

2.4 Discussion 

The precise history of arrival of the Argentine ants at each study site is not known (Ward et al., 

2010) apart from being detected first in Auckland in 1990 (Green, 1990). Despite this 

uncertainty, there was an increase in spread in the earlier years of study (2002 to 2005), but in 

the later years (2005 to 2010) the trends of spread of the Argentine ants were found to be 

declining in all three of the urban study sites. They also declined in one of the rural sites (Piha) 

from 2002 to 2008, and remained more or less stable towards recent years (2010). They 

slightly increased their spread in the other rural site (Baylys Beach). Previous study by Nonacs 

and Soriano (1998) found that the Argentine ants retreated from certain invasion fronts and this 

was associated with food depletion. Another study documented that the Argentine ants spread 

and retraction both seasonally and annually (Heller et al., 2006). Unassisted spread of the 

Argentine ants is very slow. A number of studies indicate that Argentine ants spread locally an 

average of 100m per year (Ingram and Gordon, 2003; Krushelnycky et al., 2004), but it is 

possible that they can spread through natural budding up to about 150m/yr (Suarez et al., 

2001). In my study I found that they fluctuated between 79m/yr and 116m/yr although at one 

point in Dargaville the spread was 24m/yr. A model developed to predict the potential future 

distribution of the Argentine ant at a national scale suggests that they could spread farther even 
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to the southern part of the South Island, New Zealand (Hartley and Lester, 2003). However, 

my relatively fine-scale measurements of actual field distribution showed signs of contraction 

from their established fronts in four out of the five study sites.  

 

Although invasive species are commonly perceived to show a one-way increase in their 

introduced range, at a local scale the situation can be more dynamic.  Hastings, Dargaville, 

Baylys Beach and Piha are all considered climatically suitable for Argentine ants (Hartley et 

al., 2006). In spite of this suitability, the Argentine ants seem to be declining in four of the sites 

(Dargaville, Piha, Hastings and Wellington), in particular, Argentine ants seem to be on the 

verge of collapse in Wellington. Of the five sites studied Wellington has the lowest annual 

temperatures (mean annual temperature of 12°C) and is considered the most marginal in terms 

of climatic suitability (Hartley & Lester 2003, Hartley et al. 2008). 

 

 A number of factors can lead to observed fluctuations in the distribution of a population. 

Firstly, Argentine ants spread and retract seasonally (Heller et al., 2006). For this reason 

distributions in this study were consistently sampled in summer as far as possible. Densities of 

other invasive hymenopterans are also known to change annually (Barlow et al., 2002). Thus, 

some changes in spread may be due to demographic stochasticity (Haegeman and Loreau, 

2011). Effects of random sampling (mostly false negatives) could also lead to apparent shifts in 

distribution, however such random fluctuations should not generate long-term trends over time 

as was recorded at four of the five sites studied.  

 

The population declines recorded here may not be an isolated event. In a separate study, 

Argentine ants have been reported to be locally collapsed in over one-third of the sites they 

previously occupied across New Zealand (Cooling et al., 2012). In contrast, a decade-long 

study conducted in Corsica revealed an expansion of the Argentine ants‟ range as a result of 

“human-mediated jump dispersal” (Blight et al., 2009) .  The establishment of new invasion 

fronts by jump dispersal is not necessarily in contradiction with decline from already invaded 

sites. Argentine ants can abandon areas where they have been for long time while invading new 

areas (Heller et al., 2008). An implication of this is that in New Zealand there is a dynamic 

situation of invasions, declines and new invasions, operating as a fluid metapopulation.  

 

No control measures organized by city council or the government have been conducted at any 

of the study sites. However, some household treatments, for example poisoning in a kitchen or 

other parts of a building may have occurred very rarely. Nevertheless, this measure is unlikely 

to affect the overall spread of the Argentine ants. The theory of population growth states that 



25 
 

populations start to decline when they grow beyond the carrying capacity, which is typically 

associated with food depletion (Nonacs and Soriano, 1998). Biotic resistance by competitors is 

an important factor in resisting invasion especially at the early stage of establishments 

(Stachowicz, 1999), Walters and Mackay (2005) demonstrated that resident Iridiomyrmex sp. 

in Australia presented a significant competitive barrier to the establishment of Argentine ants, 

that could only be overcome if Argentine ants outnumbered Iridiomyrmex by 5-10 times. In 

contrast, the work of Sagata and Lester (2008) showed that increased propagule pressure did 

not help Argentine ants to outcompete another ant species (Monomorium antarcticum) in a 

manipulative field study in New Zealand. This implies that the Argentine ant‟s response to 

biotic resistance may vary with the type of competitor species and/or environmental conditions. 

In either case, biotic resistance does not provide a satisfactory explanation of declines that 

occur after a species has already established itself. The role of infectious diseases (Hayes and 

Richardson, 2001) and the build-up of specialist predators (Derivera et al., 2005) in causing 

the decline of invasive species is a strong theoretical possibility. A number of insect species are 

controlled by pathogens (Hajek et al., 2007). However, so far there is no empirical evidence to 

implicate infection or predation as the cause of the local declines of Argentine ants.  

 

Although all the factors discussed above may contribute in the decline of the Argentine ants, 

some studies suffer from false negative or false positive findings (Ebrahimi, 2008). Indeed 

food locating ability of the Argentine ants depends on their colony size (Gordon, 1995). 

Failure to detect Argentine ants in baits does not necessarily confirm absence of the Argentine 

ants in that area – although it is indicative of low abundance and/or unsuitable temperatures at 

the time of survey. The low occupancy recorded in Wellington in March 2003 may have been 

due to sampling occurring on a particularly hot day which dried inhibited ant activity on 

concrete and tarmac surfaces (Hartley pers. comm.) Interaction with other species may also 

result in false negatives. It is possible that other ants from the bait tube could displace them, 

however, Argentine ants are generally considered to be a behaviourally dominant species 

(Holway and Suarez, 2006) so this is unlikely to be an important factor in this study. At the 

same time they could still remain undetected from visual search although other studies have 

concluded that visual searching is a fairly reliable method of detection (Sanders and Barton, 

2001; Ward and Stanley, 2012).  

 

While the individual distribution pattern recorded on a particular day may be subject to many 

of the sampling effects described above, the fact that three out of five of the sites showed 

significant declines in distribution over time suggests that this is likely a general pattern of the 
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Argentine ant‟s fine-scale spatio-temporal dynamics in New Zealand. The results of Cooling et 

al. (2012) add weight to this interpretation. What remains unknown, however, is the 

mechanistic cause behind these dynamics and how the rates of local decline compared against 

the rate of establishment of new populations via large-scale jump-dispersal events.  It is the 

balance of these two processes (and how they interact with other factors such as climate, 

competitors and disease) that will determine the long-term change in the density and 

distribution of this important invasive species across New Zealand. Chapters 3 and 5 

investigate in more detail some of these abiotic and biotic influences on the fine-scale 

distribution and competitive ability of Argentine ants.  
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Chapter 3 

 

Microhabitat Structure and Ant Species Assemblages  

3.1 Introduction 

Species richness is affected by many different factors such as latitudinal and altitudinal 

gradients, size, age and connectivity of habitat, dispersal and migration barriers (Gaston, 2007; 

Freeman and Bell, 2011; Huston, 1994), disturbances (e.g. Gibb and Hochuli, 2001; Ricketts 

and Imhoff, 2003), productivity (e.g. Kruess and Tscharntke, 2002) and spatial heterogeneity of 

habitat (Mitchell et al., 2006; Flick et al., 2012). In the natural environment the main factors 

shaping species diversity distributions along latitudinal gradients are variability in temperature 

(Huston, 1994; Sun et al., 2009) and photoperiod (Vinagre et al., 2009) that decreases species 

diversity with increasing latitude. However, similar environmental gradients can occur across 

much shorter scales, e.g. differences in microclimate can be induced by a patchy distribution of 

plants due to radiation differences between plant covered and open areas (Dai, 1996; Martens 

et al., 2000).   

 

Adverse environments pose stress to organisms that are not adapted to these environments. 

Insect activity, reproduction and development are affected by temperature and photoperiod 

(Schiesari et al., 2011; Xue et al., 2002). Low temperature affects the activity of most insects 

negatively (Dolezal et al., 2007; Abril et al., 2008). On the other hand, high temperature 

accompanied by dry weather can have a negative impact through its desiccating effect 

(Worthen and Haney, 1999). Many species require a specific range of environmental 

conditions for survival and reproduction (Worthen and Haney, 1999). However, different 

species have different habitat preferences (Malavasi et al., 2007; Marianov et al., 2008). In 

patchy landscapes, organisms may respond differently to different patch types as different 

patch types have different microclimates (Heithecker and Halpern, 2006; Martens, 2000). 

Thus, species assemblages in a system may be a function of microhabitat patterns which induce 

microclimate differences among patch types. Small bodied animals such as insects easily 

perceive variations in these microhabitat structures (Ober and Hayes, 2008; Guido and 

Gianelle, 2001). Ectothermic organisms more considerably perceive and respond to 

temperature variation than endotherms do (Moreno-Rueda and Pizarro, 2007). As regulation of 

body temperature of ectotherms depends on environmental temperature their microhabitat 

preference and movement are controlled by ambient temperature (Dillon et al., 2012).  Ant 

distribution patterns are strongly associated with vegetation structures (Ríos-Casanova et al., 

2006) because of low temperature under dense tree covers. 
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There are 11 endemic ant species in New Zealand. While seven of these endemic species are 

widespread, the remaining four are restricted to one island (Don, 2007). In addition to the 

endemic species, there are 24 exotic, established species, six recently arrived and seven to eight 

species present that may be unable to establish (Don, 2007). One of the most globally well-

known introduced species; the South American native Argentine ants (Linepithema humile) 

have invaded a wide range of areas in New Zealand (Don 2007). The first detection of the 

Argentine ants in New Zealand was in Auckland in 1990 (Green, 1990; Harris, 2002). 

 

Objective 

The aim of this chapter was to study the distribution patterns of Argentine ants and other 

common ant species across different microhabitat types. I hypothesized that most ants  would 

be more strongly  associated with warmer microhabitats (short grass/herbs and concrete). To 

investigate whether differences in temperature might explain the observed distribution patterns 

I recorded soil temperatures and calculated the number of generations that Argentine ants could 

theoretically achieve in different microhabitat types based on a degree-day model of 

development.  

 

3.2 Methods 

Bait-sampling 

In order to determine distribution patterns of ant species, I sampled three urban locations 

(Kelburn (a Wellington suburb), Hastings and Dargaville) and two coastal duneland sites 

(Baylys Beach and Piha) using plastic tubes baited with non-toxic Xstinguish (Xstinguish 

TM
Argentine Ant Bait, Bait Technology Ltd., Auckland) and peanut butter in 2009 and 2010. . 

About 200 baits tubes were laid in each of the urban sites Hastings and Dargaville whereas in 

Wellington 100 baits were laid each year. At Piha and Baylys Beach, 21 baits were placed in 

each site each year, sampling habitats parallel to the coast for 1km, with bait stations every 

50m. Chapter 2 outlines full details of the bait sampling methods. Ant species were identified 

following Don (2007). 

 

Microhabitat characterisation  

Microhabitats at the point of bait placement in the urban sites were categorized as concrete, 

bare earth, litter, short grass (<5cm high), long grass (>5cm high) and trees (including woody 

shrubs). The microhabitats in the duneland sites were recorded in circles of 2m radius around 

each bait station as percentage cover of short herbs (0-50cm), tall herbs (50-100cm), short trees 

(2-5m) and tall trees (5m and above). I have used the word “herbs” here as there were many 

plants including a mixture of dicots and monocots. Percent cover of each of the same 
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microhabitat types was also recorded in a wider annulus 2m to 10m away, as larger trees often 

influenced ground condition.  

 

Soil temperatures  

To evaluate whether the distribution of the Argentine ants was association with temperature or 

degree-day levels temperature data loggers (UTBI-001TidbiT v2, MicroDAQ) were used to 

measure soil temperature over the course of one year or more. The data loggers were deployed 

in the field from January 2009 to May 2010 at Piha (duneland) and from January 2010 to July 

2011 in Dargaville (urban). Data loggers were buried 10cm below the ground surface. In each 

study site temperatures under four different microhabitat types were recorded. Microhabitats 

sampled were about 50m or more apart from each other in both study sites. In Dargaville the 

microhabitats sampled were concrete, short grass, long grass and under tall trees. At Piha, the 

microhabitats were bare sandy habitat, short herbs, tall herbs and under tall trees. Temperature 

sampling from bare sand at Piha was taken to evaluate whether the absence of ant species in 

this habitat was associated with extreme temperatures. Data loggers recorded temperature once 

every hour a day. At Piha, five data loggers were put in each microhabitat type at different 

localities. In Dargaville, one data logger was placed in each microhabitat.  

 

Data analysis  

Ant species community ordination: Community composition in relation to microhabitat 

variables was visualised using RDA (Redundancy Analysis) implemented in the Canoco 453 

ordination software (Canoco for Windows 4.53). I preferred RDA over PCA (Principal 

Components Analysis) as it emphasises the relationship between species and selected 

environmental factors (direct gradient analysis) while PCA does not show species relationships 

with environmental factors (Leps and Smilauer, 1999). It is appropriate to use RDA instead of 

CCA (Canonical Correspondence Analysis) because the species distribution curves were found 

to be linear when tested using eigenvalues (Leps and Smilauer, 1999). To evaluate whether 

species‟ association with any microhabitat type was statistically significant I analyzed the data 

using a Monte Carlo permutation test (run under the Canoco for Windows 4.53 package). I 

used frequency of capture of a species (presence/absence data) rather than abundance of each 

species at baits because a dominant species may reduce the abundance of the other at the bait.  

 

Single species and microhabitats: the ordination RDA analyses described above show ant 

species projected towards the microhabitat they were typically associated with. However, this 

analysis does not show precisely how the proportion of each species in each microhabitat type 
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varied among sites. Therefore, at the urban sites (where habitat types were classified as discrete 

categories) I analysed each species separately to show proportion of each species captured in 

each microhabitat. To test the statistical significance of microhabitat association I employed 

logistic regression. The dependent variable was the proportion of baits that were occupied by 

the species in question, and the independent factor was microhabitat (six nominal categories). 

The microhabitat categories were: bare earth, concrete, litter, short grass (mown, <5cm high), 

tall grass (un-mown >5cm high), and under and tall trees. The reference category was varied 

from species to species depending on what microhabitat the species is more positively or 

negatively associated. I specified the reference factor for the test as the analysis takes one level 

of a factor and compares the other levels against it. Reference specifications were made based 

on graph observations. Analyses were performed using the statistical and computing program 

R version 2.11.1. In calculating the standard error (SE) of proportions, I employed the formula 

for a binomial distribution, SE = (prop*(1-prop)/n)
0.5

, where prop = the proportion of baits 

within a microhabitat category where a species was present, and n = number of baits placed 

within that microhabitat category. At the duneland sites (Piha and Baylys Beach) I did not 

analyse proportion of a single species in each microhabitat. In these sites each microhabitat 

was estimated as a percent cover per site and there were strong cross-correlations between 

microhabitat variables. Therefore, I chose to use only the RDA analysis method as this method 

effectively shows the effect of the microhabitat gradients (see Fig. 3.4 and 3.5).  

 

Argentine ant degree-day development 

Seasonal and annual degree-days experienced in each microhabitat type were calculated to 

evaluate whether the microhabitat provided a suitable thermal environment for nesting and 

development of brood according to the degree-day model of development for Argentine ants 

(Hartley & Lester, 2003). Degree-days were calculated from the dataloggers as average daily 

temperature minus the developmental threshold (15.9°C) (see Hartley and Lester, 2003). 

Degree-days zero and below were excluded from the data as they don‟t contribute to the 

development of the Argentine ants. The optimum reproduction temperature for the ants is 28°C 

(Abril et al., 2008). The average daily temperature in summer was 22-26.5°C in concrete and 

short grass/herbs. Therefore there was no high temperature record that may have limited 

development as the average daily temperature was below the optimal temperature for 

reproduction. Although laboratory records show that the Argentine ants die at about 46°C, they 

can actively forage in a soil temperature of 70°C in the field (Human et al., 1998). Argentine 

ants require 445 degree-days to complete development from the egg to adult stage (Hartley and 

Lester, 2003) and this environmental threshold also appears to match their limits at Haleakala 
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National Park, Hawaii (Hartley et al. 2010). Based on this I calculated number of generations 

of Argentine ants that could develop in each microhabitat type annually and seasonally. I was 

unable to calculate degree-days relevant for the rest of the ant species collected due to lack of 

information on their developmental threshold. 

 

3.3 Results 

Spatial patterns of ant community composition 

In 2009 and 2010 I found fourteen ant species across the five sites. In Dargaville eleven ant 

species were collected and three species were found only in this site. I recorded six species 

each from Wellington and Baylys Beach. I also recorded seven ant species from each of 

Hastings and Piha (Table 3.1). Species assemblages differed among sites, as did the 

associations of ant community composition with microhabitat type. In Kelburn, Wellington, 

concrete was found to have significantly higher presence of L. humile and M. antarcticum 

(Monte Carlo permutation, permutations=500, pseudo-F=3.88, p<0.05 (Fig. 3.1). In Hastings, 

L. humile were again positively associated with concrete microhabitat, while all other species 

were negatively associated with the concrete microhabitat (Monte Carlo permutation, 

permutations=500, pseudo-F=15.9, p<0.01, Fig. 3.2). In the urban Dargaville site, almost all 

ants species were negatively associated with the bare earth microhabitat (Monte Carlo 

permutation, permutations=500, pseudo-F=2.42, p<0.05, Fig. 3.3), whereas at Piha, tall trees 

had a significant negative correlation with ant species richness and abundance (Monte Carlo 

permutation, permutations=500, pseudo-F=6.08, p<0.01, Fig. 3.4). At Baylys Beach, the 

percent cover of the herbs was consistent at around 30%. There was no significant correlation 

between L. humile presence and microhabitat there (Fig. 3.5) which could be due to the lack of 

variation in vegetation structure.  
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Table 3.1. Total ant species collected in the austral summers of 2008/09 and 2009/10. The 

numbers are occurrences (frequency of capture) of each species in total samples. For 

abundance of each species refer to appendix. 

  

 

Frequency of capture in 

species Wellington Hastings Dargaville Piha 
Baylys 

Beach 

Hypoponera eduardi 0 0 11 0 0 

Iridomyrmex sp. 1 47 5 2 0 

Linepithema humile 11 117 38 9 14 

Monomorium antarcticum 112 46 6 10 12 

Monomorium antipodium 3 4 18 0 0 

Monomorium smithii 0 0 0 0 2 

Nylanderia sp. 0 76 132 8 3 

Ochetellus glaber 0 34 8 2 0 

Pachycondyla sp. 4 0 0 0 0 

Pheidole rugosula 0 17 8 6 0 

Prolasius advenus 1 0 0 0 1 

Technomyrmex jocosus 0 0 27 0 0 

Tetramorium bicarinatum 0 0 3 0 0 

Tetramorium grassii 0 0 40 4 1 

Number of species 6 7 11 7 6 
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Fig. 3.1. The relationships between microhabitat types and ant species community composition 

in Kelburn, Wellington urban site, assessed using bait traps (n ≈ 200 baits). The RDA plot was 

derived from presence/absence data. A significant correlation exists when a species arrow head 

falls within a circle whose diameter is the microhabitat arrow. For example, L. humile and M. 

antarcticum are significantly positively associated with concrete and negatively correlated with 

shrot grass. 

 

 
Fig. 3.2. The relationships between microhabitat types and ant species community composition 

in Hastings urban site assessed using bait traps (n ≈ 400 baits). The RDA plot was derived from 

presence/absence data. A significant correlation exists when a species arrow head falls within a 

circle whose diameter is the microhabitat arrow.  
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Fig. 3.3. The relationships between microhabitat types and ant species community composition 

in Dargaville urban site assessed using bait traps (n ≈ 400 baits). The RDA plot was derived 

from presence/absence data. A significant correlation exists when a species arrow head falls 

within a circle whose diameter is the microhabitat arrow.  
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Fig. 3.4. The relationships between microhabitat types and ant species community composition 

at Piha duneland site assessed using bait traps (n = 42 baits). The RDA plot was derived from 

presence/absence data. A significant correlation exists when a species arrow head falls within a 

circle whose diameter is the microhabitat arrow. r=2m is microhabitat sampled in 2m radius 

around a bait sample, and r=2-10m is microhabitat sampled 2m away but not more than 10m 

from a bait sample. 
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Fig. 3.5. The relationships between microhabitat types and ant species community composition 

at Baylys Beach duneland site assessed using bait traps (n = 42 baits). The RDA plot was 

derived from presence/absence data. A significant correlation exists when a species arrow head 

falls within a circle whose diameter is the microhabitat arrow. r=2m is microhabitat sampled in 

2m radius around a bait sample, and r=2-10m is microhabitat sampled 2m away but not more 

than 10m from a bait sample. 

 

Single species and microhabitats 

The proportion of each species in each microhabitat type varied among the urban sites. Number 

of ants species collected has been described in the above paragraph (see Table 1 and Appendix). 

