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ABSTRACT

GeophysicaL data - prinarily ur,agnetic fleld measurements, bathymetry'
and selsmlcity data - are presented for the area between New Zealand and
Antarctica fron approximately 145oW to 155oE. The data are used to determlne
the structure of the Pacific-Antarctic boundary, the oceanlc part of the
Pacific pLate and the area of intersection of the Indlan, PacifJ.c and AntarcEic
plaEes.

In the southwest Paclfic basin the magnetic anomalles are very clear and
an extensive patiern of anonaiy lineations with some offsets ls mapped. The
magnetic anomalies show Ehat the uniforrn Pacific basin area formed between
about 83 and 63 nybp. The Paclflc-Antarctic boundary is shown to differ either
slde of about 175oW. To the east it is a relaLively uniform aseisml-c spreadlng
rldge, offset b)' some transform faults. West of 175oW, to l61oE, the boundary
conslsts of a scismically actlve zone of disturbed bathymetry and nagnetlc
anomalies strlking about N.70oW. The zone, the Paciflc-Antarctic fracture zonet
probably consist; of several fractures strlklng about N45oW. The area between
the Paciflc-Anta.:ctic boundary and the southwest Paclflc basln represents Ehe

interval 10 to -55 rnybp, and only in the east are anouEll-y J-lneaEions clear.
The Indian-Antar--utlc-Paciflc triple Juncuion Ls near 61.5oS, 16loE and is a
stable ridge-farrit-faul-t Junctlon; the Indian-Antarctic boundary being the
rldge.

PLate tecil".rnles ls applled to the area and the structure is shown to
fiE, and be expl-.:ined by a differenE rotation pol-e for each of the maJor
intervals indicaied by the structure, i.e. 0-10 mybp, 10-63 rnybp and 63-80 mybP.
The poles, wlth ictation rates deduced from the nagnetic anomaLles' are used to
reconstruct the positJ.on of New Zeal.and relaEive to AntarcEica at B0 rnybp. The
two continents p,'obabl-y started to separate at close to 83 mybp. The tiues of
the maJor change-: of structure and plate movement in the area are shown to
coinclde wLth rnir.lor plate movement chirnges in the southwest Paciflc area and
in the rest of tl.e world.

A new nieth.d for deternining po-les of rotation, based only on enicentre
Locatlonsr is pre,;ented, The method is applied to independently deternrine the
Indlan-Paclflcn Pacific-Antarctic and Indlan-Antarctlc pol-es. The poles shoul,!
form a consistcnL. set and they do. The meEhod yields effectively instanEaneous
poles, is quantj.tative, md ls appllcable to urost plate boundarLes.

Earthquake magnitude-frequency relationship b values for the plate boun-
darles ln the arca are deternlned. Conparisons r,rith results from elsewhere
lndicate an assoeiation of high b wJ.th high temperature and conversely.
SeveraL factors l,rhlch have prevlousl-y been suggested as determlnlng b value
are shown to not be determinants.

A revlsed ;,rnd extended uragnetic reversal- tirne scale based on model
studies of the southwest Paciflc basin anonralles is presented. Other model
studles indicate that a magneti.zed layer thickness of at leasE 2 km ls probable.
VariaLions of anomaly arnpl.itudes are studled.

A detaiLed study of the application of numerl-cal- correlation teehnlques
to magnetic anomaLies ls presented. It is concLuded that horizontal scale
varlaiions and discontlnuities in profiles can be critj.cal. Methods for.over-
coming some of the probJ-ems, and for deternlnlng quantit,ative error estimates'
ar. giv"n. The nethods, and concLusions, are appllcabJ-e to any correlation
problen.
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PREFACE

SCOPE OF TI{E TIIESIS WORK

Geomagnetic studies of Ehe seafLoor betvreen New Zealand and Antarctica
have been carrLeC, out by various New Zealand groups since 1958. ChristoffeL
(1961-a, b) was the first to present magnetlc anonaly proflles and as more

data were coLLected they were anal-ysed by Adans and Christoffel (1962) and

Chrlstoffel and l,1oss (1965). .Ross (1966) completed a prelinlnary anal-ysis

of aLl the data evailable up to and including 1965. Most of the data were

between 165oE ani 1800. The amount of magnetlc data in that area has more

than trebled since L965i nainLy Ehrough a research programe of the Physics

Department of Vj.rtoria University of l^trel-1ington, operatLng from the New

Zeal"and Navy Antcrctic resuppl-y vessel IIMNZS Endeavour, Thls thesis ls a

part of that reslarch programme. Data from several other sources are lncluded

and the study e:-1,:ends over a l-arge area of the southr^/est, Paclflc.
The prirnary data are magrretlc fleLd ueasurements, but bathynetry and

seismlcity data i;re al-so used extenslvely. The data are used to investigate
the crustal strucEure and tectoiric hlstory of the oceanlc area between New

Zealanrl an<l Anter:ictica, between approxlm,etely 145oW and i55oE. (See Fig. 0.1

ln Vol , 2). The major results are presented in a magnetlc anomaLy uap for
the area 45o to :/oos, l45ow ro 15508. I,Iirh the work of Herrorr (1971) east of

150oW, and Weiss.'l and Hayes (1972) west of 165oE, the map presented here

completes prelir,r..:ary rnagnetic coverage of the southern oceans from 70ow to

looon.

The inltial intentlon was to concentrate on the southwest PaclfLc basin

berrreen 165on an.t 1800. The work of Christoffel, Adarns, and Ross in part of

that area had sh.rr.m that there was a pattern of llneated rnagnetic anomaLies.

Additlonal data riare avail-able, and more could be obtained as the area was

accessible fron EIfiIZS Endeavour. It was of interest Lo study the area in
decall, especially as Vine (1956) had polnted out that the nagneLic anomaly

pattern was slm;ilar to that off the west coast of the U.S.A. The data of

Pirrnan et a1. (1968) subsequently indicated that the lineat,lons west of L80o

were part of an extenslve pattern, whlch east of 1800 extencled fron the

New Zeal-and contirrent to the Pacific-Antarctlc rldge. Thelr data, and addL-

tionaL gnpubJ.ished data, lrere made avallabl-e by Lamont-Doherty Geologlcal

observatory and the anal-ysls was exten,Jed to al-l of the southwest Pacific basln

south of the Chatharn Rise and west of 150oW. The exteosion to 150oW conpll-

ments the work of llerron (197I) whLch covers the area east of 150oW'



The lncreasing suecess of plate tectonlcs as a unlfylng and predictive
theory Lndieated that broadening of the study beyond the southwesE Pacific
basln wouLd be useful. The Pacific-Antarccic ridge system is the boundary of
the Paclfic and Ant.arctlc pl-ates (see tr'ig.0.2, Vo1. 2) and to understand the
southwest Pacific lt was necessary to conslder data at least to the Pacific-
Antarctlc boundary ln some detall. Magnetic and bathynetric data for the

boundary fron l45oW to l.60oE are analysed. A preLiuinary examrnation of data

south of the botrndary has aLso been carried out. To investigate the western
end of the Paclfic-Antarctlc boundary a speeial study was made of the area near

6005, 160on where the IndLan, Antarctlc and PacifLc plate intersect. This
study ls compl-er:ented by the work of Weissel and Hayes (L972), Christoffel and

R.F. Fal-coner (1973), and others, ln which J.arge extents of the Indlan-
Antarctic and Indian-Pacific boundaries are exaudned.

In the couri;e of the sttrdy of the area several specific studles whlch
have uore gener.rl applications have been carrj.ed out. These specific studies,
which are descri-L:ed beLow, are a significant part of the whole sEudy.

The prirnary data for the whole study are magnetlc anonalLes, and the
analysls of thesc data is very dependent on correlation of anomaly proflles.
Recognition of rhe dlfflcu.lties of vlsua]- correl.ation l-ed to a study of numerlcal
correlation methods. The rnethods we-re applied to the southwest Paciflc basin
anomalies but the concl-usions of the sEudy are relevant to any correl-atlon
problem.

The nagnel:ic anomalies in the souLhrqest Pacific basln 'nrere al-so used in
a stuciy.of the ori.gin of the nragnetlc anomalies. The results obtained are
relevant ru othei: oceanic areas.

The seisrnic.i.ly data f or tire area were compil-ed to supplenent the magnetlc
and bathynoetric data. This led to tr^ro special studles whieh utilise the
seismlcity of the lfucquarLe rldge complex portlon of t,he Indian-Pacific boundary

and all of the Pacific-AnLarctlc and Indj.an-Antarctic boundarles. One study
ls an analysls of earthquake nagnitude-frequency rel-ationships for the plate
boundarLes in the area and comparison of the results wlth other oceanLc plate
boundarl.es. The other stucly presents a ne\J method for deterrainlng poles of
rotatlon, wlth applLcations of the method to the Indian-Antarctic, PacLflc-
Antarctic and Indian-Paclfic poles. The nethod ls applicabLe to other plate
boundaries.

THESIS FORMAT

There are ten chapters. Chapter 1 presents background materLaL assumed

l-n subsequent chapters. Chapter 2 Is a revLers of previous work in the area.
Chapter 3 describes the sources, re1lablllty and methods of reductlon of the



baslc data. Chapter 4 presents the data, and from lt a detail-ed descrlptlon

of the structure of the area. Chapter 5 is a study of the appLication of

numerical eorrelatlon techniques to nagnetic anomaly profiles. Chapter 6

presents nagnetie anomal-y rnodel studLes. Chapter 7 ts a study of earthquake

rnagnitude-frequency relationshlps. Chapter I presents a deserLptlon and

applications of a new rnethod of determinlng poles of rotation from epicentres.

Chapter 9 draws on the previous chapters Co present a discusslon of the tec-
tonic development of the southwest Pacific area. Chapter l0 ts a very brief
revLew with comr,ents on possible future work. The naterlal in chapters 5, 6

and 7 ls not cenLral Lo the description of the structure of the area, and

could be ornitted at a fl-rst reading.
Prel"iminary accounts of some of the work have been presented ln

FaLconer (1972, 1973a, b) and Christoffel- and R.K.H. FaLconer (t972, 1973),

AL1 the materlal ln those papers is presenLed more ful1y here, with some

revlslons where additionaL data have 1ed to reinterpretation of prellmJ.nary

conclusLons. Thc papers will therefore not be referred to repeatedly. CopLes

of thern are conl- iined 1n the pocket at the rear of VoL. 2.

A slgnifica'.irL amount of the lnformation is presented ln diagrarn form.

For the readerts convenlence all the diagrams are ln Vol-. 2, whil-e aL1 the

text ls in VoL. 1" The dlagraris are numbered with respect to the chapter

in which they are: first referred Lo, e.g. Flg. 5.3 is the third figure of
Chapter 5. Tlrrer: large drlagrams are contalned in the pocket in the back of
Vo1. 2, but redr.rr:ed copies of them are ln with the other diagrams.

