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Abstract 
 

As an inhomogeneous mixture of pure ice, brine, air and solid salts the physical 

properties of sea ice depend on its highly temperature-dependent microstructure. 

Understanding the microstructure and the way it responds to variations in temperature 

and salinity is crucial in developing an improved understanding of the interaction 

between sea ice and the environment. However, measurements monitoring the 

microstructure of sea ice are difficult to obtain without disturbing its natural state. 

The brine fraction of sea ice is orders of magnitude more conductive than the solid ice, 

thus direct current resistivity techniques should yield information on sea ice 

microstructure. Due to the preferential vertical alignment of brine inclusions, the bulk 

resistivity of first-year sea ice is anisotropic, complicating interpretation of surface 

resistivity soundings. However, it can be shown that in a bounded anisotropic medium 

the resistivity structure may be resolved through in situ cross-borehole measurements. 

Measurement between borehole pairs, each containing one current and one potential 

electrode, allows the determination of the horizontal component of the anisotropic bulk 

resistivity (H). Using three to four electrodes positioned at approximately the same 

depth in separate boreholes, provides an under-estimation of the geometric mean 

resistivity (m), and numerical modelling is required to retrieve an estimate of the true 

m. Combining these resistivities allows calculation of the vertical component of the 

bulk resistivity (V). 

This thesis looks at results from measurements made in first year sea ice in April – June 

2008 off Barrow, Alaska and in November 2009 off Ross Island, Antarctica. At Barrow, 

relatively quiescent conditions typically lead to a predominance of columnar ice, while 

more turbulent conditions and underwater ice formation in McMurdo Sound tend to 

produce a larger component of frazil or platelet ice. 

Interpretation of the resistivity measurements, aided by temperature and salinity data, 

shows that this measurement technique can be used to observe evolution of the ice 

structure, and distinguish different ice types. Basic two phase structures provide a 

simple picture of the brine microstructure and how it changes with depth and time. 

These models indicate the need for vertical connectivity of the brine inclusions even in 

cool ice, and that H seems to be mostly due to connections along grain boundaries. 





 v 

Acknowledgements 
 

I would like to acknowledge and express my appreciation to all those who, in some 

way, supported me during the course of this study. 

Firstly a big thanks to my primary supervisor Dr. Malcolm Ingham (Victoria University 

of Wellington (VUW)). He suggested the topic and organised the field work, not to 

mention providing me with the opportunity to travel to the Arctic and Antarctica. Time 

was made in an often busy schedule to provide advice and direction throughout the 

project, and always with good humour. Additionally, support and expertise were always 

available from my secondary supervisor Emeritus Professor Joe Trodahl (VUW) and 

other members of the VUW sea ice group. 

During this research I received financial support from a VUW Doctoral 

Scholarship/Assistantship. Travel to Alaska was funded by a S. T. Lee young researcher 

travel award which allows for Graduate student exchange between; the Antarctic 

Research Centre, VUW and the International Arctic Research Center, University of 

Alaska Fairbanks (UAF). 

The Arctic field measurements were made with, financial support obtained through NSF 

Office of Polar Programs, grants ARC-0620124 and 0934683. Logistic support was 

provided by the Barrow Arctic Science Consortium. Access to data and field assistance 

were supplied by Professor Hajo Eicken, Dr Daniel Pringle, and the floating ice group 

at UAF. Hajo also provided invaluable feedback throughout my research. Daniel and 

wife Lisa kindly opened their home to me. Insight, into what was a new field for me, 

was gained from a sea ice field course, attended by international experts and students. 

Antarctic field measurements were made as part of science event K131, collaboration 

between the University of Otago (UoO), VUW, National Institute of Water and 

Atmospheric Research, and Industrial Research Ltd. (IRL), coordinated by Dr Tim 

Haskell (IRL). Logistics support was provided by Antarctic New Zealand. Alex Gough 

and Andy Mahoney (UoO) installed the electrode strings. Dr Robin Dykstra and the 

NMR group (VUW), and Alex (UoO) kindly supplied me with access to their data. 

Last but not least I would like to thank my friends and family for their continual support 

throughout the whole process. 

 





 vii 

Contents 
 

Abstract ......................................................................................................................... iii 
Acknowledgements ..................................................................................................... v 

Contents ....................................................................................................................... vii 

List of figures ............................................................................................................... xi 

List of tables ................................................................................................................ xv 

Chapter 1 Introduction ..................................................................................... 17 

1.1 Sea ice overview ......................................................................................... 23 

1.1.1 Formation ................................................................................................. 23 

1.1.2 Properties ................................................................................................. 26 

1.1.2.1 Thermal ............................................................................................. 26 

1.1.2.2 Mechanical ....................................................................................... 26 

1.1.2.3 Optical ............................................................................................... 26 

1.1.2.4 Electrical ........................................................................................... 27 

1.1.3 Arctic vs. Antarctic ................................................................................ 28 

1.2 The brine component of sea ice ............................................................. 30 

1.2.1 Structure ................................................................................................... 30 

1.2.2 Evolution .................................................................................................. 33 

1.3 The electrical structure of sea ice .......................................................... 36 

Chapter 2 Electrical resistivity surveys ....................................................... 41 

2.1 Resistivity survey principles ................................................................... 41 

2.1.1 Resistivity of an isotropic medium .................................................... 41 

2.1.2 Resistivity of an anisotropic medium ............................................... 43 

2.1.3 Surface electrical resistivity surveys ................................................ 46 

2.1.3.1 Measurements on a semi-infinite uniform anisotropic 
medium ............................................................................................. 47 

2.1.4 Borehole resistivity measurements .................................................. 48 

2.1.4.1 Measurements in a infinite uniform anisotropic 
medium ............................................................................................. 49 

2.2 Cross-borehole resistivity measurements in a infinite 
anisotropic medium ................................................................................... 51 

2.2.1 Measurements of horizontal resistivity (H) .................................... 52 

2.2.2 Measurements of geometric mean resistivity (m)........................ 55 

2.2.3 Measurements of vertical resistivity (V) ......................................... 57 

2.3 Cross-borehole resistivity measurements in a bounded 
anisotropic medium ................................................................................... 59 

2.3.1 Current flow through a boundary ...................................................... 59 

2.3.2 Three layer model .................................................................................. 61 

2.3.2.1 Horizontal resistivity measurements (H) ................................ 72 

2.3.2.2 Geometric mean resistivity measurements (m) .................... 77 

2.3.2.3 Surface resistivity measurements ............................................. 81 

2.3.2.4 Summary........................................................................................... 84 

Chapter 3 Field Work ........................................................................................ 85 

3.1 Arctic site - Barrow, Alaska (2008) ......................................................... 85 

3.2 Antarctic site - McMurdo sound, Ross Dependency (2009) ............ 87 

3.3 Resistivity measurements ........................................................................ 89 

3.3.1 Horizontal resistivity measurements ................................................ 91 

3.3.2 Geometric mean resistivity measurements .................................... 94 

3.3.3 Dataloggers ............................................................................................ 101 



 viii 

3.4 Ice thickness and snow depth measurements ................................. 104 

3.4.1 Arctic ....................................................................................................... 104 

3.4.2 Antarctica ............................................................................................... 106 

3.5 Temperature measurements ................................................................. 107 

3.5.1 Arctic ....................................................................................................... 107 

3.5.2 Antarctica ............................................................................................... 110 

3.6 Salinity measurements ........................................................................... 111 

3.6.1 Arctic ....................................................................................................... 111 

3.6.2 Antarctica ............................................................................................... 113 

3.7 Brine volume fraction calculations ...................................................... 114 

3.7.1 Arctic ....................................................................................................... 114 

3.7.2 Antarctica ............................................................................................... 116 

3.8 Brine salinity calculations ...................................................................... 117 

3.8.1 Arctic ....................................................................................................... 117 

3.8.2 Antarctica ............................................................................................... 118 

3.9 Brine resistivity calculations ................................................................. 120 

3.9.1 Arctic ....................................................................................................... 120 

3.9.2 Antarctica ............................................................................................... 121 

3.10 Summary ..................................................................................................... 123 

Chapter 4 Obtaining resistivity models ..................................................... 127 

4.1 Data inversion ........................................................................................... 127 

4.1.1 Least-squares optimisation method ............................................... 128 

4.1.2 Marquardt-Levenberg modification ................................................. 128 

4.1.3 Smoothness-constrained least-squares method ........................ 129 

4.1.4 Directly smoothing the model resistivities ................................... 130 

4.1.5 Robust inversion method .................................................................. 131 

4.2 RES3DINV – Geotomo Software ........................................................... 132 

4.2.1 Data files ................................................................................................. 133 

4.2.2 Inversion parameters .......................................................................... 134 

4.2.2.1 Resistance or apparent resistivity as inversion 
variable ............................................................................................ 134 

4.2.2.2 Initial model ................................................................................... 135 

4.2.2.3 Forward modelling method ....................................................... 136 

4.2.2.4 Damping factor ............................................................................. 136 

4.2.2.5 Flatness filter ................................................................................. 137 

4.2.2.6 Directly smooth model resistivities ........................................ 137 

4.2.2.7 Robust inversion method .......................................................... 138 

4.2.2.8 Solving the least squares equation ......................................... 140 

4.2.2.9 Resistivity change: optimum step size .................................. 141 

4.2.2.10 Converging the inversion .......................................................... 141 

4.2.3 Summary ................................................................................................ 141 

Chapter 5 Analysing resistivity profiles .................................................... 145 

5.1 Barrow, Alaska .......................................................................................... 146 

5.1.1 2008 measurements – Jones et al. (2010) ..................................... 146 

5.1.2 2006 measurements – Ingham et al. (2008) ................................... 158 

5.2 McMurdo Sound, Antarctica – 2009 ..................................................... 161 

Chapter 6 Investigating brine structures .................................................. 169 

6.1 Archie’s Law .............................................................................................. 172 

6.2 Power law mixing models ...................................................................... 176 

6.3 Suspensions of spheroids ..................................................................... 180 

6.4 Cuboid models .......................................................................................... 188 



 ix 

6.5 Percolation theory .................................................................................... 217 

Chapter 7 Summary......................................................................................... 223 

Appendix I .................................................................................................................. 227 

Appendix II ................................................................................................................. 231 

Appendix III ................................................................................................................ 235 

References ................................................................................................................. 237 

 

 





 xi 

List of figures 
 

Figure 1.1: Extent of sea ice cover during 2008 ............................................................ 17 

Figure 1.2: Brine inclusions in the solid ice matrix ....................................................... 18 

Figure 1.3: Crystal structure of ice Ih ............................................................................ 23 

Figure 1.4: Frazil and columnar ice ............................................................................... 24 

Figure 2.1: Commonly used electrode configurations for surface surveys ................... 46 

Figure 2.2: Electrode configuration, with two current and two potential electrodes 

positioned individually in four boreholes within the ice. .......................... 51 

Figure 2.3: Electrode configuration, with two boreholes each containing one 

current and one potential electrode. .......................................................... 53 

Figure 2.4: Electrode configuration for geometric mean resistivity measurements ...... 56 

Figure 2.5: Point source in one medium separated from another medium by a 

semi-transparent mirror. ............................................................................ 60 

Figure 2.6: Structure consisting of three isotropic resistivity layers, with 

resistivities 0, 1 and 2............................................................................. 62 

Figure 2.7: Current paths between current source C and measurement point P, 

and apparent locations of the image source. .............................................. 63 

Figure 2.8: Examples of ray paths travelling from C to P via an even number of 

reflections, with the first reflection being from the bottom boundary ...... 63 

Figure 2.9: Examples of ray paths travelling from C to P via an odd number of 

reflections, with the first reflection being from the bottom boundary. ..... 65 

Figure 2.10: Examples of ray paths travelling from C to P, with the first 

reflection always being from the top boundary ......................................... 65 

Figure 2.11: Current paths travelling from current electrode C, at a depth of zj 

below the upper boundary to potential electrode P, a horizontal 

distance a away at a depth of zi ................................................................. 66 

Figure 2.12: Current paths travelling from current electrode C to potential 

electrode P, both in the seawater. .............................................................. 70 

Figure 2.13: Current paths travelling from current electrode C, in the sea ice, to 

potential electrode P, in the seawater. ....................................................... 71 

Figure 2.14: Current paths travelling from current electrode C, in the seawater, to 

potential electrode P, in the sea ice. .......................................................... 72 

Figure 2.15: Horizontal resistivity recovered from 3D inversion of synthetic data ...... 76 

Figure 2.16: Geometric mean resistivity recovered from 3D inversion of synthetic 

data ............................................................................................................ 79 

Figure 2.17: Variation of geometric mean resistivity with depth, recovered from 

1D inversion of synthetic surface resistivity data. .................................... 83 

Figure 3.1: Maps showing the approximate location of the measurement site, in 

first-year sea ice ~1km off the coast of Barrow, Alaska ........................... 86 

Figure 3.2: Maps showing the approximate location of the measurement site, in 

first-year sea ice ~10km off the coast of Ross Island, Antarctica ............. 88 

Figure 3.3: Photos of the electrode strings used to make the cross-borehole 

resistivity measurements. .......................................................................... 89 

Figure 3.4: Field setup of equipment for cross-borehole resistivity measurements 

in the Arctic. .............................................................................................. 90 

Figure 3.5: Borehole setup for horizontal resistivity measurements ............................. 91 

Figure 3.6: Example of plug and ARES datalogger setup for Arctic field 

measurements of the horizontal resistivity, labelled rhoh1. ...................... 92 

Figure 3.7: Example of plug and ARES datalogger setup for Arctic field 

measurements of the horizontal resistivity, labelled rhoh2. ...................... 93 



 xii 

Figure 3.8: Borehole setups for geometric mean resistivity measurements. ................. 95 

Figure 3.9: Example of plug and ARES datalogger setup for Arctic field 

measurements of the geometric mean  resistivity, labelled rhomean1. ..... 96 

Figure 3.10: Example of plug and ARES datalogger setup for Arctic field 

measurements of the geometric mean  resistivity, labelled rhomean2. ..... 97 

Figure 3.11: Diagram from ARES user manual showing the specification of the 

profile position. ....................................................................................... 101 

Figure 3.12: Example of the data file produced by the ARES datalogger ................... 103 

Figure 3.13: Diagram of UAF mass balance site ......................................................... 104 

Figure 3.14: Plot of Arctic ice thickness from the 7th Apr to the 17th Jun 2008 ........ 105 

Figure 3.15: Plot of snow depth in the Arctic, from the 7th Apr to the 17th Jun 

2008 ......................................................................................................... 105 

Figure 3.16: Plot of averaged temperature with depth over the period of each 

measurement set of the 2008 Arctic measurements ................................ 107 

Figure 3.17: Plot of  temperatures over the Arctic measurement period 7th Apr to 

17th Jun 2008 .......................................................................................... 109 

Figure 3.18: Plot of temperature with depth over the period of each measurement 

set of the 2009 Antarctic data .................................................................. 110 

Figure 3.19: Plot of salinity vs. depth, salinities obtained from ice cores taken by 

UAF during 2008 Arctic measurements .................................................. 111 

Figure 3.20: Evolution of Arctic sea ice salinity profiles ............................................ 112 

Figure 3.21: Plot of salinity vs. depth, salinities obtained from ice cores taken by 

K131 members during 2009 Antarctic measurements. ........................... 113 

Figure 3.22: Plot of calculated brine volume fraction vs. depth for 2008 Arctic 

data. ......................................................................................................... 114 

Figure 3.23: Plot of calculated brine volume fraction vs. depth for 2009 Antarctic 

data. ......................................................................................................... 116 

Figure 3.24: Plot of calculated brine salinity in parts per thousand vs. depth in 

centimetres for 2008 Arctic data. ............................................................ 117 

Figure 3.25: Plot of calculated brine salinity in parts per thousand vs. depth in 

centimetres for 2009 Antarctic data. ....................................................... 118 

Figure 3.26: Plot of calculated brine resistivity in ohm meters vs. depth in 

centimetres for 2008 Arctic data. ............................................................ 120 

Figure 3.27: Plot of calculated brine resistivity in ohm meters vs. depth in 

centimetres for 2009 Antarctic data. ....................................................... 122 

Figure 4.1: Comparison of models produced using a homogeneous half space as 

initial model or using the approximate inverse method to obtain the 

initial model. ............................................................................................ 136 

Figure 4.2: Effect of directly smoothing the model resistivity on the inversion 

models. .................................................................................................... 138 

Figure 4.3: Effect of different model robust constraint cut-off values. ....................... 140 

Figure 5.1: Vertical sections through models of the geometric mean resistivity, 

2008 Arctic measurements. ..................................................................... 148 

Figure 5.2: Vertical sections through models of the horizontal and vertical 

resistivity, and anisotropy profiles, 2008 Arctic data. ............................. 149 

Figure 5.3: Temperature, salinity and brine volume fraction profiles, 2008 Arctic 

measurements. ......................................................................................... 150 

Figure 5.4: Line plots of average 2008 data values with depth ................................... 151 

Figure 5.5: Plot of resistivity vs. brine volume fraction displaying the behaviour 

of the Hashin - Shtrikman limits ............................................................. 153 



 xiii 

Figure 5.6: Plots of the relationships between conductivity and (a) temperature, 

(b) brine volume fraction, during the measurement period in the 

Arctic. ...................................................................................................... 156 

Figure 5.7: x-y and x-z sections of the horizontal resistivity model – displaying 

the anomalous halos around the electrode strings. .................................. 158 

Figure 5.8: Vertical sections through the 3D horizontal resistivity models, as 

obtained from Fig. 5. in Ingham et al. (2008). ........................................ 160 

Figure 5.9: Vertical sections through models of the geometric mean resistivity, 

2009 Antarctic measurements. ................................................................ 162 

Figure 5.10: Vertical sections through models of the horizontal and vertical 

resistivity, and anisotropy profiles, 2009 Antarctic data. ........................ 163 

Figure 5.11: Temperature, salinity and brine volume fraction profiles, 2009 

Antarctic measurements. ......................................................................... 164 

Figure 5.12: Line plots of average 2009 data values with depth ................................. 165 

Figure 6.1: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) ............. 170 

Figure 6.2: Log-log plots of formation factor (/b) vs. brine volume fraction 

(Vb/V), showing Archie‟s Law fit to the 2008 Arctic data. .................... 174 

Figure 6.3: Log-log plots of formation factor (/b) vs. brine volume fraction 

(Vb/V), showing Archie‟s Law fit to the 2009 Antarctic data. ................ 175 

Figure 6.4: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for 

Arctic data showing power law trends .................................................... 177 

Figure 6.5: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for 

Antarctic data, showing power law trends .............................................. 178 

Figure 6.6: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for 

Arctic data, showing Tinga et al. (1973) and Vant et al. (1978) 

expressions .............................................................................................. 185 

Figure 6.7: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for 

Antarctic data, showing Tinga et al. (1973) and Vant et al. (1978) 

expressions .............................................................................................. 186 

Figure 6.8: Unit cube of a two phase structure, consisting of cubes of a material 

with conductivity 2, within a matrix of material with conductivity 

1. ............................................................................................................. 188 

Figure 6.9: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed cubic structures (grey shading) and the measured 

Arctic data (coloured points) ................................................................... 190 

Figure 6.10: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed cubic structures (grey shading) and the measured 

Antarctic data (coloured points) .............................................................. 191 

Figure 6.11: Unit cube of a two phase structure, consisting of vertical cubic 

columns of a material with a conductivity 2, within a matrix of 

material with conductivity of 1. ............................................................. 193 

Figure 6.12: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed column structure (light grey points) and the 

measured Arctic data (coloured points) ................................................... 195 

Figure 6.13: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed column structure (light grey points) and the 

measured Antarctic data (coloured points) .............................................. 196 

Figure 6.14: Unit cube of a two phase structure, consisting of horizontal cubic 

tubes of a material with conductivity 2, within a matrix of material 

with conductivity of 1. ........................................................................... 197 



 xiv 

Figure 6.15: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed tube structure (dark grey points) and the measured 

Arctic data (coloured points) ................................................................... 199 

Figure 6.16: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed tube structure (dark grey points) and the measured 

Antarctic data (coloured points) .............................................................. 200 

Figure 6.17: Unit cube of a two phase structure, consisting of vertical cubic 

columns and horizontal cubic tubes of a material with conductivity 

2, within a matrix of material with conductivity of 1. .......................... 201 

Figure 6.18: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed column and tube structure (black points) and the 

measured Arctic data (coloured points)................................................... 203 

Figure 6.19: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed column and tube structure (black points) and the 

measured Antarctic data (coloured points) .............................................. 204 

Figure 6.20: Unit cube of a two phase structure, consisting of vertical cubic 

columns, horizontal cubic tubes and cubes of a material with 

conductivity 2, within a matrix of material with conductivity of 1. ..... 205 

Figure 6.21: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed column, tube and cube structure (white points) 

and the measured Arctic data (coloured points) ...................................... 207 

Figure 6.22: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of 

both the proposed column, tube and cube structure (white points) 

and the measured Antarctic data (coloured points) ................................. 208 

Figure 6.23: Plot of the conductivity of the proposed Arctic column, tube and 

cube structure for differing conductivities of the ice matrix. .................. 209 

Figure 6.24: Plot of the conductivity of the proposed Antarctic column, tube and 

cube structure for differing conductivities of the ice matrix. .................. 210 

Figure 6.25: Plots of the relative sizes, and the trends with time and depth, of the 

dimensions of the proposed Arctic brine structure. ................................. 211 

Figure 6.26: Plots of the relative sizes, and the trends with time and depth, of the 

dimensions of the proposed Antarctic brine structure. ............................ 212 

Figure 6.27: Plot of formation factor (/b) vs. brine volume fraction (Vb/V) for 

the vertical resistivity data from the 2008 Arctic measurements. ........... 218 

Figure 6.28: Plot of formation factor (/b) vs. brine volume fraction (Vb/V) for 

the horizontal resistivity data from the 2008 Arctic measurements 

(circles), combined with data from Ingham et al. (2008) (squares). ....... 219 

Figure 6.29: Plot of resistance vs. number of resistors changed .................................. 220 

Figure 6.30: A 2x2x2 resistor network where each resistor is itself represented by 

a 2x2x2 sub-array of resistors. ................................................................ 220 

Figure 6.31: Plot of formation factor (/b) vs. brine volume fraction (Vb/V) for 

resistivity of the 3D resistor network (50 repeats) and data from 

measurements on Arctic sea ice. ............................................................. 222 

 



 xv 

List of tables 
 

Table 1.1: Summary of brine structure statistics obtained from the literature ............... 32 
Table 2.1: Tij values for different zi–zj distances ............................................................ 57 
Table 3.1: Summary of the measurements made on first year landfast sea ice in 

the Chukchi Sea, approximately 1km off the coast of Barrow, 

Alaska over the period 7th Apr to 17th Jun 2008. ..................................... 99 
Table 3.2: Summary of the measurements made on first year sea ice in McMurdo 

Sound, approximately 10km off the coast of Ross Island, Antarctica 

over the period 11th Nov to 21st Nov 2009. ........................................... 100 
Table 3.3: Summary of the measurements made on first year landfast sea ice in 

the Chukchi Sea, approximately 1km off the coast of Barrow, 

Alaska over the period 7th Apr to 17th Jun 2008. ................................... 126 

Table 3.4: Summary of the measurements made on first year sea ice in McMurdo 

Sound, approximately 10km off the coast of Ross Island, Antarctica 

over the period 11th Nov to 21st Nov 2009. ........................................... 126 
Table 4.1: Summary of inversion parameters. ............................................................. 143 
 

 





 17 

Chapter 1 
Introduction 

 

Sea ice covers a large area of high latitude oceans in the Arctic and Antarctic regions. 

This cover begins to form when the temperature of the seawater reaches its freezing 

point, for seawater with a salinity of 34 practical salinity units (psu) this occurs at 

approximately -1.86
o
C (Eicken, 2003). A large fraction of this ice is first-year ice that 

only survives one season, melting as temperatures warm in spring/summer. However, 

some of the sea ice survives more than one season, to become multi-year ice. Due to the 

melting that occurs, the extent of the sea ice varies annually with areas generally 

ranging from 15.7x10
6
 km

2
 to 9.3x10

6
 km

2
 in the Arctic and 18.8x10

6
 km

2
 to 

3.6x10
6
 km

2
 in Antarctic waters (Dieckmann and Hellmer, 2003), as illustrated by the 

2008 sea ice extent in Figure 1.1. 

 

    
(a) (b) (c) (d) 

Figure 1.1: Extent of sea ice cover during 2008; in the Arctic (a) Maximum extent (March) – 15.2 million sq 

km (b) Minimum extent (September) – 4.7 million sq km (significantly less than the median extent), and in 

the Antarctic (c) Maximum extent (September) – 18.5 million sq km (d) Minimum extent (February) – 3.7 

million sq km The pink line indicates the median extent of the ice cover, calculated from 1979-2000 data. 

Sourced from  the National Snow and Ice Data Center (http://nsidc.org/data/seaice_index/) 

 

At full extent approximately 7% of the Earth‟s surface is covered by sea ice, as such it is 

one of the largest biomes on Earth (Dieckmann and Hellmer, 2003). Sitting at the 

interface between the ocean and the atmosphere, sea ice plays a critical role in Earth's 

climate (Dieckmann and Hellmer, 2003). For example sea ice regulates the exchange of 

heat between the ocean and the atmosphere, and its permeability to fluids controls brine 

exchange with the ocean. Nevertheless, despite the importance of sea ice, a detailed 

understanding and representation of many of its physical properties is still lacking. In 

http://nsidc.org/data/seaice_index/
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this thesis I present a significant advance towards a better understanding of the physical 

properties of sea ice and their seasonal evolution. 

During the formation of sea ice, brine becomes trapped in pockets within the solid ice 

matrix, as can be seen in Figure 1.2. These range in size from very small sub-millimetre 

pores to large connected networks of channels several millimetres in diameter and 

extending over several decimetres. The connectivity of the brine pockets is highly 

sensitive to temperature and salinity. These brine pockets, in particular their degree of 

connectivity, are linked to the thermal, optical, mechanical (Eicken, 2003) and 

biological properties (Krembs et al., 2000) of sea ice. Through these bulk properties sea 

ice has a determining influence on the global climate (Comiso, 2003) and ecological 

systems and any changes can impact these systems as well as the use of the ice as a 

platform for scientific and commercial operations and as a habitat for polar flora and 

fauna. An understanding of the manner in which the internal microstructure of sea ice 

changes in response to changes in temperature and salinity is therefore crucial for a 

fuller understanding of the role that sea ice plays in a range of contexts. 

 

 

 

(a) 

 
(b) (c) 

Figure 1.2: Brine inclusions in the solid ice matrix (a) photomicrograph showing 

the typical pore structure at –15 ˚C (from Eicken, 2003) (b) photo of thick-sections 

of an ice core, both vertical (square on left) and horizontal (circle on right), 

displaying the brine channels (c) photograph of a slab of sea ice obtained from 

cover of approximately 1.4 m thickness near Barrow, Alaska (from Eicken, 2003). 

In this slab the vertical brine channels are clearly shown. 

 

For example the existence and connectivity of brine channels in the ice affects the 

transport of heat (Eicken, 2003). By estimating the latent heat release associated with 
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convective overturning and refreezing of brine, Pringle et al. (2007) have estimated that 

internal brine motion within the ice may somewhat enhance the overall heat flux. Brine 

inclusions also control the manner in which the ice interacts with electromagnetic 

radiation (Hallikainen and Winebrenner 1992; Perovich and Gow, 1996; Cherkaeva and 

Golden, 1998), and thus plays a major role in the interpretation of remote sensing data. 

Fluid permeability through the ice is important for nutrient transport (Fritsen et al., 

1994) which in turn affects the biology of the area. Theoretical calculations of the 

physical properties of sea ice have generally been based on mixture theories (eg Fricke, 

1924; Tinga et al., 1973; Vant et al. 1978; Timco, 1979; Sihvola and Kong, 1988; 

Chelidze and Gueguen, 1999 and Grimm et al., 2008) and, more recently, on 

percolation theory (eg. Golden et al., 1998, 2007 and Golden, 2003). Nevertheless, 

despite the relevance of the microstructure of sea ice to determining its role in the global 

climate system, there are few field measurements of the temporal variation in the 

physical properties of sea ice with which such theoretical calculations can be compared. 

In theory the internal structure of sea ice can be studied using any transport property to 

which the brine and ice components contribute differently (Ingham et al., 2008). In fact 

the microstructure, thermal evolution, fluid transport and permeability of sea ice brine 

inclusions have been studied by several authors using, for example, magnetic resonance 

techniques (eg. Callaghan et al., 1999; Eicken et al., 2000; Mercier et al., 2005), bail-

test and fluorescent tracer methods (eg. Freitag and Eicken, 2003), x-ray computed 

tomography (eg. Kawamura, 1988, Pringle et al., 2009b), and impedance measurements 

(eg. Notz and Worster, 2008; Pringle et al., 2009a). 

However, sea ice is a complex anisotropic medium composed of a solid ice matrix, 

trapped air, brine, and, at low temperatures, precipitated salts. The proportions and 

arrangement of these components vary with depth, temperature and with the history of 

the ice. Thus, in practice there are severe difficulties in making accurate measurements 

as most methods inevitably disturb the ice from its natural state. For example, 

investigation of the internal structure of sea ice by removing a sample from the ice 

cover can alter the properties under study. This change in properties can be caused by 

the interconnections between the brine pockets, which during the removal process can 

allow brine drainage (especially in the high porosity ice near the bottom of the cover). 

This drainage can be quite marked at warmer temperatures and may still be significant 

below -23
o
C (Addison, 1969). Likewise, growing sea ice in the laboratory will not 
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necessarily create ice with the same properties as natural sea ice, especially in relation 

to crystal structure and brine inclusion shape and distribution. Furthermore, insertion of 

large probes into the ice cover may induce artificial brine motion or affect the growth of 

the sea ice. 

Since there is a large contrast between the resistivity of the brine inclusions and solid 

ice matrix, measurements of electrical resistivity should yield information on sea ice 

microstructure, and through this, indirect probing of other key ice properties. Direct 

current (DC) geoelectric soundings, widely used in shallow geophysical studies, are 

generally made using surface electrodes and therefore do not disturb the natural 

structure of the sub-surface. Simple surface resistivity measurements use two pairs of 

electrodes; one pair of electrodes introduces an electric current into the medium, the 

resulting potential difference is then measured between the other pair. However, due to 

the preferential vertical alignment of brine inclusions, the bulk resistivity of sea ice is 

anisotropic with the vertical resistivity (v) being lower than horizontal resistivity (H). 

The degree of anisotropy is defined by Hv    the coefficient of anisotropy. 

Surface resistivity soundings, on anisotropic media, can be shown (e.g. Bhattacharya 

and Patra, 1968) to only be sensitive to the geometric mean resistivity ( Hvm   ) 

of the medium. This has been clearly noted in previous resistivity measurements made 

on sea ice (e.g. Thyssen et al., 1974; Timco, 1979; Buckley et al., 1986; Ingham et al., 

2008) which have also shown that surface soundings underestimate the true thickness of 

the anisotropic sea ice cover. This makes the interpretation of soundings in terms of 

variation of geometric mean resistivity with depth problematic. 

One technique that overcomes the issues of surface measurements while still retaining 

the in situ constraint is that of cross-borehole electrical resistivity tomography. Ingham 

et al. (2008) have demonstrated that this technique can be used to measure the 

horizontal component of the anisotropic resistivity structure of sea ice. The technique 

involves making resistivity measurements using vertical strings of evenly spaced 

electrodes inserted into boreholes, drilled in the ice while it is relatively thin. These 

boreholes subsequently re-freeze around the electrode strings, which are further 

embedded into the growing ice sheet. Although insertion of electrode strings, and their 

subsequent freezing in, disturbs the ice structure immediately adjacent to the strings, the 



 21 

bulk of ice between the boreholes is undisturbed and it is through this that current 

passes. Such measurements therefore largely sample ice in its natural state. 

The aim of this PhD study was to build on and extend the Ingham et al. (2008) study of 

first-year sea ice near Barrow, Alaska. The present project looks at further developing 

the use of the non-destructive in situ technique of cross-borehole resistivity tomography 

to determine the three dimensional anisotropic resistivity structure of first year sea ice in 

both the Arctic and the Antarctic. The horizontal, geometric mean and vertical 

resistivity structures of sea ice are obtained from measurement, numerical modelling 

and calculation. These resistivity structures provide an insight into the internal brine 

structure as it changes with depth and with changes in temperature and salinity. Simple 

models of this brine microstructure are constructed that match the resistivity data. 

Furthermore, it was possible to compare the structure of ice formed in the differing 

environments of the Arctic and Antarctic, using the resistivity data gathered in the two 

separate regions. The measurement based picture obtained from this study, can be used 

to enhance the present theoretical models of sea ice microstructure. This research also 

shows the effectiveness of the measurement technique as a non-destructive method of 

observing the brine structure of sea ice, and hence provides a way of investigating other 

various properties of the sea ice. 

This thesis is structured as follows. Chapter one contains the introduction and provides 

a brief overview of sea ice, as well as more detailed discussion of the brine component 

and electrical structure of sea ice. Chapter two focuses on electrical resistivity 

measurements and theoretical considerations associated with developing techniques 

suitable for obtaining values for the horizontal, geometric mean and vertical resistivities 

of first year sea ice. An overview of the field procedure at the two measurement sites is 

given in chapter three. Additionally this chapter provides plots of temperature, salinity 

and brine volume fraction with depth, important properties of the sea ice which aide in 

interpretation of the resistivity measurements. Chapter four briefly looks at the 3D 

inversion process, the software used and the programme parameters altered during 

inversion of the data. The horizontal, geometric mean and vertical resistivity structures 

for all measurement sets in both the Arctic and Antarctica are displayed in chapter five. 

Here the results are analysed and interpreted in terms of salinity and temperature 

measurements and calculated brine volume fractions. In chapter six attempts are made 

at defining a brine structure that matches the resistivity structures obtained from 
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inversion of the data. Initially mixture theory models suggested by other authors (eg 

Fricke, 1924; Tinga et al., 1973; Vant et al. 1978; Timco, 1979; and Grimm et al., 2008) 

are considered followed by the creation of our own cuboid structured model. Final 

discussion and summary are found in chapter seven. 
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1.1 Sea ice overview
*
 

 

1.1.1 Formation 
 

Natural seawater usually has a salinity of about 35‰ 
§
, with the most abundant salt ions 

being Cl (19‰), Na (11‰), SO4 (2.6‰) and Mg (1.3‰) though many others are 

present in smaller quantities (Addison, 1969). The freezing point of seawater is salinity 

dependent but typically around -1.86
o
C (Eicken, 2003). This is lower than the freezing 

point of pure water because of the presence of dissolved salts. 

As the seawater cools to the freezing temperature ice crystals form throughout the upper 

layers and are kept in suspension until a surface layer of ice slush (eg. Figure 1.4a) 

builds up, reducing mixing. The structure of these crystals has a hexagonal symmetry, 

with the principal crystallographic axis (c-axis) corresponding to the axis of maximum 

rotational symmetry (as shown in Figure 1.3 below). The c-axis is normal to the basal 

plane (defined by the crystal a-axes), which coincides with the plane of fastest ice 

growth. 

 

Figure 1.3: Crystal structure of ice Ih (altered from Weeks and Ackley, 1986), showing; hexagonal 

symmetry, the principal crystallographic axis (c-axis) and the basal plane along which the greatest rate of 

growth occurs. Coordinate system is a tetrahedral geometry. 

                                                 
*
 The text, Sea Ice: An introduction to its Physics, Chemistry, Biology and Geology by Blackwell Science 

Ltd provides a nice introduction to sea ice; its microstructure, properties and growth (especially the 

chapter by Eicken) and a lot of the material in this section has been gained through the reading of this 

book. 
§
 Salinity measurements in parts per thousand (ppt or ‰) can be assumed, for standard seawater 

composition, to coincide with practical salinity units (psu) between 1‰ and 42‰ (Eicken, 2003). 
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The small crystals forming in the surface slush layer have more or less random c-axis 

orientations. These crystals merge and build up and the slush layer becomes more solid. 

Once a continual ice sheet has formed at the sea surface, congelation growth occurs 

with seawater beginning to freeze to the underside of the ice in somewhat calmer 

conditions. The uppermost region of the growing ice cover, grown in more turbulent 

conditions than the ice below, is granular in structure with random crystal orientation, 

and is often termed frazil ice. Since growth of the ice crystal is favoured along the basal 

plane (i.e. perpendicular to the c-axis), crystals having this plane parallel to the 

temperature gradient grow at the expense of those less favourably orientated. This 

produces a „transition layer‟ below which the crystals tend to show a horizontal c-axis 

orientation and to grow in the form of vertical columns (Figure 1.4b). The ice formed 

from these vertically elongated crystals has a columnar rather than granular texture and 

is referred to as columnar ice. 

Generally in the study of sea ice an „ice crystal‟ refers to a region of ice made up of 

individual ice „grains‟ all with the same c-axis orientation. Thus a single crystal of sea 

ice is made up of a substructure of evenly spaced parallel grains. When thin sections of 

sea ice are viewed through cross polarisers, grains with the same c-axis orientation will 

show the same brightness/colour. Grains with different c-axis orientation will have 

different colours depending on the intensity of transmitted light and the variation of the 

velocity of light with wavelength (Pounder, 1965). Thus using cross polarisers provides 

a good way of observing the shape of the ice crystals, as can be seen in Figure 1.4b 

below. 

 

  
(a) (b) 

Figure 1.4: Frazil and columnar ice (a) photo of frazil ice slush forming on the surface of seawater 

(from University of Alaska Fairbanks (UAF) floating ice group‟s ice glossary – 

http://www.gi.alaska.edu/~eicken/he_teach/GEOS 615icenom /iceglossary/iceglossary.htm) (b) 

Vertical section of sea ice (from http://www.hokudai.ac. jp/lowtemp/ sirl/sirl-e.html), a surface layer of 

frazil ice can be seen over the longer, vertically aligned crystals of columnar ice 

 

http://www.gi.alaska.edu/~eicken/he_teach/GEOS%20615icenom%20/iceglossary/iceglossary.htm
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As seawater freezes the dissolved salts are rejected from the newly forming ice, this 

process enhances the salinity in the surrounding seawater. Some of this higher salinity 

brine is trapped within pockets in the solid ice as it grows downwards. However a 

sizeable fraction of the salt is rejected into the water underneath. Thus natural sea ice 

shows salinities lower than the typical 35‰ of seawater, with a range from less than 

4‰ for older ice to as high as 20‰ for rapidly frozen new ice (Addison, 1969). 

As the ice grows downwards salt builds up ahead of the advancing seawater/ice 

interface, increasing the salinity of a thin layer (a few millimetres to a few centimetres 

in thickness) of seawater. At the same time as the concentration of the salt in the brine 

increases, the brine‟s freezing point decreases (Addison, 1969; Eicken, 2003). As the 

ice/water interface must be at the respective melting/freezing point, the increase in salt 

along the interface is matched by a decrease in temperature, relative to the underlying 

seawater. The transport of heat, from the warmer seawater to the ice, is faster than the 

transport of the salt, away from the ice. Therefore a region ahead of the seawater/ice 

interface, which is cooled due to upward heat transport, but has not received a 

corresponding influx of salt from above, is said to be supercooled. That is, the 

temperature in this region is lower than the freezing point associated with its salinity. 

Any small piece of ice that projects into the supercooled zone is at a growth advantage. 

Consequently, the seawater/ice interface can grow into ordered patterns of lamellar 

bulges. When fully developed, as in the case of ordinary columnar sea ice, the lamellar 

interface consists of sub millimetre thick blades of ice, separated by narrow channels of 

brine. 

As more ice is added at the water interface, the temperature of this region drops, 

consequently the ice lamellae thicken and the fraction of liquid decreases. Eventually, 

this region is incorporated into the interior. Ice bridges form between the lamellae 

joining them up and consolidating the region into lower porosity sea ice. This traps the 

remaining brine in pockets between the ice grains that make up ice crystals forming 

intracrystalline layers. 
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1.1.2 Properties 
 

1.1.2.1 Thermal 

The growth rate of ice is determined by the energy or heat balance at the seawater/ice 

interface. The thermal properties of the ice control the amount of heat transferred 

through the ice and thus the growth rate and equilibrium thickness of the ice. As the 

thermal conductivity of brine is approximately four times smaller than that of pure ice, 

the volume fraction of brine and its microstructural arrangement exert a significant 

influence on the bulk sea ice thermal conductivity (Pringle et al., 2007; Eicken, 2003). 

