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Abstract 

 

This thesis presents a sub-seasonally resolved, decade long record of snow pack 

chemistry from Evans Piedmont Glacier (EPG), southern Victoria Land coast, 

Antarctica. Snow chemistry measurements were made at ca. 20 analyses per year for 

stable isotope ratios δ18O and δD, major ions Ca+, Cl-, K+, Mg+, MS-, Na+, NO3
-, SO4

2- 

by ion chromatography (IC), and major and trace element chemistry by inductively 

coupled plasma mass spectrometry (ICP-MS). Na, Mg, Al, Fe, Mn and Ba were 

measured by ICP-MS using a hydrogen flushed collision cell to reduce the formation of 

polyatomic ion interferences, whereas Ti, V, Cr, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Cs, 

Ba, La, Ce, Pb, Bi, Th and U were measured in non-collision cell mode to increase 

count sensitivity. ICP-MS analytical precision is typically 5 to 10 % (2 rsd) that is two 

orders of magnitude at minimum below natural variability (e.g. samples range between 

Na = 10 to 18031 ppb and Al = 5 to 3856 ppb). The presence of undigested mineral 

dusts in weakly acidified samples, however, complicates the measurement of elemental 

concentrations in snow samples by randomly entering the ICP-MS. Despite this, the 

range of sample concentrations (Zr = 3.0 to 5630 ppb) is still orders of magnitude 

higher than sample reproducibility. The dominant source regions of element chemistry 

transported to EPG snow are identified as marine (Na, Mg, SO4, Cl, K, As and Sr) and 

terrestrial derived aerosol (Al, Mn, Fe, Ba, Ti, V, Ni, Cr, Zn, Rb, Y, Zr, Cd, Sb, Cs, Ba, 

La, Ce, Pb, Th and U), with minor contributions from anthropogenic (V, Cr, Ni, Cu, 

Zn, As, Sb and Pb) and volcanic emissions (Bi, SO4 and K). This is based on both 

elemental ratio modelling and ICP-MS time resolved analysis that identifies elements 

present in particulate form (mineral dusts). EPG snow chemistry is related to measured 

meteorological conditions at nearby Cape Ross. Winter maxima of elemental 

concentrations is consistent with maximum winter wind speed and low precipitation 

rates. Furthermore, winter snow samples that are depleted in SO4
2- relative to other 

marine derived elements (e.g. Na), indicate the sea ice surface is an important source of 

marine aerosol transported to EPG in addition to an open ocean source. Annual 

maximum chemistry concentrations of terrestrial derived elements (e.g. Zr) are 

significantly correlated to maximum annual wind speed measured at Cape Ross (r2 = 

0.68, p< 0.01). Lower correlation of marine derived chemistry (e.g. Na) and maximum 
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wind strength reflects additional controls of source region and other meteorological 

parameters such as storm duration on marine derived chemistry. In contrast to 

elemental concentrations, elemental ratios are less sensitive to extreme wind conditions. 

Rather elemental ratios provide a more robust signature of changes in mean 

atmospheric circulation related to delivery of aerosol from different source regions and 

via different transport fractionation processes. Al/Na is controlled by variable delivery 

of terrestrial (Al) and marine (Na) aerosol to EPG, although the longer term trend is 

driven primarily by changes in Na. Al/Na is significantly higher between winter 2000 

and summer 2006/07 with a mean value of Al/Na = 0.15 compared to Al/Na = 0.02 

prior to 2000. Although sea ice extent was highly variable over this time period, there is 

no clear relationship between Al/Na and sea ice. Rather, Al/Na is significantly 

correlated to mean summer wind speed measured at Cape Ross (r2 = -0.51, p<0.01). 

This demonstrates the sensitivity of Al/Na to changes in the average transport of 

marine aerosol to EPG during summer, when an open ocean source is most proximal. 

The shift in Al/Na is also concurrent with a shift in the relationship between δ18O and d 

excess, indicative of a changing precipitation source region to EPG. The observed 

changes in EPG chemistry are concurrent with shifts in mean Southern Oscillation 

Index (SOI), a measure of the El Niño Southern Oscillation (ENSO) strength and 

polarity. Al/Na is low when SOI is predominantly negative (El Niño), associated with 

increased summer wind strength. This is in accordance with a strong Amundsen Sea 

Low, positioned directly north of the Ross Sea as previously reported during El Niño 

years. Although the establishment of a statistically significant relationship between SOI 

and EPG Al/Na ratios is inhibited by the brevity of this record, this study highlights the 

potential for the 180 m firn core also extracted from EPG to track long-term changes in 

SOI. Elemental chemistry of EPG provides a high resolution tool to reconstruct 

atmospheric circulation changes within the southern Ross Sea region.  
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Chapter One: Introduction 

1.1.0 Prelude 

Knowledge of climate system dynamics in the past is fundamental for understanding 

how changes in the global radiation budget may influence future climate. Continuous 

instrumental and observational climate records extend back at most to 1659, with more 

reliable data sets only available from the 1850’s onwards and global scale satellite 

monitoring from the late 1970’s (Marshall, 2007). Although critical for our 

understanding of present climate, instrumental records are not long enough to: a) 

consider 20th Century changes within the context of natural climate variability, b) 

compare current conditions to analogous past events and c) determine long term 

coupled atmospheric-oceanic controls on climate system and ice sheet dynamics. These 

limitations highlight the need for accurate paleoclimate proxies and archives. Ice core 

research has the ability to provide such records, through stable isotope and elemental 

analysis as well as determination of the gas chemistry trapped in the ice from past 

atmospheres (Alley, 2000; Augustin et al., 2004; Dansgaard et al., 1969; Jouzel, 2007; 

Jouzel et al., 2007; Monnin et al., 2001; Petit, 1999) 

1.2.0 Research objectives 

This thesis presents a chemical study of modern Antarctic snow from a 4 m snow pit, 

representing a seasonally resolved, 14 year record from Evans Piedmont Glacier (EPG), 

southern Victoria Land coast. The project is a contribution to the New Zealand 

International Trans-Antarctic Science Expedition (NZ ITASE) program, with the aim 

to develop a reliable technique for the measurement of trace elements at coastal 

Antarctic sites. This has been achieved using inductively coupled plasma mass 

spectrometry (ICP-MS) with supplementary analyses for stable water isotopes (δ18O and 

δD) and ion chromatography (IC) for major ions. The data set provides new insights 

into the controls of aerosol-deposited trace element chemistry of snow and the potential 

to use trace element glaciochemistry for paleoclimate studies.  

To achieve this, is it first important to determine the main sources of the aerosol-

deposited snow chemistry. This is accomplished through comparison of chemical ratios 

in samples with known potential sources including regional geology, the upper ocean, 
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and volcanic and anthropogenic emissions. Trace element concentrations and, 

importantly, ratios provide a higher degree of variation in natural sources than major 

elements and can therefore be used to fingerprint chemical sources with a greater degree 

of certainty. 

Secondly, temporal changes in chemistry have been evaluated. Due to the high 

resolution of the record, seasonal cycles have been determined which currently remain 

constrained by only a few studies (Hur et al., 2007; Planchon et al., 2002b). Inter-annual 

changes are investigated with respect to meteorological data, measured on site since 

2004, and at nearby Cape Ross since 1997, which is maintained by the Italian Antarctic 

Research Program. At least nine-ice core records have previously been taken from the 

Victoria Land coast, providing the potential for important future research to extend this 

record back several thousand years (Bertler et al., 2004a; Bertler et al., 2004b; Bertler, 

2003; Mayewski and Lyons, 1982; Mayewski et al., 1995; Patterson et al., 2005; Rhodes 

et al., 2009; Vimeux et al., 2002; Waddington et al., 1993; Welsh et al., 1993) 

1.3.0 An introduction to ice core climatology 

Ice cores provide some of the highest resolution paleoclimate records available over the 

last 800 kyr (EPICA community members, 2004). Dansgaard (1954) first proposed the 

Greenland Ice Sheet as an archive of paleo-temperatures through the measurement of 

the stable oxygen isotope ratio 18O/16O. The earliest deep ice cores extracted from 

Camp Century (Greenland) and Byrd Station (Antarctica) successfully demonstrated 

glacial/interglacial inferred temperature changes throughout the last 100 kyr and 

highlighted strong similarities in climatic changes between the northern and southern 

hemispheres (Dansgaard et al., 1969; Epstein et al., 1970; Taylor, 2007). Ice core 

analyses now routinely include measurement of δ18O and δD, major and trace elements, 

loess content and loess grain size, concentrations of gas species and their isotope ratios, 

organic acids, crystal structures and electric conductivity. These analyses are used as 

proxy indicators of temperature, windiness, circulation changes and the direct 

measurement of past atmospheric greenhouse gas concentrations (Augustin et al., 2004; 

Lambert et al., 2008; Legrand and Mayewski, 1997; Marteel et al., 2009; Mayewski et al., 

1995; Monnin et al., 2001; O'Brien et al., 1995; Petit, 1999; Thompson and Mosley 

Thompson, 1981; Thompson et al., 1997).  
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Dating techniques include: a) tritium and scintillation dating which is based on 

identifiable spikes in the 1950s and 1960s due to atmospheric nuclear testing, b) layer 

counting of seasonal changes using the physical properties of snow, stable isotope ratios 

and elemental chemistry, c) using volcanic eruptions as time markers which are recorded 

in snow and ice core records by peaks in volcanic derived chemistry such as sulphate 

and bismuth and, less frequently, through tephra deposition, d) radiocarbon dating of 

carbon dioxide in gas bubbles and e) modelling approaches including Milankovitch 

orbital tuning and ice flow models (Alley et al., 1997; Parrenin et al., 2001; Salamatin et 

al., 1998; Schwander et al., 2001). The spatial distribution of records has also broadened 

to include mid- and lower latitude records, which are important in constraining global 

climatology (Bradley et al., 2003; Fisher et al., 2008; Thompson et al., 1997). From ice 

core records, fundamental principles of paleo-climatology have been established 

including the relationship between temperature and atmospheric greenhouse gas 

concentrations over the last 800 kyr (Augustin et al., 2004; Petit, 1999). Furthermore, 

high resolution ice core records from Greenland have demonstrated that major 

readjustment of the northern hemispheric circulation systems and ocean currents, such 

as Dansgaard-Oeschger events, can occur in as little as 2-3 years (Alley et al., 1993; 

Masson-Delmotte et al., 2005; Steffensen et al., 2008). 

 

1.3.1 The International Trans-Antarctic Science Expedition 

The polar location of Antarctica 

makes it particularly suitable for 

glaciochemical studies. This is 

because of a) well marked 

seasonal chemistry cycles due to 

variation in temperature, 

atmospheric circulation, sea ice 

extent, photochemistry and 

biological activity, b) low speeds 

of chemical reactions due to the 

temperature, c) location of the 

oldest continuous precipitation 

possible and d) strong indication 
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of southern ocean climate processes at coastal sites (Legrand and Mayewski, 1997). For 

these reasons, Antarctica is the focus of the International Trans-Antarctic Science 

Expedition (ITASE) with the aim to compile a comprehensive, continent wide, climatic 

history of Antarctica over the last 200 yr using glaciochemistry (Fig. 1.1). The time 

period of 200 yr was chosen to focus on natural short term climatic variability, 

anthropogenic induced changes since the industrial revolution (~1850 AD), and to 

determine how instrumental records are representative of general Antarctic climate over 

the last 30-40 yr (Mayewski et al., 2004). 

 

1.3.2 NZ ITASE and coastal ice core records 

The New Zealand contribution to 

ITASE focuses on climate 

reconstruction of the Victoria Land 

coast within the Ross Dependency 

(Fig. 1.2) (Mayewski and Goodwin, 

1997). High accumulation rates 

along the coast of the Trans-

Antarctic Mountains result in snow 

and ice core records of typically sub-

seasonal resolution (Ayling and 

McGowan, 2006; Bertler et al., 

2004a; Connolley and Cattle, 1994; 

Patterson et al., 2005). This is 

important in determining seasonal 

climatic variance and sub-decadal 

climate phenomena that may not be 

recorded in the Antarctic interior. Furthermore, air masses of variable origin should 

produce distinguishable glaciochemical signatures due to proximity of highly contrasting 

aerosol source regions such as the Ross Sea and local rock exposures. Long-term 

reconstruction of atmospheric circulation is important in establishing the influence of 

climate phenomena that occur within the troposphere such as the El Niño Southern 

Oscillation and Antarctic Oscillation on the Ross Sea climatology, the relative influence 

of which remain controversial due to temporal and spatial brevity of Antarctic climate 
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records (Turner, 2004). Furthermore, coastal glaciochemical records provide sensitive 

indicators of oceanic iron flux, changes in sea ice extent and associated changes in 

primary productivity (Atkins and Dunbar, 2009; Curran et al., 2003; Mayewski et al., 

1995; Rhodes et al., 2009). Understanding the source and transport controls of 

glaciochemistry within this region is therefore important to utilise the potential of NZ 

ITASE ice core records.  

 

1.4.0 Thesis outline 

The outline of this thesis is briefly summarised below:  

 

Chapter one: Introduction 

 

Chapter two: Antarctic climatology 

Important drivers of Antarctic climate are summarised in addition to the current 

understanding and complexities of decadal scale climate variability within the southern 

Victoria Land coast and Ross Sea region. 

 

Chapter three: Principles of snow and ice chemistry 

The principles of relating stable isotope ratios, and major and trace element chemistry in 

glaciochemical records to climatic conditions are reviewed.  

 

Chapter four: Dating of the EPG snow pit record  

This chapter discusses the dating method applied to the EPG snow profile and its 

potential uncertainty. The inferred EPG accumulation rate is compared to other snow 

and ice core records within southern Victoria Land for validation.  

 

Chapter five: Measurement and interpretation of EPG stable isotope and major and trace 

element chemistry 

This chapter is presented as a draft manuscript for submission to Earth and Planetary 

Science Letters under the title: “Source region and transport controls on major and trace 

element chemistry of snow pack from the southern Victoria Land coast, Antarctica”.  
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Chapter six: Synthesis and conclusions 

 

Appendix one: Sampling and analytical techniques 

 

Appendix two: Whitehall Glacier study  

This appendix briefly outlines the aims and preliminary results of an additional 

glaciochemistry study conducted at Whitehall Glacier (WHG), northern Victoria Land. 

This study was not included in the main section of the thesis due to the brevity of the 

WHG snow pit records, which only represent 6 to 18 months, inhibiting meaningful 

correlation to the EPG record.  

 

Appendix three: Stable isotope, major element, trace element, density and temperature 

measurements of the EPG snow profile 

 

Appendix four: Stable isotope, major and trace element and density measurements of 

WHG snow profiles 
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Chapter Two: Antarctic climatology 

2.1.0 Dominant controls on Antarctic climatology 

Antarctic climate is controlled primarily by the polar location and high topography of 

the continent with an average elevation of ~2300 m compared to the next highest 

continent of Asia (~800 m) (King and Turner, 1997). These factors influence solar 

radiation, temperature, pressure, precipitation and wind fields. Understanding of present 

day climate and recent changes is primarily derived from instrumental records and 

satellite monitoring since the 1970s (Marshall, 2007). There are currently > 90 operable 

automatic weather stations across Antarctica (http://amrc.ssec.wisc.edu/aws.html), 

although most instrumental records are relatively brief and only 19 records extend more 

than 30 yr (Turner et al., 2005). Additionally, only two records greater than 30 yr in 

length are located at interior Antarctic sites, severely limiting spatial coverage. King and 

Turner (1997) provide a comprehensive review on the major aspect of Antarctic climate, 

which are only briefly discussed here.  

 

2.1.1 Solar radiation 

Solar radiation is the primary driver of temperature, atmospheric circulation, and 

weather systems globally and is dependent primarily on latitude and seasonality 

(Schwerdtfeger, 1984). Importantly, this is reduced to zero in Antarctica during winter, 

resulting in pronounced cooling over the entire continent and low temperature variance 

at interior sites (King and Turner, 1997). Atmospheric water vapour content, ozone 

concentration, aerosol loading, presence of clouds and elevation of the site further 

determine the amount of incoming solar radiation that is transmitted through the 

atmosphere to the surface (King and Turner, 1997). This varies inter-annually, primarily 

through changes in cloud coverage, which over Antarctica is primarily related to 

strength and position of the Antarctic Circumpolar Trough system (King and Turner, 

1997). Significantly, between 75 % and 85 % of incoming solar radiation to Antarctica is 

reflected due to the high albedo of snow and ice surfaces (King and Turner, 1997). 

Seasonal changes in sea ice extent also have significant effects on the global net 

radiation budget by effectively doubling the area of Antarctica’s high albedo surface 

during winter. This is particularly important during transition seasons when incoming 
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solar radiation is still high, concurrent with increased sea ice extent (King and Turner, 

1997).  

 

2.1.2 Temperature 

Average annual temperature in Antarctica ranges between -55°C on the East Antarctic 

plateau to -10°C at the Antarctic Peninsula (Fig. 2.1). Although mean annual 

temperature is negatively correlated to elevation, slight displacement of the coldest 

regions over the East Antarctic ice sheet from the highest elevation, and 

disproportionately low temperatures of coastal ice shelves, indicates the additional 

influence of atmospheric circulation on site temperature (King and Turner, 1997). 

Seasonal temperature variation is significantly higher at interior sites, with 37°C seasonal 

fluctuations at Vostok station compared to 12°C at Faraday station on the Antarctic 

Peninsula (Comiso, 2000). Furthermore, sites within the polar circle experience a 

‘coreless’ winter where temperatures are continuously low between mid-April to 

September with little variance, compared to more even seasonal fluctuations around the 

Antarctic Peninsula and coast of east Antarctica (King and Turner, 1997). 

 

Near surface temperature trends over the last half century show large geographic 

variability, although the average continent wide trend is positive (Steig et al., 2009). 
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While the Antarctic Peninsula is identified as one of the fastest warming regions of the 

world (0.56°C decade-1), temperature increases over the interior of West Antarctica are 

more subdued (0.1°C decade-1) and East Antarctica has arguably slightly cooled (Steig et 

al., 2009; Turner et al., 2005). The ability to understand East Antarctic temperature 

changes is limited by the scarcity of long term records. While the Vostok station 

temperature record shows no statistically significant change over the last 40 yr, a slight 

cooling over the East Antarctic plateau between 1979-1998 is reported by Comiso 

(2000) and a trend of -0.17°C decade-1 is statistically significant at the south pole 

Amundsen-Scott station (Turner et al., 2005). Steig et al. (2009) argued regional changes 

in atmospheric circulation, sea surface temperatures and sea ice extent only can explain 

the increased changes in West Antarctica compared to East Antarctica, rather than a 

simple increase of the circumpolar westerlies in response to changes in the Antarctic 

Oscillation as previously proposed (Turner et al., 2005).  

2.1.3 Surface inversion 

The surface temperature inversion is defined as the difference between surface 

temperature and the highest temperature within the lower troposphere. Surface 

inversions are typically strongest over the polar plateau during winter, up to 25°C over 

the interior of East Antarctica, 10°C to 15°C across western Antarctica, and 5°C at 

coastal sites (Connolley, 1996; Schwerdtfeger, 1984). This is an important feature of 

Antarctic climate which drives the development of katabatic wind flow (Connolley, 

1996). The surface inversion, controlled primarily by surface temperature fluctuations 

with respect to relatively stable, warm air masses above, follows seasonal surface 

temperature trends closely, and is reduced to almost zero at coastal sites during summer.  