In Wellington (Kelburn) I found two numerically dominant species, L. humile and M. 

antarcticum. The proportion of L. humile was higher in concrete habitats relative to trees, 

though not statistically significant (β=0.82, z=1.08, P=0.28, Fig. 3.6). M. antarcticum were 

found in significantly higher proportion in litter relative to trees (β = -1.81, z =-2.92, P<0.01, 

Fig. 3.6). In Hastings compared with the rest of the microhabitats, L. humile were found to be 

significantly positively associated with concrete (e.g. β = -1.47, z= -4.37 p<0.01 relative to 

bare earth, Fig. 3.7).  Monomorium antarcticum were found to be in significantly higher 
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proportion under tree microhabitats relative to concrete (β=-2.53, z=-3.01, p<0.01, Fig. 3.7). 

Nylanderia sp. species were significantly lower in concrete than in litter (β=-1.94, z=-2.94 

p<0.01, Fig. 3.7) while Iridomyrmex sp. were found to be in significantly higher proportion in 

bare earth microhabitat type than in long grass (β=-1.37, z=-2.37, p<0.05, Fig. 3.7) while P. 

rugosula and O. glaber did not show greater occupancy in one microhabitat than the other (Fig. 

3.7). In Dargaville, L. humile were found in significantly higher proportions in concrete 

relative to long grass (β=-1.26, z=-2.32 p<0.05, Fig. 3.8). Momomorium antarcticum were not 

found in concrete, litter or under trees and the proportion of occupancies in the bare earth, short 

grass and long grass were low (<0.05, Fig. 3.8). Nylanderia sp. were at higher proportions in 

bare earth than in tall grass (β=-0.64, z=-1.96   p<0.05, Fig. 3.8). Three other species at 

Dargaville, P. rugosula, O. glaber and Iridomyrmex sp. did not show any significant difference 

among microhabitats. Although there were no captures of P. rugosula in bare earth, concrete 

and litter, they were collected at negligible proportions (<0.05, Fig. 3.8) in short grass, long 

grass and tree habitats.  

  

 

Fig. 3.6. Occupancy of Argentine ants (L. humile) and M. antarcticum across different 

microhabitat types in Kelburn, Wellington. The plot shows the proportion of baits occupied by 

each species in each microhabitat (mean±SE). be=bare earth (n=30), co=concrete (n=44), 

ll=litter (n=21), sg=short grass (n=35), lg=long grass (n=16) and tr=tree (n=35). Proportion = 

occurrences/n, where occurrence is presences of a species (not number of individuals of the 

same species) in total samples in each microhabitat.  
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Fig. 3.7. Distribution of each ant species in different microhabitat types in Hastings (mean±SE).  

The plot shows proportion of the frequency of capture of a species in each microhabitat. 

Proportion = a species occurrences/n, where occurrence is presences of a species (not number 

of individuals of the same species) in total samples in each microhabitat be=bare earth (n=97), 

co=concrete (n=77), ll=litter (n=29), sg=short grass (n=134), lg=long grass (n=78) and tr=tree 

(n=28). 
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Fig. 3.8. Ant species occupancy of different types of microhabitats in Dargaville (mean±SE).  

The plot shows proportion of the frequency of capture of a species in each microhabitat. 

Proportion = a species occurrences/n, where occurrence is presences of a species (not number 

of individuals of the same species) in total samples in each microhabitat. be=bare earth (n=71), 

co=concrete (n=30), ll=litter (n=15), sg=short grass (n=123), lg=long grass (n=96) and tr=tree 

(n=27). 
 

 

Argentine ant development 

Soil temperatures, and hence expected developmental rates of Argentine ants were found to be 

affected by microhabitat type. A degree-day model was used to predict the expected number of 

generations that could develop per year for nests in different microhabitats. The degree-day 

predictions varied with microhabitat type and differed in urban and rural sites (Table 3.2). At 

Piha Argentine ant nests are expected to develop more than three generations within a year in 

short herbs and in open sandy microhabitats. However, as there were no ants in this open sand 

area I did not include this microhabitat in the ant distribution patterns. Soil temperatures 



43 
 

recorded under tall herbs or under tree microhabitats seem insufficient to allow L. humile nests 

there to raise even a single generation per year (Fig. 3.9). Breaking down the year into seasons, 

of the degree-day model predicts no development in winter, while the ants are expected to 

show some potential for development in spring. In summer the ants are expected to develop 

more than two generations in short herbs and more than one in open sandy microhabitat. In 

autumn, even though some development could occur, no complete generation is expected in 

any of the microhabitat types (Fig. 3.10).  

 

In the urban site, Dargaville, Argentine ants are predicted to produce more than three 

generations if they nest in short grass microhabitats, more than two and half generations in 

concrete microhabitats and more than one in the tall grass microhabitat type. However, the ants 

might not complete even one generation under tree microhabitats (Fig. 3.11).  When analysed 

by season, in short grass and concrete, the ants are predicted not to show any development in 

winter, while in spring they may develop a half generation. In summer, in short grass and in 

concrete they could develop to more than one and a half generations, while in tall grass they 

could develop one generation. In autumn, even though some development could occur, no 

complete generation is expected in any of the microhabitat types (Fig. 3.12).  

 

I had deployed five data loggers in each microhabitat type. However, I was unable to recover 

them all. For short herbs only one data logger was found, for sand and tall herbs two data 

loggers each, and for tree microhabitat type all five were recovered. As I used GIS data points 

for positioning, I had accurate location for recollection, so it appeared that the lost data loggers 

were removed by other people. 

 

Table 3.2. Seasonal and annual degree-days above 15.9°C recorded in different microhabitats 

at Piha and Dargaville. Values in bold are greater than 445, the number of degree days required 

by L. humile to complete one generation. 

Piha Habitat 

Season Sand Short herbs Tall herbs Under tree 

Winter (Jun-Aug) 0 0 0 0 

Spring (Sep-Nov) 197 216 18 4 

Summer (Dec-Feb) 802 930 324 268 

Autumn (Mar-May) 343 308 92 105 

Annual degree-day 1341 1454 434 377 

      Dargaville Habitat 

Season Concrete Short grass Tall grass under tree 

Winter (Jun-Aug) 0 0 0 1 

Spring (Sep-Nov) 185 222 55 17 

Summer (Dec-Feb) 771 838 472 340 
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Autumn (Mar-May) 247 298 138 127 

Annual degree-day 1202 1357 665 483 

 
Fig. 3.9. . Expected annual development rate for Argentine ants within each microhabitat type 

at Piha. One generation is a development from an egg to an adult, and assumed to occur after 

445 degree-days above a threshold of 15.9°C. Each bar graph shows the number of generations 

developing over a one year period (mean ± SE). As a result of missing data loggers, the bar 

graph for short grass at Piha does not show SE. 

 

 
 

Fig. 3.10. Expected seasonal developmental progress of Argentine ants in each microhabitat 

type at Piha. One generation is a development from an egg to an adult, and assumed to occur 

after 445 degree-days above a threshold of 15.9°C (n=1 per habitat type). Data loggers 

recorded temperature in each microhabitat over one year period. Each data logger was 

deployed for one year and then the data were separated into seasons.  
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Fig. 3.11. Expected annual development rate for Argentine ants within each microhabitat type 

in Dargaville. One generation is a development from an egg to an adult, and assumed to occur 

after 445 degree-days above a threshold of 15.9°C (n=1). Data loggers recorded temperature in 

each microhabitat over one year period. 

 

 

 
 

Fig. 3.12. Expected seasonal developmental progress of Argentine ants in each microhabitat 

type in Dargaville. One generation is a development from an egg to an adult, and assumed to 

occur after 445 degree-days above a threshold of 15.9°C (n=1). Data loggers recorded 

temperature in each microhabitat over one year period. Each data logger was deployed for one 

year and then the data were separated into seasons.   

 

3.4 Discussion 

In this study I found that differences in microhabitat type were associated with differences in 

ant species‟ community composition in urban and rural sites in the North Island of New 

Zealand.   
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Ant association with microhabitat in urban sites 

In the southern part of the North Island, Wellington (Kelburn), the two most abundant ant 

species (L. humile and M. antarcticum) were positively associated with each other in the RDA 

ordination. This may be due to their need for warmer microhabitat as they were both associated 

with concrete habitats. In the warmer areas further north, at Hastings and Dargaville, L. humile 

were also found to be associated with concrete microhabitats. On the other hand, at these sites 

M. antarcticum were found to be less frequent in concrete microhabitats and more often 

present under trees (Hastings) or in long grass (Dargaville). Field studies conducted near 

Wellignton have revealed that Argentine ants are little affected by M. antarcticum (Sagata and 

Lester, 2008). However, in my laboratory experiment (chapter 5), although M. antarcticum 

showed increased aggression with higher temperatures, L. humile were found to be more active 

at high temperatures (around 20°C) and better able to displace M. antarcticum at high 

temperatures. Typically, Argentine ants aggressively displace all other resident ant species 

when they invade (Holway and Suarez, 2006). Even so, to displace other ant species Argentine 

ants heavily depend on their larger colony size (Walters and Mackay, 2005; Sagata and Lester, 

2008) which is initially regulated by the mode of dispersal at their early stage of establishment 

(Wilson et al., 2008).  

 

As M. antarcticum are native to New Zealand, I expected them to be less affected by cooler 

temperatures and thereby to be found in abundance in cooler, shadier habitats in warmer areas 

such as Hastings. As predicted, M. antarcticum were more frequently found in tall grass and/or 

under trees in Dargaville and Hastings respectively. At Dargaville M. antarcticum may have 

been displaced by other species, for example Nylanderia sp. were found at highly frequency of 

occurrence (>0.4) under trees, and/or the tall grass habitat may have provided optimal 

temperature conditions. Although competition between native and non-native species may have 

a negative effect on species diversity (Burns and Lester 2007), it has an important implications 

for biotic resistance to invasive species. My data show that the invasive species, L. humile are 

more often associated with concrete and short grass microhabitats (summer daily average 

temperature 20-26.5°C) in urban areas. This result is consistent with the temperature suitability 

for the Argentine ants as they are originally endemic to a Mediterranean climate (Wild, 2004; 

Holway et al., 2002). On the other hand, the New Zealand endemic ant species M. antarcticum 

seem to have flexible microhabitat associations in different microhabitat types in Wellington. 

This flexibility may help them overcome or tolerate the effect of invasion by L. humile as they 

may find a refuge in microhabitats less suitable to L. humile.   
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Despite temperature being recognized as one of the most important factors influencing ant 

species‟ distribution and establishment (Lester, 2005), resource availability such as food can 

also strongly regulate population growth (Letcher and Bengtson, 1993) and resource 

availability may also vary with habitat type. Resource availability is also an important factor in 

predicting competition outcome (Radford and Ridley, 2008; Rochette et al., 2010; Wang eat al., 

2011; Amezaga and Rodriguez, 1998). In resource limited habitats it is difficult to recruit more 

species without displacing the existing species (Li and Smith, 2003). Although there is no 

report to show effect of predators on ant species in New Zealand, studies show that there are 

predator species that prey upon ant species in other part of the world (Ito et al., 2009) that 

could have effect on the abundance of ant species. Distribution of predator species also varies 

with microhabitat structure (Harvey et al., 2008). 

 

Ant association with microhabitat in rural duneland sites 

As in the urban sites, ant species distribution patterns were found to vary with microhabitat 

type in the rural areas. In urban areas L. humile more frequently occurred in concrete 

microhabitat. However, in the absence of this microhabitat type L. humile may have alternative 

habitat. In the rural site of Piha, with sandy soil, L. humile were found in short herbs (0-50cm 

tall) at high frequency and less often in other microhabitat types, whereas the other ant species, 

for example M. antarcticum, were found across a wide range microhabitat types from short 

herbs to tall trees. Temperature is considered as an important predictor of the distribution of 

exotic ants (Lester, 2005) and in the case of L. humile activity, temperature can be a limiting 

factor (Abril et al, 2008; Hartley and Lester, 2003). Although L. humile are able to invade 

short herb microhabitat types, their temperature tolerance range may still be limiting as the 

lower threshold for appreciable development is 15.9°C (Hartley and Lester, 2003). Species 

with wider ranges of temperature tolerance have an advantage in overcoming adverse 

conditions and contribute to the community structure in a system (Worthen and Haney, 1999). 

At Daragville it appears that Nylanderia sp. occupy a wide range of habitats at relative high 

frequency.  

 

Some of the important factors attributed to different responses of organisms to microhabitat 

variation are radiation (Martens, 2000), temperature and moisture differences (Bennie et al, 

2008), differences in resource availability, competitors, predators and prey. Food availability is 

second only to the effect microclimate (temperature and moisture) on ants‟ activities such as 

foraging and fecundity (Heller and Gordon, 2006). Climate has greater impact on species 

richness of ectotherms than on edontherms (Dillon et al., 2012). Due to this effect the 
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developmental process of the Argentine ants is well regulated by temperature that they stop 

growth at temperature level 15.9 °C and below (Hartley and Lester, 2003). In warmer areas 

such as southern California Argentine ants prefer moist rather than relatively dry habitats 

(Holway, 2005), whereas in relatively cool areas they prefer drier microhabitats (Hartley et al., 

2010). Argentine ants are thought to be less affected by food availability as they are capable of 

shifting diet between carnivory and herbivory according to food availability (Tillberg et al 

2007). I did not test whether there was resource variation among patch types that could be a 

reason behind the different responses of ants to different microhabitats. However, other studies 

point out that some carnivorous insects prefer open habitat types and herbivorous insects often 

prefer high plant species richness (Harvey et al., 2008). Herbaceous plant species richness is 

generally higher in open patches (Perez-Ramos et al, 2008). All these relationships suggest that 

insect abundance and richness will generally be higher in more open patches. My speculation is 

that ants will move into habitats with more resources if the temperature is within their tolerance 

range.  

 

Sampling effects 

Where two or more habitats occur in close spatial proximity to one another there is an 

increased opportunity for ants to forage flexibly across multiple habitats depending on seasonal 

fluctuations in resource availability and access to suitable thermal environments (Scharf et al., 

2008; O’Neill and Kemp, 1992). It is possible for ants to be captured outside of their primary 

foraging or nesting microhabitat. A microhabitat where the bait is placed may be within 

foraging distance of alternative microhabitats. My observations during this study were that 

foraging trails of L. humile extended about 5-7m from the nest. There were occasionally longer 

trails, but with nests along the trails, and as found by Ingram (2002) the Argentine ants occupy 

multiple nests. Nests can be linked within a trail of 15m (Heller and Gordon, 2006). 

Nevertheless, I believe the occasional long trails are unlikely to affect the overall result. As the 

baits I used were about 5g each, only the dominant ant species may have been captured as a 

result of competitive exclusion, although the other ant species may be at high abundance at that 

microhabitat type (Grover et al., 2008; Li and Smith, 2003). To minimize this effect I used 

absence or presence data in the analysis instead of abundance of each species at baits. Arboreal 

ants also may not readily be captured using the bait collection method (Schonberg et al., 2004; 

Gotelli et al., 2011). But this effect can be greatly minimized by visual searches as I did during 

sample collection (Ward and Stanley, 2012; Sanders and Barton, 2001). 

 

Degree-days 
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Measured degree-days corresponded well with the Argentine ants‟ presence in high incidence 

in concrete and short herbs/grass microhabitats. My degree-day calculation indicates that 

Argentine ants have the greatest opportunity to complete rapid development when their nests 

are located in concrete and in short herbs/grass microhabitat types, while nests located under 

the shade of trees will rarely allow the completion of a complete life cycle in one year. The 

calculated high development rate in summer is supported by existing knowledge of the effect 

of high temperatures on summer insect outbreaks (Berg et al., 2006) and summer outbreaks are 

also evident in the case of the Argentine ants  (Markin, 1970). Wherever the fecundity of 

Argentine ants is limited by temperature, so too will be their distribution (Hartley et al., 2010; 

Hartley and Lester, 2003). Most climate envelope models used to predict the potential 

distribution of invasive species operate with data averaged across relatively coarse scales (e.g. 

grid cells of 10 km or greater). Measurements taken here indicate that within a broad area the 

actual distribution of an invasive insect may be restricted to particular microhabitats, and the 

identity of these microhabitats may also be predictable based on micro-climatic and 

ecophysiological considerations (Hartley et al. 2010; Chown et al., 2002). 

 

 Conclusion 

Differences in ant community composition were associated with differences in microhabitat. 

Specifically, Argentine ants, the main focus of this study were strongly positively associated 

with concrete in urban sites and short herbs at the rural sites. This association is consistent with 

Argentine ants favouring warmer microsites where they are more likely to be behaviourally 

dominant and wherein their nests can support multiple generations per year. However, because 

this study was entirely observational it is not possible to discount other factors such as 

differences in food availability that can also occur between different microhabitats. Further 

studies, for example using temperature-controlled lab experiments of interacting ant colonies, 

are the obvious next step to try and separate the influence of these two contributing factors. At 

a global level, the importance of such studies is relevant to understanding the interactive effects 

of climate change, habitat modification and invasive species that so frequently threaten 

endemic biodiversity.      
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3.6 Appendix 

 

3.6.1. Ant species collected by bait trapping in Kelburn, Wellington in 2009 and 2010. 

Presence=frequency of capture, abundance=total number of individuals. be=bare earth, 

co=concrete, sg=short grass, lg=tall grass, ll=litter and tr=trees. 
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be 30 
presence 15 2 0 0 0 0 2 

abundance 346 8 0 0 0 0 2 

co 44 
presence 25 5 0 0 0 0 2 

abundance 341 5 0 0 0 0 2 

lg 16 
presence 1 1 0 0 0 0 2 

abundance 157 26 0 0 0 0 2 

ll 21 
presence 17 0 0 1 0 0 2 

abundance 159 0 0 3 0 0 2 

sg 35 
presence 22 0 2 0 0 0 3 

abundance 225 0 8 0 0 0 3 

tr 35 
presence 23 2 1 3 1 0 5 

abundance 379 6 19 7 1 0 5 
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3.6.2. Data collected in 2009 and 2010 in Hastings. Presence =frequency of capture, 

abundance=total number of individuals. be=bare earth, co=concrete, sg=short grass, lg=tall 

grass ,ll=litter and tr=trees. 
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presence 21 14 2 17 11 1 19 0 0 1 0 8 

abundance 196 120 57 148 138 6 64 0 0 2 0 8 

co 77 
presence 42 2 2 6 5 0 4 1 0 0 0 7 

abundance 384 26 57 18 10 0 5 1 0 0 0 7 

lg 78 
presence 13 6 2 4 4 1 18 1 0 0 0 8 

abundance 192 23 3 26 12 2 52 6 0 0 0 8 

ll 29 
presence 5 2 1 4 1 0 8 0 1 0 0 7 

abundance 51 59 2 10 2 0 22 0 5 0 0 7 

sg 134 
presence 26 12 6 13 7 1 21 2 0 0 0 8 

abundance 261 79 114 34 28 4 43 20 0 0 0 8 

tr 28 
presence 7 7 1 3 3 1 3 0 0 0 2 8 

abundance 26 121 6 16 57 23 3 0 0 0 2 8 

 

 

3.6.3. Ant species at Piha collected in 2009 and 2010. Total sample size (n) is 42. Microhabitat 

structures are presented here as each sample was in close proximity to multiple microhabitats. 
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3.6.4. Data collected in 2009 and 2010 in Dargaville. Presence =frequency of capture, 

abundance=total number of individuals. be=bare earth, co=concrete, lg=tall grass, ll=litter, 

sg=short grass and tr=trees. 
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be 71 
presence 2 6 32 0 3 3 1 0 0 1 0 7 

abundance 31 22 56 0 8 7 3 0 0 1 0 7 

co 30 
presence 0 8 11 0 2 4 0 0 1 1 0 6 

abundance 0 111 20 0 14 12 0 0 3 8 0 6 

lg 96 
presence 5 9 29 1 14 2 4 0 3 1 0 9 

abundance 15 89 76 5 62 4 9 0 6 1 0 9 

ll 15 
presence 3 3 6 0 3 2 0 0 0 0 1 6 

abundance 25 4 14 0 16 3 0 0 0 0 1 6 

sg 123 
presence 5 9 41 6 13 11 1 2 3 1 2 11 

abundance 60 105 87 45 38 32 7 2 3 1 7 11 

tr 27 
presence 3 3 12 1 5 2 0 1 1 0 0 8 

abundance 46 15 67 2 35 3 0 17 2 0 0 8 

 

 

3.6.5. Ant species at Baylys Beach sampled in 2009 and 2010. Sample size (n) = 42. 

Microhabitat structures are presented here as each sample was in close proximity to multiple 

microhabitats. 
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Chapter 4 

 

Effect of Argentine ant invasion on beetle species richness and community composition in 

different vegetation types 

4.1 Introduction  

Loss of biodiversity has been recognized as one of the major issues of species conservation and 

environmental sustainability (Dietz and Adger, 2003; Vitousek et al., 1997). Among the main 

factors contributing to loss of biodiversity are habitat destruction (Olff and Ritchie, 2002), 

anthropogenic disturbance (Biggs et al., 2008), invasive species (Vitousek et al., 1997) and 

climate change (Brooker et al., 2007). The negative effect of invasive exotic species on the loss 

of biodiversity is second only to the effect of habitat destruction (Wotton et al., 2004; Wilcove 

et al., 1998) and invasive species are regarded as one of the leading causes of species 

extinctions (Wilcove et al., 1998; Pimentel et al., 2006). Invasive species also inflict serious 

economic damage due to loss of productivity and the cost of control measures (Kaiser and 

Burnett, 2010; Yemshanov et al., 2011; Cook and Fraser, 2008; Pimentel et al., 2000). The 

spread of invasive species is facilitated by climate change (Simberloff, 2000) and human-

mediated long distance dispersal (Floerl and Coutts, 2009; Carrasco et al., 2010). 