Appendices ilre at tire end of Vol. ln nurubered and lettered wlth respect

to the chroter tc which they applyr e.g. Appendix 68 is the second appendix

for Chapter 6. i:igures for tl.e appendi-ces are aE the end of Vol, 2.
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CHAPTER 1

TTTE SEAFLOOR : OBSERVATIONS AND TIIEORIES

Ttrls chapter presents baekground matertal- that ls assumed ln subseguent

chapters. ArI lntroductton (1.1) is followed by descriptions of thc najor

norphologic features and crustal structure of the oceanlc areas (1.2).

ltren maJor theories concernlng the evolution of the crust (1.3) and sorne

extensions of these theorles (1,4) are dlscussed. A footnote foLLows (1.5).

1.1 INTRODUCTION

In the last two decades there has been a tremendous increase in the

knowJ-edge of the oceanic areas of the earth. Probably the most iuportant

conclusion from the new knowledge is that there is a great unlty i.n the struc-

ture of the seafloor. l"Iagnetl-c anouraly paLterns ia the South Atlant:.c are

vLrtuaJ-l-y identLcal to those south of Australia (HeirtzLer et al-., 1968).

Paleomagnetic reversal sequences in deep sea cores from the Scotia Sea are

the same as those from the North Pacific (Opdyke, 1972). Earthquake flrst
motion patterns from the North Atl-antic are just like those fron the Indian

Ocean (Sykes, 1968). Gravity anornal-ies across the Japan Trench are very

sirnilar to those off Chile (Ilayes and Ewlng, 1971)' Many other examples

could be given. There is also much dlversity ln the oceanic areas and l-t

is probable that this diversity contains many clues to a better understanding

of the development of the earthts structure. It l-s therefore useful to koow

as much as posslbLe about different areas of the earth.

Ttris study ls a contribution on one area, the southwest Pacl-fic. The

area cannot be ful-ly understood ln isolation from t$e rest of the earth and

throughout thLs study facts and theories concerning other areas have

consciously, and unconsclousLy, been used to a large extent. It ls therefore

necessary to brlefLy discuss some of the knowledge aad theories of the struc-

ture of the earth. The discussion that foll-ows concentrates on aspects rvhich

are most iqortant to thls study. Consequentl-y most of it concerns oceanic

areas, and even then concentrates on partlcul.ar topics. The literature on

a1l- fhese toplcs is now extenslve and the references given are frequently to

the more recent papers whlch refer also to earlier sork.

VICTONIA UNIV:;iS;T./ OF V/ELLINGTON



L.2 I,I0RPII0LOGY AND CRUSTAL STRUCTqEE OF TUE SBATLOOR

L.2.L GeneraL

The most obvtous c1-assificatlon of the earth ls into areas of land aud

areas of ocean. The latter cover 7L% of. the earthts surface (Wylli-e, 1971).

Ilowever nany of the land nasses are surrounded by shal-low shelves whlch

structural-ly are more ProPerly eonsidered part of the land area. Thls

reduces the oceanic areas of the earth to 63"1 of the totaL area (llenard and

SmLth, 1966). There ls a basic dlfference ln elevation and crustal structure

between the contlnental (land) areas and oceanic areas; and the transLtlon

between the two areas ls relativel-y abrupt. Selsmic refractlon results
(Raitt, 1963; James and Steiohart, 1966) and earthquake surface wave studies

(gl-lver and Dornan, 1963) show that the thickness of the crust is 30-40 km

ln coDtlnental areas but onl-y 6-7 kn in oceanic areas (rig. 1.r).
The oceanic crust is not a slngle layer but consists of several J.ayers

which are deflned prlmaril-y from coupressional wave vel-ocities (Fig. 1.1).

Not all the layers are always present but. the crustal structure of undisturbed

oceanic baslns is remarkably uniform and can be considered as ttaveragett

oceanic crust (Ludwlg et aL., 1971). It has the followlng structure.

Firstly one or more layers of sediment, whose thiclrilress Is controlled by

nany factors but ranges from several kiloneters to virtual-ly zero. Then a

baseruent layer (Layer 2) of velocity averaging 5 krn/sec. The range of

Layer 2 thlcknesses is 1-6 kn but most results are between 0.8 km and 2 krn

(Shor et al. , I97La). In some areas tsro or more cor.ponent layers are observed

in Layer 2 (Den et al., L969; Talwanl- et a1.' 197U. Beneath Layer 2ls
Layer 3 whlch has an average velocity of 6.8 t 0.3 l"m/sec and an average

thickness Ln the basins of about 5 kD. Layer 3 is termed the oceanic layer

and Menard (1967a) considers that the essential characteristic of oceanic

crust is that lt contalns this layer. The crust/mantl-e boundary is defined by

the Mohorovicic dlscontLnuity (I4oho) below which conpressional wave velocities

are greater than 7.8 kur/sec. The Moho lies at deptlis between 10 and f3 ks

beLow sealevel in ocean basins.

A knowledge of the morphology and crustal strucLure of the naJor features

of the seafloor has been central to all theorles on the evoluLion of oceanic

areas. Ileezen and Menard (1963), reviening the topography of the seafloor,

consldered that there are three main morphologic divislons: continental

margin, ocean-basin fl-oor, and rnld-oceanic ridge. Iach division is subdlvisibl-e

and there is a certaln arnount of overlap. There are also features whlch do not

readlly fit luto the naia divl.sions. Detalls of the naJor features are dls-
cussed in followLng subsections, but first a coilment on geophyslcal techniques.



L,2.2 Geophyslcal- technLques

the techniques used for lnvestigatlng the structure of the oceanlc areaa

wil-I- not be reviewed here. They have been ful-ly discussed in nany pubJ-Lca-

tlons, ln particular in Volumes three and four of The Sea (Hi11, 1963;

MaxoeJ-l, L97l). An LmportanE new devel-opment not discussed there ls the deep

sea drllLing proJect which provides the abil-ity to dril1 and sample all of
the sedinentary Layer and at least the upper part of the basemeat Layer of
the seafloor.

Deep sea dril-ling has yielded several lurportant restrlts relevant to the

Lnterpretatlon of results from the primary techniques of investigating
oceanic sedimentary deposLts i.e. seismlc reflection profillng (Hersey, 1963)

and sonobuoys (Houtz et al., 1968; Le Pichon et al., 1968). Seisnic

reflections shon only lnterfaces across which the acoustic impedance changes

and they provide no direct evidence of sediment age. Deep sea drllling
has shown that (1) Prorninant continuous reflectors nay not be isochron

surfaces as previoucLy thought (Fischer et a1., 1970; Ewing et al., L970;

JOIDES 1971a). (2) There nay be substantial changes in llthology and

maJor tj.ne discontinulties whlch are undetected by seisnic profiLing
(Kennett et a1., L972i J0IDES, 1973a,b). (3) Sedturent at the seafloor
may be more than 50 uiLlion years old (JOIDES, 1973d), whLch is drarnatic

confiruation of the previously recog4ized lmportance of boLtom htater cutrents
as an erosional process (Ewlng et al., 1969; Le Pichon et a1., 1971b;

Watkins and Kennett, L972). These resul-ts have to be kept in mlnd when

selsmlc reflection records are dlscussed.

L.2.3 ContlnentaL lfargLn

The contlnental nargin consists of the areas associated with the tran-
sLtlon from contlnent to ocean fLoor. There are two general types of uargin.
(f) the Atlantic type; consisting of continental shelf, eontinental slope and

contlnental rise which nerges inLo the oceanbasin; and (2) the Paciflc type;

that typically has a narrow continental sheLf, then a continental slope which

goes lnto a trench, beyond whlch ls the oce€m basin (Ileezen and Menard, 1963).

The contlnenEaL shelf varles 1n wldth from 0 to 1500 km, averaglng

78 kn. Gradients on the shelf average 1:1000 and the outer edge is usually
delineated by a sharp lncrease lu gradient to the continental slope. The

depth of the shelf break averages 133 rn but ranges from 20 to 550 n (Menard

and Snlth, 1966). I{trere geophysical and direct sampling data coverage is
good the continentaL shelvea are found to be slmJ.l-ar to thelr adjaceut land
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mass (Ludwig et al., f971). The uaJority of continental shelves are of
GulLcherrs (1963) rrconstructionaL subsiding" typu, which ls charaeterised by
a subsidlng shelf capped with thick continental sediments (Ludwlg et al.,
1971).

In some pl,aces there are shelf-I-lke features at depths greater than the
continentaL shelf and separated fron the regular shelf by a scarp or low con-
tlnental" slope. Heezen et aL., (1959) have termed these features marginal
plateaus but some exauples are referred to as terraces (Hayes and Conolly,
L972). Notabl-e examples are the Malvinas (Falkland) Plateau (Lonardi and

Ewlng, f971) and the Blake Plateau (Pratt and Heezen, 1964). Ttre narginal
Plateaus usualJ-y have crustal structure simllar to the adjacent continental
shel-f (Ludwig et aL. , 1971). They are generall-y only assocLated wlth Atlantic
type contlnentaL margins.

There are severaL independent shelves separate from the continents and

the J-arge (continental-) lslands such as Madagascar. These independent
sheLves are not large and ran;: in depth fron ehallow, e.g. Rockal!- Bank

(Jones et a1., L972) and the SeychelJ-es (Davles aad Franels, 1964) ro more

than 1000 m' e.g. Agulhas Plateau (Laughton et al-. , L97I) and South Tasuan

Rise (Hayes and conolly, L972). Geophysical and direct saupLing data (e.g.
Davl-es and Francis, I964i Jones et al. , L972; JOIDES, 1973c) indLcate that
they are contLnental.

The continental- sJ-ope Ls effectlvely the outer edge of the contlnental
block (I{orzeL, 1965). Gradients on the slope range from near vertical to
1:40r and the steepness makes it difficult to determine the crustal- structure
of the slope. Recent geophysicaL results (e.g. Luyendyk and PhllJ-ips, 1970;

Hayes and EwLng, L97A; Talwani and Eldholrn, L972, L973; Scrutton and du

Plessis' 1973) lndlcate that the structure ls more conplex than previ.ously
thought (e.g. Worzbl, 1965), There nay be subsided continental crust r:nder
the sIope, and the contlnental-oceanLc crust boundary nay be uarked by burled
or partl-y exposed ridges rfiith deeper basement landward.

