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[1] This study evaluated the European Center for Medium‐Range Weather Forecasts
(ECMWF) model‐simulated clouds and boundary layer (BL) properties based upon
Atmospheric Radiation Measurement Climate Research Facility observations at the North
Slope of Alaska site during 1999–2007. The ECMWF model‐simulated near‐surface
humidity had seasonal dependent biases as large as 20%, while also experiencing difficulty
representing BL temperature inversion height and strength during the transition seasons.
Although the ECMWF model captured the seasonal variation of surface heat fluxes, it had
sensible heat flux biases over 20 W m−2 in most of the cold months. Furthermore, even
though the model captured the general seasonal variations of low‐level cloud fraction
(LCF) and liquid water path (LWP), it still overestimated the LCF by 20% or more and
underestimated the LWP over 50% in the cold season. On average, the ECMWF model
underestimated LWP by ∼30 g m−2 but more accurately predicted ice water path for BL
clouds. For BL mixed‐phase clouds, the model predicted water‐ice mass partition was
significantly lower than the observations, largely due to the temperature dependence of
water‐ice mass partition used in the model. The ECMWF model captured the general
response of cloud fraction and LWP on large‐scale vertical motion changes but
overpredicted the magnitude of the difference, especially for LWP. The new cloud and BL
schemes of the ECMWF model that were implemented after 2003 only resulted in minor
improvements in BL cloud simulations in summer. These results indicate that significant
improvements in cold season BL and mixed‐phase cloud processes in the model
are needed.
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1. Introduction

[2] The Arctic is an area that is very sensitive to global
climate change [Baker et al., 1980; Barry et al., 1993; Curry
et al., 1996; Walsh et al., 2002; Hassol, 2004] while also
experiencing significant changes in its surface air tempera-
ture, sea‐ice cover, atmospheric circulation, precipitation,
snowfall, biogeochemical cycling, and land surface [Curry
and Ebert, 1992; Curry et al., 1996; Maslanik et al.,
1996; Johannessen et al., 1999; Rothrock et al., 1999;
Rigor et al., 2000; Wang and Key, 2003; Chapin et al.,
2005; Lemke et al., 2007]. Arctic temperatures have

increased by almost twice the global average rate in the past
100 years [Trenberth et al., 2007], thus causing the Arctic
sea ice extent to decrease by 2.7% per decade since 1978
[Lemke et al., 2007]. Previous studies have shown that
Arctic clouds play an important role in Arctic climate
changes through cloud‐radiation feedback coupled with ice‐
albedo feedback [Curry et al., 1996; Zhang et al., 1996;
Stone, 1997; Walsh et al., 2002; Study of Environmental
Change, 2005].
[3] To better understand the Arctic climate, general cir-

culation models (GCMs) have been used to simulate the
Arctic climate and to project future climate changes
[Randall et al., 1998]. Although most models perform rea-
sonably well at low latitudes and midlatitudes [Gates et al.,
1999; Inness and Slingo, 2003], the Arctic climate presents
great challenges for GCMs because of the unique features in
the Arctic, such as large annual variations of solar radiation,
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high‐reflecting snow and ice surface, an extremely stable
boundary layer (BL), and a shortage of water vapor [Randall
et al., 1985, 1998; Cullather and Bromwich, 2000; Yannuzzi
et al., 2005]. Therefore, it is not surprising that large dif-
ferences in simulations of the Arctic climate exist among
GCMs, such as differences in sea surface temperature, cloud
fraction and properties, precipitation, and surface radiation
flux [Gates et al., 1999; Inoue et al., 2006; Klein et al.,
2009].
[4] Compared to other GCMs, the European Center for

Medium‐Range Weather Forecasts (ECMWF) model has
better overall performance due to its superior data assimi-
lation system and more sophisticated parameterization of
physical processes [Mace et al., 1998; Bretherton et al.,
2000; Duynkerke and Teixeira, 2001; Buizza et al., 2005].
Given these advantages of the ECMWF model, the
ECMWF‐analyzed fields are widely used as initial condi-
tions for other model simulations [Curry et al., 2000; Rinke
et al., 2006; Sandvik et al., 2007] and as verification on
results of other models [Gates et al., 1999; Curry et al.,
2000; Dethloff et al., 1996, 2001]. Therefore, it is particu-
larly important to assess the performance of the ECMWF
model and to improve its parameterization in the Arctic
region. Recently, a number of comparisons of the ECMWF
model simulations with remote sensing and in situ mea-
surements have been conducted based on intensive field
programs in the Arctic region. Beesley et al. [2000] showed
that the ECMWF model accurately predicted the presence of
most precipitation and cloud events but also overestimated
clouds lower than 1 km and above 5 km by comparing with
observations from the Surface Heat Budget of the Arctic
Ocean (SHEBA) during November and December 1997.
Bretherton et al. [2000] found that the ECMWF model
matches the SHEBA radiosonde observations above the BL,
but there are large near‐surface temperature errors that are
believed to be associated with the ECMWF slab ice model
and the assumption of the melting temperature of sea ice.
Bretherton et al. [2000] also found that the model predic-
tions did not agree with observed values for surface sensible
heat flux. Xie et al. [2006] applied the objective variational
analysis to compare the ECMWF forecast with observations
during theMixed‐PhaseArcticClouds Experiment (M‐PACE)
conducted near aroundBarrow, Alaska, duringOctober 2004.
The variational analysis helps to minimize the misrepresen-
tation problems (e.g., comparing single point observations
with model grid box results), where it was determined that
the model performance was influenced by large‐scale
dynamic processes [Xie et al., 2006]. However, because of
the relatively short time range, the influence of large‐scale
dynamics has not been thoroughly studied. Additionally, Xie
et al. [2006] showed that the model underestimation of the
surface downward longwave (LW) radiation is associated
with the underestimation of BL cloud cover and liquid water
path (LWP).
[5] Most previous studies are based on relatively short‐

term field experiments, and there are few studies that have
focused on the evaluation of model ability in predicting
seasonal changes of Arctic clouds, atmospheric variables,
and BL structures, which are still remaining key science
questions [Study of Environment Change, 2005]. Therefore,
it is important to fully understand the performance of the
ECMWF model in simulating Arctic cloud seasonal cycles

and to better evaluate the model deficiencies in cloud and
BL parameterizations by using reliable observations over a
larger time scale. To achieve this goal, 9 years of multi-
sensor observations collected from 1999 to 2007 at the
Atmospheric Radiation Measurement (ARM) Climate
Research Facility (ACRF) North Slope of Alaska (NSA)
Barrow site were used to evaluate the ECMWF simulations
of surface variables, BL properties, and cloud properties.
We also evaluated the capability of the ECMWF in pre-
dicting the influence of large‐scale vertical motion on cloud
properties. The detailed descriptions of data used in the
study are provided in section 2. The model‐predicted sur-
face variables, BL properties, and cloud properties are
compared with the observations between the period of 1999
and 2003 in section 3. The influence of large‐scale vertical
motion on cloud properties is also discussed at the end of
this section. Section 4 evaluates the improvements of the
ECMWF model with the major model upgrades after 2003.
Section 5 provides a summary of the study.