 

Invasive species colonize habitats previously inaccessible and establish their population via 

various dispersal pathways. Dispersal is a process that contributes to community assembly and 

the maintenance of local species richness, but not all types of dispersal events are “natural” 

(Wilson et al., 2008).  Human-assisted dispersal can occur accidentally (Lodge, 1993; Cole et 

al., 1992) or by the deliberate introduction of species as part of biological control measures 

(Jonsen et al., 2007) or cultivation (Pellikka, 2009). Factors such as food availability (Nonacs 

and Soriano, 1998) and environmental suitability contribute to the success (or failure) of exotic 

species and their transition to invasive status (Holway, 2005). Exotic species are more likely to 

establish in a novel area when the founder species has high propagule pressure and high 

genetic diversity, which may be more likely to occur through human-mediated mass dispersal 

or multiple introductions (Wilson et al., 2008).  

 

One of the most notoriously invasive species is Linepithema humile (Argentine ants) (Holway 

et al., 2002). This worldwide invasive ant species (Hartley et al., 2006) is the focus of this 

study. The presence of these ants in New Zealand was first detected in 1990 in Auckland 

(Green, 1990). Though thought to be at their earlier stage of expansion, they have been of 

extreme concern in agriculture and have inflicted economic damage due to the costs of control 

and loss of productivity in New Zealand (Ward et al., 2010). Argentine ants are highly efficient 
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and flexible competitors partly because of their rapid recruitment of workers to food, highly 

aggressive behaviour toward other ant species, occupation of multiple nests and nest budding 

ability (Ingram, 2002), redistribution of workers among nests, and relocation of brood (Holway 

and Case, 2000). They have also a unique ability to maximize food search by forming 

convoluted trails (Gordon, 1995).  

 

Argentine ants are found to negatively affect plants‟ reproductive success via at least two 

mechanisms: they can hinder seed dispersal by other ant species and expose the seeds to seed 

predators (Carney et al., 2003), and they can deter pollination of flowers by other insects 

(Lach, 2007). Holway and Suarez (2006) found that Argentine ants displace all native ants in 

coastal California. Another study by Cole et al. (1992), in Hawaii, also showed a reduction in 

the number of other arthropods in areas where Argentine ants were present. A contrasting 

result shows that Argentine ants do not always affect other arthropod species (Holway, 1998). 

The effects of the Argentine ants may not be the same in different regions or habitat types. 

Therefore, there is a need for thorough study on the effect of Argentine ants on other arthropod 

species. The objective of this study was to evaluate the association between Argentine ant 

invasion on beetle species richness and abundance. A preliminary analysis was also conducted 

on all captured arthropod species orders to assess a general distribution pattern in response to 

vegetation structure and Argentine ant invasion.  

   

4.2 Method 

4.2.1 Study site and vegetation structure 

Two study sites were selected in the North Island, New Zealand at Piha and Baylys Beach. 

Previous invertebrate studies conducted at these sites, in December 2002 and January 2004 

(Hartley unpub. data) provided important background information on the invasion history and 

earlier community composition. Both sites are rural, coastal dune and scrub habitats. The 

relatively open vegetation and northerly location allows soil temperatures to warm-up during 

summer. Baylys Beach is located about 138km north of Auckland and the study site had 

homogeneously similar habitat type between the invaded and uninvaded areas. These areas 

(invaded and uninvaded) were mostly dominated by grass (Spinifex sericeus) and the soil type 

was mostly loose sand. The second study site at Piha is located about 29km west of Auckland 

city. In this study site the habitat invaded by Argentine ants was structurally different from the 

uninvaded area in terms of vegetation type and cover. The uninvaded area had shrub and tree 

cover of 45-100% whereas the invaded area was mostly open with short herbs and about 30% 

canopy cover according to visual estimation. To evaluate whether there was any association 
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between species and habitat type, I estimated plant height and percent cover in all study areas. 

This helps to infer whether variation in distribution was due to invasion by the Argentine ants 

or microhabitat structure. 

 

4.2.2 Sampling 

Invertebrates: To sample surface-active invertebrates I used standard pitfall trapping methods. 

Plastic cups with depth of 9cm and diameter 7cm were buried flush with the soil surface. Each 

plastic cup was filled with about 50ml salt solution (NaCl 100g/l) and a few drops of detergent 

were added to break the surface tension. At each sampling station three replicate pitfall traps 

were placed 1m apart from each other at each vertex of an equilateral triangle. Twenty-one 

stations (63 pitfall traps) were established at intervals of 50m forming a 1km transect running 

through the dune vegetation parallel to the beach. At the centre of the triangle was placed 5g 

Argentine ant attractant bait, non-toxic Xstinguish (Xstinguish 
TM

Argentine Ant Bait) and 

peanut butter in a plastic vial to provide further confirmation of the distribution of Argentine 

ants. The distribution of Argentine ants in these studies was studied in chapter 2 and provides 

background for this chapter.  Traps were left in the field for 24 hours in January 2009 at Piha 

and Baylys Beach. Invertebrate sampling was repeated in January 2010 in both sites. After 

collection, the salt solution was drained and samples were transferred into 70% ethanol and 

subsequently identified and separated by taxonomic order. In addition to samples in 2009 and 

2010 I also used unpublished data for samples collected in a similar manner from the same area 

in December 2002 and January 2004 (Hartley unpub. data). As coleopterans were my target 

response taxon, I identified them to species or genus level using a beetle identification key 

(Klimaszewski and Watt, 1997) and referring to samples from Te Papa museum (Wellington), 

Timaru museum as well as material from the 2002-04 survey that had been identified by Dr 

Stephen Thorpe.  

 

Vegetation: To test whether the arthropod assemblage was associated with habitat structure, I 

categorized vegetation structure as percent cover in each of four tiers: 0-50cm, >50cm-1m, 

>1m-2m, and >2m-5m, for convenience named as “short herbs”, “tall herbs”, “short trees” and 

“tall trees” respectively. Percent cover of each plant category was recorded in two concentric 

rings: the first within two metres around a station and the second from two up to ten metres 

away from a sample. At Baylys Beach the vegetation was mostly tall and short herbs while at 

Piha there was high vegetation structure diversity (short herbs, tall herbs, short trees and tall 

trees). Historically, tree cover (tall and short) at Piha was about 12% according to early study 
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(Hartley unpub. data, 2002). During the years 2009 and 2010 tree cover (tall and short) was 

about 45-100% while at Baylys Beach vegetation remained almost unchanged. 

 

4.2.3 Data Analysis  

Argentine ant distribution: To provide an overview of the distribution of the Argentine ants 

as well as other ant species at both the study sites, Piha and Baylys Beach in 2002 and 2010, I 

drew maps for the first and final survey  using GPS (Garmin 60) and GIS (ArcGIS version 

9.3). Detailed studies of the Argentine ants‟ spread and association with microhabitat types 

were conducted in chapters 2 and 3 respectively. 

 

Arthropod community structure: I performed a preliminary analysis at the level of arthropod 

orders using a constrained ordination, redundancy analysis (RDA) (Leps and Smilauer, 1999). 

This analysis shows in two-dimensions the variation in arthropod community composition that 

is most directly associated with the presence-absence of Argentine ants and vegetation 

structure. 

 

Beetle species: I selected coleoptera to investigate a species-level response to Argentine ants‟ 

invasion. Coleoptera were chosen due to their high abundance and diversity of species, 

representing a wide range of ecological guilds (Chinery, 1986). I used RDA to evaluate the 

spatial distribution of beetles in response to microhabitat structure and presence of the 

Argentine ants. I also used an unconstrained ordination method, Principal Components 

Analysis (PCA) to see whether invaded versus uninvaded areas, with recent versus long-term 

invasion history, were evident in the major axes of variation in community composition.  

 

To test whether species richness (number of species) showed any statistically significant 

difference between the invaded and uninvaded areas, and within the same habitat but different 

years, I analyzed the data using either parametric or nonparametric methods. I checked 

statistical assumptions for parametric tests, and data that failed to meet these assumptions after 

either square root or logarithmic transformation were analyzed using nonparametric methods 

(Wilcoxon rank-sum test). The Bray-Curtis distance measure was used to quantify differences 

(dissimilarity) in species composition across time and space. Differences in species 

composition were compared between the invaded and uninvaded habitats and among different 

years. The Bray-Curtis distance method was preferred as it takes into account not only the 

presence/absence data but also abundance of each species (Faith et al, 1987). At Piha, as there 

were two environmental variables, habitat type and invasion status (invaded or uninvaded), I 

ran either generalized (GLM) assuming Poisson distribution or nonparametric (Wilcoxon rank-
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sum test and Bray-Curtis distance measure) analyses. In the application of ordination methods I 

employed RDA as it shows the relationship between species and environmental factors 

(microhabitat and presence/absence for Argentine ant) whereas PCA was used to uncover the 

maximum variation in species composition regardless of the effect of these two factors (Leps 

and Smilauer, 1999).  

 

Change in the abundance (x) of each beetle species was calculated as the difference between 

the total number of individuals in the early surveys (2002+2004 = x1) and subsequent surveys 

(2009 + 2010 = x2). The relative changes over time (x2+0.5)/(x1+0.5) were then compared 

between the groups of endemic species and exotic species using the non-parametric Wilcoxon 

rank sum test. A value of half an individual (0.5) was added to the counts to avoid problems in 

calculating relative change when zero individuals were recorded in 2002+2004 (x1=0).  

 

Software: R version 2.11.1 was used to run GLM and Wilcoxon rank-sum test. Statistica 

version 7.1 was used for graph building. The Canoco453 ordination package (Canoco for 

Windows 4.53) was used to analyze spatial patterns on order as well as species level. ArcGIS 

version 9.3 was used to depict the change in distribution of the Argentine ants in both the study 

sites. 

 

4.3 Results  

Distribution of Argentine ants: The distribution patterns of Argentine ants at Piha and Baylys 

Beach have been outlined fully in chapter 2. Here I give a brief background together with other 

ant species‟ distribution. At Baylys Beach the distribution patterns of Argentine ants did not 

change with time. I found that the distributions recorded in 2002 to be similar to that of 2010 

(Fig. 4.1). The distributions in January 2004 and 2009 were also similar (see chapter 2). 

Historically, they had a wide distribution at Piha in 2002. However, in 2010, the ants were 

found to be localized into a habitat type of short herbs which is in the north part of Piha (Fig. 

4.2). 
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Fig. 4.1. Change in the distribution of Argentine ants (L. humile) and other ant species between 

2002 and 2010 at Baylys Beach (n=21 in each year (bait samples)). One baited tube sample 

was taken at each point in each year and included multiple species of ants (i.e., there was no 

repeat sampling each year). 

 

 
Fig. 4.2. . Change in the distribution of Argentine ants (L. humile) and other ant species 

between 2002 and 2010 at Piha (n=21 in each year (bait samples)). One baited tube sample was 

taken at each point in each year and included multiple species of ants (i.e., there was no 

repeated sampling each year). 
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Arthropod community structure 

According to RDA analysis for Piha, six arthropod orders (lepidoptera, hymenoptera, 

orthoptera, homoptera, isopoda and coleoptera) were found in high abundance in areas where 

the Argentine ants were present (Fig. 4.3). These arthropods were found to be associated with 

short herb habitat in the immediate vicinity of the traps (within 2m) and tall herbs in the 

general area (within 10m). Argentine ants were also found in these habitat types. At Piha three 

taxonomic groups, isopoda, araneae and opiliones were unaffected i.e. they were found evenly 

in all habitat types and areas where the Argentine ants were present and absent. The other four 

orders (amphipoda, diptera, sarcoptiformes and hemiptera) were associated with areas 

uninvaded by the Argentine ants (Fig. 4.3).  

 

At the other study site, Baylys Beach, there was not much variation in microhabitat structure. 

Most of the area was characterised by tall herbs, mostly Spinifex. Four taxonomic groups 

tended to be more abundant in areas of sparse vegetation (regardless of vegetation height). 

These were L. humile, amphipods, isopods and homopterans (Fig. 4.4).  

 

Beetle species richness 

At Piha the total number of beetle species found in 2002, 2004, 2009 and 2010 was 36. The 

numbers of species collected in 2002 and 2004 were 12 and 17 respectively.  Species collected 

in 2009 and 2010 were 17 and 11 respectively (appendix 4.6.2). At the level of species in 

2009/10, the RDA analysis showed higher abundances of 17 beetle species in the Argentine ant 

invaded habitat, while only six species were found in high abundance in the uninvaded area 

(Fig. 4.5). Eleven species were found only in the invaded habitat, and five species were only 

found in the uninvaded area, while seven species were found in both invaded and uninvaded 

areas (see appendix. 4.6.1, Fig. 4.7). Species richness was significantly higher in the invaded 

area compared to the uninvaded area in 2009/10 (GLM: z=-2.94, df=19, p<0.01; Fig. 4.9A).  

The uninvaded area had a lower species richness than the invaded area in 2002, although the 

difference was not statistically significant (GLM: z=-0.64, df=19, p=0.52; Fig. 4.9A). Species 

richness decreased between 2002/2004 and 2009/2010 (GLM: z=-2.63, df=81, p<0.01; Fig. 

4.10A). Based on the history of invasion, the change in species richness between earlier years 

(2002+2004) and recent years (2009+2010) was significant (GLM: z=-2.8, df=19, p<0.05; Fig. 

4.8). Exotic species increased in abundance between 2002/2004 and 2009/2010 significantly 

more than endemic species (Wilcoxon rank-sum test: W=8, n=28,4, p<0.01, Fig. 4.11A).  

 

At Baylys Beach 44 species were recorded in the years 2002, 2004, 2009 and 2010. In 2002 

there were 17 species, and in 2004 there were 32 species. I collected 11 species in 2009 and 



66 
 

nine species in 2010 (appendix 4.6.3). In contrast to Piha, the RDA analysis of combined data 

from 2009 and 2010 found nine species of beetles were more abundant in the uninvaded area 

and five other species were more abundant in the invaded habitat (Fig. 4.6). This difference 

was also reflected in higher species richness in uninvaded areas, although not significant in 

2010 (GLM: z=0.89, df=19, p=0.37; Fig. 4.9B). Nevertheless, in 2002, there was a 

significantly higher species richness of beetles in the invaded area (GLM: z=-2.27, df=19, 

p<0.05; Fig. 4.9B). Similarly, differences in species richness among the years 2002, 2004 and 

2010 which showed a significant decrease towards the recent years (GLM: z=-4.76, df=82, 

p<0.001, Fig. 4.10B). Although not significant, there was change in the relative abundance of 

exotic and endemic species (W=135, n=35,11,  p=0.054; Fig. 4.11B).  

 

At both study sites, Piha and Baylys Beach, exotic beetles, Anthicus kreusleri were more 

abundant in the uninvaded areas while other exotic beetles, Diomus notescens were found only 

in the invaded areas (see Appendix 4.6.1). Two endemic species (Phycosecis limbata and 

Sapintus aucklandensis) appear to have disappeared from the Piha site while another species 

(Zeadolopus sp.) may be on the verge of extirpation (Appendix 4.6.4).   
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Fig. 4.3. Distribution patterns of arthropod orders according to variation in vegetation structure 

and Argentine ant (L. humile) invasion at Piha analysed using RDA (n=126 pitfall traps).  r=2m 

is the microhabitat type within 2m around a sample and r=2-10m is the microhabitat 2m away 

but not more than 10m from a sample.  
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Fig. 4.4. Distribution patterns of arthropod orders according to variation in vegetation structure 

and Argentine ant (L. humile) invasion at Baylys Beach analysed using RDA (n=126 pitfall 

traps).  r=2m is the microhabitat type within 2m around a sample and r=2-10m is the 

microhabitat 2m away but not more than 10m from a sample  
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Fig. 4.5. Beetle species association with variation in vegetation structure and L. humile 

invasion at Piha. Distribution patterns were analysed using RDA (n=126). r=2m is the 

vegetation type within 2m around a sample. r=2-10m is the vegetation type 2m away but not 

more than 10m from a sample.  Underlined names are exotic species and beetles designated “?” 

are beetles unspecified as either exotic or endemic. 
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Fig. 4.6. Beetle species distribution pattern in relation to Argentine ant invasion at Baylys 

Beach derived from RDA analysis (n=126 pitfall traps). r=2m is microhabitat type within 2m 

around a sample and r=2-10m is microhabitat type 2m away but not more than 10m from a 

sample. The underlined beetle name is an exotic species.  
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Fig. 4.7. Principle components analysis of the variation in beetle species composition in 

relation to the history of Argentine ant invasion at Piha (n=28). The legend refers to beetle 

species composition in areas where Argentine ants were always present, recently spread, 

retreated and never present respectively.  

 

 

 
Fig. 4.8. Local change in species richness of beetles (mean ± SE) in relation to the history of 

Argentine ant invasion at Piha. Data for species collected in 2002 and 2004 were pooled 

together as was data for species collected in 2009 and 2010. Change in species richness 

between the two groups was calculated as (2009+2010)-(2002+2004). Species richness change 

is per station (n=10).  
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Fig. 4.9. Beetle species richness variation at A) Piha and B) Baylys Beach in areas invaded and 

uninvaded by Argentine ants (mean ± SE, n=10 stations with three pitfall traps per station) in 

2002/03 and 200/10. 

 

Fig. 4.10. Temporal changes in species richness of beetles in Argentine ant invaded sites at A) 

Piha and B) Baylys Beach (mean ± SE, n=21 stations with three pitfall traps 1m apart in each 

station).  
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Fig. 4.11. Changes in relative abundances of endemic and exotic beetle species between 

2002/2003 and 2009/2010 at A) Piha and B) Baylys Beach. The change in relative abundance 

of each beetle species was calculated as (x2+0.5)/(x1+0.5), where x1 is the number of 

individuals of a species collected in 2002/03 and x2 is the number of individuals of “the same 

species collected in 2009/10. (n=42 stations with three pitfall traps in each, 1m 

apart). ?=species unspecified either as endemic or exotic.  

 

 

Beetle community composition  

At both study sites, the composition of beetle communities differed between Argentine ants 

invaded and uninvaded areas, and changed over time. Dissimilarity in beetle community 

composition between Argentine ant invaded and uninvaded areas was 57% at Baylys Beach 

and 70% at Piha. Number of species found in both invaded and uninvaded areas at Piha was 

less than 30%. Species composition dissimilarity tended to increase over time at both Piha and 

Baylys Beach (Table 4.1). For example, on average, beetle communities sampled in 2002 and 

2010 were more than 89% dissimilar at Baylys Beach and across the same time period at Piha 

they were about 54% dissimilar (Table 4.1). 
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Table 4.1. Dissimilarity in the beetle community composition sampled over time at Baylys 

Beach and Piha. Bray-Curtis distance measures of dissimilarity are reported. The scale ranges 

from 0 to 1. 0=100% species compostion similarity and 1=100% species compostion 

dissimilarity. 

Piha 

Year 2002 2004 2009 2010 

2002 0 0.42 0.67 0.54 

2004  0 0.60 0.48 

2009   0 0.44 

2010       0 

Baylys Beach 

Year 2002 2004 2009 2010 

2002 0 0.55 0.87 0.89 

2004  0 0.90 0.93 

2009   0 0.34 

2010       0 

 

4.4 Discussion 

Changes in Argentine ant distribution over time 

The objective of this study was to evaluate the association between Argentine ant invasion and 

beetle species richness and composition using a before-after-control-impact study design. This 

analysis was not possible however, as the Argentine ants‟ distribution pattern remained 

virtually unchanged between 2002 and 2010 at Baylys Beach while at Piha there was an overall 

reduction in the area invaded confounded with a change in vegetation structure in the area of 

retreat.  My repeat survey found these invasive ants became localized to the northern part of 

the Piha study area which is mostly a short herb habitat. In 2010 trees covered 45% to 100% of 

the area from which Argentine ants had retreated whereas in 2002 the average cover of bushes 

and trees was about 12%.  The change in the Argentine ants‟ distribution therefore seems to be 

related to a change in vegetation structure over time as their present association with the 

vegetation structure is similar to their earlier (2002) associations. In relatively cool-wet 

climates (such as New Zealand)  Argentine ants prefer open patch habitats  (Hartley et al. 