2.1.4 Pressure systems 

The pressure field of the lower troposphere over the Antarctic is dominated by two 

main features, the Antarctic Circumpolar Trough at a mean latitude of 66°S, and a weak 

surface anticyclone centred over the Antarctic continent (Fig. 2.2a) (King and Turner, 

1997). The Antarctic Circumpolar Trough, is an area of intense synoptic cyclone activity 

(Fig. 2.2b), with cyclones typically 1000 – 6000 km across and lasting between one day 

to a week (King and Turner, 1997). It is located between 60° to 70°S where thermal 

contrast between cold Antarctic continental air meets relatively warm, moist maritime 
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air masses, an important control on cyclogenesis (Bromwich, 1993). Cyclonic activity 

varies seasonally and is strongly controlled by the position of the Antarctic Circumpolar 

Trough, which results in pressure maximum at coastal Antarctic sites when it is situated 

at its furthest position north during mid-summer and mid-winter(King and Turner, 

1997). The Antarctic Circumpolar Trough, combined with the Coriolis force drives the 

Antarctic coastal easterlies and is also an important source of snow precipitation at 

coastal Antarctic sites (King and Turner, 1997; Sinclair, 2009).  

 

Interannual variability of the Antarctic lower pressure field is primarily dominated by the 

Antarctic Oscillation (AAO), a 4 to 5 yr cycle which is dependent on changes in the 

strength and position of the sub-tropical jet (Fogt and Bromwich, 2006; Marshall, 2007). 

The AAO index is a measure of the zonal mean sea level pressure between 40°S and 

65°S (Gong and Wang, 1999) and describes 30 % of natural variation of atmospheric 

circulation within the Southern Hemisphere (Hall and Visbeck, 2002). When AAO is 

positive, polar temperatures and surface pressures are anomalously low, resulting in 

strong circumpolar winds near 60°S (Turner, 2004), and vice versa during negative 

AAO. Continued positive correlation since the 1970’s has been associated with an 

intensification of the polar vortex, and strengthening of the polar westerlies (Marshall, 

2003).  

The upper troposphere to stratosphere pressure field over the Antarctic is dominated by 

the Antarctic polar vortex, a large-scale cyclone centred over the South Pole. The polar 

vortex is strongest during winter when the temperature gradient between the pole and 
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lower latitudes is greatest and controls the strength of the high latitude westerly belt 

(Thompson and Wallace, 2000). Additionally, increased polar vortex strength is 

associated with decreased lower troposphere temperatures over the East Antarctic 

which will in turn influence the strength of katabatic outflow (Van den Broeke and Van 

Lipzig, 2002). Intensification of the polar vortex since the 1970’s has been identified as a 

possible reason for the observed East Antarctic cooling trend over the last half century 

(Turner et al., 2005), although this is contentious (Steig et al., 2009).  

2.1.5 Antarctic surface winds 

Antarctic surface winds are predominantly controlled by katabatic flow, the drainage of 

cold, dense air chilled by radiation, moving gravitationally down slope from the polar 

plateau to the coast (Parish, 1988; Parish and Bromwich, 1987; Parish and Cassano, 

2003). Flow is characteristically uni-directional, channelled by topography but also turns 

preferentially left under the influence of the Coriolis force (Fig. 2.3) (Parish and 

Bromwich, 1987). Wind speeds are strongest where the slope of terrain is high and, in 

particular, at outlet glaciers of the East and West Antarctic ice sheets. A stronger 

temperature inversion during winter results in increased strength of winter katabatic 

flow (King and Turner, 1997). 
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Synoptic and mesoscale cyclonic activity interacts with katabatic flow at the coast to 

produce more complex wind regimes. Synoptic scale depression systems around 

Antarctica enhance katabatic outflow by increasing the pressure gradient between the 

coast and the interior anti-cyclone (King and Turner, 1997). In turn, katabatic flow 

increases mesoscale cyclogenesis, in particular, within the Ross Sea region by increasing 

turbulence within the boundary layer (Carrasco et al., 2003). Synoptic conditions also 

influence flow of originally katabatic origin, propagating flow significant distances (100s 

of km) over ice shelves despite an effective slope gradient of zero (Schwerdtfeger, 

1984).  

2.1.6 Precipitation 

Precipitation rates are difficult to constrain in Antarctica due to wind blown snow. 

Measurements include radar sensors on automatic weather stations, snow stakes, and 

stratigraphy and density studies of snow pack, all of which measure net accumulation 

rather than true precipitation (Bromwich and Parish, 1998; Cullather et al., 1996). 

Modelled precipitation rates are significantly lower than those in the mid-latitudes due 

to the typically weak nature of depression systems and significantly lower water vapour 

content of colder air masses (King and Turner, 1997). Furthermore, coastal sites (Fig. 

2.4) receive significantly more precipitation than the Antarctic interior due to the higher 

influence of cyclonic activity and/or orographic lifting of marine air masses (Connolley 

and Cattle, 1994; Lettau, 1969; Rockey and Braaten, 1995; Schwerdtfeger, 1984). The 

West Antarctic Ice Sheet receives a disproportionate amount of precipitation, up to 40 

% of the entire moisture flux over the Antarctic continent (Cullather et al., 1996; Lettau, 

1969). Conversely, major weather systems rarely penetrate into the interior of the East 

Antarctic Ice Sheet due to the high elevation gradient between the coast and the East 

Antarctic plateau (Connolley and Cattle, 1994; King and Turner, 1997). Most interior 

precipitation occurs from isolated cloud (independent of weather systems) or from 

water vapour in clear sky air masses. Orographic lifting of air masses onto the polar 

plateau and irradiative cooling result in the gradual coalescence of cloud droplets which 

eventually fall out as ice crystals (Bromwich and Parish, 1998).  
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2.1.7 The El Niño Southern Oscillation 

Globally, the El Niño Southern Oscillation (ENSO) is the largest source of inter-annual 

climate variability(Philander, 1983) and in addition to the Antarctic Oscillation, is a 

major influence on Antarctic climate. The Southern Oscillation Index (SOI), defined as 

the normalised sea level pressure difference between Tahiti and Darwin, is a measure of 

ENSO strength and polarity. Links between SOI and the Antarctic climate have been 

found in sea ice extent, sea surface temperature, wind direction, wind speed, pressure 

and temperature at 500 mb and cyclonic activity with a lag of 2-4 months reported by 

most studies (Kwok and Comiso, 2002a; Kwok and Comiso, 2002b; Ledley and Huang, 

1997; Turner, 2004; Van den Broeke and Van Lipzig, 2002; van den Broeke and van 

Lipzig, 2004). The most significant correlation between SOI and sea surface 

temperature around Antarctic occurs within the Ross Sea and Amundsen Sea, lagging 

tropical sea level pressure changes by three months (Fogt and Bromwich, 2006; Ledley 

and Huang, 1997). Positive SOI (La Niña events) are associated with low sea level 

pressure, cooler sea surface temperatures and warmer land conditions in the western 

Ross Sea and vice versa during negative SOI (El Niño) (Bertler et al., 2004a; Bertler et 

al., 2006a; Kwok and Comiso, 2002b). 
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2.2.0 Climatology of the Victoria Land coast 

 

2.2.1 Dominant drivers of Victoria Land coast climate 

The climate of coastal Victoria Land is driven by katabatic outflow, cyclonic activity, 

and on a highly localised scale, the McMurdo Dry Valley ‘monsoonal’ effect. Katabatic 

surges originate from both the West Antarctic Ice Sheet through the Siple coast, and the 

East Antarctic Ice Sheet through major outlet glaciers in the Byrd Glacier region and in 

the vicinity of Terra Nova Bay (Fig. 2.4) (Parish and Bromwich, 1987). Katabatic flow 

from Siple coast and Byrd Glacier region is propagated northward over the Ross Ice 

Shelf despite a reduction in slope gradient to effectively zero by synoptic scale cyclonic 

(Amundsen Sea Low) decay over the Marie Byrd Land coast (Bromwich, 1988). 

Through the influence of the Coriolis force, katabatic surges are forced eastward 

towards the Transantarctic Mountains, resulting in strengthened barrier winds along the 

Victoria Land coast (Sinclair, 1982). The position of Ross Island further increases wind 

strength in the McMurdo Sound by funnelling winds between the island and coast, an 

effect that can extend up to 100 km downstream of Ross Island (Schwerdtfeger, 1984). 

Local topographic features have a strong control on surface wind direction, noted in 

deflection of moderate strength southerlies around Minna Bluff, and Black and White 

Islands (Sinclair, 1982) (Fig. 5.1).  

 

Cyclonic activity within the Ross Sea is governed primarily by the Amundsen Sea Low 

(LAS), one of one four quasi-stationary synoptic scale low pressure centres around the 

Antarctic continent (Carleton and Fitch, 1993; Carrasco and Bromwich, 1994; Cullather 

et al., 1996; Schwerdtfeger, 1970). Dependent on its strength and position, LAS forces 

atmospheric circulation either over the West Antarctic Ice Sheet towards the Ross Sea, 

increasing katabatic surges across the Ross Ice Shelf, or directly from the Ross Sea and 

Southern Ocean (Bertler et al., 2006a; Bromwich, 1993; Cullather et al., 1996; Kwok and 

Comiso, 2002b) (Fig. 2.5). Interannual variation of LAS is modulated by the ENSO. 

Increased tropical sea surface temperatures during El Niño (negative SOI) events 

indirectly decrease the strength of the polar jet stream relative to sub-topical latitudes, 

weakening and repositioning the LAS eastward to the Marie Byrd Land coast(Bromwich 

et al., 1993). Conversely, during La Niña events (positive SOI), the LAS is strengthened 

and positioned northward of the Ross Sea, increasing marine cyclonic activity (Fig 2.5) 
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(Bertler et al., 2004a; Bertler et al., 2006a). Modulation of LAS by ENSO is also 

dependent on additional factors including g the interaction of LAS with the Antarctic 

Oscillation, and the eastward migration of the low-pressure system typically located over 

East Antarctica (Arrigo and van Dijken, 2004; Cullather et al., 1996; Fogt and 

Bromwich, 2006). 

 

 
 

In addition to synoptic scale cyclones, mesoscale cyclonic activity is common within the 

Ross Sea, particularly when katabatic flow is strong and the LAS is located to the north of 

the Ross Sea(Carrasco and Bromwich, 1994). Mesoscale cyclogenesis is focused over the 

western Ross Ice Shelf and 100-200 km NNE of Ross Island. This further contributes 

to southerly flow within the McMurdo Sound region (Carrasco and Bromwich, 1994) 

and is an important source of high latitude derived precipitation(Rockey and Braaten, 

1995).  

 

A unique feature of the Victoria Land coast is the McMurdo Dry Valleys, the largest ice-

free area in Antarctica (Chinn, 1990). High topography of bedrock inland of the 

McMurdo Dry Valleys prevents ice flowing in from the East Antarctic Ice Sheet as 

occurs to the north and south. Additionally, the valleys are located within a precipitation 

shadow, whereby marine air masses deposit precipitation preferentially over Ross Island 

and the more coastal sites (Chinn, 1990; Fountain et al., 1998). Wind flow of the 

McMurdo Dry Valleys is typically bi-directional, switching between katabatic easterlies 

and westerly marine breezes (Doran et al., 2002). The latter develop when irradiative 
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warming of the exposed, low albedo surfaces during summer results in the development 

of a highly localised low-pressure cell, described as the McMurdo Dry Valley 

‘monsoonal’ effect (Bertler et al., 2004b; Witherow, 2006). This is considered a localised 

effect and is unlikely to effect climatology of sites further along the Victoria Land coast. 

 

Changes in seasonal sea ice extent are an additional control on Victoria Land coast 

climatology, changing moisture availability for cyclogenesis and temperature gradients 

between the continental and coastal air masses. Sea ice extent is at maximum during 

winter, forming a 20-22 km strip of fast sea ice along the western side of southern 

McMurdo Sound (Falconer and Pyne, 2004). Full sea ice cover is usually prevented by 

active polynya systems, in particular, the Ross Sea polynya which extends along the 

entire length of the Ross Ice Shelf, the largest to form regularly around Antarctica 

(Maqueda et al., 2004). The polynya is maintained predominantly by strong katabatic 

winds and causes relatively continuous sea ice production during winter and even when 

fully covered, ice thickness remains thin. Summer sea ice break out occurs between 

January and February following the opening of the Ross Sea, McMurdo Sound and 

Terra Nova polynya systems, attributed to warmer surface ocean temperatures and the 

influence of synoptic-scale weather systems (Bromwich and Parish, 1998; Maqueda et 

al., 2004). 

 

2.2.1 Temporal changes in southern Victoria Land climate 

In contrast to overall warming of the Antarctic continent since 1957 (Steig et al., 2009), 

the western Ross Sea sector has cooled by -0.7°C to -0.9°C decade-1 since 1986 (Bertler 

et al., 2004a; Bertler et al., 2006a; Doran et al., 2002). This is superimposed on a longer-

term warming trend of 0.29°C decade-1between 1971 to 2000 (Bertler et al., 2004a; 

Turner et al., 2005). The cooling of western Ross Sea is coincidental with a decrease in 

average wind speed measured at Lake Hoar in the McMurdo Dry Valleys of 0.23 m s-1 

from 1986 to 1999 (Doran et al., 2002) and an insignificant decrease in average wind 

speeds and decrease in average pressure at Scott Base (Turner et al., 2005).  

 

Bertler et al. (2004a; 2006a) attributed cooling of the Western Ross Sea since 1986 to 

strong teleconnection of the ENSO signal to the Antarctic during the 1990’s (Fogt and 

Bromwich, 2006) and greater dominance of the negative (El Niño) phase. El Niño 
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events are characterised on the Victoria Land coast by an increase in atmospheric flow 

from the West Antarctic Ice Sheet and a decrease in marine air masses from the Ross 

Sea. This is supported by high correlation of SOI and McMurdo Sound temperature 

anomalies inferred from glaciochemistry and instrumental records during the 1990’s 

when the SOI and AAO are in phase but not during the 1980’s (Bertler et al., 2004a; 

Bertler et al., 2006a).  

 

 However, Ayling and McGowan (2006) argue there has been no shift in atmospheric 

circulation over the last 35 yr. Assessment of tephra layers within two ice core records 

from the McMurdo Dry Valleys indicate there has been no significant increase in 

transport of material from the McMurdo Volcanic group, suggesting no change in 

windiness in contrast to shorter term meteorological records (Doran et al., 2002; Turner 

et al., 2005). This assessment is however based on 17 samples over a 35 yr period. To 

understand this apparently conflicting evidence, seasonally resolved records of climate 

are required. Elemental chemistry analysis is faster than mineralogy assessment, and 

therefore has the potential to provide such records.  
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Chapter Three: Principles of snow and ice chemistry 

 

This chapter provides an overview of the chemistry routinely measured in snow and ice 

core records. Stable isotopes of oxygen and hydrogen provide estimates of temperature 

(δ18O and δD) (Dansgaard, 1954) and precipitation source region (d excess)(Steffensen 

et al., 2008), while major and trace element chemistry are used to infer changes in 

atmospheric circulation and source region processes such as increased sea ice extent and 

the influence of anthropogenic pollution (Legrand and Mayewski, 1997; Petit, 1999; 

Planchon et al., 2002a).  

 

3.1.0 Stable isotopes 

 

3.1.1 Stable isotope fractionation 

Fractionation of hydrogen and oxygen stable isotopes occurs during evaporation and 

condensation of water molecules due to the dependence of the saturation vapour 

pressure on isotopic mass (Jouzel, 2003). Increasing in mass, hydrogen has two stable 

isotopes (1H = 99.985 % atom, 2H (D) = 0.015 % atom) and oxygen has three (16O = 

99.762 % atom, 17O = 0.038 % atom, 18O = 0.200 % atom), although only 16O and 18O 

are routinely measured due to the low abundance of 17O (Faure and Mensing, 2005). 

The δ notation, is used to express the ratio of 2H/1H (‰) or 18O/16O (‰) in the sample 

relative to bulk ocean seawater, the international standard VSMOW (Vienna Standard 

Mean Ocean Water) where  

 

.1000
VSMOWin  ratio

VSMOWin  ratio - samplein  ratio
×⎥⎦

⎤
⎢⎣
⎡=δ  

 

Craig (1961) first demonstrated the strong linear correlation between δ18O and δD in a 

study of global waters, thereby defining the Global Meteoric Water Line (GMWL) with 

a slope of eight (Fig. 3.1). The line is a weighted average of multiple local mean water 

line’s (LMWL), all of which have a slope less than 8 due to seasonal variation in air mass 

sources. The slope approximates the ratio of H and O equilibrium factors, i.e. the 

fractionation of hydrogen isotopes is eight to ten times higher than that of oxygen 

(Jouzel, 2003).  
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The divergence of the GMWL from VSMOW values (e.g. when δ18O = 0 ‰, δD = ~10 

‰) indicates the additional non-equilibrium processes that occur during atmospheric 

vapour formation. The amount of kinetic fractionation is quantified by the y-axis 

intercept of the LMWL denoted as the d-excess parameter (d), such that d = δD – 8 * 

δ18O (Dansgaard, 1954). Deuterium excess is determined primarily by kinetic effects, 

which are controlled by humidity at the source region during evaporation(Froehlich et 

al., 2002; Sharp, 2007). When humidity is low at the evaporative site, kinetic effects are 

proportionally more dominant compared to equilibrium evaporation effects and the d 

excess is increased. The global average of d excess is 10 ‰ as indicated by GMWL (Fig 

3.1). Large global variation is, however, observed and d excess values measured in 

Antarctica vary between -15.4 ‰ and 28.9 ‰ (Araguas-Araguas et al., 2000; Masson-

Delmotte et al., 2008; Sharp, 2007).  

 

 
 

3.1.2 Controls of stable isotopes at coastal Antarctic sites 

δD and δ18O are more strongly dependent on temperature with increasing latitude, 

altitude and distance from the coast due to greater temperature variations, and increased 

percentage of fractionation (Dansgaard, 1954; Sharp, 2007). Strong correlation between 

the spatial distribution of Antarctic mean temperature and δ18O (r2 = -0.96) and δD (r2 

= -0.95) allows reliable determination of an Antarctic ‘isotope thermometer’, in 
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particular, for the last 6000 to 7000 yr of constant global ice volume (Carlson et al., 

2008; Masson-Delmotte et al., 2008; Masson et al., 2000).  

 

Temporal negative correlation between δD or δ18O and the d excess is expected, as low 

temperatures at the site of precipitation (low δ18O and δD) are generally concurrent with 

low temperatures and hence humidity at the source region (high d ) (Froehlich et al., 

2002; Sharp, 2007). Negative correlation is observed at most interior Antarctic sites, 

with an average lag of 5 months between δ18O or δD and the dexcess (Aldaz and 

Deutsch, 1967; Ciais et al., 1995). However, coastal sites commonly show positive δ18O 

and d excess correlation, with highest d excess values during summer at the Adélie Land 

coast (Ciais et al., 1995) and during early spring on Queen Maud Land coast (Schlosser, 

2008). In addition to this variable phase relationship between δ18O, δD and d excess, a 

number of high resolution records indicate poor correlation of δ18O and measured 

temperature over seasonal and inter-annual time periods (Schlosser, 2002a). These 

observations indicate secondary effects, which mask the primary control of temperature 

on stable isotope ratios δ18O and δD or source humidity on d excess (Gat, 1996; Sharp, 

2007). Such effects include: 1) the initial isotope composition of the moisture package, 

2) the air mass trajectory pathway, 3) the seasonality of precipitation and, 4) post 

depositional alteration, which are briefly summarised below.  

 

1) Warmer (cooler) sea surface temperatures at the moisture source region increases 

(decreases) the proportion of heavy isotopes (D and 18O) evaporated and hence the 

initial isotope composition of a moisture package (Sharp, 2007). Additionally, increased 

mass of ice sheets over glacial-interglacial time scales effectively enriches the original 

oceanic reservoir in heavy isotopes, although this can be considered constant for the 

time period covered by this study. 