Convective motion within the brine inclusions has been observed (Trodahl et al., 2000) 

and can contribute several Wm
-2

 to the total heat transfer through the ice column 

(Eicken, 2003). 

1.1.2.2 Mechanical 

The strength of the sea ice is to a large extent controlled by the volume fraction of gas 

and brine, as these components do not contribute to the overall mechanical strength of 

the ice. Once the air temperature rises to above approximately -10
o
C, the brine pockets 

rapidly begin to increase in size, causing a decrease in ice strength (Timco and 

Johnston, 2002). The ratio of the basic strength parameters, compressive and tensile, 

determines the behaviour of the ice under pressure. A high compressive to tensile 

strength ratio and low fracture toughness, leads to brittle ice, as in the case with cold, 

freshwater ice. On the other hand, with a lower ratio the ice may be quite ductile, as in 

the case of flooded sea ice. Knowledge of the mechanical properties is important for 

determining the use of the sea ice as a platform and for understanding its interaction 

with other structures. 

1.1.2.3 Optical 

The optical properties of sea ice, such as the albedo (the fraction of incident irradiance 

that is reflected from the surface of the medium (Perovich, 1996)), strongly influence 

the spring warming and summer melt rates. Indeed, the ice-albedo feedback mechanism 

plays a key role in the heat and mass balance of the sea ice cover (Grenfell and 

Perovich, 2004). The amount of irradiance reflected from the medium is determined by 

the scattering and absorption of the light. Therefore the internal structure, especially the 

brine and air inclusions, play an important role in determining the optical properties of 

sea ice. 
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1.1.2.4 Electrical 

The electrical properties of sea ice are best understood by considering first the pure ice 

matrix and then the influence of impurities. Due to the permanent dipole moment of the 

water molecules, chemically pure ice is a lossy dielectric (Mathews and Clarke, 1963) 

or a partially conducting medium. The dielectric relaxation behaviour of pure ice can be 

described by a Debye dispersion with a single relaxation time which varies with 

temperature (Addison, 1969). Conduction is facilitated in pure ice through ionic 

processes with hydrogen ions or protons acting as the charge carriers. Two kinds of 

protonic point defects can occur in the ice lattice to allow charge movement. Rotation of 

a water molecule around one of its four bonds produces a site with no protons (Bjerrum 

L-defect) and another with two (Bjerrum D-defect). Movement of a proton along 

hydrogen bonds creates H3O
+
 (charge surplus) and OH

-
 (charge deficit) ionic defects 

(Gränicher et al., 1957; Hobbs, 1974; Grimm et al., 2008). DC conduction requires the 

motion of both Bjerrum and ionic defects, as the polarisation induced by passage of one 

kind of defect must be reversed by the other (Hobbs, 1974; Grimm et al., 2008). 

There are three main classifications of impurities in ice (Mathews and Clarke, 1963): 

(i) Those existing integrally in the crystal lattice. In this situation the impurity molecule 

replaces a water molecule but uses the same bonds. The presence of ions in the crystal is 

somewhat analogous to that of doping agents in semi-conductors (Addison, 1969). With 

impurities that are able to substitute into the lattice structure introducing protonic point 

defects (Grimm et al., 2008). Wolff et al. (1997) suggest that only H
+
, NH4

+
 (or NH3) 

and Cl
-
 (or HCl) are able to enter the ice lattice. Due to the covalent radius for N and Cl 

being similar to that of O atoms, the mentioned ions are able to replace existing atoms 

in the ice. It is expected that large anions such as NO3
-
 or SO4

2-
 don‟t play any role nor 

would cations such as Na or Ca have an effect (Wolff et al., 1997). The DC conductivity 

of a salt-doped ice will always remain very small, because the H3O
+
 are hardly 

augmented. This is confirmed by the DC conductivity analysis of Grimm et al. (2008), 

which derived an average value of ~ 5x10
-12

 Sm
-1

 for ice at -65
o
C. 

(ii) Those existing in crystal voids or along grain boundaries as crystallised salts. 

(iii) Those existing in the same voids but as ions in solution. In this situation charges are 

free to migrate. 

In Jaccard theory (Jaccard, 1964 and Petrenko, 1993), it is assumed that intra-granular 

conductivity dominates, with DC conductivity controlled by the H3O
+
 ionic defects. 
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However, Wolff et al. (1997), in their study of polar ice, suggest there is evidence that 

DC conductivity of impure ice may be controlled by grain boundary processes 

especially in the case of sea ice, where brine is present at these boundaries. Toyama et 

al. (2001) studied the DC electrical conductivity behaviour of sea ice, noting that down 

to a temperature of about -54
o
C the DC conductivity of sea ice is controlled by the brine 

distribution existing at the grain boundaries. Morey et al. 1984 have shown the complex 

dielectric constant of sea ice to be a function of the brine volume and the orientations of 

the brine inclusions. 

The dielectric properties of sea ice determine the propagation and attenuation of 

electromagnetic (EM) waves through the ice. Thus an understanding of these properties 

is important in interpreting the return from remote sensing techniques. 

 

1.1.3 Arctic vs. Antarctic 
 

The main differences observed between Arctic and Antarctic sea ice arise from the 

differing environments. The Arctic is mostly ocean surrounded by land masses, while 

Antarctica is a land mass surrounded by open oceans. 

Snow cover acts as an insulator on the surface of the ice, slowing growth. In the 

Antarctic where the surrounding seas provide a permanent moisture source the snow can 

be thicker than 0.5m (Haas, 2003), while in the Arctic the snow cover is much thinner. 

In the Southern ocean the mean oceanic heat flux is about 40Wm
-2

 while in Arctic 

waters the heat flux is around 10 times less at 4Wm
-2

 (Haas, 2003). As a consequence of 

the thick snow cover and high ocean heat fluxes, Antarctic ice may only grow to a 

thickness of 0.5m to 0.7m (Eicken, 2003) in a single year and melt at its underside even 

during winter (Haas, 2003). On the other hand, in a single year sea ice in the Arctic can 

grow to a thickness of 1.8m (Eicken, 2003). Thicker snow cover can cause greater ice 

growth if the snow cover is sufficient to depress the ice surface below sea level leading 

to the formation of snow-ice (Eicken, 2003). 

A significant amount of the ice in the Arctic Ocean drifts for three to six years (Haas, 

2003) growing thicker from thermodynamic growth over several winters. This ice 

motion is confined by coasts where the ice can converge and thicken further by 

deformation. In contrast most Antarctic ice melts during the summer and seldom 
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becomes older than a year. Most of the ice drift around Antarctica is divergent and 

towards the open seas. This causes the opening of leads and the addition of thin new ice 

to the thickness distribution. 

In the Arctic with its surrounding land masses, frazil ice only forms in marginal seas, 

leads and other openings in the ice pack. Thus most, between 60% and 80% (Eicken, 

2003), of the cover is composed of columnar ice. In Antarctica, on the other hand, the 

effects of open ocean; higher wind speeds, swell penetrating from lower latitudes and 

the larger number of openings in the pack ice, means that in some regions the majority, 

as much as 60% to 80% of the total thickness, of the ice is made up of frazil ice (Eicken, 

2003). Furthermore in parts of the Antarctic larger ice platelets are found to grow at 

depths, in water parcels supercooled through interactions with the melting Antarctic ice 

shelves (Eicken, 2003). This process is capable of generating large volumes of crystals 

that can grow as large as 10cm across and a few mm‟s thick and float towards the 

surface accumulating in layers several meters thick (Eicken, 2003). These layers can be 

incorporated into the ice cover as it grows downwards (McGuiness et al., 2009; 

Dempsey et al., 2010), providing a mechanism for increased thickness of sea ice in 

regions where platelet ice occurs. As the southern end of McMurdo Sound is bounded 

by McMurdo Ice Shelf (a region of the Ross Ice Shelf), it is one area where platelet ice 

is commonly observed and studied (Leonard et al., 2006; McGuiness et al., 2009; 

Dempsey et al., 2010). 

Most of the ice in the Arctic is located at latitudes north of 70
o
N (Haas, 2003), with 

extent in lower latitudes limited by land masses. However, in Antarctica a significant 

mass of ice extends north into much lower latitudes, as far as 60
o
S (Haas, 2003). Thus 

air temperatures, total incoming solar radiation and the length of summer are generally 

higher in Antarctica. However the Antarctic ice sheet is a giant cold reservoir, and the 

sea ice region is well isolated from lower latitudes by the Antarctic Circumpolar Current 

so that warm and moist air advection are not as important as they are for the Arctic 

(Haas, 2003). There, despite its high latitude, strong surface melting occurs in summer 

even at the North Pole (Haas, 2003). 
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1.2 The brine component of sea ice 
 

The previous section discussed how brine inclusions become incorporated into the solid 

ice matrix as sea ice grows and the influence of this brine component on many 

properties of the sea ice cover. Thus an understanding of the density, dimension, 

orientation, connectivity and evolution of the brine phase is important in the study of the 

sea ice system. 

 

1.2.1 Structure 
 

As described earlier typical columnar ice crystals are composed of vertically elongated 

grains of pure ice separated by parallel layers of brine inclusions. Due to gravity and 

vertical thermal gradients the brine inclusions in sea ice are normally orientated 

vertically. Many authors have studied the brine microstructure of sea ice, using a range 

of techniques from analysing optical images (eg. Perovich and Gow, 1991, 1996; Shokr 

and Sinha, 1994; Light et al., 2003) to magnetic resonance techniques (eg Eicken et al., 

2000) to x-ray computed tomography (eg Pringle et al., 2009b). 

The substructure of the ice crystals appears to depend inversely on the growth rate of 

the ice (Lofgren and Weeks, 1969; Nakawo and Sinha, 1984). Thus as the growth rate 

decreases as the ice thickens, the grain width should increase with depth within the ice 

cover. Pounder (1965) gives values of 0.5mm to 0.6mm for the average thickness of the 

ice grains. A larger range of values is given by Nakawo and Sinha (1984), who 

measured brine layer spacings of 0.4mm to 0.9mm on an ice core sample taken from 

Eclipse Sound, Baffin Island, Canada. Using x-ray computed tomography Pringle et al. 

(2009b) obtains slightly lower values of 0.2mm to 0.5mm for the typical thickness of 

the ice lamellae between brine layers. The dimensions of the ice crystals themselves are 

of the order of a few to tens of millimetres across (Shokr and Sinha, 1994; Eicken, 

2003). 

On a large scale, visible to the naked eye, brine channels are easily defined within ice 

sections (eg. Figure 1.2 b and c). Morey et al. (1984) describe ribbon like drainage 

routes, called brine feeder channels, sloping upward at angles of 30
o
 to 60

o
, radiating 

out from larger vertical drainage tubes. These drainage tubes extend to the bottom of the 
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ice and have been found, by Morey et al. (1984), to be most often spaced about 10cm 

apart. The channels are thinnest higher up in the ice cover and become thicker as one 

moves to the bottom of the ice, providing a route for brine drainage to the sea. In their 

study of first year sea ice cores, obtained in Resolute Passage off Barrow Strait, 

Northwest Territories, Canada, Shokr and Sinha (1994) observed drainage channels of 

approximately 4mm width in columnar ice and spherical brine inclusions in frazil ice 

with dimensions varying from fractions of a millimetre to 2mm. 

Returning to the small scale of brine inclusions located between ice grains early 

investigations indicate a temperature dependent average diameter of 0.05mm (Pounder, 

1965, Addison, 1969). Addison (1969) also notes that liquid brine is found along grain 

boundaries. 

Perovich and Gow (1991), (1996) analyse photomicrographs of horizontal thin sections 

of ice using a personal computer-based image-processing system to determine the 

number, size and statistics of brine inclusions in both saline ice grown in ponds and sea 

ice in the Beaufort sea at Barrow, Alaska. From a sample of young saline ice, with a 

predominant columnar structure, the brine inclusions had a mean cross-sectional area of 

0.028mm
2
 and mean major and minor axes of 0.1mm and 0.08mm respectively. In first-

year sea ice cover the frazil ice within the upper most regions of the cover contained 

larger brine inclusions with mean major axes lengths between 0.30mm and 0.37mm and 

mean areas of 0.031mm
2
 to 0.056mm

2
. The brine inclusions in the columnar ice beneath 

ranged from mean major axes lengths of 0.26mm to 0.24mm, with mean areas of 

between 0.019mm
2
 and 0.023mm

2
. The top of the first year sea ice also had the lowest 

number of brine inclusions (~1 per mm
3
), but the number density increased at the base 

of the ice (~4.5 per mm
3
). In the middle of the ice the number density of brine 

inclusions varied between 1.6 and 2.2 per mm
3
. 

Light et al. (2003) also analysed photomicrographs of samples from ice cores extracted 

from shorefast ice near point Barrow, Alaska. In this study they were able to resolve 

smaller inclusions than Perovich and Gow (1991, 1996). Brine inclusion lengths were 

found to range from 0.01mm to 8mm, diameters from 0.01mm to 0.230mm, and number 

densities averaged about 24 inclusions per mm
3
. This number density is significantly 

larger than other quoted values, probably due to the ability to detect small brine 

inclusions. Many of the inclusions did not have a circular cross-section, however, the 
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authors note no clear indication that the horizontal aspect ratios were elongated in a 

particular direction. 

From studies of ice and salt hydrate systems Grimm et al. (2008) represent the brine 

channel width as d=0.34DW
3/4

 (where D is the diameter of the ice grains, which are 

modelled as truncated semi-regular octahedra; and W is the volume fraction of unfrozen 

water). For ice grains of diameter D=1mm, the representative brine channel width is in 

the micron range just above the eutectic temperature of CaCl2, NaCl and HCl. To avoid 

confusion with terminology, it should be noted that the use of the term brine „channel‟ 

by the authors (Grimm et al., 2008) describes a structure with a width significantly 

smaller than the dimensions normally associated with brine channels, including those 

cited by other authors mentioned in this section. 

dimensions of ice crystals 
Few to 10‟s of millimetres (Shokr and Sinha, 1994; Eicken, 2003) 

thickness of ice grains / space between brine layers 
general 0.5mm t0 0.6mm (Pounder, 1965) 

artificially grown sea ice 0.2mm to 0.5mm (Pringle et al., 2009b) 

first- year sea ice 0.4mm to 0.9mm (Nakawo and Sinha, 1984) 

brine channels 
first- year columnar sea ice of the order of 4mm wide (Shokr and Sinha, 1994) 

 spaced about 10cm apart (Morey et al., 1984) 

brine inclusions 
general temperature dependent average diameters of 0.05mm (Pounder, 

1965; Addison 1969) 

young saline sea ice cross-sectional area 0.028mm
2
 

mean major axis 0.1mm 

mean minor axis 0.08mm 

(Perovich and Gow, 1991; 1996) 

first- year sea ice brine inclusion density: 

top 1 mm
-3

 

middle 1.6mm
-3

 to 2.2mm
-3

 

base 4.5mm
-3

 

(Perovich and Gow, 1991; 1996) 

 lengths 0.01mm to 8mm 

diameters 0.01mm to 0.23mm 

brine inclusion density 24mm
-3

 

(Light et al., 2003)  

first- year frazil sea ice cross-sectional area 0.031mm
2
 to 0.056mm

2
 

mean major axis 0.3mm to 0.37mm 

(Perovich and Gow, 1991; 1996) 

 fractions of a millimetre to 2mm 

(Shokr and Sinha, 1994) 

first- year columnar sea ice cross-sectional area 0.019mm
2
 to 0.023mm

2
 

mean major axis 0.26mm to 0.24mm 

(Perovich and Gow, 1991; 1996) 

Table 1.1: Summary of brine structure statistics obtained from the literature 
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1.2.2 Evolution 
 

Generally as temperature increases brine salinity decreases (Haas et al., 1997). 

However, the amount of brine increases with increasing temperature (Addison, 1969). 

These observations can be explained, as when the ice melts from the brine inclusion 

walls, increasing their size and connectivity and thus the amount of brine, it dilutes the 

brine solution in the inclusion, thus decreasing its salinity. Conversely, as the ice cools 

the concentration of the brine must increase if it is not to freeze. This increase in 

concentration occurs when pure water from the brine inclusion freezes to the 

surrounding ice lattice, reducing the size of the inclusion. 

Many of the authors mentioned above have investigated these temperature effects on the 

brine microstructure. Perovich and Gow (1991, 1996) warmed the ice samples from 

-20
o
C to -1

o
C, during this warming the brine volume of young saline ice increased from 

1.9% to 37.4%. In first year ice samples they observed a significant increase in the mean 

area of the brine inclusions when brine volumes increased from 20% to 40%. At the 

same time there was a decrease in the number density of the brine inclusions. This 

indicated that as the ice warmed individual brine inclusions were coalescing to form 

fewer, larger inclusions. It was also noticed that the brine inclusions elongated in the 

horizontal direction as temperatures increased. 

Eicken et al. (2000) used magnetic resonance techniques to image the evolution of the 

pore microstructure of sea ice samples from the Chukchi Sea near Barrow, Alaska. They 

observed changes in the brine structure of the uppermost layers of columnar ice, 

composed of small crystals with no preferred horizontal alignment of c-axes, as the ice 

was warmed from -21
o
C to -10

o
C to -6

o
C. The mean size of major/minor axes of the 

brine inclusions in horizontal sections were observed to increase with increasing 

temperature from 0.34mm/0.22mm to 0.34mm/0.23mm to 0.38mm/0.25mm. In the 

vertical sections the mean major/minor axis increased from 0.42mm/0.21mm to 

0.43mm/0.22mm to 0.70mm/0.26mm. From a comparison of these dimensions it was 

noted that the increase in size of the inclusions occurred mostly in the vertical direction. 

The number density of inclusions in the vertical sections was observed to decrease, 

from 0.75 to 0.58 per mm
3
 with increasing temperature, as individual pores joined 

together. In the horizontal sections the number density of brine inclusions ranged from 

0.95 to 1.08 per mm
3
. 
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Light et al. (2003) also study the effect of temperature change on the structure of sea ice 

and note that both the horizontal and vertical dimensions of brine pockets were 

observed to increase. They become slightly more spherical upon cooling and slightly 

more elongated upon melting, though the overall aspect ratio changed little. The 

merging of inclusions was common at warmer temperatures, with the brine pocket 

density decreasing from 51 to 46 to 35 per mm
3
 as temperatures increased from -15

o
C to 

-5
o
C to -2

o
C. It should be noted that the brine pocket density in the warmed sample was 

larger than the overall averages seen. The authors label brine inclusions with a length 

smaller than 0.5mm as pockets, while those with greater lengths are labelled as tubes. 

The behaviour of the brine tubes was slightly different from the pockets of brine, the 

diameter of the tube increased and decreased with temperature but the length remained 

nearly unchanged. 

Pringle et al. (2009b) used x-ray computed tomography to image single sea ice crystals. 

The images show a change in pore space, as the temperature increases from -18
o
C to 

-8
o
C to -4

o
C the porosity increases from 2.2% to 4.6% to 8.8%. The structure observed 

in the images shows vertically elongated near parallel layers with „necks‟ forming 

horizontally between them, as temperatures warm. 

In addition to these observed temperature effects, the brine inclusions can migrate 

vertically, under the influence of changing thermal gradients, to regions of higher 

temperature (to the bottom of the ice cover in winter and the top in summer) (Mathews 

and Clarke, 1963). Because of diffusion the salinity of brine within an inclusion will be 

uniform. When in a thermal gradient one end of the inclusion will be warmer and thus 

the brine is too concentrated, leading to the ice dissolving to reduce its concentration. At 

the colder end the brine concentration is low and more ice freezes to increase its 

concentration. The net effect is to move the entire cell of brine along the thermal 

gradient (Pounder, 1965). 

It has been suggested that the brine component of sea ice undergoes a percolation 

transition. The bulk properties of cold ice, containing a few small isolated brine 

inclusions, are dominated by the properties of the ice matrix. Upon warming the ice the 

brine pockets become increasingly interconnected over larger scales, and the bulk 

properties of sea ice become dominated by the properties of the brine component. Such 

a transition is common in many two phase systems. Within sea ice it has been proposed 

that a percolation transition in its fluid transport properties occurs at a brine volume 
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fraction of about 5%, which corresponds to a temperature of -5
o
C for sea ice with a 

salinity of 5‰ (Golden et al., 1998; 2007 and Golden 2003). For temperatures warmer 

than -5
o
C brine carrying heat and nutrients can move through the ice, whereas for colder 

temperatures the ice is impermeable (Golden et al., 1998; 2007 and Golden 2003). 
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1.3 The electrical structure of sea ice 
 

The electrical resistivity of the pure ice matrix is much higher than that of the brine 

trapped within it (Ingham et al., 2008). For example the resistivity of pure ice is given 

by Mathews and Clark (1963) as 10
7
m, while during our measurement periods the 

calculated brine resistivities (see section 3.9) are mostly below 1m. Due to this 

significant difference measurements of the electrical resistivity structure of sea ice 

provide a means of investigating the brine microstructure and the evolution of the 

physical properties affected by this structure. 

The bulk resistivity of sea ice depends on the porosity (or structure created by the brine 

pockets), the saturation of the pores with brine and the conductivity (or salinity) of the 

brine (Thyssen et al., 1974). In first-year sea ice, formed under quiescent conditions, the 

brine inclusions have a preferential vertical alignment. Therefore the bulk resistivity 

structure is anisotropic, with the resistivity in the vertical direction (v) being lower than 

that in the horizontal direction (H). In the presence of steady ocean currents it is 

possible that the c-axes of the ice crystals align parallel to the current in the horizontal 

plane (Kovacs and Morey, 1978; Nakawo and Sinha, 1984; Shokr and Sinha, 1994; 

Perovich and Gow, 1996; Eicken, 2003). Thus the horizontal component of the bulk 

resistivity may itself exhibit some anisotropy. However, in this thesis this is treated as 

typically insignificant compared to the anisotropy between the vertical and horizontal 

components of the bulk resistivity. 

As temperature decreases brine inclusions shrink as more ice forms around the edges. 

The dissolved salts are rejected from this newly forming ice and therefore, the salinity 

of the remaining brine increases. Thus, initially, as the temperature decreases the brine 

salinity, and hence brine conductivity, increases. However, below about -8°C, brine 

conductivity decreases with decreasing temperature, even though the salinity is still 

increasing (Morey et al., 1984). At low temperatures ion mobility in the brine is 

reduced, therefore the brine conductivity begins to decrease with decreasing 

temperature (Haas et al., 1997). Thus, for sea ice conductivity the decreasing brine 

volume with decreasing temperature is compensated, up to a point, by increasing brine 

conductivity. As temperatures lower further and the brine conductivity begins to 
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decrease, this and the decrease in brine volume combine to cause reduced ice 

conductivity. 

Conversely, as sea ice warms ice melts from the brine inclusion walls, decreasing its 

salinity and hence brine conductivity. However, the melting ice also enlarges the brine 

inclusions with individual pores connecting and merging. Thus, despite the brine 

salinity (and brine conductivity) decreasing with increasing temperatures sea ice 

conductivity can increase due to the increasing number of conduction paths through the 

enlarging brine volume. 

Many studies of the electrical properties of sea ice both in situ and on laboratory grown 

ice have been carried out. 

Addison (1969) investigated the complex dielectric coefficient, resistivity and other 

related parameters of unidirectional artificially grown sea ice at temperatures of -12.5
o
C 

to -35
o
C. Measurements were made over the frequency range 20Hz to 100MHz. From 

these experiments Addison (1969) observed a marked increase in resistivity with 

decreasing temperature, especially at the lower frequencies. Plots of resistivity vs. 

frequency, in Addison (1969), show that below 10 MHz the resistivity decreases only 

slowly with increasing frequency. 

Thyssen et al. (1974) carried out direct current (DC) resistivity soundings near Pond 

Inlet, N. W. T. during May and June 1972. Soundings were made at 22 sites along an 

approximate 1km profile between Pond Inlet, Baffin Island and Bylot Island. Only 

young ice was found along the measurement profile. The soundings were repeated at 

intervals of approximately two weeks (16-19 May, 3-6 June, 15-21 June) to observe the 

resistivity variations with time. Measurements were made using a Schlumberger array 

(see section 2.1.3), with surface soundings used to obtain geometric mean resistivities 

(m) and pit wall measurements used to obtain horizontal resistivities (H). 

Thyssen et al. (1974) derive a simplified three layer model for the sea ice, with a rise in 

apparent resistivity with depth then a rapid decrease due to the low resistivity of the 

underlying seawater. Measurements yielded values of 221m for the horizontal 

resistivity, 60 m for the geometric mean and 16m for the vertical resistivity. These 

values gave a coefficient of anisotropy equal to =0.26 for unrafted ice. The authors 

also show that the apparent thickness of the ice, found from the resistivities, is equal to 
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 times the true thickness (determined by drilling). The average resistivity was observed 

to decrease significantly during the observation period, as brine volume increased due to 

increasing temperature. 

Timco (1979) analysed the same data set presented in Thyssen et al. (1974) in more 

detail, in terms of the microstructure of the sea ice. For each of the three measurement 

periods (16-19 May, 3-6 June, 15-21 June) their analysis yielded average vertical 

resistivities of 104m, 80m and 45m and average horizontal resistivities of 298m, 

230m and 129m, with corresponding brine volume fractions of 40‰, 67‰ and 

82‰. The author states that interpretation of the results indicated that the ice could be 

considered as a two-layer case; with a low resistivity layer for the upper ¼ of the ice 

sheet, and a higher resistivity layer for the lower ¾. Depending on the brine volume 

fraction the geometric mean resistivity of the upper layer varied between 30m to 

112m while that of the lower layer ranged from 76m to 176m. 

Timco (1979) noted a decrease in resistivity with increasing temperature and brine 

volume fraction, which was attributed to changes in the size and geometry of the brine 

cells. Using average geometric mean and horizontal resistivities Timco (1979) came to a 

value of =0.59 for the coefficient of anisotropy of this ice. Timco (1979) used a mixing 

formula for the electrical resistivity of a two-phase heterogeneous system to arrive at a 

value of 1.7cm for the “average” length of brine cells in relatively warm ice, with a 

brine volume fraction of between 40‰ and 70‰. 

Morey et al. (1984) made in situ measurements of the electrical properties of sea ice 

during spring. From these measurements Morey et al. (1984) found; “(1) for sea ice 

with a preferred horizontal crystal c-axis alignment, the anisotropy of the ice increased 

with depth, (2) Brine inclusion conductivity increased with decreasing temperature 

down to about -8
o
C below which the conductivity decreased with decreasing 

temperature, (3) The DC conductivity of sea ice increased linearly with increasing brine 

volume, (4) An exponential relationship was found between DC conductivity and 

temperature of sea ice”. Morey et al. (1984) also noted that at about -8.2°C a phase 

change occurs in the brine and Mirabilite (Na2SO4.10 H20) begins to precipitate out of 

solution. This dissolved salt is a contributor to the measured conductivity, and when it 

began to precipitate the authors observed an apparent effect on the rate of change in the 

DC conductivity. When the temperature reaches -22.9
o
C Hydrohalite (NaCl.2H2O) 



 39 

begins to precipitate (Stogryn and Desargant, 1985). The effect of this lower 

temperature precipitation was observed by Addison (1969) with an extremely rapid 

change in resistivity at -23
o
C. 

Buckley et al. (1986) measured the resistivity of first year sea ice at two locations in 

McMurdo Sound, Antarctica. The measurements were made using a Wenner array (see 

section 2.1.3) at audio frequencies (100Hz to 1000Hz). The authors note that the 

measured resistivities were insensitive to the applied frequency, as was observed by 

Addison (1969). In addition to resistivity, salinity and temperature profiles were also 

measured. From this research Buckley et al. (1986) found that the average resistivity of 

the sea ice lay within the range 50m to 200m and that the structure could be 

adequately described by a three layer model. This model was consistent with that 

obtained by Thyssen et al. (1974), being made up of a thin conducting surface layer, an 

insulating layer and finally seawater. Buckley et al. (1986) found that the resistivity of 

the surface layer was influenced by the removal of the snow cover. The depth of the ice, 

predicted by the Wenner sounding, was roughly 50% of the actual depth. Within the 

bulk layer of the ice this result is consistent with conductivity in the vertical direction 

being four times the conductivity in the horizontal direction, leading to a coefficient of 

anisotropy of ~0.5. 

As the ice warmed through the spring of 2006 Ingham et al. (2008) carried out a series 

of DC cross-borehole measurements in first-year sea ice near Barrow, Alaska. The 

authors show that by positioning one current and one potential electrode in each of the 

boreholes and using specific electrode combinations a reasonable approximation of the 

horizontal resistivity can be obtained. Furthermore, assuming that the lowermost 

electrodes are in the underlying seawater, Ingham et al. (2008) note that the vertical 

alignment of electrodes is also able to accurately determine the boundary between the 

relatively resistive sea ice and the highly conducting seawater. This is seen in their 

resistivity models, with the seawater clearly resolved as an effective half space with a 

resistivity of ~ 0.4 Ωm. 

By making resistivity measurements on three separate occasions as the ice warmed over 

the period April–June 2006, the authors were able to study the temporal evolution of the 

resistivity structure of the sea ice. From their models Ingham et al. (2008) show that 

through the bulk of the sea ice there is a general decrease in horizontal resistivity with 
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increasing salinity and brine volume fraction. Furthermore, the authors suggested that 

the evolution of this resistivity structure showed that “(1) at temperatures less than 

-5°C it is broadly consistent with the expected variation with brine volume fraction 

predicted by Archie's Law and (2) shows evidence of a percolation transition in the 

horizontal component of the resistivity when brine volume fractions exceed 8% – 10%”. 

A halo of anomalous resistivity structure around the electrode strings was observed in 

the models produced from this study. It was suggested that after insertion of the 

electrode strings, as the ice reformed in the boreholes and subsequently thickened, the 

microstructure in the immediate vicinity of the strings was significantly affected by 

their presence. The authors reasoned that the existence of the halo around the electrode 

strings provided a strong argument as to why it is preferable to use cross-borehole 

measurements to determine H rather than single borehole measurements. 
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Chapter 2 
Electrical resistivity surveys 

 

2.1 Resistivity survey principles 
 

The purpose of geophysical electrical surveys is to investigate the subsurface of a 

medium with a varied resistivity structure. These surveys are thus ideal for determining 

the internal structure of sea ice, with a large contrast between the resistivities of the 

brine and solid ice components. The resistivity of the medium is related to various 

parameters such as the mineral and fluid content, porosity and degree of fluid saturation. 

Electrical resistivity surveys have been used for many decades in hydrogeological, 

mining and geotechnical investigations and more recently environmental surveys (Loke, 

2004). Since measurements are generally made either at the surface of the medium or 

through undisturbed material between boreholes, this technique complies with the in 

situ constraint, necessary to obtain an accurate physical image of the medium in its 

natural state. 

 

2.1.1 Resistivity of an isotropic medium 
 

The fundamental physical law used in resistivity surveys is Ohm‟s Law 

)ρVEσJ(  , which governs the flow of current in a medium (Loke, 2004). In 

an isotropic medium Ohm‟s law and the equation of continuity )J.( 0  can be 

combined to give 

  0 ρV.  

Here J is the electric current density (A/m
2
),  is conductivity (Sm

-1
) which is defined 

as the reciprocal of resistivity (, units m), E the electric field (V/m), V the electric 

potential (V) and V the potential gradient (V/m). 

If the medium is homogeneous  (resistivity) is independent of the coordinate axes and 

the above equation reduces to 

00 22  V)(ρV)(  
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Thus, in a homogeneous isotropic medium, the electric potential satisfies Laplace‟s 

equation. 

Suppose a current I is injected through an electrode at the surface of a semi infinite 

homogeneous medium. The potential at some distance (r) from the introduced current 

will only depend on that distance. Noting this, Laplace‟s equation, from above, can be 

expanded in spherical coordinates to give 
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where  is the angle from vertical to the vector r (the line between where the current is 

injected and the potential measured) and  is the horizontal angle from the x coordinate 

axis to the horizontal projection of the vector r. 

The current I can be obtained by multiplying the current density (J) by the area (A) 

through which the current travels. For surface electrodes this area is the surface area of a 

hemisphere (2r
2
), while for buried electrodes this area becomes the surface area of a 

sphere (4r
2
) 

ρ
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r

C

ρ
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22 21
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Rearranging gives 

πΙρC 22   

(2.1) 
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which, when substituted into equation (2.1) above gives the potential at a distance r 

from where the current is introduced at the surface of a semi infinite homogeneous 

medium. 

πrΙρV 2  

Alternatively, for a buried electrode the potential is given by  

πrΙρV 4                                                                                   (2.2b) 

The majority of electrical imaging surveys make use of four electrodes. Two electrodes 

are used to introduce current into the medium, one being a current source (C1) the other 

a sink (C2). The potential difference is then measured between two more electrodes (P1 

and P2) and can be expressed as 

   22211211 VVVVΔV   

where Vij is the potential measured at potential electrode „i‟ due to current electrode „j‟, 

and terms V12 and V22 will be negative as C2 is a current sink. 

 

2.1.2 Resistivity of an anisotropic medium 
 

In first-year sea ice the preferential vertical alignment of the brine inclusions means that 

the bulk resistivity structure of the ice is anisotropic, with the vertical component of the 

bulk resistivity lower than the horizontal component. 

In an anisotropic medium, as shown by Bhattacharya and Patra (1968), Ohm‟s law 

)EσJ(   can be modified to 
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It can be shown that kiik σσ  , and that it is always possible to orientate the coordinate 

axes such that 0 zxyzxy σσσ . These axes are then called the principle axes of 

anisotropy. When the measurement axes are orientated parallel to the principle axes the 

equations above reduce to 
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The equation of continuity )J.( 0  thus becomes  
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If the anisotropic medium is homogeneous,  is independent of the coordinate axes and 

the equation above becomes 
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By redefining the coordinate system to allow, xρxα  , yρyβ   and zρzη  this 

equation then reduces to Laplace‟s equation 
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which has a solution 

    2122221222

zyx ρzρyρx

C

ηβα

C
V





  

where C is a constant, x, y and z are the distances between where the current is injected 

and the potential is measured, along the respective axes and i is the resistivity in the i 

direction 

As most of the brine inclusions within the sea ice are elongated vertically the resistivity 

structure of the ice can be approximated by a resistivity structure that is the same in the 

two horizontal directions ( Hyx ρρρ  ) but different in the vertical direction 

(
Vz ρρ  ). Although it is possible that in the presence of steady ocean currents the 

horizontal resistivity itself may exhibit some anisotropy, (Kovacs and Morey, 1978; 

Nakawo and Sinha, 1984; Shokr and Sinha, 1994; Perovich and Gow, 1996; Eicken, 

2003), in the present analysis we treat this as typically insignificant compared to the 

anisotropy between the vertical and horizontal resistivity. This assumption is supported 

by the closely matched resistivity values observed from surface soundings running 

approximately parallel and perpendicular to the coast at Barrow, Alaska. 

In the case of isotropic horizontal resistivity (see Appendix I for treatment of 

anisotropic horizontal resistivity) equation (2.5) becomes 

(2.5) 
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  21222
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where H is the horizontal component of the bulk resistivity and V the vertical 

component. 

The coefficient of anisotropy () and the geometric mean resistivity (m) are defined as  

HV ρρλ   

HVm ρρρ   

Since the brine inclusions have a lower resistivity than the solid ice matrix and are 

preferentially elongated vertically, the vertical component of the bulk resistivity will be 

smaller than the horizontal component and the coefficient of anisotropy of sea ice will 

be less than one. 

Using expressions (2.6) and (2.7) the equation above, for potential, can be simplified to 
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Thus using equation (2.8) the current densities given in equations (2.4) become 
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with the total current density given by 
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Changing equation (2.8) and (2.9) to be in spherical coordinates gives 
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where C is a constant, H is the horizontal component of the bulk resistivity,  is the 

coefficient of anisotropy, r is the distance between where the current is injected and the 

potential measured and  the angle from the vertical to the vector r. 

 

2.1.3 Surface electrical resistivity surveys 
 

There are many different electrode configurations. However, commonly used surface 

arrangements include the Wenner and Schlumberger arrays shown in Figure 2.1 below. 

The Schlumberger array is one of the most commonly used arrays for resistivity 

sounding surveys. The Wenner array is typically used in hydrological studies where the 

bulk resistivity is generally considered isotropic. 

 

 

 

(a) (b) 

Figure 2.1: Commonly used electrode configurations for surface surveys (a) The Wenner array and (b) 

The Schlumberger array.  

 

For the Wenner array the electrodes are equally spaced on the surface of the medium 

with the two potential electrodes in the centre and the two current electrodes on the 

outside. The Schlumberger array is similar, but with the distance between the current 

electrodes designated by L and not in general equal to 3a. As the distance (3a or L) 

between the current electrodes is increased more current passes deeper into the ground 

and data on the resistivity structure with depth is obtained. 

These examples are forms of dipole – dipole arrays, which use all four electrodes during 

measurement. Other electrical imaging surveys make use of only three or two electrodes 

during measurement, in practice these are only approximations of three and two 

electrode arrays as four electrodes are still positioned in the field. For example, pole – 

dipole arrays uses three electrodes, with the fourth as a remote electrode (usually either 

C2 or P2) which must be placed at a distance of at least 20 times the maximum 

separation between C1 and P1. The ideal pole-pole array, with only one current and one 

potential electrode, is approximated by using the second current and potential electrodes 

(C2 and P2) as remote electrodes, which must be placed sufficiently far from the survey 
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line. A disadvantage of these arrays is that with electrode P2 as a remote electrode the 

large distance between the P1 and P2 electrodes means that a large amount of telluric 

noise can be picked up, and the quality of the measurements severely degraded. 

2.1.3.1 Measurements on a semi-infinite uniform anisotropic 

medium 

Current from an electrode placed at the surface of an anisotropic medium, such as sea 

ice, must pass through a hemisphere of radius r centred on the electrode. The total 

current flowing out through this surface (and thus the current at the electrode) is given 

by 

  
s

θdθdJrJ.dsΙ
 




2

0
2

2 sin  

Inserting equation (2.11) into equation (2.12) and solving and simplifying gives 

λρ

πC
Ι

H

23

2
 , which rearranges to 

π

λΙρ
C H

2

23

  

Substituting C into equation (2.10) gives 

  2122 cos112 θ)(λπr

Ιρ
V m


  

and converting back into Cartesian coordinates leads to 

  2122222 zλzrπ

Ιρ
V m


  

where r, the distance between where the current is injected and where the potential is 

measured, is given by   21222 zyxr  . The x, y and z are the distances, between 

where the current is injected and the potential measured, as measured along the relevant 

axis. 

For a common surface array (see Figure 2.1 above), the potential (Vij) measured at 

potential electrode „i‟ at (xi, yi, zi) due to current electrode „j‟ at (xj, yj, zj) can be 

obtained from equation (2.13) with  = 90
o
 or equation (2.14) with z = |zi-zj| = 0. The 

distance between the two electrodes is given by 
22

jijiij yyxxr   hence  

ij

m
ij

πr

Ιρ
V

2
  

Substituting Vij into equation (2.3) for the potential difference gives 

(2.12) 

(2.13) 

(2.14) 
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where the terms arising from V12 and V22 are negative as C2 is a current sink, and g is 

the geometric factor, determined by the spacing of the electrodes (rij). 

This equation gives the potential difference that would be measured over a homogenous 

anisotropic half space. Actual field surveys are invariably conducted over an 

inhomogeneous medium and the recorded V and current values are used to calculate an 

apparent resistivity a (defined as the average resistivity value of an equivalent half-

space) 











gI

ΔV
πρa

1
2  

From equation (2.15) it can be seen that surface resistivity readings are only sensitive to 

the geometric mean resistivity of the medium (m). Previous studies on sea ice (Thyssen 

et al., 1974; Buckley et al., 1986 and Ingham et al., 2008) have also indicated that for an 

anisotropic resistivity structure surface soundings underestimate the true thickness of 

the medium. 

 

2.1.4 Borehole resistivity measurements 
 

Surface electrical resistivity soundings can be limited by a reduction in resolution with 

depth and the fact that on an anisotropic medium such as sea ice, they are only sensitive 

to the geometric mean of the bulk resistivity structure. In theory the only way to 

improve the resolution at depth is to place the electrodes closer to the structures of 

interest. Thus surveys carried out with electrodes positioned in boreholes can give more 

accurate results than is possible with surface surveys alone. Furthermore, as was 

indicated by measurements made by Thyssen et al. (1974), in the vertical wall of a pit in 

sea ice, and as will be seen in the theory outlined below, using borehole measurements 

will enable both the geometric mean and the horizontal components of the bulk 

resistivity structure to be obtained. 