2. Data Description

2.1. Observations

2.1.1. Atmospheric State Variables
[6] The Surface and Tower Meteorological Instrumenta-

tion implements a Vaisala HMP45D temperature and rela-
tive humidity (RH) probe to measure air temperature and
RH and a Vaisala WAA251 cup anemometer to measure the
horizontal wind speed. These sensors are mounted at four
different heights (2, 10, 20, and 40 m) on a 40 m tower. The
atmospheric pressure is measured at the base of the tower.
The uncertainties of the instrumentation for RH, tempera-
ture, wind speed, and atmospheric pressure are ±2%, ±2°C,
±0.17 m/s, and ±0.15 hPa, respectively. It is important to
note that the model‐simulated RH is calculated from the
hybrid saturation vapor pressure for temperature between
−23°C and 0°C, through the use of temperature interpolation
method. Therefore, in order to match the model‐simulated
RH, the observed RH was then calculated from vapor
pressure and saturated vapor pressure. A shaded pyrge-
ometer with a hemispheric field of view provides 1 min
downwelling surface LW (4.0–50 mm) radiation flux mea-
surements with uncertainty less than ±2 W m−2 [Philipona
et al., 2001]. Sounding balloons were launched daily at
around 1800 UTC, with the exception of weekends and
holidays, and subsequently the inversion height was esti-
mated from these soundings. A temperature inversion is
defined as a layer in which temperature increases with
altitude; however, it has been shown that this layer can
include thin embedded layers (<100 m) where temperature
decreases with height [Kahl, 1990; Serreze et al., 1992]. If
an inversion layer has an embedded layer with more than
100 m depth, it is defined as multiple inversion layer.
Inversion strength was calculated as the temperature differ-
ence between the top of the highest inversion layer and the
base of the lowest inversion layer.
2.1.2. Cloud Properties
[7] The cloud vertical position and layering information

were retrieved from combined micropulse lidar (MPL) and
millimeter cloud radar (MMCR) measurements. The cloud
layer and phase detection algorithm developed by Wang and
Sassen [2001] can differentiate among various atmospheric
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targets, such as ice and water clouds, virga, precipitation,
and aerosol layers. The observed cloud occurrence fre-
quency is the ratio of the number of observed cloudy pro-
files and the total number of observed profiles within a 1 h
time interval. In general, the cloud occurrence based on hour
or longer temporal measurements is statistically similar to
the cloud cover based on spatial measurements at 10 km
[Dong and Mace, 2003]. The LWP was retrieved from two‐
channel (23.8 and 31.4 GHz) microwave radiometer (MWR)
measurements, with an improved retrieval algorithm that has
much lower uncertainties for low LWP clouds than current
ACRF achieved results [Wang, 2007]. This algorithm has
been successfully used in the Arctic region and can signifi-
cantly improve MWR low LWP retrievals, especially for
LWPs less than 30 g m−2. In our analyses, hourly mean
LWPs were calculated as the mean of the 60 s LWP data
when clouds were detected by the combined MPL and
MMCRmeasurements.Monthlymean LWPswere calculated
using the averaged hourly values. The climate modeling best
estimate (CMBE) data set [Xie et al., 2010], which provides
the hourly averaged cloud fraction and LWP measured by
ACRF ground‐based active and passive remote sensing
instruments, is also used for model validation in section 4.
2.1.3. Surface Energy Fluxes
[8] The Carbon Dioxide Information Analysis Center

(CDIAC) provides 30 min averaged surface latent and
sensible heat fluxes, which is available at a location of
71.323°N and 156.626°W using an eddy covariance tech-
nique [Law et al., 2001]. This location is approximately 1 km
west of the ACRF NSA Barrow central facility. By conven-
tion, positive values of sensible and latent heat fluxes indicate
fluxes leaving from the surface (upward direction). The
measurements used in this study were from the level‐2 data
set, which had been quality checked by CDIAC using stan-
dardized techniques and had an uncertainty less than 20%
[Berger et al., 2001]. However, certain time periods had
missing data due to instrument malfunction.

2.2. Model Simulations

[9] Hourly ECMWF simulations at the NSA Barrow site
are archived by the ACRF External Data Center. The
archived ECMWF outputs based on 12–36 h forecasts have
a horizontal resolution of 0.56° × 0.56° and a vertical res-
olution of up to 91 levels in the most recent version. The
lowest model level is approximately 10 m above the surface,
along with a grid spacing of approximately 20 m at near
surface that gradually increase with height to approximately
250 m at 2 km. The ECMWF Centre Integrated Forecasting
System comprises a four‐dimensional variational data
assimilation system, a global atmospheric model, an
ensemble prediction system, and a suite of ocean wave
models [Jakob, 2001]. The scheme of cloud parameteriza-
tion in the ECMWF model was originally developed by
Tiedtke [1993] and referred to as T93. T93 was implemented
into the ECMWF operational system in 1995 [Jakob, 1994],
where the basic foundation of this scheme includes two
prognostic equations for condensate (cloud liquid water and
cloud ice) and cloud fraction. Both the cloud fraction and
condensate are grid volume averaged variables and are
determined by advection, convection, BL turbulence, non-
convective condensation processes, and evaporation. In
addition, the condensate is also influenced by precipitation

processes and entrainment [Tiedtke, 1993]. The LWP was
calculated by integrating the LWC from cloud base to cloud
top. Other variables, including atmospheric pressure, 2 m
temperature, 2 m RH, and surface heat flux, are diagnostic
data from the ECMWF model runs and are calculated on
single surface model level. The large‐scale vertical motion
at 850 mbar is obtained from the National Center for
Environmental Prediction (NCEP) reanalysis [Kalnay et al.,
1996], which use a frozen state‐of‐the‐art analysis/forecast
system that performs data assimilation using past data. The
reanalysis outputs are available on a 2.5° × 2.5° grid every
6 h at 17 pressure levels.