 

2) The atmospheric pathway of a moisture package influences its isotope signal by 

changing the number of condensation and evaporation events that occur. As air masses 

travel further inland, the number of condensation events increases and the remaining 

water vapour is more depleted in δ18O and δD resulting in higher d excess values (Sharp, 

2007). This explains the strong negative correlation of δ18O and δD, and moderate 

positive correlation of d excess with site temperature and distance from coast (Masson-
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Delmotte et al., 2008). Additionally, air masses that reach coastal Antarctic sites from 

across the continent have significantly higher d excess values than air masses transported 

directly from their original evaporative source (Schlosser, 2004). Furthermore, 

precipitation that has passed over a greater distance of open water demonstrates low 

correlation between δ18O and deposition site temperature due to re-evaporation and 

condensation of water vapour from variable sea surface temperatures along the air mass 

trajectory (Helsen et al., 2006; Schlosser, 2004).  

 

3) Seasonality of precipitation can effect the isotopic ratio of snow by biasing the record 

towards the timing of precipitation, in particular, at coastal locations where precipitation 

occurs primarily from periodic cyclonic activity (Krinner et al., 1997; Schlosser, 2002a; 

Sharp, 2007). Schlosser et al. (2002a) demonstrated that interannual variability of δ18O in 

the snow pack can be attributed to changes in the relative proportion of seasonal 

accumulation, with high δ18O annual averages concurrent with a lower proportion of 

winter to early spring accumulation as measured by snow stakes. Conversely, low δ18O 

annual averages occur when accumulation is high throughout the entire year. 

Accounting for seasonality of accumulation, correlations between δ18O and temperature 

improved significantly from r2 = -0.13 to r2 = 0.38 (Schlosser, 2002a).  

 

4) Finally, post depositional evaporation and recondensation of water molecules within 

the snow pack leads to alteration of the stable isotope ratio signal, dampening the 

average seasonal cycle and extreme events at sites with up to 40 g cm-2 yr-1 accumulation 

rates (Johnsen, 1977; Legrand and Mayewski, 1997; Schlosser, 2002b; Whillans and 

Grootes, 1985). At low accumulation sites (<10 g cm-2 yr-1) the seasonal cycle is 

commonly lost altogether (Gat, 1996). Furthermore, high firn diffusivity and hence 

strong post depositional modification of δD compared to δ18O, results in the 

production of an artificial d excess signal (Johnsen et al., 2000). This commonly 

accounts for positive correlation between δ18O and d excess signal at sites where 

diffusion processes are strong (Johnsen et al., 2000; Oerter, 2004). Ablation and 

formation of sastrugi features at the surface can further alter the integrity of the stable 

isotope profile with respect to temperature (Ekaykin et al., 2002). 
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These additional controls on δ18O, δD and d excess are important for interpretation of 

ice core stable isotope records. For example, the decreasing trend in δ18O over the last 

century on the coast of Dronning Maud Land is attributed to a decrease in accumulation 

predominantly from late winter and spring, rather than a temperature change which 

other evidence indicates remained constant (Schlosser, 2002a). This is also observed 

within the EPICA Dronning Maud Land ice core record, where a downward shift in 

δ18O andδD at 1000-1200 AD is attributed to increased accumulation as visible in 

annual layers (Oerter, 2004). Accumulation rate changes are also usually associated with 

a change in the dominant pathway of precipitation air masses. A switch from directly 

marine derived air masses (relatively high δ18O and δD) to continentally derived air 

masses (low δ18O and δD) will result in changes of similar or even greater magnitude 

than temperature driven changes (Schlosser, 2002a).  

 

3.2.0 Source regions and transport of major and trace elements in glaciochemical 

records 

 

Major and trace elemental chemistry measured in snow and ice core records is derived 

from atmospheric gases and aerosol sourced from the ocean, mineral dusts, volcanic 

emissions, biological processes, upper atmospheric processes, and anthropogenic 

activity (Legrand and Mayewski, 1997). Interpretation of their temporal changes with 

respect to climate is primarily based on knowledge of source, transport and depositional 

controls which are briefly reviewed here.  

 

Aerosols are deposited to snow either with precipitation (wet) or independently of 

precipitation (dry). Wet deposition scavenges ionic chemistry from the atmosphere and 

includes snowfall, snow drifting, cloud water (fog) and clear-sky ‘diamond dust’ 

depending on the site location (Legrand and Mayewski, 1997). Dry deposition occurs 

through direct settling of aerosols to the surface, or filtration through the upper pack 

section of firn (Legrand and Mayewski, 1997). Determination of the more dominant 

process at a site is important as snow chemistry concentrations will overestimate the 

aerosol loading of the atmosphere when dry deposition is dominant (Davidson et al., 

1981). To compensate for this, a chemical flux is commonly calculated where F ice = 

C*A and F is the flux of elements to the snow or ice, C is the measured concentration in 
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snow or ice and A is the calculated accumulation rate. However use of a chemical flux 

will underestimate atmospheric aerosol loading when wet deposition of aerosol 

dominates (Kreutz and Mayewski, 1999; Legrand and Mayewski, 1997). Although 

Kreutz et al. (2000a) argued wet aerosol deposition is likely to be the dominant process 

for sites across the West Antarctic Ice Sheet, low elevation sites along the Victoria Land 

coast will be more sensitive to the transport of locally sourced aerosol associated with 

dry deposition (Ayling and McGowan, 2006; Lancaster, 2002), and therefore a chemistry 

flux is likely to be more appropriate for this study. 

 

3.2.1 Marine aerosol 

Marine aerosols are the most significant source of elemental chemistry in coastal 

Antarctic snow and ice records. Marine aerosols are typically the exclusive source of the 

soluble Na, Cl, SO4, Mg and K present in snow samples (Legrand and Mayewski, 1997). 

Marine aerosols are produced by two dominant mechanisms, the global phenomena of 

open water wave crest dispersion (sea spray) and formation of frost flowers on the 

surface of young sea ice at high latitudes (Fischer et al., 2007b). Relative importance of 

these sources is site specific and has significant implications on the interpretation of 

temporal changes in marine derived chemistry in snow and ice core records with respect 

to windiness and sea ice extent.  

 

Traditionally, sea spray is considered the dominant mechanism of marine aerosol 

production. Dispersion of wave crests and bursting of air bubbles at the ocean surface 

produce small droplets of ocean water which are uplifted by convective cells into the 

boundary layer and higher atmosphere (Monahan et al., 1986). Production is most 

efficient during cyclonic activity due to increased turbidity of the atmospheric boundary 

layer, and aerosols are deposited with precipitation along the storm track (Fischer et al., 

2007b). Seasonal maxima of Na during summer when sea ice extent is minimum within 

a number of Antarctic glaciochemical records support the open ocean as the dominant 

marine aerosol source (Fisher, 2004; Wagenbach, 1998). Furthermore, inter-annual 

variability of summer Na concentrations have been significantly correlated to summer 

sea ice extent and sea level pressure, an indicator of cyclonic activity (Fisher, 2004; 

Kreutz et al., 2000b; Wagenbach, 1998).  
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In addition to a sea spray source, the sea ice surface has been identified as a important 

region of marine aerosol production at high latitudes.During freezing of sea water, 

highly saline brine is ejected from the sea ice and is concentrated in elemental chemistry 

(Rankin and Wolff, 2002; Rankin et al., 2000; Wolff et al., 2003). Forced upwards by the 

large temperature gradient between the warm oceanand cold atmosphere during winter, 

this brine forms a slush layer on the surface of sea ice (Fig. 3.2)(Martin et al., 1996). The 

brine is then wicked onto frost hoar which form at the sea ice surface due to the 

supersaturation of the vapour layer, resulting in the growth of highly saline crystals, 

hereafter denoted as frost flowers(Rankin et al., 2002).  

 

 
 

Importantly, elemental ratios of frost flowers differ from marine values. In particular, 

SO4 is depleted with respect to Na due to the precipitation of mirabilite (Na2SO410H2O) 

within sea ice or at the surface slush layer. The loss of sulphate and sodium into 

mirabilite is exponential with temperature, with half the sulphate lost at -10ºC, and 90 % 

lost by -20ºC (Rankin et al., 2002). At the normal air-ice interface temperature, almost all 

sulphate, and up to 13 % of sodium is lost (Rankin et al., 2002) resulting in relative 

depletion of sulphate, and enrichment of other trace elements with respect to Na 

(Rankin et al., 2002). Below -23ºC other cryohydrate minerals begin precipitation, 

starting with halite (sodium chloride). Although this will further modify oceanic ratios, 

such surface temperatures are generally associated with multi-year ice where frost flower 

formation does not occur due to the reduced temperature gradient in thick ice (Rankin 

et al., 2002).  
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Frost flowers form abundantly around coastal Antarctica, in particular, during early 

winter and at sites of continual sea ice growth such as sea ice leads and polynya systems 

(Rankin et al., 2002). With a light, crystalline structure, frost flowers are easily 

transported during windy conditions and deposited independent of precipitation (dry) at 

coastal sites (Rankin et al., 2002). Frost flowers are identified as a significant contributor 

of marine derived major ions in the snow pack at a number of Antarctic sites, including 

Halley and Neumayer stations, Ronne Ice Shelf, South Pole and Ross Drainage region 

of the Siple coast. A frost flower source is associated with winter maxima of marine 

derived elements (Na, Cl), SO4 depletion of snow chemistry with respect to Na and 

positive correlation between winter sea ice extent and Na concentrations (Kaspari et al., 

2005; Minikin et al., 1998; Wagenbach et al., 1998). 

 

Depending on the dominant source region, temporal changes of marine derived 

elements in snow and ice core records can indicate variable distance to open water, 

cyclonic activity, meridional wind strength, and sea ice extent (Fischer et al., 2004; 

Goodwin et al., 2004; Legrand and Mayewski, 1997; Petit et al., 1981; Petit et al., 1999; 

Wagenbach et al., 1998). Petit et al. (1981) attribute higher concentrations of marine 

derived elements during the Last Glacial Maximum to increased meridional wind 

strength while Fischer et al. (2007b) argue this could simply be a function of greater sea 

ice extent and a dominant frost flower source region of marine aerosol. Understanding 

of the dominant aerosol source is therefore vital. Distance to the marine aerosol source 

region, can be to a certain extent resolved by investigating fractionation of Cl with 

respect to Na. Because Cl- bonds more easily with other ions during atmospheric 

transport and is therefore more rapidly precipitated out than Na+, Cl/Na ratio of marine 

aerosol decreases with distance from source region (Legrand and Mayewski, 1997).  

 

3.2.2 Mineral dusts 

Mineral dusts are the only significant source of Al, and a dominant source of Ca and a 

number of trace elements in Antarctic snow and ice studies (Fischer et al., 2007a; 

Legrand and Mayewski, 1997). Transport of mineral dusts to the snow surface is 

dependent on weathering of crustal sources, proximity of the source region, wind speed, 

wind turbulence and deposition controls. Weathering is dominated by physical 

processes in Antarctica due to the cold temperatures that include frost weathering, 
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aeolian abrasion and salt weathering (Gibson et al., 1983; Kelly and Zumberge, 1961; 

Pye, 1987). Chemical weathering, which occurs due to the thermodynamic instability of 

most minerals at surface temperatures, is relatively minimal due to the lack of water, soil 

and vegetation, which limits element mobility (White, 2003). However, it is noted that in 

the presence of melt water, which occurs at some coastal locations such as the 

McMurdo Dry Valleys, chemical weathering may be particularly effective due to high 

levels of fresh rock powder (Tranter, 2003; White, 2003). Kelly and Zumberg (1961) 

found chemical alteration of granodiorites at Marble Point (Victoria Land coast) is 

limited to Fe-oxidation only, with insignificant changes in other elements.  

 

Entrainment of mineral dusts into the atmosphere is dependent on the size, sorting, 

cohesion and roughness of the source materials (Tsoar and Pye, 1987). Wind speeds 

required for particle entrainment range between ~6 to > 16 m s-1 for sand dunes and 

crustal alluvial fans respectively, with global averages for a dry, 150 µm quartz grain 

ranging between 6 to 8 m s-1 (Clements et al., 1963). Entrainment speeds are, however, 

commonly lower in Antarctic due to the higher density of cold air. Ayling and 

McGowan (2006) report speeds of 5.5 m s-1 necessary for entraining and transporting 

dry and loose fine grained sediment in the McMurdo Dry Valleys. Depending on 

particle size, wind strength and wind turbulence, transport of particles occurs via sliding, 

rolling, bouncing (saltation) or in suspension (Fig. 3.1) (Pye, 1987). This determines how 

far particles are transported during sustained wind events. Mineral dust will return to the 

surface once the particle settling velocity exceeds the vertical component of the wind 

sheer by either: a) reduction in wind velocity and turbulence, b) capture of particles with 

rough, moist or electrically charged surfaces, c) bonding of particles through chemical 

charge and hence settling or d) washing out of the atmosphere by precipitation (Pye, 

1987).  
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While local dust sources are likely to dominate terrestrial input at coastal sites, mineral 

dusts transported to the interior of Antarctica are predominantly derived from global 

sources. Patagonia and Australia have been identified as the dominant source of dusts to 

the Antarctic plateau through Sr and Nd isotope analysis (Basile et al., 1997; Delmonte 

et al., 2004; Revel-Rolland et al., 2006; Smith et al., 2003). Global dusts can be 

distinguished from regional sources by the modal grain size of global dusts between 2-6 

µm (Delmonte et al., 2004; Taylor and Gliozzi, 1964; Thompson and Mosley 

Thompson, 1981) as opposed to local dusts, which are typically >10 µm (Atkins and 

Dunbar, 2009; Ayling and McGowan, 2006).  

 

Temporal changes in mineral dust concentrations, grain size and terrestrial derived 

elemental chemistry have been used to infer changes in terrestrial aerosol source region 

aridity and atmospheric circulation. Over glacial-interglacial periods, temperature (δ18O 

andδD) is negatively correlated to dust flux, indicating greater exposure of source 

regions when sea level was reduced by ca. 120 m, increased aridity and/or increased 

wind strength (Lambert et al., 2008; Petit et al., 1999). In particular, the correlation 

between global terrestrial flux to Antarctica is strong during glacial periods but 

decoupled during inter-glacials, and has been used to infer a greater coupling between 

high and low latitude climates during glacials due to a northward shift of meridional 

atmospheric circulation (Lambert et al., 2008).  

 

Julia Bull, 2009. Glaciochemistry of Evans Piedmont Glacier, Antarctica 40



3.2.3 Additional sources of elemental chemistry 

Other sources of elemental chemistry measured in snow and ice core records involve 

biological, volcanic, high atmospheric and anthropogenic processes. SO4 is 

predominantly derived from marine aerosol, but is also produced through atmospheric 

oxidation of volcanic or anthropogenic emissions of SO2 (Kaspari et al., 2005; Legrand 

and Mayewski, 1997; Minikin et al., 1998). Furthermore, photo-oxidation of 

dimethylsulphide (DMS), a chemical produced from primary productivity at the ocean 

surface, produces both SO4 and methanesulphonate (MS) (Goktas et al., 2002). Unlike 

SO4, MS has no other significant source and shows strong potential as an indicator of 

biological productivity and inferred sea ice extent, in particular, within ice core records 

from the coastal Ross Sea region (Curran et al., 2003; Goktas et al., 2002; Rhodes et al., 

2009; Wolff et al., 2006).  

 

Nitrate (NO3) is another species commonly measured in glaciochemical records, 

reflective of both intrusion of stratospheric air masses and changes in soil aridity and 

land use (Legrand and Mayewski, 1997; Mulvaney et al., 1998; Wagenbach et al., 1998). 

However, understanding of its behaviour in snow and ice core records is limited. 

Summer annual peaks are controversial due to post depositional alteration of the signal, 

with up to 40 % loss of nitrate reported at sites of low accumulation (Goktas et al., 

2002). Nitrate deposits are also extensive within the McMurdo Dry Valley soils, 

originating from stratospheric input (Michalski et al., 2005; Witherow et al., 2006) and 

therefore may be redistributed to glaciochemical records within the McMurdo Dry 

Valleys and hence primarily indicative of atmospheric circulation.  

 

3.2.4 Trace element chemistry 

Most elements present in Antarctic snow and ice core records are present in trace 

concentrations, in particular, elements derived from mineral dusts and anthropogenic 

and volcanic emissions. The first Antarctic trace element studies focussed on 

determining natural background levels of anthropogenic elements on the Antarctic 

plateau (Boutron et al., 1972; Boutron and Lorius, 1979). Further studies have 

documented the rise in anthropogenic Pb since 1880, and other elements including Cr, 

Cu, Ag, Bi and U since the early 20th Century (Vallelonga et al., 2004). All studies 

observed large changes in heavy metals over various temporal scales, seasonal to 
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centennial (Boutron and Lorius, 1979; Hur et al., 2007; Planchon et al., 2002a; Planchon 

et al., 2002b; Vallelonga et al., 2004). 

 

Like major elements, the main source of trace element chemistry in snow and ice core 

records have been identified as marine, terrestrial, anthropogenic and volcanic aerosols. 

There is, however, poor agreement as to which elements are sourced from where and 

the main controls on transport and deposition. Possible source regions are attributed 

through comparison of elemental ratios in samples to oceanic and upper continental 

crust values and statistical techniques. However, due to the large natural variation of 

these sources, such calculations can only give an indication of the order of magnitude of 

source contributions (Barbante et al., 1997; Duce et al., 1975). Seasonality of chemistry 

has also been assessed which may indicate dominant source regions and transport 

processes, although results are variable at different sites and only a limited number of 

studies record sub-seasonal resolution. For example, Hur et al. (2007) sampled a 2.3 m 

snow pit for trace element chemistry from the Lambert Glacier in East Antarctica. 

Although they attribute As to a anthropogenic source and Bi to a predominantly 

volcanic emissions source, high correlation between the two elements is used to infer a 

similar atmospheric pathway. Seasonal cycles of marine derived U and V are not well 

defined and are attributed to the variable intrusion of marine air masses. Source regions 

of trace element chemistry in Antarctic snow identified by previous studies are 

summarized in Table 3.1.  
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Although ion chromatography is commonly applied to measure major element 

chemistry (ppm to ppb concentration levels) of Antarctic snow and ice core records 

(Bertler et al., 2004b; Kaspari et al., 2005; Legrand and Mayewski, 1997), study of trace 

element concentrations (ppb to ppq) requires significantly lower detection limits and 

avoidance of sample contamination. ICP-MS has been chosen for this study due to its 

multi-element capabilities, low sample consumption and the avoidance of any pre-

concentration which may introduce potential contamination (Barbante et al., 1997). The 

technique was first used on Antarctic and Greenland snow samples by Barbante et al. 

(1997) for measurements of Co, Cu, Zn, Mo, Pd, Ag, CD, Sb, Pt, Pb, Bi, U. Detection 

limits were shown to be less than 1 ppt for all elements and reproducibility of 

Greenland snow samples of 8-25 %. Although Gabrielle et al. (Gabrielli et al., 2005) 

argued that inductively coupled plasma sector field mass spectrometer is required for 

trace element analysis of Antarctic snow and ice samples, Grotti et al. (2008) 

demonstrated that with a hydrogen flushed collision cell, polyatomic interferences which 

commonly occur during ICP-MS analysis are low enough to allow high precision trace 

element measurements.  
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Chapter Four: Dating of the EPG snow pit record 

 

Relating glaciochemical records to climatic processes is dependent on robust dating 

techniques. This is particularly important when relating inter-seasonal and inter-annual 

variability to measured meteorological changes, a primary objective of this study. This 

chapter describes the basis and constraints of the EPG dating model. Accumulation 

rates determined by this model are compared to previous snow and ice core records 

along the Victoria Land coast. Full methodology, results and discussion of EPG snow 

pit chemistry used for dating are presented in Chapter 5 and Appendix 1.  