2010) that could be due to low temperature under high tree cover (Martens, 2000; Bennie et al, 

2008; Hartley et al., 2010). Argentine ants are sensitive to temperature, for example colonies 

die if temperatures remain below 5ºC for extended periods of time (Brightwell, 2010). Their 

global distribution is limited to areas with a mean annual temperature above 10-12°C (Hartley 

et al. 2006) and the optimal temperature for their reproduction in laboratory is about 28 °C 

(Abril et al., 2008).  
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Arthropod associations with Argentine ants 

A greater abundance and diversity of arthropods were associated with the areas (and types of 

vegetation) invaded by Argentine ants at Piha. Other studies have also reported that some 

arthropods are more abundant in Argentine ant invaded areas, and the association is suggested 

to be due to habitat suitability rather than due to any direct positive effect of Argentine ants 

(Cole et al., 1992). The uninvaded area at Piha was characterized by a dense canopy of tall 

trees, which many arthropods likely avoid due to low understorey radiation resulting in low 

temperature (Martens, 2000; Bennie et al, 2008; Hartley et al., 2010), which results in lower 

species richness in these habitats (Tykarski, 2006). At Baylys Beach, in contrast, higher 

abundances of arthropod orders were found in the uninvaded area. Most of the Argentine ant 

invasion is on one bank of a small river. The invaded and uninvaded areas were 

environmentally similar in terms of vegetation type and structure, soil type, slope and aspect. 

Here, it is more likely that the variation in abundance of arthropod species may be associated 

with the Argentine invasion, although it remains possible that there are some unmeasured 

environmental differences between the two areas that were not obvious to me, but which affect 

arthropod distribution patterns. 

  

Beetle species associations with Argentine ants 

At the species level I found more beetle species in the invaded habitat at Piha. Data collected in 

2009 and 2010 show an increase in abundance of exotic beetle species and a decrease in 

abundance of endemics. The Argentine ant invaded area seems to attract more exotic species 

and a number of endemic species found in that area appear to be at a low abundance in 2009 N 

2010 compared to earlier years 2002 and 2004. In Hawaii, Argentine ant invaded areas are 

typically associated with higher numbers of exotic and a reduction in endemic beetle species 

(Cole et al., 1992). Some endemic species that were in the Argentine ant invaded area in 2002 

and 2004, notably Phycosecis limbata and Sapintus aucklandensis, appear to have been 

extirpated (or reduced in abundance). This is accompanied by large changes in species 

composition between the invaded and uninvaded areas as well as between different years 

which is similar to the pattern reported by the study of Krushelnycky and Gillespie (2008).  

 

The removal of keystone species can cause changes in community structure (Paine, 1971). 

Such disturbances result in changes with serious negative effects on some species and benefits 

to other species (Huston, 1994). The establishment of invasive species may leave the habitat 

prone to secondary invasion. An example of invasion facilitating secondary invasion is that of 

land snails promoted by exotic ant species on Christmas Island, i.e. the ants remove land crabs 
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which are predators of the snails (Green et al., 2011). Species disturbance that could be 

associated with the invasion by the Argentine ants is reflected in high species turnover rate.  

 

In this study the Argentine ants seem to have negatively affected endemic beetle species 

richness, and there was also high species richness of exotic beetle species associated with the 

uninvaded area. Because insects‟ abundances fluctuate annually (Barlow et al., 2002), it is 

possible that this fluctuation contributed to the results. However, as the observed declines in 

beetle species richness were statistically significant at both study sites, it is more probable the 

decline is associated with the Argentine ant invasion.  

 

Low temperature reduces the activity of most insects (Dolezal et al., 2007; Abril et al., 2008), 

and the Argentine ant invaded habitat at Piha was open patches covered with short herbs and 

about only 30% trees. Thus, the temperature was likely to be lower at the uninvaded sites. 

Although pitfall trap sampling is commonly used and considered an effective method (Lindsey 

and Skinner, 2001; Santos et al., 2007), it is important to note that pitfall traps record insect 

activity rather than abundance per se (Cole et al., 1992), and some studies have recorded a bias 

toward large-bodied insects captured in pitfall traps (Spence and Niemelä, 1994). In other 

words, insects may be more abundant in the shrubby and tree habitats than the pitfall trap data 

suggests. High abundances of beetle species have been associated with high herbaceous plant 

richness (Forbes et al., 2005), and the richness of herbaceous plant species is generally higher 

in open patches and less in tree covered habitats (Uhercikova and Nemethova, 2006). Thus, 

temperature suitability and diet availability may support the higher exotic beetle species 

observed in the Argentine ant invaded area.  

 

It is widely accepted that establishment of exotic species and their subsequent spread occur 

faster when the recipient habitat has low abundance and low richness of resident species 

(Allstadt et al., 2009). Conversely, high diversity in a community is thought to shrink niches 

which allows the coexistence of more species locally (Rosenzweig and Ziv, 1999) and creates 

greater biotic resistance (Elton 1958). Less competitive species are displaced from areas of 

high species competition (Wieters et al., 2009; Kath and Dunn, 2009) which could be the 

reason for the capture of less endemic species in the Argentine ant invaded area. At Baylys 

Beach in 2002 the invaded area had higher beetle species richness than the uninvaded area, but 

this pattern was reversed in 2010. This change may be associated with an initial early invasion 

stage with the Argentine ants at lower density, progressively changing beetle species richness 

over time.  
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In New Zealand, Argentine ants are still thought to be at an early stage of expansion (Ward et 

al., 2010), and were only detected in 1990 in Auckland (Green, 1990). Other studies have also 

found that the Argentine ants can reduce arthropod species richness and severely affect 

endemic beetle species (Cole et al., 1992; Krushelnycky and Gillespie, 2008). Yet, Argentine 

ants do not always affect other non-ant arthropods (Holway, 1998). Sometimes, Argentine ants 

interact positively with other insects.  For example, mutually interacting, Argentine ants 

increase abundance of gall wasps (Inouye and Agrawal, 2004) and membracid, Beaufortiana 

sp. (Lach, 2007) which may facilitate invasion by the Argentine ants (Nelson and Daane, 

2007). In addition to predictable changes in community structure in response to invasive 

species much variation in abundance or distribution cannot be easily explained and may be the 

result of demographic or environmental stochasticity that can result in an exaggerated outcome 

in population dynamics (Haegeman and Loreau, 2011; Lv and Pitchford, 2007).  

 

Community assembly is a dynamic process. Arriving organisms must cope with the 

environmental conditions and interact with other organisms in vertical and horizontal trophic 

relationships (Hunsaker et al., 2001). Species in a community may reach an approximate 

equilibrium, as a result of competitive interactions (Conrad, 1972; Mori et al., 2007; Zu et al., 

2008) and predator-prey relationships (e.g. Perez-Matus and Shima, 2010). However, even 

though not all exotic species are harmful, many invasive species change the balance of 

endemic communities (Elton, 1958; Cadotte et al., 2006). As a result of invasive species 

displacing keystone species such as important predators and pollinators (Cole et al., 1992) 

endemic communities can be disassembled (Sanders et al., 2003; Paine, 1971).  

 

At Piha a new ant species (Pheidole rugosula) appeared in the community in 2009/2010. 

Pheidole rugosula are exotic to New Zealand, however, little is known about their impact apart 

from their tendency to be generalist foragers (Don, 2007). Their close relative, Pheidole 

megacephala are invasive species with negative impacts on other ant species (Dejean et al., 

2008). If P. rugosula are shown to negatively affect other arthropod species in New Zealand, 

this may have severe consequences as these ants have invaded habitat types where Argentine 

ants are not commonly found. Lower beetle species richness was found in areas uninvaded by 

the Argentine ants. It is possible that the presence of P. rugosula may have contributed in this 

result. Because there are so many potential interactions happening simultaneously, it is difficult 

to infer process from field studies alone. 
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Conclusion 

Habitat/vegetation structure variation mediates the effects of Argentine ant invasion. Although 

I am unable to definitively identify an effect of the Argentine ant invasion on beetle species 

richness and composition, there are associations between species richness and composition 

changes with the invasion, including an association between higher exotic beetle species 

abundances with Argentine ant invaded habitats.  However, these effects may be mediated by 

temporal and spatial changes in habitat. At Baylys Beach as there was less vegetation 

variability between the invaded and uninvaded areas it appears more likely that Argentine ants 

reduce beetle species richness. By contrast, at Piha, because vegetation structure differed 

between the invaded and uninvaded areas, and perhaps because of a new invasion by another 

ant species (P. rugosula), it was not possible to unravel the effects of individual factors (Green 

et al., 2011). Therefore, I suggest further studies on the effect of Argentine ants on other 

arthropod species, in particular the interactions between the effects of Argentine ant invasion, 

vegetation structure and the effects of P. rugosula on other arthropod species. Because natural 

fluctuations in the expansion and decline of invasive species are not easily predicted these 

studies would likely have to be long-term in nature in order to observe sufficient before-and-

after contrasts that are not confounded by habitat variation. 
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4.6 Appendix. 

4.6.1 Beetle species at Piha in invaded and uninvaded habitats (2009 + 2010, n= 49 pitfall traps 

in invade areas and 77 pitfall taps in uninvaded areas). ?=not yet determined as either exotic or 

endemic. 

 

Species at Piha in invaded 
in 

uninvaded 
status 

Actizeta albata 3 0 endemic 

Anthicus kreusleri 7 25 exotic 

Asowpus sp. 0 1 ? 

Cecyropa sp. 38 6 endemic  

Diomus notescens 20 0 exotic 

Hetronychus arator 1 0 ? 

Hypharpax australis 1 4 exotic 

Loberus nitens 6 4 endemic 

Mandalotus sp 18 14 endemic 

Microcryptorhychus sp. 1 0 ? 

Mimopeus elongatus 4 0 endemic 

Neocicindela 

tuberculatus 
1 0 endemic 

Ochocternus gealardicus 2 3 ? 

Odontria nesobia 1 0 endemic 

Pristorus antarcticus 0 1 endemic?  

Psilocnaeia sp. 1 0 endemic 

Pyronota sp. 1 0 endemic 

Rhyzobius sp. 2 0 endemic 

Stephanorhynchus 

crassus 
0 1 ? 

Thyreocephalus 

orthodoxus 
1 2 exotic 

Undecimpunctata  1 0 endemic 

Xylotoles griseus 0 2 endemic 

Zeadolopus sp. 0 1 endemic 
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4.6.2 Total number of beetle species at Piha. The number of pitfall traps was 63 in each year. 

  
Piha, abundance in 

species 

Dec 

2002 

Jan 

2004 

Jan 

2009 

Jan 

2010 status 

Actizeta albata 0 0 3 0 endemic 

Actizeta fusca 0 2 0 0 endemic 

Anthicus glaber 0 3 0 0 endemic 

Anthicus kreusleri 0 2 16 16 exotic 

Asowpus sp. 0 0 0 1 ? 

Carpophilus sp. 0 1 0 0 endemic 

Cecyropa sp. 46 28 13 31 endemic 

cicindela perhispida 2 1 0 0 endemic 

Conoderus sp. 1 0 0 0 endemic 

Diomus notescens 0 0 0 20 exotic 

Hetronychus arator 0 0 0 1 ? 

Holopsis sp. 0 1 0 0 endemic 

Hypharpax australis 0 1 2 3 exotic 

Lagrioida brouni 0 1 0 0 endemic 

Loberus nitens 1 6 0 10 endemic 

Macroscytus australis 0 2 0 0 endemic 

Mandalotus sp 24 18 16 16 endemic 

Microcryptorhychus sp. 0 0 1 0 ? 

Mimopeus elongatus 0 0 2 0 endemic 

Ochocternus gealardicus 0 0 4 1 exotic?  

Odontria nesobia 1 0 0 1 endemic 

Pericoptus sp. 1 0 0 0 endemic 

Phycosecis limbata 3 20 0 0 endemic 

Pristorus antarcticus 0 0 1 0 endemic? 

Psilocnaeia sp. 0 0 1 0 endemic 

Ptinosoma sp. 2 0 0 0 endemic 

Pyronota sp. 0 0 1 0 endemic 

Rhyzobius sp. 0 1 2 0 endemic 

Sapintus aucklandensis 26 6 0 0 endemic 

Sericoderus sharpi 2 0 0 0 endemic 

Sericoderus sp. 0 2 0 0 endemic 

Stephanorhynchus crassus 0 0 1 0 ? 

Thyreocephalus orthodoxus 1 0 0 3 exotic 

Undecimpunctata  0 0 1 0 endemic 

Xylotoles griseus 0 0 2 0 endemic 

Zeadolopus sp. 6 7 1 0 endemic 

No. of species 12 17 17 11  
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4.6.3 Total number of beetle species at Baylys Beach. The number of pitfall traps 

 in each year was 63. 

 

  Baylys Beach, Abundance in  

species 2002 2004 2009 2010 Status 

Actizeta albata 0 1 1 0 endemic 

Actizeta fusca 0 7 0 0 endemic 

Cecyropa sp. 33 34 3 5 endemic 

Cicindela perhispida 0 40 7 0 endemic 

Ciconissus sp. 0 3 0 0 endemic 

Colon hirtale 17 3 0 0 endemic 

Dysnocryptus sp. 0 1 0 0 endemic 

Holoparamecus sp. 1 2 0 0 endemic 

Holopsis sp. 1 2 0 0 endemic 

Lagrioida brouni 0 1 0 0 endemic 

Lagynodes gastroleius 0 1 0 0 endemic 

Loberus nitens 4 8 0 1 endemic 

Mandalotus sp 6 12 1 0 endemic 

Micrambina sp. 0 2 0 0 endemic 

Microtribus huttoni 4 1 0 0 endemic 

Mimopeus elongatus 2 0 0 0 endemic 

Cicindela tuberculata 0 0 64 45 endemic 

Novitas sp. 0 1 0 0 endemic 

Odontria nesobia 0 0 1 0 endemic 

Phloeophagosoma sp. 0 1 0 0 endemic 

Phycosecis limbata 11 1 8 1 endemic 

Ptinosoma sp. 0 1 0 0 endemic 

Rhyzobius rarus 0 1 0 0 endemic 

Sapintus aucklandensis 11 5 0 0 endemic 

Scelodolichus sp. 1 0 0 0 endemic 

Triphyllus sp. 0 1 0 0 endemic 

Triplosarus novaezealandiae 1 0 0 0 endemic 

Xylotoles sp. 0 1 0 0 endemic 

Zeadolopus sp. 12 3 0 0 endemic 

Macroscytus australis 2 0 0 0 native 

Anotylus sp. 1 1 0 0 exotic 

Anthicus kreusleri 0 0 9 2 exotic 

Cercyon sp. 1 0 0 0 exotic 

Clivina sp. 0 1 0 0 exotic 

Conoderus sp. 0 1 0 0 exotic 

Diomus notescens 0 4 0 1 exotic 

Diomus terminatus 0 0 0 1 exotic 

Sericoderus sp. 0 9 0 0 exotic 

Sitona lepidus 0 3 0 0 exotic 

Thyreocephalus orthodoxus 2 0 2 4 exotic 

Epuraea sp. 0 2 0 0 ? 

Melanophthalma sp. 0 1 0 0 ? 

Ochocternus gealardicus 0 0 5 1 ? 

Phlyctinus callosus 0 0 1 0 ? 

No. of species 17 32 11 9   
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4.6.4 Most abundant exotic and endemic beetle species movement exchange  

at Piha. 

species  2002  2004  2009 2010  status  

Anthicus kreusleri  0 2 16 16 exotic 

Diomus notescens  0 0 0 20 exotic 

Hypharpax australis  0 1 2 3 exotic 

Ochocternus gealardicus  0 0 4 1 exotic? 

Thyreocephalus orthodoxus  1 0 0 3 exotic 

Zeadolopus sp. 6 7 0 1 Endemic 

Phycosecis limbata  3 20 0 0 Endemic 

Sapintus  aucklandensis  26 6 0 0 Endemic 
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Chapter 5 

Role of interspecific competition and temperature in resisting invasion 

 

5.1 Introduction  

 

Invasive species have been recognized as one of the leading causes of biodiversity 

deterioration throughout the world. Invasive species inflict serious ecological and economic 

damage (Truscott et al., 2008; Pimentel et al. 2000). The impact of invasion by exotic species 

is second only to the effect of habitat destruction on the loss of biodiversity (Vitousek et al., 

1997; Wotton et al., 2004).  About 42 percent of the endangered species at risk are mainly 

because of invasive species (Pimentel et al., 2006) often due to their competitive superiority 

over resident species (Wilcove et al., 1998) which is a unique attribute of invader species 

(Thomsen et al., 2011).  Dispersal of invasive species to extra-range habitats occurs mainly by 

human-assisted transport (Wilson et al., 2009). It commonly happens accidentally (Lodge, 

1993; Cole et al., 1992) or it can happen also by deliberate introduction of species as part of 

biological control measures (Jonsen et al, 2007) and cultivation (Pellikka, 2009). Insects have 

been recognized as some of the leading causes of ecological and economic damages (Hong et 

al, 2012; Sanders et al., 2003). However, just as there are a number of factors facilitating 

invasions, there are also biotic and abiotic factors that may prevent or delay invasion. 

 

 Biotic interactions 

Competition between species can be broadly divided into two types: interference competition 

(e.g. direct behavioural interactions to protect space and/or resources) and exploitative 

competition (e.g. pre-emptive use of resources) (Burns and Lester, 2007). The success of many 

invasive species is mostly related to either their efficient exploitative competition (Ingram, 

2002) or aggressive interference with other competitors (Grover et al., 2008). High propagule 

pressure during competition is one of the mechanisms underlying the success of many invasive 

species success (Walters and Mackay, 2005). How well an invasive species has established is 

measured in terms of species biomass (Finnoff and Tschirhart, 2005). However, biotic 

resistance by resident species plays an important role in resisting establishment of invasive 

species (Holway and Suarez 2006; Cole et al., 1992; Walters and Mackay, 2005). Because of 

the biotic interactions between invasive and endemic species, areas of high species richness are 

less vulnerable to invasion (Elton, 1958; Case, 1990; Stachowicz et al., 1999; Tilman, 1999). In 

contrast to this effect, some biotic interactions between invasive and native/resident species 

may facilitate invasion. For example, invasion by exotic ants may be facilitated by homopteran 

insects (Lester et al., 2003) and gall wasps (Inouye and Agrawal, 2004) with which they show 
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positive symbiotic relationships. Nevertheless, other abiotic factors such as temperature may 

contribute in the process of establishment of invasive species. 

 

Temperature effect 

Ecologists have investigated effect of temperature on the distribution patterns of invasive 

species. It is possible to predict future global distribution of invasive species based on climate 

envelope (Hartley and Lester, 2003; Hartley et al., 2006). Climate change has been implicated 

in new invasion frontiers (Bardsley and Edwards-Jones, 2007; Patrick et al., 2012). Nowadays, 

due to climate change, invasive species have made their way even to Antarctica 
__

 a region 

previously unavailable to invasive species because of its low temperature (Hughes and Convey, 

2012; Sinclair and Stevens, 2006). Spread of invasive species may be constrained or facilitated 

by temperature. Temperature affects their reproduction (e.g. see Abril et al., 008) and growth 

rate (Riis et al, 2012), and thereby regulates their distribution locally as well as globally 

(Hartley et al., 2006; Ficetola et al., 2007). Survival and feeding activities of invasive species 

are regulated by temperature (Sugiura, 2009). To control invasive species, different biotic and 

abiotic factors have been tested.   

 

Biotic resistance against invasive species or pests could be a promising biological application. 

A safe and effective practice of suppressing invasive species is selecting agents for biological 

control so as to minimize or avoid inadvertent consequences (Raghu and Dhileepan, 2005). 

Biological control serves mainly to protect biodiversity, ecosystem services and products of 

natural systems (Driesche et al., 2010). Application of two or more biotic control agents 

against a single invasive or pest species frequently gives better results than a single agent as 

they can have an additive effect (Turner, 2010). Effects of multiple factors in some cases build 

beyond simple sum of two or more factors. Although studies of the interactive effects of 

multiple factors are less common (Didham, 2007), it is well-known that multiple factors have 

synergistic, interactive effects on biological response variables (e.g. Shivji, 1985). Chemical 

control of invasive species can be effective (Liang and Tang, 2010). Insect pests have been 

effectively controlled by the applications of chemicals (Jansen, 2000; Zettler and Arthur, 

2000) however there is concern about its impact on human health and non-target species 

(Matthias et al., 2008; Mayo and Werf, 1996). In spite of all these considerable efforts there is 

still lack of tests of the combined effects of multiple natural factors (biotic and abiotic) on 

invasive species (Gurevitch and Padilla, 2004). There is also lack of information on the effects 

of temperature on the competitive and defensive behaviour of invasive species when 

interacting with recipient taxa. Jumbam et al. (2008) suggest a thorough investigation on 
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behavioural changes and their implications. To address this, I have selected one invasive 

(Linepithema humile) and two native ant species (Monomorium antarcticum and Prolasius 

advenus) in the face of varying temperature levels. 

 

Linepithema humile 

The Argentine ants (Linepithema humile) are widespread invasive species (Walters and 

Mackay, 2005). Originating from South America (Wild, 2004), Mediterranean-style habitat 

with 300-1200 mm rainfall per year is most suitable for this species (Holway et al., 2002). 

Argentine ant colonies spread and contract both seasonally and annually (Heller et al., 2006). 

My previous research (chapter 2) also shows that Argentine ants in New Zealand spread 

slightly in some study sites and contracted in other areas. Their natural rate of spread by 

budding is between 100m and 150m per year (Suarez et al., 2001; Ingram and Gordon, 2003; 

Krushelnycky et al., 2004). Argentine ant colonies relocate nests and retreat from patches of 

low food presence (Nonacs & Soriano, 1998).  