As the medium is disturbed when the boreholes are drilled, it is desirable to make cross-

borehole measurements (i.e. both current and both potential electrodes cannot be in the 

same borehole) to meet the in situ constraints. Making measurements between 

(2.15) 
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boreholes forces the current to pass through undisturbed intact material. Thus cross-

borehole measurements allow investigation of the sea ice in its natural state. 

As with the surface surveys, borehole surveys can be implemented with a variety of 

electrode and borehole configurations. Individual measurements can make use of two, 

three or four electrodes, but also two, three or four boreholes. For an approximation of a 

two electrode array one current and one potential electrode are positioned in two 

separate boreholes. The remaining potential and current electrodes are used as remote 

electrodes and must be positioned sufficiently far away (a distance of a least 20 times 

the maximum separation of C1 and P1) so that the pole-pole approximation is accurate. 

Both the electrodes could be positioned in the same borehole, however the array would 

only be sensitive to changes in resistivity in the vicinity of the borehole. Furthermore, as 

mentioned earlier, a large distance between the potential electrodes leads to the problem 

of contamination by telluric noise. For an approximation of a three electrode array there 

are several different combinations that can be used, though these are somewhat limited 

if we want to examine the undisturbed structure between boreholes and thus cannot 

have both the current or both the potential electrodes in the same borehole. Options 

include positioning C1 and P1, C1 and P2, C2 and P1 or C2 and P2 in the same 

borehole with the third electrode in a second borehole and the fourth electrode as a 

remote. Further to these arrangements three electrodes can be in three individual 

boreholes with the remote electrode adequately far from the survey area. When four 

electrodes are used there are several options: two boreholes with one current and one 

potential electrode in each, three boreholes with a current and potential electrode in one 

and the remaining current and potential electrode in separate boreholes, or four 

boreholes each containing its own electrode. (Loke, M. H., 2004) 

2.1.4.1 Measurements in a infinite uniform anisotropic medium 

For an electrode buried in an anisotropic medium, such as sea ice, the current must pass 

through a sphere of radius r centred on the electrode. In this case Bhattacharya and Patra 

(1968) show that the current at the electrode is given by 

  
s

π π

θdθdJrJ.dsΙ
2

0 0

2 sin   

Inserting equation (2.11) from section 2.1.2 into equation (2.16) and solving and 

simplifying gives 
λρ

πC
Ι

H

23

4
  which rearranges to 

π

λΙρ
C H

4

23

  

(2.16) 
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Substituting C into equation (2.10) from section 2.1.2 gives 

  2122 cos114 θ)(λπr

Ιρ
V m


  

This is the same as the expression obtained for the surface soundings (see equation 

(2.13)) except the geometric 2 term has become 4, due to the change from a 

hemispheroid surface of current to a spheroid surface when the electrode is buried. 

Converting equation (2.17) into Cartesian coordinates leads to 

  2122224 zλzrπ

Ιρ
V m


  

where r, being the distance between where the current is injected and where the 

potential is measured, is given by   21222 zyxr  . Thus 

  2122224 λzyxπ

Ιρ
V m


  

where x, y and z are the distances, between where the current is injected and the 

potential measured, as measured along the relative axis. 

 

(2.17) 

(2.18) 
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2.2 Cross-borehole resistivity measurements in a 
infinite anisotropic medium 

 

Considering a general arrangement of four electrodes in four separate boreholes (as in 

Figure 2.2) expression (2.18) above can be used to give the potential (Vij) measured at a 

buried potential electrode „i‟ at (xi, yi, zi) due to a buried current electrode „j‟ at (xj, yj, 

zj), giving 
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Figure 2.2: Electrode configuration, with two current and two potential electrodes positioned individually 

in four boreholes within the ice.  

 

The potential difference between electrodes P1 and P2 can then be found using (2.19) 

and (2.3) to give 
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where Tij is defined as in equation (2.19) and rij is the distance between electrodes. 

(2.19) 

(2.20) 
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If measurements were made in a medium of uniform isotropic resistivity, , then an 

expression for the potential can be obtained from (2.2b) and the potential difference 

from (2.3), leading to 











22211211

1111

4 rrrrπ

Ιρ
ΔV  

Determining the conditions under which equation (2.20) reduces to equation (2.21), 

when  is considered to be V, H or m, shows which electrode combinations, if any, it 

is possible to use to yield a determination of the relevant resistivity. 

 

2.2.1  Measurements of horizontal resistivity (H) 
 

The measurement of the horizontal component of the anisotropic resistivity has 

previously been discussed by Ingham et al. (2008), and their arguments are mentioned 

here. Equation (2.20) can be rewritten using equations (2.6) and (2.7) to give 
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In this form (2.20) reduces to equation (2.21), with  set to H, if all the Tij‟s equal 1/. 

This occurs if 0
22

 jiji yyxx  or at least ji zz  >>
22

jiji yyxx  . This 

first condition implies that all four electrodes must be in a single borehole. Timco 

(1979) effectively met this condition by using four electrodes aligned vertically in the 

side of an ice pit to measure H. However, in the case of four electrodes within the same 

borehole the formation of an anomalous halo around the electrode string when it is 

frozen into the ice raises the likelihood that measurements will be significantly affected 

by ice that is not in its natural state. This option is therefore excluded. The second 

condition is met if the current electrode and potential electrode are much more widely 

separated vertically than they are horizontally. This condition will have practical 

limitations in a real situation in which the anisotropic structure under study is relatively 

thin. As this is the case for first-year sea ice, for which typical thicknesses are ~ 2 m, 

this possibility is not considered. 

An additional possibility, as described by Ingham et al. (2008), is to consider only two 

boreholes each containing one current and one potential electrode, such that C1 is at (x1, 

(2.21) 
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y1, z1), C2 is at (x2, y2, z2), P1 is at (x1, y1, z3) and P2 is at (x2, y2, z4), as in Figure 2.3 

below. 

 

 

Figure 2.3: Electrode configuration, with two boreholes each containing one current and one potential 

electrode.  

 

In this situation, in an anisotropic medium, the potential at P2 due to C2 and the 

potential at P1 due to C1 can be obtained from equation (2.19) with jiij zzr  , 

0 ji xx  and 0 ji yy  giving 
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Similarly the potential at P2 due to C1 and the potential at P1 due to C2 can be obtained 

from equation (2.19) with 
222

jijijiij zzyyxxr   giving 

12

12

2

23

22

21

2

21

12
4

1

4 r

TI

zzyyxx

I
V mm







 





















  

and 

21

21

2

14

22

12

2

12

21
4

1

4 r

TI

zzyyxx

I
V mm




























  



 54 

Thus using equation (2.3) the potential difference between electrodes P1 and P2 is 

given by 
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In an isotropic medium of resistivity H the potential difference would be given by 

expression (2.21) with: 

 = H, 1311 zzr  , 2422 zzr  , 
2

23

2

21

2

2112 zzyyxxr   and 

2

24

2

12

2

1221 zzyyxxr   

Consider a situation where the horizontal separation of the boreholes is a multiple (n) of 

the vertical separation of the electrodes i.e. jijiji zznyyxx 
22

. For an 

isotropic medium the ratio of the V11 and V22 terms to the V12 and V21 terms is given by 

1 : 11 2 n . In this study the boreholes are located on the corners of a 1m square, i.e. 

xi-xj and yi-yj are equal to zero or one, and the vertical electrode separation is between 

0.1m to 0.4m. Under these conditions the value of n is between 2.5 and 15, and the V12 

and V21 terms are approximately between a 1/3 and a 1/15 the size of the V11 and V22 

terms. Thus the V12 and V21 terms can be considered insignificant and can be ignored, 

giving the following expression for the potential difference measured in an isotropic 

medium of resistivity H 
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Ignoring these smaller terms in the equation gives at most an error of ~30% in the 

spatial term. 

Considering this same situation in an anisotropic medium the ratio of the V11 and V22 

terms to the V12 and V21 terms is given by 1 :   11 22 n . With the value of n being 

between 2.5 and 15, and the typical values for the coefficient of anisotropy of sea ice 

being 0.6 (see previous studies by Thyssen et al., 1974, Buckley et al., 1986 and 

Ingham et al., 2008), the V12 and V21 terms are, at most, approximately between a 1/4 

and a 1/25 the size of the V11 and V22 terms. Thus the V12 and V21 terms can be 

(2.22) 
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considered insignificant and can be ignored, giving the following expression for the 

potential difference measured in an anisotropic medium. 


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Ignoring these smaller terms in the equation gives at most an error of ~25% in the 

spatial term. 

The expression for the potential difference above is the same as that obtained in an 

isotropic medium of resistivity =H. Hence, with 0.6 and the appropriate electrode 

combinations being used, giving n between 2.5 and 15, measurements made between 

two boreholes allows reasonable values of H to be estimated for an infinite uniform 

anisotropic medium. It should be noted that the larger the value of n the greater the 

difference in size between the small vertical spacing between the electrodes and the 

larger horizontal spacing between boreholes. Furthermore, larger n values leads to 

larger differences between the V11, V22 and the V12, V21 terms, giving greater validation 

to the removal of the smaller terms, and thus a better approximation of the potential 

difference. 

Since we can ignore potentials V12 and V21, in the above potential difference 

expressions, we are left with V11 and V22 which are potentials measured at P1 due to C1 

and P2 due to C2. As P1, C1 and P2, C2 are in the same boreholes it would seem that 

measurements are being made only along the borehole and not through the undisturbed 

ice between the boreholes. However as the current is flowing from source C1 to sink C2 

(which are in different boreholes) it is passing through the undisturbed ice and will be 

affected by this structure. Thus the current reaching P1 (from C1) will be dependent on 

the undisturbed structure between the boreholes. 

 

2.2.2 Measurements of geometric mean resistivity (m) 
 

Equation (2.20) will reduce to the form of equation (2.21), with  set to m, if all the 

Tij‟s are 1. From equation (2.19) it can be seen that this constraint requires, one of (i) 

=1, (ii) the horizontal distance between the boreholes to be infinite or at least very 

much larger than the vertical separation of the electrodes, or (iii) zi = zj. However, in sea 

ice  is less than one due to the horizontal resistivity being greater than the vertical 
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resistivity. Furthermore a very large distance between the boreholes is logistically 

difficult, as signal strength is reduced as the separation of current electrodes is 

increased. Hence, the last alternative is the only feasible option and implies that all four 

electrodes must be at the same depth. It is undesirable to use the same electrode for both 

current injection and potential measurement. Therefore, to be able to make cross-

borehole resistivity measurements of m with a four electrode array, it is necessary to 

have a minimum of 4 boreholes. The required electrode configuration is illustrated in 

Figure 2.4 below. 

It is also possible to make measurements of the geometric mean resistivity using a three 

electrode array, with a remote electrode placed significantly far from the array (|xi-

xj| and/or |yi-yj|). In this situation the Tij term, as defined in equation (2.19), 

tends to 1 for Vij measurements involving the remote electrode. If the remaining three 

electrodes are placed at the same depth (zi=zj) in their separate boreholes then again the 

Tij term tends to 1. Thus with three electrodes positioned at the same depth in separate 

boreholes and a remote electrode (as shown in Figure 2.4), equation (2.20) still 

simplifies to equation (2.21) with  = m, and measurements of the geometric mean 

resistivity can be obtained. 

 

 

Figure 2.4: Electrode configuration for geometric mean resistivity measurements; with four electrodes at 

the same depth in separate boreholes, and three electrodes at the same depth in separate boreholes and a 

remote electrode.  

 

Having two different arrays making measurements of the mean resistivity structure 

allows more data to be gathered giving better resolution. Furthermore the condition that 
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zi=zj can be lessened to zi–zj is significantly smaller than 
22

jyiyjxxi   such that 

Tij approximates 1. Table 2.1 below shows values of zi–zj for which Tij ~ 1 holds, 

indicating further measurements that can be made, over and above the zi=zj 

measurements. 

 

z i  – z j  (m) T ij  ( =0.1) T ij  ( =0.2) T ij  ( =0.3) T ij  ( =0.1) T ij  ( =0.2) T ij  ( =0.3)

0 1.00 1.00 1.00 1.00 1.00 1.00

0.1 1.00 1.00 1.00 1.00 1.00 1.00

0.2 1.02 1.02 1.02 1.01 1.01 1.01

0.3 1.04 1.04 1.04 1.02 1.02 1.02

0.4 1.08 1.07 1.07 1.04 1.04 1.04

0.5 1.12 1.11 1.11 1.06 1.06 1.05

0.6 1.16 1.16 1.15 1.09 1.08 1.08

0.7 1.22 1.21 1.19 1.11 1.11 1.10

0.8 1.28 1.26 1.25 1.15 1.14 1.13

0.9 1.34 1.32 1.30 1.18 1.18 1.16

1 1.41 1.39 1.35 1.22 1.21 1.20

1.2 1.55 1.52 1.47 1.31 1.29 1.27

1.3 1.63 1.59 1.53 1.35 1.34 1.31

1.4 1.70 1.66 1.59 1.40 1.38 1.35

1.5 1.78 1.73 1.64 1.45 1.43 1.39

1.6 1.86 1.80 1.70 1.50 1.47 1.43

Boreholes i  and j  located along Boreholes i  and j  located on 

one side of square diagonal corners of square

(x i -x j =0 or 1  &  y i -y j =1 or 0) (x i -x j =1 & y i -y j =1)

 

Table 2.1: Tij values for different zi–zj distances, at typical  values for first-year sea ice.  

 

From the table it can be seen that for   0.3 differences in zi and zj of 0.1m, 0.2m, 0.3m 

and even 0.4m still give a good approximation (to within 10%) to Tij = 1 and thus allow 

measurements of the mean resistivity to be made in a medium with a small coefficient 

of anisotropy (eg. sea ice). 

 

2.2.3 Measurements of vertical resistivity (V) 
 

Equation (2.20) reduces to equation (2.21) with =V=m if all the Tij‟s equal . This 

requires 
 

 22
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
 which clearly does not have a real 

solution. It may therefore be concluded that there are no possible cross-borehole 
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measurements that can be interpreted in terms of the vertical component of the 

anisotropic bulk resistivity of sea ice. 

The previous sections have shown that it is possible to make resistivity measurements, 

on an infinite anisotropic medium, which will provide approximations to the geometric 

mean and horizontal resistivities, using three to four electrodes in two to four boreholes. 

From these measurements the relationship between the geometric mean, horizontal and 

vertical resistivities will allow the vertical resistivity to be calculated (using equation 

(2.7) from section 2.1.2). 

HmvHVm 
2

  
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2.3 Cross-borehole resistivity measurements in a 
bounded anisotropic medium 

 

The expressions for the potential measured in an anisotropic medium (given by 

Bhattacharya and Patra, 1968 and Ingham et al., 2008, see equation (2.19) from section 

2.2 above) 




















2

2
22

1

4
jijiji

m
ij

zzyyxx

I
V





 

assume an infinite medium with no boundaries. Even in the simplest approximation, of 

a uniform bulk resistivity medium, sea ice is really a three layer system with two 

boundaries; the ice/air and ice/water interfaces. Although the above theory (section 2.2) 

suggests that measurement of the horizontal component and geometric mean resistivity 

are possible in an infinite anisotropic medium, this will not necessarily be the case in a 

bounded anisotropic medium. Synthetic data can be created for a simple three layer 

model of the sea ice in order to test whether the theoretical results, obtained from 

consideration of an infinite uniform anisotropic medium, still hold for this more realistic 

consideration of sea ice. That is, can the geometric mean and horizontal resistivity 

structure, used to generate the data, be accurately recovered from inversion of the 

synthetic data using the code Res3dinv
TM

 produced by Geotomo Software (see Chapter 

4). However, in order to generate synthetic data it is necessary to see how the above 

results are modified by the inclusion of boundaries. 

 

2.3.1 Current flow through a boundary 
 

Telford et al. (1977) explain how the current flow through a boundary between two 

media is analogous to the optical case of a point light source in one medium separated 

from another by a semi-transparent mirror, with reflection coefficient k and transmission 

coefficient 1-k. 

Consider the case shown below in Figure 2.5 with the current source at C ( jjj zyx ,, ) in 

medium (1) and the potential measured at point P1 (
111

,, iii zyx ) in medium (1) and point 

P2 (
222

,, iii zyx  ) in medium (2) 
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Figure 2.5: Point source in one medium separated from another medium by a semi-transparent mirror. 

Geometry for calculation of potential measured at a point in the first medium (P1) and at a point in the 

second medium (P2).  

 

The intensity at a point in the first medium is a combination of the intensity due to the 

point source (C) and the intensity due to its image in the second medium (C’ at 

(xj, yj, -zj)), diminished by the reflection coefficient (k). The intensity at a point in the 

second medium is due only to the intensity of the point source (C), diminished by the 

transmission coefficient (1-k). 

In this situation, and assuming isotropic media with resistivities 1 and 2, the potential 

at point P1 is given by 
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while the potential at P2 is 
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If P1 and P2 lie at a point on the boundary, then these potentials must be equal. 
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(2.23) 

(2.24) 

Medium (2) 
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P2 

Medium (1) 

1 2 
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At an observation point on the boundary the distances r1, r2 and r3 will be equal, thus 

the condition becomes 
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Rearranging gives the reflection coefficient k of the boundary, which lies between  1 

depending on the relative resistivities of the two media. 
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In an anisotropic medium, such as sea ice, the expression for the potential changes from 

that obtained in an isotropic medium 
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meaning equations (2.23) and (2.24) become 
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2.3.2 Three layer model 
 

The analogy above can be extended to a three layer model with two boundaries, as in a 

simple model for sea ice with three media – air, ice and water and two interfaces – 

ice/air and ice/water. 

(2.25) 

(2.26) 

(2.27) 
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The method of calculating the potential measured in a medium consisting of three layers 

of differing isotropic resistivity structures can be found in Keller and Frischknecht 

(1966) and is summarised in the following. 

A three layer system is shown below in Figure 2.6, with; a layer of thickness t and 

resistivity 1 bounded above by a semi-infinite space with resistivity 0 and below by a 

semi-infinite space with a resistivity of 2. A current source (C) is located a distance, h, 

beneath the upper boundary, and an observation point (P) is located the same distance 

below the upper boundary, but at a horizontal distance, a, from the current source. 

 

 

Figure 2.6: Structure consisting of three isotropic resistivity layers, with resistivities 0, 1 and 2. 

Potential, due to current injected at C, is measured at point P.  

 

In this situation current from the source C reaches point P either via a direct path or a 

path made up of infinite reflections from both the upper and lower boundaries (see 

Figure 2.7 below). The image of C due to reflection in the bottom boundary is labelled 

as C1
(2)

, where the superscript refers to the medium in which the image source appears 

to be and the subscript indicates the number of reflections the ray path has been 

through. The original image is then reflected in the top boundary and labelled as C2
(0)

, 

this image is then reflected in the bottom boundary and so on. A similar set of images 

forms from C being reflected in the top boundary. The intensity of the potential 

measured at P due to these images is diminished by a value determined by the number 

of reflections and the reflection coefficients of the two boundaries. 
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Figure 2.7: Current paths between current source C and measurement point P, and apparent locations of 

the image source.  

 

As indicated in Figure 2.7 above the simplest path the current follows is the direct route 

between C and P. In this case the potential measured at P is due to the primary source at 

C and is given by 

πa

Iρ
V

4

1
0   

Now consider the situations where the ray path is reflected an even number of times, 

with the first reflection being from the bottom boundary. Examples of this case with 

paths containing two and four reflections are shown in Figure 2.8 below. 

 

  
(a) (b) 

Figure 2.8: Examples of ray paths travelling from C to P via an even number of reflections, with the first 

reflection being from the bottom boundary (a) displays the situation of two reflections while path (b) 

follows four reflections.  

(2.28) 
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For a path with one reflection from each boundary, Figure 2.8(a), the image source 

appears to be in medium 0 and has an intensity which is diminished by k1,2k1,0. The 

variable kij is the reflection coefficient of the boundary between media i and j, for ray 

paths travelling from medium i to j and is given by 

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expression (2.25) above. The contribution to the total potential at point P from this 

image is  
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where the superscript of )(V 0

2  refers to the medium in which the image source appears to 

be and the subscript indicates the number of reflections the ray path has been through. 

For a path with two reflections from both the upper and lower boundaries, Figure 2.8(b), 

the image source appears to be in medium 0 and has an intensity which is diminished by 

k1,2
2
k1,0

2
. This image appears to be a distance 2t further above the upper boundary than 

the preceding image. The contribution to the potential at P due to this image is 

 22

2

01

2

2110

4

44 taπ

kIkρ
V ,,)(


  

For each additional pair of reflections, one from each of the boundaries, the 

corresponding image strength will be further reduced by the factor k1,2k1,0 and will 

appear to be a distance 2t further above the upper boundary, than the previous image. 

Hence it is possible to write an infinite series representing the potential due to images 

corresponding to ray paths reflected an even number of times, the first reflection being 

from the lower boundary. 
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Similarly, a series of images for ray paths with an odd number of reflections, the first 

being from the lower boundary may be constructed (e.g. Figure 2.9) 

 

(2.29) 



 65 

 

 

Figure 2.9: Examples of ray paths travelling from C to P via an odd number of reflections, with the first 

reflection being from the bottom boundary.  

 

The potential due to an infinite series of such images is 
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There may also be ray paths with an even (Figure 2.10(a)) or odd (Figure 2.10(b)) 

number of reflections with the first being from the upper rather than the lower boundary 

 

 
 

 
(a) 

 
 

 
(b) 

Figure 2.10: Examples of ray paths travelling from C to P, with the first reflection always being from the 

top boundary. (a) an even number of reflections and (b) an odd number of reflections.  

(2.30) 
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The potential measured at P due to an infinite series of images produced by ray paths 

reflected an even number of times, the first reflection being from the upper boundary as 

in Figure 2.10(a), is given by  
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while the contribution to the total potential at P due to ray paths reflected an odd 

number of times, the first reflection being from the upper boundary as in Figure 2.10(b), 

is given by 
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The total potential measured at point P is found by adding all the terms included in 

equations (2.28) - (2.32). 
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Figure 2.11: Current paths travelling from current electrode C, at a depth of zj below the upper boundary 

to potential electrode P, a horizontal distance a away at a depth of zi, in a three layer medium. 

(2.31) 

(2.32) 

(2.33) 
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If the current (C) and potential (P) electrodes, separated by a horizontal distance 

22

jiji yyxxa  , are not at the same depth h below the upper boundary but 

rather at depths of zj and zi respectively, as shown in Figure 2.11 above, then 

expressions (2.28) - (2.32) become 
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Furthermore if medium one has an anisotropic rather than isotropic resistivity structure 

then the expression for the potential changes from that obtained in an isotropic medium 
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In this case expressions (2.28) - (2.32) become 
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These expressions can be simplified if the upper half-space is air with an infinite 

resistivity. In this situation the reflection coefficient k1,0, using equation (2.25), is given 

by 
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Thus it can be shown that for a current, potential electrode pair positioned at (xj, yj, zj) 

and (xi, yi, zi) respectively within a layer of anisotropic sea ice of thickness t, bounded 

above by a half-space of highly resistive air and below by a half-space of highly 

conductive seawater, the potential measured at point i due to current from point j can be 

found by using the above modified versions of expressions (2.28) - (2.32), giving the 

following version of expression (2.33) 
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The expression for the total potential between electrodes i and j (as given in equation 

(2.34)) can become further complicated by the fact that the electrodes can either be in 

the ice and/or the water. Thus the following configurations need to be considered when 

calculating the potential that will be measured in a field arrangement. 

i. Both the current and potential electrode are in the ice (see Figure 2.11 

above), in which case the total potential measured between electrodes is 

given by equation (2.34) above. 

ii. Both the current and potential electrodes are in the water (see Figure 2.12 

below), in which case the potential measured depends upon: (a) a direct ray 

path; (b) a ray path reflected off the water/ice interface whose intensity will 

be diminished by the reflection coefficient k2,1; and (c) a series of ray paths 

transmitted through the water/ice boundary and reflected a odd number of 

times, with the first reflection off the air/ice boundary, before transmitting 

back through the water/ice boundary. In this case transmission through the 

water/ice boundary will decrease the intensity of the ray by the transmission 

coefficients (1-k2,1) and (1-k1,2), while reflection will diminish the intensity 

by k1,0
n
k1,2

(n-1)
 (which equals k1,2

(n-1)
 as k1,0

n
 = 1). As the potential electrode is 

in the seawater, which can be considered as an isotropic medium, the 

potential measured will be given by the expression below, where the 

resistivity  will be the resistivity of the seawater. 

(2.34) 
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Figure 2.12: Current paths travelling from current electrode C to potential electrode P, both in the 

seawater.  

 

iii. The current electrode in the ice and the potential electrode in the water (see 

Figure 2.13 below), in which case the equation for the potential will involve: 

(a) a direct ray path, whose intensity will be diminished by the transmission 

coefficient (1-k1,2); (b) an infinite series of images produced by ray paths 

reflected an even number of times, the first reflection being from the lower 

boundary, then transmitted through the water/ice boundary. In this case the 

intensity will be diminished by k1,0
n
k1,2

n
 (which equals k1,2

n
 as k1,0

n
 = 1) from 

the reflections from the upper and lower boundaries and by the transmission 

coefficient (1-k1,2). Finally (c) an infinite series of images produced by ray 

paths reflected an odd number of times, the first reflection being from the 

upper boundary, then transmitted through the water/ice boundary. In this last 

situation the magnitude of the potential will be reduced by k1,0
n
k1,2

(n-1)
 (which 

equals k1,2
(n-1)

 as k1,0
n
 = 1) from the reflections with the boundaries and by the 

transmission coefficient (1-k1,2). As the seawater can be considered as an 

isotropic medium, and the potential electrode is in this medium, the 

measured potential will be given as below, where the resistivity  will be the 

resistivity of the seawater. 

(2.35) 
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Figure 2.13: Current paths travelling from current electrode C, in the sea ice, to potential electrode P, in 

the seawater.  

 

iv. The current electrode in the water and the potential electrode in the ice (see 

Figure 2.14 below), in which case the equation of the potential will involve: 

(a) a direct ray path, with an intensity diminished by the transmission 

coefficient (1-k2,1); (b) an infinite series of images produced by ray paths 

transmitted through the water/ice boundary then reflected an even number of 

times, the first reflection being from the upper boundary. In this case the 

intensity will be diminished by the transmission coefficient (1-k2,1) and by 

k1,0
n
k1,2

n
 (which equals k1,2

n
 as k1,0

n
 = 1) from the reflections from the upper 

and lower boundaries. Finally (c) an infinite series of images produced by 

ray paths transmitted through the water/ice boundary then reflected an odd 

number of times, the first reflection being from the upper boundary. In this 

last situation the magnitude of the potential will be reduced by the 

transmission coefficient (1-k2,1) and by k1,0
n
k1,2

(n-1)
 (which equals k1,2

(n-1)
 as 

(2.36) 
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k1,0
n
 = 1) from the reflections with the boundaries. As with the first electrode 

arrangement (i) the potential electrode is in the anisotropic sea ice and the 

measured potential is given by the expression below, where the resistivity m 

is the geometric mean resistivity of the sea ice. 
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Figure 2.14: Current paths travelling from current electrode C, in the seawater, to potential electrode P, 

in the sea ice.  

 

2.3.2.1 Horizontal resistivity measurements (H) 

In order to make measurements of the horizontal component of the resistivity structure 

it is required to use two boreholes, each containing one current and one potential 

electrode. However, up to this point, an infinite medium was assumed instead of the 

more realistic three layer model of the sea ice. By considering the situation where both 

the electrodes are in the ice and applying the required configuration constraints to the 

relevant expression for the potential in a three layer model (equation (2.34)), it will be 

possible to determine whether the resistivity measurements made on sea ice will return 

(2.37) 
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H as expected (for an infinite medium) or if the resistivity is dependent upon other 

factors. The current and potential electrodes are either (i) in the same borehole, in which 

case 0
22

 jiji yyxx : (ii) in separate boreholes along a side of the 1m by 1m 

square, in which case 1
22

 jiji yyxx ; or (iii) in separate boreholes along a 

diagonal of the 1m by 1m square, in which case 2
22

 jiji yyxx . For these three 

different cases equation (2.34) becomes: 
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(ii) 
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Situation (i) should return H depending only on the thickness of the ice and the 

coefficient of reflection of the ice/water interface (k1,2). The thickness of the ice can be 

obtained from other measurements, and thus the typical thickness of the sea ice being 

studied can be taken into consideration when using these expressions. The coefficient of 

reflection k1,2 is given by 




























msw

mswk








12

12
2,1 , assuming that for sea ice m 

is of the order of 100‟s of ohmmeters i.e. within the range 100m to 1000m and that 

the underlying seawater has sw  0.4m, then k1,2 will be in the range -0.992 to -0.999 

(the value being negative as sw is less than m). Thus a large change in m has little 

effect on the value of k1,2, and the small range in values means that the resistivity values 

are only weakly dependent on k1,2. As well as the preceding dependencies, situations (ii) 

and (iii) further depend on the coefficient of anisotropy () of the ice, which depends on 

the resistivity structure and is thus an unknown. 

Synthetic data were generated using expressions (2.34) - (2.37) in MATLAB®, for the 

case of a uniform anisotropic layer with t = 1.4m, H = 1000m, m  in the range 20m 

 m  500m, and  in the range 0.02     0.5. The anisotropic layer was overlain 

with a uniform half-space with high resistivity (representing air), and underlain by a 

uniform half-space with a low resistivity of 0.4m (in order to represent the seawater 

beneath the ice). The datasets each comprised of over 2800 separate electrode 

(iii) 
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combinations, which satisfied the restrictions discussed earlier in section 2.2.1. In all 

cases the summation terms in expressions (2.34) - (2.37) begin to converge after a few 

hundred terms, such that by n=500 subsequent terms in the summations are less than 

x10
-5

 in size. Hence, in creation of synthetic data the infinite summations were truncated 

to only 500 terms. 

Case (i), above, corresponds to the situation of the current and potential electrodes being 

in the same borehole and thus gives us the V11 and V22 potentials. The V12 and V21 

potentials can be obtained from cases (ii) or (iii) depending on the borehole 

configuration used. Recall from section 2.2.1, that if the vertical distance between 

electrodes is significantly less than the horizontal separation between boreholes, the V12 

and V21 potentials are significantly smaller than the values for V11 and V22. This can be 

seen to hold for the three layer case as well, with the difference in the magnitude of the 

terms from the synthetic dataset, generated with m = 100m and  = 0.1, showing that 

within the ice the V12 and V21 terms are around four orders of magnitude smaller than 

the V11 and V22 potentials. As such the potential difference is dominated by the potential 

terms arising from having the current and potential electrode in the same borehole i.e. 

an expression of the form given above for case (i). 

The synthetic dataset, generated with m = 100m and  = 0.1, shows that at most the 

total of the summation terms in the expression, given in case (i), is 50% of the value of 

the first term, which represents the direct path. Thus within the anisotropic middle layer, 

of the given three layer resistivity structure, the potential measured by this cross-

borehole technique is between the following values: 
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Comparing with expression (2.2b) ( ijij πrIρV 4 ) for the potential measured in an 

infinite isotropic medium, it can be seen that even in a bounded anisotropic medium, 

with the typical thickness and resistivity parameters relevant to sea ice, estimates of the 

horizontal component of the bulk resistivity should be obtained to within a factor of two 

of the real value. 

The recovered horizontal resistivity structures, obtained from the inversion of the 

synthetic datasets in RES3DINV, are shown in Figure 2.15 below. From these results it 
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can clearly be seen that, despite the approximations in the theoretical development, H 

is recovered, to within a good degree of accuracy (taking the average value within the 

ice H is recovered to within 10%), for all  values and at most depths within the 

anisotropic layer representing the sea ice. Only in the layer immediately above the 

ice/water interface (1.3m – 1.4m) is there a significant underestimation of H. In a field 

situation the thickness of the anisotropic layer of sea ice is generally known from other 

measurements. As such, during inversion, the resistivity below this depth can be 

constrained to a value representative of seawater (as has been applied in the results of 

Figure 2.15 below). 

 
(a) 

=0.02 =0.05 =0.1 =0.2 =0.3 =0.4 =0.5 

H=1000m H=1000m H=1000m H=1000m H=1000m H=1000m H=1000m 

m=20m m=50m m=100m m=200m m=300m m=400m m=500m 

       
ave=1079.2m ave =1087.62m ave =1040.25m ave =1018.77m ave =992.35m ave =988.1m ave =974.5m 

5 iter 6 iter 6 iter 6 iter 6 iter 6 iter 6 iter 

error 12.44% error 4.45% error 2.91% error 2.15% error 1.64% error 1.38% error 1.14% 
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Figure 2.15: Horizontal resistivity recovered from 3D inversion of synthetic data, for the case of sea ice 

thickness of t = 1.4m, H = 1000m, 20m  m  500m, 0.02    0.5, and sw = 0.4m. (a) Vertical 

sections through the resistivity structure obtained from RES3DINV. (b) Variation of horizontal resistivity 

with depth, recovered from the inversion models in (a) by taking the average value at each layer of the 

model (ignoring the corner cells which are affected by the presence of the boreholes). Given the spatial 

grid used in the inversion each resistivity represents an average over approximately 400 cells. The true 

value of H is shown by the solid line 
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2.3.2.2 Geometric mean resistivity measurements (m) 

In order to make measurements of the geometric mean component of the resistivity 

structure either four boreholes or three boreholes with a remote electrode was required. 

Furthermore it is necessary for the vertical distance between electrodes to be small 

enough, that it can be assumed that all the electrodes are at the same depth. However, in 

previous sections it was assumed the ice cover was an infinite medium rather than the 

more realistic three layer model of sea ice. By applying the required configuration 

constraints to the relevant expression for the potential in a three layer model (equation 

(2.34)), it will be possible to determine, in the same way as H, whether the resistivity 

measurements made on sea ice will return m as expected (for an infinite medium) or if 

the resistivity is dependent upon other factors. The required potential and current 

electrode combinations have zi-zj~0 and either (i) 1
22

 jiji yyxx  when the 

electrodes are along a side of a 1m by 1m square or (ii) 2
22

 jiji yyxx  when 

the electrodes are along a diagonal of a 1m by 1m square. For these two different cases 

equation (2.34) becomes: 
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In both of the situations the potential measured is dependent on coefficient of anisotropy 

(), the coefficient of reflection of the ice/water interface (k1,2) and the thickness of the 

ice cover. The thickness of the ice can be obtained from other measurements and is thus 

a known, whereas  depends on the resistivity structure and is thus unknown. In section 

2.3.2.1 it was shown that the resistivity values are only weakly dependent on k1,2. 

Hence, the value obtained for the geometric mean resistivity, during the inversion of the 

measurements, is dependent on  and does not return the true m value. 

Once again synthetic data were generated using expressions (2.34) - (2.37) in 

MATLAB®, this time for the case of a uniform anisotropic layer with t = 1.4m, m = 

100m, values of H in the range 200m  H  5000m, and values of  in the range 

0.02    0.5. Again, the anisotropic medium was overlain with a uniform half-space 

with high resistivity (representing air), and underlain by a uniform half-space with a low 

resistivity of 0.4m (in order to represent the seawater beneath the ice). The datasets 

comprised of over 800 separate electrode combinations, which satisfied the restrictions 

discussed earlier in section 2.2.2. 

For the synthetic dataset generated with m = 100m and  = 0.1, the total of the 

summation terms in both case (i) and (ii) is of the same order of magnitude as the direct 

term but negative. Using these results the expressions for the potentials in case (i) and 

(ii) above can be compared with expression (2.2b) ( ijij πrIρV 4 ) for the potential 

measured in an infinite isotropic medium. This indicates that in a bounded anisotropic 

medium, with the typical thickness and resistivity parameters relevant to sea ice, 

estimates of the geometric mean component of the bulk resistivity will likely be 

underestimated. 

The recovered geometric mean resistivity structures, obtained from the inversion of the 

synthetic datasets in RES3DINV, are shown in Figure 2.16 below. As with the 

horizontal resistivity, measurements of the thickness of the anisotropic layer of sea ice 

can be made in the field. As such, during inversion, the resistivity below this depth can 

be constrained to a value representative of seawater (as has been applied in the results of 

Figure 2.16 below).From the inversions it can clearly be seen that, given the 

approximations in the theoretical development, the resistivities obtained from the 

inversion ( M

mρ ) do not accurately recover the true resistivity (m). In fact the geometric 

mean component of the bulk resistivity of sea ice is underestimated. Even for =0.5 the 
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recovered m is only 70% of the true value, in the upper 1m of the anisotropic medium. 

Closer to the ice-water interface the recovered value drops to about 40% of the true 

value. This underestimation increases with decreasing , so that by the time <0.2 the 

recovered m is of the order of only 1% of the true value and has a more complicated 

variation with depth. The thinner the ice cover the more severe the underestimation, for 

instance at a thickness of 0.85m, for =0.5, the recovered m is only 30% of the true 

value 

 
(a) 

=0.02 =0.05 =0.1 =0.2 =0.3 =0.4 =0.5 

m=100m m=100m m=100m m=100m m=100m m=100m m=100m 

H=5000m H=2000m H=1000m H=500m H=333.33m H=250m H=200m 

       
ave=0.82m ave =0.81m ave =0.75m ave =5.51m ave =25.03m ave =47.91m ave =62.3m 

6 iter 6 iter 6 iter 6 iter 6 iter 6 iter 6 iter 
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Figure 2.16: Geometric mean resistivity recovered from 3D inversion of synthetic data¸ for the case of 

sea ice thickness of t = 1.4m, m = 100m, 200m  H  5000m, 0.02    0.5, and sw = 0.4m. (a) 

Vertical sections through the resistivity structure obtained from RES3DINV. (b) Variation of geometric 

mean resistivity with depth, recovered from the inversion models in (a) by taking the average value at 

each layer of the model (ignoring the corner cells which are affected by the presence of the boreholes). 

Given the spatial grid used in the inversion each resistivity represents an average over approximately 400 

cells. The true value of m is shown by the solid line. 
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Clearly, once sea ice is considered as a bounded anisotropic medium, obtaining reliable 

measurements of the geometric mean resistivity through DC cross-borehole tomography 

is not straightforward. However, inversion of synthetic datasets (as mentioned above), 

which recover model resistivity values ( M

mρ ), makes it possible to derive an empirical 

parameterization of the relationship between the true value of m and the recovered 

value M

mρ . For a given thickness of ice that relationship is given by the following 

expression. 

  m

M

m ρλFρ   

where  λF  is a polynomial in the anisotropy coefficient, the form of which is 

determined from inversion of synthetic data sets. Synthetic data sets are created for a 

uniform block of ice of the given thickness, a given m and varying values of . 

Inversion of the synthetic data provides average M

mρ  values for each layer within the 

models. These values are divided by the true resistivity (m), given to the created ice 

cover, and plotted against the  value used, thus obtaining a polynomial in  for each 

layer of the inversion models. 

Using (2.6) and (2.7) equation (2.38) may be expressed as 

  H

M

m F    

As demonstrated above H can be determined from inversion of real data, the form of 

 λF  can be deduced from inversion of synthetic data, generated for ice of the same 

thickness as that the measured data was obtained from, and M

mρ  is also obtained from 

inversion of the measured or real data. Thus a value for  can be found from numerical 

solution of (2.39), for each layer in the resulting 3D inversions of the measured data. An 

estimate of the actual value of m, as a function of depth, can then be determined from 

(2.38). 

As an example, for sea ice with a thickness of 1.4m the polynomial in the anisotropy 

coefficient in the depth range 0.5m – 0.6m can be represented by  

   3452.01312.7077.47411.57 234 F  

for 0.5. 

For the specific case of  = 0.1 the inversion of the synthetic data yields a value of M

mρ  

= 0.748m in this depth range. As the created ice, used to generate the synthetic data, 

(2.38) 

(2.39) 
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has a true geometric mean value of 100m and the case being considered uses a 

coefficient of anisotropy of 0.1 the horizontal resistivity of the ice is 1000m. Inserting 

these values for M

mρ  and H into expression (2.39) the equation can be numerically 

solved to return a value of 0.113 for . This value is close to the true value of 0.1 used 

in the generation of the synthetic data sets. Furthermore inserting the value found for 

lambda and the M

mρ  value into (2.38) returns a value of m = 113m for the true 

geometric mean value of the created ice. This value is close to the value of m = 100m 

assigned to the created ice and is significantly better than the value returned by the 

inversion of the synthetic data set. 