3. Results for the Period of 1999−2003
3.1. Surface Variables and BL Structures

[10] The atmospheric BL provides the physical link
between the atmosphere and surface for exchanges of heat,
moisture, and momentum. Most of the BL parameterizations
are developed mainly for midlatitude conditions, where a
neutral or unstable BL stratification prevails [Dethloff et al.,
2001]. However, at the NSA Barrow site, the BL is often
characterized by an extremely stable vertical stratification.
This subsection provides an evaluation of the ECMWF si-
mulations of surface variables and BL structures under such
extreme conditions.
3.1.1. Surface Variables
[11] Surface variables, including atmospheric pressure, 2 m

temperature, 2 m and 20 m RH, surface latent heat flux, and
surface sensible heat flux, were compared between the
ECMWF model and the observations. The 20 m RH model
variable are linear‐interpolated values between the first level
(about 10 m above the surface) and the second level (about
30 m above the surface) model results. Figure 1a shows that
the model‐simulated atmospheric pressure was close to the
observations with an annual mean error of 22 hPa. For 2 m
temperature (Figure 1b), the data points deviated from the
1:1 line at warmer temperature range (above 0°C). More
detailed near‐surface temperature differences between the
ECMWF model and the observations will be discussed in
section 3.1.2. The RH at 2m (Figure 1c) showed considerable
scatter and the ECMWF model systematically under-
estimated RH (dry bias) by annual mean of 8.1%.
[12] In order to determine the seasonal variation of the

model performance in predicting near‐surface humidity, the
annual cycle of model error for 20 m RH and 20 m specific
humidity were plotted in Figure 2 based on hourly mean
data. The model error is defined as the modeled value minus
the observed value, hereafter. Figure 2a shows that the
model underestimated 20 m RH by 9% in the warm season
(refers to months between May and October, hereafter) and
overestimated it by 7% in the cold season (refers to months
between November and April, hereafter). Similar trends
existed at 2 and 40 m levels. These results are consistent
with the results from Beesley et al. [2000]. The model dry
RH bias in summer was also reported by Doran et al.
[2002], which showed that the ECMWF model under-
estimated the humidity below 1 km from June to August at
the Barrow site. For 20 m specific humidity (Figures 2c and
2d), the model overestimated it by a mean of 0.32 g/kg
during May−July season and underestimated it by a mean of
0.2 g/kg during August−October. How these near‐surface
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humidity biases impact seasonal cloud simulations will be
discussed further in section 3.2.1.
[13] The annual cycles of surface latent and sensible heat

fluxes from the ECMWF simulations and the CDIAC
measurements in 2003 were compared in Figure 3, which
shows significant seasonal variations in these fluxes with
large values in the warm season and small (or negative)
values in the cold season. Generally, the ECMWF model

captured the seasonal trend of surface heat fluxes, but large
discrepancies existed in May (the spring transition season).
During this period, latent heat flux and sensible heat flux were
overestimated by a mean of 34.3 W m−2 and 10.7 W m−2,
respectively. In the ECMWF model, the Monin‐Obukhov
similarity theory is used to calculate surface latent heat flux
(ECMWF integrated forecasting system documentation
CY31R1):

LHF ¼ �CqjUlj qs � qlð Þ; ð1Þ

where LHF represents surface latent heat flux, is the air
density, qs is the specific humidity at the surface, ql is the
specific humidity at the first model level,U is the wind speed,
and CQ is the transfer coefficient. The overestimation of LHF
in the transition season partly resulted from the biases of BL
specific humidity. By calculating the gradient of specific
humidity (qs − ql) in the spring transition period, it was found
that the model overestimated the gradient by 150%.
[14] To analyze the seasonal differences in model per-

formance, the heat flux data set was divided into four sea-
sons: Spring (March−May), Summer (June−August), Fall
(September−November), and Winter (December−February).
The scatter plots based on daily values are presented in
Figure 4. For both sensible and latent heat fluxes, the slopes
of the model‐predicted and the observed were close to 1 in the
summer and fall seasons. However, the model‐predicated
latent heat fluxes were statistically higher than measured
values by a mean of ∼19.6 Wm−2 during the summer season.
The overestimation of LHF in summer partly resulted from
comparing single point observations with model grid box
results. The overestimation of surface latent heat flux
indicates the ECMWF model provides more energy and
moisture than the real situations, such biases could further
feed into cloud simulations [Morrison and Pinto, 2006].
For both sensible and latent heat fluxes, the data points in
winter were more scattered. The higher linear correlation
coefficient in the warm season than in the cold season
(Figure 4) indicates that the ECMWF model track heat
flux variations better in the warm season although they are
systemically overestimated. This difference may be due to
the fact that the physical processes in the Arctic warm
season are similar to that in the region of midlatitude, where
many parameterizations used in the ECMWF model are
originally developed and where the ECMWF model per-
forms well. However, in the Arctic extreme stable BL, the
ECMWF BL parameterization has difficulties in represent-
ing all related physical processes. We should note that the
above statements about the discrepancies between the model
results and the observations did not consider the impacts of
open ocean in the ECMWF model grid box during the
summer time. For example, the presence of open ocean in
the ECMWF model grid box over the NSA Barrow site
during summer may cause higher grid‐averaged latent heat
flux due to higher surface humidity over ocean than that
over land [Xie et al., 2006].
3.1.2. Boundary Layer Structure
[15] The monthly mean cloud top heights of the Arctic

stratiform clouds (ASCs) as well as temperature inversion base
height and inversion top heights were plotted in Figure 5a,
which indicates that the cloud top was primarily located
inside of the inversion layer (between inversion top and

Figure 1. Comparison of the model‐analyzed (x axis)
against the observed (y axis) based on daily mean data dur-
ing 1999−2003: (a) atmospheric pressure (mbar), (b) 2 m
temperature (°C), and (c) RH (%). Linear correlation coeffi-
cient (R) between observations and the model results are
listed in Figure 1.
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inversion base). In this study, ASCs are defined as cloud
base less than 2 km and cloud thickness less than 1 km. This
general feature of ASCs can be explained based on the
physical and thermal processes; due to the maximum radi-
ative cooling at the base of the preexisting temperature
inversion, ASCs are more likely to form near an inversion
base. Furthermore, the existence of ASCs helps to maintain
the temperature inversion due to effective longwave radia-
tive cooling at the cloud top [Curry et al., 1996; Harrington
et al., 1999; Zhang et al., 1999]. Therefore, low‐level cloud
formation and maintenance mechanisms as well as cloud
properties closely interact with the BL processes and are
affected by the BL structure [Curry and Herman, 1985;

Curry et al., 1996; Dong and Mace, 2003]. To better
understand model cloud simulations, it is important to
evaluate the ECMWF model performance in predicting the
BL structures.
[16] The monthly mean inversion top heights predicted by

the model and observed by radiosonde were compared in
Figure 5b, which shows that the model captured seasonal
variation of inversion height: lower inversion in the warm
season and higher inversion in the cold season [Kahl, 1990;
Serreze et al., 1992]. However, the model‐predicted inver-
sion top was generally lower than the observed with annual
mean difference of ∼80 m. Morrison and Pinto’s [2005]
modeling study also showed inversion height differences

Figure 2. (a) The 20 m RH model error and (b) observed 20 m RH; (c) 20 m specific humidity (SH)
model error and (d) observed 20 m specific humidity. Model error is defined as model – observation.
The individual dot point represents hourly mean value, and the short dashed lines are weekly mean values.