The continental rlse of an AtlantLc type margin is a transition area
between the steep continental slope and the fl-at ocean basln. The rise area

is discussed further J.ater, as from its crustal structure lt is rnore approp-

rLate to consider it part of the basln.
The trenches wtrich characterise the Pacifl.c tlpe narglns reach deptha of

more than 10 kn and are nostly less than 100 kn wide. Gradients otr the land-
ward wal-ls range from L:10 to near vertical. The seaward wal-ls are usuall-y
not so steep and often e:dribit benches indicatlve of faulting (Fisher and

Hess, 1963; Ilayes and Ebtng, 1971). The floors of sorne of the trenehes are
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fLat due to the presence of undf-sturbed turbidlte deposits (Scho11 et aJ-.,

f970; Hayes and Ewlng, 1971). The nature or even exlstence of sediments

l-andward of the trenehes is difficult to determine. Suall- anounts of ponded

sedlnent are not infrequent (Hayes and Ewlng, l97L) but substantial- sedlment

deposlts have been detected only off Japan (Ludwlg et a1., 1966) and the

ALeutlans (JOIDES, L97Lc; EoJ-mes et aL. , L972; von Huene, L972). HlghLy

dlsturbed incoherent sediment wouLd be hard to detect with present technl.ques.

L.2.4 Mld-ocean Ridge

The most prooinent feature of the oceanic areas ls the m{d-ocean ridge
system, which covers 337" of the deep ocean fl-oor (l{enard and Smith, L966) .

The e:d-stence of a contlnuous worl-d-encircling rLdge was postul-ated in the
late 1950ts on the basls of sparse bathymetrj-c and earthquake eplcentre
data (Eeezen et al. , 1959). Subsequent work has verifled lts existence and

Heezen (1969) pointed out that not a s:ngLe gap has beeo proven throughout

its uore thaa 501000 kn length. The Austraiian-Antarctic dlscordance (Hayes

and Cono11y, L972) rrey now be an exception to Ileezenrs (f969) statetrent that
no fuodanental l-ocal or regional varlations have been found in the essentlal
characteristics of the ridge.

Earthquake eplcentres are assoclated with the a:ds of the rldge systeu

ancl the general- continuity of the rldge through the Arctic, Atlantic, Indlan
and Paciflc oceans i.s readll-y seen from epicentre uaps (e.g. Fig. 0.2).
Topographicall-y the ridge is approxiuately trLangular in crossection. The

depth of the axis varles between 1000 m and 3300 rn but is usualLy between

2300 and 2800 n (Scl-ater et aL. , L97L; Anderson et al-. , 1973). In some

areas, particularly the AtlanElc and southwest Indian oceans, the axls is
uarked by a rift up to 2000 rn deep, and the rldge flanks have relief up to
1500 n. Elsewhere the triangul-ar crossectlon is rernarkably uniforrn with
relief Less than a few hundred meters (Heezen and Ervlng, 1963; Heezen, 1969).

At the a:d-s of the rnld-ocean rldge sedinent thickness is vlrtually zero

(Ewing and Eroing, L967, 1971). It lncreases outward fron Lhe axis wj-th most

of the sediment otr the flanks being of pelagic orlgin. Pondlng ln hol-lows

and current scour produces some smoothlng of the flauks (Ewing et a1. r 1969;

Keen rnd Manchester, 1970) but fl-at topography ls not generally found untiL

the distal margias of the abyssal- plalns.
The upper surface of L,ayet 2, the basement layer, ls exposed at the

sedlneot free areas of the rldge. The thlckness at the axis of the basement

layer ls roughJ-y inversely proportional to the spreadlng rate of the rldge
(see later), and thete does not appear to be nnrch changp in thickness away
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from the axls (Menard, L96Tb; Shor et al., 1971a). The thlckness at the axis
of the oceanlc J-ayer, Layer 3, ranges from zero on slow spreading rldges
(e.g. North Atlantlc) to 4-5 km on fast ridges (e.g. East Paclfic Rise).
Away from the axis the oeeanJ-c layer everywhere thickens to an average of
about 5 kn (Le Pichon et al. , 1965; Shor et aI, 1971a).

SelsnLc acLlvity clearly dellneates severaL branches from the roain nJ.d-

oceanlc rldge system (Fig. 0.2). 0f these branches the Chlle ridge (Herron

and Hayes, 1969), Gal,apagos ridge (Raff, 19681 Herron and Heirtzter, 1968)

and probabLy the Southwest AtLantic rldge (Morgan and Johnson, 1970) are

simllar to the maln ridge system in structure and tectonic nature. the
MacquarJ.e rldge (Hayes and Talwani, 7972) and the Azores-Gibralter ridge
(Krause and Watkins, L97O; Laughton et al. , L972) are also seisnlcly active
branches but their morphology ls corylex and they are not tectonlcally part
of the mld-oceanic ridge system (see l-ater).

1.2.5 0eean basins

The deep ocean basins occupy approxlmateLy 407', of the oceanl-c area

(Menard and SmlLh, 1966) but it may be m:isleading to specify an area because

there is a contiouous transltLon from the nld-ocean rldge to the deep basins

which fl-ank the ridge. The transitLon to the contlnental uargln Ls usr.ral-ly

more narked.

In areas acceseible to sedlments from the continents there are usua11-y

fJ-at abyssal pJ-alns wlth gradients Less than 1:1000; the fLatness belng due

to the hori-zontal nature of turbidity current deposits (Hamilton, L967a).

Elsewhere the baslns consist of abyssal- hl11s whieh have rellef rangiog
from a few meters to 500 m (Heezen and Menard 1963); and the only cover over

the basernent is pel.agic sediment usualJ-y less than 300 n thick (Ewing and

Ewing, I97\). In areas where detailed surveys have been done the abyssal-

h1L1-s are found to be elongate parall-el- to the ridges they flank (Moore and

Heath,1967; Menard and Maomerickx, L967i Naugl-er and Rea, 1970).

The rnaJor accumulatl-ons of sediment in oceanic areas are in continental
rLses and basins adjacent to Atl-antlc type margius (Ewtng and Ewing' 1971;

Erulng et aI., 1973). The continental rises are esseatially sedimentary

aprons consistlng of highly stratJ-fLed sections, occasional sJ-unp structures,
and a general pattern of 1-ayers thlckenl-ng landr.rard. Sediment thicknesses

up to 5 kn are observed at some narglns (Ilout,z and Markl, L972r. The lncrease

in sedlnent thLckness tolrard the uargin is partly due to increaslng depth to

the top of the basement. The basement often has a simiLar outlioe to the

trencbes of the Pacl-fl-c type margins whlch has led I'Iorzel (1965) 
'



Ludwlg et a1., (1971), and others to suggest that the continental rlse is a

sedlaent-flll-ed trench, and that the Atlantic and Paclfic type margins are

basical-J-y sftnI-lar. Ilowever there are Atl-antic type marglns with thick sedi-

ment at whlch there is no depression of the basement (Iloutz and l'larkl, 1972;

Houtz and Davey, L973).

ltre upper surface of the basement layer ls usual-Ly Just as rough under

the sedlnent cover of the baslns as it Ls where it is e:rposed on the ridges
(Uwlng and Ewing, 1971). Where the deepest reflector observed ls reLatively
smooth lt rnay represent very low viscosity basalt flows (Vogt and Johnson,

1973) but more probably lt represents not smooth basement but highly reflec-
tive layers of chert or ash interbedded wl-th sedimenE (Iloutz et aL., 1970;

Vogt and Johnson, f973).

L.2.6 Island arcs and narginal- basins

The term lsland arc as now used generally impl-ies a morphologic feature

consistLng of both a trench not associated with a continenLal nargin and an

arc structure. The Latter consistlng of one or rnore rtdges made up of actlve

or inactive vol.canoes (Karig, 1970). Some lsland arcs are arcuate but others

are Linear and the term arc does not lnply any specific shape. The island

arc trenches are sinllar to those associated with Paciflc tyPe continental-

marglns (Hayes and Ebing, 1971). 0n the opposite side of the arc fron the

trench there is a basln. These basins, terned margLnal basins (l{enard, L967a;

Karig, Lg71) have depths cqual to or Less thau typical ocean baslns. Most of

them are of oceanic crusLal structure in that they have the oceanic Layer 3,

although they often have irregular Layer 2 strueture (Menard, 1967a;

Shor et al, 197larb).

L.2.7 Isl-ands and Seamounts

A seamount may be defined as a more or less lsoLated elevatlon of the

seafloor of circul-ar or el-llptical pl-an wlth at least 1 krn of rellef and

comparatively steep slopes (Menard and Ladd, 1963). ALt are consldered to

be of voLcanic origin (Heezen and l"lenard, 1963). Evidence of eurrent volcanlc

activlty has been detected for some seamounts (Kibblewhtte, L966; Johnson'

1970), but the naJority are relicts of previous activity. If the islands

associated wlth island arcs and mlcrocontinents (e,g. Seyehelles) are

excl-uded, oceanic islands may be considered speclal- cases of seamounts.

Sone lslands are associated with the rnLd-oceanlc ridge, e.g. Azores,

Ascenslon, Prlnce Bdwar<i and St. Paul; but most rise from the ocean baslns.

Seamotrnts (and isl-ands), unllke abyssal hiUsl 3!€ not randornly dtstrlbuted.



Many of them oc,:ur in approximately llnear chains. The roost notable exaoples

are the Hawalir.rr Islands ancl the Ernperor seamount chain but numerous other

exanples can be seen on charts. In some cases the chalns rise frorn a low

rise, which presumably is a result of p1Ling up of material from the

volcanoes (Menard and Ladd, 1963). Other chains consl-st of relatlvely iso-
lated seamount$ rising directly from the ocean floor.

1.2.8 Fracturc Zones

Fraclure zones are long, narrohr zones of irregular topography. The-lr

topography can consist of eLongate troughs, large steep ridgesr scarPsr sea-

mount lineations, and conbinations of all of these (Menard and Chase, l97l;
Van Andel, I97I). Different regional depths are often characterlstic of the'

two si<les of a fracture zone (Menard , L964). trrlhere they J.ntersect the rnld-

oceanic ridge they usualJ-y nark offsets in the axls, and deep troughs with

depths as great as those ln the deep basins may occur (Heezen et al-. r l964arb;

Ileezen and Nafe, L964; Matthews et al. , L967). Away from the uld-ocean

ridge fracture zones are most commonly indlcated by narrow ridges up to

3 lcn higtr (Mennrd and Chase, I97L; Ilerron, L97L; Rea and Naugler' 1971).

but troughs also occur (Erickson et el., 1970; Collette and Rutten, 1972).

1. 3 MAJOR TITEOR.IES

The naJor theories which are central to present understanding of the

evol-ution of the earthrs crust are contlnental clrlft, seafJ.oor spreadlng and

pl-ate tectonics. A four'th newer concept, plumes, ls lIkely to become a

major theory br-rt lt ls probalrly fal.r (lf conservatlve) to say that, it has not
yet achieved the staEus of thc other theories. All the theorles are inter-
related but it is easiest to describe them in historic sequence.