There remain a number of complicating factors when applying this to a real situation. 

These include (i) the structure of the real sea ice may include a variation in  with depth 

which is not considered when creating the synthetic datasets; (ii) the ice-water interface 

has been modelled as a sharp boundary, whereas in nature this may not be the case; (iii) 

the reliance on the results of 3D inversions, both of real and synthetic data, may well 

introduce problems of resolution of the resistivity structure; and (iv) even in the 

inversions of synthetic data it is clear (Figure 2.16) that the derived values of M

mρ  are 

relatively insensitive to 0.1. Quantifying the uncertainty in derived values of m 

resulting from these factors is non-trivial, but as a consequence it is likely when 

interpreting values derived in the described manner, one should bear in mind that these 

may only be correct to within a factor of the order of perhaps 3-4. 

2.3.2.3 Surface resistivity measurements 

If the current (C) and potential (P) electrodes are at the air/ice interface of the three 

layer model i.e. zj=zi=0 (see Figure 2.11 above) then the ray paths that can travel 

between C and P are limited. There is still a direct path from C to P and an infinite 

series representing the potential due to images corresponding to ray paths reflected an 

even or odd number of times, the first reflection being from the lower boundary (as in 

Figure 2.8 and Figure 2.9). However, as the electrodes are at the surface there can no 

longer be ray paths with their first reflection in the upper boundary (as in Figure 2.10). 

Hence, these terms can be removed from the expression of the total potential measured 

at P. Furthermore, recall from 2.1.1, that when making surface (rather than buried) 

measurements the geometric term 4 becomes 2. Using these modifications equation 

(2.34) can be rewritten to give an expression for the total potential measured at P when 
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the current (C) and potential (P) electrodes are on the surface of anisotropic sea ice 

cover. 
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This expression can also be obtained by simply substituting zi = zj = 0 into equation 

(2.34) and simplifying. 

From expression (2.40) it can be seen that the resistivity value obtained from the 

inversion of surface soundings is dependent upon the coefficient of anisotropy (), the 

coefficient of reflection of the ice/water interface (k1,2) and the thickness of the ice 

cover. The thickness of the ice can be obtained from other measurements and is thus a 

known, whereas  depends on the resistivity structure and is thus unknown. In section 

2.3.2.1 it was shown that the resistivity values are only weakly dependent on k1,2. As 

such the resistivities obtained are dependent on  and are not the true m values. 

Synthetic data was generated using expression (2.40) in MATLAB®, for the case of a 

uniform anisotropic layer with t = 1.4m, m = 100m, 200m  H  5000m and 0.02 

   0.5, overlain with a uniform half-space with high resistivity (representing air), and 

underlain by a uniform half-space with an low resistivity of 0.4m (in order to 

represent the seawater beneath the ice). The dataset comprised of 11 electrode 

combinations obtained using a Wenner array configuration with electrode separations of 

0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5, 2, 3 and 4 meters. 

For the synthetic dataset generated with m = 100m and  = 0.1, the total of the 

summation terms in expression (2.40) is of the magnitude of between one half to one 

times the direct term but negative. Using these results expression (2.40) for the potential 

above can be compared with expression (2.2a) ( ijij πrIρV 2 ) for the potential 

(2.40) 
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measured on the surface of an infinite isotropic medium. This suggests that surface 

soundings on a bounded anisotropic medium, provide measurements that underestimate 

the geometric mean component of the bulk resistivity. The size of the total of the 

summation terms increases with the increase in the electrode separation, this would 

indicate that the underestimation should worsen with depth. 

The recovered geometric mean resistivity structures, obtained from the inversion of the 

synthetic datasets, are shown in Figure 2.17 below. From the inversions it can clearly be 

seen that the retrieved resistivity structure is not an accurate representation of the true 

structure, though it is more complicated than a straight over or under-estimation.  
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Figure 2.17: Variation of geometric mean resistivity with depth, recovered from 1D inversion of 

synthetic surface resistivity data. The true value of m is shown by the solid line.  

 

The major issue with inversions obtained from surface soundings is that the depth data 

is incorrect. Thus the interpretation of surface resistivity soundings, in terms of 

variation of geometric mean resistivity with depth, is complex. This makes comparison 

between the retrieved and true values difficult, as it is uncertain as to where the ice/sea 

interface occurs in the retrieved resistivity structure. From Figure 2.17 it seems that with 

low  values the resistivity structure returned from the inversion of the data shows only 

the resistivity structure around the water/ice interface. As the  value increases more of 

the resistivity structure of the sea ice itself is revealed. It has been suggested that 

although the depth data are incorrect, the geometric mean resistivity structure can be 

obtained from surface soundings if the resistivity structure obtained from inversion is 

stretched to match similar features observed in the H inversion sections. 
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2.3.2.4 Summary 

Although more complicated than making measurements on a simplistic infinite 

anisotropic medium, it has been shown above that estimates of the horizontal and 

geometric mean resistivity of a bounded structure representative of sea ice can be 

obtained from cross-borehole measurement methods. Theoretically the use of cross-

borehole data, derived from appropriate combinations of electrodes, allows direct 

measurement of the horizontal component of the bulk resistivity of sea ice (or other 

bounded anisotropic medium within which V < H). Furthermore, although the 

particular structure of sea ice means that exact measurements of the geometric mean 

resistivity cannot be obtained, it is possible to derive a reasonable estimate of m from 

cross-borehole measurements via numerical modelling. As with the infinite medium the 

vertical component of the bulk resistivity, which cannot be directly measured, can be 

obtained from these horizontal and vertical resistivities (see equation (2.7) section 2.1.2) 

using the following relationship  

HmvHVm 
2

   

Thus it will be possible to study a complete 3D model of the anisotropic resistivity 

structure of sea ice and how it varies over the melt season, using DC resistivity cross-

borehole tomography measurements. 
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Chapter 3 
Field Work 

 

3.1 Arctic site - Barrow, Alaska (2008) 
 

In April – June 2008 cross-borehole electrical resistivity measurements were made in 

first-year landfast sea ice in the Chukchi Sea, approximately 1km off the coast of 

Barrow, Alaska (Figure 3.1). 

Barrow is located 515km above the Arctic Circle (http://en.wikipedia.org/wiki/Barrow,_ 

Alaska) on the Chukchi Sea coast of Alaska, and as such is the northernmost 

community in the USA. The community is traditionally known as Ukpeagvik, “place 

where snowy owls are hunted”. Barrow takes its modern name from Point Barrow, 

named in 1825 for Sir John Barrow of the British Admiralty, during plotting of the 

Arctic coastline of North America by Captain Beechey of the Royal Navy. During the 

1940s and 1950s, the military played an influential role in the area and during this time, 

the Naval Arctic Research Lab (NARL) was built near Barrow (http://www.cityof 

barrow.org). 

At the time of the measurements the Barrow Arctic Science Consortium (BASC) was a 

not-for-profit organization, operating from NARL, that was dedicated to the 

encouragement of research and educational activities pertaining to Alaska‟s North Slope 

and the adjacent portions of the Arctic Ocean. The BASC was organized in 1995 as a 

way for three local organizations; (i) The North Slope Borough (the regional 

government for Alaska‟s North Slope), (ii) The Ukpeagvik Iñupiat Corporation (a 

corporation owned by the Native people of Barrow, founded under authority of the 

Alaska Native Claims Settlement Act), (iii) Ilisagvik College (the local centre for post-

secondary education) and other interested persons to work together in support of Arctic 

science. BASC provided the logistical support for the Arctic measurements with NARL 

acting as a home base (http://www.arcticscience.org/). 

In Barrow the sun does not set between May 10th and August 2nd each summer, and 

does not rise between November 18th and January 24th each winter. The climate of 

Barrow features light annual precipitation, averaging 5‟‟ (12.7cm) with annual snowfall 

of 20‟‟ (50.8cm). The temperature ranges from -56
 o

F (-48.9
o
C) to 78

 o
F (25.6

o
C) and 

http://en.wikipedia.org/wiki/Barrow,_%20Alaska
http://en.wikipedia.org/wiki/Barrow,_%20Alaska
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the daily minimum temperature is below freezing 324 days of the year (http://www.dce 

d.state.ak.us/dca/commdb/CF_BLOCK.cfm). February is the coldest month with 

average temperatures of -16 
o
F (-26.7

o
C) (average from between 1971 and 2000) and 

July the hottest with an average of 40.4
o
F (4.7

o
C) (http://www.nws.noaa.gov/climate 

/xmacis.php?wfo=pafg). The Chukchi Sea is typically ice-free from mid-June through 

October (http://www.dced.state.ak.us/dca/commdb/CF_BLOCK.cfm). 

Dr Malcolm Ingham, Dr Daniel Pringle and I made six sets of horizontal and geometric 

mean resistivity measurements, these were obtained at roughly one to two weekly 

intervals over the 3 month measurement period (April - June, 2008). Surface resistivity 

soundings were also made, on four different occasions, using a Wenner array 

configuration. The University of Alaska Fairbanks (UAF) sea ice mass balance site was 

also operated in this same area (71
o
 21‟ 56.45‟‟ N, 156

o
 32‟ 39.01‟‟ W) from 7

th
 

February to 17
th

 June, recording snow and ice thickness, sea level, relative humidity and 

air, ice and water temperatures (http://seaice.alaska.edu/gi/observatories/ 

barrow_sealevel, Druckenmiller et al., 2009). Standard measurements were also carried 

out on sea ice cores in order to determine salinity profiles. 

 

 

Figure 3.1: Maps showing the approximate location of the measurement site, in first-year sea ice ~1km 

off the coast of Barrow, Alaska. The Alaskan map is from http://mappery.com/map-of/Alaska-Map-5 and 

the Barrow insert is a subregion of Barrow (B-4), Alaska 1955 - USGS 1:63,360 map for point Barrow 

area, available from http://store.usgs.gov/b2c_usgs/usgs/maplocator/(xcm=r3standardpitrex_prd&layout 

=6_1_61_48&uiarea=2&ctype=areaDetails&carea=%24ROOT)/.do.  

http://www/
http://www.nws.noaa.gov/climate%20/xmacis.php?wfo=pafg
http://www.nws.noaa.gov/climate%20/xmacis.php?wfo=pafg
http://seaice.alaska.edu/gi/
http://mappery.com/map-of/Alaska-Map-5
http://store.usgs.gov/b2c_usgs/usgs/maplocator/(xcm=r3standardpitrex_prd&layout
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3.2 Antarctic site - McMurdo sound, Ross Dependency 
(2009) 

 

In November 2009 cross-borehole electrical resistivity measurements were made in 

McMurdo Sound in first-year sea ice, formed as an extension of Ross Ice Shelf, at a site 

approximately 10km off the coast of Ross Island, Antarctica (Figure 3.2). 

Ross Island is located off the coast of Victoria Land, Antarctica in McMurdo Sound at a 

latitude of 77
o
 40‟S, within the Ross Dependency. In 1841 Sir James Clark Ross 

discovered Victoria Land and the Ross Sea, including Ross Island (later named in 

honour of him by Robert F. Scott) and claimed them for Britain. The British 

Government defined its current borders in 1923 and entrusted it to the administration of 

New Zealand (http://en.wikipedia.org/wiki/Ross_Dependency). 

Ross Island has an area of 2,460 km
2
 (http://en.wikipedia.org/wiki/Ross_Island) and is 

home to Scott Base, New Zealand‟s Antarctic research station, located on Pram point 

3kms from the US McMurdo Station. The proposal for a New Zealand base in 

Antarctica was put to the New Zealand Government by the Antarctic Society in 1953. 

The building of the base began in 1956 to support the Trans-Antarctic Expedition and 

International Geophysical Year of 1956-1959 (http://www.antarcticanz.govt.nz/scott-

base/brief-history). Field operations and events logistics at Scott Base are overseen by 

Antarctica New Zealand, a Crown Entity established in 1996, responsible for 

developing, managing and executing New Zealand Government activities in Antarctica 

and the Southern Ocean (http://www.antarcticanz.govt.nz/about-antarctica-nz). 

Antarctica is the driest, coldest, windiest continent on Earth. For inland Antarctica 

temperatures rise to about -30
o
C in summer and fall to below -80

o
C in winter. However, 

at Scott Base the average temperature ranges annually from around -29.7
o
C to -4.5

o
C, 

with January being the warmest month and August the coldest month 

(http://www.niwa.co.nz/education-and-training/schools/resources/climate/antarctic). 

Most precipitation in the Antarctic falls as snow or ice crystals, although during summer 

rain can occur near the coast. It is estimated (windy conditions make it difficult to 

accurately measure snowfall) that the annual snowfall over the continent is equal to 

about 150mm of water. In the elevated inland it is much drier than this, while near the 

coast there is more precipitation (http://www.antarcticanz.govt.nz/scott-base/weather). 

http://www.niwa.co.nz/
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At Scott Base, the sun sets in late April and does not rise again until the end of August 

(http://nztabs.ictar.aq/rossscott.php). 

McMurdo Sound is about 55 km long and similarly wide, with the western shoreline 

defined by Victoria Land, the eastern boundary by Ross Island and the southern end by 

McMurdo Ice Shelf (a region of the Ross Ice Shelf). During the winter McMurdo Sound 

presents a virtually impenetrable expanse of surface ice. Even during summer, ships 

approaching McMurdo Sound are often blocked by various concentrations of ice 

(http://en.wiki pedia.org/wiki/McMurdo_Sound). 

Dr Malcolm Ingham and I took four sets of horizontal and geometric mean resistivity 

data using borehole measurements at intervals of roughly one to two days. These 

measurements were accompanied by surface soundings made using a Wenner array. A 

mass balance site was operated at the same site (77° 46' 33.12" S, 166° 18' 46.26" E) as 

part of Antarctica New Zealand science event K131, providing measurements of 

temperature, ice thickness, snow depth and observations of platelet ice. As at Barrow 

salinity data were obtained from ice cores. 

 

 

Figure 3.2: Maps showing the approximate location of the measurement site, in first-year sea ice ~10km 

off the coast of Ross Island, Antarctica. The Antarctica map is from http://lima.nasa.gov/antarctica/ and 

the Ross Island insert is from http://www.linz.govt.nz /topography/topo-maps/antarctica/ross-sea-

regions.jpg.  

http://nztabs.ictar.aq/
http://en.wiki/
http://lima.nasa.gov/antarctica/
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3.3 Resistivity measurements 
 

The electrode strings used in the resistivity measurements (Figure 3.3) were constructed 

at Victoria University of Wellington (VUW), and consisted of 18 electrodes of 5cm x 

5cm squares (or 5cm diameter circles) of marine-grade stainless steel washers spaced at 

intervals of 0.1m along a multi-core cable, held in place by cable clamps. Takeouts from 

the cable are bolted and soldered onto the corner of each electrode. Holes are drilled in 

the other corners of the electrodes to provide better electrical contact as seawater 

refreezes around the electrode strings. 

 

  

Figure 3.3: Photos of the electrode strings used to make the cross-borehole resistivity 

measurements. 

 

Early in the growth of the ice the electrode strings were positioned into boreholes 

drilled in thin first year sea ice. A solid plate held the string in place relative to the 

surface of the ice and weights suspended from the end kept it vertical as the electrodes 

were progressively frozen in as the ice thickened. Four strings were deployed at the 

corners of a 1m x 1m square, allowing measurements to be made through the 

undisturbed sea ice between boreholes. This reduces the sensitivity to any atypical ice 

formed around the electrodes as the seawater in the boreholes refreeze. 

At the surface the electrode strings are connected, via cables, to a banana plug board 

consisting of four rows, each with enough plugs for all of the electrodes in a single 

borehole. Depending on the measurements being made and the electrode arrangement 

required the necessary plugs are connected to a set of „smart‟ electrodes. During the 

Arctic field work only 16 „smart‟ electrodes were available, but this doubled to 32 for 
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the Antarctic field work. Having more „smart‟ electrodes available leads to a more 

automated measurement procedure, ideally there would be as many „smart‟ electrodes 

as there are electrodes in the boreholes. The „smart‟ electrodes can be programmed, 

through a central control instrument, to make automated measurements along the entire 

depth of the borehole using set electrode configurations, without manually moving the 

plugs. However, as there are only 16 or 32 „smart‟ electrodes and 72 electrodes in the 

four boreholes, it is necessary to occasionally move the plugs to the next group of 

electrodes to make a complete set of measurements. In this way measurements are made 

which cover the depth of the boreholes. The „smart‟ electrodes are controlled by a GF 

Instruments, s.r.o ARES datalogger, which measures the voltage and current – values 

that can then be used to find the apparent resistance of the sea ice. The equipment setup 

in the field, during the Arctic measurements can be seen in Figure 3.4 below. The same 

configuration was used in the Antarctic, except there were two more boxes of „smart‟ 

electrodes that could be connected for any given measurement set. 

 

 

Figure 3.4: Field setup of equipment for cross-borehole resistivity measurements in the Arctic.  

 

In order to determine the horizontal resistivity, measurements were made between each 

of the six borehole pairs, using appropriate electrode arrangements (as given in section 

2.2.1). 3D inversion of these data allow a reasonable estimate of H to be derived for the 

volume contained by the boreholes. Similarly measurements, aimed at determining m 

were obtained, this time using appropriated electrode arrangements between four 
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boreholes (see section 2.2.2). Inversion of this data set yields a geometric mean 

resistivity, which is an underestimate of the true value, but can be used to retrieve m 

through numerical modelling (see section 2.3.2.2). 

Surface soundings were made using screws inserted into the surface of the ice in a 

Wenner array configuration, with electrode spacing of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 

1.5, 2.0, 3.0 and 4.0 metres. Estimates of the geometric mean resistivity can be obtained 

from the surface soundings. However, depth information is incorrect making 

interpretation of the results complex (as indicated in section 2.3.2.3). 

 

3.3.1 Horizontal resistivity measurements 
 

Measurements of the horizontal resistivity are made between each of the six borehole 

pairs (AB, BC, CD, AD, AC, BD), as in Figure 3.5. Each measurement involves one 

current and one potential electrode in each borehole, arranged so that the potential 

difference measured will provide an approximation to the horizontal resistivity (see 

section 2.2.1). The depth of the measurement set and which electrodes are used as the 

current or potential electrodes is determined by positioning of the plugs and 

programming of the „smart‟ electrodes. 

 

 

Figure 3.5: Borehole setup for horizontal resistivity measurements, measurements are made between 

each of the six pairs of boreholes as indicated by the green arrows. 

 

For measurements of the horizontal resistivity in the Arctic there are two different plug 

configurations and measurement programs used. The first, labelled rhoh1 

measurements, involves connecting the equipment as shown in Figure 3.6 below for 

measurements between boreholes A and B. Initially electrodes 1-8 in each borehole are 
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used, then electrodes 6-13 and 9-16. This leads to there being three measurement sets, 

consisting of 90 measurements, for one borehole pair, therefore over all six pairings 

(AB, BC, CD, AD, AC, BD) there are 18 measurement sets with 1,620 measurements in 

total. 

 

 
(a) 

 

0          8          1          9          GEN 

0          8          2         10         GEN 

1          9          0          8          GEN 

2         10         0          8          GEN 

0          9          1         10         GEN 

0         10         1         11         GEN 

(c) 

 

  A    B   

         

 C1  1 (0)     1 (8) C2  

 P1  2 (1)     2 (9) P2  

   3 (2)     3 (10)   

   4 (3)     4 (11)   

   5 (4)     5 (12)   

   6 (5)     6 (13)   

   7 (6)     7 (14)   

   8 (7)     8 (15)   

   9     9   

   10     10   

   11     11   

   12     12   

   13     13   

   14     14   

   15     15   

   16     16   

   17     17   

   18     18   

(b) 

 

Figure 3.6: Example of plug and ARES datalogger setup for Arctic field measurements of the horizontal 

resistivity, labelled rhoh1. Example shows measurements between the upper eight electrodes of boreholes 

A and B (a) plug setup connecting „smart‟ electrodes with the electrode strings in the borehole (b) 

electrode strings in borehole – indicating which electrodes are being used (c) first few lines of the 

program determining the measurements made.  

 

Figure 3.6(c) displays the first few lines of the programming file used to control the 

„smart‟ electrodes. The first line indicates that electrode 0 of the „smart‟ electrodes (or 

electrode 1 in borehole A) is set to be the current electrode C1, electrode 8 (electrode 1 

in borehole B) set to C2, electrode 1 (2 in A) set to P1 and 9 (2 in B) to P2, as is shown 

in Figure 3.6(b). The „GEN‟ at the end of the line simply means that this configuration 

of electrodes is moved down the borehole, i.e. each electrode is incremented so that the 

next set of measurements will be 1 (C1), 9 (C2), 2 (P1) and 10 (P2) and so on until the 

end of the connected smart electrodes is reached with 6 (C1), 14 (C2), 7 (P1) and 15 
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(P2). The program will then move on to the next line and make measurements for that 

electrode configuration. 

The second plug and program configuration, labelled as rhoh2, involves making some 

of the same measurements as with the first option but reversing the polarity by 

connecting the „smart electrodes 0-7 to the electrodes in borehole B and 8-15 to 

borehole A as shown in Figure 3.6 below. Initially electrodes 1-8 in each borehole are 

used, then electrodes 6-13 and 9-16. This leads to there being three measurement sets, 

consisting of 64 measurements, for one borehole pair, therefore over all six pairings 

(AB, BC, CD, AD, AC, BD) there are 18 measurement sets with 1,152 measurements in 

total. 

 

 
(a) 

 

0          9          1         10         GEN 

0         10         1         11         GEN 

1         10         0          9          GEN 

1         11         0         10         GEN 

0         11         1         12         GEN 

0         12         1         13         GEN 

(c) 

 

  A    B   

         

   1 (8)     1 (0) C1  

 C2  2 (9)     2 (1) P1  

 P2  3 (10)     3 (2)   

   4 (11)     4 (3)   

   5 (12)     5 (4)   

   6 (13)     6 (5)   

   7 (14)     7 (6)   

   8 (15)     8 (7)   

   9     9   

   10     10   

   11     11   

   12     12   

   13     13   

   14     14   

   15     15   

   16     16   

   17     17   

   18     18   

(b) 

 

Figure 3.7: Example of plug and ARES datalogger setup for Arctic field measurements of the horizontal 

resistivity, labelled rhoh2. Example shows measurements between the upper eight electrodes of boreholes 

A and B (a) plug setup connecting „smart‟ electrodes with the electrode strings in the borehole (b) 

electrode strings in borehole – indicating which electrodes are being used (c) first few lines of the 

program determining the measurements made.  

 

Using both these program and plug configurations to measure the horizontal resistivity 

should give a total of 2,772 data points, before processing. 
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The ARES datalogger, used to make these measurements, encountered problems when 

both current electrodes were in the seawater under the ice. In this situation the 

datalogger detects too low a contact resistance and no measurement is made with that 

electrode configuration. This arises as the ARES tries to optimise the potential 

difference reading at 5mV, and when both current electrodes are in the water this 

optimisation means that the datalogger requires a current which is larger than can be 

supplied. Thus for the lower electrodes all measurements need to be made manually 

using an older instrument, a terrameter SAS 300C datalogger developed by ABEM 

Instrument AB, which allows the magnitude of the current (rather than the potential) to 

be set. 

In 2009 there were 32 „smart‟ electrodes available for measurements made in the 

Antarctic. A similar field setup to that used in the Arctic (Figure 3.4) was employed 

here, except there are now two joined boxes of „smart‟ electrodes connected to each 

connector of the T junction. These extra 16 „smart‟ electrodes allowed a more 

automated measurement process with only one change of plugs needed to make 

measurements down the entire depth of a borehole pair. For this measurement period 

the program files rhoh1 and rhoh2, used in the Arctic, were combined into rhoh1, and 

made 539 measurements over electrodes 1-16 for each borehole pair (on the first 

Antarctic measurement set two separate files were still being used). An additional 

program file, rhoh3 (the first data set uses two separate files, rhoh3 and rhoh4, one for 

each of the two different polarities), made 118 measurements which involved the two 

remaining electrodes (17 and 18) in each borehole pair. In the Antarctic it was possible 

to use the ARES datalogger and automated system for these lower electrodes, as the ice 

thickness was greater than the length of the electrode strings and no electrodes were in 

the seawater below. Over the six borehole pairs and the two program files 3,942 data 

points were collected before processing. 

 

3.3.2 Geometric mean resistivity measurements 
 

The geometric mean resistivity is obtained from two different measurement 

configurations (Figure 3.8); one using a four electrode array with each of the electrodes 

at approximately the same depth in separate boreholes, while the second places three 

electrodes at the same depth in separate boreholes and a surface remote electrode 
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approximately 10 meters away. Initially, in the Arctic measurements (7
th

 Apr to 26
th

 

Apr) the four electrode measurements were made with all the electrodes at the same 

depth, but later (8
th

 May to 16
th

 Jun) this constraint was lessen to having the electrodes 

at approximately the same depth, this approximation is shown as acceptable in section 

2.2.2. When using the three electrode array it was found that having a current electrode 

as the remote electrode lead to the potential differences generally being very small and 

to a high current being applied, which caused melting of the ice around the remote 

electrode. When the electrode was moved closer to the boreholes (2m) the 

measurements appeared to be more sensible. However at this distance the infinite 

electrode assumption that the remote electrode should be positioned at a distance 20 

times the maximum separation of C1 and P1 may no longer be valid. The minimum 

separation between P1 and C1 was 0.1m which means the remote electrode should be 

2m or further away in order for the infinite electrode assumptions to hold for these 

measurement sets. This electrode configuration affected measurements made from the 

7
th

 Apr to the 26
th

 Apr. From the 20
th

 May measurements were made using a potential 

electrode as the remote electrode, which removes the problem with high current. It can 

easily be shown theoretically, that using a potential electrode as the remote electrode 

yields the same measurements as a remote current electrode. In the Antarctic the later 

measurement methods were used; electrodes were at approximately the same depth and 

a potential electrode was used as the remote electrode. 

 

 

Figure 3.8: Borehole setups for geometric mean resistivity measurements.  

 

For measurements of the geometric mean resistivity in the Arctic there are two different 

plug configurations and measurement programs used. The first, labelled rhomean1, 

involves using all four boreholes and connecting the equipment as shown in Figure 3.9 

below. Initially electrodes 1-4 in each borehole are used, then electrodes 5-8, 9-12 and 
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13-16. This leads to there being four measurement sets, consisting of 90 measurements, 

therefore in total there are 360 measurements. 

 

 
(a) 

 

0          4         12         8          GEN 

4          8          0         12         GEN 

8         12         4          0          GEN 

12         0          8          4          GEN 

0          8          4         12         GEN 

4         12         0          8          GEN 

(c) 

 A  B  C  D  
         

  1 (0) C1  1 (4) C2  1 (8) P2  1 (12) P1 

  2 (1)   2 (5)   2 (9)   2 (13)  

  3 (2)   3 (6)   3 (10)   3 (14)  

  4 (3)   4 (7)   4 (11)   4 (15)  

  5   5   5   5  

  6    6   6   6  

  7   7   7   7  

  8   8   8   8  

  9   9   9   9  

  10   10   10   10  

  11   11   11   11  

  12   12   12   12  

  13   13   13   13  

  14   14   14   14  

  15   15   15   15  

  16   16   16   16  

  17   17   17   17  

  18   18   18   18  

(b) 

 

 
Figure 3.9: Example of plug and ARES datalogger setup for Arctic field measurements of the geometric 

mean  resistivity, labelled rhomean1. (a) plug setup connecting „smart‟ electrodes with the electrode 

strings in the borehole (b) electrode strings in borehole – indicating which electrodes are being used (c) 

first few lines of the program determining the measurements made. 

 

As with the horizontal measurements, Figure 3.9(c) displays the first few lines of the 

programming file used to control the „smart‟ electrodes. The red line indicates that 

electrode 0 of the „smart‟ electrodes (or electrode 1 in borehole A) is set to be the 

current electrode C1, electrode 4 (electrode 1 in borehole B) set to C2, electrode 12 (1 in 

D) set to P1 and 8 (1 in C) to P2, as is shown in Figure 3.9(b). The measurements then 

continue down the boreholes until the end of the connected smart electrodes is reached 

with 3 (C1), 7 (C2), 15 (P1) and 11 (P2). The program will then move on to the next 

line and make measurements for that electrode configuration. 

The second plug and program configuration, labelled as rhomean2 (see Figure 3.10), is 

similar to that of rhomean1 with connections to four electrodes in each borehole. 

However the black terminal on the T-box is connected to a remote potential electrode 

fixed into the surface of the ice about 10m away in line with the A and B boreholes. In 
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the early stages measurements were made with the C2 (blue terminal on the T-box) as 

the remote electrode. Initially electrodes 1-4 in each borehole are used, then electrodes 

5-8, 9-12 and 13-16. This leads to there being four measurement sets, consisting of 90 

measurements, therefore in total there are 360 measurements. 

 

 
(a) 

 

0          4         12        -1         GEN 

0          8         12        -1         GEN 

0          4          8         -1         GEN 

4          8         12        -1         GEN 

0         12         4         -1         GEN 

0         12         8         -1         GEN 

 (c) 

 

 

 

 

 A  B  C  D  
         

  1 (0) C1  1 (4) C2  1 (8)   1 (12) P1 

  2 (1)   2 (5)   2 (9)   2 (13)  

  3 (2)   3 (6)   3 (10)   3 (14)  

  4 (3)   4 (7)   4 (11)   4 (15)  

  5   5   5   5  

  6    6   6   6  

  7   7   7   7  

  8   8   8   8  

  9   9   9   9  

  10   10   10   10  

  11   11   11   11  

  12   12   12   12  

  13   13   13   13  

  14   14   14   14  

  15   15   15   15  

  16   16   16   16  

  17   17   17   17  

  18   18   18   18  

(b) 

 

Figure 3.10: Example of plug and ARES datalogger setup for Arctic field measurements of the geometric 

mean  resistivity, labelled rhomean2. (a) plug setup connecting „smart‟ electrodes with the electrode 

strings in the borehole (b) electrode strings in borehole – indicating which electrodes are being used (c) 

first few lines of the program determining the measurements made. 

 

Figure 3.10(c) displays the first few lines of the programming file used to control the 

„smart‟ electrodes, the -1‟s indicate that this electrode is not used, in this case P2. 

Using both these program and plug configurations to measure the geometric mean 

resistivity should give us a total of 720 measurements. This is significantly less than the 

number of measurements made for the horizontal resistivity because of the need to use 

all four boreholes when making a measurement of the geometric mean resistivity. 

Since there were 32 „smart‟ electrodes available for measurements made in 2009 in the 

Antarctic, measurements could be made over a block of eight, rather than only four, 

electrodes. Once again this allowed a more automated measurement process with only 
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two changes of plugs needed to make measurements down the entire depth of the 

boreholes. For this measurement period the program files rhomean1 and rhomean2, 

used in the Arctic, were combined into rhom1, and made 435 measurements over 

electrodes 1-8 and then the same over electrodes 9-16 (on the first set of measurements 

made in the Antarctic two separate files were still being used). An additional program 

file, rhom3 (the first data set uses two separate files, rhom3 and rhom4, one for each of 

the two different measurement configurations), made 154 measurements which included 

the two remaining electrodes (17 and 18) in each borehole. In total the two program 

files allowed 1,024 measurements to be taken in the field. 

Table 3.1 and Table 3.2, shown below, give a summary of the measurements made in 

both the Arctic and Antarctic. 
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3.3.3 Dataloggers 
 

The principal datalogger used in the field was a GF Instruments, s.r.o ARES datalogger. 

It contained the programs used to control the „smart‟ electrodes and stored the data as 

measurements were made down the boreholes. The ARES datalogger can be used with 

the following measurement methods (i) self potential measurements – measurements of 

naturally occurring electrical potentials (SP), (ii) resistivity profiling (RP), (iii) vertical 

electrode sounding (VES) and (iv) 2D/3D multi-electrode cable survey (2D multicable). 

As we are using multiple cables of smart electrodes and taking 3D data, option (iv) was 

used for our measurements. 

The ARES datalogger requires specifications of the measurement area. This involves 

the location of measurement profile in the measurement area and the spacing and length 

of the electrode strings. The profile is a number identifying the profile, the x-loc and y-

loc give the position of the first electrode and direction defines the direction of 

measurement along the profile – as shown in Figure 3.11 below. 

 

 

Figure 3.11: Diagram from ARES user manual showing the specification of the profile position.  

 

The datalogger assumes surface profiles with the electrode strings laid out along the 

surface of the measurement medium, whereas our measurements are borehole 

measurements. Thus the setup of the location of the measurement profile is somewhat 

arbitrary. Length is the total length of the measured profile and distance is the electrode 

spacing. Using the „smart‟ electrodes in the Arctic, the instrument is told that there are 

16 electrodes attached and that they are all 5m apart, hence giving a length of (16-1) x 5 

= 75m. Whereas in the Antarctic there are 32 „smart‟ electrodes at distances of 5m 

giving a length of (32-1) x 5 = 155m. 
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Since the geometry of the actual electrode strings is different from that given to the 

datalogger the calculation of the apparent resistivity in the data files must be ignored, 

instead focusing on the voltage and current values that can be used to calculate the 

resistance values of each electrode combination. Using these resistances and correct 

borehole geometry the inversion program Res3dinv
TM

 produced by Geotomo software 

(see Chapter 4) is able to calculate the correct resistivities. 

The different measurement programs are stored on the datalogger and the one required 

for the current measurement set is selected from a list. The datalogger then requires the 

size of the potential to be set. The potential was set to the lowest option (5mV) in order 

to attempt to keep the current as small as possible when the resistance is low. As 

mentioned above problems occur when both current electrodes are in the seawater, the 

datalogger detects the electrodes as having too low a contact resistance and no 

measurement is made (even with the low potential of 5mV set). In order to make 

measurements with both the current electrodes in the seawater a Terrameter SAS 300C 

(by ABEM Instrument AB) was used as it allows the size of the current to be set. 

The ARES datalogger was set to make four measurements for each data point, with the 

maximum standard deviation set to the default that appeared on the screen (2%). If the 

standard deviation of the data point is higher than the set maximum the measurements 

for that point are repeated. 

Once the required program and smallest potential had been selected the ARES 

datalogger displays screens with the number of layers and data points, an estimation of 

the time of the measurement set and information on electrode connection and use. Next 

there are options for the position of any infinite or dummy electrodes. As our 

measurements of the geometric mean resistivity involve a surface remote electrode one 

electrode is set to be an infinite electrode with the x location inserted as 150m and the y 

location 0m. Dummy electrodes are inserted if for some reason there are electrodes that 

are not to be used. During the Arctic measurements a break occurred in the connection 

to electrode 5 in borehole d. In order to stop the datalogger attempting to make 

measurements with a disconnected electrode this electrode was entered as a dummy 

electrode. 
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Measurements can now be initialised and the datalogger will display warning messages 

to notify if there are electrodes with very high resistances. Figure 3.12 below gives an 

example of a data file obtained from the datalogger after measurement. 

 
Device:ARES-G4 v4.7, SN: 0701146 

Locality:mbs 

Operator: 

Date:4/8/2008 

Note: 

Profile:1 

X-loc:0m 

Y-loc:0m 

Direction:0 (X) 

Length:75m 

Distance:5m 

MC-set: rhoh1 

S-min:5m 

S-max:75m 

Pulse:0.5s 

IP-Windows: 

 

C1 

[el] 

C2 

[el] 

P1 

[el] 

P2  

[el] Aray I [mA] V [mV] EP [mV] 

AppRes 

[Ohmm] 

St-dev 

[%] 

0 8 1 9 GEN 30.48 5027.66 19.14 2967.54 0.4 

1 9 2 10 GEN 33.08 5027.7 19.16 2734.31 0.5 

2 10 3 11 GEN 34.05 5027.71 19.15 2656.99 0.5 

3 11 4 12 GEN 34.99 5027.72 19.16 2585.25 0.4 

4 12 5 13 GEN 36.33 5027.7 19.14 2489.86 0.5 

5 13 6 14 GEN 38.23 5027.69 19.12 2366.23 0.4 

6 14 7 15 GEN 37.49 5027.67 19.1 2413.19 0.2 

0 8 2 10 GEN 30.73 5027.68 19.11 7009.87 0.4 

1 9 3 11 GEN 33.15 5027.7 19.12 6497.78 0.5 

Figure 3.12: Example of the data file produced by the ARES datalogger – data file ab1to8rh1 from 

08/04/08. 
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3.4 Ice thickness and snow depth measurements 
 

3.4.1 Arctic 
 

As part of their mass balance site (http://seaice.alaska.edu/gi/observatories/barrow_ 

sealevel, Druckenmiller et al., 2009) the floating ice group at the University of Alaska 

Fairbanks (UAF) made measurements of the ice thickness and snow level using acoustic 

measurements. As shown in Figure 3.13, there are three acoustic instruments; above the 

ice a downwards pointing Campbell SR50 Sonic Ranger to measure the snow thickness, 

and below the ice two Benthos underwater acoustic altimeter PSA-916, one upward 

looking to measure ice thickness and one downward looking to measure local sea level. 

The instruments measure the travel time of an acoustic pulse, and from air and water 

temperature data calculate the distance to the object it is aimed at. Measurements were 

made approximately every fifteen minutes and all depths were referenced to the 

ice/water interface at the time of installation. 

 

 

Figure 3.13: Diagram of UAF mass balance site from 

http://seaice.alaska.edu/gi/observatories/barrow_sealevel.  

 

Figure 3.14 and Figure 3.15 below show the ice thickness and snow depth over the 

period of the resistivity measurements (7
th

 Apr to the 17
th

 Jun, 2008). Note that from 

early June surface ablation begins to occur. This resulted in incorrect snow depth 

measurements, which have not been plotted. By the 16–17 June this surface ablation 

was significant, contributing approximately 0.2m towards the decrease of the ice 

thickness. The decrease in snow depth observed from around the 22 May could mean 

http://seaice.alaska.edu/gi/
http://seaice.alaska.edu/gi/observatories/barrow_sealevel
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low saline meltwater is introduced to the brine network in the sea ice, flushing some of 

the brine from the upper inclusions. 
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Figure 3.14: Plot of Arctic ice thickness from the 7th Apr to the 17th Jun 2008, measured by an upward 

looking Benthos underwater acoustic altimeter PSA-916, positioned below the ice at the UAF mass 

balance site. The ice/air interface is at the top of the plot at 0.0m and the blue circles indicate the average 

on the days on which resistivity measurements were made. 

 

 
Snow depth over the measurement period 
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Figure 3.15: Plot of snow depth in the Arctic, from the 7th Apr to the 17th Jun 2008, measured by a 

downward looking Campbell SR50 Sonic Ranger positioned above the ice at the UAF mass balance site. 

The snow/ice interface is at the bottom of the plot at 0.00m and the white circles indicate the average on 

the days on which resistivity measurements were made. 
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3.4.2 Antarctica 
 

The resistivity measurements in the Antarctic were carried out as part of a larger 

research program, referred to in this thesis as science event K131. As part of this 

program a mass balance site was set up in the same location as the electrode strings, 

providing us with measurements of the ice thickness. During the two week 

measurement period the ice thickness was measured once, on 18
th

 November at two 

spots with values of 2.4m and 2.42m giving an average ice thickness of 2.41m. As the 

electrode strings are only 1.8m long all electrodes were in sea ice during the 

measurements and (unlike the Arctic data) the ice/water interface is not observed. 

Measurements of the snow depth on the 18
th

 November were 0.13m and 0.19m 

respectively, giving an average snow depth of 0.16m. 
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3.5 Temperature measurements 
 

3.5.1 Arctic 
 

Over the period of the resistivity measurements, the temperature in the ice was recorded 

using thermistor strings. These strings were frozen into the sea ice near the site of the 

electrode strings, as part of the mass balance site maintained by the University of 

Alaska Fairbanks (see Figure 3.13). The thermistors were positioned every 10cm, 

starting at the surface of the ice and going to a depth of 240cm. Temperature 

measurements were made approximately every fifteen minutes. Figure 3.17, at end of 

this section, shows the temperature data obtained from these thermistor strings over the 

period 7
th

 of April to the 17
th

 of June, 2008, as well as measurements of the air and 

water temperatures. 