 

Argentine ants are highly efficient competitors partly due to their occupation of multiple nests 

and nest budding ability (Ingram, 2002), rapid recruitment of workers to food, redistribution of 

workers among nests, and flexible relocation of brood (Holway and Case, 2000). They are 

found to hinder seed dispersal by other ant species and expose seeds to predators (Carney et 

al., 2003), as well as deterring pollination by other insects, ultimately negatively affecting 

plant‟s reproductive success (Lach, 2007). Argentine ants not only reduce species richness but 

also disturb species assemblages in the site of invasion (Sanders et al., 2003).  

 

Monomorium antarcticum and Prolasius advenus 

These two species are native to New Zealand and are distributed throughout New Zealand 

(Don, 2007). Both species nest mainly in soil under stones, but also occur in and under rotting 

logs. Habitats exploited by M. antarcticum include native forests and grasslands, pastures and 

household gardens. P. advenus inhabit native forests. They are found occasionally nesting in 

the open but still close to the forest edge. Both species have poloygynous (multi-queened) 

colonies and both are generalists foraging and scavenging for small arthropods (Don, 2007). 
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Objective 

In this study, I conducted a laboratory experiment to examine the relative roles of temperature 

and biotic resistance from native ant species (M. antarcticum and P. advenus) on Argentine 

competitiveness such as foraging and aggression towards other species. The rationale for 

selecting these two native ant species is that they are found sympatrically in Wellington (more 

specifically in Kelburn in close proximity to the botanical gardens) where they have come into 

contact with Argentine ants. To investigate specific mechanisms affecting biotic interactions I 

measured speed of walking of all three species, foraging abundance and aggressive behaviour 

as a function of temperature. I also studied the response of the species L. humile to changes of 

its own colony sizes and that of the competitor. 

 

5.2 Methods 

5.2.1 Establishing Laboratory Colonies. 

I contained ant nests in cylindrical plastic containers of 15 cm diameter and 12cm height. They 

were half filled with soil. The soil humidity was maintained by adding drops of water 

throughout the experimental period. Vials of about 20ml size were half filled with water and 

plugged with cotton wool, were put in the plastic nests for the ants. Empty containers of the 

same types as the plastic nests were connected via plastic tubes of diameter 10mm to the ant 

nests to be used as foraging arenas. The ants were fed every two days; rotating between 

mealworms, fruits or cooked eggs. The foraging containers of two different species were 

connected by a third empty container via a tube but remained plugged with cotton to be open 

only when a test of the interaction between two species was in progress (Fig. 5.1 a and b). The 

nesting and foraging chambers were covered with fine mesh to contain the ants, while the inner 

side of the empty chamber was painted with “Fluon™” to stop ants from escaping when it was 

left open. Control colonies that never interacted with other species were housed in nesting 

chambers connected to foraging arenas (Fig. 5.2). 
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Fig. 5.1. Experimental set-up with middle chamber labelled “empty” for species interaction 

tests. Access to the central chamber was controlled by temporary removal of cotton wool 

bungs. 

 

 

Fig. 5.2. Nest connected to a foraging arena for testing foraging abundance and walking speed 

change with temperature in the absence of other ant species competitors. 

 

5.2.2 Sampling and experiment 

I collected ten colonies of L. humile and six colonies each of M. antarcticum and P. advenus 

(Table 5.1 and 5.2). Eight colonies of L. humile and four colonies of each of the other two 

species were used to test species interactions (Table 5.1). Two colony sizes of each species, 

large and small were used to test the effect of temperature change in the absence of any other 

interacting species (Table 5.2). I collected the whole ant colonies within each nest in the field 

to avoid any effect of partial removal of ants from a whole colony. I collected the ants when the 

weather was cold and a bit rainy. This helps to ensure almost all the foraging ants are in their 

nests. However, I aimed at collecting colonies of different sizes. Colonies of each species were 

paired up against a colony of a heterospecific. I paired a relatively large colony of one species 

against a relatively small colony of another species, and vice versa. I also paired two large 

colonies of different species against each other and two small colonies against each other 

(Table 1). It was difficult to collect more colonies of equal or similar sizes from the field. 

Moreover, I was unable to control simultaneous interactions of more than four pairs. Repeated 

interactions test of one pair at one temperature level was also found impractical. At the end of 

each interaction the colonies get disturbed and it took about four days to come to their normal 

foraging behaviour. With many replicates or repeated experiments, testing interactions of four 

or less pairs at a time would have been time consuming considering the time frame. Therefore, 

I was unable to present replicates of each pair.  
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The experiment was conducted in temperature controlled rooms (+/- 0.5°C). Three explanatory 

factors were considered; temperature, identity of the heterospecific - M. antarcticum and P. 

advenus, and the relative size of the two colonies. Five temperature levels were employed from 

12°C to 20°C, in two degree increments. The two native ant species, M. antarcticum and P. 

advenus were collected from Wellington (Kaitoke) and the Argentine ants from Hastings. I 

chose these places for collection based on the abundant presence of each ant species, though 

they are all found in Hastings. Before the start of any experiment, ant colonies were allowed to 

acclimatize for a week at each temperature level. Pairs of interacting colonies were kept 

unchanged throughout all the different temperature levels during tests of interaction changes 

with temperature i.e. each specific pairing of colonies was maintained throughout all 

temperature levels, moving from 20°C to 16°C to 12°C, back to 14°C and concluding at 18°C. 

Colony size was estimated as high or low at the start of experiment and measured more 

precisely at the end of the experiment. Estimation was taken visually from their nest and 

foraging abundance before the start of experiment. At the end of the experiment, each colony 

was put in a white plastic box to be photographed. To move the colonies into the plastic boxes 

the nests were connected to a white box with plastic tubes of diameter 10mm. The bases of the 

plastic boxes were covered with aluminium foil so that the ants could move underneath. Then 

slowly drops of water were put into the nests. To avoid the water all the ants move out into the 

plastic boxes.  

 

Table 5.1. Description of the ant colonies used in species-interaction pairings. Numbers are 

rounded to the nearest ten. No interaction between high colony size of L. humile and low P. 

advenus was tested. The first row, interaction between L. humile and P. advenus was estimated 

to be high L. humile against low P. advenus; however the actual count proved it high against 

high. In the last row although higher than the matching colony size of L. humile, P. advenus is 

defined as „low‟ as it was difficult to sustain an interacting colony below this size. 

  Ratio 

(L.hum/ 

M.ant)  

  Ratio 

L.hum/ 

P.adv 
L. humile against  

M. antarcticum 
L. humile against P. advenus 

    High (800)   Low (550) 1.5 High (800)   High (830) 1 

    Low (320)   High (510) 0.6 Low (620)   High (2820) 0.2 

   High (1010)   High (1170) 0.9 Low (1300)   High (1830) 0.7 

   Low (550)   Low (600) 0.9 Low (230)   Low (670) 0.3 

 

Table 5.2. Colony sizes of non-interacting groups. 

 

Colony L. humile M. antarcticum P. advenus 

High  650 710 2310 

Low 380 510 930 
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5.2.3 Non-interacting colonies 

Daily foraging patterns in response to temperature change 

Two non-interacting colonies of different sizes, from each species were maintained (control 

colonies). To identify diel patterns in foraging activity I initially counted the foragers in the 

foraging chamber every hour between 9am and 5pm over a four day period. I identified the 

period between 10am and 1pm as the time of peak activity for all species. Number of foragers 

at each temperature level of each species was recorded at their peak foraging activity (10am to 

1pm) every hour for four days. 

 

Speed of walking change with temperature 

The walking speed of ants was measured from the control colonies by recording the distance 

travelled over a 2 second interval as they entered the foraging arena. Data were recorded only 

if the ants walked continuously for 2 seconds without stopping. If ants moved erratically or 

made brief stops before 2 seconds, I excluded the data. Distance travelled was measured in 

millimetres by placing a ruler under the transparent floor of the foraging container. In each 

temperature level, measurement of ant speeds repeated 20 times randomly without aiming at 

any specific ant. Their speeds were measured at five different temperature levels, from 12°C to 

20°C, in two degree increments. 

 

5.2.4 Species Interactions 

Four measures of behavioural interactions were assessed: abundance, fighting, invasion and 

biting. As access to the central interaction chamber was opened, the number of ants of each 

species present in the central arena was recorded after 5 minutes at the beginning and every 9 

minutes thereafter until one of the species was displaced by the other (this usually took about 

90 minutes). At the same time I counted the number of “fights” occurring in 1 minute interval 

after 5 minutes of interaction, and then for 1 minute at every nine-minute interval. Fights were 

defined as aggressive interactions where two (or more) ants were locked in prolonged direct 

contact, mandibles holding on to the legs or antennae of the other individual. I also counted the 

number of ants that had crossed into the foraging chamber of the opposite species every nine 

minutes which I called “invasion”. This behaviour was tested at all five temperature levels 

stated above and with varying colony sizes. 

 

I also counted the number of bites per minute separately from number of fights. Argentine ants 

behaved differently at the different stages of interaction with the other species. At the 

beginning, when they first encountered another ant species they attacked and maintained a grip 

on the legs of the other species (“fighting”). However, when they were about to displace the 
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other species from the interaction chamber they bit and released repeatedly so as to urge them 

out of the chamber (=“biting”). I counted the number of bites per minute for about 20 minutes 

at 20°C, 16°C and 12°C to evaluate whether the rate of biting changed with temperature. 

Number of bites was recorded as the sum of bites and releases of all ants every minute which I 

recorded for 20 minutes long. The behaviour of biting and releasing was manifested towards 

the end of the interaction when the Argentine ants start to defeat the other species. 

 

5.2.5 Data Analysis 

I employed different methods of analysis depending on the data type available. I used one-way 

ANOVA to test change in numbers of foragers and change in walking speed as a function of 

temperature. Temperature was taken as categorical variable with five levels 12°C, 14°C, 16°C, 

18°C and 20°C respectively. I preferred ANOVA over regression as my objective was to 

evaluate the effect of changing temperature, without pre-supposing a linear trend. Where global 

significance was detected a Tukey HSD post-hoc test was used to compare between specific 

temperature levels. Nonetheless, in most cases the effect of temperature was a monotonic 

increase or decrease, and therefore to test the effect of multiple-factors (temperature, colony 

size and identity of species) I fitted a Generalized Linear Model (GLM), treating temperature 

as a continuous variable and assuming a Poisson distribution error structure (Crawley, 2007). 

Additionally, I used classification trees to evaluate the level of importance of each explanatory 

variable. Regression trees identify key break points in variables as opposed to linear trends. 

Analyses were performed using R version 2.11.1. I also used Statistica version 7.1 for graph 

building and SPSS statistics 19 to display interactive effect of temperature and colony size.   

 

Data transformation: Analysis of variance and GLMs are considered robust to deviations 

from their statistical assumptions (Zar, 1974). Nonetheless, data that showed significant 

deviations from a normal or Poisson distribution according to a Shapiro-Wilk test, were 

transformed to better fit the assumptions of the ANOVA or GLM, using a logarithmic or 

square-root transformation (Zar, 1974), (Table 5.3). Data that remained non-normal or 

heterogenic after transformation were analysed using nonparametric methods (Wilcoxon rank-

sum test). Although I transformed data using different methods for different species, the 

comparison of interest was within a species, across different temperature levels. That is, there 

was no intention of comparing foraging abundances or differences in walking speed between 

two different, non-interacting species. In displaying the results graphically, I used line graphs 

with error bars generated from the raw data. 
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Table 5.3. Methods of data transformation. Data not meeting the statistical assumptions 

(normality and homogeneity) were transformed using appropriate methods.  

 

Data type species  method of transformation  comment 

Foraging abundance of  

non-interacting colonies  L. humile square root transformed data unable to 

be corrected by 

transformation 

were analysed 

using non-

parametric 

methods 

 M. antarcticum double log transformed 

  P. advenus no transformation can correct it 

Walking speed during 

foraging L. humile square root transformed 

 M. antarcticum square root transformed 

  P. advenus no transformation can correct it 

Rate of biting L. humile no transformation can correct it 

 

 

5.3 Results 

5.3.1 Foraging abundance (non-interacting colonies) 

Foraging abundances of all three species, L. humile, M. antarcticum and P. advenus were tested 

at different temperature levels in the absence of other species‟ interference. Forager abundance 

of L. humile dropped significantly when transferred from 20°C to 18°C (TukeyHSD, p<0.001). 

Decline in temperature from 18°C to 16°C did not show any significant difference. At 

temperatures below 16°C they significantly decreased their foraging abundance (TukeyHSD, 

p<0.001). However, the higher colony size did not significantly respond to the drop in 

temperature from 14°C to 12°C (Fig. 5.3 A). Monomorium antarcticum forager abundance was 

greatest at abundance 20°C and number of foragers dropped significantly (Tukey HSD, 

p<0.05) when the temperature was lowered to 18°C. There was no significant difference in 

number of foragers of the higher colony size between the temperatures 18°C and 16°C, 16°C 

and 14°C, and 14°C and 12°C. But, lowering temperature to 12°C showed a significant 

reduction compared to the number of foragers at 16°C, 18°C, and 20°C (Tukey HSD, p<0.05, 

Fig. 5.3 B). Unlike these two species, foraging abundances of the higher colony size of P. 

advenus were found to decrease towards 20°C compared to foraging at 16°C and 18°C, 

although not significantly different (Tukey HSD, p=0.28, Fig. 5.3 C). Their foraging abundance 

at 14°C was smallest and significantly different from all the levels of temperature, 20°C, 18°C 

and 16°C (Tukey HSD, p<0.05). Similarly their foraging abundance was the smallest at 12°C 

and was significantly different from all levels of temperature tested (Tukey HSD, p<0.001) as 

in Fig. 5.3 C. The responses of all the lower colony sizes of all three species also varied with 

temperature. Their patterns of responses were similar to the higher colony size of their 

respective species. 
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Fig. 5.3. Graphs show mean number of foragers in the foraging chamber ±SE. Bars sharing the 

same letter do not have significant difference. Comparison is within a colony. Graphs with 

smooth curves represent the higher colony sizes‟ foraging abundances and the broken for lower 

colony sizes of A) L. humile, B) M. antarcticum and C) P. advenus. n=15 counts of numbers of 

foragers every hour between 10am and 1pm. 

 

 

5.3.2 Speed of walking 

Raising the temperature from 12°C to 20°C significantly increased the walking speed of all 

three ant species. This change was most pronounced for the invasive ant (L. humile), which 

increased their average walking speed over three-fold from approximately 6mm/s at 12°C to 

20mm/s at 20°C (Tukey HSD, p<0.001, Fig.5.4). The speed of M. antarcticum more than 

doubled from 5mm/s at 12°C and 14°C to 11 mm/s at 20°C (Tukey HSD, p<0.001). In the case 

of P. advenus, there was a significant change in walking speed when the temperature was 

raised from 12°C to 14°C, (Wilcoxon rank-sum statistic: W=0, p<0.001, Fig. 5.4), but at 

temperatures 14°C and above walking speed remained more or less constant at about 10-

12mm/s.  
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Fig. 5.4. Walking speed changes of ants with temperature (mean ±SE). n=20 (speed of 20 

individuals measured). Solid curve = L. humile, dashed curve is M. antarcticum and dotted 

curve is P. advenus. Comparison is within a species. Bars sharing the same letter are not 

significantly different (P>0.05). 

 

5.3.3 Species’ interactions 

5.3.3.1 Interactions between L. humile and M. antarcticum: foraging, fighting, attack rate 

and invading 

During the initial period of interaction between L. humile and M. antarcticum, both species 

tend to increase their foraging activity. However, at a later stage one species typically 

dominates and displaces the other species (e.g. Fig. 5.5). Fighting aggressively, the larger 

colony of L. humile displaced the smaller colony of M. antarcticum from the central interaction 

arena at temperature levels 20°C, 18°C and 16°C. After displacing them L. humile started to 

cross into the foraging arena of M. antarcticum. At 14°C the two species co-occurred for a long 

period in the central chamber with fewer fighting interactions. At the lowest temperature 

(12°C) the effect was reversed, i.e. L. humile were displaced by M. antarcticum (Fig. 5.6A). 

When L. humile ants were set to interact with an equal or greater colony size of M. 

antarcticum, they were displaced by M. antarcticum at all temperature levels (Fig. 5.6B and C). 

There was low interaction when both species were kept at low colony sizes and L. humile were 

able to displace the other species at 20°C (Fig. 5.6D). Aggression of L. humile measured in 

terms of biting rate changed significantly with temperature (Wilcoxon rank-sum test: W=0 

p<0.01, Fig. 5.8). There was no aggression at 12°C while it was rare and mild at 14°C and did 

not have an effect on the foraging of the other species (Fig. 5.7 & Fig. 5.8). There was a 

significant effect of temperature (GLM: β=0.78, z=3.89, p<0.01) and colony size (GLM: 
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β=9.51, z=2.36, p<0.05) on the foraging abundance and fighting success of L. humile. There 

was also a significant interactive effect of temperature and colony size on the foraging activity 

of L. humile (GLM: β=9.5068, z=2.362 p<0.05, Fig. 5.9). Temperature had an important 

influence on the performance of L. humile. In a regression tree analysis, temperature and 

colony size of L. humile were the most important factors affecting foraging density of L. 

humile. Relative to the temperature and colony size of L. humile, colony size of M. antarcticum 

was significant but of less importance according to regression trees analysis (see Fig. 5.10 and 

Table 5.4 for further detail). 

 

 

Fig. 5.5. Sample of interaction progress. Abundance and number of fights were measured in 

the central chamber. Invading refers to the number of L. humile crossing into the foraging 

arena of M. antarcticum. Interaction observed at 18°C when the colony size of L. humile was 

800 and that of M. antarcticum was 550. 
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Fig. 5.6. Interaction between L. humile and M. antracticum at different colony sizes and 

temperature levels. Black points refer to crossing into foraging arena of the other species 

termed as „invading‟. Abundance of each species was recorded (no replication and thus no SE) 

just before the subordinate species starts to be disrupted in its nest. At this stage interaction test 

stops as both species were needed for subsequent test at another temperature level.  
 

Table 5.4. Dominant species in the interaction chamber at different temperatures and with 

pairings of different size colonies. * = L. humile numerically dominant by 5:1, 

# = M. antarcticum numerically dominant by 5:1. 
 

 Temperature (°C) 

Relative colony sizes of 

L.humile andM.antarcticum 

12 14 16 18 20 

L.hum high vs M.ant low M.ant L.hum L.hum L.hum* L.hum* 

L.hum high vs M.ant high M.ant# M.ant# M.ant# M.ant# M.ant# 

L.hum low vs M.ant low M.ant# M.ant# M.ant# M.ant# L.hum* 

L.hum low vs M.ant high M.ant# M.ant# M.ant M.ant# M.ant# 
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 Fig. 5.7. Intensity of fighting change with temperature: Fighting was recorded for an hour 

from the start of interaction although interaction continued for extra half an hour in some tests. 

Interaction after an hour is mostly biting and not fighting. As one species loses the fight the 

other starts to bite and chase. 

 

 
 Fig. 5.8. Biting (attack) rate of L. humile at different temperature levels (mean ± SE). The 

interaction was between high L. humile and low M. antarcticum. Each observation was for 1 

minute, n=20 per temperature.  
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Fig. 5.9. Interactive effect of temperature and colony size of M. antarcticum on the mean 

foraging abundance of L. humile (n=10). Y-axis is foraging abundance of L. humile. When 

lines are parallel there is no interactive effect. Significance of interactive effect is detailed 

under the subtitle “5.3.3 Species‟ Interactions.” 

 

 
Fig. 5.10. Regression tree analysis of the foraging performance of L. humile in the face of 

multiple factors: temperature, its own colony size, and colony size of M. antarcticum. The 

most important factor is placed on the top of the diagram and the next after that. The model 

divides each explanatory factor at the threshold that best separates the responses variable into 

homogeneous sub-groups:  relatively higher numbers of L. humile to the right and relatively 

fewer to the left. Unbranched limb means no significant explanatory variable and the value at 

the tips is the mean expected number of foraging L. humile. 
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5.3.3.2 Interaction between L. humile and P. advenus: Foraging, Fighting and Invading 

Foraging abundances of both species increased in the central chamber during the initial 

interaction, but as the interaction continued forager abundance of one of the species typically 

declined and is eventually displaced by the other species. The large colony size of L. humile 

displaced the similarly large-sized colony of P. advenus at temperature levels 20°C and 18°C, 

while at 16-12
o
C P. advenus displaced L. humile (Fig. 5.11A). Another pair of colonies, L. 

humile (1300 individuals) against P. advenus (1830 individuals) showed similar result. 