1, 3. I Contlnect-aL drlf t

The tern cantlnental drift is used to descrlbe the concept that the

continents may fonnerJ,y ha're been in differenL posltions relatlve co thelr
present positions. Serious scientific debate about the concept dates from

the early twentioth century. Wegener (e.g. L929) was the first naJor advocate

and he received strong support fron TayJ-or (1910), du Toit (L927; L937) and

others. The main llnes of evidence v/ere paleoclimatology, pal-eontol-ogy, the

geometrlcal flt of the continenLs, and the match of stratlgraphy and trun-
cated structures across the oceans. lfuch of that type of data was and stlLL.
can be (Meyerhoff and Meyerhoff, 1972a) considered equlvocal. However the

naln objection concerned the mechanlsnr of drift. Jeffreys (L924, 1959)
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showed that the rigldity of the crust was such that the conEinents could not,

as had been suggested, ttsaiL through the oceansrr. He, and others, consldered

that lack of a suitable mechanism for contLnental drlft lras a fundanental

objectlon, and the concept did not achieve widespread support unt1l after
lnterest in the debate revived ln the laEe L950rs with the advent of paleo-

nagnetlc studlee (Takeuehi, et aL., 1970).

The essence of paleonagnetlc rnethods is that the dlrection of remanent

magnetizatlon in sultable rock sampl-es can be used to estlnaEe the positlon of
the magneElc pole at the tlme the rock formed (Runcorn, L962). Trso assumptions

are inherenc. (1) The mean geomagnetic fleld has always been dlpol-ar.
(2) The rocks used. acquired a magnetizatlon whlch was closely paralLeL to the

dLrection of the field at the tine of their fornatlon and whlch has been

retained unchanged slnce.
A wlde variety of e:rperlmental results lndtcate that provided sultable

precautlons are taken the assuuption of stabLe rnagnetisation is valld (Creer,

1970). The dipole field assumption is more difficult to verify (Stehli 1968'

1970). The nrgnetic fle1d is not axialLy symmetrlc or eonpletely dlpol.ar

today (Vestinc , 1967). However lt appears that r,rhen averaged over a few thou-

sand years the fLel-d during at.least the last 20 nll1ion years (hereafter my)

has been approxinately that of au axiaL dlpole (Irving, L964; opdyke and

Henry, 1969) al';:hough not necessarily a geocentric dipole (lll1sonr 1971;

McElhlnny, 1973b). !'or earLier periods the evidence is ruore lndirect;
(1) There are theoretl-cal reasons for bel-ieving ttrat the field would always

be closely axially syrrunecrlc (Bullar-d and Gellnan, 19541' Lll-J-ey, 1970).

(2) Int,ernal corrsisLency of paleomagnetlc results argues strongly for a

dipole field (Runcorn, 1962; Irvlng, L964; Crecr, 1970). (3) A recent

spherical harnoaic analysls of paleorurgnetic data (Benkovat et al., L973>

lndlcates that the field has been dipolar slnce Ehe I'Iesozolc.

The speci:fj-c contrlbution of paleonr,agneLlsm to the continentaL dtLft
debate is data for the posLtion of the magnetic poJ-e with respect to different
continents aL various tlmes. For any one continent the poLe posltlons deLineate

a regul-ar path wlth tlme. If thls is interpreted as novenent of only the poJ-e

the paths for different continents would be the sarne (Runcorn, 1956). The

paths are similar but they diverge from each ottrer golng back in time. The

loglcal concLus;ion is that the conti.nents have moved reLatLve to each other
(Runcom, L96Z). Furtherrnore the movenents suggested are conpatible wlth the

contlnental drift suggested frou other clata (Runcorn, L962; IrvLng, 1964;

McElhinny, 1973b).

ltrere are nohr reasonabl-y good polar wander curves for most continents

(Runcorn, L965; Creer, lgTO; llcElhinny, 1973b) and wlLh care lt ls possLble
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to reconstruct the former positions of the contlnents aL various tines entlrely
from paleomagnetic data (Francheteau and Sclater, 1969; McElhinny and Luckn

f970). Fioe deEall in the movelnents of the continents is not usual-ly deter-
nlnable but broad constralnLs can be placed on their positlons at najor lnter-
vals, e.g. Permlan, Jurassie, Cretaceous. Unfortunately there ls virtually
no data for the movements during Tertlary times (McElhlnny, 1973b).

Desplte sone opposltion (Beloussov 1968arb, L970; Meyerhoff and Meyerhoff

L972a, b) contlnental drift ls now wldely consldered to be a proven fact, but
ln the early 1960's there was much less certalnty, maLnly because of the diffl-
culties of a suitable mechanism (Jacobs et a1"., 1959). Convectlon in varlous
forms had been suggested (e.g. Holmes, 1931; Grlggs, 1939) but lt was the

seafl-oor spreading concept which provided the firsr wide aecepLance of the

plauslblllty of continental drlft.
.

L.3.2 Seafloor spreading

The concept of seafloor spreadJ.ng formulated by Hess (1962) and Dietz
(1961) arose through attempts t,o expl-ain the known structure of the seafloor.
The baslc prLnclples of the concept as expressed by Hess (1962) ate as

follows. (1) The nantLe is convecting. (2) The convectlng ce11s have rlslng
Llmbs under the nld-ocean ridge aad rnantl-e rnaterial- coines to the surface on

these ridges. (3) The continents are carried passively on the uantle wlth
convection and do not, pLow through oceanic crust, but thelr leading edges are
deformed when they lnplnge upon downward moving .1imbe of convecting mantLe.

(4) The cover oF sediments on the seafloor I'ride down Lnto the Jaw crusher of
the descendlng l-imb are metamorphoseci and eventually probably wel-ded onto

contirtent.srr. (5) The ocean baslns are impermanent features, and the contlnents
are permanent, although they nay be torn apart or rvelded together and thelr
margins deforrue-d. Even lf an ocean basin is assumed to be ol-d the seafloor
itself may be much younger as the older seafloor can have descended back lnto
the mantLe at a downryelling site - usually assumed to be a trench.

It is not norv considered that the oceanic crust ls dlrecLly part of the

convectlng system or that the convectlng cells are LLed t.o ridge axes (see

Later), but ot,hervise the basic principles stated above are stil1 asaumed.

ltany fa.cts of oceanic crustal sEructtrre are explained by the concept.
(1) Hot mantLe materl-aL upr+ellLng at the rldge axes readtly explains the high

heat flow near the mid ocean ridge (appro:rtuntely eight tftnes that of the

basins (Langseth and von Herzen 197f)). (2) The uniform thickness of Layer 3

ls explicable if lts base represents a present or past isotherm at. which a

temperature and pressure reaction occurred. Any of the suggested reacLlons

for the productLon of Layer 3 would take place in the high teuperature re.glons
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of the mld-ocean rldge (Hess L962, 1965; Cann, 1968, L97Q; Vlne and Moores,

L972) and as seafloor spreading carries the crust away the reaction boundary

Ls frozen in. (3) The lack of the very thlck sediment that would have been

e:cpecLed ln permanent ocean basins ls exalained by the impernanen! nature of
the baslns. (4) The now well knor.sn pattern of sedinent thickness beLng zero
aE the rldge axls and lncreasing outward ls just what would be expected wj.ch

seafloor spreading from the axl.s.
Deep sea clrllllng results have provlded wldespread confirmatlon that as

predicted by scafLoor spreading che maximum age of the sedLment Lncxeases away

from the rldge axis (Flscher et a1., L970i Ma:cwel-l et al ,7970; Van Andel,
L972). Ttrls is convlncing support for the concept of seafloor spreading but
even prlor to deep sea drilling very convincLng support had come from the study
of oeeanj-c nagnet,J.c anorqaLies. That Hess should formulate his hypothesLs

without any reference to then nay today seem surprising but in the early 1960rs

there was only a smal1 amount of magnetic data avallable (Ileezen et, al.,
1953; Mason, l95B) 

"tth 
oo ready explanations for it (Bul1ard and Mason, 1963).

It was Vlne and ltuEthews (1963) who flrst clearly stated the hypothesls
whlch has become fr:ndamental to the interpretation of roarine uragnetic anornaly

data. Details of Lhe hypothesis wilL be dLscussed more fully in subsequent

sections and chlpt,ers but briefJ-y the prlnclples are as fo1lows. New crusta-l
materLal forms at the axls of the nld-ocean ridge and becomes nagneLlzed in
the directlon of the earthr s field at the time at whlch lt cooLs through the
Curle temperattrre. Seafloor spreading moves the cool nraterial 1ateraL1y away

fron the ridge axis and new material upwcl-J-s. If the earthrs nagnetic field
perJ-odically reverses as spreading contlnues successive strlps of crust
parallel-ing the rldge rvll1 be alternateLy norrnally and reversel-y magnetized.

Provided renanent magnetlzatLon ls more important than lnduced uagoetlzatlon
the al-ternately magnetlzed blocks produce an increase or decrease ln the
anbient field, thus producing l-inear anomalles.

At the tinoe Vlne and Matthews stated thelr hypothesls seafloor spreadlng
$ras a rel-atlvely new concept and there was no proof of its val-i.dLtyn the
importance of reranent ruagnetizatLon r,ras not widely appreclated, and the
existence of reversals had onl-y just been recognized (Wllson, L962). The

acceptance and proof of the Vine and l,Iatthews hypothesis has been a gradual
process so it is probabLy not surprising that Ehree important coroLlarles of
the hypothesis appear to have come into widespread use without a singLe cl-ear

statement of LheLr exlstence (See Appendlx lA for a bibllographic note).
These corollaries are as follows:

(1) Identical- anomal-y profiles at dlfferent places imply that the sea-

fLoor at those places 1s of the same ege.
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(2) If the reversal dates are knolrn the seafLoor can be dated from

nagnetlc anom,rlleg.

(3) If the seafloor age ls known reversal dates can be deterrnlned fron
nagnetic anomalies.

The fLrst one: ldentical anomal{ss lmply ldenticaL ages follows from

the fact that reversal-s are a worl-d wide phenomena hence aLl the seafloor
formed at any one time has the same poJ-arlty. As the seafloor spreads Lt
records the flel-d reversals in taperecorder fashlon and all seafLoor formed

durlng the sane tfune lnterval irrespectlve of where lt ls on the earth contalns
the same taperecordlng. Consequently the anonalies observed ln dlfferent
areas wll-l be the same lf the areas forned at the same tine. The age of the

areas does not need to be known for It to be possl-b1e to say that they are of
the same age, alL that is required is the same arrom4l-les. 0f course the
reversal sequence, hence magnetLc anomaly sequence, has to be sufficLently
unique so that lt can be assumed that It wouLd not have occurred uore than

once in time.