Figure 3. The annual cycle of daily mean model‐predicted and measured (a) surface sensible heat flux
and (b) surface latent heat flux in the year of 2003 at the NSA site.
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between model simulations and observations; they contrib-
uted the differences to the model deficiencies in the BL
parameterization, vertical velocity, and the initialization
fields.
[17] As a complex phenomenon, the temperature inver-

sion in the Arctic BL involves radiative cooling, warm air
advection, subsidence, radiative influences from ice crystals,
surface melt, and topographic influences [Busch et al., 1982;
Kahl, 1990; Serreze et al., 1992]. Therefore, detailed dif-
ferences between the model‐simulated and observed BL
inversion structures are strongly dependent on individual
cases. Figure 6 shows the temperature profiles from the
ECMWF model and the radiosonde data on 2 January 2001
and 30 May 2001, which represent typical temperature
profiles in winter and spring seasons, respectively. As
illustrated in these two examples, although the general
shapes of the temperature profiles are similar, there are some
noticeable differences in fine structures.
[18] The first general difference is that the observed pro-

file had a more complicated structure, especially in winter,
during which multiple inversion layers frequently occur.
Because of insufficient vertical resolution or inability to
capture all of the inversion generation mechanisms, the
model did not represent the fine structure of the temperature
profile. These deficiencies also explain why the model‐
predicted inversion base was lower than the observed; for
example, in Figure 6a, the ECMWF model‐predicted
inversion base was at ∼150 m, whereas a higher inversion
base was observed at ∼250 m.

[19] The second general difference is the inversion
strength which was compared in Figure 7. The model si-
mulations and the observations exhibited similar seasonal
trends with a mean maximum strength in March and a mean
minimum strength in October. However, the ECMWF
model underestimated inversion strength by ∼20% during
the warm season, whereas the model overestimated it by
∼3% during the cold season, which was consistent with the
example cases given in Figure 6.
[20] The third general difference is near‐surface temper-

ature structure. As illustrated in the case from 30 May 2001
(Figure 6b), the model predicted that the inversion layer was
surface‐based (the inversion base is at the surface), whereas
the observations showed a lifted inversion layer (inversion
base is above the surface). The lifted inversion was associ-
ated with a mixed layer that forms above the surface, which
acts to keep the inversion elevated [Kahl, 1990]. The
ECMWF model generally underestimated the occurrence of
the lifted inversion by ∼18%. Near‐surface temperature
differences were also reflected in temperature biases, as
illustrated in individual profiles (Figure 6) and seasonal
mean temperature profiles (Figure 8). Figure 8 displays that
there was near‐surface cold bias in the fall and winter sea-
sons and warm bias in the summer season. In the spring
season, there was warm bias above 120 m level and cold
bias below 120 m level. The warm bias coincided with the
overestimation of sensible heat flux in the summer season.

Figure 4. Scatter plots of the model‐predicted (y axis) against measured (x axis) daily mean (a and b)
sensible heat flux and (c and d) latent heat flux based on data from 2003 to 2005. The different seasons are
indicated with different colors. Linear correlation coefficient (R) between the observations and the model
results are listed in Figure 4.
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Bretherton et al. [2000] believed that the warm bias in
spring is associated with the large thermal inertia of the slab
ice model, which prevented near‐surface air temperatures
from cooling. Although the above statement is based on the
SHEBA experiment conducted over the Arctic Ocean, it
could also explain the warm bias at the Barrow site that is
close to the ocean. As to the cold bias in winter, Viterbo et
al. [1999] attributed it to lack of the soil moisture freezing in
the ECMWF model land surface scheme. In addition to the
above reasons, the uncertainties in the Arctic cloud simu-
lations and related downward longwave radiation fluxes are
important factors contributing to the near‐surface tempera-
ture biases. The importance of BL structures, particularly the
low‐level temperature inversions, to heat/moisture transfer
and ASCs formation had been analyzed through observa-
tional and model studies [Andreas and Murphy, 1986;
Curry, 1986; Rahl, 1990; Curry et al., 1996; Zhang and
Stamnes, 1998]. In the ECMWF cloud parameterizations,
both convective clouds and stratocumulus clouds use a
mass‐flux type parameterization [Jakob, 2001], which is
dependent on convective updraft and turbulent mixing in the
BL. Therefore, the poor ability of simulating BL vertical
structures as described above certainly has influences on
ASC simulations. The interaction between BL structures and
cloud fraction will be further discussed in the following
section.

3.2. Cloud Properties

[21] The ECMWF cloud parameterizations are subdivided
by the general cloud classification groups, and these include
convective clouds, stratocumulus clouds, and stratiform
clouds. The parameterizations of convective clouds and
stratocumulus clouds are based on mass‐flux parameteriza-
tion [Tiedtke, 1989, 1993; Gregory et al., 2000]. For strat-
iform clouds, the parameterization of cloud formation is
based on nonconvective processes (i.e., condensation by
lowering the saturated specific humidity), such as large‐
scale lifting and/or diabatic cooling [Jakob, 2001]. The
determination of the phase of the condensate is based solely

Figure 6. Temperature profiles from the ECMWF model
(solid line) and radiosonde observations (dashed line) on
(a) 2 January 2001 and (b) 30 May 2001 at the NSA Barrow
site.

Figure 7. Monthly mean inversion strength from the
ECMWF model (black block) and from radiosonde observa-
tions (white block).