The average temperature at each of the thermistors was obtained over the period of each 

of the resistivity measurement sets. This allowed a temperature profile with depth to be 

created for each of the measurement sets, see Figure 3.16 below. 
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Figure 3.16: Plot of averaged temperature with depth over the period of each measurement set of the 

2008 Arctic measurements. The surface of the ice is at the top of the plot and the error bars represent the 

standard deviation of the averaged data. 
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Three of the thermistors did not work correctly, which can be observed in Figure 3.17a 

and Figure 3.16, with thermistors at depths of 50cm, 200cm and 220cm giving 

anomalous readings. As the deeper thermistors are within the seawater, well below the 

ice, (see ice thickness plot - Figure 3.14) they may be ignored, as they do not affect our 

study of the ice. However at a depth of 50cm the temperature plot has been smoothed, 

by averaging the temperatures at depths of 40cm and 60cm. 

As would be expected over the measurement period (the 7
th

 April to the 17
th

 June) 

Figure 3.17a and Figure 3.16 show the temperature of the ice increases, with surface 

temperatures of about -7
o
C on the 7-9 Apr increasing to ~0

o
C on the 16-17 Jun. For the 

last resistivity measurement set, carried out on the 16-17 June, the upper few 

thermistors record positive temperatures. This indicates surface ablation has occurred 

and the upper thermistors are no longer in the ice, which is confirmed by observations at 

the electrode strings during this final measurement set. 

Typically the temperature profile of an ice cover decreases from air temperatures at the 

surface of the ice to the freezing temperature of seawater at the base. As the air 

temperature rises the increase is propagated downward through the ice initially warming 

the upper regions of the cover. For data from the 7-9 Apr, 25-26 Apr and 8-9 May the 

temperature of the ice is lowest at the surface and increases with depth (due to 

insulation from the ice above) till it reaches the relatively fixed temperature, of ~ -2
o
C, 

of the seawater below. For data from the 20-21 May and 28-29 May the air temperature 

has increased sufficiently (Figure 3.17b shows a jump in air temperature from -10
o
C – 

-7
o
C on 8-9 May to -4

o
C –  -1

o
C for the later measurements) that the upper regions of 

the ice are warmer than the temperatures measured further down. Thus we see a 

C-shaped curve with the temperature decreasing with depth then increasing until 

reaching the seawater value. On the 16-17 Jun the air temperature is above 0
o
C and 

slightly higher temperatures at the surface of the ice decrease to a relatively constant 

value of ~ -1
o
C from around 0.5m downwards. 
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(a) Temperatures in the ice over the measurement period 
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(b) Air temperature over the measurement period 
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(c) Water temperature over the measurement period 
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Figure 3.17: Plot of  temperatures over the Arctic measurement period 7th Apr to 17th Jun 2008. (a) 

temperature measured by thermistors buried in the ice at intervals of 10cms. (b) air temperature measured 

by shielded sensor 2.25m above ice surface – yellow circles indicate dates of the resistivity measurement 

sets. (c) water temperatures – green circles show when resistivity measurements were made. All 

measurements were made at the UAF mass balance site.  
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3.5.2 Antarctica 
 

Temperatures were measured, often several times a day, near the resistivity 

measurement site by other members of the K131 group. Figure 3.18 below displays 

averaged temperature with depth on the days resistivity measurements were made.  

 
Temperatures with depth on days that resistivity measurements occurred 

d
ep

th
 (

m
) 

0.0

0.5

1.0

1.5

2.0

2.5

-14 -12 -10 -8 -6 -4 -2 0 2 4
 

temperature (
o
C) 

 
 

Figure 3.18: Plot of temperature with depth over the period of each measurement set of the 2009 

Antarctic data. The surface of the ice is at the top of the plot and error bars show the standard deviation of 

the averaged values. 

 

From Figure 3.18 it can be seen that the surface temperature of the sea ice is relatively 

high and decreases to its coldest temperature at a depth of 0.1m to 0.3m. From this 

depth to further in the ice (the ice/water interface is not reached) the temperature 

increases gradually. Similar temperature profiles with depth are observed in the 2008 

Arctic data (Figure 3.16), in particular from the 20
th

 of May onwards. However, the 

temperatures measured in the Antarctic reach lower values than those observed during 

the Arctic measurements. Additionally the range of temperatures between profiles is 

smaller during the shorter period of Antarctic measurements. 
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3.6 Salinity measurements 
 

3.6.1 Arctic 
 

Curves of the salinity through the ice were obtained by UAF through the standard 

process of electrolytical conductivity measurements on melted ice cores. Cores were 

taken on 7 Apr, 29 Apr, 26 May and 16 Jun in and around the mass balance and 

resistivity measurement site. Figure 3.19 below displays the salinity with depth. The 

salinity profile of the ice during the resistivity measurements are taken as that recorded 

on the nearest date to resistivity measurements, i.e. 7 Apr (7-9 Apr), 29 Apr (25-26 

April, 8-9 May), 26 May (20-21 May, 28-29 May) and 16 Jun (16-17 Jun). 
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Figure 3.19: Plot of salinity vs. depth, salinities obtained from ice cores taken by UAF during 2008 

Arctic measurements. Curve for the 16 Jun is the average of three cores and the error bars represent the 

standard deviation of the average values. 

 

The salinity curves in Figure 3.19 show a general decrease in the salinity of the ice as 

the temperature warms. This is as expected as with increasing temperatures the brine 

inclusions become larger and interconnected and melting ice dilutes the brine. The 

salinity measurements from 7 Apr and 29 Apr produce C-shaped plots with higher 

surface salinities which decrease with depth then increase again with the highest 
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salinities measured at the bottom of the ice. The salinity measurements from 26 May 

and 16 Jun show a reduction in surface salinities, so that the surface gives the lowest 

salinities which then begin to increase with depth before once again producing a 

C-shaped curve. The C-shape of the 16 Jun plot is small and relatively shallow. 

These observed trends follow the typical salinity profile, with depth, of young and first-

year Arctic ice. This follows a characteristic C-shape (Eicken, 2003), with higher 

salinities at the base and top of the ice cover. Rapid freezing rates result in maximum 

trapping of brine, while low freezing rates permit seepage of brine before solidification 

is complete (Eicken, 2003). The high salinity in the upper layers of the ice is probably 

due to the fast freezing of randomly orientated frazil ice trapping a significant volume of 

brine. The salinity then decreases with depth due to a slowing in the growth rate, gravity 

drainage, brine expulsion and migration of brine pockets in temperature gradients. 

When the newly formed ice at the bottom of the cover is reached salinity becomes high 

again, as this region has had less time to lose any brine element. 

The profiles also display the expected reduction in surface salinity (Eicken, 2003), as 

the temperatures increase and the ice becomes more porous with age its salinity 

decreases. The salinity of the surface and base of the ice generally decreases faster then 

the middle of the cover. The decreasing salinity is due to the production of low salinity 

meltwater at the surface and base of the ice, which is capable of displacing higher 

salinity brine from within the ice, and brine drainage through the increasingly connected 

brine inclusions of the porous ice. 

Comparing the 2008 profiles from Figure 3.19 with the evolution of the typical Arctic 

sea ice salinity profile displayed in Eicken (2003) (Figure 3.20 below) the April data are 

similar to the March profile, the May data to the June profile and the June data seem to 

follow the August profile. 

 

Figure 3.20: Evolution of Arctic sea ice salinity profiles (from Malmgren, 1927). 
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3.6.2 Antarctica 
 

Two profiles of salinity with depth through the Antarctic ice were obtained during the 

resistivity measurement period, as part of K131 research. These profiles were combined, 

and measurements made at the same depth averaged, to produce the salinity with depth 

profile plotted below in Figure 3.21. 
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Figure 3.21: Plot of salinity vs. depth, salinities obtained from ice cores taken by K131 members during 

2009 Antarctic measurements. Error bars show the standard deviation of averaged values 

 

The salinity data in Figure 3.21 shows high surface salinities which decrease with depth 

then increase slightly towards the bottom of the ice, with values similar to those 

measured on 7 April and 29 April 2008. This general trend is disrupted by a peak in 

salinity at 1000mm or 1m. 

These observed trends follow the “S-type” salinity profiles observed by Eicken (1992) 

during ice core measurements made in the Weddell Sea, Antarctica. The S-type profiles 

are similar to the C-shape profiles typical of young and first-year Arctic ice. However, 

while the salinities are high at the surface the S-type profile shows stagnating or 

minimum values at the base. The S-type profiles were the most common salinity profile 

of Antarctic sea ice observed by Eicken (1992). 
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3.7 Brine volume fraction calculations 
 

3.7.1 Arctic 
 

The brine volume fraction (Vb/V) of the ice can be calculated according to Cox and 

Weeks (1983): 

Vb/V = Ssi/F1(T) 

where   -  is the bulk density of the ice (approximated as 0.91gcm
-3

, the average value 

stated by Timco and Frederking (1996)) 

 - Ssi is the bulk salinity of the sea ice (obtained from the UAF core data) 

 - F1(T) = -0.041221-18.407T+0.58402T 
2
+0.21454T 

3
              (for -2

o
C<T0

o
C) 

   and 

   F1(T) = -4.732-22.45T-0.6397T 
2
-0.0174T 

3
                      (for -22.9

o
CT-2

o
C) 

   (as given in Eicken (2003)) 

The results for these calculations are displayed below in Figure 3.22. 
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Figure 3.22: Plot of calculated brine volume fraction vs. depth for 2008 Arctic data. The error bars give 

an indication of the error in the calculation, arising from the standard deviations of the averaged 

temperatures and salinities. 
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The general trend of the profiles show higher brine volume fractions at the base of the 

cover, where the ice is most recently formed. As the brine volume fraction is a function 

of temperature its values increase as the temperatures increase over the measurement 

period. This increasing trend would be expected for a growing brine inclusion network 

The calculated brine volume fraction profile for 7-9 Apr shows a slight decrease in brine 

volume fraction in the upper regions followed by a slow increase with depth to about 

6% at 1m, brine volume fraction then increases significantly reaching ~ 12% at 1.25m. 

For 25-26 Apr and 8-9 May the brine volume fraction sees a brief increase from surface 

values before decreasing to about 5% at 0.45m then increasing again to reach ~12% at 

1.35m. The 20-21 May and 28-29 May curves have a much more pronounced increase 

from surface brine volume fractions, than observed on the 25-26 Apr, this increase is 

then followed by a C-shaped curve. For the 20-21 May the brine volume fraction 

increases from ~3% at the surface to ~9% at 0.25m, from here the C-shape begins and 

the curve decreases to ~7% at 1m then increases to 12% at the base of the ice. The 28-

29 May on the other hand starts off with a surface brine volume fraction of 8% 

increasing to 15% at 0.15m, from here the curve follows a C-shape and decreases to 

~7% at 1m then increases to 11% at the base of the ice. The appearance of low values of 

brine volume fraction at the surface of the ice coincides with high temperatures and low 

salinity measurements. Increasing temperature should mean an increase in the size and 

connectivity of the brine inclusions leading to an increase in brine volume fraction. 

However, with increasing temperature there is also a decrease in salinity as meltwater 

enters the brine network. If this decrease in significant enough it can lead to a decrease 

in the brine volume fraction even though the connectivity of the brine network is high. 

By the 16-17 Jun large values of ~32% at the surface of the ice decrease to 11% at the 

base of the ice. This indicates the large effect of the relatively high temperatures on the 

structure of the ice. Though the low salinity profile on this date suggests that while 

greatly enlarged the brine structure is diluted by meltwater. As mentioned earlier, the 

temperatures on the 16-17 Jun at the first few thermistors exceed 0
o
C, due to being 

exposed by surface ablation. Thus the surface of the ice on the 16-17 June is considered 

to be at 20cm (rather than 0cm) on this plot. 
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3.7.2 Antarctica 
 

As with the Arctic data above, the brine volume fraction (Vb/V) of the Antarctic ice is 

calculated and displayed below in Figure 3.23. For the Antarctic data only one salinity 

profile is obtained from measurements. As temperatures were measured on the salinity 

cores this data is used along with the one salinity profile to calculate the brine volume 

fraction using the expression in section 3.7.1. Thus there is only one brine volume 

fraction profile for the Antarctic ice, not one for each measurement period. As there is 

little change in the temperature over the measurement period of the Antarctic data one 

brine volume fraction profile should suffice. 
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Figure 3.23: Plot of calculated brine volume fraction vs. depth for 2009 Antarctic data. The error bars 

give an indication of the error in the calculation, arising from the standard deviations of the averaged 

temperatures and salinities. 

 

The observed profile follows a curved plot with low surface brine volume fractions 

increasing with depth. The plot is comparable to the early April measurements from our 

2008 Arctic measurements (Figure 3.22). However, the calculated brine volume 

fractions are slightly lower than those recorded in the Arctic and the increase with depth 

is not as significant. 
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3.8 Brine salinity calculations 
 

3.8.1 Arctic 
 

Values of the salinity of the brine can be calculated from the temperature of the ice 

using the following expressions, from Lepparanta and Manninen (1988): 

Sb = 0.356T
2
-18.95T-0.1201                                                        (for -2

o
CT0

o
C) 

Sb =1000(1-(54.11/T))
-1

                                                           (for -8.2
o
CT<-2

o
C) 

Sb =1000(1+1/(0.082-0.00848T))
-1

                                     (for -22.9
o
CT<-8.2

o
C) 

Figure 3.24 below shows the calculated profiles of the brine salinity against depth for 

each of the measurement sets. 
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Figure 3.24: Plot of calculated brine salinity in parts per thousand vs. depth in centimetres for 2008 

Arctic data. The error bars give an indication of the error in the calculation, arising from the standard 

deviations of the averaged temperatures. 

 

As expected, see section 1.2.2, Figure 3.24 shows that the calculated brine salinity 

decreases as the temperatures increase over the measurement period. For the 7-9 Apr, 

25-26 Apr and 8-9 May the brine salinity profiles have their highest values at the 

surface of the ice and decrease with depth in the ice. There is an increase in this rate of 
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decrease at approximately 55cm then at around 125cm the brine salinity hits ~ 35‰ – 

the usual salinity of seawater. The decrease in brine salinity with depth is due to the 

increasing temperatures deeper in the ice. From the 20-21 May and 28-29 May a region 

of low surface brine salinities is observed, with brine salinities now initially increasing 

with depth before decreasing towards the 35‰ value of seawater. The brine salinities 

calculated for the 16-17 Jun data have this same low surface region followed by an 

increase then decrease with depth. However, the calculated brine salinities for this data 

set are significantly lower than those obtained for the other data sets, never reaching 

above 25‰. This corresponds to the significant increase in temperatures between 28-29 

May and 16-17 Jun. As mentioned earlier the upper values of the 16-17 Jun are missing 

due to high temperatures (>0
o
C) recorded here as the upper thermistors are exposed due 

to surface ablation of the ice cover. 

 

3.8.2 Antarctica 
 

For the Antarctic sea ice brine salinity is calculated from the temperature of the ice 

using the expressions given in section 3.8.1 above. The results of these calculations are 

shown in Figure 3.25 below, which displays the profiles of the brine salinity against 

depth for each of the measurement sets. 
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Figure 3.25: Plot of calculated brine salinity in parts per thousand vs. depth in centimetres for 2009 

Antarctic data. The error bars give an indication of the error in the calculation, arising from the standard 

deviations of the averaged temperatures. 
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Figure 3.25 shows a slight decrease in calculated brine salinity over the measurement 

period, coinciding with increasing temperature. The plots indicate low brine salinity in 

the relatively warm ice at the surface that increases with depth, then decreases towards 

the bottom of the ice. The shapes of the curves are similar to those obtained from 

measurements made in late May, 2008 in the Arctic. However, as the ice/sea interface is 

not reached in the Antarctic no decrease to ~35‰ is observed. Furthermore due to the 

colder temperatures recorded in Antarctica the brine salinity is higher than that observed 

in the Arctic.  
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3.9 Brine resistivity calculations 
 

3.9.1 Arctic 
 

Values for the brine conductivity can be calculated from the brine salinity values above 

and the temperature of the ice using the following equations from Stogryn (1971) 

NaCI(T,N ) = NaCI(25,N)[1.000 - 1.962×10
-2 + 8.08x10

-52
 - N {3.020x10

-5
 + 

3.922x10
-5 + N(1.721x10

-5
 - 6.584x10

-6)}] 

where    = 25 – T  

NaCl(25,N) = N[10.394 - 2.3776N + 0.68258N 
2
 - 0.13538N 

3
 + 1.0086×10

-2
N 

4
] 

N = Sb[1.707x10
-2

 + 1.205×10
-5

Sb + 4.058x10
-9

Sb
2
] 

Sb is the salinity of the brine 

The brine resistivity is then simply the inverse of the calculated conductivity. The 

profiles of the calculated brine resistivities with depth are displayed in Figure 3.26 

below. 
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Figure 3.26: Plot of calculated brine resistivity in ohm meters vs. depth in centimetres for 2008 Arctic 

data. The error bars give an indication of the error in the calculation, arising from the standard deviations 

of the averaged temperatures and the errors in the calculation of the brine salinity. 
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Recall, that above ~ -8
o
C, as the temperature decreases the brine salinity and hence 

conductivity increases (see section 1.3). Thus as resistivity is the inverse of conductivity 

one would expect the plots of brine resistivity to increase with increasing temperature 

and to be the mirror image of the brine salinity plots, and this is generally what is 

observed in Figure 3.26. The calculated brine resistivities increase over the 

measurement period as the ice warms and the brine becomes less saline. For 7-9 Apr, 

25-26 Apr, 8-9 May, and 20-21 May the brine resistivity profile starts off with low 

surface values that increase with depth (and increasing temperature within the ice), 

following a curved plot until reaching a value of ~ 0.35m – which is consistent with 

measurements of the resistivity of seawater (Thyssen et al., 1974; Buckley et al., 1986; 

Haas et al., 1997; Ingham et al., 2008). The move to high surface brine resistivities does 

not seem to occur until 28-29 May. This is slightly later than the observed decrease in 

surface brine salinity and increase in surface temperatures. On 28-29 May the calculated 

brine resistivities decrease with depth before increasing to the seawater value, forming a 

C-shaped curve. The brine resistivities calculated for 16-17 Jun are significantly higher 

than those observed in the other data sets, with high surface values (that extend off the 

plot, reaching 4m) that decrease with depth until reaching a relatively constant value. 

Once again the upper values of the calculated brine resistivity for 16-17 Jun are missing 

due to surface ablation. 

 

3.9.2 Antarctica 
 

As for the Arctic ice above, values for the brine resistivity can then be calculated from 

the brine salinity values and the temperature of the Antarctic ice. The profiles of the 

calculated brine resistivities with depth are displayed in Figure 3.27 below. 

In the Antarctic data the brine resistivity is effectively the same over all four 

measurements with values of the order of 0.15m to 0.2m. The shape of the curves is 

a shallow C with higher surface resistivity that decreases slightly, then increases with 

depth. As expected this pattern is more or less the inverse of that observed in the brine 

salinity calculations, and shows higher brine resistivities where higher temperatures are 

observed. The shape of the curves follow a similar trend to those obtained from 2008 

Arctic measurements, though the C-shape is more shallow and the values lower 

(corresponding to the higher brine salinity calculated for the Antarctic data). 
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Furthermore, as the ice/sea interface is not reached in the Antarctic no constant value is 

reached at depth. 

 
Calculated brine resistivity vs. depth in the ice 
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Figure 3.27: Plot of calculated brine resistivity in ohm meters vs. depth in centimetres for 2009 Antarctic 

data. The error bars give an indication of the error in the calculation, arising from the standard deviations 

of the averaged temperatures and the errors in the calculation of the brine salinity. 
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3.10 Summary 
 

Measurements, from which values of the horizontal and geometric mean resistivity 

structure of first-year sea ice are obtained, were carried out for both a three month 

period in the Arctic (April – June 2008) and a two week period in the Antarctic 

(November 2009). Measurements were made between combinations of four electrode 

strings positioned in boreholes in the ice. These strings were connected to 

programmable „smart‟ electrodes and an ARES or ABEM datalogger. Different 

programmes were used to select the required electrode combinations for mostly 

automated horizontal and geometric mean resistivity measurements. 

Additional to the resistivity measurements other parties (UAF and Science event K131) 

recorded other important properties of the sea ice, such as ice thickness, temperature 

and salinity. Using these measurements it is possible to calculate values for the brine 

volume fraction, brine salinity and brine resistivity. Knowledge of these properties of 

the sea ice helps with interpretation of the resistivity measurements. 

From the plots in this chapter, displaying the properties of the Arctic ice in 2008, it can 

be seen that as the temperatures increase over the measurement period the following 

changes occur. In general (i) ice salinity decreases; (ii) the calculated brine volume 

fraction increases; (iii) calculated values of brine salinity decrease and (iv) computed 

brine resistivity values increase. 

These observations may be explained conceptually as increasing temperatures 

corresponds to melting of the snow and ice. This generally leads to increased size and 

connectivity of the brine pockets and the introduction of less saline melt water into this 

network. The increase in the size and connectivity of the brine pockets would explain 

the observed increase in brine volume fraction while allowing a decrease in the ice and 

brine salinity and thus an increase in the brine resistivity as salts are diluted or flushed 

through the interconnected pockets by melt water. 

Furthermore the 2008 Arctic data, displayed in the plots in this chapter, indicate the 

following depth dependent behaviour. On the whole (i) the temperature increases; (ii) 

ice salinity follows a C-shaped curve; (iii) the calculated brine volume fraction 
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increases; (iv) calculated values of brine salinity decrease and (v) computed brine 

resistivity values increase. 

The temperature variation with depth is clearly dependent on the difference between the 

air temperature and the warm seawater, which is insulated by the ice. As such, while the 

ambient air temperature is lower than that of the water, the temperature of the ice 

increases with depth. The brine volume fraction increases with depth as newer ice 

forming at the bottom is more porous than that above. As described earlier, the salinity 

of the ice is high near the surface and base of the sea ice, with the highest salinity near 

the ice/water interface. The brine salinity, on the other hand, is generally lower at the 

bottom of the ice than at the top. The brine closer to the surface is in colder ice and as 

such must have a high salinity in order not to be frozen, whereas deeper in the ice the 

temperature is higher and the salinity of the brine need not be as high. This reasoning 

would also explain the observed increase in the resistivity of the brine as one goes 

deeper into the ice. 

With the increase in air temperatures in mid May the upper regions of the ice cover 

begin to warm, and the temperatures measured in these regions begin to show a 

decreasing trend with depth (rather than an increasing trend). Decreasing temperature 

with depth leads to increasing brine salinities and decreasing brine resistivity with 

depth. The colder ice at depth within the upper regions of the ice cover will contain 

brine pockets of more concentrated brine while in the warmer ice nearer the surface the 

brine inclusions are likely to be more dilute. Hence, this change in the temperature 

profiles corresponds quite nicely with the observed change to increasing sea ice salinity 

in the upper regions of the ice cover.  

Over the measurement period of the 2009 Antarctic data the properties of the ice, as 

shown in the plots in this chapter, indicate that in general: (i) the temperature increases; 

(ii) calculated values of brine salinity decrease and (iii) computed brine resistivity 

values remain mostly unchanged. 

In comparison to the Arctic data the recorded temperatures are lower leading to higher 

brine salinity, lower brine resistivity and the slightly lower brine volume fractions being 

calculated. The salinity of the ice is similar for both sites, and despite the differing 

values the general trends appear to be similar for all properties. 
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Table 3.3 and Table 3.4 below display a summary of the measurements made and their 

average values for each of the data sets obtained over the two measurement periods 7
th

 

Apr to 17
th

 Jun, 2008 (Table 3.3) and 11
th

 Nov to 21
st
 Nov, 2009 (Table 3.4). 
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Chapter 4 
Obtaining resistivity models 

 

For each measurement set of the geometric mean or horizontal resistivity the recorded 

data files (see Table 3.1 and Table 3.2 in Chapter 3) were combined and processed to 

remove any repeat or bad data, such as zero resistance being measured or anomalous 

readings caused by a suspected bad connection. Some of the measured resistance values 

were negative, implying that for the given current electrodes C1 and C2, the potential at 

P1 was actually lower than at P2. These values were made positive by simply changing 

the polarity of the measurement i.e. swapping the designated positions of the two 

potential electrodes between which the measurements were made. After being processed 

the data sets consisted of hundreds to thousands of resistance measurements (as noted in 

Table 3.1 and Table 3.2 in Chapter 3). In order to obtain the resistivity structure of the 

ice it is necessary to invert these data. To this end, the inversion program RES3DINV 

by Geotomo software was used to produce 3D models of the resistivity structure of the 

sea ice. 

 

4.1 Data inversion
†
 

 

In general resistivity inversions the medium is parameterised by dividing it into a 

number of model blocks of constant resistivity. The electrical response of this 

parameterised medium is a non-linear function of the model parameters. However, 

given an initial guess for model parameters, the nonlinear least-squares problem can be 

linearised by using a first-order Taylor expansion as follows 

dJg   

where 

 g  is the discrepancy vector or a vector which contains the differences 

between the measured data y  and the model data x  ( xyg  ) 

 d is the model perturbation vector or a vector containing the corrections 

to the model parameters m 

                                                 
†
 Most of this section is derived from the following sources; Sasaki (1989), Sasaki (1992) and Loke 

(2004). Sasaki (1989) and Sasaki (1992) both contain sections on the theory of smoothness-constrained 

inversions. The 2004 tutorial by Loke provides basic inverse theory, particularly in regards to the 

programs RES2DINV and RES3DINV. 



 128 

 J is the Jacobian matrix of the partial derivatives of the model data with 

respect to the model parameters. The components of this matrix are 

given by 
j

i
ij

m

x
J




 , that is the change in the ith model response due to 

the change in the jth model parameter. 

 

4.1.1 Least-squares optimisation method 
 

In the least-squares optimisation method, the aim is to minimise the sum of the squares 

of the discrepancy vector ggE
T

 . The following Gauss-Newton equation is used to 

determine the change in the model parameters that would give this minimum error 

gJdJJ
TT

   

where J
T
 is the transpose of the Jacobian matrix J 

After calculating the parameter change vector a new model is obtained by adding the 

parameter changes to the current model → mk+1 = mk + d.  

 

4.1.2 Marquardt-Levenberg modification 
 

In practice, the simple least-squares equation (4.1) above is rarely used by itself in 

geophysical inversion. In some situations the matrix product J
T
J might be singular, and 

thus the least-square equation does not have a solution for d. Another common problem 

is that the matrix product J
T
J is nearly singular. This can occur if a poor initial model, 

that is very different from the optimum model, is used. The parameter change vector d 

can have components that are too large such that the new model mk+1 might have values 

that are not realistic. One common method to avoid this problem is the Marquardt-

Levenberg modification to the Gauss-Newton equation, (4.1). 

The approximate misfit of the corrected model to the observed data is given by 

)dJg()dJg(Φ T 1  

The change in model parameters (d) is sought in such a way that the approximate misfit 

is minimised under the constraint that d
T
d has some value. Such minimisation leads to 

(4.1) 
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  gJdIuJJ
TT

   

where 

 u is a Lagrange multiplier (or damping factor) which effectively constrains the 

range of values that the components of d can take. 

 I the identity matrix 

The Marquardt-Levenberg method modification seen in (4.2) minimises a combination 

of the magnitude of the discrepancy vector g  and the parameter change vector d. 

The estimated parameter changes in d are used to update the model and a sequence of 

iterations is performed until the misfit between the measured data and the model data is 

reduced to a desirable level, or until there are no significant differences in the estimates 

between successive iterations. The RMS misfit is given by 

Ngg
T

misfitRMS  

where 

 N is the number of data points  

 

4.1.3 Smoothness-constrained least-squares method 
 

For a large number of model parameters (i.e. 2D and 3D modelling) the model produced 

by the Marquardt-Levenberg method can have an erratic resistivity distribution with 

spurious high or low resistivity regions. To overcome this problem, the Gauss-Newton 

least-squares equation is further modified. Such that the square of the spatial changes, or 

roughness of the model resistivity values is minimised. 

It is necessary to impose some form of constraint on the perturbation vector (d) in order 

to stabilise the inversion process. The approach of Sasaki (1992) is to estimate the 

perturbation vector that will minimise the misfit, subject to the constraint that the 

smoothness of the model has some constant value. 

The degree of roughness (the reciprocal of smoothness) about the jth block may be 

defined as 

44 )/dddd(dr j

S

j

N

j

W

j

E

jj   

(4.2) 
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where the superscripts E, W, N and S refer to the four immediate neighbours of 

the jth block. 

This equation can be re-written in matrix form as  

dCr   

where C is a 2D Laplacian operator whose elements are either  -1, ¼ or 0. 

The total roughness of the model is given by 

)dC()dC(rrΦ TT
2  

The objective function to be minimised is then expressed as 

)dC()dCu()dJg()dJg(ΦuΦΦ TT  21  

From this relation the method of Lagrange multipliers gives a solution of 

    gJFuJJgJCCuJJd
TTTTT 11 

  

  gJdFuJJ
TT

  

where  

 CT
C=

T

zz

T

xx
ffffF   is the flatness filter and is used to constrain the 

smoothness of the perturbations to the model parameters to some constant 

value. 

 fx = horizontal flatness filter 

 fz = vertical flatness filter 

This formulation constrains the change in the model resistivity values (d), to be smooth 

but does not guarantee that the resistivity values change in a smooth manner. 

 

4.1.4 Directly smoothing the model resistivities 
 

This form of the Gauss-Newton equation (4.3) can be further modified so that the 

smoothness constraint is applied directly to the model resistivity values giving 

  mFugJdFuJJ
TT

   

This method tends to produce a model with a smooth variation of resistivity values. 

 

 

(4.3) 

(4.4) 
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4.1.5 Robust inversion method 
 

The approach of equation (4.4) is acceptable if the actual subsurface resistivity varies in 

a smooth and gradational manner. However, in some cases, the subsurface structure 

consists of a number of regions that are internally almost homogeneous but with sharp 

boundaries between different regions. For such cases the inversion formulation (4.4) can 

be modified so that it minimises the absolute changes in the model resistivity values. 

This can sometimes give significantly better results. 

  mFugRJdFuJJ
Rd

T

R

T
   

where 

 FR = C
T
RmC is the modified flatness filter, and 

 Rm and Rd are weighting matrices introduced so that different elements of the 

data misfit and model roughness vectors are given equal weights in the 

inversion process. 

This is known as a robust or blocky inversion method. 

(4.5) 
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4.2 RES3DINV – Geotomo Software
‡
 

 

In this study the data are inverted using RES3DINV – Rapid 3D resistivity and IP 

inversion produced by Geotomo software. This inversion program is based upon a 

smoothness-constrained least-squares method (Lytle and Dines, 1980, Sasaki 1989, 

1992, deGroot-Hedlin and Constable 1990, Loke and Barker 1996b), and works by 

finding the smoothest change to the model for which the residual error lies within a 

desired tolerance. Such models are considered to have only the structural features 

demanded by the data and produce few spurious features (Sasaki 1989).  

The inversion routine uses the following basic equation, as given in section 4.1.3 above 

  gJdFuJJ
TT

  

where the parameters are as previously defined. 

The inversion program divides the subsurface into a number of small rectangular blocks 

(in the basic arrangement the corners of the blocks are defined by the unit separation of 

the electrodes), and attempts to determine the resistivity values of the blocks so as to 

minimise the difference between the calculated and observed apparent resistivity values. 

To start this process RES3DINV produces an initial model m0, forward modelling is 

then used to calculate the theoretical apparent resistivity values for this model. This 

model data, x  is then compared with the measured data, y and the discrepancy vector, 

xyg   obtained. The Jacobian matrix ( jiij mxJ  ) is calculated from the partial 

derivatives of the model data with respect to the model parameters (i.e. the resistivities 

in the blocks of the current model). The Jacobian along with the discrepancy vector ( g ) 

are used to find the model perturbation vector (d) by introducing some form of 

constraint (minimising misfit or roughness etc.) (see section 4.1). After the parameter 

change or model perturbation vector has been found a new model (mk+1) is obtained by 

adding the parameter changes to the current model (mk), i.e. mk+1 = mk + d. 

A measure of the difference between the modelled and observed resistivity values is 

given by the root-mean-squared (RMS) error. However the model with the lowest 

possible RMS error can sometimes show large and unrealistic variations in the model 

                                                 
‡
 The reader is directed to the RES2DINV and RES3DINV user manual and the 2004 tutorial by Loke for 

further details of the RES3DINV inversion process. 

(4.6) 
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resistivities and might not always be the best model from a geological perspective. In 

general the most prudent approach is to choose the model at the iteration after which the 

RMS does not change significantly. 

 

4.2.1 Data files 
 

The RES3DINV program reads files which contain information on the size and 

arrangement of the model grid, electrode arrangement, the measured data and any added 

features such as fixed regions and topography etc (see Appendix II) 

Grid size  

The length of the model blocks in the x and y directions were set to 0.05m, half the 

electrode separation. The layer thickness or the length of the model block in the z 

direction remains at the electrode separation of 0.1m. This should provide a detailed 

model of the internal resistivity structure of sea ice, while not using a grid that is too 

fine for the resolution of the measurement equipment. Applying this grid size produced 

a sensible sequence of resistivity models over the measurement period. However, for 

inversion of data gathered in the Arctic on 7-9 April 2008 it was found that having a 

grid size of 0.05m produced a model with lower than expected resistivities, in fact lower 

than all other data sets except the 16-17 June (by which stage the ice was in full melt). 

The resistivity of the model could be increased by either increasing the grid size to the 

electrode separation (0.1m) or removing the fixed region (see below). As we know there 

is seawater below the ice cover the fixed region should stay as part of the model. Thus, 

in order to obtain what is judged as a more realistic resistivity structure, the best 

solution appears to be to increase the grid size to 0.1m for this data set. Further evidence 

of the unsuitability of a 0.05m grid in the inversion of the 7-9 April data is seen in the 

larger error in the fit of this model to the measured data. 

Including fixed regions 

The RES3DINV 3D inversion program allows the user to input any regions of known 

resistivity as a fixed region in the input files it reads. In the case of modelling the 

resistivity structure of sea ice this option is useful, as it allows the presence of the 

seawater beneath the ice to be included in the model. A damping factor weight allows 

control of the degree to which the inversion program can change the resistivity of the 
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„fixed‟ region. If a damping factor weight of 1 is used, the resistivity of the region is 

allowed to change to the same extent as other regions of the subsurface model. If a 

relatively large value is used (e.g. 10) the change in the resistivity of the region would 

be very small. Such a large value should only be used if the resistivity and shape of the 

region is accurately known. 

Fixed regions of 0.4m, at the relevant depths, were used in the modelling of the 2008 

Arctic data in order to approximate the seawater under the ice, thus providing a more 

realistic model in terms of the seawater/ice interface. For the 16-17 June 2008 data from 

the Arctic a fixed region of high resistivity (1,000,000m) was also added to the 

surface of the model to represent the electrode strings protruding from the ice cover due 

to surface ablation. During the Antarctica measurements in 2009 the ice thickness was 

always greater than the length of the electrode strings, thus the seawater/ice interface 

was not observed and no fixed regions were used in the modelling. The average 

thickness of the ice at the sites was obtained from the mass balance sites. These 

thickness values were used to determine the relevant depths for the fixed region. A 

damping factor weight of 2 was decided upon to give sufficient steadiness to the fixed 

region, thus ensuring a physically real model while not imposing the region as an 

absolute part of the model (especially since the exact shape of the seawater/ice interface 

is unknown). 

 

4.2.2 Inversion parameters 
 

4.2.2.1 Resistance or apparent resistivity as inversion variable 

If the data are recorded as resistance values then RES3DINV gives the option of 

inverting the data set using apparent resistivity or directly using the resistance values 

from the file. Using resistance values directly in the inversion has the advantage that 

readings that have an apparent resistivity value that does not exist or is negative are 

allowed to be used. To convert from the measured resistance values to apparent 

resistivity the inversion program estimates the potential per unit input current, which 

would be measured by each electrode configuration in the data set. 

Two issues arose with attempts to use the apparent resistivity as the inversion variable 

while inverting the geometric mean resistivity data. The first issue was that it was 
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necessary to remove data points for which RES3DINV calculated low potentials, this 

led to a significant decrease in the size of data sets. It is possible this decrease would 

give a model with lower resolution. Furthermore it is not unreasonable to expect low 

apparent resistivity values in the highly conductive seawater beneath the ice and these 

values should be retained in the inversion model. Another issue for several data sets was 

that the calculated apparent resistivity values were too small. This caused the program 

to produce a warning message and stop the inversion. This could be overcome if 

apparent resistivity rather than the log of the apparent resistivity was used as the data 

parameter, however, it is then not possible to change the data inversion from the robust 

to the standard option (see section 4.2.2.7). 

As the recorded data are resistances it makes sense to directly use this as the inversion 

variable and it avoids issues with having to remove data points with low potentials or 

producing calculated apparent resistivity values that are too small for the inversion to 

continue. However, if these issues can be avoided (as seems to be the case for the 

horizontal resistivity), using either variable should be equally acceptable. 

Limiting the range of model resistivity 

If apparent resistivity is used as the inversion variable the program can limit the range 

of resistivity values the inversion subroutine will give. The limits can be entered by the 

user as multiples of the average model resistivity value of the previous iteration. The 

program uses „soft‟ limits that allow the actual model resistivity values to exceed the 

limits to a certain degree. However, this option will avoid extremely small or large 

model resistivities that are physically unrealistic. As the data set gathered for this 

research has a wide range of resistivities from tenths of a ohm meter to 1000‟s of ohm 

meters it would not be prudent to constrain the model by limiting the resistivity values. 

4.2.2.2 Initial model 

One of two different types of initial model can be selected. The default initial model is a 

homogeneous half space. The resistivity of the half space is often calculated from the 

average value of the measured apparent resistivities (Loke and Barker, 1996a). For areas 

with high resistivity contrasts it is suggested that a better initial model might be 

obtained by using an approximate inverse method. However, when the effect of the type 

of initial model was investigated there did not appear to be any difference in the final 

model produced (see Figure 4.1 below). 
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Initial model is a homogenous half space Initial model is obtained using an 

approximate inverse method 

  

 

Figure 4.1: Comparison of models produced using a homogeneous half space as initial model or using the 

approximate inverse method to obtain the initial model. Displayed are x-z sections through resistivity model 

at y distances of 0.5m-0.6m 

 

4.2.2.3 Forward modelling method 

The forward modelling subroutine is necessary to calculate the theoretical apparent 

resistivity values for the model produced by the inversion, so that the model can be 

compared to the measured resistivities. RES3DINV allows the use of either the finite-

difference or finite element-method to calculate these apparent resistivities. 

The finite difference method replaces the derivatives appearing in the differential 

equation by finite differences that approximate them. The finite element method finds 

approximate solutions of partial differential equations by either eliminating the 

differential equation, or approximating the partial differential equations by ordinary 

differential equations. The finite difference method is an approximation to the 

differential equation while the finite element method is an approximation to its solution. 

The finite-element method is significantly slower than the finite-difference method. 

If the data set contains topography the default is the finite-element method while if the 

data set contains no topography the default is the finite-difference method. With no 

topography in the data sets, the faster finite-difference method was used to calculate the 

model resistivities. 

4.2.2.4 Damping factor 

Initial and minimum damping factors 

The RES3DINV inversion program allows the user to set a value for the initial damping 

factor (u in equation (4.6)) If the data are noisy the initial value should be large (e.g. 

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Ordinary_differential_equation
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0.3). The inversion subroutine will generally reduce the damping factor after each 

iteration. However, a minimum limit for the damping factor is required to stabilise the 

inversion process, this value should be set to about 1/5 to 1/15 of the initial value. 

Default values of initial – 0.15 and minimum – 0.01 damping factors are used. 

Optimise damping factor 

Instead of automatically decreasing the damping factor after each iteration, the 

„optimise damping factor‟ option allows the program to look for an optimum damping 

factor. The time taken per iteration is longer, as it is necessary to solve the least-squares 

equation more than once, but the program may complete fewer iterations before 

converging. When this option is selected the program will attempt to find the optimum 

damping factor which gives the lowest RMS error in each iteration. When using this 

option it is important to remember that the model with the lowest RMS error is not 

always the best model, particularly for very noisy data sets. The damping factor was 

optimised when inverting the data. 

4.2.2.5 Flatness filter 

If the resistivity structure is known to have anomalies elongated in the vertical (e.g. 

dykes and faults) or horizontal (e.g. sedimentary layers and sills) directions then the 

vertical to horizontal flatness filter ratio can be increased or decreased respectively. The 

vertical and horizontal flatness filters are the fz and fx components of the flatness filter F 

from equation (4.6) above. Changing the ratio of these values allows fine-tuning of the 

smoothness-constraint to emphasize vertical or horizontal structures in the inversion 

model. The inversions carried out for this research use a ratio of vertical to horizontal 

filter weights, left at the default value of 1 (i.e. no preference for horizontal or vertical 

structure). 