Linepithema humile displaced P. advenus at temperature levels 20°C and 18°C, but after 

changing temperature levels to 16
o
C, 14

o
C and 12

o
C L. humile species were displaced by P. 

advenus species (Fig. 5.11C). When a large colony of P. advenus (2820 individuals) was paired 

with a small L. humile colony (620),  P. advenus species dominated the interaction chamber at 

all temperature levels tested (20°C, 18°C, 16
o
C, 14

o
C and 12

o
C) as shown in Fig. 5.11B. In the 

interaction between the two small colonies (low versus low) L. humile displaced P. advenus at 

temperature levels 20°C and 18°C. However, lowering temperature to 16
o
C, 14

o
C and 12

o
C 

confined both species to their foraging arena. They did not come to the middle chamber where 

the interaction was tested (Fig. 5.11D). Their aggressive behaviour changed with temperature 

significantly (GLM: β=3.75, z=4.83, p<0.05, Fig. 5.12). Their foraging abundances were found 

to be affected significantly by all the three factors: temperature (GLM: β=0.45, z=9.43, 

p<0.001), colony size of P. advenus (GLM: β=-0.4, z=-2.20, p<0.05) and colony size of L. 

humile (GLM: β=-2.17, z=-7.42, p<0.001). I did not find any significant interactive effect of 

temperature and colony size on the foraging behaviour of L. humile. Temperature had the most 

important influence in the performance of L. humile and colony size of L. humile was the 

second most influential factor in contributing to the foraging abundance of L. humile according 

to regression trees analysis (see Fig. 5.13 and Table 5.5 for further detail). 
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Fig. 5.11. Interaction between L. humile and P. advenus at different colony sizes and 

temperature levels. Black points refer to crossing into foraging arena of the other species 

termed as „invading‟. Abundance of each species was recorded (no replication and thus no SE) 

just before the subordinate species starts to be disrupted in its nest. At this stage interaction test 

stops as both species were needed for subsequent tests at another temperature level. 

 

Table 5.5. Dominant species in the interaction chamber at different temperatures and with 

pairings of different size colonies. * = L. humile numerically dominant by 5:1, # = P.advenus 

numerically dominant by 5:1. 0:0=both absent in foraging chamber. Colony sizes in row two 

L.huminle low (620) vs P. advenus high (2820) and row three L. humile low (1300) vs P. 

advenus high (1830).  
 

 Temperature (°C) 

Relative colony sizes of 

L. humile and P. advenus 

12 14 16 18 20 

L.hum high vs P.adv high P.adv# P.adv# P.adv L.hum L.hum* 

L.hum low vs P.adv high P.adv# P.adv# P.adv P.adv P.adv 

L.hum low vs P.adv high P.adv P.adv# P.adv L.hum* L.hum* 

L.hum low vs P.adv low 0:0 0:0 0:0 L.hum L.hum 
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Fig. 5.12. Intensity of fighting change with temperature. Fighting recorded for an hour from the 

start of interaction although interaction continued for extra half an hour in some tests. 

Interaction after an hour is mostly biting and not fighting. As one species loses the fight the 

other starts to bite and chase. 
 

 
Fig. 5.13. Foraging performance of L. humile in the face of multiple factors: its own colony 

size, temperature, and colony size of P. advenus. The most important factor is placed on the top 

of the diagram and the next after that. The model divides each explanatory factor at the 

threshold between the upper and lower levels, right side upper and the left side lower level. 

Unbranched limb means no significant explanatory variable and the value given is the mean 

foraging density of L. humile. 
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5.4 Discussion 

This study provides experimental results of the effect of temperature on L. humile foraging 

behaviour, walking speed and aggression towards other resident species. This study also tested 

how L. humile‟s ability of controlling resources in the foraging arena changes with changes in 

their own colony size as well as the colony size of the other competing ant species. More 

importantly, this experiment tested how the interactive effect of the two factors, temperature 

and biotic resistance affected the ability of L. humile to control new space.  

 

Foraging activity and walking speed of Argentine ants were found to decline with decrease in 

temperature. These ants are more active at higher temperature levels, especially for 

reproduction where oviposition activity peaks at about 28 °C (Abril et al., 2008), but warmer 

habitats should be accompanied by high moisture in order to remain favourable (Holway et al., 

2002). Different colony sizes responded differently to temperature variation in laboratory 

experiments. My field study (chapter 3) of distribution pattern of L. humile also suggests the 

importance of temperature variation within microhabitat, supporting the results of this 

laboratory experiment. I found foraging activities and walking speed of the two other species 

(M. antarcticum and P. advenus) also decreased with temperature. However, temperature seems 

to affect the speed of L. humile more severely than that of the other two species. Over the range 

20-12°C Argentine ants speed decreased more than twice that of M. antarcticum and more than 

three times of that of P. advenus. This could be due to the origin of L. humile is warmer 

Mediterranean-style climate, South America (Wild, 2004). They are adapted to high 

temperature areas such as Mediterranean climate (Jumbam et al., 2008; Abril et al., 2008; 

Holway et al., 2000; Hartley et al., 2006). On the other hand M. antarcticum and P. advenus 

are forest species native to New Zealand (Don, 2007). It is not surprising to see their speed to 

be less limited by decrease in temperature as they are adapted to a cooler climate. Regardless 

of whether a species is exotic or native, climate plays a key role in controlling species 

abundance and distribution pattern (Hairston et al., 1960) and as my results indicate this can be 

manifested in terms of physiological processes such as walking speed, foraging abundance as 

well as aggressiveness towards other species. 

 

High biotic resistance and low propagule size also impedes invasive species. As a component 

of resistance to invasion, I measured biotic resistance in the laboratory. Colony size of M. 

antarcticum had a significant effect on foraging activity of L. humile. Similarly, I found that L. 

humile responding differently to different colony sizes of P. advenus. Foraging performance of 

L. humile not only depended on colony size of the competitor species but also on how low or 
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high the numbers of both species were. That is foraging response of L. humile when both 

species were kept low was different from both species at high colony size. When colony sizes 

of both species were low (L. humile =550 and M. antarcticum = 610) L. humile displaced M. 

antarcticum at 20
o
C. On the other hand, at the same temperature level, when colony sizes of 

both species were high (L. humile =1010, M. antarcticum =1170) L. humile were displaced by 

M. antarcticum. According to my visual observation, all workers of L. humile aggressively 

fought while only 3 to 4 out of 30 foragers (workers) of M. antarcticum aggressively fought. 

With decreasing colony size, number of foragers decreases. This could have a strikingly 

negative impact on competitive performance of M. antarcticum as the number of aggressive 

fighters would be too low.  

 

In interaction with another native species, L. humile displaced P. advenus when temperature 

was raised to 18 and 20
o
C even if L. humile were competing against higher colony size of P. 

advenus (unless they were extremely higher). In testing competition between L. humile and 

Iridomyrmex rufoniger, Walters and Mackay (2005) showed that colony size of L. humile 

should be 5 to 10 times that of the other competing ants to outcompete them. However, 

competition success of L. humile not only depends on colony size but also on other factors such 

as temperature. The additive effect of multiple factors has a remarkable effect in controlling 

invasive species (Turner, 2010). Moreover, in some cases multiple factors may have synergistic 

effect. For example decreased temperature and increased predator species density significantly 

alter prey species abundance (Fulton, 1983). Although I found that less favourable temperature 

and biotic resistance significantly affect the foraging activities of Argentine ants independently, 

the most striking result was the interactive effect of both temperature and biotic resistance 

against the invasion of L. humile. According to my results, the impact of low temperature not 

only decreases number of foragers of L. humile, but also importantly impairs the mechanisms 

(walking speed, aggressiveness and biting rate) necessary when competing with other species. 

A study of other insect species (Trichogramma brassicae) also shows that walking speed 

depends on temperature (Suverkropp et al., 2001). This paper is the first of its kind studying the 

interactive effect of temperature and biotic resistance and elucidating mechanisms regulating 

the outcome of the effect of the Argentine ants. 

 

The experimental set up of my study did not provide a chance for the ants to ignore fighting 

while at the same time explore a new site if they want. That is, the ants had either to fight or 

retreat as there was no other space to explore. Sometimes the effect of colony size may be 

conditional upon environmental conditions. For example in the findings of Sagata and Lester 
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(2008) colony size played an important role in survival of laboratory colonies, while in the 

field colony size had no effect. In the field, they may be less obliged to recruit more fighters as 

there may be more space to explore without being engaged in a fight. Therefore, there is a 

possibility that our results show less severe interactions between the two ant species had it been 

observed in the field. 

 

Experimental studies show that L. humile colonies die when kept at temperatures of 5ºC and 

below (Brightwell, 2010). Based on the critical thermal limit, other researchers also suggest 

that workers of L. humile can forage down to 0ºC (e.g. Jumbam et al., 2008). However, in this 

study, I found L.humile workers‟ walking speed to slow to about 5mm/sec, and that they 

displayed no aggressive behaviour towards other ant species at 12ºC. These reductions in speed 

and aggression made them subordinate to other native species. At intermediate temperature 

levels (e.g. 16ºC) I observed that once they open their mandible to bite the other species they 

were noticeably slow to close it which could be due to high cost of activity. Even if they may 

survive at temperatures as low as 0ºC, (Jumbam et al., 2008) and forage well at 7-14ºC 

(Hartley et al., 2006), their success of colony establishment and competitive interactions may 

not be attained at lower temperatures. However, in the absence of biotic resistance, in places 

with wide ranges of winter and summer temperatures, survival at the lower critical temperature 

(Brightwell, 2010; Jumbam et al., 2008) may enable them to thrive in summer (Hartley and 

Lester, 2003). The future global distribution of Argentine ants has been predicted to include a 

wide range of countries (Hartley et al., 2006). However, previous studies to predict invasive 

species distribution based upon climate pattern have often met with little success (Williamson, 

1999). This may be explained by a failure to consider species interactions such as competition 

and facilitation (Case et al., 2005; Davis et al., 1998). Therefore, based on the outcome of my 

study it is essential to take into account the nature (in terms of identity and colony size) of 

native species inhabiting each predicted invasion front as different species respond to the same 

invasive species differently. One of the few studies to incorporate the effects of likely biotic 

resistance with climate envelope modelling is that of Roura-Pascual et al. (2011).  

  

Ecologists should realize that invasive and recipient species cannot be studied separately 

(Lodge, 1993). My study reveals that M. antarcticum are more resistant than P. advenus to 

invasion by L. humile. Nevertheless, supported by less favourable temperature, P. advenus may 

play a key role in keeping off invasive species. In New Zealand, L. humile and P. advenus 

typically occupy different habitats as P. advenus mainly occur in forested habitats, this could be 

interpreted as a result of different habitat preferences, but could equally be reinforced by the 
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different competitive advantages of each species in each habitat, mediated by differences in 

temperature. In chapter 3 I found L. humile to occur more in open patches and they were less 

abundant in other microhabitats such as tall grasses and trees. This may be related to the 

competitive advantage of M. antarcticum in these alternative, slightly cooler habitats. Nests of 

L. humile spread and contract both seasonally and annually (Heller et al., 2006). This could be 

also a good example of the advantage of surviving extreme winter conditions or could be 

interpreted as effect of biotic resistance fluctuating with seasonal temperature. That is during 

the cold season native species may be displacing them whereas in warmer season L. humile 

may reverse the course. 

 

Conclusion 

I tested interactions between two species once at every temperature level. There is a possibility 

that the result of some tests would be reversed if the test was repeated many times at each 

temperature level. However, I believe that the overall result would remain the same. The result 

is robust as the behaviour of L. humile was consistent across all temperature levels tested. This 

study indicates that a combination of biotic and abiotic factors act to limit the advance of an 

invasive species and provides a basis for further studies on effects of microclimate variation 

induced by vegetation structure as well as types of other species distribution patterns in 

invasion frontiers. 
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5.6 Appendix 

 

5.6.1. Interaction between L. humile and M. antarcticum at different temperature (°C) levels. 

Lh=L. humile and Ma=M. antarcticum. 

Colony time Temperature L. humile M. antarcticum Fighting Crossing  

Lh high Ma low 5 20 3 4 0 0 

Lh high Ma low 14 20 10 4 3 0 

Lh high Ma low 23 20 15 7 3 0 

Lh high Ma low 32 20 30 6 4 0 

Lh high Ma low 41 20 37 8 2 0 

Lh high Ma low 50 20 40 10 3 0 

Lh high Ma low 59 20 50 10 3 2 

Lh high Ma low 68 20 65 7 1 4 

Lh high Ma low 77 20 65 4 2 6 

Lh high Ma low 86 20 68 3 1 9 

Lh high Ma low 5 18 1 2 0 0 

Lh high Ma low 14 18 1 3 0 0 

Lh high Ma low 23 18 3 6 1 0 

Lh high Ma low 32 18 9 6 2 0 

Lh high Ma low 41 18 14 6 3 0 

Lh high Ma low 50 18 21 5 2 0 

Lh high Ma low 59 18 29 5 3 1 

Lh high Ma low 68 18 35 4 2 2 

Lh high Ma low 77 18 35 4 2 2 

Lh high Ma low 86 18 40 4 1 3 

Lh high Ma low 5 16 2 1 0 0 

Lh high Ma low 14 16 2 2 0 0 

Lh high Ma low 23 16 2 2 0 0 

Lh high Ma low 32 16 4 4 0 0 

Lh high Ma low 41 16 4 3 0 0 

Lh high Ma low 50 16 4 3 0 0 

Lh high Ma low 59 16 6 4 0 0 

Lh high Ma low 68 16 9 3 0 0 

Lh high Ma low 77 16 12 4 1 0 

Lh high Ma low 86 16 20 3 1 0 

Lh high Ma low 5 14 0 0 0 0 

Lh high Ma low 14 14 1 2 0 0 

Lh high Ma low 23 14 2 2 0 0 

Lh high Ma low 32 14 6 3 0 0 

Lh high Ma low 41 14 4 5 0 0 

Lh high Ma low 50 14 4 6 0 0 

Lh high Ma low 59 14 9 8 0 0 

Lh high Ma low 68 14 14 10 1 0 

Lh high Ma low 77 14 13 11 0 0 

Lh high Ma low 86 14 17 11 1 0 

Lh high Ma low 5 12 0 0 0 0 

Lh high Ma low 14 12 0 1 0 0 
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Lh high Ma low 23 12 0 1 0 0 

Lh high Ma low 32 12 0 1 0 0 

Lh high Ma low 41 12 2 3 0 0 

Lh high Ma low 50 12 2 3 0 0 

Lh high Ma low 59 12 2 3 0 0 

Lh high Ma low 68 12 1 2 0 0 

Lh high Ma low 77 12 0 2 0 0 

Lh high Ma low 86 12 0 2 0 0 

Lh low Ma high 5 20 2 8 1 0 

Lh low Ma high 14 20 0 10 0 0 

Lh low Ma high 23 20 0 13 0 0 

Lh low Ma high 32 20 2 18 2 0 

Lh low Ma high 41 20 6 20 2 0 

Lh low Ma high 50 20 4 25 1 0 

Lh low Ma high 59 20 5 20 1 0 

Lh low Ma high 68 20 4 20 0 1 

Lh low Ma high 77 20 1 25 0 3 

Lh low Ma high 86 20 1 21 0 3 

Lh low Ma high 5 18 0 1 0 0 

Lh low Ma high 14 18 0 1 0 0 

Lh low Ma high 23 18 0 4 0 0 

Lh low Ma high 32 18 0 8 0 0 

Lh low Ma high 41 18 0 8 0 0 

Lh low Ma high 50 18 0 8 0 0 

Lh low Ma high 59 18 0 6 0 0 

Lh low Ma high 68 18 1 10 0 1 

Lh low Ma high 77 18 0 7 0 3 

Lh low Ma high 86 18 0 8 0 3 

Lh low Ma high 5 16 0 3 0 0 

Lh low Ma high 14 16 0 1 0 0 

Lh low Ma high 23 16 0 2 0 0 

Lh low Ma high 32 16 0 4 0 0 

Lh low Ma high 41 16 2 4 0 0 

Lh low Ma high 50 16 2 2 1 0 

Lh low Ma high 59 16 3 5 0 0 

Lh low Ma high 68 16 2 4 1 0 

Lh low Ma high 77 16 1 3 0 0 

Lh low Ma high 86 16 1 3 0 0 

Lh low Ma high 5 14 0 0 0 0 

Lh low Ma high 14 14 0 2 0 0 

Lh low Ma high 23 14 0 2 0 0 

Lh low Ma high 32 14 0 5 0 0 

Lh low Ma high 41 14 0 4 0 0 

Lh low Ma high 50 14 0 7 0 0 

Lh low Ma high 59 14 0 7 0 3 

Lh low Ma high 68 14 0 9 0 3 

Lh low Ma high 77 14 0 5 0 3 

Lh low Ma high 86 14 0 6 0 5 
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Lh low Ma high 5 12 0 2 0 0 

Lh low Ma high 14 12 0 5 0 0 

Lh low Ma high 23 12 0 5 0 0 

Lh low Ma high 32 12 0 4 0 0 

Lh low Ma high 41 12 0 6 0 0 

Lh low Ma high 50 12 0 7 0 2 

Lh low Ma high 59 12 0 7 0 3 

Lh low Ma high 68 12 0 10 0 4 

Lh low Ma high 77 12 0 10 0 4 

Lh low Ma high 86 12 0 10 0 4 

both high 5 20 3 35 0 0 

both high 14 20 5 36 0 0 

both high 23 20 9 35 0 0 

both high 32 20 12 45 3 0 

both high 41 20 11 40 5 0 

both high 50 20 10 45 5 0 

both high 59 20 16 43 8 0 

both high 68 20 11 46 2 0 

both high 77 20 8 48 1 0 

both high 86 20 4 45 2 0 

both high 5 18 0 4 0 0 

both high 14 18 0 7 0 0 

both high 23 18 1 11 1 0 

both high 32 18 0 19 0 0 

both high 41 18 2 18 1 0 

both high 50 18 1 20 0 0 

both high 59 18 1 20 0 0 

both high 68 18 0 16 0 0 

both high 77 18 0 19 0 0 

both high 86 18 0 15 0 0 

both high 5 16 1 4 0 0 

both high 14 16 0 4 0 0 

both high 23 16 2 8 0 0 

both high 32 16 1 8 0 0 

both high 41 16 1 6 0 0 

both high 50 16 2 12 0 0 

both high 59 16 2 14 0 0 

both high 68 16 2 12 1 0 

both high 77 16 1 10 0 0 

both high 86 16 1 14 1 0 

both high 5 14 0 0 0 0 

both high 14 14 0 0 0 0 

both high 23 14 0 3 0 0 

both high 32 14 0 2 0 0 

both high 41 14 0 4 0 0 

both high 50 14 0 4 0 0 

both high 59 14 0 7 0 0 

both high 68 14 0 13 0 0 
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both high 77 14 1 9 0 0 

both high 86 14 1 13 0 0 

both high 5 12 0 2 0 0 

both high 14 12 0 2 0 0 

both high 23 12 0 4 0 0 

both high 32 12 0 4 0 0 

both high 41 12 0 4 0 0 

both high 50 12 0 7 0 0 

both high 59 12 0 6 0 0 

both high 68 12 0 11 0 0 

both high 77 12 0 17 0 0 

both high 86 12 0 17 0 0 

both low 5 20 1 2 0 0 

both low 14 20 3 2 0 0 

both low 23 20 5 4 2 0 

both low 32 20 8 4 4 0 

both low 41 20 9 6 5 0 

both low 50 20 12 5 2 0 

both low 59 20 18 4 3 0 

both low 68 20 23 2 3 0 

both low 77 20 30 1 1 3 

both low 86 20 30 2 1 5 

both low 5 18 0 0 0 0 

both low 14 18 0 0 0 0 

both low 23 18 0 1 0 0 

both low 32 18 0 3 0 0 

both low 41 18 0 4 0 0 

both low 50 18 0 4 0 0 

both low 59 18 0 4 0 1 

both low 68 18 0 3 0 3 

both low 77 18 0 6 0 3 

both low 86 18 0 7 0 5 

both low 5 16 0 3 0 0 

both low 14 16 0 2 0 0 

both low 23 16 0 4 0 0 

both low 32 16 0 3 0 0 

both low 41 16 0 3 0 0 

both low 50 16 0 4 0 0 

both low 59 16 1 2 0 0 

both low 68 16 0 2 0 0 

both low 77 16 1 3 0 0 

both low 86 16 1 5 0 0 

both low 5 14 0 0 0 0 

both low 14 14 0 0 0 0 

both low 23 14 0 0 0 0 

both low 32 14 0 0 0 0 

both low 41 14 0 0 0 0 

both low 50 14 0 0 0 0 
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both low 59 14 0 1 0 0 

both low 68 14 0 0 0 0 

both low 77 14 1 3 0 0 

both low 86 14 1 3 0 0 

both low 5 12 0 1 0 0 

both low 14 12 0 1 0 0 

both low 23 12 0 2 0 0 

both low 32 12 0 1 0 0 

both low 41 12 0 3 0 0 

both low 50 12 0 4 0 0 

both low 59 12 1 4 0 0 

both low 68 12 1 5 0 0 

both low 77 12 1 7 0 0 

both low 86 12 1 7 0 0 

 