 

4.1.0 Methods 

 

The EPG snow pit profile covers the period winter 1994 to sampling in November 

2007. Dating was constrained by density, stratigraphy and chemistry of the EPG snow 

pit profile in addition to automatic weather station measurements of EPG accumulation 

since 2004 (Fig. 4.1). Identified summer and winter horizons have been dated as the 1st 

of January and July respectively, with linear correlation between. This dating model is 

attributed ± 6 months error as exact timing of precipitation is unknown. 

 

Low density and coarse grained snow layers were used to identify hoar horizons. 

Coupled with wind slabs of high density and fine gained crystals, changes in EPG snow 

stratigraphy were identified as summer/autumn (hoar) and winter (wind crust) 

benchmarks respectively(Alley, 1988; Alley et al., 1990; Kreutz et al., 1999). Ice layers 

were identified within sections of hoar, indicative of minor surface melt during summer 

as previously noted within nearby McMurdo Dry Valley snow records (Ayling and 

McGowan, 2006). Because hoar horizons may form at either the snow pack surface or 

up to 10 cm below the surface by sublimation during summer, slight offsets between the 

EPG snow stratigraphy and seasonal chemical markers are not unexpected (Alley, 1988; 

Kreutz et al., 1999).  

 

EPG snow chemistry was used to confirm seasonal stratigraphy benchmarks. Chemical 

parameters used for dating included stable isotope ratios (δ18O and the d excess) and 

concentrations of methanesulphonate (MS) and Na. Temperatures measured at EPG 
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vary on average between -7°C in summer (December to February) and -26°C in winter 

(June to August) as measured between 2004 and 2008. Although the dependence of 

δ18O on temperature in Antarctic snow is well established (Dansgaard, 1954; Sharp, 

2007), preservation of a seasonal signal within the snow pack may not occur due to post 

depositional diffusion when accumulation rates are low (Johnsen et al., 2000; Johnsen, 

1977; Schlosser, 2002b). Additionally, precipitation along the Victoria Land Coast 

occurs episodically and primarily during summer/autumn (Carrasco and Bromwich, 

1994; Carrasco et al., 2003; Monaghan et al., 2005; Mullen and Sinclair, 1990; Sinclair, 

2009; Turner, 2004). This will bias stable isotope variation towards periods of 

precipitation. However, δ18O variation of the EPG snow profile is in general agreement 

with snow stratigraphy changes. Although some hoar horizons are associated with 

subdued or absent δ18O maxima (e.g. 24-35 cm depth), variation of the d excess 

parameter supports a seasonal change in air mass source region (Froehlich et al., 2002; 

Sharp, 2007).  

 

Seasonal changes in MS and Na concentrations within the EPG snow pit profile 

support the dating model established by δ18O and stratigraphy. The dependence of 

aerosol derived chemistry on seasonal changes in source region and transport efficiency 

is well established for dating. For example, Goktas et al. (2002) used concurrent 

decreases in Na peaks and increases in non-sea-salt(nss) SO4
2- to indicate spring events 

for snow pack from coastal Dronning Maud Land. Na maxima were highest during 

winter due to a greater sea ice surface source region and increased wind strength. Non-

sea-salt SO4
2- maximum occurred during summer due to increased primary productivity 

within the Southern Ocean. Rhodes et al (2009) demonstrated the reliability of 

biologically produced MS as an indicator of summer events in snow pack from Mount 

Erebus, coastal Ross Sea region. Na concentrations within the EPG snow pit profile 

consistently occur concurrent with δ18O minima indicating winter events. Summer peaks 

in MS are less well defined, although post depositional migration of MS towards high 

concentrations of other chemical species may account for this (Curran et al., 2001). 

Significantly, a strong MS peak is present during summer 2004 from the current dating 

model, but MS concentrations are subdued for the entire period winter 2000 to 2003. 

The period of low MS is concurrent with extensive sea ice cover within the Ross Sea, 

which reduced primary productivity (Rhodes et al., 2009).  
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Finally, annual snow accumulation measured by the EPG automatic weather station 

(AWS) was compared to accumulation within the EPG snow pit. AWS measurements 

have been made since 2004, with resetting of the accumulation sensor annually. Total 

accumulation measured each year was converted to water equivalent depth using the 

average density of the top 14cm of EPG snow pit profile. This density is considered 

representative of approximate compaction within a single year of accumulation. When 

compared to water equivalent depths of the EPG snow pit profile, the AWS time 

horizons are in approximate agreement with the proposed dating model. In particular, 

accumulation was minimal during 2007 (5 g cm-2), in agreement with accumulation 

determined from the dated EPG snow pit profile (3 g cm-2). Although snow 

accumulation measured by the AWS during 2006 (19 g cm-2) is double that predicted by 

the EPG snow pit profile (10 g cm-2), this is not unexpected due to natural variability of 

accumulation at the site such as sastrugi features observed on 10’s cm scales, and error 

in determined compaction of the records. Importantly, both records indicate 3 years of 

accumulation within the top 23-30 g cm-2 of accumulation.  
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4.2.0 Comparison of EPG accumulation with previous Victoria Land snow pit 

records 

 

An average accumulation rate of 12 g cm-2 yr-1 is determined from the dated EPG snow 

pit record. This is high in comparison to nearby McMurdo Dry Valley snow and ice core 

records, but is consistent with average accumulation of 11.7 cm-2 yr-1 measured by the 

EPG AWS between 2004 and 2008. In particular, Wilson Piedmont Glacier (WPG) is a 

low elevation, coastal glacier, located 50 km south of EPG but has accumulation rates 

that are 25 % of EPG (Table 4.1).Dating of WPG is based primarily on high frequency 

peaks in Na and MS which are inferred as a seasonal representation of summer open 

water conditions, and correlation to Victoria Lower Glacier (VLG) snow pit (Bertler, 

2003). VLG dating has been independently constrained using radiogenic isotopes (β-

activity age) with summer 1964/65 at 4.10 m depth (Bertler, 2003). Counting of high 

frequency Na and MS peaks produces a similar age (± 1 yr) and therefore provides 

justification of its use at WPG (Bertler, 2003). 

 

 
 

If the technique of using high frequency variation of MS or Na to represent summers 

instead of lower frequency, sustained MS and Na maxima is applied to EPG, it is 

possible to date the EPG snow profile back to 1968 with an average accumulation rate 

of 5 g cm-2 yr-1. Although comparable to WPG, this is not reconcilable with instrumental 

accumulation rates measured at EPG and chemical comparison of previous EPG snow 

pit records. Furthermore, EPG accumulation of 12 g cm-2 yr-1 is not anomalous in 

comparison to other snow pit measurements along the Victoria Land coast outside the 
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McMurdo Dry Valley region (Table 4.1). We therefore conclude the first dating model is 

more likely to capture the annual characteristics of the site, and that EPG is located just 

north to the boundary of the unique climate conditions which prevail over the 

McMurdo Dry Valleys to reduce accumulation rates and maintain an ice free zone.  
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Chapter Five: Measurement and interpretation of EPG stable isotope, 

major and trace element chemistry 

 

This chapter is a draft manuscript for submission to Earth and Science Planetary 

Letters. Due to content constraints, additional description and discussion of 

methodology are presented in Appendix 1. 

 

Source region and transport controls on major and trace element chemistry of snow pack from the 

southern Victoria Land coast, Antarctica.  

 

Abstract 

This study presents a sub-seasonally resolved, decade long, record of snow pack 

chemistry from Evans Piedmont Glacier, southern McMurdo Sound, Ross Sea, 

Antarctica. This is a region of high snow accumulation and variable aerosol sources, 

which are sensitive to processes in the atmospheric boundary layer, driven by 

interactions between the Southern Ocean and Antarctic ice sheet, that in turn are 

sensitive to global climate phenomena including the El Niño Southern Oscillation 

(ENSO). Snow chemistry measurements were made by inductively coupled plasma mass 

spectrometry at a resolution of ca. 20 analyses per yr. Samples were analysed for Na, 

Mg, Al, Fe, Mn and Ba using a hydrogen flushed collision cell to reduce interferences, 

and Ti, V, Cr, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Cd, Sb, Cs, Ba, La, Ce, Pb, Bi, Th and U in 

non-collision cell mode. Analytical precision is typically 5 to 10 % 2 rsd for all elements, 

which is typically two orders of magnitude less than the natural variability between 

samples (e.g. Na = 10 to 18031 ppb and Al = 5 to 3856 ppb). However, reproducibility 

of measurements made on elements largely derived from mineral dusts is affected by the 

presence of particulate material that is not fully dissolved during 12 hr acidification of 

samples. Despite this, the range of sample concentrations (e.g. Zr = 3.0 to 5630 ppb) is 

still orders of magnitude higher than sample reproducibility. Temporal changes in 

elemental chemistry are related to wind conditions measured at proximal Cape Ross 

(~10 km distance from EPG). Winter maxima of all elemental concentrations are 

consistent with increased wind strength and transport of aerosol from the south. Annual 

maximum chemistry concentrations of terrestrial derived elements (e.g. Zr) are 

significantly correlated to maximum annual wind speed measured at Cape Ross (r2 = 
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0.68, p<0.01). Lower correlation of marine derived chemistry (e.g. Na) and maximum 

wind strength reflects additional controls of source region and other meteorological 

parameters such as storm duration on marine derived chemistry. In contrast to 

elemental concentrations, elemental ratios are less sensitive to extreme wind conditions. 

Rather elemental ratios provide a more robust signature of changes in mean 

atmospheric circulation related to delivery of aerosol from different source regions and 

via different transport fractionation processes. Al/Na is controlled by variable delivery 

of terrestrial (Al) and marine (Na) aerosol to EPG, although the longer term trend is 

driven primarily by changes in Na. Al/Na is significantly higher between winter 2000 

and summer 2006/07 with a mean value of Al/Na = 0.15 compared to Al/Na = 0.02 

prior to 2000. Although sea ice extent was highly variable over this time period, there is 

no clear relationship between Al/Na and sea ice. Rather, Al/Na is significantly 

correlated to mean summer wind speed measured at Cape Ross (r2 = -0.51, p<0.01). 

This demonstrates the sensitivity of Al/Na to changes in the average transport of 

marine aerosol to EPG during summer, when an open ocean source is most proximal. 

The shift in Al/Na is also concurrent with a shift in the relationship between δ18O and d 

excess, indicative of changing precipitation source region to EPG. We suggest these 

changes in EPG chemistry are concurrent with shifts in the mean state of the ENSO. 

Increased summer wind strength from, resulting in a low Al/Na ratio at EPG during 

negative ENSO (El Niño) period is consistent with previous models of ENSO influence 

on atmospheric circulation of the Ross Sea region. This study demonstrates the ability 

of elemental chemistry to reconstruct atmospheric circulation changes within the 

southern McMurdo Sound and hence the potential to extend these observations over 

longer time periods using ice core records.  
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5.1.0 Introduction 

 

Major and trace element chemistry of snow and ice core records provide important 

proxy information about past environmental conditions (Curran et al., 2003; Legrand 

and Mayewski, 1997; Mayewski et al., 1995; Petit et al., 1999; Planchon et al., 2002a). In 

particular, coastal Antarctic sites from the Ross Sea region are characterised by high 

snow accumulation rates with records of sub-annual resolution (Connolley and Cattle, 

1994). These records are sensitive to changes in tropospheric climate, and marine 

processes such as primary productivity (Bertler et al., 2004a; Curran et al., 2003; 

Patterson et al., 2005; Rhodes et al., 2009). High resolution proxy records are necessary 

to determine the influence of sub-decadal climate phenomena such as the El Nino 

Southern Oscillation (ENSO) at high latitudes where instrumental records are spatially 

and temporally sparse (Turner et al., 2005).  

 

Marine derived, soluble chemistry dominates the ionic budget at coastal sites recording 

changes in marine source areas and transport efficiency (Legrand and Mayewski, 1997). 

High precision measurements of elements present in trace concentrations provide 

additional information about terrestrial and anthropogenic derived inputs (Hur et al., 

2007; Vallelonga et al., 2004). Full utilization of major and trace element glaciochemical 

records still requires further understanding of source regions, transport and deposition 

processes. To date, the only sub-seasonally resolved Antarctic snow record with an 

extensive trace element profile is from the Lambert Glacier basin, East Antarctica (Hur 

et al., 2007). This record covers the four-year period between spring 1998 and summer 

2002. Measurements of Al, V, Mn, Fe, Cu, As, Cd, Ba, Pb, Bi and U show between one 

and two orders of magnitude temporal variation in concentrations. Another comparable 

record extends back to the year 1920 from Coats Land, Weddell Sea coast, but was only 

sampled discretely for sub-annual resolution (Planchon et al., 2002b). Other high 

resolution studies have analysed for a limited number of elements and are focused 

typically on anthropogenic elements (Barbante et al., 1997; Wolff et al., 1999), or are too 

short for comprehensive assessment of seasonal changes in snow chemistry (Suttie and 

Wolff, 1992; Wolff and Suttie, 1994) 
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This study presents the first measurements of a comprehensive array of trace elements 

in snow pack from coastal Victoria Land (Fig. 5.1). Oxygen isotope stratigraphy and 

other chemical markers demonstrate the record covers the period between winter 1994 

to summer 2007/08. The objective of this study is to improve our understanding of the 

controls on snow trace element chemistry in snow, specifically, the development of 

chemistry proxies for atmospheric circulation changes at coastal Antarctic sites within 

the Ross Sea region. This is required for the reconstruction of long term changes in sub-

decadal scale climate variability. To this end, we have developed a reliable technique for 

rapid analysis of a wide range of major and trace elements by inductively coupled plasma 

mass spectrometry (ICP-MS). The specific aims of this study are to:  

 

1) Model the influence of marine, terrestrial, anthropogenic and volcanic emission 

sources on snow chemistry, including the effects of heterogeneity within terrestrial 

source regions and fractionation processes during aerosol transport.  

 

2) Relate seasonal and inter-annual trends in elemental chemistry concentrations and 

elemental ratios to atmospheric circulation changes from the on-site and regional 

meteorological records.  

 

5.2.0 Study site 

 

5.2.1 Site location and possible aerosol source regions 

Evans Piedmont Glacier (76º 43.53’ S, 162º 35.29 E) is a locally accumulating ice mass 

at 310 m elevation, selected for high annual accumulation rates (12 g cm-2 yr-1) and 

strongly contrasting local aerosol source regions. Regional aerosol sources include the 

Ross Sea, extensive rock and soil exposures of the Transantarctic Mountains (TAM) and 

McMurdo Volcanic Group, emissions from the active Mt. Erebus volcano and 

anthropogenic activity at Ross Island, Marble Point and Terra Nova Bay (Fig. 5.1). 

Elemental contributions from distally derived terrestrial aerosol of Southern 

Hemisphere continents are considered minimal in comparison to locally sourced 

material (Ayling, 2001).  
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5.2.2 Meteorology 

McMurdo Sound regional climate is controlled primarily by continental katabatic 

outflow and mesoscale (10 000 km2) cyclonic activity (Bromwich et al., 1993). Katabatic 

outflow originates predominantly from the Siple coast, Byrd Glacier region and Terra 

Nova Bay (Bromwich et al., 1993; Parish and Bromwich, 1987) and is strongest during 

winter due to significant cooling over the Antarctic plateau (Parish and Cassano, 2003). 

Interaction of katabatic winds with warmer maritime air provide conditions for 

mesoscale cyclogenesis when associated with a weak surface trough, which is particularly 

frequent within the McMurdo Sound region (5-6 mesoscale vortices yr-1)(Carrasco et al., 

2003). Katabatic and cyclonic flow is forced parallel to the Transantarctic Mountains, 

with the development of gale-force winds at McMurdo Station and Scott Base when 
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mesoscale cyclones form to the east of Ross Island (Bromwich et al., 1993; Carrasco and 

Bromwich, 1994; Sinclair, 1982).  

 

We relate EPG chemistry to changes in changes in meteorological conditions measured 

by automatic weather stations (AWS) at EPG, Cape Ross (~10 km distance), Scott Base 

and Marble Point. Temperature, humidity and snow accumulation were measured at 

EPG between November 2004 and November 2008, excluding the period June 1st to 

November 1st 2005 when the AWS experienced storm damage. Hourly temperature, 

wind direction and speed measurements from Cape Ross AWS (Arelis 735, WMO no. 

89666) are available from 1990 to the present from the Italian Antarctic Research 

Program (http://www.climantartide.it). The regional extent of wind events identified in 

the Cape Ross record is evaluated with respect to daily AWS data from Scott Base 

(station number 12740) and hourly measurements from Latitudinal Gradient Program 

station at Marble Point (ANT004). Data is sourced from the New Zealand national 

climate database (http://www.cliflo.niwa.co.nz/) and the Soil Climate Analysis Network 

(http://www.wcc.nrcs.usda.gov) respectively.  

 

Wind measured at Cape Ross is dominated by flow from three directions, the SSE 

(160°-190°), SW (220°-250°) and NW (290-320°) (Fig. 5.1) with average frequencies 

over the 18 yr record of 47 %, 13 % and 15 % respectively. Strong winds (> 10 m s-1) 

occur consistently from the SW and SSE only. Winds > 30 ms-1 occur from the SW 

only. Relative humidity is highest when flow is from the S and NW (57 % and 48 % 

respectively) and lowest from the SW (40 %). We therefore summarise local wind 

directions as a) direct marine airflow from the NW, b) combined mesoscale marine 

cyclonic activity (high relative humidity) and katabatic outflow from the SSE and, c) 

extreme katabatic wind events from the either the East Antarctic of West Antarctic ice 

sheets (low humidity) that are strong enough to overcome the topographic barrier of 

EPG.  

 

A primary research objective of the NZ ITASE program is to determine the influence 

of the El Niño Southern Oscillation (ENSO) on the Ross Sea climate by extending 

meteorological records beyond the instrumental period (~1950s) using glaciochemistry 

(Bertler et al., 2004a and 2006). Therefore, EPG snow pit chemistry is also related to the 
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southern oscillation index (SOI), a measure of ENSO strength and polarity. SOI values 

have been sourced from the NOAA Earth Systems Research Laboratory 

(http://www.cdc.noaa.gov/data/climateindices/). 

 

5.3.0 Methods 

 

5.3.1 Snow pit sampling 

The 4 m EPG snow pit profile was sampled in November 2007 at 1 cm resolution. 

Sampling equipment, sample bottles and ICP-MS vials were cleaned using a method 

modified from Osterberg et al. (2006). Vials were triple rinsed in ultra-clean water 

(>18.2 MΩ), soaked in 5 % analytical reagent (AR) grade HNO3 for a minimum of two 

weeks, triple rinsed in ultra-clean water, soaked in ultra-clean water for two weeks, triple 

rinsed in ultra-clean water, shaken dry and capped immediately under class 100 HEPA 

conditions. IC vials were triple rinsed, soaked for two weeks and triple rinsed in ultra-

clean water only, dried and capped in a class 100 HEPA clean-bench. Tyvek clean suits, 

face-masks and powder free polyethylene gloves were used throughout to prevent 

contamination.  

 

After initial excavation, the sampling surface was cleaned back 1 m using a dedicated 

pre-cleaned stainless steel spade and then a further 10 cm with a ceramic knife. Samples 

were obtained at 1 cm resolution with an additional ceramic knife into a high-density 

polyethylene (HDPE) tray, directly transferred into 60 mL acid cleaned Nalgene HDPE 

bottles and stored frozen. Aliquots of samples were taken for ICP-MS, ion 

chromatography (IC) and stable isotope analyses under class 100 high efficiency 

particulate clean air (HEPA) conditions at GNS Science.  