Figure 5. The annual variations of BL properties. (a)
Observed monthly mean inversion top height (dashed line),
inversion base height (dotted line), and cloud top height
(solid line). (b) Monthly mean inversion top height from
ECMWF simulations (solid line) and radiosonde observa-
tions (dotted line).
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on temperature and is accomplished by describing the
fraction of water in the total condensate, aw, as

�W ¼ 0

�W ¼ T � Tice
T0 � Tice

� �2

�W ¼ 1

T � Tice

Tice � T � T0

T � T0

; ð2Þ

where Tice = 250.16 K and T0 = 273.16 K.
3.2.1. Cloud Fraction
[22] An example of the time‐height cross section of the

observed clouds in September 1999 is shown in Figure 9a,
in which some unique features of Arctic clouds are pre-
sented. First, the frequency occurrence of ASCs is as high as
80% of the time in some months; second, the ASCs lasted
several days; and third, the cloud base was as low as 180 m
above the ground. Figure 9b shows the cloud fraction simu-
lated by the ECMWF model during the same period. The
model‐predicted large‐scale features, such as cloud type and
cloud occurrence, matched well with the observations.
However, there were significant differences in the magni-
tudes and in the vertical and temporal distributions of the
clouds: the model‐simulated cloud base was higher than the
observed one, low‐level clouds were underestimated by the
model, and middle‐level and high‐level clouds lasted longer
in the model simulations. These differences in the vertical
distribution of the clouds may be more clearly identified from
review of monthly mean cloud fraction profiles. Figure 10
shows the model‐simulated and the observed cloudiness
profiles during the fall and winter season. In September 1999
(Figure 10a), the model significantly underestimated cloud
fraction below 1 km and overestimated cloud fraction above
1 km. Xie et al. [2006] also reported that in October (fall
season), the ECMWFmodel underestimated BL clouds when

compared with the M‐PACE observations. In December
1999 (Figure 10b), the model overestimated cloud fraction
below 1 km and above 4 km.
[23] To fully understand seasonal variation of the model

performance in predicting cloud vertical structure, Figures 11a
and 11b show the observed and simulated annual cloud
cycle with a 5 year (1999−2003) averaged monthly mean
cloud fraction profile. Both the model simulations and the
observations show that the NSA Barrow site was dominated
by low‐level clouds. However, based upon the model error
(i.e., model‐observations) profile in Figure 11c, it is clear
that there are differences in the cloud vertical structure
between the model simulations and observations. The
ECMWF model generally overestimated clouds above 6 km
in all seasons. The differences regarding high‐level clouds
may partly result from observation limitations. First, the
MMCR may still fail to detect tenuous cirrus clouds with
very low ice water content (IWC) and small crystal size
[Hogan et al., 2001; Wang and Sassen, 2002a, 2002b];
second, the MPL cannot detect high‐level clouds when the
low‐level clouds are present, due to strong attenuation. For
clouds between 2 and 4 km, the model simulated profiles
were close to the observed profiles in all months except in
June. For clouds lower than 2 km, model errors strongly
depend on the seasons. In the cold season, the model gen-
erally overestimated clouds below 500 m. In the warm
season, except in October, the model generally under-
estimated clouds below 500 m and overestimated clouds
above this level. In October, the model significantly un-
derestimated clouds below 2 km. These differences reflect
that the ECMWF model has a difficult time in accurately
representing the cloud vertical distributions, especially for
the low‐level clouds. The cloud vertical distributions influ-
ence the distribution of radiative fluxes; thus, misrepresen-
tation of the cloud vertical structure will further influence the
surface energy budget [Baker, 1997].
[24] Considering the critical role of low‐level clouds on

surface energy budget, it is important to understand how the
BL variables and dynamic processes affect the seasonal
variations of the ECMWF low‐level cloud biases. In this
paper, the model‐simulated low‐level cloud fraction (LCF)
is calculated by using a maximum cloud overlap assump-
tion, which is also used in other studies [Beesley et al., 2000;
Xie et al., 2006]:

LCF ¼ max
l¼0;2km

al; ð3Þ

where al is the hourly cloud fraction at model level l. In
order to calculate the observed LCF, only the cloud profiles
with a cloud base less than 2 km are selected. Figure 12
shows the comparison of the monthly mean LCF that is
calculated from hourly values. Because the cloud layers
occurred at different heights in different times, Figure 12
cannot be simply inferred from Figure 11. The annual
mean observed LCF was 52%, with maximum of 81% in
October and minimum of 30% in June. The annual mean
model‐predicted LCF was 64%, with maximum of 78% in
October and minimum of 42% in June. Although, the
ECMWF model was able to capture the general seasonal
trend, the model did not capture the changes of cloud
amount in the transition seasons. In Spring, the observed

Figure 8. Seasonal mean temperature profiles simulated by
the ECMWF (solid line) and observed by radiosonde
(dashed line) in (a) Winter, (b) Spring, (c) Summer, and
(d) Fall based on data during 1999−2004.
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LCF increased sharply from 36% in April to 54% in May. In
Fall, observed LCF decreased from 81% in October to 62%
in November. The transition seasons in the Arctic are
accompanied by the transition of atmospheric conditions,
radiation, sea ice cover, and soil thermal state [Olsson et al.,
2003]. The low‐level clouds are impacted by such transi-
tions and undergo cloud property changes, especially in
cloud phase [Curry et al., 1997; Harrington et al., 1999;
Curry et al., 2000]. Therefore, the poor performance in
capturing the trend in cloud amount in the transition sea-
sons, in some respects, illustrates the model deficiency in
simulating the mixed‐phase clouds that dominate the LCF in
these seasons [Pinto, 1998; Intrieri et al., 2002]. In addition
to the different trends in the transition seasons, there was
significant magnitude difference in the annual cycle. During
the cold season, the ECMWF model overestimated the LCF
by 23%. During the warm season, except in June and July, the
ECMWF model underestimated the LCF by 4%. The sea-
sonal variations in predicting the LCF could be associated
with model‐simulated surface variables, BL processes, and
dynamic processes. In the following discussions, we will try
to establish the link between simulated low clouds and these
factors.
[25] The bias in humidity simulation possibly causes the

model bias in predicting LCF. In the ECMWF stratiform
cloud parameterization, cloud formation and maintenance
are controlled by condensation processes, i.e., the rate of
change in saturated specific humidity (qs). New cloud for-
mation in the grid box is also controlled by the grid mean
RH, which means cloud formation is prohibited when RH is
below the critical value [Tiedtke, 1993; Jakob, 2001]. Figure
2 shows the model‐simulated 20 m RH had a dry bias for
the period between May and October and a moist bias for
the remaining months, which roughly corresponded to the
periods of the model underestimating and overestimating
LCF, respectively. As to the underestimation of low‐level
clouds in August, September, and October, this could also

Figure 10. Monthly mean profile (20 m vertical resolution)
of cloudiness predicted by the ECMWF model and observed
by lidar and MMCR at the NSA Barrow site in (a) September
1999 and (b) December 1999.