5.6.2. Interaction between L. humile and P. advenus at different temperature (°C) levels. 

Colony size time temperature L .humile P. advenus Fighting Crossing 

both high 5 12 0 0 0 0 

both high 14 12 0 0 0 0 

both high 23 12 0 0 0 0 

both high 32 12 0 1 0 0 

both high 41 12 0 0 0 0 

both high 50 12 0 2 0 0 

both high 59 12 0 5 0 0 

both high 68 12 0 5 0 0 

both high 77 12 0 4 0 0 

both high 86 12 0 7 0 0 

both high 5 14 0 2 0 0 

both high 14 14 0 2 0 0 

both high 23 14 0 4 0 0 

both high 32 14 0 3 0 0 

both high 41 14 0 6 0 0 

both high 50 14 0 6 0 0 

both high 59 14 0 11 0 0 

both high 68 14 0 13 0 0 

both high 77 14 0 10 0 0 

both high 86 14 0 17 0 0 

both high 5 16 0 3 0 0 

both high 14 16 0 4 0 0 

both high 23 16 1 7 0 0 

both high 32 16 0 11 0 0 

both high 41 16 2 15 0 0 

both high 50 16 4 13 1 0 

both high 59 16 7 11 0 0 

both high 68 16 12 11 2 0 

both high 77 16 19 12 4 0 
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both high 86 16 24 9 2 0 

both high 5 18 0 1 0 0 

both high 14 18 1 1 0 0 

both high 23 18 1 3 0 0 

both high 32 18 1 4 0 0 

both high 41 18 0 4 0 0 

both high 50 18 2 7 0 0 

both high 59 18 7 5 3 0 

both high 68 18 9 5 2 0 

both high 77 18 13 4 3 0 

both high 86 18 16 4 3 0 

both high 5 20 2 1 0 0 

both high 14 20 5 1 0 0 

both high 23 20 5 1 0 0 

both high 32 20 11 2 0 0 

both high 41 20 14 1 0 0 

both high 50 20 18 4 1 0 

both high 59 20 26 4 1 0 

both high 68 20 24 2 0 0 

both high 77 20 26 4 2 0 

both high 86 20 32 3 1 0 

L.humile low 5 12 0 0 0 0 

L.humile low 14 12 0 1 0 0 

L.humile low 23 12 0 1 0 0 

L.humile low 32 12 0 3 0 0 

L.humile low 41 12 0 2 0 0 

L.humile low 50 12 0 3 0 0 

L.humile low 59 12 0 3 0 0 

L.humile low 68 12 0 5 0 0 

L.humile low 77 12 0 8 0 0 

L.humile low 86 12 0 8 0 0 

L.humile low 5 14 0 0 0 0 

L.humile low 14 14 0 0 0 0 

L.humile low 23 14 0 0 0 0 

L.humile low 32 14 0 0 0 0 

L.humile low 41 14 0 0 0 0 

L.humile low 50 14 0 0 0 0 

L.humile low 59 14 0 1 0 0 

L.humile low 68 14 0 3 0 0 

L.humile low 77 14 0 3 0 0 

L.humile low 86 14 0 6 0 0 

L.humile low 5 16 1 4 0 0 

L.humile low 14 16 1 8 1 0 

L.humile low 23 16 0 9 0 0 

L.humile low 32 16 0 9 1 1 

L.humile low 41 16 0 5 0 0 

L.humile low 50 16 0 3 0 0 

L.humile low 59 16 0 5 0 0 
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L.humile low 68 16 0 7 0 0 

L.humile low 77 16 0 7 0 0 

L.humile low 86 16 0 5 0 0 

L.humile low 5 18 0 1 0 0 

L.humile low 14 18 0 4 0 0 

L.humile low 23 18 1 4 0 0 

L.humile low 32 18 3 4 1 1 

L.humile low 41 18 3 3 2 0 

L.humile low 50 18 2 4 0 0 

L.humile low 59 18 2 7 0 0 

L.humile low 68 18 2 7 0 0 

L.humile low 77 18 3 10 0 0 

L.humile low 86 18 0 9 0 0 

L.humile low 5 20 0 0 0 0 

L.humile low 14 20 0 0 0 0 

L.humile low 23 20 0 0 0 0 

L.humile low 32 20 0 0 0 0 

L.humile low 41 20 0 1 0 0 

L.humile low 50 20 0 0 0 0 

L.humile low 59 20 0 0 0 0 

L.humile low 68 20 0 2 0 0 

L.humile low 77 20 1 4 0 0 

L.humile low 86 20 1 4 0 0 

L.humile low 5 12 0 0 0 0 

L.humile low 14 12 0 0 0 0 

L.humile low 23 12 0 0 0 0 

L.humile low 32 12 0 0 0 0 

L.humile low 41 12 0 0 0 0 

L.humile low 50 12 0 0 0 0 

L.humile low 59 12 0 1 0 0 

L.humile low 68 12 0 1 0 0 

L.humile low 77 12 0 1 0 0 

L.humile low 86 12 0 1 0 0 

L.humile low 5 14 0 0 0 0 

L.humile low 14 14 0 0 0 0 

L.humile low 23 14 0 0 0 0 

L.humile low 32 14 0 3 0 0 

L.humile low 41 14 0 3 0 0 

L.humile low 50 14 0 1 0 0 

L.humile low 59 14 0 4 0 0 

L.humile low 68 14 0 5 0 0 

L.humile low 77 14 0 8 0 0 

L.humile low 86 14 0 11 0 0 

L.humile low 5 16 1 3 0 0 

L.humile low 14 16 2 6 2 0 

L.humile low 23 16 1 11 0 0 

L.humile low 32 16 3 10 0 0 

L.humile low 41 16 3 10 0 0 
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L.humile low 50 16 4 12 2 0 

L.humile low 59 16 9 12 3 0 

L.humile low 68 16 14 10 2 0 

L.humile low 77 16 26 11 4 0 

L.humile low 86 16 27 7 3 0 

L.humile low 5 18 7 1 0 0 

L.humile low 14 18 11 3 2 0 

L.humile low 23 18 16 5 3 0 

L.humile low 32 18 20 7 4 0 

L.humile low 41 18 31 12 4 0 

L.humile low 50 18 39 13 3 0 

L.humile low 59 18 35 10 4 0 

L.humile low 68 18 35 7 3 0 

L.humile low 77 18 30 4 2 0 

L.humile low 86 18 45 3 0 0 

L.humile low 5 20 4 3 0 0 

L.humile low 14 20 7 3 2 0 

L.humile low 23 20 11 5 2 0 

L.humile low 32 20 18 7 4 0 

L.humile low 41 20 25 8 3 0 

L.humile low 50 20 31 5 4 0 

L.humile low 59 20 30 3 5 0 

L.humile low 68 20 36 3 3 0 

L.humile low 77 20 38 2 1 0 

L.humile low 86 20 45 2 1 0 

both low 5 12 0 0 0 0 

both low 14 12 0 0 0 0 

both low 23 12 0 0 0 0 

both low 32 12 0 0 0 0 

both low 41 12 0 0 0 0 

both low 50 12 0 0 0 0 

both low 59 12 0 0 0 0 

both low 68 12 0 1 0 0 

both low 77 12 0 1 0 0 

both low 86 12 0 1 0 0 

both low 5 14 0 0 0 0 

both low 14 14 0 0 0 0 

both low 23 14 0 0 0 0 

both low 32 14 0 0 0 0 

both low 41 14 0 0 0 0 

both low 50 14 0 0 0 0 

both low 59 14 0 0 0 0 

both low 68 14 0 0 0 0 

both low 77 14 0 0 0 0 

both low 86 14 0 0 0 0 

both low 5 16 0 0 0 0 

both low 14 16 0 0 0 0 

both low 23 16 0 0 0 0 
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both low 32 16 0 0 0 0 

both low 41 16 0 0 0 0 

both low 50 16 0 0 0 0 

both low 59 16 0 0 0 0 

both low 68 16 0 0 0 0 

both low 77 16 0 0 0 0 

both low 86 16 0 0 0 0 

both low 5 18 0 0 0 0 

both low 14 18 0 0 0 0 

both low 23 18 1 0 0 0 

both low 32 18 2 1 0 0 

both low 41 18 5 1 0 0 

both low 50 18 6 0 0 0 

both low 59 18 5 2 0 1 

both low 68 18 10 3 2 3 

both low 77 18 13 3 3 5 

both low 86 18 15 3 2 9 

both low 5 20 0 0 0 0 

both low 14 20 0 0 0 0 

both low 23 20 1 0 0 0 

both low 32 20 4 0 0 0 

both low 41 20 3 0 0 0 

both low 50 20 4 0 0 0 

both low 59 20 6 0 0 2 

both low 68 20 10 0 0 2 

both low 77 20 9 0 0 0 

both low 86 20 12 0 0 0 

 

5.6.3. Rate of biting of Argentine ants at different temperature levels. Rate of biting was 

measured in terms of number of bites per minute. 

At 12°C  At 16°C At 20°C 

0 1 5 

0 0 3 

0 2 7 

0 0 10 

0 1 9 

0 0 7 

0 1 12 

0 0 10 

0 0 15 

0 1 13 

0 0 12 

0 0 15 

0 0 10 

0 1 6 

0 0 9 

0 0 16 

0 0 5 
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0 2 7 

0 0 10 

0 0 6 

 

5.6.4. Walking speed of ants at different temperature (°C) levels. 

Tempe 

rature 

L. 

humile 

M. 

antarcticum 

P. 

advenus 

Tempe 

rature 

L. 

humile 

M. 

antarcticum 

P. 

advenus 

12 4 6.5 7.5 16 10 5 9 

12 8 5 7 16 7.5 5 10 

12 5 5 8 16 6 7 11.5 

12 6 4 7.5 16 10 9 12.5 

12 7.5 5 7.5 16 11.5 6.5 12.5 

12 5 5 7.5 16 8 6 11.5 

12 5 6 7 16 9 7 10 

12 6 6 8 16 6 7.5 14 

12 6.5 5 7 16 12.5 7 12.5 

12 6.5 5 7.5 16 10 5 15 

12 8 6.5 7 18 12.5 5 13 

12 6 4 8 18 17.5 10 12.5 

12 5 5 8 18 15 9 9 

12 8 6.5 7.5 18 14 10 13 

12 8 5 7 18 19 12.5 9 

12 6 5 8 18 10 11 9 

12 6.5 6 8 18 15 10 10 

12 5 5 7 18 10 9 10 

12 6 6.5 8 18 12.5 10 13 

12 5 5 7 18 17.5 10 9 

14 7.5 5 10 18 10 9 10 

14 8 7.5 12.5 18 9 10 10 

14 10 5 12.5 18 9 10 13 

14 10 5 10 18 10 5 10 

14 12.5 4 12.5 18 10 9 12.5 

14 7.5 4 10 18 12.5 10 10 

14 7.5 5 10 18 9 9 9 

14 7.5 5 10 18 9 10 10 

14 7.5 5 12 18 14 10 12.5 

14 7.5 6 10 18 15 7.5 10 

14 7 7.5 10 20 22.5 14 11.5 

14 7.5 4 12 20 21 12.5 9 

14 9 6 12.5 20 22.5 10 12.5 

14 9 7.5 10 20 15 9 15 

14 7 5 12.5 20 16.5 12.5 12.5 

14 7 6 10 20 17.5 12.5 10 

14 9 5 12 20 19 12.5 10 

14 10 4 9 20 20 12.5 14 

14 8 6 10 20 17.5 9 13 

14 5 6 10 20 17.5 12.5 12.5 

16 10 7.5 12.5 20 20 10 9 

16 9 6.5 10 20 22.5 12.5 9 
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16 9 7 14 20 15 9 9 

16 10 5 14 20 17.5 10 10 

16 7.5 6.5 10 20 20 10 12.5 

16 7.5 6.5 15 20 17.5 12.5 15 

16 7.5 6 9 20 22.5 14 12.5 

16 9 8 8.5 20 22.5 15 12.5 

16 6.5 7.5 10 20 20 12.5 10 

16 7.5 7 10 20 17.5 12.5 12.5 

 

5.6.5. Foraging abundance change of non-interacting ant species with temperature. 
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20 26 17 23 28 80 20 

20 60 66 80 30 70 16 

20 60 60 75 35 75 18 

20 40 45 65 30 90 20 

20 45 30 40 20 65 18 

20 35 20 30 11 75 15 

20 21 17 20 10 60 16 

20 18 7 21 15 100 14 

20 16 4 14 38 95 26 

20 15 5 11 36 105 33 

20 40 30 75 25 70 30 

20 55 45 80 30 100 19 

20 35 35 65 20 90 22 

20 60 50 70 20 85 18 

20 40 35 40 25 90 18 

18 15 15 22 15 100 15 

18 17 25 20 25 110 20 

18 20 26 18 19 90 18 

18 35 20 21 20 100 16 

18 20 30 30 13 80 14 

18 19 31 35 20 95 18 

18 24 18 30 22 90 20 

18 21 7 20 19 80 25 

18 34 3 9 15 110 30 

18 31 3 7 20 100 25 

18 25 25 18 25 95 35 

18 20 18 30 9 80 20 

18 31 30 25 14 100 17 

18 33 25 23 20 105 19 

18 25 18 17 19 90 23 
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16 9 4 9 10 120 25 

16 15 3 15 11 110 14 

16 20 6 22 24 125 30 

16 30 7 30 20 85 18 

16 30 3 30 21 90 25 

16 30 4 31 18 100 26 

16 14 7 20 18 110 19 

16 7 5 8 20 80 35 

16 10 5 7 23 65 35 

16 12 4 4 17 80 20 

16 25 3 20 20 80 37 

16 20 4 25 25 75 35 

16 30 7 20 19 65 31 

16 30 5 30 26 70 34 

16 25 3 21 21 75 30 

14 2 1 8 4 60 24 

14 6 4 8 12 80 20 

14 18 3 12 16 70 25 

14 16 6 15 7 100 19 

14 14 3 16 10 60 17 

14 9 3 19 17 70 20 

14 10 4 20 11 65 20 

14 7 6 31 15 60 16 

14 2 1 28 13 40 21 

14 3 3 11 19 70 18 

14 10 3 7 16 60 20 

14 13 3 16 20 45 18 

14 16 2 20 12 60 18 

14 10 4 22 16 75 15 

14 7 5 19 19 60 20 

12 5 1 8 10 80 10 

12 7 2 10 8 90 11 

12 6 1 14 12 60 19 

12 15 5 16 18 51 20 

12 15 1 12 18 55 19 

12 8 1 12 11 40 20 

12 6 2 18 18 32 13 

12 8 3 8 10 25 15 

12 4 1 8 7 50 13 

12 3 2 11 5 55 13 

12 8 1 12 7 40 14 

12 14 3 10 12 55 16 

12 12 2 16 13 37 13 

12 7 1 11 18 30 14 

12 7 1 10 9 40 10 
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Chapter 6 

Summary and General Discussion 

Effects of invasive species on invertebrate communities 

The main focus of my study was to investigate how invasive species affect the community they 

invade, and to examine some of the biotic and abiotic factors that might provide resistance to 

invasion. I investigated the spatio-temporal distribution of Linepithema humile (Argentine ants) 

in relation to habitat and associated distributions of other arthropod species.  

 

It is widely acknowledged that the strongest interaction of Argentine ants with arthropods is 

usually with other ant species, which they typically displace from the areas they invade 

(Holway and Suarez, 2006; Cooling et al., 2012). I observed that areas that had been invaded 

by Argentine ants also had a low species richness of other ants (Chapter 3) and a low species 

richness of endemic arthropods (Chapter 4). Studies in Hawaii also reported lower arthropod 

diversity in the presence of Argentine ants (Cole et al., 1992; Krushelnysky and Gillespie 

2008).However, without data on the areas prior to invasion it is difficult to know if pre-

exisiting low diversity allowed an invasion, or if the invasion caused a reduction in diversity. 

Hawaii has no native ant species, and the ant fauna of New Zealand is very depauperate, which 

suggests that the native beetles of these two regions may have few natural adaptations to resist 

predation and competition from ants.  

 

My study also showed that area invaded by the Argentine ants had more exotic beetle species 

than the uninvaded areas 
_
 an effect that has also been observed in other countries (Cole et al., 

1992). Invasions can destabilise communities, hence facilitating future invasions and leading to 

high species turnover (Shea and Chesson, 2002); a process known as “invasional meltdown” 

(Green et al., 2011). Analysis of species composition at coastal sites (Chapter 4) showed that 

there was a continuous change in species composition that could be due to primary and 

secondary invasions. Apart from some endemic species persisting in the invaded habitat, a 

number of them appear to be extirpated and more are on the verge of extirpation.  

 

In Hawaii, invasion by Argentine ants seemed to facilitate secondary invasion by other beetle 

species (Cole et al., 1992). I believe the displacement of endemic beetles species at Piha is 

likely due to the invasion by the Argentine ants and not by the exotic beetle species. However, 

the exotic beetle species may have some effect on the endemic ones, and there is little research 

on the exotic beetles and endemic beetle species recorded at my study sites. 
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Confounding effects 

At Piha, the invaded habitat was different from the uninvaded in terms of vegetation type and 

structure. The uninvaded area typically had  100% cover of tall herbs under  45% to 100% tree 

cover while the invaded area had a ground cover of c.80% short herbs and about 30% tree 

cover. Exotic ant species (Pheidole rugosula) new to this area were found in the uninvaded 

habitat as well as some areas from which Argentine ants had retreated. Because of this 

additional invasion, and a temporal shift in vegetation structure in some areas, it is difficult to 

conclude whether differences in the beetle community between areas invaded and uninvaded 

by the Argentine ants are due to differences in vegetation structure or a result of the presence of 

the P. rugosula. Pheidole rugosula is an exotic species to New Zealand, however, little is 

known about their impact apart from that they are generalist foragers (Don, 2007). Their close 

relative, Pheidole megacephala is an invasive species with negative impact on other ant species 

(Dejean et al., 2008). 

 

Habitat associations 

The distribution patterns of ant species in response to different microhabitat structures were 

studied in chapter 3. Microhabitats were categorized as concrete, bare earth/sand, short 

grass/herbs, long grass/herbs and trees. Study sites include; Wellington (Kelburn), Hastings, 

Piha and Dargaville. Argentine ants were most frequently found in concrete habitat types in the 

urban sites and in short herbs in the rural site(s). Interestingly, one of the endemic species to 

New Zealand, M. antarcticum was found to be associated with the same microhabitat type as 

the Argentine ants, mainly in the southern part of the North Island (Wellington), but at sites 

further north that experience a warmer climate M. antarcticum was more commonly found in 

more shaded habitat such as tall grass. Although there were a number of other species found in 

the same habitat as Argentine ants, their abundance was greater in areas where the Argentine 

ants were not common.  

 

Distributions predicted from temperature and climate 

A number of studies have predicted the potential global distribution of the Argentine ants using 

bioclimatic models (Hartley et al. 2006; Roura-Pascual et al. 2004, Roura-Pascual et al. 

2011). These predictions are based on fairly coarse-scale associations between existing 

distribution and climate. An earlier study by Hartley and Lester (2003) predicted the potential 

distribution of Argentine ants in New Zealand based specifically upon temperature 

requirements for development from ant egg to an adult stage. The inferred threshold of 445 
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degree days above 15.9 C was found to correspond well with the rate-of-spread and limits of 

distribution in Haleakala National Park, Hawaii (Hartley et al., 2010). 

 

Based on the degree-day model (Hartley and Lester 2003), I calculated the number of 

generations the Argentine ants can be expected to develop in each microhabitat type. My 

results (Chapter 3) predicted that the Argentine ants in northern New Zealand were unable to 

develop a single generation (from egg to adult) in one year under long grass and trees which is 

also the habitat where they were least frequently found. Hence, the distribution pattern of the 

ants across microhabitat types may be partly due to different developmental rates (optimal 

temperature for reproduction of the Argentine ants is about 28°C (Abril et al., 2008)), but 

equally other important physiological processes also correlate with differences in surface 

temperature, such as speed of walking and foraging behaviour (Suverkropp et al., 2001). These 

temperature-dependent processes were the subject of a later investigation with laboratory 

colonies (Chapter 5). 

 

Habitat associations affecting competitive interactions  

I find two important points to underscore. First, if other ant species inhabit the same habitat 

type as Argentine ants this will likely expose them to competition and/or aggressive interaction. 

Second, higher abundance of other ant species in the other microhabitats (especially at lower 

temperatures) may prevent the Argentine ants from spreading. Argentine ants are rarely found 

in New Zealand‟s forest habitats (Don, 2007). In tests of interactions with forest species such 

as P. advenus and M. antarcticum, Argentine ants were subordinate under low temperatures 

(e.g. <16°C), but dominant at higher temperatures (Chapter 5). Thus one may conclude that it 

is the combination of low temperatures and biotic resistance that keep Argentine ants out of 

forest habitats.  

 

Other studies have also found that ant distribution patterns are strongly associated with 

vegetation structures (Ríos-Casanova et al., 2006) that could be mainly due to temperature 

variation (Holec et al., 2006) as regulation of body temperature of ectotherms depends on 

environmental temperature (Dillon et al., 2012). However, other factors may also be important 

in influencing distribution patterns across habitat types. For example, variation in food 

availability  (Perez-Ramos et al., 2008) and differences in predator distribution  (Boukal et al., 

2007) can also result in variation in species density, richness and distribution patterns variation 

among different microhabitat types (Guido and Gianelle, 2001; Miller et al., 2012). The study 

of ant species distribution patterns in relation to microhabitat types stresses the importance of 

identifying ant species that are likely to encounter each other in a shared microhabitat.  
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Spread fluctuations and decline in Argentine ant populations 

In chapter 2 I examined the changing distribution of the Argentine ants at five sites in New 

Zealand in an attempt to measure local rates of spread. Argentine ants spread between 100m 

(Ingram and Gordon, 2003; Krushelnycky et al., 2004) and 150m per year (Suarez et al., 2001).  