 

5.3.2 Stable isotopes 

Oxygen (δ18O) and hydrogen (δD) isotope ratios were measured at the National Isotope 

Centre, GNS Science, by classical equilibration techniques using a GVI AquaPrep 

system attached to dual inlet GVI mass spectrometer. 400 µL of sample was equilibrated 

with 300 µL of CO2 for 24 hr at 25.5ºC. CO2 was extracted and directly transferred for 

mass spectrometry analysis. Hydrogen isotope analyses (δD) were conducted by direct 

reduction of 100 µL of sample using a PyrOH reaction column, and measurement on 
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the same dual inlet mass spectrometer system. All results are reported with respect to 

VSMOW, normalised to internal standards INS 11, INS9 and MM1 with reported δ18O 

values of -0.4 ‰, -17.4 ‰, -29.4 ‰, and δD values of -4.6 ‰, -131 ‰ and -241 ‰ 

respectively. Approximately one in every ten samples were run in duplicate with 

analytical precisions < 0.1 ‰ for δ18O and < 1.0 ‰ for δD. The second order stable 

isotope parameter deuterium excess is calculated from oxygen and hydrogen isotope 

measurements where d = δD – 8*δ18O (Dansgaard, 1954). Analytical uncertainty (u) is 

estimated as u(d) = √((uδ2H)2 + 8 * (uδ18O)2) ≈ 1.03 ‰.  

 

5.3.3 Ion chromatography 

EPG snow samples were analysed for major ions (Ca+, Cl-, K+, Mg+, Na+, SO4
2-) by ion 

chromatography (IC) at the Chromatography/Glaciochemistry Laboratory, University 

of Maine. Un-acidified samples were measured on two Dionex ion chromatographs with 

chemical suppression and conductivity detectors attached to a Gilson Liquid Handler 

auto-sampler. This allows simultaneous anion and cation analysis. Anions were 

measured using an AS-18 column, 400 µL sample loop, and a Dionex Reagent Free 

Controller producing a KOH eluent concentration of 35 mM. Cations were measured 

using a CS-12A column and 500 µL loop with 25 mM methanesulphonic acid eluent. 

Calibration curves bracket the expected concentration range with correlation 

coefficients of >0.99.  

 

5.3.4 Inductively coupled plasma mass spectrometry (ICP-MS) 

The major and trace element concentrations of EPG snow were measured using an 

Agilent 7500cs series ICP-MS at Victoria University of Wellington. A collision cell 

flushed with H2 was used for analysis of Na, Mg, Al, Ca, Mn, Fe and Ba, reducing 

interferences from the formation of oxides and other polyatomic ions and, in particular, 
40Ar16O+ on 56Fe. Ti, V, Cr, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Cs, Ba, La, Ce, Pb, Bi, Th, 

U were analysed without the collision cell to obtain greater sensitivity. Oxide 

interferences were monitored using a 1 ppb Ce standard with the mass ratio 
156CeO+/140Ce+ always < 2 %. These two analytical approaches are hereafter referred to 

as ‘collision’ and ‘non-collision’ modes, respectively. Instrumental conditions for each 

are summarized in Table 5.1.  

 

Julia Bull, 2009. Glaciochemistry of Evans Piedmont Glacier, Antarctica 57



Snow samples were kept frozen until 12 hr before analysis and then acidified to 1 % 

HNO3 using high purity (SeaStar) acid. Samples were transferred to the ICP-MS via a 

ASX-520 micro-volume autosampler and introduction kit with PFA Teflon nebuliser 

and quartz spray chamber maintained at 2°C to reduce the water content of aerosols 

entering the plasma (Hutton and Eaton, 1987). Analyte flow was maintained under self-

aspiration to reduce contamination from Tygon tubing that is required for peristaltic 

pumping. On completion of collision cell analysis, the remaining sample was refrozen 

until later non-collision cell analysis. This was done to inhibit changes in sample 

chemistry from leaching of elements from vials and further dissolution of particulate 

material within the sample. 
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Initial investigation of calibration standards showed a linear relationship between 

elemental concentration and ICP-MS signal intensity. Therefore, a single calibration 

standard was analysed for each analysis mode with elemental concentrations of the 

standard approximating mean values expected in EPG snow samples. Dilutions of 

calibration standards and the external standard, the Ottawa riverine standard SLRS-4 

(National Research Council Canada (CRNC)) were prepared daily. Detection limits were 

calculated as 3σ procedural blanks. Due to the large range of concentrations in the snow 

samples, pulse/analogue factors for Mg, Al, Ca, Mn and Fe during collision cell analysis 

and Ti, Cu, Sr, Zr, Cs, La and Ce during non-collision cell analysis were measured every 

four runs to calibrate the ICP-MS detector between pulse and analogue modes. 

Accuracy and long-term reproducibility of measurements were verified by repeated 

measurement of the external standard SLRS-4. This was measured approximately every 

30 samples at 1:100 dilutions for collision cell mode and 1:10 dilutions for non-collision 

mode analyses. Analytical precision of Cr, Cu, Zn and Pb was assessed by four 

measurements of undiluted SLRS-4.  

 

5.3.5 ICP-MS sample measurements 

Approximately every 2nd EPG snow sample (2 cm resolution) was analysed for major 

and trace element concentrations by ICP-MS. Reproducibility of sample measurements 

across the two ICP-MS analytical modes was assessed by measurement of Ba during 

both collision cell and non-collision cell analysis. Furthermore, IC measurements of Na, 

Mg and Ca provide an independent comparison of the ICP-MS results. Reproducibility 

of samples within ICP-MS analytical modes was assessed by multiple (2-3) 

measurements of ten samples of variable concentration during a single collision cell 

analysis set. Additionally, select samples were measured fully by ICP-MS time resolved 

analysis. Time resolved analysis differs from usual spectral analysis as raw data from 

every scan is available rather than a single 60 and 30 scan average for collision and non-

collision spectral analyses respectively.  

 

The extent of particulate matter in EPG snow samples was also investigated by 

microscopic inspection of samples EPG_326, EPG _306 and EPG _172. 10 mL 

aliquots were centrifuged for 5 minutes at 900 rev/min to concentrate particulate 
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material at the bottom, from which 1 mL was transferred, evaporated and mounted on a 

smear slide.  

 

5.4.0 Results 

 

5.4.1 Dating 

The EPG snow pit profile covers the period winter 1994 to sampling in November 

2007. Dating was constrained using concurrent low-density hoar horizons, δ18O and d 

excess variation (Fig. 5.2) and, methanesulphonate (MS) maxima to identify summer 

horizons (1st of January) (Bertler et al., 2004b; Rhodes et al., 2009). Peaks in elemental 

chemistry (e.g. Na and Al), concurrent with δ18O minima were used to identify winter 

horizons (1st of July). Automatic weather station accumulation measurements acquired 

at EPG since 2004 confirm approximate accumulation rates inferred from the dating 

model. Linear extrapolation was conducted between determined seasonal horizons and 

our dating model is attributed ± 6 months error as exact timing of precipitation is 

unknown.  

 

5.4.2 Stable isotopes 

Stable isotope ratios of EPG snow samples range between δ18O = -19.5 ‰ to -30.1 ‰, 

δD = -148 ‰ to -244 ‰, and d excess = -12 ‰ to 17 ‰ (Fig 5.2). The mean d excess 

value of 3.4 ‰ is comparable to other coastal Antarctic snow records which range 

between ~2 and 7 ‰ (Ciais et al., 1995; Masson-Delmotte et al., 2008; Patterson et al., 

2005). D excess positively co-varies with δ18O and δD throughout the majority of the 

EPG snow pit profile, but lags δ18O and δD by approximately 90° of the seasonal cycle 

between winter 2000 to summer 2004/05.  
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5.4.3 Analytical accuracy and precision of ICP-MS analyses 

ICP-MS analyses of SLRS-4 (Table 5.2) are within the range of certified and reported 

concentrations (CRNC, 1998; Osterberg et al., 2006; Roduskin, 2003) for all elements 

with the exception of Ti. The determined Ti concentration is 20 % lower than 

Rodushkin (2003), which is currently the only other reported value. SLRS-4 analyses are 

highly reproducible with < 8 % 2 rsd for collision cell analysis and < 10 % 2 rsd for 

most non-collision cell analyses. Elements with precision > 10 % 2 rsd (Cr, Ni, Cu, Zn, 

Cs, Pb and Bi) displayed low signal to background ratios when measured on the 1:10 

diluted SLRS-4 solution. Precision of Ni (13 % 2 rsd) and Bi (26 % 2 rsd) are 

comparable to that reported by Rodushkin (2003).  
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5.4.4 Reproducibility of elemental chemistry measurements in EPG snow samples 

EPG snow samples differ significantly from artificial and filtered standards due to the 

presence of particulate material, ranging from sub-micron to several hundred microns in 

size (Fig. 5.3). Although dominated by mineral grains, sample EPG_306 also contained 

volcanic glass (Fig. 5.3c), sponge spicules (Fig. 5.3d) and fresh water diatoms.  

 

 
 

Comparison of EPG sample concentrations determined by IC and ICP-MS is r2 = 0.68 

for Na, r2 =0.55 for Mg and r2 = 0.72 for Ca (Fig. 5.4). Although the correlation 

coefficient between analysis techniques is highest for Ca, this is not considered 

representative of measurement reproducibility due to the influence of a limited number 

of outliers. Rather, 70 % of sample analyses are within a 20 % envelope of either 

analysis for Na, within a 40 % envelope of either analysis for Mg and within a 50 % 

envelope of either analysis for Ca. Where significant differences are present, sample 

concentrations determined by ICP-MS are typically higher (e.g. 28 % of Na samples 

concentrations are higher when determined by ICP-MS versus 5 % of sample Na 

concentrations which are lower). 
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Correlation of Ba concentrations measured in EPG samples between collision cell mode 

ICP-MS and non-collision cell ICP-MS is r2 = 0.63. Significantly, this is lower than the 

correlation of Ba with other elements within each analysis mode (e.g. correlation 

between Al and Ba, r2 = 0.90 and Ti and Ba, r2= 0.98) (Fig. 5.5). There is no significant 

trend towards higher Ba concentrations determined by either analytical technique.  
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Repeated measurement (2 to 3 times) of the ten samples within a single collision cell 

ICP-MS analysis set produces concentrations that differ from the first measurement by 

on average 11-12 % for Na, Mg, and Ca, 31-37 % for Al, Fe, Mn and Ba, 8 % for Al/Na 

and 11 % of Fe/Al. Reproducibility of sample measurements is similar to analytical 

precision for Na, Mg, Ca and Al/Na (analytical precision ≈ 7 % rsd) but worse than 

analytical precision for Al, Fe, Mn, Ba and Fe/Mn (analytical precision ≈ 7 % 2 rsd for 

Al, Fe, Mn, Ba and 10 % 2 rsd for Fe/Al).  

 

ICP-MS time resolved analysis of EPG snow samples shows peaks in signal intensity 

extending from the modal concentration (Fig. 5.6). The magnitude and frequency of 

peak concentrations is both element and sample dependent, with variability of raw data 

highest for elements such as Al, Mn, Fe, Ti, Zr and Ba and lowest for Na, Cr, Cu and Sr. 

Reproducibility of 60 (collision) and 30 (non-collision) scan averages is best for Na (6 % 

2 rsd) and Sr (2 % rsd), and worst for Fe (45 % 2 rsd) and Zr (90 % 2 rsd) when 

averaged over all samples measured. This is comparable to the reproducibility of 

repeated sample measurements by spectral analysis, reported in the previous paragraph. 

Furthermore, reproducibility of scan averages for elemental ratios including Na, Sr, As 

and Cr (e.g. Al/Na = 24 % 2 rsd) is better than ratios between elements such as Fe, Ba 

and Zr (e.g. Zr/Y = 86 % 2rsd) (Fig. 5.6). Variability of sample measurements is also 

sample dependent. The reproducibility of Zr scan averages in EPG_072 (12 % 2 rsd) is 

an order of magnitude lower than EPG_290 (331 % 2 rsd) despite comparable Zr 

concentrations of 97 ppt and 72 ppt respectively. The measurement of calibration 
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standards and the external standard SLRS-4 is highly reproducible for all elements in 

comparison to sample measurements. 

 

 
 

5.4.5 Elemental concentrations of EPG snow samples 

Elemental concentrations of EPG snow samples vary temporally by three to four orders 

of magnitude. Elemental variation is typically two orders of magnitude higher than ICP-

MS analytical uncertainty and three times higher than natural internal sample variability 

for all elements (Table 5.2). Variation is highest for Th, Sb, Fe and Al and least for Pb, 

Cr, Bi and As. Comparably, temporal variation (ratio of maximum/minimum 

concentrations) is lowest for Cu and Bi, moderate for Al, high for Mn and Pb in snow 

samples at Lambert Glacier (Hur et al., 2007), and lowest for U, Pb, Al and Bi and 

highest for Fe, Mn, and V at Coats Land (Planchon et al., 2002b). Average elemental 

concentrations at EPG are significantly higher (up to three orders of magnitude) than 

average elemental concentrations at either Lambert Glacier or Coats Land (Table 5.3) 

(Hur et al., 2007; Planchon et al., 2002b). Pb and Bi concentrations show the lowest 

differences between these studies. 
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Na concentrations in EPG snow samples determined by ICP-MS are significantly 

correlated with Mg (r2 = 0.98), Cr, As, and Sr (r2 > 0.80) (Fig. 5.5). Samples have broadly 

marine ratios with slight enrichments in Mn, Cr, As and Sr towards crustal values. Al 

significantly correlates with Mn, Fe and Ba (r2 > 0.90) and Ti co-varies with V, Ni, Rb, 

Y, Cs and Ba (r2 = 0.95), and Cu, Zn, Zr, La, Ce, Pb, Bi, U (r2 > 0.84). Relative 

concentrations of Al, Fe, Ti and Ba are closer to averaged regional geology whole rock 

ratios (Roser and Pyne, 1989) than upper continental crust (UCC) (Wedepohl, 1995).  
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Maximum elemental concentrations typically occur during or close to winter δ18O 

minima (Figs. 5.8 to 5.10). Concentration maxima of Na (and elements that are strongly 

correlated with it) occur during winters 1996, 1999 and 2004. Concentration maxima of 

Al, Ti (and elements correlated with them) occur during winters 1996, 2003, 2004 and 

2007 (Fig. 5.8 to 5.10). Previous studies find Al, V and Cr maxima occur during late 

spring to summer at Coats Land (Planchon et al., 2002b), spring, summer and winter at 

Lambert Glacier (Hur et al., 2007) and seasonal maxima of marine derived chemical 

species (e.g. Na) occur both during winter (Kaspari et al., 2005; Wolff et al., 2003), and 

late spring/summer (Bertler et al., 2004b; Fisher et al., 2008; Wagenbach et al., 1998) 

depending on site location.  

 

5.4.6 Elemental ratios of EPG snow samples 

Elemental ratios are calculated between elements measured within the same ICP-MS 

analytical mode (collision cell or non-collision cell). Al/Na and Ti/Sr demonstrate four 

orders of magnitude sample-to-sample variation, an order of magnitude higher than 

analytical precision or intra-sample variability (Table 5.2, Fig. 5.8 and 5.9). On average, 

Al/Na ratio is low for the period 1997 to 2000 (Al/Na = 0.02), and high from 2001 to 

2008 (Al/Na = 0.15). The Al/Na ratio changes by 156% between these time periods, 
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driven primarily by a reduction in average Na concentration from an average of 3101 

ppb (1997 to 2000) to 1059 ppb (2001 to 2008). Ti/Sr demonstrates a similarly long-

term trend to Al/Na. although the increase in Ti/Sr is more subdued, changing by 69% 

from an average of Ti/Sr = 3.3 (1997 to 2000) to Ti/Sr = 6.8 (2001 to 2008). Elemental 

ratios Fe/Al and Zr/Y vary seasonally between 1996-1998 and 2001-2008 and are 

consistently elevated during δ18O maxima (Fig. 5.10).  
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5.5.0 Discussion 

 

5.5.1 Presence of dust particulates in EPG snow samples 

Repeated measurement of the external standard SLRS-4 demonstrates ICP-MS is a 

reliable analytical technique for the measurement of major and trace element chemistry 

at concentrations similar to those present in EPG snow samples. Analytical precision is 

typically 5 to 10 % 2 rsd and even errors > 10 % 2 rsd are insignificant in comparison to 

temporal changes in elemental chemistry of snow samples. However, the reproducibility 

of sample measurements by ICP-MS is complicated by the presence of mineral dusts. 

Importantly, sample-to-sample variation is still at least three times higher than internal 

sample variability. The interpretation of temporal changes in elemental concentrations is 

therefore not affected by the reproducibility of individual sample measurements.  

 

Mineral dusts affect sample measurements by increasing the concentration of elements 

in the soluble fraction when partially leached in weakly acidified ICP-MS sample 

aliquots. In comparison, IC aliquots are non-acidified, accounting for the systematically 

higher concentrations of Na, Mg and Ca determined by ICP-MS analysis when 

comparing the two analytical techniques. Furthermore, leaching of mineral dusts is both 

element and mineral specific and will alter elemental ratios present in the soluble 

fraction of weakly acidified samples. Easily leached elements such as Cu are relatively 

enriched with respect to other elements such as Al (Reimann and De Caritat, 2000; Ruth 

et al., 2008; Snäll and Liljefors, 2000). Because acidification was kept constant for all 

samples, it is unlikely this can account for observed changes in elemental ratios 

throughout the snow pit profile, but may be significant for elemental ratio based source 

modelling.  

 

Undigested particles add additional complexity to the measurement of elemental 

chemistry by entering the ICP-MS and are responsible for the variability of repeated 

ICP-MS sample measurements. This is indicated by the poor reproducibility of Ba 

sample measurements between collision cell ICP-MS and non-collision cell ICP-MS 

(Fig. 5.5). This cannot result from variable leaching of particulate material as samples 

were refrozen in between analyses to inhibit chemistry changes. Additionally Ba 
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concentrations are not systematically higher during later non-collision cell analysis as 

would be expected from an increased period of acidification. Repeated measurement of 

samples by collision cell ICP-MS for Na, Al, Ca, Fe, Mn and Ba concentrations also 

show significant differences despite the completion of all analyses within an hour. This 

is considered too short a period of time for significant changes in chemistry after the 

initial 12 hr period of acidification.  

 

Time resolved analysis most clearly demonstrates the influence of undigested particulate 

material on sample measurements. Strong peaks in signal intensity of terrestrial derived 

elements occur above the modal concentration measurement, representing the 

concentration of elements in particulate material and soluble chemistry respectively. 

Although 60 and 30 scan averages (equivalent to a single spectrum analysis for collision 

cell ICP-MS and non-collision cell ICP-MS respectively) are typically closer to the 

soluble chemistry concentration, slight differences in the number of particles analysed 

are responsible for the poor reproducibility of repeated sample measurements. 

Elemental ratios are also sensitive to the slight differences in sample analyte measured 

by multiple ICP-MS analysis. This is demonstrated by variation in the ratio of Ba 

measured by collision cell versus non-collision cell analyses between 0.15 and 15.4 rather 

than approximating 1 as expected. Elemental ratios are therefore calculated only 

between elements measured within the same analytical run.  