The second corol-lary: reversal dates known, seafloor age determinable,
also relies on a unique sequence of anomalies. If the dates of al-l the

reversalg in a particul-ar tlne.intenzal are known lt ls posslble to calcuLate
the rnagnetlc anoma]-y proflle that would be observed over seafl-oor that had

formed by seafloor spreading at a chosen rate durlng the tirne lnterval.
If an observed anonaly proflLe matches the calculated profile lt is legltlnate
to say that the seafloor beneath the observed profiLe formed durlng that tLme

intervaL. Ttren the age of the seafloor at a point of the profile can be

determined. The use of a time lnterval is lmportant as wiLhout seve-ql
reversals lt is not posslble to have a sequence whlch can be matched wLth a

reasonabl-e degree of unlqueness.
The thtrd corol-lary: seafloor age known, reversaL dates deterninable,

depends on the assumptlon that the anomal-les observed over a sectlon of sea-
floor are produced by a sequence of normaLly and reversel"y magnetized blocks.
Not a1l- anomalies need orlginate this way, especially if there are contrasts
of topography or crusEal structure, but the assumption ls useful in
reLatlvely uniforn areas. The posltions of the boundaries betrseen the oornal
and reverse blocks are chosen such that a rnodel profiLe calculated fron the
blocks fits the observed proflJ.e. The age of the seafloor at the block
boundarles then defines the date of the fleld reversals.

In practice al1 the corollaries are often used ln an lntertwined fashlon.
The lite::ature contalns many examples of thel.r use but some more important
ones are as follows. Vine and Wilson (1965) used reversaL dates determined

by Cox et al. (1963) from contlnental lavas to sholv that the rnagnetic
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anonaLy pattern elther side of the Juan de Fuca ridge was what wouLd b'e

expected. This was the first confirnation of the Vine and l"latthews hypothesls.
Vine (1966) and PLtnan and HeirtzLer (L966> ldentlfled the same anonaly pattern
over otlter ridges and used known reversaLs during the last 3.5 rn11l-ton years

before present (hereafter rnybp) to deterrnlne spreading rates across severaL

ridges. Pitnan and HeirtzLet (1966) assumed unifornr spreadlng at the East

Paciflc rise and from the anomalies deduced reversaL dates for the last 10 nybp.

Vine (1966) went further and cal-ibrated an anomaly sequence in the northeast
Paclflc back to 80 nybp. He also observed that sinilar anomalies, hence

slmilar age seafl-oor could be seen south of New Zealand and in the northeast
Pacifle. lleirtzl-er et aL. (1968) and many others have identifled simll-ar
anornaly patterns throughout most of the oceans. Helrtzler et al. (1968)

have tabulated the dates of reversals for the last 75 mybp whlch w111 simulate
the observed anomalies. Minor revlsions to these dates have been given by

Tal-wanl et a1. (1971) and others. Deep sea drilling results (lfa:<weLl- et aL.

1970; Van Andel" 1972) have provided general confirmation of the Heirtzler
et al. reversal scal-e, whLch was based on a twenty fold e.xtrapolatlon.
Larson and Pituran (1972) have correlated magnetic anomaly l-ineations ln
severaL areas J.n the northwest.Pacific with the norEh AtLantic and used deep

sea drillLng dates to date the Lineations as 110 to L50 nybp. These are ttrt:
ol-dest anomaLles to vhich dates have been asslgned. As yet undated anomqly

lineations exlst in the southeast Paciflc (llerron, 1971).

Many more examples could be given. The Lmpact of rnagnetlc anonaly'

studies on the seafloor spreadlng concept has been very sJ-gnificant, and

coupled with deep sea drll-ling results has provlded virtual proof of seafloor
spreadlng. There are some difficulties wlth the origLnal concept as expressed

by Hess and Dietz lf the nanLle eonvection is assumed to take place right up

to the seafloor. Hov/ever the nekr concept of plate tectonics avoids the dlffJ.-
cultles inherent ln simple seafloor spreadlng and provldes arl even more complete

understanding of the structure and evoLution of the earthrs crust.

I.3.3 Plate Tectonlcs

The concept of plate tect,onics 1s an extension of the ideas of continental
drlft and seafloor spreading. The lcey elements hrere set out by McKeuzie and

Parker (1967) but llorgan (1968) forualized the concepc. The basic assumptlon

is that the earthts surface can be considered to be a mosaic of rlgid plates,
the bor:ndarles of which are determined by present-day tectonic actlvlty.
Flg. 0.2 shows that large areas of the earth are aseismlc; these areas are

the rlgld plates. Most of the seismlclty is concentrated in narrow belts'
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which uark some of the boundarles

of boundary (Fig. 1.2)

between the plates. There are three types

(1) Extenslonal, where plates move apart and new crustal material

emergeg.

(2) Compressional, where plates move towards each other and materlal ls

either absorbed or compressed.

(3) Pure sll-p, where plates sl,lde. paralle1 to each other and surface

rnaterial- ls neiLher created nor destroyed .

The assumption of rigid p1-ates permits the use of a geouetrLcai- framework

for describlng the srotion of the pLates. A rigid plate on a sphere can be

moved to any other orientatl-on by a single rotatlon about a properly chosen

axie through the centre of the sphere. This means that the relatlve motion

between any two plates can be described by an angular vel-ocity vector. The

direction of ttre vector ls specifted by the polnt at vrhich the aris of rota-
tion cuts the surface of the earth. The polnt ls referred to as the

rotatlon pole. The magnltude ls specified by the angular speed, referred to

as the rolatlon rate. Details of the methods for deternlnlng the rotat'lon

vectors are glven later but brlefl-y they are as foLl-ows.

The poslt.ion of the rotation poLe for trso plates can be determined from

a knowl-edge of the clirection of motion at two or more polnts on tlre boundary

between the plaLes. The rotation rate can be deterrn'ined from the rate of

motion aE one or more points. It is also possible to determlne the angular

veloclty vector for two pLates withouL any data from thel-r bouadary. This ls
possibJ-e because the angular veloclty vectors descrlbing plate motions add

vectorially. If the rolation vector ur(arb) ls known for plates A and B, and

trr(brc) ls known for B and C uhen the vector for A and C, trl(arc), ls glven by

vector addition.

or(arb) +o(b,c) *trt(cra) = 0

co(a, c) = - tu(c ra)

... .1.1

Any number of terms can be incLuded ln equatlon 1.1 so it ls posslble to

use clrcults lnvolving u'-ore than Ehree plates. Morgan (1968) and Le Pichon

(1968) illustraLe examples with up to flve terms.

The power of pJ-ate tectonics is that lL Ls a theory which ls abl-e to

nake predLcClons. If the po1-e of rotatlon for two Plates is known lt ls pos-

sible to predlct the direction of motl.on at any pcint on their boundary.

If ln addLtlon the roLatLon rate ls lcnown the rate of notlon aE any point can

be determlned. The vectors of relati.ve velocity between two plaEes must 1ie

along small circles about the rotation pole. If the boundary between two
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plates is along a sna11 circl-e onLy pure slipplng motion rvill occur and the

boundary wll-l be a strlke-slip faul.t. If the boundary crosses a small clrcle
eLther compression or extensl-on wlll- occur, which one depending on the sense

of rotatlon (Fig. I.2). Thus in princlple it is possible to use data from

one area of the world to predict .quantttatively what is happening ln another

area.

Le ?ichon (1968) was the first to exploit the predictlve nature of plate

tectonics. He subdivided the earth lnto onLy sLx plates so that with the

availabl-e data from five plate boundaries he could deterntne aL1 possl-ble

lnteractions. Ile was then able to calculate reLatlve veloclLLes at boundarles

for which he had no data. Isacks et a1. (1968) discussed g1-obaL seismlcity
data in terms of plate tectonics, In particular they showed that directLons

of rnotion given by slip vectors deduced from the earthquake focaL mechanisrn

studl.es of Sykes (1967) and others agreed with the dlrectl-ons predicted by

Le Plchon. Boundaries where pure slip was predicted had strlke-sJ-ip focaL

mechanlsms and were generaLly areas of known strike-sllp fauLts. BoundarLes

where extension tras predtcted ruere mld-ocearr rLilge axes where seafLoor

spreading was occurrlng. Boundaries at which compression was predl-cted were

elther fol"d ununtalns or trench.es. ltre fol,d mountalns were where contlnentaJ-

crust rl7as compressed against continental crust. lhe trenches were where

oceanLc crust was involved: the lsland arc trenches where the cornpression

was oceanic-oceanlc, the Paclfle type continental nargln trenches where it
was oceanl-c-contlnental coupression (Flg. 1.3).

The pIates are defined by the tecEonic activity that deflnes thelr boun-

daries, not from the distribution of continentaL ox oceanic crust. t"fany

plates contaln both continental and oceanlc areas (fig. 0.2). However the

two types of orust do behave differently. Internediate (70-300 km) and deep

(300-700 kn) earthquakes at trenche.s lndicate that the oceanic parts of a

pLate are going dolrn as a rigld slab (Ollver and Isacks, 1967) - the plate is
belng 'rsubducted". The lower density of the eontlnental crust prevents lt
being subducted and when lt ts under compressLon only intense fol-dlng occurs'

Thus the perrnanence of continents ln Hessrs (L962) seafloor spreadlng concepc

is clearly retained ln plate tectonlcs, and his fuopermenence of oceanic crust

arises from removaL of the crusL 1n subduction zones.

The crust as defl-ned by the Moho is only the upper part of the rlgld
plate. The plate Ls consldered to conslst of aLl of the rigid outer part of

the earth beLow whlch l-s a l-ow strength asthenosphere. Attenuatlon of selsmic

!,raves and traveL tine residuals at trenches indlcate that the down golng Plate
ts 75-100 km thtck (O1-iver and Isacks, L967; Davies and llcKenzie, 1969;

Aggarwal. et al. , 1972). Gl-obal veloclty studles (KanaurorL and Press, L97A3
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Press, 1970) indlcate that the base of the l-lthosphere is at 70-80 kn ln
oceanLc areas and up to 150 knn ln contlnental areas. It is the whole of the
l-ithospherlc J-ayer which ls consldered to move as a rigld p1-ate. Although rhe

plate thiekness of 70-100 kn is substantial sone pl-aLes are up to 101000 kn
long so they are real-ly very thin.

A major difficulty ln the original seafloor spreading concept wag

that the seafloor at the mid-ocean rldge was assuued to be the upper
surface of a convectlon cel1. The ridge axls is frequently offset to
form short aectlons of spreading ridge ancl it is very difficulc to
suggest a plausLble pattern of convection currents whlch w111 flt the rldge
conflguratlon (Helrtzler, 1968). Plate tectonics alLeviates the probLem ae

any convection ls assumed to take place below the rigld plate and no corres-
pondence between rldge axls and convection celL is required. The questlon of
whether materLal upweLls passi.vely aE ridges because plates are pu1-led apart
or whether it forces them apart Ls an open question (Morgan, I972b), but the
addltion of new rnaterial at the mid-ocean ridge is regarded as a plastering
onto the vertlcal slde of a sldeways moving sJ-ab (Sclater and Francheteau,
1970; McKenzie, L972a) rather ttran the earller ldea of the rolling over
of a rising llnb of a inantle convection ce1L.