4.2.2.6 Directly smooth model resistivities 

In section 4.1.4 it was shown that the smoothness constrained least-squares form of the 

Gauss-Newton equation (4.6) can be further modified to  

  mFugJdFuJJ
TT

   

where the parameters are as previously defined. 

Selecting the option to use this equation in RE3DINV leads to a smoothness constraint 

being applied to the model resistivity values as well as to the model perturbation vector. 

(4.7) 
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This will usually produce a model with a larger apparent resistivity RMS error but a 

smooth variation in the resistivity values. 

If the model inversion was set to the robust model constrain (see section 4.2.2.7) it 

seemed that the program forced the model resistivities to be directly smoothed – this 

option could not be unselected. The effects of directly smoothing the model resistivities 

or not can be seen in Figure 4.2 below. 

 
Model resistivity directly smoothed Model resistivity not directly smoothed 

  

 

Figure 4.2: Effect of directly smoothing the model resistivity on the inversion models. Displayed are x-z 

sections through resistivity model at y distances of 0.5m-0.6m. 

 

When the model resistivities are not directly smoothed the robust/standard inversions 

produced models which seem to give very large and unrealistic horizontal apparent 

resistivity values (see Figure 4.2) of the order of 100,000‟s of ohm meters. Hence when 

inverting the data the model resistivities are directly smoothed. 

4.2.2.7 Robust inversion method 

Directly smoothing the model resistivity values is acceptable if the actual subsurface 

resistivity varies in a smooth manner. However, the subsurface geology could be made 

up of a number of regions that are internally homogeneous but have sharp boundaries. 

In such cases the inversion formulation can be further modified (as seen in section 

4.1.5) so that it minimises the absolute changes in the model resistivity values giving a 

robust inversion method. 

  mFugRJdFuJJ
Rd

T

R

T
   

with the parameters as defined previously. 

(4.8) 
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For both the model and data inversions RES3DINV gives the option of choosing either 

the standard least squares constraint (expression (4.6)) or a robust constraint (expression 

(4.8)). The standard least squares method attempts to minimise the square of the 

difference between measured and calculated apparent resistivity values. On the other 

hand the robust method down weights values that are significantly away from where the 

majority are distributed (i.e. it removes outliers that could influence the resulting 

inversion), is less sensitive to very noisy datum points and tends to produce models with 

sharp boundaries but that might give a higher RMS value. 

Setting the data inversion to the robust constraint, the inversion program will attempt to 

minimise the absolute difference between the measured ( y ) and calculated ( x ) apparent 

resistivity values. In other words minimise the discrepancy vector, g  (see section 4.1), 

rather than the sum of the squares of the discrepancy vector. There is a cut-off factor 

which controls the degree to which this robust data constraint is used. If a value of 0.05 

(default value) is used the effect of data points, where the differences in the measured 

( y ) and calculated ( x ) apparent resistivity values are much greater than 5 percent, will 

be greatly reduced. 

For the model inversion the robust constraint will attempt to minimise the absolute 

spatial changes in the model resistivity values. That is it will constrain the changes that 

can be made to the model through the perturbation vector d. As with the robust data 

constraint there is a cut-off factor which controls the degree to which this constraint is 

used. If a large value is used, for example 1.0, the result is essentially that of the 

conventional smoothness-constrained least-squares inversion method (see equation 

(4.6)). If a very small value is used, for example 0.001, the result is close to the true 

robust constrained inversion method. The default value for the cut-off is 0.01, as shown 

in Figure 4.3 below, decreasing the robust model constraint cut-off from 0.01 to 0.001 

has little effect on the model. Thus there is no reason to further decrease the cut-off 

from the default value in attempts to return a result closer to the true robust constrained 

inversion method 
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Model robust constrain cut-off – 0.001 Model robust constrain cut-off – 0.01 

  

 

Figure 4.3: Effect of different model robust constraint cut-off values. Displayed are x-z sections through 

resistivity model at y distances of 0.5m-0.6m. 

 

When testing the best inversion parameters to use during modelling it was discovered 

that while using resistance as the inversion variable data inversion could not be set to 

use the standard least squares constraint. 

The robust constraint is used on both the data and model inversion with cut-off values 

set to the defaults of 0.05 and 0.01 respectively. 

4.2.2.8 Solving the least squares equation 

The RES3DINV 3D inversion program provides the user with a choice of two different 

methods of solving the least squares equation (i.e. equation (4.6), (4.7) or (4.8)). The 

program default uses the standard Gauss-Newton least squares method. This method 

calculates an exact solution of the least squares equation and involves recalculating the 

Jacobian matrix of partial derivatives after every iteration. This is time consuming, but 

in areas with resistivity contrasts of greater than 10:1 recalculating the Jacobian matrix 

produces models with boundaries which are much sharper and generally gives slightly 

better results. To reduce the inversion time, an alternative method that calculates an 

approximate solution of the least squares equation using the incomplete Gauss-Newton 

method can be used. The user can set the accuracy of the solution, for most data sets an 

accuracy of about 1% to 2% seems to provide a solution that is almost the same as that 

obtained by the standard Gauss-Newton method. 

As this project is looking at a medium where there is a large range of resistivity values 

varying from tenths of ohm meters, in sea water, to thousands of ohm meters in pure 

ice, and the possibility of sharp boundaries (e.g. the seawater/ice interface) the default 

of the Gauss-Newton method is used for the inversions. 
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4.2.2.9 Resistivity change: optimum step size 

In order to find the optimum step size for the change in the resistivity of the model 

blocks the inversion program gives the option of performing a line search using 

quadratic interpolation. This will require at least one forward modelling computation 

per iteration. In some cases this extra computation could be worthwhile if it reduces the 

number of iterations needed to bring the RMS value down to an acceptable level. For 

the first two iterations the program will always carry out a line search in an attempt to 

find the optimum step size. The line search method can also estimate the expected 

change in the RMS error and if the change is too small, it might not be worthwhile to 

proceed with the line search. For this research inversions were carried out using the 

default settings of completing a line search on every iteration that had a minimum 

change in the RMS error of 0.2%. 

4.2.2.10 Converging the inversion 

Maximum number of iterations 

RES3DINV allows the user to set the maximum number of iterations for the inversion 

routine. The maximum has been left at the default value of 6 iterations, which should be 

sufficient for most data sets. 

Convergence limit 

The lower limit for the relative change in the RMS error between two iterations can also 

be set by the user. The program uses the relative change in RMS error, rather than an 

absolute RMS value, so as to accommodate different data sets with different degrees of 

noise present. By default a value of 5% is used, that is if the change in RMS between 

two consecutive inversions is less than 5% the inversion process will end. 

 

4.2.3 Summary 
 

To obtain three dimensional models of the resistivity structure of sea ice, the measured 

resistance data are input into the inversion program RES3DINV and the following 

inversion parameters (summarized in Table 4.1) used: 

Grid size (section 4.2.1) 

The size of the model blocks in the x and y directions are set to 0.05m or half the 

electrode separation. While the vertical size of the model blocks is set to the electrode 
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separation of 0.1m. This should provide a detailed model without being too fine for the 

resolution of the measurement equipment. 

Fixed region (section 4.2.1) 

Using the average thickness of the ice a region of low resistivity (0.4m) was added to 

the base of the initial model. The aim was to produce a more physical model by 

incorporating the presence of seawater, while still allowing the model to change the 

resistivity values. Thus a fixed region was added and a damping factor weight of two 

selected. 

Resistance as inversion variable (section 4.2.2.1) 

As the measurements made in the field were recorded as resistances and there were 

issues with setting some of the inversion parameters, when apparent resistivity was used 

as the inversion variable, it made sense to generally use the resistance values directly. 

Initial model (section 4.2.2.2) 

A homogeneous half space was used as the initial model for the inversion process. 

However, there seems to be no difference if the approximate inverse method is used. 

Forward modelling method (section 4.2.2.3) 

The finite difference method is used during the forward modelling stage to calculate the 

theoretical apparent resistivities for the models. This method is quicker than the finite 

element method. 

Optimising the damping factor (section 4.2.2.4) 

The inversion program is set to find the optimum damping factor when solving the least 

squares inversion equation. This produces models with the lowest RMS error. 

Directly smooth model resistivities (section 4.2.2.6) 

If the robust model inversion is used the program forces the model resistivities to be 

directly smoothed. It was also observed that not directly smoothing the model 

resistivities produces models with extremely high horizontal resistivity. Therefore the 

model resistivities are directly smoothed during the inversion process. 

Robust inversion method (section 4.2.2.7) 

The robust data constraint is set to the default of 0.05 this means that the effect of 

values of the discrepancy vector that are greater than 5% are reduced. The robust model 
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constraint is set to the default value of 0.01. A small constraint value is closer to the 

robust inversion while a large value is closer to the standard inversion. Setting the 

model inversion to the robust method means the chance of producing a perturbation 

vector that is too large is reduced. 

Solving the least squares equation (section 4.2.2.8) 

The Gauss-Newton least squares method is used to solve the least squares equation as it 

calculates an exact solution. Additionally, using this method provides better results than 

the incomplete method, when the region being modelled has areas with resistivity 

contrasts of greater than 10:1. Furthermore the process of recalculating the Jacobian 

matrix for each iteration produces sharper boundaries. 

Optimum step size (section 4.2.2.9) 

To calculate the optimum step size to apply to the perturbation vector, RES3DINV is set 

to run a line search on every iteration that has a minimum change in the RMS error of 

0.2%. 

Convergence limit and max number of iterations (section 4.2.2.10) 

The maximum number of iterations to be performed by the inversion program is set to 

6. The minimum change in RMS errors of two consecutive inversions is set to 5%, if the 

difference gets below this value the inversion stops. These parameters should produce a 

satisfactory model for most data sets. 

 

Inversion parameters used in RES3DINV during modelling 

 Grid size of 0.05m 

 Include fixed region of 0.4m with damping factor weight of 2 

 Use resistance as inversion variable 

 Retain low potentials 

 Use homogeneous half-space as the initial model 

 Use the finite difference method during forward modelling 

 Optimise the damping factor 

 Directly smooth the model resistivities 

 Use robust inversion method with robust constraints set to 5% for data inversion and 0.01 for model 

inversion 

 Use standard Gauss-Newton least squares method to solve the least squares equation 

 Complete a line search, for the optimum step size for the perturbation vector, on every iterations 

 Maximum number of iterations is 6 

 Convergence limit is 5% 

 

Table 4.1: Summary of inversion parameters. 
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Chapter 5 
Analysing resistivity profiles 

 

This chapter displays and interprets models of the resistivity structure of first year sea 

ice from the Arctic and Antarctic. 

The resistivity structure is obtained from 3D inversions of data gathered during 

electrical resistivity cross-borehole tomography measurements. As discussed in Chapter 

3, this technique uses four electrode strings inserted into boreholes which are positioned 

in the ice at the corners of a 1m square. 

Horizontal resistivities were obtained from measurements made between each of the six 

borehole pairs. Each measurement involving one current and one potential electrode in 

each borehole according to the criteria discussed earlier (section 2.2.1). 

Measurements, aimed at determining the geometric mean resistivity structure, were 

obtained using a four electrode array with either; each of the electrodes at 

approximately the same depth in separate boreholes, or three electrodes at the same 

depth in separate boreholes and a remote surface electrode (section 2.2.2). However, 

due to the air/ice and sea/ice interfaces the geometric mean recovered by the inversion 

program is under-estimated and numerical modelling is required to retrieve a value of 

the coefficient of anisotropy and from this an estimate of the true resistivity (see section 

2.3.2.2). 

The vertical component of the bulk resistivity structure is then able to be calculated 

from the horizontal and geometric mean resistivities using the expression 

( Hmv 
2

 ) that relates the three values. 

Interpretation of the resistivity models in terms of changes in the microstructure of the 

ice was aided by temperature and salinity data, obtained from nearby the measurement 

sites, and calculated brine resistivities and brine volume fractions, as per the standard 

relations given by Stogryn (1971) and Cox and Weeks (1983) respectively. 
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5.1 Barrow, Alaska 
 

5.1.1 2008 measurements – Jones et al. (2010) 
 

As mentioned earlier (Chapter 3) six measurement sets were obtained, over April – June 

2008 in first year sea ice off the coast of Barrow Alaska. Profiles through the resistivity 

models obtained from these measurements are displayed in this section. 

Figure 5.1 displays both (a) sections through the models obtained from inversion of the 

geometric mean data (an underestimation of the resistivity value) and (b) the retrieved 

estimation of the true value of the geometric mean resistivity. As discussed earlier, 

synthetic data sets generated for different values of the anisotropy coefficient allow 

parameterization of the degree to which, for the observed ice thickness, M
m  is an 

underestimate of the true value of the geometric mean resistivity m. This 

parameterization takes the form of polynomials F() for each depth range in the 3D 

models. Such polynomials have been used, with the average values of H and M
m  for 

each layer in the resistivity models, to estimate the actual variation of  with depth in 

the ice through numerical solution of expression (2.39). These values have then been 

used with the values of H to determine the true values of m through the ice. By the 

16-17 Jun surface ablation was occurring, thus plots for this date start at a „depth‟ of 

0.2m. 

Figure 5.2 shows (a) sections of the horizontal resistivity obtained from 3D inversion of 

the data, along with (b) the vertical resistivity structure – calculated from the horizontal 

and geometric mean resistivities and (c) the coefficient of anisotropy () - determined 

while retrieving the true m. 

Figure 5.3 shows plots of the depth dependence of (a) the temperatures, measured at the 

UAF mass balance site using thermistor strings and (b) salinities, obtained by UAF via 

standard measurements on sea ice cores. The salinity of the ice was measured four times 

during our field work; on the 7 Apr, 29 Apr, 26 May and 16 Jun, and the salinity 

profiles for the ice during each of our measurement sets has been taken as that recorded 

on the nearest date to the resistivity measurement. As the temperature and salinity data 

aide the interpretation of the resistivity models, which use a discrete grid with vertical 
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layers of 0.1m depth, these data have been interpolated to give values at 0.1m intervals 

starting at 0.05m (the mid point of the 0-0.1m layer). Additionally Figure 5.3c displays 

plots of brine volume fraction, calculated from standard relations as given in Cox and 

Weeks (1983). The ablation of the surface of the ice on the 16-17 Jun (as mentioned 

above), can be seen by the above zero temperatures recorded by the upper thermistors. 

This ablation means that the upper surface of the core used for the salinity 

measurements corresponds to temperatures at a recorded depth of approximately 0.2m. 

Furthermore the brine volume fraction plot takes 0m to be the initial ice/air interface 

and thus starts at a depth of 0.2m (with the surface brine volume fraction off the scale of 

the plot at ~ 32%). 

Finally, for each of the components of the bulk resistivity (H, m, V) line plots of the 

average values with depth are shown in Figure 5.4, with all measurement sets shown on 

one plot – in order to allow better visualisation of the changes in time. This figure also 

includes a plot of the change in the coefficient of anisotropy over this measurement 

period. The standard deviations associated with the averaged values of H and M
m  in 

each layer and the absolute misfit of the models to the observed data allow at least a 

superficial estimate of the uncertainties in H, m, V and . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 148 

 

(a) Geometric mean resistivity (from inversion program) 
7-9 Apr 25-26 Apr 8-9 May 20-21 May 28-29 May 16-17 Jun 

      

Ice thickness 1.28m 

Iter – 6 

error – 10.42% 
579 data points 

Ice thickness 1.32m 

Iter – 5 

error – 4.41% 
595 data points 

Ice thickness 1.36m 

Iter – 6 

error – 1.88% 
356 data points 

Ice thickness 1.37m 

Iter – 5 

error – 2.17% 
514 data points 

Ice thickness 1.37m 

Iter – 6 

error – 5.90% 
513 data points 

Ice thickness 0.85m 

Iter – 6 

error – 29.99% 
329 data points 

(b) Geometric mean resistivity (estimate of true value) 
7-9 Apr 25-26 Apr 8-9 May 20-21 May 28-29 May 16-17 Jun 

      

Ice thickness 1.28m Ice thickness 1.32m Ice thickness 1.36m Ice thickness 1.37m Ice thickness 1.37m Ice thickness 0.85m 

 
Resistivity m 

Figure 5.1: Vertical sections through models of the geometric mean resistivity, 2008 Arctic 

measurements. (a) the geometric mean resistivity obtained from 3D inversion of the data sets and (b) the 

estimate of the true geometric mean resistivity for the data. Listed are; the number of measurements in the 

data sets, the ice thickness (determined from temperature measurements and cores), the number of 

iterations and the final misfit of the inversion. Both horizontal distances and vertical depths are in metres 

while dashed lines indicate approximate surfaces of the ice cover. 
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(a) Horizontal resistivity 
7-9 Apr 25-26 Apr 8-9 May 20-21 May 28-29 May 16-17 Jun 

      

Ice thickness 1.28m 

Iter – 6 

error – 16.59% 

2418 data points 

Ice thickness 1.32m 

Iter – 6 

error – 13.26% 

2442 data points 

Ice thickness 1.36m 

Iter – 5 

error – 11.77% 

2444 data points 

Ice thickness 1.37m 

Iter – 5 

error – 9.96% 

2300 data points 

Ice thickness 1.37m 

Iter – 4 

error – 11.91% 

2291 data points 

Ice thickness 0.85m 

Iter – 3 

error – 58.07% 

1791 data points 

(b) Vertical resistivity 
7-9 Apr 25-26 Apr 8-9 May 20-21 May 28-29 May 16-17 Jun 

      

Ice thickness 1.28m Ice thickness 1.32m Ice thickness 1.36m Ice thickness 1.37m Ice thickness 1.37m Ice thickness 0.85m 

 
Resistivity m 

(c) Coefficient of anisotropy with depth 
7-9 Apr 25-26 Apr 8-9 May 20-21 May 28-29 May 16-17 Jun 
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Figure 5.2: Vertical sections through models of the horizontal and vertical resistivity, and anisotropy 

profiles, 2008 Arctic data. (a) the horizontal resistivity, obtained from 3D inversion of the data and (b) 

the vertical resistivity, calculated from H and m values. Listed are; the number of measurements in the 

data sets, the ice thickness (determined from temperature measurements and cores), the number of 

iterations and the final misfit of the inversion. Both horizontal distances and vertical depths are in metres 

while dashed lines indicate approximate surfaces of the ice cover. (c) shows plots of coefficient of 

anisotropy vs. depth, obtained while retrieving the true value of m. The vertical axis is the depth from the 

surface in meters and the horizontal axis is the coefficient of anisotropy.  
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(a) Temperature 
7-9 Apr 25-26 Apr 8-9 May 20-21 May 28-29 May 16-17 Jun 
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(b) Salinity 
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(c) Brine volume fraction 
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Figure 5.3: Temperature, salinity and brine volume fraction profiles, 2008 Arctic measurements. (a) 

smoothed averaged temperatures with depth – obtained from thermistor string measurements at the UAF 

mass balance site, (b) ice salinity with depth – obtained from measurements made on ice cores from 

around the UAF mass balance site, and (c) brine volume fraction calculated from salinity and 

temperature, as in Cox and Weeks (1983), and plotted against depth. The vertical axis on all plots is depth 

from surface in centimetres. The horizontal axes are (a) temperature in 
o
C, (b) salinity in psu and (c) brine 

volume fraction as a percentage. 
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(a) Horizontal resistivities (c) Vertical resistivities 
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(b) Geometric mean resistivities (d) Coefficient of anisotropy 
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Figure 5.4: Line plots of average 2008 data values with depth for (a) the horizontal resistivity, (b) the 

geometric mean resistivity, (c) the vertical resistivity and (d) the coefficient of anisotropy of all six data 

sets. The vertical axes are depth from surface in meters and the horizontal axes are resistivity in ohm 

meters except (d) where the horizontal axis is the coefficient of anisotropy. Dashed lines indicate 

estimates of the uncertainties in the values. 

 

It should be noted, that the inversion modelling technique used (discussed in Chapter 4) 

does not necessarily produce unique models. Thus, as with all geophysical modelling, 

one must attempt to obtain physically realistic results and apply constraints from known 

parameters. 

The datasets for determination of H contained approximately 1800 to 2400 separate 

measurements (Figure 5.2a). Those for m were smaller and contained between 320 and 

600 separate measurements (Figure 5.1a). The ice thickness at the time of each set of 

measurements was determined from ice temperature measurements and cores (Chapter 

3). Over the measurement period the ice thickness, measured by the UAF mass balance 

site, increased from 1.28m to 1.38m before decreasing, during significant melt, to be 

0.83m at the time of the last measurement. During the inversion process the presence of 
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sea water beneath the ice was incorporated by using an initial model where, below the 

depth of the measured ice thickness, the resistivity was set to approximate that of 

seawater (0.4 m). The degree to which resistivity values in this „fixed‟ region could 

change was controlled during the inversions (as mentioned in Chapter 4). 

The 3D inversions for H typically took 4-6 iterations and gave final misfits of between 

10% and 17% (Figure 5.2a), while those for the geometric mean resistivity took 5-6 

iterations and gave final misfits of 2% - 11% (Figure 5.1a). However, the true m 

obtained numerically from the inversion resistivities (H and M
m ), has much larger 

uncertainties (as can be seen in Figure 5.4b). Much of the misfit in the H inversions is 

probably due to the ice-water interface. In this region steep gradients in resistivity 

occur, with a rapid change in resistivity from several hundred ohm meters to a value 

less than 1m, which are difficult to model accurately with a numerical grid of finite 

size. Due to the lower value of m there is a smaller decrease across this same region, 

which can be much better reproduced, probably explaining the lower misfits observed in 

the m inversions. The inversion models for both H and m on the 16-17 June have high 

misfits, possibly due to the large range of resistivities observed in these models. 

Assumptions made in the theory (see Chapter 2) mean it is worth considering the 

magnitude of resistivity changes that are likely to occur as the microstructure of sea ice 

changes due to expansion and connection of brine inclusions. A simple means of doing 

this is to consider the Hashin - Shtrikman limits (Hashin and Shtrikman, 1962) for a two 

phase mixture. The limits were established for the effective magnetic permeability of a 

medium. However, the results are also valid for the dielectric constant, electrical 

conductivity, heat conductivity and diffusivity. 

Consider a two-phase mixture in which isolated spheres of resistivity 2 are surrounded 

by a connected matrix of resistivity 1. To obtain a mixture representative of sea ice 

values for the resistivity of the brine and ice are set at 0.2658m (average brine 

resistivity calculated from the measured data) and 10
7
m (the DC resistivity of pure ice 

as noted by Mathews and Clark (1963)) respectively. In this case it can be shown 

(Figure 5.5) that for brine volume fractions of between about 5% and 95%, the decrease 

in bulk resistivity between situations when brine pores are isolated (2 equals the 

resistivity of brine and 1 equals the resistivity of ice) and when a connected network of 
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brine exists (2 equals the resistivity of ice and 1 equals the resistivity of brine) is 5-6 

orders of magnitude. 

However, the conductivity of the solid ice matrix is not well constrained and a range of 

conductivities should be considered. Even if the ice has a low resistivity of 1000m 

(extremely unlikely as most salt is rejected from the ice matrix and some of the 

measured resistivities of the sea ice are higher than this value) then there is still a 

difference of 1-2 orders of magnitude between the cases of isolated and connected brine. 

Given this order of magnitude for the likely changes in resistivity, it is clear that, in 

terms of tracking the changes that occur in the microstructure of sea ice it is critical to 

be able to resolve between resistivity values of, for example, 20 m and 200 m, 

however, it is not necessary to be able to accurately discriminate between values of, say, 

200 m and 400 m. 
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Figure 5.5: Plot of resistivity vs. brine volume fraction displaying the behaviour of the Hashin - 

Shtrikman limits for a two-phase mixture of brine ( ~ 0.2658m) and ice ( ~ 10000000m), 

considering two cases - isolated pores of brine and a connected brine network. 

 

The inversions use a grid with horizontal spacing of 0.05m in both x and y directions, 

and a vertical spacing of 0.1m. There is one exception, on the 7-9 Apr the horizontal 

grid is set to 0.1m (see section 4.2.1). The vertical discretisation of the models leads to 

sharp gradients in the recovered values of resistivity around the seawater/ice interface. 
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Figure 5.2a it can be seen that in general the horizontal component of the bulk 

resistivity of the sea ice displays high values of between 300m to 1800m. These 

values are within the range of 200m to 5000m recorded by Ingham et al. (2008) (see 

Figure 5.8 below) using cross-borehole measurements, with just two boreholes rather 

than four. Thyssen et al. (1974) and Timco (1979) commented on measurements made 

using an array of electrodes located vertically on the wall of an ice pit, to obtain the 

horizontal resistivity of sea ice. They quoted values of 221m and 129m to 298m 

respectively. Although these are rather low in comparison to our results from early in 

the spring they are within the range of resistivities (50m to 400m) observed between 

late May and mid June, by these dates the ice has warmed somewhat giving these lower 

resistivities. 

The general decrease observed in our horizontal resistivities as the temperature of the 

ice increases from early April to late May (Figure 5.2a and Figure 5.4a) is likely to 

indicate a gradual change in the microstructure of the ice as connectivity of the brine 

pockets increases in the horizontal direction. Increased connectivity between brine 

pockets is also supported by an increase in brine volume fraction (Figure 5.3c) over the 

measurement period. The low horizontal resistivities, warm temperatures and high brine 

volume fractions observed on the 16-17 June suggest significant horizontal connectivity 

of the brine inclusions by this stage. 

Initially the horizontal resistivity structure gives high surface values which decrease 

gradually with depth until a sharp drop at the ice/seawater interface. However, further 

into the melt season a region of low resistivity appears at the surface of the ice (Figure 

5.2a and Figure 5.4a). This was also observed by Ingham et al. (2008), as shown in 

Figure 5.8below. These low resistivities, matched with high temperatures, indicates that 

surface warming has led to a significant increase in connectivity of the brine structure at 

shallow depth. It should also be noted that by the 16-17 June there was significant 

surface melt and the top two – three electrodes of the strings were protruding from the 

ice surface. Furthermore, the higher resistivities seen at the surface of this model would 

seem to indicate a region flushed of brine by increasing melt water. 

Compared with the H inversions, there is much less variation in the derived value of 

M
m  (Figure 5.1a) with the inversions of the geometric mean resistivity data producing 

values of the order of 10m – 20m. However, the estimate of the true geometric mean 
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resistivity retrieved through numerical modelling (Figure 5.1b) ranges from 100m to 

350m. The values obtained for the 16-17 June are significantly lower than the rest of 

the data, with values of ~40 m. 

In general these values are slightly higher than geometric mean resistivities obtained 

from previous studies which use surface soundings. For first year sea ice near Pond 

Inlet, N. W. T. Thyssen et al. (1974) obtain resistivities of between 30 and 176 ohm 

meters while Timco (1979) gave values of 76m to 176m. On Antarctic sea ice 

Buckley et al. (1986) stated values of 50m to 200m. In our Barrow study, a number 

of surface resistivity soundings carried out adjacent to the location of the borehole 

measurements yielded geometric mean resistivities in the range of 50m to 100m, 

These values are about a factor of three smaller than the geometric mean retrieved from 

numerical modelling and around five times larger than the values obtained directly from 

3D inversion of the cross-borehole measurements. 

This lends some support to the suggestion that the cumulative effect of uncertainties and 

approximations in the retrieved m may mean that the values derived from the borehole 

measurements should be regarded as an estimate correct to within a factor of 3 – 4. 

However, various authors have previously noted the non-uniqueness in the 

interpretation of Wenner soundings, particularly the distortions in derived depth 

variations that occur in interpretation due to the anisotropic nature of the resistivity. It 

could therefore be argued that the estimates of m derived from the cross-borehole 

results are in fact more reliable. Nevertheless, in the context of mapping the variation of 

resistivity structure with time over a series of measurement sequences, such an 

unresolved ambiguity (of a factor of 3 – 4) may not necessarily be crucial, as changes in 

structure are likely to produce at least a change of magnitude in the resistivities. 

The vertical resistivity structure (Figure 5.2b), calculated from H and m, gives low 

resistivities of the order of 20m to 70m. This suggests a significant degree of 

vertical connection between brine inclusions even at the start of the measurement period 

when the ice was still relatively cool. From ice pit measurements Timco (1979) 

obtained values of 45m to 105m for the vertical resistivity of first year sea ice, 

comparable to the results presented here. However, Thyssen et al. (1974) also used ice 

pit measurements and obtained a lower vertical resistivity of 16m. 
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Through the measurement period the vertical resistivity decreases, but not as 

significantly as does the horizontal resistivity. As would be expected, from the trends of 

the horizontal and vertical resistivities, the geometric mean resistivity also shows a 

decreasing trend. Though we observe this increase in conductivity (or decrease in 

resistivity) over the measurement period i.e. an increase with increasing temperature 

and brine volume fraction, we do not note a strong linear relationship with brine volume 

or an exponential relationship with temperature as was observed by Morey et al. (1984) 

for DC conductivity. Plots of conductivity versus (a) temperature and (b) brine volume 

fraction can be seen for both the vertical and horizontal conductivities in Figure 5.6 

below. 

  (a)              Conductivity vs. temperature                 (b)      Conductivity vs. brine volume fraction       
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Figure 5.6: Plots of the relationships between conductivity and (a) temperature, (b) brine volume 

fraction, during the measurement period in the Arctic. 
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For most data sets obtained over the measurement period the anisotropy coefficient 

(Figure 5.2c) is found to be relatively constant through the entire thickness of the ice. 

Though there is a slight increase with depth, we do not observe any significant trend of 

increasing  with depth, as was indicated by Morey et al. (1984) for sea ice with a 

preferential horizontal alignment of c-axes. Values for the anisotropy coefficient () 

range from approximately 0.2 in early April to around 0.3 in late May, indicating a 

change in the structure of the ice as H and V become closer in value. The derived 

values of  are slightly less than values found, for example, by Timco (1979) (0.59) and 

Thyssen et al. (1974) (0.26 to 1) at Pond Inlet, N.W.T. and Buckley et al. (1986) in the 

Antarctic (~0.5), but are not unreasonable for sea ice formed under the quiescent 

conditions which tend to exist at Barrow. 

Analysis of ice cores by UAF (Eicken, H., pers. comm., 2010) indicate that the initial 

granular or frazil growth of the ice cover is present to depths of 40cm. However, there is 

no indication of this structure in either the vertical or horizontal resistivity profiles or 

the variation of the coefficient of anisotropy with depth. In the upper regions of the sea 

ice the number of measurements that can be made is limited, simply due to the 

electrodes being constrained by the surface of the ice. Having fewer data will decrease 

the resolution of the resistivity model and may explain why we do not observe the 

surface frazil ice. Alternatively, it is possible that the change in the brine structure is not 

significant enough to be observed in the resistivity structure, i.e. even though the ice 

grains have different orientations in the random frazil ice and the vertically aligned 

columnar ice the degree and direction of connectivity between individual brine 

inclusions maybe similar.  

The model sections obtained from RES3DINV, during inversion of the horizontal 

resistivity data, seem to show the positions of the electrode strings, as indicated by 

anomalous resistivity values (Figure 5.7). A halo of anomalous resistivity structure 

around electrode strings was also observed by Ingham et al. (2008). This clearly shows 

why it is essential to carry out cross-borehole measurements, so the results are obtained 

from undisturbed sea ice. Where average values are used in calculations, data within 

0.2m of the corners of the measurement area, defined by the electrode strings, are 

ignored. By not considering the data from within these areas (as indicated by the 

shading in Figure 5.7 below) the average resistivity will be of the sea ice and not due to 

the presence of the boreholes and electrode strings. 
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x-y section at depth of 0.4m – 0.5m x-z section at y position of 0m – 0.05m 

 

Figure 5.7: x-y and x-z sections of the horizontal resistivity model – displaying the anomalous halos 

around the electrode strings. The x-y section is at a depth of z = 0.4m – 0.5m and the x-z section is at a y 

position of 0m – 0.05m, as shown in the diagram. 

 

 

5.1.2 2006 measurements – Ingham et al. (2008) 
 

In 2006 Ingham et al. (2008) made three separate cross-borehole resistivity 

measurements as the ice warmed over the period April – June. Their measurement site 

was located in first year sea ice offshore from Pt. Barrow, Alaska (71
o
 22‟ 03” N, 156

o
 

31‟ 03” W). Measurements of the horizontal resistivity structure of the ice were made 

using appropriate electrode combinations between two vertical strings of electrodes, 

installed in boreholes drilled 1m apart. The first series of measurements was made 

between 22-25 April at which time the ice thickness was 1.38m, the second on 11 May 

(ice thickness 1.46m), and the final series on 8 June (ice thickness 1.54m). Vertical 

sections through the models obtained from 3D inversion of this data are shown in 

Figure 5.8 below, along with temperature, salinity and brine volume fraction profiles. 

As observed in our Arctic data set, the horizontal resistivity obtained by Ingham et al. 

(2008) decreases over the measurement period as the temperature increases. 

Furthermore, as mentioned earlier, the resistivities are similar to those obtained in our 
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2008 study and a region of low surface resistivity appears in later measurement series as 

it does in our data. Comparing the models of the horizontal resistivity obtained from the 

Ingham et al. (2008) study and our 2008 Arctic measurements; it can be seen that data 

obtained on the 7-9 and 25-26 Apr 2008 is similar to the 22-25 Apr 2006 data, the 8-9, 

20-21 and 28-29 May 2008 is comparable to the 11 May 2006, and the 16-17 Jun 2008 

data is closest to that obtained on the 8 Jun 2006.  
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Figure 5.8: Vertical sections through the 3D horizontal resistivity models, as obtained from Fig. 5. in 

Ingham et al. (2008). (a) 22-25 April 2006, (b) 11 May 2006 and (c) 8 June 2006. Also shown are profiles 

of sea ice temperature (from an in-situ thermistor string), salinity (from cores) and calculated brine 

volume fraction. The dashed line marks the measured ice/water interface. 
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5.2 McMurdo Sound, Antarctica – 2009 
 

A further four measurement sets were obtained over a two week period in November 

2009, also in first year sea ice but this time off the coast of Ross Island, Antarctica (as 

discussed in Chapter 3). This section presents vertical sections of the resistivity models 

obtained from these data. 

Geometric mean resistivities are displayed in Figure 5.9 both for (a) sections through 

the models obtained from inversion of the data (an underestimation of the resistivity 

value) and (b) the retrieved estimation of the true value (by a process summarised above 

in section 5.1 and detailed in section 2.3.2.2). 

Figure 5.10 shows (a) sections of the horizontal resistivity obtained from 3D inversion 

of the data, along with (b) the vertical resistivity structure – calculated from the 

horizontal and geometric mean resistivities and (c) the coefficient of anisotropy () - 

determined while retrieving the true m. 

Figure 5.11a shows plots of the depth dependence of the temperatures, measured as part 

of Antarctica New Zealand science event K131 using thermistor strings. Salinity 

profiles, obtained as part of K131 via standard measurements on sea ice cores, are 

shown in Figure 5.11b. Two salinity profiles were obtained during the resistivity 

measurement period and these are combined in this plot. Figure 5.11c displays the brine 

volume fraction, calculated, as previously, from standard relations given in Cox and 

Weeks (1983) using the combined salinity profile in (b) and the temperatures measured 

on the salinity cores. 

For each of the components of the bulk resistivity line plots of the average values with 

depth are shown in Figure 5.12, along with a plot of the change in the profile of the 

coefficient of anisotropy over this measurement period. The standard deviations 

associated with the average values of H and M
m  in each layer and the absolute misfit 

of the models to the observed data provide uncertainties in H, m, V and .  

 

 

 

 

 

 



 162 

 

(a) Geometric mean resistivity (from inversion program) 
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(b) Geometric mean resistivity (estimate of true value) 
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Resistivity m 

Figure 5.9: Vertical sections through models of the geometric mean resistivity, 2009 Antarctic 

measurements. (a) the geometric mean resistivity obtained from 3D inversion of the data sets and (b) the 

estimate of the true geometric mean resistivity for the data. Listed are; the number of measurements in the 

data sets, the number of iterations and the final misfit of the inversion. The ice thickness at ~2.41m is not 

shown. Both horizontal distances and vertical depths are in metres. 
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(a) Horizontal resistivity 
11-12 Nov 15-16 Nov 19 Nov 21 Nov 

    

Iter – 4 

error – 14.30% 
3,001 data points 

Iter – 4 

error – 13.59% 
3,425 data points 

Iter – 4 

error – 14.00% 
3,306 data points 

Iter – 4 

error – 12.32% 
3,123 data points 

(b) Vertical resistivity 
11-12 Nov 15-16 Nov 19 Nov 21 Nov 

    

 
Resistvity m 

(c) Coefficient of anisotropy with depth 
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Figure 5.10: Vertical sections through models of the horizontal and vertical resistivity, and anisotropy 

profiles, 2009 Antarctic data. (a) the horizontal resistivity, obtained from 3D inversion of the data sets 

and (b) the vertical resistivity, calculated from H and m values. Listed are; the number of measurements 

in the data sets, the number of iterations and the final misfit of the inversion. The ice thickness at ~2.41m 

is not shown. Both horizontal distances and vertical depths are in metres. (c) shows plots of coefficient of 

anisotropy vs. depth, obtained while retrieving the true value of m. The vertical axis is the depth from the 

surface in meters and the horizontal axis is the coefficient of anisotropy. 
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(a) Temperature 
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(b) Salinity 
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Figure 5.11: Temperature, salinity and brine volume fraction profiles, 2009 Antarctic measurements. (a) 

smoothed averaged temperatures with depth – obtained from thermistor string measurements made as part 

of Antarctica New Zealand science event K131, (b) ice salinity with depth – obtained from measurements 

made on ice core as part of K131, and (c) brine volume fraction calculated from salinity and temperature, 

as in Cox and Weeks (1983), and plotted against depth. The vertical axis on all plots is depth from surface 

in centimetres. The horizontal axes are (a) temperature in 
o
C, (b) salinity in ppt and (c) brine volume 

fraction as a percentage. 
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(a) Horizontal resistivities (b) Vertical resistivities 
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(c) Geometric mean resistivities (d) Coefficient of anisotropy 
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Figure 5.12: Line plots of average 2009 data values with depth, for (a) the horizontal resistivity, (b) the 

geometric mean resistivity, (c) the vertical resistivity and (d) the coefficient of anisotropy of all four data 

sets. The vertical axes are depth from surface in meters and the horizontal axes are resistivity in ohm 

meters except (d) where the horizontal axis is the coefficient of anisotropy. Dashed lines indicate 

estimates of the uncertainties in the values. 

 

The vertical sections of the different components of the bulk resistivity, as shown in 

Figure 5.9b (m), Figure 5.10a (H) and Figure 5.10b (v), show little variation over the 

short two week measurement period, where temperatures did not change significantly. 

The relatively constant values for each component of the bulk resistivity are also clear 

in the line plots of Figure 5.12. The ice thickness at the time of all the measurements 

(~2.41m) was greater than the length of the electrode strings (1.8m), thus the 

ice/seawater interface is not observed. 

Figure 5.10a and Figure 5.12a show that the horizontal component of the bulk resistivity 

displays values of between 100 and 1200 ohm meters. The horizontal resistivity profiles 

increase slightly with depth, flatten off then below about 0.8m there is a significant 

decrease in resistivity. The slightly lower surface resistivities may indicate a region of 

the initial granular or frazil growth of the ice cover. The resistivities in the middle 
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region of the profiles vary from 650m to 1200m, similar to values observed in the 

early part of the sequence of the 2008 Arctic measurements (Figure 5.4a). However, 

there are no significant changes in resistivity observed in the Arctic models, until the 

ice/seawater interface. There is no significant variation in either temperature or brine 

volume fraction to account for large changes in resistivity. For example, between 0.8m 

and 1.5m depth the calculated brine volume fraction is relatively constant with values of 

between 2.5% and 3.5%, and while there is a slight rise in temperature from about 

-10
o
C / -8

o
C at 0.8 m depth to -7

o
C / -6

o
C at 1.5 m depth, this is not regarded as large 

enough to result in significant temperature controlled changes in microstructure. Such 

changes are predicted (e.g. Golden et al., 1998, 2007 and Golden, 2003) to occur when 

the brine volume fraction reaches 5% and the temperature -5 
o
C. 