 

The ICP-MS technique applied in this study measures the concentration of elements 

within the soluble fraction of a snow sample with variable influence of particulate 

material. We therefore suggest samples should be fully digested in stronger acids (HF-

HNO3) before ICP-MS analysis, adapting the procedures of Norra and Stüben (2004) or 

Ruth et al(2008). Contamination is however a potential problem, especially at low 

sample concentrations (Ruth et al., 2008). Conversely, the soluble chemistry 

concentration of samples could be determined from ICP-MS measurements by 

discounting peaks in signal intensity of the raw data and determining the modal 

concentration rather than an automated average. Unfortunately, this data is not available 

for the majority of samples measured in this study that were determined by spectral 

analysis. 
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5.5.2 Ratio source modelling 

Chemical ratios are commonly used to model source regions of major and trace element 

chemistry in Antarctic snow and ice (Hur et al., 2007; Planchon et al., 2002b; Vallelonga 

et al., 2004). Modelling is based on a conservative element (C), assumed to derive from a 

single source such as Na from marine aerosol and Al from terrestrial dust. The 

contribution of each source to a sample is calculated from:  

 

Equation 1a: 
ionconcentrat

ionconcentrat

 source  C
 sample  C

 on  contributi Source =  

 

The percentage of an element’s concentration (x) possibly derived from each source 

region is determined as:  

 

Equation 1b: 

 
100

 sample X
 source X on  contributi Source  (%)  Xon  leverage Source 

ionconcentrat

ionconcentrat ×
×

=
 

Where modelled source leverage on an element (x) is > 100 %, snow chemistry is either 

depleted in element x or enriched in the conservative element, in comparison to source 

chemistry. Conversely, source leverage values < 100 % signify enrichment of element x 

(possibly from another source), or depletion of the conservative element relative to 

source ratios.  
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Ratio modelling provides a good first estimate of the dominant source regions of EPG 

major and trace element chemistry. Determined source regions are confirmed by 

comparison with the behaviour of elements during ICP-MS analysis, and temporal co-

variance of elements. Maximum marine aerosol input was calculated using Na as a 

conservative element with respect to average upper ocean chemistry (Bruland and 

Lohan, 2003; Riley and Chester, 1971; Turekian, 1968). Although crustal material also 

contains significant concentrations of Na, soluble, marine derived Na is thought to 
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dominate at coastal Antarctic sites (Legrand and Mayewski, 1997). In addition to Na, 

chemistry of the average upper ocean can account for the majority of Mg, Cl, SO4 and 

K present in EPG snow samples (Table 5.4). Additionally, ratio modelling indicates 

marine aerosols are a significant source of Sr (50 %), Ca (30 %), Rb (11 %), and U (6 

%). However, previous studies have demonstrated chemical ratios of marine aerosol 

differ significantly from bulk upper-ocean and are frequently elevated in trace elements 

with respect to Na due to biological and physical processes at the ocean surface 

(Reimann and De Caritat, 2000). Differences are quantified using marine enrichment 

factors (EF), although order of magnitude differences in reported values have called 

their validity into question (Chester, 2000; Duce and Hoffman, 1976). Using the EF 

values applied by Planchon et al. (Planchon et al., 2002b) and Hur et al.(2007) marine 

aerosol can additionally account for all As (>100 %) and significant amounts of V, Cu 

and Zn (7.6 %, 8.0 % and 21 % respectively) present in EPG snow samples (Table 5.4). 

Strong co-variance of As with Na (r2 = 0.82) and good reproducibility of As 

measurements during ICP-MS time resolved analysis indicates low contribution of As 

from particulate aerosol, suggesting As has a predominantly marine source. Similarly, 

strong co-variance of Cr with Na (r2 = 0.82) implies marine leverage of Cr may be 

greater than that modelled using average upper ocean chemistry (<1 %). However, 

temporal co-variance may also simply suggest a similar atmospheric pathway of Cr and 

marine aerosol (Hur et al., 2007). These results suggest marine aerosol is an important 

source of Na, Cl, Mg, As, K, SO4, Ca, Sr and to a lesser degree Rb and U present in 

EPG snow. These results are comparable to previous studies that determine marine 

aerosol as a significant source of Mg, Ca, Sr, As and Cu (Gabrielli et al., 2005; Hur et al., 

2007; Planchon et al., 2002b; Vallelonga et al., 2004).  

 

Terrestrial source contributions to EPG snow are modelled for elements measured by 

collision cell ICP-MS using Al with respect to average UC (Wedepohl, 1995). Despite 

the range in reported UCC values (Rudnick and Gao, 2003) differences are insignificant 

for modelling source contributions (Gabrielli et al., 2005). UCC can account for all Ba 

present in EPG snow but less than 50 % of Mn and Fe (Table 5.4). Using Ba as a 

conservative terrestrial element for trace elements measured by non-collision cell ICP-

MS, UCC source leverage on all trace elements is also below 50 %.  
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Input of volcanic and anthropogenic emissions to Antarctic snow are difficult to 

constrain due to the lack of a truly conservative species and poor constraints on source 

ratios. Fifteen percent of non-sea-salt (nss) SO4
2- in snow and ice is commonly 

attributed to a volcanic source (Hur et al., 2007; Planchon et al., 2002b). Average Mount 

Erebus gas emissions have been used to approximate volcanic source values in this 

study (Zreda-Gostynska and Kyle, 1997). Nss SO4
2- is calculated by normalising SO4

2- 

concentrations to Na and the upper ocean SO4
2-/Na ratio. In doing so, volcanic 

emissions are a significant source of Cr, Cu, Zn, and Sb (Table 5.4). This is considered 

an upper limit of volcanic contribution as biogenic activity can account for almost all 

nss SO4
2- measured in coastal glaciochemical records (Minikin et al., 1998). 

Comparatively, previous studies identify volcanic emissions as the dominant source of 

Bi (Gabrielli et al., 2005; Hur et al., 2007). Normalising Bi present in EPG snow not 

attributable to UCC (80 %) to the elemental ratios of global volcanic emissions (Hinkley 

et al., 1999; Le Cloarec and Marty, 1990), volcanic leverage on EPG trace element 

chemistry is reduced by a factor of ~2. In particular, estimates of volcanic Zn input are 

reduced by an order of magnitude, from 17 % to <1.5 %. Previous studies have found 

volcanic input to be only important for Bi (100 %) and V, Mn and Cd (30-40 %) (Hur et 

al., 2007) suggesting the latter model is more appropriate for EPG snow samples. 

Gabrielle et al. (2005) additionally found volcanic output is significant for As during 

inter-glacial periods. 

 

Non-marine or UCC terrestrial Pb (65 %) is normalised to available global emission data 

(Lantzy and MacKenzie, 1979; Pacyna, 1984) to determine the leverage of 

anthropogenic emissions on EPG snow chemistry. In doing this, anthropogenic 

emissions are a potentially important source for Zn, As, V, Ni, Sb and Cr (Table 5.4), 

although this is only a tentative estimate, as terrestrial contribution of Pb is most 

probably > 35 %. Furthermore, regional anthropogenic source regions such as 

McMurdo Station, Scott Base, and Marble Point may emit elemental ratios which differ 

significantly from global estimates (Reimann and De Caritat, 2000).  

 

A number of factors suggest terrestrial input of Mn, Fe, Ti, V, Ni, Cr, Rb, Y, Zr, Sb, Cs, 

La, Ce, Th, and U in EPG snow samples is significantly higher than that modelled. 

These include a) strong temporal correlation of elemental concentrations (e.g. Al and 
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Fe, r2 = 0.99), b) minimal contributions from other aerosol source regions and, c) the 

high influence of dust particles during time resolved ICP-MS analysis. Terrestrial 

elemental ratios measured in snow samples are therefore either depleted in Al and Ba in 

comparison to UCC, or enriched in most major and trace elements. The complications 

when using source modelling to determine terrestrial contributions is well documented. 

Duce et al. (1975) and Gabrielli et al. (2005) recommended using terrestrial contribution 

models (fluxes or similar calculations) as an order of magnitude estimate of terrestrial 

contributions only. Reinmann and De Caritat (2000) have summarised the main 

processes responsible for poor terrestrial modelling results, which are discussed in terms 

of EPG snow chemistry:  

 

(1) Differential leaching of elements from particulates alters measured elemental ratios 

significantly from those truly present in samples. Ruth et al. (2008) determined that 45% 

of Al and 30 % of Fe present in Antarctic ice samples is measured by ICP-MS analysis 

of samples acidified to pH 1. Assuming similar leaching rates, the influence of UCC on 

Fe in EPG snow samples is reduced to 32 %. However, element solubility is also 

dependent on mineralogy. Snäll and Liljefors (2000) measured 3.4 %, 6.2 %, 12 %, 78 % 

and 100 % recovery of total Al concentrations in 1 M HNO3 solutions of powdered 

feldspar, muscovite, hornblende, Mg-chlorite and biotite, respectively. Furthermore, 

Gaspari et al. (2006) determined recovery of Fe in acidified samples (pH = 1) at Dome 

C is 65 % during the Last Glacial Maximum (LGM) compared to 30-40 % during the 

Holocene. This change has been attributed to the changing mineralogy of terrestrial 

aerosol transported to the Dome C, likely to be more representative of whole rock 

source chemistry during the LGM due to increased vigour of atmospheric circulation 

and greater proximity of exposed continental shelf sediments. Proximity of terrestrial 

source regions to EPG suggests 65 % recovery (Gaspari et al., 2006) of Fe might be 

more representative of element solubility in EPG samples, increasing UCC 

contributions to 70 %. However, further study is required to determine the elemental 

recovery rates for the dominant mineralogy in EPG samples.  

 

(2) Major and trace element concentrations of crustal material vary significantly from 

UCC dependent on the dominant geology type of the terrestrial aerosol. Snow sample 

chemistry will reflect the ratios of source geology, indicated by the closer approximation 
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of Fe, Al, Ba and Ti in EPG snow by average McMurdo geology (Roser and Pyne, 1989) 

rather than UCC (Fig. 5.5) (Wedepohl, 1995). Terrestrial inputs modelled using whole 

rock geochemistry of McMurdo geology (Fig. 5.11) are highly variable, and when 

combined, have the potential to account for all elemental concentrations present within 

EPG snow. The McMurdo Volcanic basic group, in particular, is enriched in Fe, Ti, V, 

Cr, Ni and Zr with respect to Al and Ba, while Cu and V are present in high levels 

relative to Ba in the Ferrar Dolerite (Roser and Pyne, 1989).  

 

 
(3) Terrestrial dust is fractionated from original source chemistry due to physical 

weathering and aeolian transport processes. Fine grained material preferentially 

transported to snow and ice core records is enriched in easily weathered, low density 

minerals such as quartz, feldspars, calcite, micas, chlorite, clays (Pye, 1987) and therefore 

associated elements such as Al, Ca, Ba, K and Na (major constitutes of feldspar). 

Conversely, elements present in heavy minerals such as Zr (zircons), Fe and Mg (olivine) 

are depleted. Fractionation resulting from physical weathering is evident in the 

McMurdo Dry Valley soils where fine grained material < 250 µm is dominated by felsic 

mineralogy while coarser grains are more representative of whole rock sources(Ugolini 

and Jackson, 1982). Furthermore, local ice core records demonstrate felsic mineral dusts 

Julia Bull, 2009. Glaciochemistry of Evans Piedmont Glacier, Antarctica 80



are preferentially transported, with quartz and feldspar comprising ~ 60 to 70 % of 

identified grains within the Victoria Lower Glacier ice core record (Ayling and 

McGowan, 2006). Average EPG snow chemistry partially follows expected trends with 

greater depletion of Zr and Fe (UCC can account for 46 % Zr and 49 % Fe) relative to 

other elements such as Mn or Ti (UCC accounts for 25 % Mn and 17 % Ti). However, 

Fe chemistry is complex, with a number of possible sources including fine grained 

weathered oxides (e.g. goethite, lepidocrocite, hematite), which are abundant within the 

McMurdo Dry Valley soils (Bockheim, 2002; Campbell and Claridge, 1975) and local 

granitic surfaces (Kelly and Zumberge, 1961).  

 

Differences between trace element concentrations measured at EPG, Lambert Glacier 

and Coats Land further support a predominantly terrestrial source of Al, Fe, and Ti and 

volcanic and anthropogenic emission sources of Pb, Bi and Cr. Average Al and Fe 

concentrations are the most elevated at EPG with respect to the other sites, in 

accordance with the proximity of terrestrial source regions at EPG. Conversely, average 

Pb and Bi concentrations are less than an order of magnitude higher at EPG as 

expected from the more regional distribution of volcanic and anthropogenic emissions. 

Proximity of source regions also determines the sensitivity of elemental concentrations 

to changes in atmospheric circulation, with highest sample-to-sample variation in 

terrestrial elements (Ti, Fe and Al) and the least for anthropogenic and volcanic 

emissions derived elements (Pb, Cr, and Bi).  

 

5.5.3 Seasonal changes in elemental chemistry in relation to local meteorology  

EPG elemental chemistry concentrations are related to meteorological conditions 

measured at Cape Ross. Comparison with the Scott Base and Marble Point AWS 

records confirms Cape Ross AWS data is representative of regional scale events. In 

particular, maximum wind speeds at Cape Ross are concurrent with strong winds at the 

other sites. Winter maxima of EPG elemental concentrations are consistent with 

stronger winter wind speeds. On average, winter wind speeds are 6.7 ± 0.4 m s-1 

compared to 4.7 ± 0.1 m s-1 during summer. Wind strength increases from the S only 

(SSE and SW) indicative of stronger katabatic wind flow and mesoscale cyclonic activity 

(Fig. 5.1). This is supported by previous work of Ayling and McGowan (2006) who 
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demonstrate increased winter transport of minerals dusts in ice core records from 

proximal Wilson Piedmont and Victoria Lower Glaciers.  

 

Lower rates of precipitation during winter may also partially account for high winter 

concentrations due to decreased dilution of dry deposited aerosol. AWS accumulation 

measurements at EPG demonstrate snow accumulation is dominated by episodic events 

rather than continuous snow precipitation. For example, 4.9 g cm-2 of the total 14 g cm-2 

(35 %) accumulated during 2006 occurred over a four day interval between 24th – 27th 

February. Although the time period is too short to establish statistically significant 

seasonality, the timing of 2-3 day accumulation events greater the 2 g cm-2 (December 

2004, January and December 2005, February, June and December 2006 and February 

2007) are consistent with mid-summer to autumn precipitation maxima measured at 

McMurdo Station and Scott Base (Mullen and Sinclair, 1990; Rockey and Braaten, 

1995). Reduced sea ice during this time period provides greater moisture for cyclonic 

activity over the Ross Sea, and hence increased precipitation to Victoria Land coast, 

especially during autumn (Carrasco and Bromwich, 1994; Carrasco et al., 2003; 

Monaghan et al., 2005; Mullen and Sinclair, 1990; Turner, 2004). However, low winter 

precipitation is not considered the dominant control on the seasonality of EPG 

chemistry, as chemistry peaks are not present in thin layers, rather distributed over 

several cm of accumulation (e.g. winter 1996 chemistry maxima over approximately 

50% of the annual accumulation, 6.8 g cm-2 in comparison to average 12 cm g cm-2 y-1). 

  

Winter maxima of marine derived chemistry (e.g. Na, Cr, As) also suggests marine 

aerosol are sourced from the sea ice surface, in addition to the open ocean. Transport of 

sea spray to EPG is unlikely to peak during winter despite increased strength of cyclonic 

circulation (Mullen and Sinclair, 1990) due to proximity and extent of open-ocean 

during summer (typically < 10 km). Additionally, mesoscale vortices that dominate 

McMurdo circulation are located within the region of seasonal sea ice cover and are 

unlikely to transport sea spray during winter (Carrasco and Bromwich, 1994). Rather, 

frost flowers that form on the surface of young sea ice from brine ejected during the 

freezing of salt water, are identified as a considerable source of marine aerosols at the 

polar latitudes (e.g. Thompson and Nelson, 1954; Rankin et al., 2000; Rankin et al., 

2002; Wolff et al., 2003). Frost flower production is particularly efficient within the Ross 
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Sea due to the Ross Sea, McMurdo and Terra Nova polynya systems that force the 

continual growth of new sea ice (Kaspari et al., 2005; Maqueda et al., 2004; Martin et al., 

2007). The contribution of frost flowers to EPG during winter is further supported by 

depletion of SO4
2- in most winter EPG snow samples (negative nss SO4

2- values 

calculated for 18 % of all samples). SO4
2- depletion of frost flowers results from the 

precipitation of mirabilite (Na SO · 10H O2 4 2 ) within sea ice (Minikin et al., 1998; Rankin 

et al., 2002). Kaspari et al. (2005) previously demonstrated frost flowers are an 

important source of marine aerosol within the coastal Ross Sea region from snow pit 

and ice core records from the Siple coast. These records show winter Na maxima that 

are associated with SO4
2- depletion and are significantly correlated to sea ice extent 

within the Ross Sea over the last 30 yr.  

 

Another possible source of marine chemistry is the McMurdo Dry Valleys (MDV). The 

MDV soils are comprised of up to 40 % (by volume) marine salts (Witherow et al., 

2006). Transport of this will peak during winter due to increased katabatic wind 

strength. However such contributions are considered insignificant as EPG sample 

Na/Cl ratios (median = 0.52 ± 0.20 2σ) approximate marine values (0.55). Conversely, 

90 soil samples from the MDV (Antarctic soil database) indicate strong fractionation of 

salts present (median = 2.8 ± 58 2σ).  

 

5.5.4 Inter-annual changes in elemental chemistry in relation to local meteorology  

Sensitivity of the EPG chemistry record to wind strength is confirmed by inter-annual 

changes in elemental concentrations. Calculation of an elemental flux (i.e. F ice = C ice* 

A, where F is the flux of elements to the ice, C is the measured concentration and A the 

calculated accumulation rate (Legrand and Mayewski, 1997)) demonstrates the same 

temporal variability as chemistry concentrations. This confirms accumulation rates have 

remained approximately constant over the time period of interest and are not a major 

control on EPG chemistry concentrations. Rather, annual maximum wind speeds 

measured at Cape Ross is significantly (p < 0.01) correlated to annual maximum 

concentrations of Zr, Y, Ba (r2 > 0.65), Ni, Cu, Mn, U (r2 > 0.65), and Al, Fe, Ti, Pb, Zn, 

Cs, Ce, V, La and Ca (r2 > 0.55) measured in EPG snow samples (Fig. 5.12). Although 

inter-annual peak concentrations of the remaining elements measured (e.g. Na, Mg, Sr, 
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Bi) also occur concurrently with maximum Cape Ross wind speeds, the correlation is 

less significant (r2<0.50). This suggest additional controls on chemistry are present such 

as changes in source region and/or dependence on other meteorological parameters 

including storm duration (Dunbar et al., 2009). No significant correlations were found 

between EPG chemistry concentrations and annual average wind speed or wind 

direction. Maximum concentration of Al (and correlated elements) at EPG during 

winter 2004 is consistent with the highest sediment flux during the same year in a 

McMurdo Ice Shelf ice core for the last decade (Dunbar et al., 2009). Assuming 

constant precipitation rates, past changes in, in particular Y and Zr concentrations 

provide the most robust proxy of maximum annual wind speed at EPG.  
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In addition to elemental concentrations, the variation of elemental ratios of terrestrial to 

marine derived elements (Al/Na) is significant. Changes in Ti/Sr are slightly more 

subdued than Al/Na due to additional contributions of Sr from terrestrial sources in 

comparison to marine dominated Na. Similar changes were observed in Ca/Na ratios of 

non-acidified samples measured by ion chromatography taken from a snow pit sampled 

at EPG in November 2004 (Bertler, unpublished data). We therefore conclude observed 

changes in terrestrial/marine derived elemental chemistry do not simply arise from 

differential acidification and hence leaching of samples. Furthermore, changes in EPG 

terrestrial/marine elemental ratios are concurrent with changes in the phase relationship 

between δ18O and d excess suggesting a real climate forcing of the chemistry signal.  

 

Temporal changes in terrestrial/marine elemental ratios reflect changes in local mean 

wind conditions and transport of marine aerosol (Fig. 5.13). Although sea ice extent 

within the Ross Sea region, and hence marine aerosol source regions was highly variable 

during the last decade (Arrigo and Thomas, 2004; Rhodes et al., 2009), there is no 

apparent relationship between maximum sea ice extent an terrestrial/marine elemental 

ratios (Fig. 5.13). Rather, EPG annual Al/Na averages are most significantly correlated 

to Cape Ross summer mean wind strength. Annual mean changes in Al/Na are 

significantly correlated to Cape Ross mean summer wind speed (r2 = -0.51, p<0.01), and 

less significantly to summer mean wind direction (r2 = -0.45, p<0.01). Correlation of 

mean annual Ti/Sr with Cape Ross mean summer wind speed is less significant 

although the trend is similar (r2 = -0.43, p<0.05).  