Plate tectonlcs incorporates all the Ldeas of seafloor spreading except
the details of convection, and lt provides a much greater understanding of
global tectonlcs. However lt provldes only a klnenatic description of the
plate movement,s. It does not answer the questlon of .^,hat drives the pl_ates.
Various drlvlng nechanisms have been dlseussed by, for example, Ha1es (1969),
Jacoby (1970), Elsasser (1971) and Nel;cn and Teuple (L972). Convectlon in
the upper mantle has featured ln uost mechanism discusslorr; but lt usually
Presents some difflcuLties. A new concept of convect,lon plumes from the lower
nantle nay perrnlt a dynamical- descriptlon of pl-ate motions, and the hot spor:r;

assoclated with plumes may also provide lnfornatlon on the absol-ute movements

of the plates. If so the usefulness of the concept of plate tectonics will
be even greater than it i.s nor.l.

1.3. 4 Mantle pl-umes and hot-spots

The Hawalian Islands are a long llnear volcanic chain the age of whlch

gets progressiveJ-y older to the northwest. This ls explicabLe lf the Pacific
pJ-ate ls moving north westward over a flxed source of volcanlsrn (Wllson, 1965).

Other chains of islands and seamounts, md aseismlc ridges, that get oLder

away from presently active volcanic sources also can be e>rplalned j.f the l-itho-
spheri.c plates are rnovj-ng atrtay frou or over fixed voLcanlc sources (I.Illson 1963,

19653 Morgan, 1971). The traJectories of four rnajor voLcanlc lineat,lons in
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the Paclflc fit a sirnple rotaLlon of the Paclflc plate about a poLe, which

lndicates that the sources are fixed wlth respect to each other (Morgan, I972a).

Slnllar analysis for other volcanic chalns indlcates that the positions cf
most of the sources are fixed with respect to each oLher. These sources are

now referred to as mantle hoE-spots (Morgan, f971).

The prlnary criterl-on for sej.ectlng the locations of the actJve hot-sPots

is recent volcanism not assoclated with island arcs. There are more than 20

hot-spots (Morgan, L972a) the rnajorlty of which are tn oceanl-c areas and near

spreading axes. Many of them are associated with posltive regional gravity
sromal-les, whictr 1ed Morgan (1972arb) to suggest that the hot-spots are the

surface expressions of deep mantl-e plunes roughJ-y 150 krn ln dlaneter extendlng

from the Lower rnantLe. The rlsing materlal" in a plume spreads out ln the

asthenosphere producing stress on the base of the llthospherlc plates. Order

of nagnltude estimates show that the stresses couLd have a slgniflcant
lnfluence on p1-ate motions.

There ls increasing interest, in the concept of plumes and hoE-spots

especialLy as a means of further e4plalnlng some of ttre changes ln earth
structure that have been deduced from continental drlftr.,s€afloor spreading,
and plate teetonlcs. It ls dtfflcult, to definitely show'that the plumes are

stationary with respect to the nantle (McElhlnny, 1973arb) but if they are they
ptovide a valuable reference frame for deterrnlning absolute pJ-ate motlons 
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(Dletz and Holden, 1970; Morgan, 7972a,b). The llfetime of an active plune

may be of the order of te-ns of nrill-ions of years and the formatlon of and

decay of plumes coul-d be the cause- of najor ehanges of pl-ate motions. The

locatlon "f plumes wlth respect to plate boundarles could control the symnetry

of seafloor spreadlng. The i.',ltlation of a plume under a contLnent could
provlde the forces requl-red to start continentaL drift.

1.4 DETAILS AI.ID EXTENSIONS OF T}IB MAJOR TI{EORIES

In thls seetion some particular toplcs that arise from the rnaJor theorlee
descrlbed above are dlscussed.

1.4.1 Plate boundaries, trlpl-e junctions, and contlnental- marglns

The boundarles of the plates assumed in plate tectonics are deflned by

tectonic actlvity. The terntnology usuall-y used for the three types of boun-
dary ls as follows

(1) Pure sl-lp boundaries are referred to as fault boundaries.
(2) Corrpressional boundarles are referred to as trenches, Lrrespectlve

of whether Ehey are morphoJ-ogically trenches or foLd be1ts.
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(3) Extenslonal boundaries are referred to as rldges. The extensl.onal

areas which have been postul"ated ln rnarginal basins (Packham and Flavey, L97L;

Karlg, 197f) are not included ln the rldge definitlon as unlike rldges they are

not narrow sltes of extenslon.
Earthquake actl.rlty is associated with virtual-ly aL1 of the plate boundariest

the only signtficant exception belng secLlons of spreadlng ridge with haLf-

spreading rates greater than 3 cm/yr (Sarazangi and Dorman, 1969).

Three plates may meet at one point, referred to as a triple Junctlon
(McKenzie and llorgan, 1969). The Lntersecting boundaries can be of any type

and thLs l-eads to the cLassiflcation of tripl-e Junctlons in terurs of the lnter-
secting boundaries. For example the lntersection of a rldge and two transform

fauLts would be a rldge-fault-faui-t Junction. In general the position of the
junctlon moves relative to at least one of the intersectlng plates. The move-

ment can produce substantlal changes ln tectonlc actlvity ln an area, especlaLly

if one of the pi-ate boundaries Ls a continentaL margin (McKenzie and Morgan,

L969; Atwater, 1970) .

The two types of continental rnargin dlscussed Ln section L.2.3 are clearLy

distinguLshed in plate tectonics (Ffg. 1.3). The Atlantlc type margln Ls a

boundary between contlnental and oceanie crust and there is probably aLso soure

change I-n pl-ate thickness across it, but 1t ls not presently the slte of any

relative xnoveinent - lE Ls not a plate bour:.dary. The Paclfic type margln,

charaeterlzed by a treneh, ls a plate boundary. It ls where an oceanlc pLate

ls being subducted under a continent. The slmllarltles of the trenclres of
island arcs and Pacific t)?e marglns are easily understood ln pJ-ate tectonics
as borh are subduction zones. The Atlantic type ruargins are consideicd to have

:riginalLy been rift boundarles forrned by the break-up of a contlnental mass

(Der,rey and Blrd, 1970). The deepenlng of the basement aL some Atlantlc marglns
ls then not a ftll-ed trench but ls a consequence of the origlnal rlfEing
(Houtz and Markl, 1972; Sleep 1972). Wtrere there is no basement deepenlng

the lnltial movement may have had a Large component of slip (Le Plchon and

Hayes, L97L; Iioutz and Markl, L972).

L.4.2 Transform fauLts

Wllson (1965) recognized the continulty of the actlve tecuonlc belts of the
earthfs surface and he discussed hor.r the three tectonic types: m{d-ocean

ridges, nountains (and trenches), and naJor faults w'Ith horlzontal movement,

were transformed from one to another. He introduced the terrn transform fault
for the :au1t which links rldge and rldge, ridge and trench, or trench and

trench. Examples of each type are shown ln Ftg. J-.2.
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Transform faults have a speeial plaee in plate tectonics. Usage of the
term transform faul-t Ls often loose but in thl,s study lt ls taken to mean a

boundary at which the rel-ative velocity vector is paraLLel to the boundary,
i.e. the notlon is pure sL1p wlth no components of extension or compression.

Earthquake focaL mechanisms woul-d lndicate pure strike-sJ-ip motlon. As an

example Fig. 1.4 shows a pLate boundary along which a ridge (AB) Ls transforned
into a trench (DE). The section BC ls a transform fault, but the sectLon CD is
not because the direction of motlon is not para1le1 to the boundary.

The tern transform fault also needs to be cLearly distingulshed from the
term fracture zooe. Fracture zone is a norphologlcal term (section 1.2.8) but
lt is also used for a line actoss which a feature ls offset. Fig. 1.5 shows

two rldges llnked by a ridge-ridge transforu fault (AB). The anomaly ll.neations
produced by the Ewo ridges are offset along ArBf so ArBf deflnes a fracture
zone. Sections AAt arrd BBt are referred to as lnactive fracture zones because

there ls no relaElve movement along theru. Motlon takes place only along AB

which ls an active fracture zone. The tern transforn fault lurplles rel-ative
motion and so applies to onl-y the section AB. Earthquake actlvity would occur

only ai-ong the rldges and the transform fault.

1.4.3 Orthogonarlitv of rldges and fracture zones

The actLve fracture zones on ridge boundarles can be identi-fled fron th.,
offset of the topographic axis of the rldge, the offset of anomaly lineations,
and seLsmlcity. Focal mechanism studies oi earthquakes on the fracture zones

(Sykes, L967; Tobin and Sykes, L96B; Banghar and Syk-es, 1969) almost lnvariably
indlcate pure strj.ke-slip motion. The actlve fracture zoncs are thus transform
faults. It appears to be generally true thet r+herever a ridge axis is offset
the actlve fracture zone and the ridge axls are orthogonal. Since the directlon
of spreading ls paral-1-eL to the relatlve velocity vector the orthogonaLlty of
Ehe axLs and the fracture zone finplies that the spreading dlrection J.s perpen-

dlcuLar to the rldge axls. T'hls 1s not a necesslty within the concept of pl-ate

tectonlcs as there is no geometrJ,cal reason why an obJ-ique ridge couldnrt exist.
Nature tends to nrininlse the totaL dlssipation of energy so the prevalence

of orthogonal ridges and transform faul-ts indicates that that is a minimum

energy configuratlon. Analysis of the dynamics of the configuration (Lachenbruch

and Thonpson, 1972) shows that friction per uni.t lengLh on a transforu faulE must

be less than the tensile reslstance per unit J.ength on a ridge. This suggests

that boundaries will tend towards a configuration that mlnimizes the length of
rldge axis. If a change in plate moLlon malces an existing spreadlng boundary

oblLque, or a new obltque spreading boundary forms, the boundary wl-LL readjust
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into a series of short offset ridge sectlons. If the forces at ridge boundarles

exert a signlficant influence on pLate motions the preference for the mlnimum

'J-ength of spreadlng ridge nay partly dictate the patterns of p1-ate motlon.

I.4.4 9)rmnetry of spreading

It ls often stated that all- uragnetic anomalies are sylmetrlcaL about the

ridge axls thus lndlcating that seafloor spreading is syrmetrical. However

magneLic anomaLj-es south of Austral-ia indicate differences of up to 302 ln
the spreacling rate either side of the riclge (Weissel and Hayes, L97tt 1972), and

as)rmnetry ls also evl-dent elsevrhere (Herron, L97Ll Barker' 1972).