In the Antarctic platelet ice can form beneath the ice cover in supercooled water, 

creating a tumbled, entwined platelet matrix. This matrix can be incorporated into the 

ice cover as it grows downwards (Leonard et al., 2006; McGuiness et al., 2009; 

Dempsey et al., 2010). Such a region of included platelet ice could be expected to have 

a greater degree of horizontal connectivity between brine inclusions, than that seen in 

vertically aligned columnar ice. The greater horizontal connectivity would be observed 

as a decrease in the horizontal component of resistivity. Thus, rather than representing a 

change in ice microstructure with temperature, we suggest that the observed resistivity 

decrease indicates a change in actual ice type from columnar ice to incorporated platelet 

ice. At depths above 0.8m there is a predominance of columnar ice, with little horizontal 

connectivity between brine inclusions. Beneath this depth the ice type changes reaching 

platelet ice, with greater horizontal connectivity of brine, near the base of the resistivity 

profiles. 

Compared to columnar ice, a region which includes platelet ice could also be expected 

to have less vertical connectivity between brine inclusions. This decrease in vertical 

connectivity would be observed as an increase in the vertical resistivity of the ice cover. 

There is a change in the vertical resistivity profiles around a depth of 1.2m, with a slight 

increase in resistivities below this depth. However, it would seem that despite the 

difference in the structure of the ice crystals the vertical connectivity of the individual 

brine inclusions is similar throughout. 
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The suggested change in ice type can also be observed in plots of the coefficient of 

anisotropy (Figure 5.10c and Figure 5.12d), with a significant increase in  below 0.8m 

as the value of the horizontal and vertical resistivities become more similar in value. 

This indicates a change from an anisotropic brine structure in a region of columnar ice 

to a more isotropic structure in a region which includes platelet ice.  

Studies of platelet ice in McMurdo Sound have found; platelet ice to be incorporated 

into the ice cover below depths of 0.68m (Leonard et al., 2006) to 0.8m (Smith et al., 

1998), and to predominate below depths of 1.1m (Leonard et al., 2006). Over the course 

of the 2009 Antarctic winter, participants of Antarctica New Zealand science event 

K131 made repeat CTD casts through the ice. These identified significant periods when 

platelet ice was present in the water column beneath the growing ice cover. 

Furthermore, analysis of ice cores, taken as part of Antarctica New Zealand science 

event K131, indicates the following sea ice structure; surface frazil ice (above 0.1m) 

followed by aligned columnar ice to a depth of 1m, below this is disrupted columnar ice 

(with smaller vertical extent) containing the occasional platelet at 1.5m, and finally 

platelet ice is observed below 1.75m (Gough, A. pers. comm.). These depths are similar 

to those obtained from the resistivity structure. Thus the core data support the 

interpretation of the resistivity data and the suggestion that these data differentiates 

between columnar and incorporated platelet ice. 
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Chapter 6 
Investigating brine structures 

 

The bulk resistivity of the sea ice depends upon brine resistivity, brine volume fraction 

(Vb/V) and the structure of the brine inclusions. Defining formation factor (FF) as bulk 

resistivity over brine resistivity (/b) combines these variables, so that a plot of 

formation factor versus brine volume fraction should give some initial indication of any 

changes that occur in the ice microstructure. The concept of formation factor derives 

from Archie‟s Law (Archie, 1942) as shown in section 6.1 below. 

Figure 6.1 displays four plots of FF (/b) versus brine volume fraction (Vb/V), showing 

the horizontal and vertical components of the bulk resistivity for the six measurement 

sets in the Arctic and the four measurement sets in the Antarctic. The resistivities are 

obtained from inversion of the data, while the brine resistivities are found using the 

measured temperature data and the expression given by Stogryn (1971) (see section 

3.9). The brine volume fractions can be found from measured temperature and salinity 

data using the expressions of Cox and Weeks (1983) (see section 3.7). 
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 (c)      Horizontal resistivity data 

2009 Antarctic measurements 

 (d)       Vertical resistivity data 

2009 Antarctic measurements 
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Figure 6.1: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for (a) the horizontal 

resistivity data from the 2008 Arctic measurements (b) the vertical resistivity data from the 2008 Arctic 

measurements, (c) the horizontal resistivity data from the 2009 Antarctic measurements and (d) the 

vertical resistivity data from the 2009 Antarctic measurements. 

 

In the two plots for the Arctic datasets (Figure 6.1a for the horizontal resistivity and 

Figure 6.1b for the vertical resistivity) it can be seen that there is a decrease in FF (/b) 

and an increase in brine volume fraction (Vb/V) as the temperatures increased over the 

measurement period. In the two plots for the Antarctic datasets (Figure 6.1c for the 

horizontal resistivity and Figure 6.1d for the vertical resistivity) it can be seen that there 

is much less variation in the FFs and brine volume fractions than that seen in the Arctic 

data. This is largely due to the smaller number of Antarctic datasets, measured over a 

shorter time period, during which the temperature changed only slightly. 

Within both the Arctic and Antarctic data sets there is an obvious decrease in the 

horizontal FF. In the Arctic data this change is observed over time, and a sharp drop in 

the horizontal component of resistivity between late May and mid June appears as a 

sharp discontinuity in the FF plot (Figure 6.1a). This is possibly indicative of a 

fundamental change in the microstructure of the ice and suggests that a percolation 

threshold (see section 6.5) may have been crossed. On the other hand the decrease in 

horizontal FF in the Antarctic data (Figure 6.1c) occurs in all data sets and is most likely 



 171 

caused by the suggested change with depth from columnar to platelet or frazil ice 

mentioned in Chapter 5. 

The vertical FF plots (Figure 6.1b for the Arctic data and Figure 6.1d for the Antarctic 

data) show less of a change than observed in the horizontal FF plots (Figure 6.1a for the 

Arctic data and Figure 6.1c for the Antarctic data). However, the Arctic data still shows 

a decrease in vertical FF or resistivity between the late May and mid June 

measurements. On the other hand, the vertical FF plot of the Antarctic data shows no 

clear trend. As was also indicated in Chapter 3 (section 3.7) these FF vs. brine volume 

plots show that the brine volume fractions of the Antarctic ice are lower and have a 

smaller range of values than that observed in the Arctic ice during our measurement 

periods. 

Many authors (eg Fricke, 1924; Hashin and Shtrikman, 1962; Tinga et al., 1973; Vant et 

al. 1978; Timco, 1979; Sihvola and Kong, 1988; Chelidze and Gueguen, 1999 and 

Grimm et al., 2008) have studied the electrical conductivity of multiphase materials (sea 

ice included) and created models based on mixture theory. Some of these are discussed 

below with consideration to how well they fit the measured resistivity structure of the 

first year Arctic and Antarctic sea ice. 
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6.1 Archie’s Law 
 

The variation of bulk resistivity in a two component system, such as sea ice, where the 

resistivity of one component is much higher than the other, has traditionally been 

expressed in terms of Archie‟s Law (Archie, 1942). 

b

nmSa    (from Telford et al., 1977.) 

where  is the bulk resistivity of the material, S is the fraction of the pore filled with the 

more conductive phase,  is the porosity, b is the resistivity of the more conductive 

phase, n  2 and a and m are empirically determined constants. For a situation in which 

all pore spaces are saturated (S=1), this may be expressed as 

b

ma    

By rearranging and taking the log of both sides equation (6.1) can then be expressed as 

   


 logloglog ma
b








  

As long as the geometry of the microstructure of the medium remains unchanged a 

log-log plot of formation factor against brine volume fraction yields a straight line with 

intercept log(a) and slope –m. Thus equation (6.2) allows values for the constants a and 

m to be determined. In the case of sea ice; the more conductive phase is the brine and 

the porosity () can be taken as the brine volume fraction (Vb/V), when all pore spaces 

are saturated. If the brine volume fraction is known then equation (6.2) can be used to 

calculate the bulk resistivity of the sea ice from the brine resistivity and appropriate 

values of a and m. Conversely if the bulk resistivity is measured this equation could 

provide the brine volume fraction of the ice. 

Originally (6.1) was derived for permeable sandstone displaying no preferred shape or 

orientation of pores. Morey et al. (1984) note that it had been found that the exponent m 

was dependent on the shape of the host particles, with m equal to 1.5 for spherical 

particles, greater than 1.5 for plate like grains or cylinders whose major axis is 

perpendicular to an applied electric field, and less than 1.5 when the electric field is 

parallel to the major axis of plate like grains. 

Studies of laboratory grown ice-hydrate systems by Grimm et al. (2008) give exponents 

of m=1.7 and 2.1 for 100mM and 10mM of NaCl respectively, m=0.8 for 10 mM HCl 

and m=1 and 2.5 for 100mM and 10mM of CaCl2 respectively. For sea ice the derived 

(6.1) 

(6.2) 
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values of m include; 1.55 for the top of the ice and 1.75 for the bottom found by Morey 

et al. (1984), a value of 2.2 given by Thyssen et al. (1974) and m=2.88 calculated by 

Ingham et al. (2008). 

In theory the intercept of the plot of expression (6.2) occurs when log()=log(Vb/V)=0, 

which means the brine volume fraction (Vb/V) is 100%. When the brine volume fraction 

is 100% the bulk resistivity () would equal the brine resistivity (b) and the formation 

factor (/b) would be 1. If this holds then the intercept of the log-log plot should in fact 

be equal to zero. However, Archie‟s Law was determined on laboratory samples in 

which the porosity (in the case of sea ice this can be taken as the brine volume fraction) 

ranged from 10% to 40% (Archie, 1942). Thus the behaviour of a medium with porosity 

greater than 40% can not be assumed to conform to Archie‟s Law and the statement 

above, regarding porosity of 100%, may not hold  

In order to see how our data are fit by Archie‟s law plots of log(/b) versus log(Vb/V), 

showing the horizontal and vertical components of the bulk resistivity for the six 

measurement sets in the Arctic (Figure 6.2) and the four measurement sets in the 

Antarctic (Figure 6.3) are shown below. 

For the Arctic data, with no constraint on the intercept, the gradient (m) is 1.93 and 1.32 

for horizontal (Figure 6.2a) and vertical (Figure 6.2b) resistivity plots respectively. The 

value for the horizontal resistivity data is above m=1.5 which suggests plate like grains 

whose major axis is perpendicular to an applied electric field. This is consistent with the 

expected structure of preferentially vertically elongated brine inclusions with the 

electric field applied in the horizontal direction. The vertical resistivity m value is also 

consistent with the expectation of vertically elongated brine inclusions. However, this 

time m is less than 1.5 indicating that the applied electric field is parallel (rather than 

perpendicular) to the major axes of the plate like grains or cylinders. 

Note that only the data up to 28-29 May have been fit by a straight line. Due to a large 

jump in resistivity after this date the data deviates from a straight line fit. Similarly in 

their study of the horizontal resistivity of sea ice, Ingham et al. (2008) observed that 

their data was only consistent with Archie‟s Law until the brine volume fraction 

exceeded 8%-10%. 
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(a)           Horizontal resistivity data 

2008 Arctic measurements 

 (b)             Vertical resistivity data 

2008 Arctic measurements 
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Figure 6.2: Log-log plots of formation factor (/b) vs. brine volume fraction (Vb/V), showing Archie‟s 

Law fit to the 2008 Arctic data. (a) the horizontal resistivity data (b) the vertical resistivity data. 

 

Recall that for the Antarctic data a significant decrease in resistivity below ~0.8m is 

associated with a change in ice type from mainly columnar to included platelet ice. This 

change in the geometry of the structure means that the Archie‟s law straight line cannot 

be fit to all the data together. Instead each of these ice types is considered separately, 

fitting a straight line to the data above 0.8m and similarly to the data below 1.5m (as 

shown in Figure 6.3 below). From ice cores (Gough, A., pers. comm., 2011) the region 

between 0.8m and 1.5m is most likely composed of columnar ice whose growth is 

disrupted by the introduction of the occasional platelet. With no constraint on the 

intercept, the data above a depth of 0.8m (Figure 6.3a) gives m=0.84 and m=0.11 for the 

horizontal and vertical resistivity respectively. Below 1.5m (Figure 6.3b) m values for 

the horizontal and vertical resistivities are 0.42 and 0.27 respectively. 

However, the data within these two regions of the ice are not fit well by straight lines. 

This is not surprising, as (i) the exact extent of the different ice types are unknown and 

there are most likely regions of mixed structure at the boundaries; and (ii) the limited 

number of data confined within a small range of brine volume fractions means that the 

gradients are poorly defined. Hence, little can be inferred from m values obtained from 
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the FF vs Vb/V plots of the Antarctic data. Despite this, attempting to fit Archie‟s law to 

the data clearly shows that there is change in the microstructure of the Antarctic sea ice 

with depth. 

 
Horizontal resistivity data 

2009 Antarctic measurements 

 Vertical resistivity data 

2009 Antarctic measurements 
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(b) structure below 1.5m  
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Figure 6.3: Log-log plots of formation factor (/b) vs. brine volume fraction (Vb/V), showing Archie‟s 

Law fit to the 2009 Antarctic data. (a) resistivity data from above 0.8m marked in black, left hand plot 

horizontal resistivity, right hand plot vertical resistivity. (b) resistivity data from below 1.5m marked in 

black, left hand plot horizontal resistivity, right hand plot vertical resistivity. Archie‟s Law is fitted to the 

black data points. 
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6.2 Power law mixing models 
 

Power law mixing models assume each phase is interconnected with efficiency 

depending on an exponent m. Grimm et al. (2008) compare measurements of electrical 

properties of ice-hydrate binary systems with mixing models, and provide the following 

expression for the general power law for two phases 

  mmm 1

2

1

1

1 1    

where  is the volume fraction of the medium with conductivity 1, and the exponent m 

is commonly between 1 and 3. 

When m=1 in expression (6.3) the Maxwell Garnett expression, which considers 

isolated inclusions in a connected host medium, is approximated. The formulation of the 

Maxwell Garnett expression involves an exact calculation of the field induced in the 

uniform host by a single spherical or ellipsoidal inclusion and an approximate treatment 

of its distortion by the electrostatic interaction between the different inclusions. 

The refractive index model (Birchak et al., 1974) is equivalent to (6.3) if m=2. Birchak 

et al. (1974) were investigating probes for measuring soil moisture and produced an 

expression equivalent to a volumetric average of the complex index of refraction, hence 

the index of refraction mixing model. This model arises from considering an 

inhomogeneous mixture consisting of a homogeneous matrix of one material in which 

particles of a second material are embedded (the particle size being small compared to 

the wavelength of the electromagnetic wave), the effective propagation constant may be 

obtained by partitioning into respective contributions from each of the two materials in 

question. 

The Looyenga model (Looyenga, 1965) is recovered from (6.3) if m=3. This model was 

created from reconsideration of previous equations for the dielectric constant of a 

heterogeneous system. The model considered by Looyenga (1965), consists of spheres 

of differing radii, in a homogeneous electric field. 

Expression (6.3) gives Archie‟s law with the empirical constant a equal to one if 2=0. 

In this case the intercept of expression (6.2) would be zero and 1 would be the 

conductivity of the more conductive phase. 

 

(6.3) 
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Formation factor (/b) vs. brine volume fraction (Vb/V) plots  

showing fit of power laws to the Arctic data 
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(b) Vertical resistivity data 
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Figure 6.4: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for Arctic data showing 

power law trends for different m values. (a) Horizontal resistivity data. (b) Vertical resistivity data. 
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Formation factor (/b) vs. brine volume fraction (Vb/V) plots 

showing fit of power laws to the Antarctic data 

(a) Horizontal resistivity data 
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(b) Vertical resistivity data 
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Figure 6.5: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for Antarctic data, showing 

power law trends for different m values. (a) Horizontal resistivity data. (b) Vertical resistivity data. 
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Using a high value for the resistivity of the ice (10,000,000m – the DC conductivity of 

pure ice noted by Mathews and Clark (1963)) and setting the brine resistivities and 

brine volume fractions to those calculated from the measured data, expression (6.3) 

returns conductivities that can be compared to the measured data. Figure 6.4 and Figure 

6.5 above show the fit of the power law mixing models to the FF vs. Vb/V data for the 

vertical and horizontal resistivity measurements in both the Arctic and Antarctic. 

The best fit to the horizontal Arctic data (Figure 6.4a) occurs when m=3 i.e. the 

Looyenga model. On the other hand, the best fit to the vertical Arctic data (Figure 6.4b) 

is achieved when m=2 or the refractive index model is applied. However both these fits 

are rough and, importantly, no single model explains both the horizontal and vertical 

component of the bulk resistivity. 

Fitting the power law mixing models to the Antarctic data is complicated by the fact 

that the brine structure changes with depth. Figure 6.5 shows that for the Antarctic data 

both the horizontal and vertical data are most closely matched when m=2 or the 

refractive index model is used. However, this model only fits the lower resistivity 

region of the horizontal data, i.e. the region suggested to include platelet ice. The 

resistivities measured in the upper regions of the ice, where the suggested structure is 

mostly columnar, are closer in value to those obtained when m=3. However, the 

Looyenga model does not provide a good fit to these data either, and gives higher 

resistivities than those measured. The match to the vertical Antarctic data is even worse 

with all measurements below the FF (or resistivity) suggested by the refractive index 

model. 

The fit of the power law mixing models can of course be affected by the conductivity 

and volume fraction values used in the calculations. The brine volume fractions and 

brine resistivities are obtained from calculations involving the measured data so should 

be of an acceptable value. However, the conductivity of the solid ice matrix is not well 

constrained with various values suggested by the literature. Increasing the conductivity 

of the ice will decrease the resistivity of the medium. This decrease is more pronounced 

in the Looyenga model (m=3) but all models show little change until the resistivity of 

the ice is lowered to 1000m. This resistivity seems unrealistically low, considering 

most of the salts are rejected from the ice lattice. Thus the plots obtained above are 

applicable for a range of realistic ice resistivities. 
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6.3 Suspensions of spheroids 
 

Fricke (1924) considers the electrical conductivity of a suspension of homogeneous 

non-polarisable spheroids, deriving an expression for the bulk conductivity of the 

medium. Comparisons are made with experimental data for the conductivity of the 

blood of a dog and suspensions of sand in salted gelatine. The expression given by 

Fricke (1924), describing the conductivity of this kind of system is 
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where  is the conductivity of the suspension, 1 is the conductivity of the suspending 

medium, 2 is the conductivity of the suspended medium, V2 is the volume 

concentration of the suspended medium (i.e. in the case of sea ice a brine volume 

fraction), and  is given by  
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where M is given, for oblate spheroids (a < b), by 





cos

sin

2sin
2

1

3



M                                           where bacos  

and for prolate spheroids (a > b) by 
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In both cases a is half the length of the axis considered parallel to the direction of the 

electric force and b half the length of each of the remaining two axes. 

Rearranging (6.4) above gives the following expression for the conductivity of the 

suspension 
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Timco (1979) presents the results and analysis of 66 Schlumberger geoelectric 

soundings on first year sea ice. This includes consideration of a conductivity model for 

(6.4) 

(6.5) 
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the sea ice. The chosen model consists of conducting spheroids in a poorly-conducting 

matrix. Timco (1979) notes that “Clearly such a model is very highly idealized and 

should not be interpreted as a rigorous representation of sea-ice structure. 

Nevertheless, it is felt that such an approach does provide useful information with 

regard to the typical characteristics of brine cells in sea ice”. Following Fricke (1924) 

the author gives the conductivity of a system of prolate spheroids (with the electric field 

parallel to the long axis of the spheroid) as 
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where 1 is the conductivity of the ice matrix, 2 is the conductivity of the brine 

inclusions, V2 is the brine volume in parts per thousand (i.e. a brine volume fraction), 

and A is given by 
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where l is the length of the brine cell and b the average radius of the brine cells. 

From the field measurements Timco (1979) obtains values of vertical resistivity equal to 

76m, V2=63‰, 1=3x10
-5

 S/m, 2=5 S/m and b=0.046mm, these then provide an 

average value for l of 1.7cm. 

Tinga et al. (1973) provide a brief overview of previous studies of dielectric mixture 

theory and look at finding the complex dielectric constant of a multiphase mixture with 

confocal ellipsoidal shell inclusions. They simplify their results to consider two phase 

structures with ellipsoidal inclusions, giving the following expression 
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where i is the dielectric constant of medium i, V2/V1 is the volume fraction of medium 

2, the ni are depolarisation coefficients. 

This expression can be rearranged to give an expression for the electrical permittivity of 

the medium. 

(6.6) 
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Using Debye theory the complex permittivity is given by  
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where l and  are the low and high frequency limits of *,  is the frequency,  the 

relaxation time,  the conductivity and o the permittivity of free space. 

Additionally the complex conductivity is given by 
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For DC where =0 these give 
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Using this, the expression for the dielectric constant (or permittivity) above can be 

rewritten to give the conductivity as 
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Vant et al. (1978) carried out measurements of the dielectric constant of sea ice samples 

and compared these with previously described dielectric models. They suggest that the 

expression put forward by Tinga et al. (1973), for a two phase structure with ellipsoidal 

(6.7) 
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inclusions, may have particular promise. The authors state the in the case of ellipsoidal 

inclusion n1 and n2 are equal and given by 
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when the electric field is applied along the short axes (2b) of the ellipsoid  
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when the electric field is applied along the long axis (2a) of the ellipsoid 

e is the ellipsoid eccentricity defined by 

   212
1 abe   

Thus the conductivity of the medium is given by the following expression, obtained 

from (6.7) with n1=n2=n 
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The expressions suggested by Fricke (1924) consider both prolate and oblate spheroids 

with the electric field applied parallel to the long axis of the prolate spheroids and the 

short axis of the oblate spheroids. Timco (1979), however, only considers the case of 

the electric field being parallel to the long axis of prolate spheroids. Tinga et al. (1973) 

and Vant et al. (1978) allow for consideration of electric fields applied parallel and 

perpendicular to the long axis of prolate spheroids. 

Considering first year sea ice, where the brine inclusions are preferentially elongated in 

the vertical direction and there is little or no horizontal anisotropy, the prolate spheroid 

models seem to be a better approximation to the structure. The horizontal resistivity is 

thus obtained when the electric field is along the short axis of the spheroid inclusions 

and, the vertical resistivity when the electric field is parallel to the long axis. The case of 

the oblate spheroid (Fricke (1924)) does not represent the suggested brine structure of 

first year sea ice and, therefore, is not considered further here. It should be noted that it 

is not necessary to set values for the length of the axes as, given the conductivities of 

(6.8) 

(6.9) 

(6.10) 
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the spheroid and background media, it is the axes ratio that determines the resistivity 

structure. 

The expressions obtained from Tinga et al. (1973) and Vant et al. (1978) are shown on 

FF vs. Vb/V plots in Figure 6.6 (Arctic data) and Figure 6.7 (Antarctic data) below, 

along with the measured horizontal and vertical resistivity data. Conductivities are 

obtain from expression (6.10) using (6.9) to give the vertical conductivity and (6.8) to 

give the horizontal conductivity. Values for the conductivity of the spheroid inclusions, 

which represent the brine component, are obtained from calculations involving the 

temperature of the ice during measurements. The conductivity of the background 

medium, which represents the ice matrix, is set to 0.0000001 Sm
-1

 (10,000,000m), the 

DC conductivity of pure ice as noted by Mathews and Clark (1963). However, the 

conductivity of the solid ice matrix is not well constrained with a range of values found 

within the literature. Thus the plots display results for differing axes ratios and the effect 

of changing the conductivity of the background medium or ice matrix. 

The values obtained from Tinga et al. (1973) and Vant et al. (1978) for the vertical 

resistivity show essentially the same results as would be obtained from Timco‟s 

expression, derived from Fricke (1924). Timco (1979) used a conductivity of 3x10
-5

 

S/m for the ice and derived lengths of b=0.046mm and l=2a=1.7cm. The results of 

using these values, which give a ratio of b/a=0.0054, in the expressions of Tinga et al. 

(1973) and Vant et al. (1978) have also been displayed on the vertical resistivity plots 

below. 
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Formation factor (/b) vs. brine volume fraction (Vb/V) plots 

showing Tinga et al. (1973) and Vant et al. (1978) expressions for the conductivity of a suspension of 

prolate spheroids 

(a) Horizontal resistivity data (Arctic data) 
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(b) Vertical resistivity data (Arctic data) 
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Figure 6.6: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for Arctic data, showing 

Tinga et al. (1973) and Vant et al. (1978) expressions for the conductivity of a suspension of prolate 

spheroids. (a) Horizontal resistivity data. (b) Vertical resistivity data. 
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Formation factor (/b) vs. brine volume fraction (Vb/V) plots 

showing Tinga et al. (1973) and Vant et al. (1978) expressions for the conductivity of a suspension of 

prolate spheroids 

(a) Horizontal resistivity data (Antarctic data) 
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(b) Vertical resistivity data (Antarctic data) 
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Figure 6.7: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) for Antarctic data, showing 

Tinga et al. (1973) and Vant et al. (1978) expressions for the conductivity of a suspension of prolate 

spheroids. (a) Horizontal resistivity data. (b) Vertical resistivity data. 
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From Figure 6.6a and Figure 6.7a, showing the horizontal resistivity for the Arctic and 

Antarctic data respectively, it can be seen that by considering brine inclusions in the 

form of prolate spheroids and a low conductivity for the ice matrix the expressions 

suggested by Tinga et al. (1973) and Vant et al. (1978) do not match the resistivity data 

measured in the field. All axes ratios (b/a) return comparable conductivities and thus 

only one curve is visible on the plots. The only way to obtain similar values to the 

measurements is to significantly increase the conductivity of the ice (~0.001Sm
-1

). Such 

a high conductivity seems unrealistic as it is generally accepted that most of the salts are 

rejected from the ice lattice as the seawater freezes. Furthermore even if such a value for 

the ice conductivity were used the shape of the theoretical formation factor curve is 

significantly flatter than the observed trends, especially the Antarctic data. 

Figure 6.6b and Figure 6.7b, displaying the vertical Arctic and Antarctic data 

respectively, shows that the suggested model provides a match to the measured data if 

the ratio of the axes (b/a) is between 0.001 and 0.0001, when the ice conductivity is 

0.0000001Sm
-1

. With a higher conductivity value for the ice matrix the resistivity of the 

medium would of course decrease. In this case the ratio b/a would need to be higher, i.e. 

the length of the short axis (b) becomes closer to the length of the long axis (a), for the 

vertical resistivity values to be similar to that obtained by measurement. 

Using the values of ice conductivity and the b/a ratio stated by Timco (1979) the 

expressions of Tinga et al. (1973) and Vant et al. (1978) provide values similar to those 

obtained from measurements of the vertical resistivity of Arctic sea ice (see Figure 

6.6b). For the Antarctic data the values used by Timco give higher FF values than 

observed in the measured data (see Figure 6.7b). 

From these results it is seen that considering a suspension of homogeneous prolate 

spheroids does not produce a model that closely matches both the vertical and 

horizontal resistivity structure of first year sea ice. Additionally, as we know nothing of 

the separation of the spheroids it is difficult to determine much information on the 

structure, for instance is there any connection between brine inclusions or are they 

isolated. These types of models only produce an average picture of the brine structure. 
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6.4 Cuboid models 
 

It is possible to build 3D structures of cuboid inclusions of brine within a matrix of ice, 

calculate the resistivity as the brine volume fraction changes and compare with the 

measured data. In this way a simplistic picture of the microstructure of the measured sea 

ice cover can be developed, giving some insight into changes in the structure with depth 

and time. 

For example consider a structure comprising of isolated cubes of a material with a 

conductivity of 2 within a matrix of a second material with a conductivity of 1, as 

shown in Figure 6.8 for a unit cube of the material. 

 

 

Figure 6.8: Unit cube of a two phase structure, consisting of cubes of a material with conductivity 2, 

within a matrix of material with conductivity 1. The distance between the cubes is given by b while the 

dimensions of the cubes are given by a. The direction of the x, y and z axes have been labelled. 

 

For this structure the conductivity measured in the three different directions (x, y and z) 

will be the same, due to the isotropy of the structure. A bulk conductivity () can be 

found by equating the current expressed in the form of Ohm‟s Law 

)EσJ( EAI   to the current expressed as the sum of currents through each 

possible path i.e. current can find a path through just the ice or it can travel through a 

mixture of brine and ice. In the case of current travelling through both ice and brine the 

conductivity e is the effective conductivity of a section which contains both materials. 

Such a conductivity can be found using the relationship between conductivity and 

resistance (=l/(AR)), where the resistance R is obtained by adding the resistances of the 

two separate materials. 

From these calculations the bulk conductivity () for this cubic structure is given by  
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The volume fraction of the material with a conductivity of 2 is given by 
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Consider the structure shown in Figure 6.8, where the isolated cubes represent brine 

inclusions and the background matrix solid ice. The side of the unit cube or a+b is set to 

be constant, this confines the structure so that if the horizontal dimensions of the cubes 

(a) increase the spacing between the cubes (b) must decrease. Note that the actual 

values of a and b depend only on the size set for the unit cube. Any multiple of the 

derived values will give the same formation factor and brine volume so long as the ratio 

a/b remains the same. The formation factor (/b) of cubic models with different ice 

conductivities are calculated over low to 100% brine volume fraction using equations 

(6.11) and (6.12) and the brine conductivities calculated from measured temperature 

data and the expression given by Stogryn (1971). These formation factors (FF) are 

compared to those calculated from the measured data. Figure 6.9 and Figure 6.10 show 

plots of FF vs. brine volume fraction for the horizontal and vertical resistivities of cubic 

models and the Arctic and Antarctic data. 
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(a) Horizontal resistivity (Arctic data) 
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Figure 6.9: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed cubic 

structures (grey shading) and the measured Arctic data (coloured points), for (a) the horizontal resistivity 

and (b) the vertical resistivity. 
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(a) Horizontal resistivity (Antarctic data) 
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Figure 6.10: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed cubic 

structures (grey shading) and the measured Antarctic data (coloured points), for (a) the horizontal 

resistivity and (b) the vertical resistivity. 
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Initially the conductivity of the ice is set as 1=0.0000001 Sm
-1

 (10,000,000m), the 

DC conductivity of pure ice as noted by Mathews and Clark (1963). As mentioned 

above, the conductivity of the solid ice matrix is not well constrained, for example 

Timco (1979) give 0.00003 Sm
-1

 (~33,333m) for the conductivity of a matrix of ice 

containing trapped impurities. Thus a range of 1 values is considered. The shaded areas 

in Figure 6.9 and Figure 6.10 indicate the range of formation factors obtained for each 

of the ice conductivities by considering the maximum and minimum calculated brine 

conductivities. 

From the plots of horizontal FF (Figure 6.9a and Figure 6.10a) it can be seen that for ice 

resistivities of the order of 10,000,000m to 1,000,000m the FFs do not give values 

within the range of the required FFs until a brine volume fraction of greater than 99% is 

reached. With 1 of the order of 100,000m the brine volume fraction is 95% before 

the FFs are with in the calculated range. For the resistivity of ice set at 10,000m the 

FFs are not within the calculated range until the brine volume fraction is greater than 

61% and 74% for the Arctic and Antarctic data respectively. It is not until the resistivity 

of the solid ice matrix is of the order of 1,000m that a reasonable match to the 

calculated FFs and brine volume fractions are obtained. In fact the resistivity of the ice 

must be less than 2000m for the Arctic data and less than 1000m for the Antarctic 

data, as shown by the solid black curves in Figure 6.9a and Figure 6.10a. This resistivity 

seems unrealistically low for the solid ice matrix, especially when one considers that 

most of the salts are rejected from the ice lattice to brine inclusions as the seawater 

freezes. 

As can be seen in Figure 6.9b and Figure 6.10b the resistivity of the ice must be even 

lower, at less than 75m for the Arctic data and less than 60m for the Antarctic data, 

for the vertical FF data to be matched. Hence, the plots in Figure 6.9 and Figure 6.10 

show that for the cubic structure, shown in Figure 6.8, and what are considered 

reasonable estimates of the resistivity of the ice, the brine volume fraction must be 

greater than 95% in order to achieve the measured vertical and horizontal resistivities. 

This indicates the need for significant connectivity in both the vertical and horizontal 

directions in order to obtain the „low‟ resistivities measured in the field. 
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Hence in order to match the vertical resistivity we consider a structure comprising of 

vertical cubic columns of a material with a conductivity of 2 within a matrix of a 

second material with a conductivity of 1, a unit cube of this material is shown in Figure 

6.11 below. 

 

 

Figure 6.11: Unit cube of a two phase structure, consisting of vertical cubic columns of a material with a 

conductivity 2, within a matrix of material with conductivity of 1. The distance between the columns is 

given by b while the horizontal dimensions of the columns is given by a. The direction of the x, y and z 

axes have been labelled. 

 

For this structure the conductivity measured in the two horizontal directions (x and y) 

will be the same, due to isotropy of the horizontal structure, while that in the vertical 

direction (z) will be different from these. Hence x=y=H and z=V. Using the same 

considerations as with the bulk conductivity of the cubic structure previously, the 

horizontal (H) and vertical (V) conductivities can be found. Thus it can be seen that 

the horizontal conductivity (H) for this column structure is given by  
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The volume fraction of the material with a conductivity of 2 is given by the following 

expression 
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Take the structure shown in Figure 6.11 as having the vertical cubic columns 

representing brine (2 obtained from the brine resistivities calculated from the measured 

(6.13) 

(6.14) 

(6.15) 
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data) and the background matrix representing ice (1=0.0000001Sm
-1

 (10,000,000m), 

the DC conductivity of pure ice as noted by Mathews and Clark (1963)). If a sensible 

initial value for a is chosen (suggested dimensions of brine inclusions can be obtained 

from literature – see section 1.2) and a+b is set to be constant (this confines the 

structure so that if the horizontal dimensions of the columns (a) increases the spacing 

between the columns (b) must decrease) a value for b can be deduced so that the vertical 

formation factors (v/b), obtained via equation (6.14) and the value of 2, match the 

vertical formation factors (FF) calculated from the measured data. Using the derived 

values of a and b the brine volume fraction of the proposed ice structure can be found 

using expression (6.15). It should be noted that the sizes of a and b can be any multiple 

of the derived values so long as a/b remains the same. 

Figure 6.12a and Figure 6.13a show plots of vertical FF vs. brine volume fraction 

containing the Arctic and Antarctic data respectively. From these graphs it can be seen 

that the FF (or resistivity) is the same as that obtained from the measured data, however, 

the brine volume fraction is much lower. This indicates the need for additional brine 

structure in the model. 

For the suggested dimensions (a and b) of the proposed column structure the horizontal 

FF can be obtained using expression (6.13) and the value of 2. From the plots of 

horizontal FF vs. brine volume fraction, as shown in Figure 6.12b (Arctic data) and 

Figure 6.13b (Antarctic data), it can be seen that not only is the brine volume fraction 

too low, but also, as expected, the FF is too high as there is no horizontal connectivity in 

the suggested model. 
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Figure 6.12: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed 

column structure (light grey points) and the measured Arctic data (coloured points), for (a) the vertical 

resistivity and (b) the horizontal resistivity. 
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(b) Horizontal resistivity (Antarctic data) 
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Figure 6.13: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed 

column structure (light grey points) and the measured Antarctic data (coloured points), for (a) the vertical 

resistivity and (b) the horizontal resistivity. 
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To match the horizontal resistivity we consider a structure comprising of horizontal 

cubic tubes of a material with a conductivity of 2 within a matrix of a second material 

with a conductivity of 1. As we have assumed horizontal isotropy for the sea ice it is 

necessary to have the same structure in the x and y-directions of our model, i.e. tubes in 

both these directions. A unit cube of this material is shown in Figure 6.14 below. 

 

 

Figure 6.14: Unit cube of a two phase structure, consisting of horizontal cubic tubes of a material with 

conductivity 2, within a matrix of material with conductivity of 1. The height and width of the tubes is 

given by c and a respectively while the distance between parallel tubes is given by b. The direction of the 

x, y and z axes have been labelled. 

 

For this tube structure it can be shown that the horizontal conductivity (H) is given by  
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the vertical conductivity (V) is 
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and the volume fraction of the material with a conductivity of 2 is  
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Using the same values for a and b as for the column structure, setting the value for 2 

by using the brine resistivities calculated from the measured data and setting 1 to the 

DC conductivity of pure ice values of c can be found, using equation (6.16), to closely 

match the magnitude of the horizontal FF data. Figure 6.15a (Arctic data) and Figure 

6.16a (Antarctic data) are plots of horizontal FF vs. brine volume fraction, and they 

show that the FF (or resistivity) is the same as that obtained from the measured data. 

(6.16) 

(6.17) 

(6.18) 
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However, the brine volume fraction is much lower. As with the similar results observed 

for the column structure and the vertical FF data above this suggests that further brine 

structure is required. 

For the suggested tube structure the vertical FF can be obtained from expression (6.17). 

From the plots of vertical FF vs. brine volume fraction, as shown in Figure 6.15b 

(Arctic data) and Figure 6.16b (Antarctic data), it can be seen that for this model, as the 

suggested tube structure does not have enough vertical connectivity, the vertical FF 

results are much higher than the observed values. 
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(a) Horizontal resistivity (Arctic data) 
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Figure 6.15: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed tube 

structure (dark grey points) and the measured Arctic data (coloured points), for (a) the horizontal 

resistivity and (b) the vertical resistivity. 
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(a) Horizontal resistivity (Antarctic data) 
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(b) Vertical resistivity (Antarctic data) 
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Figure 6.16: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed tube 

structure (dark grey points) and the measured Antarctic data (coloured points), for (a) the horizontal 

resistivity and (b) the vertical resistivity. 
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To be able to match both the observed magnitudes of the vertical and horizontal 

resistivity simultaneously the two previous structures are combined. This creates a 

structure comprising of vertical cubic columns of a material with a conductivity of 2 

and horizontal cubic tubes of the same material within a matrix of a second material 

with a conductivity of 1, a unit cube of this material is shown in Figure 6.17 below. 

 

 

Figure 6.17: Unit cube of a two phase structure, consisting of vertical cubic columns and horizontal cubic 

tubes of a material with conductivity 2, within a matrix of material with conductivity of 1. The 

horizontal distance between the columns and parallel tubes is given by b, the horizontal dimensions of the 

columns and the width of the tubes is given by a, and the height of the tubes is given by c. The direction 

of the x, y and z axes have been labelled. 

 

For this combined structure of tubes and columns it can be seen that the horizontal 

conductivity (H) is given by  
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Furthermore, the volume fraction of the material with a conductivity of 2 is given by 
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Using the same values for a, b and c as found in the independent tube and column 

structures (for both the Arctic and Antarctic data), once again setting 2 by using brine 

resistivities calculated from the measured data and setting 1 to the DC conductivity of 

(6.19) 

(6.20) 

(6.21) 
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pure ice, equation (6.19) and (6.20) can be used to find the vertical and horizontal FFs. 

Plots of vertical and horizontal FFs vs. brine volume fraction, displaying the Arctic 

data, are shown in Figure 6.18a and Figure 6.18b respectively. The Antarctic data are 

included in Figure 6.19a and Figure 6.19b which display the vertical and horizontal FFs 

vs Vb/V respectively. From these graphs it can be seen that the FFs (or resistivities) 

closely match those obtained from the measured data, however, the brine volume 

fraction is still much lower. Thus the structure shown in Figure 6.17 gives both the 

required vertical and horizontal resistivities for the Arctic and Antarctic data, but some 

additional brine structure is still required. 
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(a) Vertical resistivity (Arctic data) 
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(b) Horizontal resistivity (Arctic data) 

(
/

b
) 

1

10

100

1000

10000

100000

1000000

10000000

100000000

0.00 0.05 0.10 0.15 0.20
 

                  (Vb/V) 

1

10

100

1000

0 0.05 0.1 0.15 0.2 0.25

7-9 Apr 25-26 Apr 8-9 May

20-21 May 28-29 May 16-17 Jun

column and tube structure

 

Figure 6.18: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed 

column and tube structure (black points) and the measured Arctic data (coloured points), for (a) the 

vertical resistivity and (b) the horizontal resistivity. 
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(a) Vertical resistivity (Antarctic data) 
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(b) Horizontal resistivity (Antarctic data) 
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Figure 6.19: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed 

column and tube structure (black points) and the measured Antarctic data (coloured points), for (a) the 

vertical resistivity and (b) the horizontal resistivity. 
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One way to increase the brine volume fraction without significantly affecting the 

vertical or horizontal resistivities is to introduce isolated cubes of brine of dimension d 

as illustrated in Figure 6.20, below. The resistivity of this new structure (tubes, cubes 

and columns of brine) can be shown to be given by the following expressions 
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while the brine volume fraction is given by 
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Note that the above expressions hold for any position of the cube of brine within the b 

by b by a+b-c area of pure ice left free by the column and tube structures. In Figure 6.20 

below the cube is arbitrarily shown in the far corner of this region of the solid ice 

matrix. 