 

While extreme wind events represent maximum transport of aerosol to glacial records 

and hence elemental concentrations, elemental ratios reflect variation in the average 

background input of aerosol. Sensitivity of Al/Na changes to summer wind conditions 

reflects changes in the transport of Na from marine aerosol during summer when the 

open ocean source is most proximal. When summer wind strength is reduced, average 

Na input is significantly altered. Terrestrial derived elements are not as sensitive to 

changes in summer wind strength due to the dependence of mineral dusts of threshold 

wind speeds for transport. Ayling and McGowan (2006) report speeds of 5.5 m s-1 

necessary for entraining and transporting dry and loose fine grained sediment in the 

McMurdo Dry Valleys. Comparatively, Cape Ross summer mean wind speeds are 
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consistently < 5.5. m s-1. Correlation of Al/Na with Cape Ross summer average wind 

speed is reflective of the reduction in frequency summer southerly storm events that are 

strong enough to travel over the topographic barrier of Evans Piedmont Glacier (i.e. 

SW’s) (Fig. 5.1).  

 

A change in atmospheric circulation represented by Al/Na in EPG snow is further 

supported by simultaneous changes in the EPG stable isotope record. δ18O and d excess 

positively co-vary throughout the majority of the EPG snow profile, switching to 

negative correlation only when Al/ Na are at a maximum between winter 2000 and 

summer 2004/05. On seasonal time scales, negative correlation between δ18O and d 

excess is expected due to the dependence of d excess on precipitation source region 

humidity, which, being higher during summer results in lower d excess values (Sharp, 

2007). Negative correlation of δ18O and d excess in snow is demonstrated at most 

interior Antarctic sites (Aldaz and Deutsch, 1967; Ciais et al., 1995; Oerter, 2004) while 

any positive correlation is typically attributed to post depositional isotope alteration 

(Johnsen et al., 2000; Oerter, 2004). However, d excess is positively correlated to δ18O 

within a snow pit profile at coastal Adélie Land where high accumulation is thought to 

inhibit post depositional diffusion (Ciais et al., 1995), and measurement of samples 

collected in real time during precipitation events at Franz Josef Glacier in New Zealand 

(Purdie, 2009), suggests coastal snow and ice records can demonstrate true δ18O, d 

positive correlation. Due to high accumulation rates, it is expected post deposition 

alteration of the EPG isotope record is minimal. Rather, we conclude positive 

correlation is also a true climate signal at EPG. Without isotope modelling, inferences 

are limited, but it is proposed that precipitation with positive correlation of δ18O, d 

excess is sourced directly from polar latitudes, where semi-arid conditions drive a greater 

response of d to secondary kinetic fractionation processes (Masson et al., 2000) 

Conversely, negative correlation suggests more distal transport of precipitation from 

lower latitudes, similar to that deposited at interior Antarctic sites.  
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We suggest the inter-annual variability of mean summer wind strength measured at 

Cape Ross, as recorded by Al/Na changes in EPG snow, is driven by mean changes in 

the El Nino Southern Oscillation. Over the last two decades, the Southern Oscillation 

Index (SOI) was in a predominantly negative (El Niño phase) between 1990 to 1996, 

and 2000 to 2008 (Fig. 5.13). Conversely, SOI was predominantly positive (La Niña 

phase) between 1996 and 2000. The changes in Cape Ross summer wind strength, and 

EPG Al/Na elemental ratios are consistent with the model of ENSO control on Ross 

Sea climate proposed by Bertler et al. (2006b). They suggest El Niño conditions are 

characterised by weakening and movement of the Amundsen Sea Low (LAS) to the 

Marie Byrd Land coast. This increases the flow of air from across the West Antarctic Ice 

Sheet (WAIS) to the Ross Sea region, increasing the frequency of extreme katabatic 

wind events, but reducing the strength of marine derived cyclonic strength (mean 

summer wind) within the Ross Sea (high Al/Na). Conversely, La Niña conditions are 

characterised by a strong LAS positioned directly north of the Ross Sea, associated with 

stronger marine cyclonic activity (mean summer wind strength) and lower katabatic 

wind strength during winter (low Al/Na). The strong El Niño event which developed 

during summer 1998/1998 is a obvious exception to this model. However, this event 

has been identified as unusual due to its rapid on set (McPhaden, 1999). Anomalously 

low maximum wind conditions prevented summer sea ice break out within the Ross Sea 

(Arrigo and van Dijken, 2004), suggesting the LAS was not repositioned as expected. 

Although this EPG snow pit record is too short for significant correlation between 

terrestrial/marine elemental ratios with the SOI, longer ice core records may be able to 

confirm this relationship with measured SOI over the last half century.  

 

Finally, ratios of elements derived from terrestrial aerosol sources vary seasonally within 

the EPG snow pit profile. Fe/Al and Zr/Y are highest during summer when terrestrial 

aerosol input relative to marine aerosol input to EPG is significant (high Al/Na values) 

(Fig. 5.9). As seasonal maxima of Fe/Al and Zr/Y are concurrent with element 

concentration minima, it is possible that ratio changes are inherited from reduced 

analytical precision when measurements are close to the detection limit. In particular, 

concentrations of Y are on average 6 times lower than Zr, and will be more sensitive to 

analytical precision in low concentration samples. However, no concentrations are 

below the measured detection limit. Rather, we propose that terrestrial/terrestrial 
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elemental ratios records changes in the mineralogy of terrestrial aerosol transported to 

EPG. This reflects changes in the dominant aerosol source geology and/or changes in 

the fractionation of aerosol transported to EPG. Higher Fe/Al values during summer 

are consistent with decreased summer wind speeds measured at Cape Ross. Lower wind 

speeds will relatively enrich Fe in EPG samples by preferential transport of easily 

transported Fe-oxide weathering products, pervasive in the McMurdo Dry Valley soils 

and on the surfaces of local granite (Bockheim, 2002; Campbell and Claridge, 1975; 

Kelly and Zumberge, 1961). Conversely, Fe/Al will be reduced during winter due to 

increased wind strength and a higher flux of heavy, larger dust particles with higher Al 

concentrations. However, if controlled by wind strength alone, Zr/Y values should also 

be at a maximum during winter due to the presence of Zr predominantly in high 

density, erosion resistant zircons that are difficult to transport during weaker summer 

winds (Chen et al., 2006). Summer maxima of Zr/Y may therefore represent either a 

change in the dominant source region sampled, or are inherited from analytical 

uncertainty. For example Zr/Y ratios in samples from the evolved McMurdo Volcanic 

Group (13.5) are ~ 3 times higher than the Ferrar Dolerite (4.9) (Roser and Pyne, 1989). 

Further work by micro-probe analysis on dust particles in EPG samples is required to 

confirm actual changes in mineralogy. However, this study illustrates the potential to 

relate terrestrial/terrestrial elemental ratios in snow samples to wind strength and wind 

direction.  

 

5.6.0 Conclusions 

ICP-MS elemental analysis of coastal Antarctic snow samples deposited from 1997 to 

2008 at Evans Piedmont Glacier demonstrate:  

1) ICP-MS provides a reliable technique for determination of a broad spectrum of 

major and trace elements. Detection limits are typically two orders of magnitude 

below the natural variability between samples.  

2) Temporal variability of elemental concentrations between samples is at 

minimum three time higher than the error of repeated sample measurements. 

Reproducibility of sample measurements is therefore insignificant in terms of 

relating elemental chemistry to climatic drivers. Complexity of sample 

measurements arise from the presence of undigested dust particles entering the 

ICP-MS and is likely to be common in snow and ice core samples from Victoria 
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Land coastal sites. Distinction needs to be made between measurement of the 

purely soluble fraction of a sample and the total particulate load. It is 

recommended that samples are either fully digested following the procedure of 

Norra and Stüben (2004) or Ruth et al. (2008), or soluble concentration levels 

are determined from the mode of raw scan data rather than the automated 

average. Measurement of soluble chemistry in partially acidified samples requires 

consideration of differential leaching of elements and minerals. 

3) From modelling based on elemental ratios of snow chemistry with respect to 

source regions, and the behaviour of elements during time resolved analysis, we 

conclude marine aerosols are the dominant source of Na, Mg, Cl, SO4, Sr and 

As, marine and terrestrial aerosol for Ca, K, and Rb, terrestrial aerosol for Al, 

Mn, Fe, Ba, Ti, V, Ni, Cr, Y, Zr, Sb, Cs, La, Ce, Pb, Th and U with additional 

contributions from volcanic (SO4, K, Bi, Cu, Sb) and anthropogenic (Pb, Zn and 

As) emissions. Inherent problems with ratio based source modelling, in 

particular, for particulate mineral dusts include poor constraints on source 

region chemistry, fractionation during aerosol formation and transport 

processes, and differential leaching of particulate material in snow samples 

which require consideration.  

4) Concentrations of EPG elemental chemistry are a sensitive indicator of local 

wind strength. In particular, inter-annual variation of terrestrial derived elements 

are significantly correlated to maximum wind strength measured at Cape Ross 

(e.g. Zr, r2 = 0.68, p<0.01). Winter maxima of marine aerosol, that are depleted 

in SO4 relative to Na, also suggests significant input of marine aerosol during 

winter from a sea ice surface source.  

5) Terrestrial/marine elemental ratios provide an indication of mean summer wind 

conditions at EPG. Al/Na demonstrates a significant negative correlation to 

summer average wind speed (r2 = -0.51, p<0.01). This is attributed to the 

sensitivity of average Na concentrations to average summer wind conditions 

when an open ocean source is most proximal. Changes in summer average wind 

speed, recorded by Al/Na and concurrent with a change in the δ18O and d 

excess relationship is related to a ENSO driven shift in atmospheric circulation. 

Terrestrial/ marine elemental ratios in coastal Victoria Land records therefore 

provide potential to track changes in ENSO back in time.  
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6) Terrestrial/terrestrial elemental ratios have the potential to provide additional 

proxies of atmospheric circulation, reflective of changes in specific geological 

source region and wind strength. Increased Fe/Al ratios during summer are 

concurrent with weaker summer wind flow which will transport only the finest 

dust particles, including low density and fine-grained secondary Fe-bearing 

weathering minerals. 
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Chapter Six: Synthesis and conclusions 

 

6.1.0 Synthesis and conclusions 

The primary aim of this work was to develop a reliable technique for trace element 

analysis of coastal Antarctic snow samples for future application in longer term ice core 

records. Trace elemental chemistry provides a complimentary data set representing 

changes in chemistry derived from terrestrial (e.g. Al), anthropogenic (e.g. Pb) and 

volcanic emission (e.g. Bi) aerosol in addition to major element chemistry which is 

primarily sourced from marine aerosol (e.g. Na). This has been achieved using 

inductively coupled plasma mass spectrometry (ICP-MS).  

 

In addition to methodology development, two main research objectives of this work 

were to: a) determine the main source regions of aerosol deposited trace element 

chemistry at EPG, and b) to understand the dominant drivers of temporal variation in 

glaciochemistry with respect to measured meteorological conditions. The salient points 

identified within this thesis are summarised below.  

 

1. ICP-MS provides a reliable analytical method for the measurement of trace 

element concentrations in coastal Antarctic snow samples. The main advantage of 

the ICP-MS analysis technique is its rapid and multi-element abilities coupled with low 

detection limits. Repeated measurement of external standard SLRS-4, demonstrated that 

analytical error for major and trace elements is typically below 10 % 2 rsd. In particular, 

the use of a hydrogen flushed collision cell enables the reliable measurement of Fe, 

which is an important element due to its potential effect on bio-productivity within the 

Ross Sea (Atkins and Dunbar, 2009; Dunbar et al., 2009). Elements with no known 

interferences and/or ultra trace concentrations (Ti, V, Cr, Ni, Cu, Zn, As, Rb, Sr, Sr, Y, 

Zr, Cd, Sb, Cs, Ba, La, Ce, Pb, Bi, Th and U) were measured without the collision cell to 

increase count sensitivity. Although polyatomic ion interferences may be problematic 

for some elements (Cr, Ni, Cu, Zn, Cs, Pb and Bi), analytical error is typically two 

orders of magnitude lower than sample to sample variation and therefore insignificant.  
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2. The minimum internal sample variability of elemental chemistry 

concentrations is one third of sample to sample variation and therefore 

inconsequential to the interpretation of temporal changes. Poor reproducibility of 

sample measurements is attributed to the presence of dust particles which enter into the 

ICP-MS. Particulate material will effect average elemental ratios through preferential 

leaching of some elements dependent on mineralogy and grain size, which has 

implications for ratio based source modelling of chemistry. 

 

3. The behaviour of elements during ICP-MS time resolved analysis and 

correlation to regional source geology, allows more reliable determination of 

terrestrial input to EPG snow than ratio source modelling using averaged upper 

continental crust (UCC) ratios. Determining the terrestrial contribution of an element 

through comparison to a conservative element such as Al and Ba with respect to UCC is 

hindered by fractionation of elemental ratios both during sample acidification, and more 

dominantly, through natural processes such as differences in source geology and 

fractionation from whole rock composition during weathering and transport processes. 

Although all trace elements indicate < 50 % contribution from a terrestrial UCC source, 

we attribute mineral dusts as the dominant source of Al, Mn, Fe, Ba, Ti, V, Ni, Cr, Y, 

Zr, Sb, Cs, La, Ce, Pb, Th and U. This is supported by poor reproducibility of these 

elements when measured by time resolved analysis, due to peaks in signal intensity, 

resulting from high element concentrations in particulate material.  

 

4. Concentrations of all elements, irrespective of source region, demonstrate 

typically winter seasonal maxima. This is attributed to the increased strength of 

atmospheric circulation during winter which passes over multiple aerosol source 

regions. Decreased winter precipitation may also effectively concentrate elemental 

chemistry. Winter marine aerosol is derived at least in part from the sea ice surface, in 

agreement with previous studies in the Ross Sea region (Kaspari et al., 2005).  

 

5. Inter-annual variability of elemental chemistry is controlled by maximum wind 

speed. Concentrations of EPG elemental chemistry are a sensitive indicator of local 

wind strength. In particular, inter-annual variation of terrestrial derived elements are 

significantly correlated to maximum wind strength measured at Cape Ross (e.g. Zr, r2 = 
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0.68, p<0.01). Maximum concentration of terrestrial derived elements during winter 

2004 is concurrent with the strongest wind speeds over the last decade, as observed 

other glacial records from the Victoria Land coastal region (Dunbar et al., 2009) 

 

6. Elemental ratios of terrestrial/marine derived chemistry provide an indication 

of mean wind conditions. In particular, Al/Na demonstrates a significant negative 

correlation to summer average wind speed (r2 = -0.51, p<0.01). This is attributed to the 

sensitivity of average Na concentrations to average summer wind conditions when an 

open ocean source is most proximal.  

 

7. Positive correlation of δ18O and d excess is attributed to precipitation derived 

from a polar latitude source region. Previous studies attribute positive correlation of 

δ18O and d excess to post depositional alteration of the d excess signal. This is however 

unlikely at EPG due to high annual accumulation rates (12 g cm-2 yr-1). Further, changes 

in δ18O and d excess are concurrent with high Al/Na, supporting a change in 

atmospheric circulation. Conversely, we interpret negative correlation, which is 

observed at interior Antarctic sites (Aldaz and Deutsch, 1967; Ciais et al., 1995; Oerter, 

2004) as indicative of precipitation derived from a lower latitude source, transported 

over the Antarctic continent before arrival at EPG. 

 

8. EPG terrestrial/marine elemental ratios and stable isotope chemistry record 

changes in the mean state of ENSO within the Ross Sea. Low Al/Na ratios and 

negative correlation of δ18O and d excess in EPG snow are concurrent with a 

predominantly negative ENSO (El Niño). This is attributed to increased strength and 

position of the Amundsen Sea Low directly north of the Ross sea, increasing direct flow 

of marine air onto the Victoria Land coast (high summer mean wind speeds). 

Conversely, high Al/Na ratios and positive correlation of δ18O and d excess are 

concurrent with positive ENSO (La Niña). This is associated with weakening and 

repositioning to the Amundsen Sea Low to Marie Byrd Land coast, increasing air flow 

across the West Antarctic Ice Sheet to the Victoria Land coast. Longer term study of 

this relationship is required which is currently statistically insignificant. The EPG 

chemistry record can be extended through analysis of the 180 m firn core drilled at EPG 

in summer 2004/05 (Bertler et al., 2005).  
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6.2.0 Suggestions for future work 

This study has identified a number of complexities in trace element and stable isotope 

ratio chemistry of coastal Antarctic snow, which are applicable to wider ice core 

climatology studies. Furthermore, EPG provides a suitable site for a longer 

glaciochemical record. The following recommendations are therefore made to further: a) 

develop the methodology of trace element ICP-MS analysis further with respect to the 

presence of dust particulates, b) calibrate modern day glaciochemistry to climate 

controls and c)increase the temporal and spatial extent of coastal trace element records.  

 

1) Trace element method development 

We recommend a series of experiments to understand the effects of dust particles on 

snow chemistry and how elemental ratios reflect the mineralogy of terrestrial aerosols. 

Dust particles are likely to be present in snow and ice core records at most coastal 

Antarctic sites where rock outcrops are proximal. Therefore, such experiments will 

provide constraints for the NZ ITASE program. Furthermore, these experiments would 

be applicable to lower latitude ice core records, which are expected to have a high dust 

flux such as in the Southern Alps New Zealand (Morgenstern et al., 2006).  

  

1. Experimental study into the leaching behaviour of trace elements when partially dissolved in 1 % 

HNO3. The effects of partial leaching of elements from dust particles are particularly 

important for elemental ratios used commonly in source region modelling. The study of 

Snäll and Liljefors (2000), who measured the leachability of K, Na, Ca, Mg, Al and Ti in 

acids of variable strength from different minerals and from different particle size 

fractions could be extended to include a wider array of trace elements which were 

measured in EPG snow samples. Furthermore, the leaching behaviour of the specific 

dusts present in EPG samples should be assessed. This could be achieved through 

comparison of elemental concentrations determined by ICP-MS in 1 % HNO3 leached 

samples and samples fully digested using stronger acids such as HF, adapting the 

methodology of Ruth et al. (2008). Duration of acidification with respect to leaching of 

elements from the sample tubes, how the size fraction of particulate material effects the 

time required for sample digestion, and the scavenging of some elements by other 

compounds should also be addressed through laboratory control experiments.  
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2. Study into the viability of centrifuging samples to analyse soluble snow chemistry. An alternative 

approach to the presence of particulate material in samples would be to extract 

particulate material and analyse soluble chemistry only. The soluble fraction of terrestrial 

derived elements may be more indicative of wider regional source processes, with finer, 

more soluble material transported greater distances. Soluble chemistry could potentially 

be measured by centrifuging samples and analysing the upper portion of analyte only. 

Preliminary work is required to understand what fractionation of particulate material is 

then analysed, potential contamination errors and viability of this on a large number of 

samples which need to be analysed for ice core records. An alternative method utilises 

acid washed syringe filter systems, which allows contamination free removal of 

particulates. Such an approach would also permit a quantitative study of particulate 

concentration in each sample and would provide material for geochemical and 

petrographic analyses. 

 

3. Microprobe study of the temporal changes in mineralogy of dust particles in snow samples with respect 

to elemental ratio changes. EPG snow pit chemistry demonstrated temporal fluctuations in 

elemental ratios between terrestrial elements such as Fe/Al or Zr/Y. It is hypothesised 

these ratios reflect changes in the dominant mineralogy of terrestrial aerosol transported 

to EPG and are therefore indicative of wind strength and/or direction. However, all 

maxima are concurrent with low elemental concentrations and it is also possible ratio 

changes are inherited from reduced analytical precision close to the detection limit. To 

determine the potential of terrestrial/terrestrial elemental ratios to reflect climatic driven 

changes in terrestrial aerosol mineralogy, the composition of dust needs to be assessed 

through microprobe analysis. Furthermore, grain size measurements using a coulter-

counter system (e.g. Petit et al., 1999) would confirm increases in windiness, reflected 

through larger grain sizes and transport of heavier minerals (e.g. zircon). If fully 

understood, terrestrial/terrestrial elemental ratios have the potential to indicate wind 

speed and wind direction rather than time consuming mineralogy studies and grain size 

analysis.  