Figure 9. Comparison of ECMWF (a) observed and (b) model‐predicted cloud fraction at the ACRF
NSA Barrow site in September 1999.
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be associated with the ECMWF deficiencies in simulating
the frontal system. Ryan et al. [2000] and Xie et al. [2006]
stated that the model poorly captured the frontal cloud band,
thus, resulting in an underestimation of low‐level clouds. By
using the NCEP reanalysis data, we found that the Barrow
site experienced a higher occurrence of moisture advection
associated with frontal systems between August and October
than in other months. Therefore, there are more chances for
the model to underestimate the low‐level clouds during this
period. The overestimation of low‐level clouds in June and
July could be because part of the ECMWF model grid box
over the Barrow site contains ocean. The biases of the
ECMWF model in predicting BL structure could also
influence the low‐level cloud simulations. Although it is not
clear to what extent the biases influence cloud simulations,
some observational evidences suggests the close correlation
between cloud properties and BL structures [Kahl, 1990;
Sedlar and Tjernstrom, 2009]. This close correlation can be
explained by thermal dynamic processes. For example, the
lifted inversion is always associated with the surface mixing
in the BL. Therefore, in this situation, moisture and energy
transfer processes in the BL are strongly coupled to the low‐
level clouds.
3.2.2. Cloud Liquid and Ice Water Path
[26] Given the fact that liquid water dominates the ASCs

even in the mixed‐phase condition and considering its

important role in cloud radiative‐surface interactions, cor-
rectly predicting LWP is critical for models to correctly
simulate Arctic surface heat budget [Curry and Herman,
1985; Curry, 1986; Intrieri and Shupe, 2004; Shupe and
Intrieri, 2004; Morrison and Pinto, 2006]. In this study,
the LWP from the ECMWF model were compared to the
observations only when the cloud base was lower than 2 km
and cloud thickness was less than 1 km. Moreover, periods

Figure 11. Monthly averaged vertical distribution of cloud fraction from (a) the observations and (b) the
ECMWF model and (c) their differences. Both the ECMWF model and observation data are averaged
from hourly data during 1999−2003.

Figure 12. The seasonal variation of monthly mean LCF
from the ECMWF model and the observations at the NSA
Barrow site. Observations and model forecasts during
1999−2003 are here. The vertical bars indicate the standard
deviation of monthly means among different year.
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with LWP values over 300 g m−2 were not included because
such high values were most likely due to precipitation. By
looking at daily time series (not shown here), the ECMWF
model predicted the occurrence of liquid or mixed‐phase
clouds well. However, the model‐predicted LWP values for
these clouds were much lower than the observed values, and the
differences far exceed the retrieval uncertainties of 10 g m−2.
Figure 13a shows the comparison between the model‐
predicted and retrieved monthly mean LWP values based on
data between 1999 and 2003. The model‐predicted values
were much smaller than the observed values, where the
annual mean difference was 30 g m−2. Although model
underestimation of LWP is generic, contributions to this bias
are still complex. Xie et al. [2006] and Klein et al. [2009]
suggested that the LWP error is due to the underestimation
of cloud amount and difficulties in simulating the micro-
physics of mixed‐phase clouds. Doran et al. [2002] showed
that the underestimation of LWP is consistent with the dry
bias in the RH, which is also presented by this study in
Figure 2. However, it is not yet known to what extent, the
near‐surface RH bias will account for the LWP underesti-
mation. For ice water path (IWP) (Figure 13b), the model
captured the seasonal trend well, with maximum values in
February and minimum values in June. Moreover, the
model‐simulated IWP is close to the observed value, with an
annual mean underestimation of 18%. Figure 13c shows that
the model significantly underestimates liquid water fraction
(LWF) defined as LWP/(LWP + IWP), especially in winter.
This underestimation is largely due to the model phase
partition parameterization, which solely depends on tem-
perature (equation (2)). Other than poor performance in
LWF, the temperature‐dependent phase partition has many

negative impacts on model performance. The liquid phase
could coexist with the ice phase in the Arctic stratus clouds
even if cloud temperature is below Tice (250.16 K). More-
over, the temperature‐dependent phase partition also pro-
duces erroneous structure in IWC profiles [Liu et al., 2007;
Xie et al., 2008]. As the results displayed in section 3.1.2.,
the cloud top temperature is normally lower than the cloud
base temperature. Therefore, according to the temperature‐
dependent phase partition, the mixed‐phase cloud top will
have higher IWC than the cloud base have, which has been
shown to be the opposite of some observations [Pinto, 1998;
Intrieri et al., 2002]. The biases in cloud LWF influence the
model predictions of surface LW radiative flux. Figure 14
shows that seasonal trends of surface downwelling LW
(DLW) flux errors and LWF errors generally coincided with
each other (i.e., larger LWF errors led to larger DLW flux
errors). However, for clouds with LWP less than 50 g m−2,
the DLW flux is also affected by the cloud droplet effective
radius, LWP, and cloud temperature. Therefore, the mag-
nitude of model DLW flux errors was not in proportion to
the magnitude of model LWF errors. For example, even
though the LWF error was low in January compared to other
months, the DLW flux error reached −20 W m−2.

3.3. Influence of Large‐scale Vertical Motion on Cloud
Properties

[27] The influence of large‐scale vertical motion on Arctic
cloud properties had been addressed by several previous
studies; however, it is shown that these studies had different
conclusions. Pinto [1998] found that large‐scale vertical
velocity appears to be relatively unimportant for the for-
mation and maintenance of the ASCs. Klein and Hartmann
[1993] showed that the season with the highest amount of
Arctic stratus clouds does not coincide with the season of
the highest lower tropospheric stability (LTS). This result
implies a weak correlation between ASCs amount, and
large‐scale vertical motion because the LTS is positively
correlated to large‐scale downward motion with a correla-
tion coefficient of 0.56. However, Curry et al. [1996]
indicated that large‐scale vertical motion influences cloud
formation through modifying the temperature inversion and
cloud top radiative cooling, based upon a simulation using a
one‐dimensional coupled atmosphere‐sea ice model. On the
basis of the model simulations with a two‐moment micro-
physics scheme, Morrison and Pinto [2005] concluded that
neglecting upward motion results in weak cloud droplet
activation and further reduction in the cloud liquid water
content. Thus, weak upward motion is considered to be a
favorable condition for initiating ASCs. Zuidema et al.
[2004] also found that rising motion at 850 mbar coin-
cided with a deeper BL and higher cloud optical depths from
1 to 10 May 1998 during the SHEBA experiment. The
different conclusions explained above were based on either
short‐term case studies or model results. Therefore, multi-
year (1999−2003) data sets are important to evaluate the
impacts of large‐scale vertical motion on cloud properties
and also to determine how well the ECMWF model captures
these properties.
[28] The NCEP reanalysis was used to provide large‐scale

vertical motion (omega) at 850 mbar. Cloud fractions from
the ECMWF model and the observations under upward and
downward motion conditions were averaged by month sepa-

Figure 13. Comparison of monthly mean (a) LWP, (b)
IWP, and (c) LWP/(LWP + IWP) for the low‐level clouds
between the ECMWF model simulations (solid line) and
the observations (dashed line) around the NSA site.