 

 

Figure 6.20: Unit cube of a two phase structure, consisting of vertical cubic columns, horizontal cubic 

tubes and cubes of a material with conductivity 2, within a matrix of material with conductivity of 1. 

The horizontal distance between the columns and parallel tubes is given by b, the horizontal dimensions 

of the columns and the width of the tubes is given by a, the height of the tubes is given by c, and the 

dimensions of the cubes are given by d. The direction of the x, y and z axes have been labelled. 

(6.22) 

(6.23) 

(6.24) 
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Knowing the difference between the brine volume fractions obtained from the 

measurement data and the suggested column and tube structure the required dimensions 

(d) of the cube can be found by equating this difference to the volume fraction of the 

cube giving 
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Using the same values for a, b and c as found in the independent tube and column 

structures, the value of d obtained from the expression above, using the brine 

resistivities calculated from the measured data to set 2 and setting 1 to the DC 

conductivity of pure ice equation (6.22) and (6.23) can be used to find the vertical and 

horizontal FFs for both the Arctic and Antarctic data. In Figure 6.21 and Figure 6.22 

below it can be seen that a structure comprised of columns, tubes and isolated cubes of 

brine can be constructed so that the FF‟s and brine volume fractions of the structure 

closely match those obtained from the measured data (differences between the values 

obtained from the proposed structures and the values obtained from the measured data 

result in errors of less than 1%). 
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Figure 6.21: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed 

column, tube and cube structure (white points) and the measured Arctic data (coloured points), for (a) the 

vertical resistivity and (b) the horizontal resistivity. 
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(a) Vertical resistivity (Antarctic data) 
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(b) Horizontal resistivity (Antarctic data) 
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Figure 6.22: Plots of formation factor (/b) vs. brine volume fraction (Vb/V) of both the proposed 

column, tube and cube structure (white points) and the measured Antarctic data (coloured points), for (a) 

the vertical resistivity and (b) the horizontal resistivity. 
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The data can therefore be well fit by this structure given the brine resistivities calculated 

from temperature data and an estimate at the conductivity of pure ice 

(1=0.0000001Sm
-1

 as given by Mathews and Clark (1963)). However, as previously 

discussed the conductivity of the solid ice matrix is not well constrained. Thus it is 

important to consider how changing the conductivity of the ice (1) affects the 

resistivity values obtained from the model structure. 

By taking average values for the conductivity of the brine and the dimensions of the 

structure (a, b, c, and d) equations (6.22) and (6.23) can be used to find the horizontal 

and vertical conductivity of the structure for different values of the conductivity of the 

ice matrix. Figure 6.23 (Arctic data) and Figure 6.24 (Antarctic data) below, show plots 

of conductivity of the model structure vs. differing conductivities of the ice matrix. 

From these plots it can be seen that for both the Arctic and Antarctic data the column, 

tube and cube structure shows horizontal (blue curve) and vertical (green curve) 

conductivities that do not change significantly with increasing ice conductivity until that 

conductivity reaches 0.001Sm
-1

 (corresponds to a resistivity of 1000m). Suggesting 

that the solid ice matrix has a resistivity of less than 1000m seems unrealistic, as most 

of the salts are rejected from the ice lattice, forming brine inclusions, as the seawater 

freezes. Thus the suggested models appear robust to changes of the conductivity of the 

ice, within a sensible range. 
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Figure 6.23: Plot of the conductivity of the proposed Arctic column, tube and cube structure for differing 

conductivities of the ice matrix. The blue curve shows the trend of the horizontal component of the bulk 

conductivity, while the green curve shows the trend of the vertical component of the bulk conductivity. 
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Conductivity of Antarctic column, tube and cube medium for 

different conductivties of the ice matrix
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Figure 6.24: Plot of the conductivity of the proposed Antarctic column, tube and cube structure for 

differing conductivities of the ice matrix. The blue curve shows the trend of the horizontal component of 

the bulk conductivity, while the green curve shows the trend of the vertical component of the bulk 

conductivity. 

 

The proposed dimensions of the columns, tubes and cubes are not fixed values, rather it 

is the relation between the dimensions that must remain constant. This means that if all 

dimensions are multiplied by an arbitrary value the conductivity of the model structure 

will remain the same. Despite this the structure shown in Figure 6.20 still indicates that 

there must be horizontal and vertical connectivity of brine to obtain the resistivities 

measured, and additional isolated brine pockets to give the observed brine volume 

fraction. The relative sizes are quite well constrained, with an increase of 1% in any one 

of the dimensions leading to a misfit to the data of approximately the same size, while 

an increase of 5% produces a misfit of 5% to 10%. 

One way of allowing the proposed structure to be physically realistic (in terms of 

dimension) is to initially set one of the dimensions to a value suggested by the literature 

and then allow the dimensions to evolve around this to give the required resistivities. 

The dimensions of the proposed structure are shown in Figure 6.25 (Arctic model) and 

Figure 6.26 (Antarctic model) below, where the dimensions are expressed as multiples 

of the initial dimension of the columns (i.e. that from the surface of the ice on the 7-9 

April 2008 and the 11-12 Nov 2009). 
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Figure 6.25: Plots of the relative sizes, and the trends with time and depth, of the dimensions of the 

proposed Arctic brine structure. (a) the horizontal dimensions of the columns (a), (b) the spacing between 

the columns (b), (c) the thickness of the horizontal tubes (c) and (d) the dimensions of the cubes (d). 
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Figure 6.26: Plots of the relative sizes, and the trends with time and depth, of the dimensions of the 

proposed Antarctic brine structure. (a) the horizontal dimensions of the columns (a), (b) the spacing 

between the columns (b), (c) the thickness of the horizontal tubes (c) and (d) the dimensions of the cubes 

(d). 
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For the brine structure model created for the Arctic data (Figure 6.25) the horizontal 

dimensions (a) of the columns increase over the measurement period as the ice warms 

up. Additionally, for most of the measurement periods, the column dimensions are 

greater at the bottom and, for later measurements, also at the top of the ice, consistent 

with the ice being warmer in these regions. Only the model for the 16-17 June differs 

from this with apparently thinner columns at the surface and base of the ice. It should be 

noted that the 16-17 June profile is more compact than the other profiles due to surface 

and bottom melting which occurs on the ice cover. Additionally high surface 

resistivities, probably caused by flushing of brine by melt water, have been removed. 

Despite this it would seem that the decreasing salinity of the brine seen as the ice melts 

may be affecting the model brine structure obtained for this late measurement period. 

The separation between the columns (b) is, as expected, the mirror image of the size of 

the columns. 

The thickness of the horizontal tubes (c) also displays an increase in size over the 

measurement period with a large jump between the 28-29 May and 16-17 June models. 

For the c dimension of the tubes all models display a similar depth variation to that seen 

with the a dimension of the columns, with slightly larger dimensions at the base and 

later also at the surface of the ice. The dimensions of the isolated cubes (d) show 

significant overlapping of model values and no clear trends, however, there is a general 

increasing in dimension as temperatures increase. 

For the Antarctic data the brine structure (Figure 6.26) shows no clear trend over the 

measurement period with the values for the models of the different dates more closely 

grouped. This probably reflects the small variation in the temperature profiles of the ice 

over the four measurement sets. Having said this there is a slight increasing trend in the 

dimensions of the brine inclusions as the temperature increases, this is perhaps most 

discernible in the thickness of the horizontal tubes (c). 

The horizontal dimensions of the columns (a) roughly form two c-shaped plots above 

and below 110cm to 120cm. This could be due to a change from columnar to included 

platelet ice. The blip observed in this trend at 120cm – 130cm coincides with a similar 

anomaly seen in the vertical resistivity data for the Antarctic. As with the Arctic models 

the separation between the columns (b) is a mirror image of the sizing of the columns. 
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The thickness of the horizontal tubes (c) is relatively constant until a depth of ~80cm 

where the thickness begins to increase steadily. This is consistent with a change from 

columnar ice with little horizontal connectivity to included platelet ice with greater 

horizontal spaces available between the randomly orientated ice crystals. Between these 

regions ice cores indicate the presence of disrupted columnar ice (Gough, A., pers. 

comm., 2011), where crystals have smaller vertical extent, and there is thus an 

opportunity for a greater number of horizontal brine connections. In our simple model 

these greater number of connections could be represented as wider channels. 

In the Antarctic models the dimensions of the cubes (d) display a double c-shaped curve 

similar to that observed in the horizontal dimensions of the columns of brine. 

For both models, apart from the lower part of the Antarctic data, the thicknesses of the 

horizontal tubes (c) are significantly smaller, by approximately an order of magnitude, 

than the initial column size. This would seem to suggest that electrical connection may 

occur along grain boundaries rather than through developed brine channels. It has in fact 

been suggested that DC conductivity in sea ice may be controlled by the brine 

distribution existing at the grain boundaries (Toyama et al. 2001) and the connected 

liquid veins at triple junctions in the ice (Wolff et al., 1997). 

There is a significant increase in the thickness of the horizontal tubes of the Arctic 

model on the 16-17 June to dimensions more inline with the column brine inclusions 

observed in the vertical direction. Additionally, as mentioned above, the thickness of the 

tubes increases with depth in the Antarctic model reaching 0.65 times the initial column 

size at depths of 170cm to 180cm. The size of the isolated cubic brine inclusions (d) is 

fairly large compared to the other dimensions at 5.25 to 10.9 times the initial column 

size. However, this large dimension is probably due to our simplistic model 

representing all additional brine as a single pore rather than being contained in multiple 

smaller pores. 

From the literature values obtained for the diameter of brine inclusions in sea ice range 

from 0.01mm to 0.38mm (see section 1.2). These values depend on the temperature and 

structure of the ice. Considering this range of dimensions, and comparing to the brine 

model structure created for the Arctic data, the thickness of the brine columns (a) could 

be within the range of 0.01mm to 1.24mm. The spacing between the columns of brine 

(b) would then have dimensions between 0.17mm and 7.41mm. Literature values for the 
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spacing between brine layers ranges from 0.2mm to 0.9mm, while the dimensions of ice 

crystals are given as a few to tens of millimetres (see section 1.2). These values fall 

within the upper and lower regions of the range of values suggested for the spacing 

between the columns of brine in the model structure. Thus the model structure could 

represent brine layers within crystals or inclusions between crystals, depending on the 

initial dimension used. Assuming literature values for the thickness of the columns of 

brine the dimensions of the tubes (c) would be within the range of 0.38m to 0.76mm. 

Furthermore, the dimensions of the isolated cubes of brine (d) would be between 

0.06mm and 4.14mm. 

Similarly, the range of values for the diameter of brine inclusions in sea ice, obtained 

from literature and stated above, can also give an approximate range of dimensions for 

the model of the brine structure of the Antarctic sea ice. The thickness of the columns of 

brine would lie between 0.01mm and 0.53mm, while the spacing between them would 

be between 0.17mm and 6.76mm. Furthermore, the thickness of the tubes of brine 

would be between 0.42m and 0.24mm, and the dimensions of the isolated cubes would 

lie between 0.05mm and 2.47mm. These ranges are towards the lower end of the range 

of dimensions given for the brine components of the Arctic models, due to there being 

less of a change in structure in the Antarctic sea ice over the measurement period. 

Studies of the brine component of sea ice (see section 1.2) also indicate an increase in 

the dimensions of brine inclusions as the ice warms. Furthermore, as these brine pockets 

expand they can merge to form even bigger inclusions. In our simple model both these 

observations are consistent with the general increasing of the dimensions of the brine 

components, noted as the temperatures increased over the measurement period. Using 

the median value of the brine inclusion diameters suggested in literature (see section 

1.2) it can be seen how the dimensions of the models vary over the measurement period. 

In the Arctic models the horizontal dimensions of the columns would increase from 

0.2mm to 0.5mm between early April and late May. The dimensions then increase to 

around 0.6mm in the 16-17 June model. The variation of the thickness of the horizontal 

tubes would be given by 7.6m < c < 42m, between 7-9 April and 28-29 May. In mid 

June these dimensions jump sharply to around 0.22mm. Finally the sides of the cube 

would vary from 1.2mm to 2.18mm. 
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As mentioned above, for the Antarctic data the structure of the brine components shows 

no clear trend over the measurement period with the values for the models closely 

grouped and crossed over one another. Thus it is difficult to set a range for any increase 

there may be in brine inclusion size with temperature. 

Despite difficulties in defining the actual sizes of the microstructure, a basic two phase 

structure has been constructed which models both the observed resistivities, and their 

variation with brine volume fraction. The proposed structure of cubic columns, tubes 

and cubes is an idealization of a more complex microstructure, but gives an indication 

of the possible form of the structure of the brine inclusions, within the studied landfast 

first year Arctic and Antarctic sea ice. The modelled structure suggests expanding brine 

inclusions with increasing temperature, vertical connections between brine inclusions 

even when the ice is still relatively cool, and horizontal connectivity of brine along 

grain boundaries. 
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6.5 Percolation theory 
 

The simplest form of percolation theory considers a model of a collection of points 

distributed in space. Whether these points are connected or not is determined by a given 

probability, dependent upon the parameters of the model. These models undergo a 

transition from a state where the connectivity of the points are localised to one in which 

the points become connected in an infinite cluster. This transition occurs at a critical 

probability. Before the transition the model is dominated by one phase, while afterwards 

it is dominated by the other. 

As discussed previously the occurrence of percolation thresholds in sea ice have been 

suggested by other studies of sea ice properties. For example Golden et al. (1998), 

(2007) and Golden (2003) have suggested that sea ice exhibits a marked transition in its 

fluid transport properties when Vb/V is about 5%. For a bulk salinity of 5‰, Golden et 

al. (2007) indicate that the critical porosity (or brine volume fraction) of 5% 

corresponds to a temperature of -5
o
C. Thus, below -5

o
C the ice is impermeable, 

however, above this temperature brine can move through the ice (Golden et al. 1998; 

2007 and Golden 2003). However, as flow of electric current can occur at smaller brine 

inclusion diameter than fluid flow this threshold may not be directly transferable to 

resistivity properties. From measurements of H on Arctic sea ice, Ingham et al. (2008) 

observed that their FF vs. Vb/V plot was only consistent with Archie‟s Law until 

temperatures rose above -5
o
C. At these temperatures the brine volume fraction exceeded 

8%-10%. The authors suggest that at this stage a percolation threshold is crossed, and 

the bulk properties of the sea ice go from being dominated by the ice phase to being 

dominated by the brine phase. That estimate was based, however, on three sets of much 

sparser data acquired using only 2 boreholes. 

As mentioned at the start of this chapter, the drop in the horizontal component of 

resistivity observed in the Arctic between late May and mid June appears as a sharp 

discontinuity in the formation factor plot (Figure 6.1a). This could suggest that a 

percolation threshold may have been crossed, and that above this transition (i.e. at 

higher brine volume fractions) the physical properties of the ice become dominated by 

those of the brine component. There is also a significant decrease in the formation factor 

plot for the vertical resistivity observed in the Arctic. This is perhaps best seen on a plot 
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with a linear rather than log scale, such as the vertical FF vs. Vb/V plot for the 2008 

Arctic data in Figure 6.27 below. 
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Figure 6.27: Plot of formation factor (/b) vs. brine volume fraction (Vb/V) for the vertical resistivity 

data from the 2008 Arctic measurements. Black line represents the relationship determined by Golden 

(pers. comm., 2009) 

 

The shape of this plot is closely matched by a relationship determined by Golden (pers. 

comm., 2009) from direct measurement of the vertical resistivity of Antarctic sea ice 

cores. The suggested relationship between vertical FF and brine volume fraction is 

obtained from consideration of percolation theory and takes the form 

FF() ~ FFo(- c)
-2

,  c
+
 

where  is the brine volume fraction, and c the critical brine volume fraction or 

threshold value which is set to 0.05, a value predicted for electrical conductivity in 

columnar sea ice. The scaling parameter FFo=1/8.6 is obtained from the intercept of a 

linear best fit of the resistivity data obtained from the sea ice cores, when plotted as 

log( - 0.05) vs. log(FF). 

It should be noted that most of our Arctic measurements occurred at temperatures 

greater than -5
o
C (Figure 3.16) and brine volume fractions higher than 5% (Figure 

3.25). This would suggest that if there is a percolation transition at the widely used 

threshold of a brine volume fraction of 5% most of our data are measured above the 
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percolation threshold with little or no data showing the state of the ice prior to this 

transition. However, Ingham et al. (2008) did obtain horizontal resistivity data within 

this regime of lower temperature and brine volume fraction. By combining our 

horizontal resistivity data with that from Ingham et al. (2008) (measured in a similar 

locale two years earlier) a better picture of the proposed percolation transition may be 

obtained. A plot of the FF vs. Vb/V of the combined data is shown in Figure 6.28 below. 

From this figure it can be clearly seen that there are two regions of relatively constant 

resistivity, at high and low brine volume fraction, connected by a region of sharply 

dropping resistivities between brine volume fractions of approximately 5% to 10%. 
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Figure 6.28: Plot of formation factor (/b) vs. brine volume fraction (Vb/V) for the horizontal resistivity 

data from the 2008 Arctic measurements (circles), combined with data from Ingham et al. (2008) 

(squares).  

 

One way of modelling this change of phase or percolation transition is to consider a 3D 

network of resistors to represent the brine structure of the sea ice. Other authors, e.g. 

Kirkpatrick (1973) and Bahr (1997), have considered resistor networks as models for 

transport properties in two phase systems, especially those exhibiting a percolation 

threshold. Recently, as part of a Honours degree, a research project a Victoria 

University of Wellington investigated the use of resistor networks to model resistivity 

measurements made on sea ice (McCann, D., pers. comm., 2009), and our 3D network 

(
/

b
) 
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builds on this research. Initially each resistor in the network is assigned a relatively high 

resistance to signify the small amount of brine contained along ice grain boundaries. 

Resistors are chosen randomly and the resistance reduced to symbolize the creation of a 

brine inclusion. As more and more resistors are decreased a sudden decrease in the 

resistance of the network is observed, see Figure 6.29. This nicely models a percolation 

transition, with a change from high to low resistance representing a system whose bulk 

properties are dominated by one phase reaching a critical threshold point, after which 

the bulk properties are dominated by the other phase. 
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Figure 6.29: Plot of resistance vs. number of resistors changed, showing a percolation transition as more 

and more resistors are changed from high to low resistance. 

 

We consider a 2 by 2 by2 cube of resistors (Figure 6.30) where each resistor is itself a 

sub-array of a 2 by 2 by2 cube of resistors, giving a total of 2916 resistors or possible 

brine inclusions. 

 

 

 

 

 

 

 

 

 

 

Figure 6.30: A 2x2x2 resistor network where each resistor is itself represented by a 2x2x2 sub-array of 

resistors. Black shaded resistors are present in the two centre resistors, of the outer array, and are set to a 

medium resistance from start. 
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By using network equations to calculate both the vertical and horizontal resistance of 

the 3D resistor network, while changing the resistors from high to low resistance, it is 

possible to compare the response of the resistor network to that of the measured vertical 

and horizontal resistivity of the Arctic sea ice. However, in order to do this the results 

from the resistor networks need to be changed from „resistances‟ and „number of 

resistors changed‟ to „formation factor‟ and „brine volume fraction‟. The simplest way 

of doing this is to consider the size of the brine inclusions and the volume that the 3D 

network represents. The size of the brine inclusions can be provided using values 

obtained from literature (see section 1.2), slightly modified to match the observed 

resistivities. The volume represented by the resistor network can be obtained by 

considering brine inclusion densities supplied by literature (see section 1.2). 

Since sea ice will contain some brine inclusions (rather than simply brine contained in 

spaces along grain boundaries) right from formation, and these will generally be 

preferentially elongated vertically, the considered 3D resistor network does not initially 

have all resistors set to high resistance. Instead, in each of the two centre resistors of the 

outer array the two centre resistors of the sub arrays (black shaded resistors in Figure 

6.30) are set to an intermediate value of resistance to represent this early brine inclusion 

element of the sea ice. The introduction of a number of vertical resistors assigned lower 

values means that the initial structure is anisotropic, with lower values measured in the 

vertical direction than in the horizontal. 

The resistor network is considered to represent a volume of 1cm
3
 (giving a brine 

inclusion density of ~3 per mm
3
), and a resistivity of 0.2658m is used for the brine 

component (average value of the brine resistivities obtained during measurements). It is 

found that by increasing from a brine component concentrated along grain boundaries, 

diameter ~ 9.3m and length ~ 0.8mm, and some small brine inclusions of size, 

diameter ~ 0.25mm and length ~ 0.8mm, to brine inclusions of size diameter ~ 0.29mm 

and length ~ 0.8mm, the following plots of the response of the 3D resistor network are 

obtained. Figure 6.31 shows the results of the calculated changes in horizontal and 

vertical formation factor, of the resistor network, for 50 repeats of allowing all the 

resistors to randomly change from small to large brine inclusions (i.e. high to low 

resistance). 
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(a) Horizontal resistivity 

 

(b) Vertical resistivity 

 

Figure 6.31: Plot of formation factor (/b) vs. brine volume fraction (Vb/V) for resistivity of the 3D 

resistor network (50 repeats) and data from measurements on Arctic sea ice. (a) the horizontal resistvity, 

(b) the vertical resistivity. 

 

From Figure 6.31 it can be seen that the behaviour of a 3D resistor network, as resistors 

are changed from high to low resistance, can closely describe the trend seen in both the 

horizontal and vertical resistivity structure of Arctic sea ice. Providing, the resistor 

network has an anisotropic resistivity structure and sensible brine inclusion sizes 

(determined by the resistivity of brine and the resistance assigned to the resistors). This 

match between the resistor network data and the measured resistivities suggests that the 

observed drop in the horizontal formation factor is indeed consistent with a percolation 

transition which occurs at a brine volume fraction of around 5% - 10%. 
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Chapter 7 
Summary 

 

This thesis investigates the use of cross-borehole direct current (DC) electrical 

resistivity techniques as a non-destructive method of studying the anisotropic brine 

microstructure of first year sea ice and its evolution with changes in temperature and 

salinity. 

Previous resistivity studies of sea ice (e.g. Thyssen et al., 1974; Timco, 1979; Buckley 

et al., 1986; Ingham et al., 2008) have shown that surface soundings do not differentiate 

between the vertical and horizontal components of the anisotropic bulk resistivity 

structure. Furthermore, the thickness of the anisotropic ice cover is underestimated 

making the interpretation of surface soundings, in terms of the variation of the measured 

geometric mean resistivity with depth, problematic. 

Ingham et al. (2008) have demonstrated that a DC resistivity technique, which makes 

use of cross-borehole tomography, can be used to measure the horizontal component of 

the anisotropic structure of first year sea ice. This thesis expands on this technique to 

allow investigation of both the horizontal and vertical resistivity structure of the sea ice. 

It is shown theoretically (Chapter 2) that the horizontal resistivity structure of the 

undisturbed ice between boreholes can be accurately recovered by using two boreholes 

each containing one potential and one current electrode. These electrodes must be 

positioned such that the vertical spacing between electrodes is significantly smaller than 

the horizontal spacing of the boreholes. Furthermore, theory shows (Chapter 2) that 

measurements aimed at determining the geometric mean resistivity require three or four 

electrodes each positioned at approximately the same depth in separate boreholes. 

Although it is shown that exact measurement of the geometric mean resistivity is not 

possible, reasonable estimates of the true resistivity can be retrieved from numerical 

modelling. These values of the horizontal and geometric mean resistivity structure then 

allow estimates of the vertical resistivity of sea ice, which cannot be directly measured, 

to be calculated. 

The measurement technique is illustrated by the results of a series of measurements 

made in first year sea ice at sites in the Arctic and the Antarctic (see sections 3.1 and 
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3.2). Six measurement sets were made at one – two weekly intervals over April – June 

off the coast of Barrow, Alaska in 2008. While a further four measurement sets were 

obtained over two weeks in November 2009 in McMurdo Sound off Ross Island, 

Antarctica. The obtained resistivity structure of the Arctic sea ice (see section 5.1.1) 

clearly shows variation over the measurement period as the temperatures increase. The 

observed general decreasing of resistivities indicate an increase of the connectivity of 

the brine inclusions especially in the horizontal direction. The results show a possible 

percolation transition, with a significant decrease in resistivity indicating a change from 

a medium dominated by the ice phase to one dominated by the brine phase. The 

measurements on the Antarctic sea ice (see section 5.2) return a resistivity structure that 

suggests a change in structure with depth. This change does not correspond with any 

significant changes in temperature, salinity or brine volume fraction and has been 

attributed to a change in ice type from columnar ice to included platelet ice. 

It should be noted that there are large uncertainties in the geometric mean resistivities 

retrieved from the numerical modelling. Furthermore these values are obtained via 

consideration of synthetic datasets created for an idealised representation of sea ice 

consisting of two boundaries between which there is a uniform material, whereas the 

structure of real sea ice may include a variation of the coefficient of anisotropy and 

resistivity with depth. However, when considering the difference in resistivity of a 

medium of isolated brine inclusions and one with a connected brine network several 

orders of magnitude are involved. Thus resolution of this important change in structure 

can be obtained from the resistivity data, despite the approximations used. 

The analysis of cores of Antarctic sea ice (Gough, A., pers. comm., 2011) gives depths 

for when platelet ice begins to appear in the ice cover. These depths are similar to those 

at which changes in resistivity structure, associated with a change from columnar to 

included platelet ice, are observed. Suggesting that the DC electrical resistivity 

technique used can differentiate between ice types. 

Basic cubic two phase models, whose resistivity response and brine volume fraction 

values match the measured values of the sea ice, have been produced (Chapter 6). While 

such models are a highly idealized representation of the complex brine microstructure 

they provide insight into the typical characteristics of the brine inclusions. The models 

consisting of vertical columns, horizontal tubes and isolated cubes of brine show the 

expected increasing brine network as temperatures increase. The dimensions of the 
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horizontal tubes are significantly smaller than those of the vertical columns, suggesting 

that while the measured vertical resistivities requires connection between vertically 

aligned brine inclusions the horizontal resistivity values are due to connections along 

grain boundaries. 

In future it may be beneficial to obtain more frequent measurements, in particular to 

better define the significant drop in resistivity that was observed in the Arctic 

measurement set between late May and mid June. Additionally most of our Arctic data 

was recorded when the temperature of the ice was above -5
o
C and the brine volume 

fractions were greater than 5%. Thus for consideration of the percolation threshold the 

horizontal resistivity data was combined with colder and lower brine volume fraction 

measurements made by Ingham et al. (2008). Ideally in further fieldwork measurements 

would be obtained earlier in the season in colder ice to provide data on sea ice when its 

properties are dominated by the ice phase. Measurements earlier in the season may also 

allow observation of ice growth. Further investigation of why the region of initial frazil 

ice growth, observed at the surface of ice cores (Eicken, H., pers. comm., 2010), does 

not seem to be resolved in resistivity profiles of the Arctic ice may also be warranted. 

Unlike the Arctic data, the short measurement period available for the Antarctic data did 

not allow observation of changes in the sea ice microstructure over time. Thus in future 

work it would be interesting to carry out a longer set of measurements so this evolution 

can also be studied in the Antarctic region. From our Antarctic results it seems that our 

measurement technique can differentiate between different ice types. However, this 

requires a more detailed study with greater comparisons of ice core and resistivity data 

and perhaps longer electrode strings, to better cover the region containing a majority of 

platelet ice. 

In general obtaining more data over future studies would help define relationships 

between the measured resistivity and the temperature, salinity and brine volume fraction 

of the ice. This would allow these properties to be determined from our non-destructive 

measurement technique. To increase the ease of obtaining the resistivity measurements, 

future work could look at creating an automated measuring system. This would involve 

additional „smart‟ electrodes, the design of a new datalogger system, and consideration 

of battery and data storage and retrieval needs. Additional work on resolving the 

horizontal anisotropy of sea ice and the implications of this structure should also be 

considered in the future. 
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As mentioned above, our brine models provide a valuable insight into the 

microstructure of the sea ice, however, they are only a simplistic picture of the brine 

structure. For example these models do not differentiate between one wide tube and two 

thinner tubes of ½ the cross sectional area. Thus the appearance of more brine 

inclusions may be observed in our models as a thickening of the brine components. The 

design of more complicated or sophisticated models requires further consideration. 

This current research has provided results which could enhance the study of sea ice. For 

instance being able to better estimate and track the resistivity of sea ice could aide in the 

interpretation of EM surveys, used for remote sensing and ice thickness measurements. 

Knowing the approximate structure of the brine may allow better determination of the 

optical properties of the ice, as this property is affected by scattering from brine 

inclusions. Additionally it may be possible to estimate the strength of the ice, as this is 

related to brine volume values. Our models of the brine structure may also provide a 

means of estimating the thermal conductivity of the sea ice. 

In conclusion this research has developed an in situ DC electrical resistivity cross-

borehole tomography technique which contributes significantly to the understanding of 

sea ice microstructure and its response to changes in temperature and salinity. 

Furthermore, the measurement method holds promise as a way of differentiating 

between different ice types. As the structure of sea ice affects the physical properties of 

the ice it is important to be able to study the sea ice structure to gain a fuller 

understanding of the role sea ice plays in a range of contexts. 
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Appendix I 
Resistivity on a medium with horizontal 

anisotropy 
 

From section 2.1.2 equation (2.5) gives the potential in an anisotropic medium as 
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where C is a constant, x, y and z are the distances between where the current is injected 

and the potential is measured, along the respective axes, and i is the resistivity in the i 

direction 
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with the total current density given by 
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Changing equation (I b) to be in spherical coordinates gives 

    23222 sinsin zzxyxθr

C
J

 
  

Where C is a constant, i is the resistivity in the i direction, r is the distance between 

where the current is injected and the potential measured,   is the angle from the vertical 

to the vector r, and  is the horizontal angle from the x coordinate axis to the horizontal 

projection of the vector r.  

For an electrode buried in an anisotropic medium, such as sea ice, the current must pass 

through a sphere of radius r centred on the electrode. In this case Bhattacharya and Patra 

(1968) show that the current at the electrode is given by 

(I a) 

(I b) 

(I c) 
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  
s

π π

θdθdJrJ.dsΙ
2

0 0

2 sin   

Inserting equation (I c) into the expression above and solving and simplifying gives 

zyx ρρρ

πC
Ι

4
  which rearranges to 

π

ρρρΙ
C

zyx

4
  

Substituting C into equation (I a) gives 
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where x, y and z are the distances, between where the current is injected and the 

potential measured, as measured along the relative axis, i is the resistivity in the i 

direction, and x and y are given by xzx   , yzy   . 

If measurements had been made on an isotopic medium then the potential would be 

given by 
2224 zyx

I
V







. The conditions under which expression (I d) reduces 

to the isotropic expression, when  is considered to be x, y or z indicates whether the 

relevant resistivity can be determined. For example, in order to measure x requires that 
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Similar expressions are found for y or z. As these expressions can not be solved with a 

real value of i, it seems that the individual components of the bulk resistivity of a 

medium with vertical and horizontal anisotropy can not be measured. 

For instance, using expression (I d) consider the potential measured in two 

perpendicular directions eg along the x-axis and the y-axis. In these two situations the 

expression for the potential would become 

2

2

2 1
4 zxπ

ρρΙ
V

x

yx

x











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

 and 

(I d) 
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2

2

2 1
4 zyπ
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
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




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







. Thus, for cross-borehole measurements in a medium with 

anisotropic horizontal resistivity (i.e. x  y) the potential in two perpendicular 

directions are each dependent on both x and y. Thus cross-borehole measurements do 

not give information on the horizontal anisotropy of a medium 

However, consider current from an electrode placed at the surface of an anisotropic 

medium, such as sea ice. In this case the current must pass through a hemisphere of 

radius r centred on the electrode, and the total current flowing out through this surface 

(and thus the current at the electrode) is given by 

  
s

θdθdJrJ.dsΙ
 




2

0
2

2 sin  

Inserting equation (I c) into the expression above and solving and simplifying gives 

zyx ρρρ

πC
Ι

2
  which rearranges to 

π

ρρρΙ
C

zyx

2
  

Substituting C into equation (I a) gives 
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zyx

ρyρxπ

ρρρΙ
V

222 
  

where x, y and z are the distances, between where the current is injected and the 

potential measured, as measured along the relative axis (z being zero as the electrodes 

are at the surface), i is the resistivity in the i direction, and x and y are given by 

xzx   , yzy   . 

Once again consider the potential measured in two perpendicular directions e.g. along 

the x-axis and the y-axis. In these two situations the expression for the potential would 

become 
πx

ρρΙ
V

zy

x
2

  and. 
πy

ρρΙ
V

zx

y
2

  Thus, for surface measurements on a 

medium with anisotropic horizontal resistivity (i.e. x  y) the potential in two 

perpendicular directions are each dependent on different components of the horizontal 

resistivity. Measurements along the x-axis will provided information on y and those 

along the y-axis will provide information on x. Thus surface resistivity soundings can 
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be used to determine if there is any horizontal anisotropy in the medium on which 

measurements are being made, by comparing two perpendicular sets of measurements. 

Surface soundings running approximately parallel and perpendicular to the coast at 

Barrow, Alaska indicate little horizontal anisotropy in the sea ice. 
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Appendix II 
Example of format of files used to read the data 

into the 3D inversion program RES3DINV 
(see section 4.2.1) 

 

Barrow sea-ice 

07-09/04/08 

horizontal resistivity 

inversion Title 

11 surface grid size in x direction 

11 surface grid size in y direction 

0.1 x unit electrode spacing 

0.1 y unit electrode spacing 

13 array number – 13 for borehole survey with resistance data 

Number of boreholes Header 

4 number of boreholes 

Borehole 1 Header for 1
st
 borehole 

18 number of electrodes in borehole 1 

0.0 0.0 0.1 x, y and z location of 1
st
 electrode in borehole 

0.0 0.0 0.2 x, y and z location of 2
nd

 electrode in borehole 

0.0 0.0 0.3 x, y and z location of 3
rd

 electrode in borehole 

0.0 0.0 0.4 

  

0.0 0.0 0.5 

0.0 0.0 0.6 

0.0 0.0 0.7 

0.0 0.0 0.8 

0.0 0.0 0.9 

0.0 0.0 1.0 

0.0 0.0 1.1 

0.0 0.0 1.2 

0.0 0.0 1.3 

0.0 0.0 1.4 

0.0 0.0 1.5 

0.0 0.0 1.6 

0.0 0.0 1.7 

0.0 0.0 1.8 x, y and z location of last electrode in borehole 

Borehole 2 Header for 2
nd

 borehole 

18 number of electrodes in borehole 2 

1.0 0.0 0.1 the following section gives the x, y and z location of the 

electrodes in the borehole from the first electrode to the last 1.0 0.0 0.2 

1.0 0.0 0.3  

1.0 0.0 0.4  

1.0 0.0 0.5  

1.0 0.0 0.6  

1.0 0.0 0.7  

1.0 0.0 0.8  

1.0 0.0 0.9  

1.0 0.0 1.0  

1.0 0.0 1.1  
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1.0 0.0 1.2  

1.0 0.0 1.3  

1.0 0.0 1.4  

1.0 0.0 1.5  

1.0 0.0 1.6  

1.0 0.0 1.7  

1.0 0.0 1.8  

Borehole 3 Header for 3
rd

 borehole 

18 number of electrodes in borehole 3 

1.0 1.0 0.1 the following section gives the x, y and z location of the 

electrodes in the borehole 1.0 1.0 0.2 

1.0 1.0 0.3  

1.0 1.0 0.4  

1.0 1.0 0.5  

1.0 1.0 0.6  

1.0 1.0 0.7  

1.0 1.0 0.8  

1.0 1.0 0.9  

1.0 1.0 1.0  

1.0 1.0 1.1  

1.0 1.0 1.2  

1.0 1.0 1.3  

1.0 1.0 1.4  

1.0 1.0 1.5  

1.0 1.0 1.6  

1.0 1.0 1.7  

1.0 1.0 1.8  

Borehole 4 Header for 4
th

 borehole 

18 number of electrodes in borehole 4 

0.0 1.0 0.1 the following section gives the x, y and z location of the 

electrodes in the borehole 0.0 1.0 0.2 

0.0 1.0 0.3  

0.0 1.0 0.4  

0.0 1.0 0.5  

0.0 1.0 0.6  

0.0 1.0 0.7  

0.0 1.0 0.8  

0.0 1.0 0.9  

0.0 1.0 1.0  

0.0 1.0 1.1  

0.0 1.0 1.2  

0.0 1.0 1.3  

0.0 1.0 1.4  

0.0 1.0 1.5  

0.0 1.0 1.6  

0.0 1.0 1.7  

0.0 1.0 1.8  

  

2418  number of data points 

4 0 0 0.1 0 1 0.1 0 0 0.2 0 1 0.2 160.38 for each datum point, the first 

parameter is the number of 4 0 0 0.1 0 1 0.1 0 0 0.3 0 1 0.3 159.62 
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4 0 0 0.1 0 1 0.2 0 0 0.2 0 1 0.3 153.85 electrodes used (4 for dipole-

dipole). This is followed by the 

x, y and z location of the current 

electrode C1, the current 

electrode C2, the potential 

electrode P1 and the potential 

electrode P2. The last value is 

the measured resistance 

4 0 0 0.1 0 1 0.2 0 0 0.3 0 1 0.4 152.87 

       

       

       

       

4 1 1 1.8 0 1 1.8 1 1 1.6 0 1 1.6 0.279 

4 1 1 1.8 0 1 1.8 1 1 1.7 0 1 1.7 0.545 

  

FIXED REGIONS Header to indicate model has fixed regions 

1 number of regions to be fixed 

R shape of fixed region, R for rectangular 

0.0, 0.0, 1.3 x, y, z coordinates of top-left-back corner 

1.0, 1.0, 1.8 x, y, z coordinates of bottom-right-front corner 

0.4 resistivity of fixed region 

2 damping factor weight for fixed region 

0 the end of the data file is indicated by a few zero‟s 

0  

0  

0  
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Appendix III 
Publications and conference presentations 

relating to this research 
 

Below is a summary of the publications and conference presentations that this research 

has produced, at time of thesis submission. 

 

Publications 

Jones, K., Ingham, M., Pringle, D., Eicken, H., 2011. Cross-borehole resistivity 

tomography of Arctic and Antarctic sea ice, Annals. Glac., 52, 161-168. 

 

Jones, K. A., Ingham, M., Pringle, D. J., Eicken, H., 2010. Temporal variations in sea 

ice resistivity: Resolving anisotropic microstructure through cross-borehole DC 

resistivity tomography, J. Geophys. Res., 115, C11023. (doi:10.1029/2009JC006049) 

 

Conference presentations 

Ingham, M., Jones, K., 2011. The temporal evolution of sea ice microstructure, IUGG – 

Earth on the edge: science for a sustainable planet, Melbourne, Australia, 28 June – 7 

July, 2011. 

 

Jones, K., Ingham, M., Pringle, D., Eicken, H., 2010. Resolving sea-ice microstructure 

using cross-borehole resistivity tomograph, International Symposium on Sea Ice in the 

Physical and Biogeochemical System, Tromsø, Norway, 31 May - 4 June, 2010. 

 

Jones, K., Ingham, M., Pringle, D., Eicken, H., 2010. Using In Situ Cross-Borehole 

Resistivity Tomography to Resolve the Microstructure of Arctic and Antarctic Sea Ice, 

International Polar Year – Oslo Science Conference, Oslo, Norway, 8-12 June, 2010. 

 

Jones, K., Ingham, M., Pringle, D., Eicken, H., 2010. Cross borehole electrical 

resistivity tomography of Arctic and Antarctic sea ice, New Zealand Sea Ice 

Symposium, University of Otago, Dunedin, New Zealand, 18-19 February 2010. 

 

Ingham, M., Jones, K., Pringle, D. J., Eicken, H., 2009. Resolution of sea ice 

microstructure using cross borehole resistivity tomography. Fall Meeting, American 

Geophysical Union, San Francisco, 14-18 December 2009. 

 

Jones, K., Ingham, M., Pringle, D., Eicken, H., 2009. Resolving sea ice microstructure 

using cross borehole resistivity tomography, NZIP 2009 Conference, University of 

Canterbury, Christchurch, New Zealand, 6-8 July 2009. 
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