Morgan (L972a) argued that syuuneLrical spreading indicated that material

upwelled passlvely at the rldge axis due to ridges being puLLed aPart

llowever he concluded Later (Morgan, 1972b) that rrwe do not know whether rises
are characterised by compressive sLresses aiding the plate motion or by tensLl-e

stresses actlng as a brake to plate motionr'. lle argued (L972b) that the impor-

tant factor is the temperature distribution. The liEhosphere strengEh l-s

strongly temperature-dependent so the plates always break at the hottest polnt,
whlch will be r,ilrere the previous materlal was inJected. If the tenperature dls-
tribuEion ls syiunetrical the se-afLoor spreading w111- be syurmetrlcal. Morgan

(1972b) suggests thaE syumetry wllJ. be besE rnatntained 1f the materlal belng

added at the surface is dravm from shallow depths. Syurmetrlcal spreading wiJ-l

then occur when one plate ls fixed and the other pLate and the ridge move

(Flg. 1.6a) and rvhen the cwo plates move apart from a flxed ridge (Ifg. 1.6b).
However if the rising rruteriaL is strongly coupLed to the lower asthenosphere
(a pl"ume?) symtrecrlcal spreadlng wl-ll oecur lf both pLates move (fig. 1.6d)
but not if one pLate ls flxed (ffg. 1.6c).

The question of asyrnnetry is lnportant when data are avaiLabJ-e for only one

side of the spreading centre. For example Larson and Chase (L972) have suggested

that some Mesozolc anomaLles napped in the centraL Pacific were forued at the
Pacific-Antarctic rldge. On the assuurptlon of symmetrlcal- spreading they then

suggest that up to 101000 kn of crust has been underthrust beneath l,Iest

AntarcElca or South Amerlca. If so it coul-d have great signlflcance for the
structure of those areas. llowever lf asymmetrLcal spreadLng occurred no under-
thrusting need have taken pLace.

1.4.5 T.opograpbr and age

llLd-oeean rldges exibLt a correlation between age and depth, depth Lncreaslng

wlth age. Ftg. 1.7 shows that many of the ri-dges have slnilar depths for the

same age, The depth of the axis varies between 1000 m and 3300 m throughout the
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oceans but aL1 rldges spreadlng faster than 4.0 cm/yr have axial depths

greater than 2600 n. Axlal depths less than 2000 n occur only on rldges

spreading at less than 2.0 cn/yr (Anderson et aL., 1973). Irrespectlve of the

depth of the axis the depth at 10 nybp ls close to 1000 m below the axial depth.

Alnost all ocean baeins older than 80 mybp have mean depths beEween 5500 and

6000 n (Sclater et al., L971; AnCerson et al., 1973).

A good match to observed topography can be obEained wLth urodeLs of an

isostat,ical-Ly conpensated lithospheric slab movlng away from the ridge axis.

The lncreasing depth being due to thermal contractLon as the slab cools

(McKenzie and Sclater, 1969, L97I; Le Pichon and Langseth, 1969; ScLater

et aL, , L971). The agreeuent wlth theory has led to widespread use of an

empirical depth-age curve (Sclater et al-., 1971) as a means of estlmatlng the

age of seafloor from topography alone. Places where the actl.ve ridge crest may

have juurped to a Der,r location have been ldentified thls way (Sclater et al. ,

L97li Herron, 1972). Changes ln spreading rate or cessation of spreading

leading to steps in topography have also been el-ucldated (McKenzie and Sclater,
l97l; Anderson and Sclater, 1972; Kasaneyer ct al. , L972).

L,4,6 DetermLnacion of rotation vectors

There are severaL different methods for deternnlnlng the rotatlon pole and

the rate of rotation for two plates, but aLL methods depend on two basic g,c..;'

uretrical- prlnciples of pj.ate tectonics! (1) The directLon of reLatlve movemenL

ls along a sma11 clrcle about the rotation pole; (2) The rate of relattve move-

ment varies as the sine of the distance fron the po1e, l.e.

v(0)=v*.sin(0) ....L.2

where v(0) is the veLocity at arc dlstance 0 from the pol-e and v, ls the

maximum veloclLy gJ-ven by vn = 0) . radius of the earth; trl being the angular

rotation rate.
In generaL to determine rotatlon vectors, rates and directtons of rel-atLve

Eovement at varlous polnts are required. A directlon can be deternrined from the
slip vector of an earthquake focal mechanlsm solutlon or the strike of a fault
or fracture zone. If the latter are used they must be active and pure strike-
slip (llarrison, 1972a, L973). The only rates of uotion usually used are ratea
of spreadlng determined from magnetic anomalles at ridges. Rates determlned

from earthquakes (Brune, 1968) are not much better than order of ruagnlrude

estl-nates.

The slrnpl-est method for determlning the rotation pole uses the fact that the

perpendlcuLar to a velocLty vector ls a line of longitude Eo the pole.
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I(nowledge of the s1lp vector at Uwo or more points enables the pole to be

found from the intersection of the l,ongitudes. The flrst two "plate tectonics

papers" (McKenzle and Parker, L967i, Morgan, 1968) used this method.

Le Pichon (1968) lntroduced a more quantitative method which uses Lhe differencee

between observed dl.rections and dLrections calculated with an assuued pole

position. Ttre pole positlon is varied and the positlon whlch mlninl,zes the

dlfferencee 1s taken as the rotatlon pole.
Wlth any nethod once the pole positLon is known the rotatl-on rate o can in

theory be found usi.ng equatlon 1.2 wlth data from only one polnt on the boundary.

A best fttttng rate from several points is preferable.
The rotati-on pole and the rotation rate can be found at the sane tlme from

data of rates of movement (Le Plchon, 1968). The rate at a known dlrection at
several- pl-aees is required and the nethod ls sinilar to that using only dlrec-
tions except that the rnaximun rate of movement is also a patatneter to be varied.
The method ls very sensitive to the value of the maxlmum rate.

Pitnan and Talwan| (L972) have described a method based on rotatlon an

anomal-y Lineation on one slde of a rldge about a trlal pole until lt ts super-
lnposed on the same anomaly on the opposite slde of the ridge. Some fracEure

zones are requlred for constralnts. The rotation rate is deterrnined by the

age of the anom*ly and the angJ,e of rotation.
McKenzle and Sclater (1971) and Chase (1,972) have developed numerlcal

uethods in whlclr directlons and rates are used at the same time. Chase?s method

provides a simultarreous solution of the rotatlon vectcrs for any n lnteracting
plates. It requires data from at least n-l boundaries. IIe has obtained a

solution using eight plates, The metLod yields the optimum set of vectors so

it ls posslble that the vectors found will- be such that

trl(a,b) + ut(b,c) = trt(arc) .,..1.3

does not hold exaccly.
A new method for deternlnlng the rotatlon pole wlLl be glven in Chapter 8.

1.5 ACi$OWLEDGEI"IEM OF ASSINPTIONS

In the folJ-owing chapters geophysical data from the southr,rest Paclfic
area will be presented and discussed. A consclous effort hes been made to
separaLe the description of the data from the lnterpretation of the data but
that is not always posslble. In this chapter the basj.c princ.lples of contirrenLal

drtft, seafloor spreadLngp and pLate teetonlcs have been described. In r::,'lrseguenE

chapters these basie principles are assumed to be valid.
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CHAPTER 2

AT'' INTRODUCTION TO TT1E SOUTHhEST PACIFIC AREA

Thls chapter ls an lntroductl-on to the area studi.ed, based nalnly
on previousJ-y publLshed results. An introduction (2,L) is foLlowed by

detal.ls of specifLc areas: the southeast New ZeaLand plateau (2.2),
Antarctica (2.3), Macquarie rl-dge complex (2.4), Alpine fault (2,5),
Tasp'n basin (2.6), southeast Indian ocean (2.7), south Paclflc east of
l5Oow (2.8), and the southwest Pacific west of 150oW (2.g).

2.I INTRODUCTION

The lnterpretatioos of the structure of the southwest Pacific area pre-
sented in this thesis have been infLuenced by, and are dependent onn previous

work both ln the area studied and ln the surrounding areas. It le therefore

appropriate to L.-slefly review publlshed results for the whoLe southwest

PacifLc area. Tbe review will serve as an introductlon to the prlmary area

of study and w111 descrlbe current knowledge of the surrounding areas. Recent

results are included but it sho'u]-d be borne in rnlnd that not alL of tbe

results were avirilable when some of the lnterpretations presented later were

made. For exampl-e the selsmic refl-ectlon proflles in the souLhwest Paclflc
basin lrere not srvatlable when the nagaetlc anonaly data were belng lnterpreLed;
and the naJor publlcations on the southeast Indian ridge were not avaiLabLe

when a part of th.at rldge near Lhe triple junctlon rqas studled.
The naln featrrres of the whole southwest Pacifle axea are shown ln

Flg. 0.1 and the prlmary area of study in Fig. 2. l. To facllitate the dis-
cusslon the foLfu,rwi.ng gross simplificatlon of Lhe structure of the area is made.

The New Zea'J-artd contlnent extends souLheast of subaerl-aL New Zeal-and ln
the forrn of the Caupbell pLateau and ChaLham rise. South and east of the con-

tinent, is the southwest Pacific basin whlch is bounded on the south by the

Paclflc-Antarcti.c rldge system. A conplex rldge and trough system, the

llacquarie ridge complex, extends south of New ZeaLand to about 6005, 16008,

where lt neets the western end of the Paciflc-Antarcti.c rldge system and the

eastern end of the southeast Inclian ridge system. Oceanic basins separate the

Paclflc-Antaretic and southeast IndLan ridge systems fron the Antarctic con-

tlnent, whlch lncludes the Ross Sea area.

In terms of pLate tectonlcs the area conslsts of parts of the Paclflc,
Antarctic and Indian plates (Fig. 0.2';. They lntersec.t near 6005, 160oE.

The Paciff.c-Antarctlc boundary is the axJ-s of the Pacific-Antarctic rldge

system. East of 1B0o tt is a relatlvel-y siuple actlve ridge wlth some rldge-
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ridge transforms, but fron 6505, 1800, to the triple junctlon lt ls a broad

fractured zone - the Pactflc-Antaretic fracture zone. The Indlan-Paciflc
boundary from the" tripl-e Junction to New Zeal,arrd ls the lfacquarle complex

and ls predonlna,tLy a transform faul-t. The boundary continues through
New Zealand, the relatlve ooEion becorning pure subduction further north in
the Tonga-Kermadec arc. The Indian-Antarctlc boundary ls the axls of the

southeast Indian ridge system. It extends west of the trlple Junction ln a

serleg of actlve east-erest rldge seetions offset by north-south transforms.
DetaLls of qrecific parts of the southwest PacLfic area are given ln the

following sectlons, but there are fuller dlscussions of partl-cular data and

lnterpretatlons at relevant places ln subsequent chapters.