ZHAO AND WANG: COMPARISON OF ARCTIC CLOUDS BETWEEN ECMWF AND ARM ACRF D23202D23202

11 of 17



rately. Their differences (cloud fraction under upward motion
minus cloud fraction under downward motion) are shown in
Table 1. Both the ECMWF model and the observations
showed higher cloud fraction under upward motion than
under downward motion, especially for low‐level and mid-
dle‐level clouds. The ECMWF model captured the observed
trend within 3%. Monthly mean model errors of LCF under
upward and downward motion were plotted in Figure 15.
Although the model error under these large‐scale conditions
showed a similar seasonal trend, model simulations per-
formed slightly better under large‐scale upward motion than
under the downward motion.
[29] A similar comparison for model‐simulated and

observed LWP under the upward and downward motions
was presented in Figure 16. Although, observed annual
mean LWP under the upward motion condition was higher
than under the downward motion condition by 8.7 g m−2,
significant differences mainly occurred in March, July, and
August. On the other hand, the ECMWF model produced
significantly higher LWP under upward motion conditions
than under downward motion conditions, especially from
May to October.
[30] Figure 17 shows the observed cloud top height and

cloud top temperature difference under the upward and
downward motions. For these two comparisons, we only
considered the clouds with cloud tops lower than 2 km.
Clouds associated with upward motion were higher by
∼191 m and warmer by ∼1.3°C than clouds associated with
downward motion, in terms of annual mean differences.
Higher cloud top height and warmer cloud top temperature
associated with large‐scale upward conditions, indicated that
warm air advections are mainly responsible for large‐scale
upward motions.

[31] These results clearly indicate that large‐scale
dynamic conditions have a significant impact on ASC
properties and thereby cloud radiative forcing. Although the
ECMWF model captured the general trends of large‐scale
dynamics on cloud fraction and LWP, the ECMWF model
overestimated the impact of large‐scale dynamics, especially
for LWP.

4. Improvements of the ECMWF Model After
2003 and Their Performances

[32] The above results are based on the observations
during 1999−2003 when ACRF NSA site had almost con-
tinuous high‐quality data. As summarized in the Table 2, the
ECMWF has made two major model improvements related
to BL properties and low‐level cloud properties after 2003,
which are referred to as Cycle 29r1 and Cycle 31r1. The
performance of each new cycle of the ECMWF on pre-
dicting the Arctic LCF, LWP, and surface heat flux are
compared here in terms of monthly mean actual differences
(model‐observation) and relative model error (∣difference/
observation∣). The observations during 1999−2007 are
divided into three periods: before 2003 (Cycles before 2003,
note as Cycles B2003 hereafter), between April 2005 and
September 2006 (Cycle 29r1), and between September 2006
and December 2007 (Cycle 31r1). The observed cloud
fraction and LWP are from the ARM CMBE that provides
many quantities in one data set to support model validation
over large spans of data [Xie et al., 2010].

4.1. Low‐Level Cloud Fraction and Liquid Water Path

[33] For LCF (Figures 18a and 18b), the cycle 29r1 had
overall similar performance as the cycles B2003. The cycle
31r1 had minor improvement between March and October
(with mean relative error of 32% compared with mean rela-
tive error of 36% during the same period for the cycles
B2003); however, the cycle 31r1 had a worse simulation of
LCF between November and February (mean relative error of
186%) when compared to the cycles B2003 (mean relative
error of 67%). For LWP (Figures 18c and 18d), the new
versions of the ECMWF (both cycle 29r1 and cycle 31r1) had
only minor improvements or even worse performance in
predicting LWP, with the exception of July. Annual mean
relative errors are 59%, 56%, and 53% for the cycle 31r1, the
cycle 29r1, and the cycles B2003. It is clear that the new

Figure 14. Monthly mean model error for surface down-
welling LW radiation (DLW) flux (solid line, left y axis)
and liquid water fraction (LWF) (dash line, right y axis). Re-
sults are based on data from 1999 to 2003. LWF is defined
as LWP/(LWP + IWP).

Figure 15. The seasonal variation of LCF model error
under large‐scale upward and downward motions. Monthly
mean values are based on data from 1999 to 2003. The ver-
tical bars indicate the standard deviation of monthly means
among different years.

Table 1. Mean Cloud Fraction Difference Between Upward and
Downward Motion (Upward ‐ Downward)a

Low‐Level
Cloud Fraction
Difference

(%)

Middle‐Level
Cloud Fraction
Difference

(%)

High‐Level
Cloud Fraction
Difference

(%)

Observed 10.4 11.5 5.6
ECMWF 7.5 13.6 6.3

aData based on 4‐year period from 1999 to 2003.
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versions only have minor improvements in Arctic low cloud
simulations during the summer season, and the major issues
identified in section 3 (based on data before 2003) still exist.

4.2. Surface Heat Fluxes

[34] For sensible heat flux, the cycle 31r1 had overall
better performance than the early versions (Cycles B2003),
in terms of the relative error (Figures 19a and 19b). The
annual mean relative errors are 205%, 165%, and 108% for
the cycles B2003, cycle 29r1, and cycle 31r1, respectively.
For latent heat flux, although the cycle 31r1 has better
performance in May, June, and August, the improvement is

not as significant as the improvement of sensible heat flux.
However, the actual difference (Figure 19c) shows that the
Cycle 31r1 underestimated the latent heat flux between June
and September, which is opposite to the prediction of the
earlier cycles. Another significant difference is that the
Cycle 31r1 overestimates LHF and underestimates SHF
during October−December.