 

2) Understanding meteorological controls on trace element chemistry  

The simultaneous controls of aerosol source region, atmospheric transport and post-

depositional alteration of snow pack chemistry, in addition to seasonal dating resolution, 
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complicate the correlation of glaciochemistry to atmospheric circulation at sub-seasonal 

resolution. Rather, daily collection of fresh snow samples over an extended time period 

(weeks to months) would allow more robust comparison and hence greater 

understanding of chemistry source regions and climatic controls. In particular, the true 

nature of the δ18O, d excess relationship at coastal Antarctic sites should be established 

without the potential error of post depositional diffusion. Back trajectory models such 

as TRAJKS (Stohl, 2001) and HYSPLIT (Air Resource Laboratory) can determine the 

pathway of an air mass over days prior to arriving at a specified location. This is useful 

for identification of precipitation source regions and potential controls on the isotope 

ratio signature of precipitation (Schlosser, 2004). Furthermore, Global Circulation 

Modelling of precipitation packages sourced from high latitude oceans may increase 

insight into how a positive δ18O, d excess signal is produced (Jouzel et al., 2007). 

 

3) Temporal and spatial extension of coastal glaciochemistry 

We have demonstrated that EPG provides a site of high snow accumulation and hence 

high resolution of sub-seasonal changes in glaciochemistry that are sensitive to changes 

in local wind strength and direction. The EPG firn core record has the potential to 

demonstrate annual changes in regional climate, and should be extended for major and 

trace element chemistry in addition to stable isotope ratios. Relation of this record to 

the long term Scott Base meteorological record which extends back to 1957 will allow 

more robust correlation between climatic controls and glaciochemistry. Furthermore, 

increased spatial distribution of trace element chemistry studies will increase our 

understanding of present day controls, in a similar manner that major element chemistry 

has been related to elevation, distance inland and proximity to source region (Bertler et 

al., 2005).  
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Appendix One: Sampling and analytical techniques 
 

A1.1.0 Introduction 

This appendix provides additional description of the Evans Piedmont Glacier (EPG) 

snow profile sampling and analytical techniques described in Chapter 5.3. 

 

A1.2.0 Snow pit sampling 

A 4 m deep snow profile was sampled at EPG from two separate ~2 m accessible 

sections. A well developed hoar horizon at 190 cm depth and 3 cm of overlapping 

samples were used to correlate between the two sections. Stable isotope ratios of 

equivalent samples demonstrate comparable values with δ18O = -26.7‰, -26.3 ‰ and -

26.4 ‰ at 188 cm, 189 cm and 190 cm depths, respectively, from the lower section and 

δ18O = -27.1 ‰, -26.3‰ and -25.4‰ at 188 cm, 189 cm and 190 cm depths, 

respectively, from the upper section compared to an average seasonal variation of δ18O 

= 7‰. Elemental chemistry of samples from the lower section increase up to a peak 

(Na = 2846 ppb at 190 cm depth, Na = 2625 ppb at 189 cm depth and Na 3252 ppb at 

188 cm depth) which is not sampled by the upper section (Na = 520 ppb at 190 cm 

depth, Na = 647 ppb at 189 cm depth and Na = 710 ppb at 188 cm depth). This is 

attributed to differential deposition of aerosol at the site.  

 

Physical description of crystal structure and approximate crystal size were noted during 

and after sampling. The upper 1.5 m section of the sampling wall was constructed into a 

thin (1-3 cm) translucent section to determine stratigraphy more clearly (Fig A1.1). 

Snow density measurements were made on a freshly cut surface of the snow pit profile 

after chemistry sampling was completed. Cylinders that were 5 cm in diameter were 

inserted horizontally at 2.5 cm overlapping intervals, filled with care to avoid 

compaction, and weighed. Density and physical description are used together to 

determine the location and width of hoar horizons and snow and ice layers used for 

dating (Fig. 4.1).  
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A1.3.0 Ion chromatography analyses 

In addition to Ca+, Cl-, K+, Mg+, Na+, SO4
2- described in Chapter 5, ionic species 

methylsulphonate (MS-) and nitrate (NO3
-) (Table A2.2) were also measured by ion 

chromatography using the same anion methodology. MS is particularly useful for dating 

of EPG_2004 and EPG_2005 snow pit profiles (Fig. 4.1).  

 

A1.4.0 Inductively coupled plasma mass spectrometry (ICP-MS) 

 

A1.4.1 Spectral interferences 

A hydrogen flushed collision cell was used during ICP-MS analysis of Na, Mg, Ca, Fe, 

Mn and Ba to reduce polyatomic ion interferences from oxidation of the argon carrier 

gas, in particular,40Ar16O on 56Fe. Initial tests demonstrated that flushing the collision 
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cell with hydrogen rather than helium was more effective in removing polyatomic 

species and does not effect the reproducibility of other elements (Table A1.1). This is 

supported by the previous study of Iglesias et al. (2002). 

 

 
 

Spectral interferences were kept minimal for all analyses by optimising plasma 

conditions. The highest effective temperature within the plasma was achieved by 

adjusting the carrier gas flow rate. Additionally, the sample introduction spray chamber 

was maintained at a constant 2°C to reduce the water loading of the plasma (Hutton and 

Eaton, 1987) and nitric acid was chosen as the preferred analytical matrix as it does not 

increase polyatomic interferences (Tan and Horlick, 1986). 

 

A1.4.2 Quantification of elements 

Elemental concentrations were determined from ICP-MS count data using bracketing 

analyses of in-house calibration standards. These were measured after every ~5 samples 

to monitor temporal drift in instrument sensitivity which is affected by external factors 
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including ambient room temperature and sample uptake rate. Standards were acidified 

to 1 % HNO3 and prepared daily from 5 % HNO3 acidified stock solution to avoid 

precipitation of elements over the extended analysis period. Elemental concentrations in 

the calibration standards were made to approximate average sample concentrations. 

This was determined as necessary by initial ICP-MS collision cell analysis of EPG snow 

samples and external standard SLRS-4, using a 1 ppb element standard. The signal 

intensity of the blank corrected, 1 ppb calibration standard decreased considerably for 

Na, Ca and Mg during analysis due to increasing background levels from residue of high 

sample concentrations (e.g. mean EPG Na concentration of 1652 ppb). Blank 

measurements increased from close to detection limit to ~1-2 ppb Na over the 

analytical period of 15 samples. Although in comparison to sample concentration, such 

background levels are insignificant, errors introduced on the calibration standard 

significantly altered the determined concentration, resulting in up to 100 % error on 

SLRS-4 analyses of Na. When calibrated to the 10 ppb standard measured at the 

beginning of the analysis, SLRS-4 errors were reduced to 15 %. Therefore standards for 

both collision cell and non-collision cell ICP-MS analyses were prepared with 

concentrations approximating sample concentrations (Table 5.2). Further, samples with 

concentrations >900 ppb Mg measured within collision cell ICP-MS analysis were run 

separately for trace element analysis during non-collision cell ICP-MS analysis to reduce 

increasing background levels. This also allowed the use of a more suitable calibration 

standard, which was ten times in higher concentration than that used for the bulk of 

non-collision cell ICP-MS analyses.  

 

A1.4.3 Pulse/analogue factors 

The two to three order of magnitude variability between sample concentrations required 

the calibration of pulse/analog (P/A) factors for 23Na, 24Mg, 27Al, 44Ca, 56Fe, 47Ti, 63Cu, 
88Sr, 90Zr, 133Cs, 139La and 140Ce. This is the calibration between changing pulse (high 

counts) and analogue (low counts) counting modes of the ICP-MS detector system. P/A 

factors were measured every three days using a separate standard with approximately 

one million counts of each element with concentrations dependent on daily sensitivity. 

The bulk standard was not used to avoid the introduction of high background levels 

into the ICP-MS, for example, of the high Na and Ca concentrations required to gain 

enough counts of Fe and Al during major element analyses.  
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A1.4.4 Washout procedure 

Background levels between samples were kept at a minimum by washout of ICP-MS 

system by progressively aspirating ultra-clean water (>18.2 MΩ), sub-boiled 5 % HNO3, 

and SeaStar grade 1 % HNO3 (Table 5.1). Additionally, the ICP-MS system was cleaned 

with HNO3 for 20 min between each analysis set of ~30 samples. When this was 

considered insufficient (as determined by blank measurements), the spray chamber was 

soaked in 5 % HNO3 for ~12 hr.  

 

A1.4.5 ICP-MS analytical precision and accuracy 

Measured Na and Ca concentrations of SLRS-4 are systemically lower than 

Environment Canada certified values, but within the range reported in the literature 

(Rodushkin et al., 2003; Osterberg et al., 2006). Differences are therefore attributed to 

real variability in SLRS-4 aliquots. Although determination of low concentrations could 

also arise from contamination of the calibration standard, this was extensively tested, 

including preparation of a new bulk calibration solution after initial analysis, after which 

the Na and Ca deficit remained.  

 

However, Na is easily contaminated during vial cleaning, snow sampling and standard 

preparation. Although all steps were taken to prevent this, high Na concentrations were 

still measured in occasional blanks. Therefore all sections of the EPG record with high 

Na concentrations have been measured at single sample resolution (1 cm) to 

demonstrate well sloped changes up to a maximum rather than an individual erratic 

peak suggestive of contamination during sample preparation.  

 

Analytical precision on trace element analyses are typically between 5-10 % and again 

much lower than the variability observed between samples (Table 5.2). Notable 

exceptions with high 2σ errors are Cr, Cu, Zn, and Bi. High analytical errors are 

attributed to molecular interferences such as 37Cl16O on 53Cr, and 47Ti16O or 36Ar27Al on 
63Cu resulting in relatively large background levels relative to the count rate on 

calibration standards. Additionally, Ti, V, Ni, Zn, As, Cs, Pb and Th are all ~15 % 

higher than the average values reported by of Environment Canada (certified values), 

Osterberg et al. (2006) and Rodushkin et al.(2003). With the exception of V and Ni, all 
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measurements are however within the 2σ range of the variation between different 

published data, or have only been published by Rodushkin et al. (2003). Further, 

measurement of Ni (780 ppt ± 70) and Pb (82 ppt ± 10) are closer to certified values 

(670 ± 80 and 86 ± 7 2 σ of Ni and Pb respectively) when measured on undiluted 

SLRS-4. Notably Bi is 140 % higher than the value found by Rodushkin et al. (2003) at 

2.6 ± 0.6 ppt compared to 1.3 ± 0.4. All other elements are within error of certified 

values. 
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Appendix Two: Whitehall Glacier study 
 

A2.1.0 Introduction 

In addition to the Evans Piedmont Glacier (EPG) snow profile study, glaciochemistry 

of Whitehall Glacier (WHG), northern Victoria Land coast was investigated from four 

different snow profiles. Sampling was completed in November 2006 in conjunction with 

the retrieval of a 105 m firn core. The specific aims of this study were to:  

 

1) Determine how representative a single glaciochemical record such as a firn core is of 

temporal chemistry changes at WHG. 

 

2) Establish the site specific controls on stable isotope ratios and major element 

chemistry with respect to measured meteorology at nearby Cape Hallett. 

 

3) Compare the controls on glaciochemistry between northern and southern Victoria 

Land coastal sites.  

 

However, unexpectedly high accumulation rates (71 g cm-2 y-1) restricted the length of 

the four ~1-3 m snow pit profiles to between 6 to 18 months. Although this indicates 

excellent temporal resolution for the WHG firn core record, the obtained snow profiles 

are too short for robust seasonality assessment of elemental chemistry and comparison 

with the decade long EPG record. Therefore, only a brief outline of the research, 

methods and discussion of preliminary results are presented here which may be useful 

for future research in combination with the firn core, but is outside the scope of this 

study.  

 

A2.2.0 Study site 

The Whitehall Glacier ice divide (72º 54’ S, 169º 5 E, 500 m a.s.l) is located in northern 

Victoria Land and is 12 km from the open ocean (Fig. A2.1). The proximal location of 

WHG to the Antarctic Circumpolar Trough results in frequent and intense cyclonic 

activity. Interannual climatic variability is therefore primarily controlled by the Antarctic 

Oscillation (Turner, 2004). Katabatic outflow from the East Antarctic Ice Sheet is 
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expected from the SSW, due to local 

topography. Meteorological conditions have 

been measured at Cape Hallett, located 71 km 

NNE of WHG intermittently since 

1957.Wind speed, wind direction and air 

temperature are available from the Long Term 

Ecological Network between December 2003 

to December 2007 (data attributed to Lyons, 

2009, 

http://bprc.osu.edu/capehallett/chaws.html).  

 

A2.3.0 Methodology 

Four snow pits were sampled at Whitehall 

Glacier (WHG) in November 2006, to depths of 288 cm (WHG_1), 170 cm (WHG_2), 

112 cm (WHG_3) and 102 cm (WHG _4). WHG_1 was sampled from two sections, 

WHG_1 from 9cm to 222 cm depth and WHG_1b from 188 cm to 288 cm depth. A 

dominant hoar horizon at 180 cm depth was used to correlate between the two sections, 

which demonstrate good overlap of density and Na chemistry concentrations (Fig. A2.2, 

A2.5). Samples were taken at 1cm resolution using the same methodology applied at 

EPG (Chapter 5.3). However, pre-cleaned HDPE vials were not used, and samples were 

collected into NASCO whirl-pack bags. Although this is insignificant for major element 

chemistry, it is possible samples are contaminated for trace elements. Furthermore, 

WHG_1 was sampled from a fresh surface of the 3 m pit used for ice core drilling, an 

additional source of potential trace element contamination. Snow density and 

temperature measurements were made at 5 cm resolution after chemistry sampling was 

completed.  

 

Samples from each WHG snow profile were analysed for δ18O and δD at the GNS 

National Isotope Centre and Al, Ca, K, Mg, Na, S, Si and Sr by inductively coupled 

plasma optical emission spectrometry (ICP-OES) at the Chromatography/ 

Glaciochemistry Laboratory, University of Maine. ICP-OES detection limits are 

determined as the 3σ error of 10 blank measurements (Table A4.7). Analytical error was 

assessed through 53 measurements of an internal quality control standard which was 

Julia Bull, 2009. Glaciochemistry of Evans Piedmont Glacier, Antarctica 121

http://bprc.osu.edu/capehallett/chaws.html


measured in addition to calibration standards (Table A4.6). Errors are typically between 

10 – 30 % 2 rsd, which is an order of magnitude below temporal variation between 

samples. Both calibration and quality control standards were made to approximate mean 

snow sample concentrations. Ca+, Cl-, K+, Mg+, MS-, Na+, NO3
-, SO4

2- were also 

measured in WHG_1 samples by ion chromatography (IC) at the 

Chromatography/Glaciochemistry Laboratory, University of Maine. Methodology of 

stable isotope and IC measurements are described fully in Chapter 5.3. 

 

A2.4.0 Preliminary results and discussion 

 

A2.4.1Dating 

The stable isotope profile of WHG_1 demonstrates two frequencies of δ18O variation. 

Fluctuations between 10-50 cm occur on top of a lower frequency signal which is 

maximum between 150–110 cm depth (Fig. A2.2). The lower frequency signal is 

considered indicative of seasonal temperature changes due to a concurrent increase in 

MS. MS maxima represents increased biological activity within the Ross Sea and 

Southern Ocean during summer when sea ice extent is at a minimum (e.g. Wolff et al., 

2003, Rhodes et al. 2009). Additionally, density measurements display the same low 

frequency fluctuation. An age model for WHG_1 is therefore established between 

winter (July) 2005 to sampling in November 2006. 

 

An accumulation rate of 71 g cm-2 y-1 is determined between July 2005 and July 2006. 

This complies with the general Victoria Land coast trend of increasing precipitation with 

decreasing latitude (A2.3) (r2 = 0.89, n = 30). 71 g cm-2 y-1 is however double the snow 

precipitation rate predicted by Giovinetto and Bentley (1985) (Fig. A2.3) and a single 

year is considered too short to robustly characterize snow accumulation at WHG.  
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A2.4.2 Comparison of chemistry between WHG snow profiles and Cape Hallett meteorological 

conditions. 

 

The four WHG snow profiles demonstrate similar sub-seasonal variation of δ18O and 

elemental chemistry (Figs. A2.4, A2.5). WHG_4 alone displays relative homogeneity of 

δ18O within the upper 60 cm of snow pack, attributed to extremely localised post 

depositional mixing of snow through wind drift. Assuming high frequency δ18O 

fluctuations are representative of sub-seasonal temperature changes, WHG snow pit 

records are dated at sub-seasonal resolution through comparison with the Cape Hallett 

temperature record (Fig. A2.4). WHG_1, WHG_2 and WHG_3 demonstrate strong 

correlation with Cape Hallett temperature of r2 = 0.72, r2 = 0.81 and r2 = 0.52 

respectively. 

 

Four maxima of elemental concentrations are identified in the WHG snow profiles (e.g. 

Na concentrations in Fig. A2.5).Slight differences between the records is reflective of 

heterogeneous deposition of aerosol to the snow surface, dependent on surface 

roughness and sastrugi features. For example, the highest maxima of Na concentrations 

in WHG_1 (peak 2) is present at slightly lower concentrations in WHG_2 and WHG_4, 

but absent from the WHG_3 record. Similarly, peak 1 is observed in WHG_2 and 

WHG_3 but is absent from WHG_4. Despite these slight differences, the dominant 

control on WHG elemental chemistry is still atmospheric circulation, evident through 

the simple relationship of WHG chemistry to wind strength measured at Cape Hallett. 

Chemistry peaks 1,2 and 4 are all approximately concurrent (within uncertainty of snow 

pit dating), with daily averaged, maximum wind speed measurements > 10 m s-1. Peak 3, 

which was sampled in WHG_1, occurs when there are no available wind measurements 

at Cape Hallett. However the most probable cause of automatic weather station damage 

is storm events, and hence increased wind strength.  
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Elemental ratios of WHG snow samples are similar to upper ocean values indicating a 

dominant marine source of Cl, Mg, K (Turekian, 1968; Riley and Chester, 1971; Bruland 

and Lohan, 2003) (Fig. A2.6). Conversely, elements derived from mineral dust such as 

Al and Si are poorly correlated, considered reflective of the detection limits of ICP-OES 

analysis. 

 

A2.5.0 Conclusions and future work 

Preliminary results indicate that the WHG firn core has the potential to track sub-

seasonal resolution changes in temperature (δ18O) and increased wind strength 

(elemental chemistry concentrations) at WHG. This is supported by correlation of 

WHG glaciochemistry to the Cape Hallett meteorological record and similarity of 

chemistry trends in the four snow pit records. Slight, sub-seasonal differences that are 

observed between the WHG snow profiles, which are dependent on the exact sampling 

location, will be inconsequential in interpretation of a compacted firn core record. 

Although IC and ICP-OES allow robust determination of marine derived, major 

element chemistry (Na, Mg, K, Cl), further analysis using ICP-MS is recommended to 

determine the variation of predominantly terrestrial derived, trace element chemistry 

(e.g. Al and Ti) which is present at concentrations close or below ICP-OES detection 

limits. As at EPG, terrestrial derived chemistry might provide constraints on the 

direction of atmospheric circulation in addition to simple wind strength.  
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Appendix Three: Appendix Three: Stable isotope, major and trace 
element chemistry  (ICP-MS and IC analysis), density and 

temperature measurements of the EPG snow profile 
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