 

Despite the fact that a number of common microhabitats (such as around concrete and short 

grass) appear to provide a suitable thermal environment for the development of Argentine ants 

I found that populations of Argentine ants showed an overall decline in three urban study sites, 

Dargaville, Hastings and Wellington. At the coastal sites there seemed to be a slight increase at 

Baylys Beach and at Piha a decline. This suggests that temperature and climatic considerations 

alone are not always sufficient to predict whether an introduced population will increase or 

decline. It is important to remember that most insect abundances fluctuate annually (Barlow et 

al., 2002), nonetheless an independent study that revisited many sites across New Zealand 

concluded that at approximately one-third of the sites Argentine ant populations had undergone 

a dramatic decline or “collapse” over the past 10-20 years (Cooling et al., 2012). The causes of 

the decline can only be a matter of speculation. Models of population growth and regulation 

that include time lags often demonstrate that species may overshoot their local carrying 

capacity and then decline – undergoing oscillations which in extreme cases can result in a 

population crash and local extirpation (May, 1974).  Some untested mechanisms that may have 

been responsible for the declines include a build-up of specialist predators against invasive 

species (e.g. Derivera et al, 2005), control by a pathogenic microorganism (e.g. Hajek et al, 

2005) or exhaustion of suitable food resources (e.g. Nonacs and Soriano, 1998).  

 

Interaction of temperature and colony size 

The majority of species moved outside of their native ranges fail to establish (e.g. the ten‟s rule 

of Williamson and Fitter, 1996) According to my laboratory results, small colony size (e.g. 

Allee effects) and unfavourable temperatures are believed to be important predictors in 

resisting invasion. Endemic species may be expected to have an advantage over exotic species 

as they could be better adapted to certain climate regions which may be out of the tolerance 

range of the invasive species. The interactive effect of colony size and low temperature appears 

to be more of an advantage to the endemic ant species during fighting. Field study also reveals 

the combined effect of climate and biotic resistance from neighbouring species on increasing 

mortality of ant species (Sanders and Gordon, 2004). Some of the mechanisms impairing the 

success of invaders due to low temperature are reduced developmental times, slowed walking 

speed, and decreased foraging abundance and aggression as my results show. Accompanied by 
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low temperature (16°C), M. antarcticum successfully displaced the Argentine ants from the 

foraging arena in laboratory experiment (Chapter 5).  

 

Management implications 

The community disturbance generated by the invasion of one species can be exacerbated by 

subsequent invasions in a process called “invasional meltdown” (Montgomery et al., 2012) 

which sets further challenges to control measures. Eradication of invasive species (Donlan et 

al., 2007) and habitat restoration allows species to reclaim their niche through time (Prach and 

Pysek, 2001). In the case of invasion, the community is set to continuous instability 

(Krushelnycky and Gillespie, 2008). That is, although some of the endemic species may 

attempt to come back during the invasion period, as long as the Argentine ants are there the 

endemic species may not be able to reclaim their habitat by displacing the secondary invaders, 

such as the exotic beetle species.  

 

In this study I have investigated the role of temperature and biotic resistance in halting 

establishment of the invasive species, the Argentine ants. However, these effects may change 

with human intervention. Some of the causes of loss of biodiversity are disturbances such as 

habitat fragmentation (Gibb and Hochuli, 2002; Ricketts and Imhoff, 2003) which facilitates 

invasion (Carpintero et al., 2003). Habitat fragmentation accompanied by climatic changes 

further challenges the efforts of conservation of biodiversity (Opdam and Wascher, 2004). 

Exponential human population growth is resulting in serious habitat degradation that threatens 

biodiversity (Estes et al., 2012; Holdren and Ehrlich, 1974; Meyer and Turner, 1992). Climate 

change driven by global warming (Akerlof et al., 2012; Corfee-Morlot and Hohne, 2003) has 

been associated with invasion success (Crossman, 2011; Kleinbauer, 2010).  Therefore, the two 

factors (temperature and biotic resistance) implicated here in halting spread of an invasive 

species seem to present a grim prospect for the future as temperature is rising due to climate 

change and biodiversity is further deteriorating due to habitat degradation. Nevertheless, under 

present climatic conditions, in hand with the economic benefits they provide, habitat 

management, such as tree planting or natural regeneration, may have contributed to controlling 

or minimizing the spread of invasive species through unfavourable (cooler) habitat. This 

suggests that restoration of natural habitats may be an effective way of combating the spread of 

other invasive species in the face of future global climate change. 
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7.0 Appendix 

 

7.1. Coordinate points (New Zealand Map Grid) in each study site from which samples were 

collected. Prefixes: PI=Piha, BB=Baylys Beach. 

 

Sample ID eastings northings  sample ID easting northing 

PI1 2640553 6472746  BB1 2577080 6583705 

PI2 2640579 6472697  BB2 2577117 6583653 

PI3 2640610 6472649  BB3 2577143 6583607 

PI4 2640622 6472597  BB4 2577176 6583575 

PI5 2640657 6472536  BB5 2577203 6583542 

PI6 2640688 6472493  BB6 2577213 6583526 

PI7 2640698 6472427  BB7 2577253 6583471 

PI8 2640712 6472375  BB8 2577298 6583420 

PI9 2640740 6472325  BB9 2577358 6583338 

PI10 2640759 6472268  BB10 2577386 6583286 

PI11 2640799 6472216  BB11 2577471 6583229 

PI12 2640839 6472153  BB12 2577530 6583129 

PI13 2640851 6472116  BB13 2577553 6583062 

PI14 2640889 6472072  BB14 2577600 6583010 

PI15 2640926 6472029  BB15 2577636 6582961 

PI16 2640888 6471981  BB16 2577664 6582929 

PI17 2640892 6471930  BB17 2577684 6582868 

PI18 2640939 6471887  BB18 2577759 6582801 

PI19 2640954 6471861  BB19 2577795 6582785 

PI20 2641011 6471817  BB20 2577850 6582687 

PI21 2640543 6472804  BB21 2577865 6582645 

 

7.2. Coordinate points (New Zealand Map Grid) in each study site from which samples were 

collected. Prefixes: K=Wellington (Kelburn), H=Hastings, DG=Dargaville. 
Sample 

ID 
eastings northings 

Sample 

ID 
eastings northings 

Sample 

 ID 
eastings northings 

K001 2657928 5989601 K018 2657799 5989610 K035 2657739 5989668 

K002 2657926 5989636 K019 2657804 5989573 K036 2657750 5989670 

K003 2657952 5989658 K020 2657777 5989562 K037 2657783 5989661 

K004 2657946 5989675 K021 2657775 5989510 K038 2657788 5989678 

K005 2657977 5989708 K022 2657749 5989483 K039 2657806 5989656 

K006 2657958 5989713 K023 2657752 5989452 K040 2657831 5989660 

K007 2658000 5989740 K024 2657728 5989433 K041 2657756 5989712 

K008 2658047 5989788 K025 2657686 5989430 K042 2657740 5989726 

K009 2657998 5989775 K026 2657643 5989466 K043 2657771 5989768 

K010 2657902 5989736 K027 2657658 5989473 K044 2657750 5989760 

K011 2657874 5989732 K028 2657652 5989498 K045 2657762 5989786 

K012 2657878 5989771 K029 2657673 5989506 K046 2657780 5989794 

K013 2657889 5989800 K030 2657668 5989536 K047 2657773 5989811 

K014 2657933 5989726 K031 2657698 5989570 K048 2657774 5989813 

K015 2657870 5989717 K032 2657686 5989587 K049 2657729 5989705 

K016 2657851 5989690 K033 2657715 5989611 K050 2657720 5989693 

K017 2657827 5989654 K034 2657703 5989630 K051 2657697 5989699 
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K052 2657678 5989709 K100 2657728 5989673 H058A 2840318 6168886 

K053 2657662 5989707 H001 2840021 6168710 H059 2840357 6168208 

K054 2657651 5989709 H002 2840072 6168401 H059A 2840345 6168187 

K055 2657632 5989705 H003 2840032 6167325 H062 2840362 6167719 

K056 2657615 5989696 H004 2840099 6167316 H063 2840258 6167449 

K057 2657596 5989683 H005 2839972 6167015 H064 2840342 6168817 

K058 2657560 5989664 H006 284121 6168940 H065 2840365 6168458 

K059 2657549 5989663 H007 2840149 6167678 H066 2840378 6167985 

K060 2657613 5989704 H008 2840074 6168413 H067 2840409 6168131 

K061 2657656 5989718 H009 2840063 6168631 H068 2840420 6167472 

K062 2657689 5989714 H010 2840047 6168659 H069 2840449 6167135 

K063 2657899 5989575 H011 2840173 6167712 H070 2840386 6167562 

K064 2657892 5989525 H012 2840127 6168084 H071 2840411 6167660 

K065 2657863 5989496 H014 2840109 6167763 H072 2840376 6168787 

K066 2657861 5989449 H017 2840106 6168736 H073 2840469 6168851 

K067 2657830 5989397 H018 2840132 6168514 H074 2840510 6168555 

K068 2657771 5989382 H019 2840053 6167434 H077 2840412 6168323 

K069 2657754 5989361 H021 2840084 6167320 H077A 2840421 6168314 

K070 2657713 5989364 H022 2840153 6167159 H078 2840488 6167996 

K071 2657677 5989344 H023 2840111 6167988 H079 2840467 6167057 

K072 2657643 5989355 H026 2840123 6168764 H080 2840469 6168191 

K073 2657616 5989332 H027 2840169 6168292 H081 2840433 6168674 

K074 2657576 5989385 H028 2840145 6166933 H081A 2840451 6168689 

K075 2657552 5989414 H031 2840173 6168578 H082 2840570 6167271 

K076 2657518 5989446 H033 2840262 6168641 H083 2840560 6167878 

K077 2657520 5989480 H034 2840217 6169007 H084 2840573 6167683 

K078 2657508 5989516 H035 2840166 6167380 H085 2840585 6167846 

K079 2657523 5989531 H036 2840220 6168397 H086 2840555 6168110 

K080 2657520 5989548 H037 2840195 6168136 H088 2840541 6167219 

K081 2657552 5989547 H038 2840234 6169009 H089 2840607 6167416 

K082 2657556 5989573 H039 2840226 6168001 H091 2840518 6168545 

K083 2657579 5989566 H040 2840266 6167594 H094 2840605 6168288 

K084 2657593 5989577 H041 2840314 6168677 H095 2840940 6168600 

K085 2657492 5989562 H042 2840323 6167114 H097 2840674 6167952 

K086 2657459 5989587 H043 2840297 6168922 H098 2840703 6167797 

K087 2657465 5989613 H044 2840277 6168086 H099 2840678 6168226 

K088 2657476 5989667 H046 2840165 6167383 H100 2840733 6167586 

K089 2657494 5989708 H047 2840286 6168908 H101 2840743 6167257 

K090 2657490 5989735 H048 2840317 6168590 H102 2840681 6168326 

K091 2657498 5989777 H050 2840307 6168899 H103 2840720 6167114 

K092 2657520 5989728 H051 2840323 6168252 H104 2840679 6168227 

K093 2657543 5989754 H052 2840297 6168403 H105 2840757 6168282 

K094 2657580 5989757 H053 2840347 6167770 H106 2840768 6167468 

K095 2657595 5989780 H054 2840361 6167943 H107 2840786 6167211 

K096 2657611 5989809 H055 2840346 6167571 H109 2840797 6168913 

K097 2657629 5989845 H056 2840319 6168128 H110 2840997 6168596 

K098 2657645 5989851 H057 2840359 6167050 H112 2840857 6168024 

K099 2657727 5989638 H058 2840305 6168878 H113 2840844 6167697 
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H114 2840858 6167413 H178 2841541 6167244 H283 2841641 6169710 

H115 2840879 6168365 H180 2841566 6167894 H300 2840606 6168177 

H116 2840927 6167934 H181 2841507 6167739 H301 2840638 6168823 

H117 2840852 6167909 H183 2841642 6167332 H302 2840590 6168435 

H119 2840880 6168857 H184 2841673 6168612 H303 2840978 6168720 

H121 2840946 6167280 H185 2841490 6166928 H304 2840695 6168730 

H122 2840936 6167789 H187 2841795 6167929 H305 2840552 6168688 

H124 2840941 6168396 H188 2841771 6167141 H307 2840821 6168528 

H128 2840999 6167436 H191 2841838 6167702 H308 2840622 6168555 

H129 2840964 6167737 H192 2841893 6167216 H309 2840637 6168985 

H130 2840999 6167043 H193 2841860 6167733 H310 2840369 6168966 

H131 2841070 6169010 H198 2841772 6167418 H311 2841843 6168796 

H132 2841050 6167616 H198A 2841940 6167515 H312 2841656 6167951 

H133 2841018 6168461 H201 2841985 6167882 H313LG 2842223 6169203 

H134 2841064 6167131 H202 2841990 6167276 H313SG 2842221 6169200 

H137 2841130 6169046 H203 2841998 6167028 H314LG 2842272 6169261 

H138 2841076 6168829 H205 2841669 6168250 H314SG 2842276 6169256 

H139 2841173 6167428 H237A 2841616 6167648 H315LG 2842327 6169316 

H140 2841113 6167840 H250 2841030 6168541 H315SG 2842323 6169317 

H141 2841073 6167252 H252 2841328 6168114 H316LG 2842378 6169372 

H142 2841121 6168914 H253 2841360 6168055 H316SG 2842379 6169374 

H143 2841153 6168042 H254 2841402 6167999 H317 2841848 6168728 

H144 2841167 6168779 H255 2841402 6167960 H318 2841865 6168600 

H145 2841174 6168552 H256 2841407 6167927 H396LG 2842002 6168974 

H146 2841167 6167419 H257 2841449 6167908 H396SG 2842008 6168973 

H147 2841162 6168433 H258 2841584 6167684 H397LG 2842054 6169037 

H148 2841174 6167742 H259 2841981 6167970 H397SG 2842060 6169024 

H149 2841302 6168790 H260 2841971 6168010 H399LG 2842174 6169141 

H150 2841267 6168166 H261 2841964 6168065 H399SG 2842170 6169141 

H152 2841246 6167327 H262 2841947 6168124 H500LG 2842115 6169099 

H153 2841206 6168107 H263 2841938 6168173 H500SG 2842122 6169082 

H154 2841273 6167851 H264 2841928 6168243 H501LG 2841950 6168924 

H155 2841199 6168593 H265 2841910 6168307 H501SG 2841951 6168915 

H156 2841240 6167663 H266 2841899 6168379 H502 2841768 6168718 

H158 2841246 6168863 H267 2841891 6168438 H503LG 2841896 6168867 

H159 2841329 6168237 H268 2841881 6168488 H503SG 2841906 6168852 

H160 2841266 6168287 H269 2841867 6168549 GD010 2589501 6586322 

H162 2841422 6168341 H270 2841856 6168606 GD011 2588946 6586113 

H165 2841337 6167771 H271 2841843 6168664 GD012 2588770 6585674 

H166 2841327 6167502 H272 2841830 6168721 GD013 2588960 6586052 

H167 2841627 6168567 H273 2841832 6168759 GD014 2588990 6585898 

H168 2841365 6167124 H274 2841810 6168858 GD016 2588664 6585606 

H169 2841314 6167387 H275 2841787 6168957 GD017 2589549 6585395 

H170 2841378 6167664 H276 2841770 6169048 GD019 2589694 6585099 

H171 2841447 6167585 H277 2841746 6169163 GD021 2589814 6584997 

H174 2841466 6167327 H280 2841720 6169301 GD022 2589583 6584925 

H176 2841490 6168104 H281 2841694 6169435 GD023 2589871 6584884 

H177 2841509 6167743 H282 2841669 6169568 GD024 2589637 6584850 



141 
 

GD025 2589681 6584764 GD098 2589445 6584340 GD167 2589258 6585189 

GD026 2588813 6584824 GD099 2587861 6584380 GD168 2588800 6585084 

GD027 2589168 6584794 GD100 2588078 6584321 GD169 2588406 6585080 

GD028 2588268 6584747 GD101 2589564 6584761 GD170 2588114 6585061 

GD029 2589461 6584659 GD102 2589846 6584899 GD171 2588686 6585098 

GD031 2588945 6584614 GD104 2589682 6584550 GD172 2588350 6585058 

GD032 2589499 6584550 GD108 2589731 6584639 GD173 2588288 6585010 

GD033 2588737 6584514 GD118 2590035 6584843 GD174 2588195 6584994 

GD034 2589451 6584379 GD121 2588276 6585214 GD175 2589225 6585033 

GD035 2588222 6584216 GD124 2588598 6584938 GD176 2588191 6584930 

GD036 2589521 6585234 GD125 2588601 6585312 GD177 2588436 6584934 

GD037 2589583 6585177 GD126 2589125 6585094 GD178 2588552 6584942 

GD038 2589537 6585001 GD128 2588074 6585091 GD179 2589364 6584935 

GD039 2589435 6584977 GD129 2588835 6585042 GD18 2589672 6585221 

GD040 2589453 6584839 GD130 2589092 6584920 GD180 2589512 6584865 

GD041 2589388 6584888 GD131 2588179 6584903 GD181 2588625 6584866 

GD042 2589989 6584938 GD133 2589418 6585260 GD182 2588695 6584793 

GD043 2587900 6584357 GD135 2589123 6586162 GD183 2588738 6584772 

GD044 2587962 6584346 GD136 2589194 6586169 GD184 2588095 6584737 

GD045 2588122 6584306 GD137 2589593 6586009 GD185 2588466 6584647 

GD046 2588192 6584306 GD139 2589996 6585140 GD186 2588075 6584666 

GD062 2589681 6584697 GD140 2588681 6584997 GD187 2588657 6584642 

GD070 2588907 6586293 GD141 2588703 6584944 GD188 2588538 6584611 

GD071 2589792 6585053 GD142 2590066 6584881 GD189 2588339 6584664 

GD072 2589792 6584985 GD143 2588249 6584968 GD190 2588532 6584557 

GD073 2589130 6584946 GD144 2589004 6584878 GD191 2588717 6584544 

GD074 2589705 6584949 GD145 2589585 6584906 GD192 2588563 6584506 

GD076 2588856 6584875 GD146 2589590 6585861 GD193 2588609 6584449 

GD077 2588784 6584811 GD148 2588682 6585061 GD194 2589307 6585306 

GD078 2588987 6584814 GD15 2589363 6585085 GD195 2588413 6584318 

GD079 2588754 6584792 GD150 2588919 6586246 GD197 2588271 6584298 

GD080 2588680 6584787 GD151 2588277 6584699 GD200 2588225 6585167 

GD081 2588917 6584758 GD152 2588935 6586162 GD201 2587984 6585172 

GD083 2589454 6584760 GD153 2588880 6586401 GD202 2588020 6585140 

GD084 2588062 6584615 GD154 2588864 6586466 GD203 2589679 6584809 

GD085 2589616 6584670 GD155 2588883 6586353 GD204 2588831 6584430 

GD086 2589178 6584617 GD156 2588977 6585963 GD205 2588636 6584368 

GD087 2589873 6584626 GD157 2588419 6584727 GD206 2588172 6585113 

GD089 2589416 6584568 GD158 2588691 6585659 GD207 2589264 6585065 

GD090 2589804 6584545 GD159 2589456 6585366 GD211 2589034 6586196 

GD091 2589644 6584528 GD160 2588511 6585338 GD212 2589654 6586041 

GD092 2589573 6584501 GD161 2589266 6585303 GD213 2589526 6585998 

GD093 2589044 6584492 GD162 2589188 6585386 GD214 2588980 6585983 

GD094 2588046 6584528 GD163 2588564 6585315 GD215 2588986 6585928 

GD095 2589344 6584499 GD164 2589750 6585111 GD216 2588999 6585857 

GD096 2589191 6584383 GD165 2589234 6585278 GD217 2588453 6585583 

GD097 2589009 6584452 GD166 2589160 6585015 GD218 2588470 6585613 
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GD219 2588948 6585469 

GD220 2589011 6585378 

GD221 2588753 6585110 

GD222 2588473 6585027 

GD224 2588875 6585025 

GD225 2588875 6585025 

GD226 2589927 6584741 

GD227 2588209 6584665 

GD228 2590025 6585069 

GD229 2589402 6585299 

GD236 2588283 6584274 

GD238 2588678 6584160 

GD240 2588811 6584651 

GD242 2588784 6585324 

GD248 2588616 6585456 

GD250 2589194 6585006 

GD252 2588912 6584356 

GD254 2589320 6585038 

GD256 2589405 6586302 

GD258 2589008 6585823 

GD260 2588340 6584271 

GD262 2588660 6585381 

GD264 2588173 6585023 

GD266 2588225 6584812 

GD268 2588337 6584727 

GD270 2589680 6585055 

GD272 2588447 6584255 

GD30 2588673 6584636 

GD300 2588939 6585615 

GD301 2588928 6585566 

GD302 2588941 6585666 

GD303 2588918 6585726 

GD304 2588937 6585813 

GD305 2588885 6585821 

GD306 2588919 6585860 

 

 

 

 