5. Summary

[35] Because of the unique features in the Arctic, such as a
large annual variation of solar radiation, high‐reflecting
snow and ice surface, an extremely stable BL, and low water
vapor amounts, some model physical parameterizations that
were developed mainly based on observations at low lati-
tude and midlatitudes may not be applicable to the Arctic,
resulting in poor model performance. In order to assess the
ECMWF model performance in the Arctic region, obser-
vational data from 1999 to 2007 at the NSA Barrow site
were used to compare with the model simulations. Particu-
larly, we tried to link the surface variables, BL properties,
and cloud properties together and used these relationships to
determine how they influenced each other. We also evalu-
ated the capability of the ECMWF to capture the influence
of large‐scale vertical motion on cloud properties. The fol-
lowing results were obtained from this study:
[36] 1. Although the ECMWF model‐simulated surface

pressure and 2 m temperature were close to the observations,
there were large discrepancies in 2 and 20 m RH. The
ECMWF model‐simulated 2 m RH is systematically drier
than the observations, with an annual mean dry bias of
8.1%. The 20 m RH model error showed distinctive sea-
sonal variation with a dry bias in the warm season and moist
bias in the cold season. The periods of 20 m dry and moist
biases roughly corresponded to the periods when the model
underestimated and overestimated LCF, respectively. For
latent heat flux, the ECMWF model‐predicted values were
statistically higher than measured values by ∼19.6 W m−2

during the summer season, which was partly due to the
model biases in simulating near‐surface specific humidity.

Figure 16. The comparisons of seasonal LWP variation
between (a) the observed and (b) the model‐predicted
LWP under the large‐scale upward and downward motions.

Figure 17. The seasonal variation of (a) observed cloud
height and (b) cloud top temperature under the large‐scale
upward and downward motions. Only clouds with top
height lower than 2 km are included in the analyses.

Table 2. Changes of the ECMWF Model Related to Boundary
Layer Properties and Low‐Level Cloud Fraction After 2003

Time Version Changes

5 April 2005 Cycle 29r1 New moist BL scheme
[Kohler, 2005] that generate
more stratocumulus clouds
in subtropical highs and
better at generating low‐level
clouds in some anticyclonic
conditions, use of MODIS
winds, wavelet Jb,
assimilation of rain‐affected
radiances
[Jung and Leutbecher, 2007].

12 September 2006 Cycle 31r1 Revisions to the cloud scheme
including treatment
of ice supersaturation that
increases the upper
tropospheric humidity and
decreases high‐level cloud
cover and cloud ice amount
[Tompkins et al., 2007]
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The overestimation of surface latent heat flux indicated that
the ECMWF model supplies more energy and moisture into
the BL than the real situations.
[37] 2. Because of insufficient vertical resolution or

because of the simple fact of not being able to capture all

inversion generation mechanisms, the ECMWF model did
not accurately represent the fine structure of the vertical
temperature profile in the BL, especially in the winter season
when multiple inversion layers often occur. The ECMWF
model also underestimated inversion strength by ∼20%

Figure 18. The ECMWF model performance in predicting (a and b) LCF and (c and d) LWP in terms
of monthly mean actual difference (model ‐ observation) and relative error (∣(model‐observation)/
observation∣) for ECMWF cycles before 2003 (B2003), Cycle 29r1, and Cycle 31r1.

Figure 19. The ECMWF model performance in predicting (a and b) sensible heat flux and (c and d)
latent heat flux in terms of monthly mean actual difference (model ‐ observation) and relative
error (∣(model‐observation)/observation∣) for ECMWF cycles before 2003 (B2003), Cycle 29r1, and
Cycle 31r1.
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during the warm season and overestimated it by ∼3%
during the cold season. Near‐surface temperature biases dis-
played strong seasonal dependence; warm biases occurred in
the summer, whereas cold biases occurred in the fall and
winter. The warm bias coincided with the overestimation of
sensible heat flux in summer. The uncertainties of Arctic
cloud simulations and related downward longwave radiations
are important factors in the near‐surface temperature biases.
[38] 3. For LCF, the ECMWF model captured the general

seasonal trend; however, the model did not capture the
changes of cloud amount in the transition season or the
magnitude of the cloud annual cycle. During the cold sea-
son, the ECMWF model overestimated the LCF by 23%.
During the warm season, the ECMWF model under-
estimated the LCF by 4%, except in June and July. The
model biases in predicting low‐level clouds were possibly a
result of the model deficiencies in simulating frontal systems
and the model biases in humidity, surface latent heat flux,
and BL structures. Furthermore, the ECMWF model over-
estimated high‐level clouds by 5.4% and underestimated
clouds between 2 and 4 km by 4.5%.
[39] 4. The ECMWF model‐simulated LWPs were lower

than the observed values by ∼57%, with an annual mean
difference of 30 gm−2. In contrast, themodel‐simulated IWPs
in BL clouds were in better agreement with the observations
(∼18.5% underestimation). Liquid water fraction was sig-
nificantly underestimated, especially in winter. This was
largely due to the model parameterization of phase partition,
which is solely temperature dependent. The biases in cloud
liquid path and water fraction influenced the model’s ability
to predict surface LW radiation.
[40] 5. Large‐scale vertical motion can influence the cloud

properties; both the ECMWF model and the observations
showed higher cloud fraction under upward motion than
under downward motion, especially for low‐level and
middle‐level clouds. Similarly, LWP was higher under
upward motion than under downward motion. Although the
ECMWF model captured the general trends of large‐scale
dynamics on cloud fraction and LWP, the ECMWF model
overestimated the impact of large‐scale dynamics, especially
for LWP.
[41] 6. The ECMWF has made two major model improve-

ments related to BL properties and low‐level cloud properties
after 2003, which are referred to as Cycle 29r1 and Cycle
31r1. The results show that the new versions only have pro-
duced minor improvements in Arctic low cloud and LWP
simulations during the summer season, and major issues
identified in section 3 based on data before 2003 still exist.
Although the Cycle 31r1 had overall better performance in
simulating sensible heat flux than the early versions (Cycles
B2003), it had provided only minor improvements in latent
heat flux.
[42] Although the ECMWF model showed reasonably

good skill in simulating Arctic clouds, the model weak-
nesses discussed above certainly indicate that more efforts
are needed to improve model physics parameterization in
this region. It is reasonable to expect that sophisticated
treatments of BL processes, especially in the cold season,
while coupling with larger‐scale dynamics could improve
the ASC simulation. Phase partition in ECMWF clearly
needs to be improved for better simulations of Arctic mixed‐
phase clouds. Long‐term ACRF observations over the

Arctic region offer unique data sets to improve these aspects
in models.
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