2.2 THE SOUTIIEASI NEW ZEA].AI.ID PLATEAU

The New Zealand plateau consists of subaerlal New ZeaLand and the

surrounding generall-y flat areas that are el-evated above the abyssal ocean

floor (Brodie, 1964). It lncl-udes the Lord Howe rise and Norfo1k ridge north-
east of Nerv Zealand, and the Chatham rlse and Carnpbell pl-ateau to the southeast.
The two latter are of nost lnterest here.

The Carnpbell plateau ls atr' extenslve area urostl-y 500 to 1000 n deep.

This is deeper tban typtcaL contlnental shelves and a low continental slope

separates the pI-ateau from the <200 m deep shelf adjacent t,o southeast

New ZeaLand. The area can be considered a narginal plateau. Surface wave dis-
perslon studies (Adarns, L962) indicate a crustal thickness of 17-23 km, whlch

ls signJ-fLcantJ-y less than the typical contlnental thlckness, 30-40 km, of
New Zealand (lhouson and EvLson, L962). The geology of the islands ;a the

plateau, and nurerous dredge samples indlcate that the plateau ls petrologl-
calLy contlnental (Sumerhayes, 1969; Flen:ing, 1969). SeLsmic refLectlon
profiles (H.outz et al. , L967) reveal relatively undLsturbed sedinertsr uP to
I krn thlck ln the cent,re but thinnlng towards the edges.

The plateau ls considered to conslst of a basement of Perrno-Jurassic

schists and grelnraches simllar to those of New Zealand, overlain by upper

Cretaceous-Tertiary sediment (HouEz et al. , L967; Suuunerhayesr 1969). Deep-

sea drlll-ing at stte 277 (Fig. 2.2) dLd not reach basemenL but penettated

470 n to mld-Paleocene (60 nybp) sedlment. There was vlrtual-l-y no sedlment

younger than 30 mlbp, rvhich suggests that an erosion surface which ls wide-

spread over the Campbell plateau (Sumrerhayes, 1969) may reflect a maJor

lncrease ln bottom lrater velocity over the area ln the late Cenozolc (Carter

and LanCls, L972; J0IDES' 1973d).

The western uargin of the plateau is the steep Auckl-and slope. Post-

depositlonaL faultlng of sedlments (Houtz et al-. , L967, 197 1) and some Low
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1evel seLsnic actlvity (Adams, pers com 1973) lndicates sL1ght tectonic

activity. The other nargins of the plateau are relativel.y undisturbed

(Houtz et al. , 1967). The southeastern margin, here referred Eo as the

Carupbel-J- slope, is moderately steep w'tth gradl-ents up to 1:4. Selsnlc reflec-
tlon profiles (Fig. 2.3) show that the oceanic basernent does not dlp down at
the nargi.n. JOIDES site 275 on the Campbel"t- slope (Fig. 2.3, profile B)

ylelded upper Cretaceous sediment wlthin 15 n of the surface. Stte 276 at
the foot of the sl-ope indlcated Eocene or older sedinent at the surface.

Neither site reached basement. These JOIDES results couflrn the lnportant
erosionaL effect of the sErong western boundary currenL that sweeps the

eastern side of the CaurpbelJ- plateau and Chatham rise (Reid et a1., 1968;

I'Iarren, 1973).

The Bounty trough forns the northern nargln of tlre Canpbell plateau.

The trough is an unusuaL seafloor feature Ln that iE is a transltion from

shorellne to deep ocean basln thaL extends over a much longer dlstance than

nornal (Krause, 1966). In the upper part of the trough there are sedinent

thicknesses of 1.5 kn or oore, the deeper parts of the sedimentary col-r:rnn

belng crunpled (noutz et aI, , L967, L973). The trough probabLy acts as a

channel for turbidlty currents' whlch have deposlted I kn of turbldite
deposlts at ttre seaward end between the Canpbell plateau and the Chathaur

rlse (Houtz et aL., L967; Ewing.,et a1., 1969).

The Chathan rise ls ,shalLower than Ehe Carnpbell pI-ateau and has a more

rtdge-like structrrre. It consists of a Permo-Jurassic schLst and greywacke

basement, overlaiq by Tertiary sediments (CuJ-l-en, 1965; Houtz et al., 1967;

Austln et aL., 1973). The northern slope of the Chatham rise ls ver; llnear
buE the southern slope is more lrregul-ar. At the base of the south Chathan

slope beyond the Eounty trough, basement pinnacles or ridges are Present
(Flg. 2.3, proflle D), The eastern end of the rise (Fig. 2,3, proflle E)

|s much less steep than any of the other marglns of the Campbel-L plateau or

Chatham rLse.

There is conslderable interest ln the rel.ationshlp of rhe Campbel-l pLateau,

Bounty trough, md Chatham rise to each other, and Eo New Zealand. Ttre maln

geologlcaL trends within New Zealand form an inverted S-strape (WeJ-lman, 1956;

Fleming, 1969), the southern end of whlch strikes offshore ln the southeast of

the South Isl-and (Flg. Z.!ta). A structural- break at the western end of the

Chatham rise (Krause, L966i Houtz et al. , 1967) and the interrnedlate crustal

thickness of the Canpbell plateau (Mans, L962) suggests that the plateau and

rlse are not courpletely continuous with New Zealand. Cul-len (1967a) has pos-

tulared a fault just off the east coast of the South Island (Flg. 2.4a) with

the Chatham rlse belng a dispLaced continuation of the South Isl-and schist axls.
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Such large horLzontal displacement ls uot suPPolted by the conLinuatlon of

the Southland syncll-ne magnetic structures to at l-east 300 kn offshore

(MclIuLlen, 1967). Fleming (1969) extends the South Island structure onto the

Chathan rise wlthout flnite displ-acement but wlth Pronounced curvature

(ffg. 2.4a). Wel-lman (1973b) prefers to link the Southland syncllne wlth

east-west nagnetie trends on the northern Canpbell- plateau (Ross, L966;

Mellullen, 1967).

The east-west trend of the offshore structures is generally consldered

(e.g. FLeulng, 1969; Grlffiths, L97Li lJe1lnan, 1973b) as havlng arlsen from

anticlockwlse rotatlon of the Campbell plateau-Chatham rise area with resPect

Eo New ZeaLancl (Flg. 2.4). However Austin et al., (1973) have proposed the

opposLte rotation, wLth the Chatham rise fornerly agalnst the east coast of

the North Isl-and, ALL models conslder the Bounty trough to be ao extenslonal-

feature formed by relatlve separation of the Chatham rise and the Caqbell
plateau.

The maJor orogenlc actlvlty assoclated wlth the fornatlon of the

Caupbell- plateau and Chatham rise ls believed to have been eomplete by the

end of the Rangitata orogeny in urid-Cretaceous times (FJ-ernfng 1969, Suggate

L972r. Since then the area has. been characterised uainly by slow subsldence

and continulng sedinrcntatlon (Sunnerhayes, 1969). Pl-Locene volcanic aetl-vity

on Chatham, Campbell and Auckland Islands (N.2. Geol. Survey, L972), and

Quaternary actlvlty on the Antipodes Islands (Cul-len, 1969b) could be related

to sim:ilar actlvity la the southeast of the South Island, but it probably does

not indicate naJor tectonic activity. The tlmes of various proposed rotatlons

and/or translations of Canpbell plateau and Chatham rise vl-th respect to

New Zealand range from pre nld-Cretaceous (Flenlng, L969) to late Cretaceous-

early Tertl.ary (CuJ-len, 1970; Austln et al., 1973). Most authors conslder

that Lhe Bounty trough had forured before the end of the Cretaceous, and that

no major tectonic activity has taken place within the southeast' New Zealand.

pLateau since theo.

2.3 AI{TARCTICA

The AntarcEic continent can be consldered two separate regions; east

Antarctica - ulalnLy in east longitudes, and west Antarctlca - malnl-y irr west

longitudes. Surface wave dlsperslon studles, revierved by Adams (1972a), and

seismLc and gravJ.ty data (llooll-ard , Lg62) lnclLcate that the crustal thlckness

of east Antarctica is 35-45 km, vhlle that of west Antarctlea lncludlng the

Ross shelf is 25-35 km. Geol-ogical-1-y (Adie , 1962; Harnllton, 196''b) east

AntarctLca is a stable pre-Cambrian shlel-d area bordered on the west by the
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Paleozolc orogenLc beLt of the Lrans-Antarctle nountalns. The western slde of

these mountains ls usuall-y consldered to be the boundary between east and west

Antarctica. i^fest Antarctica is smal-l-er, younger, and has had a rInre cornpLex

tectonic history than east Antarctlca. It x0ay consist of severaL larget

separat,e blocks.
ReLatlve movement between east and west Antarctica and/or rotation of

blocks u"ithin r..rest Antarctica has been suggested by, for exarcple, Schopf (1969) t

van der tinden (1969), CulLen (1970), and Hayes and Ringis (1973). Tha move-

ments, nostly pre-Tertiary, have been proposed rnaiuly to accomodate contlnental
reconsLructions based on geoLogy or seafloor spreading. Paleonagnetle datat

revlewed by McElhinny (1973b), provlile some support for relaElve urcvements.

Different paleornagnetic pole positions from various parts of west Antarctica

suggest that several separate regions are involvedn not necessarily reLated

to east Antarctl-ca. The data are too few Eo perrnlt rellable determinatLons

of the relative movernents, but movemenLs do not appear to have been great

since the upoer Cretaceous.

There ls a co4lete absence of tectonl-c earthquakes in Antarctlca (Evlson,

1967; Adams, I972b) r.rhich suggests, but does not prove, that currently thete

is no movement between east and west Antarctica, and no pl.ate boundarles in
Antarctlca. Horqever there ls active and recent volcanic actlvity at several

places on the Victoria Land coast (western side of the Ross Sea) and Cenozoic

vol-canism in l4ilrle Byrd Land, West, Antarctica (Hamllton, 1967b). The former

coul-d be relate<l to past, or inciplent, movements between east and west

Antarctlcal the Latter could be related to former movements wiEhin qtest

Antarctica or subcluctton of maEerial produced at the Pacific-Antarct{c rldge.

There is no evidence of any recent subduction.
The part of !,ntarctica that is of most interest to thls study is the

Ross Sea area, the coast to the east (Marle Byrd Land), and part of the coast

to the west (Willces Land). Little is known of the continental rnargin off
M,arie Byrd Land but the presence of thick, gently dipping turbites ln the

Paciflc-Antarctlc basin indtcates that the unrgl-n has been tectonically Lnactlve

for some tine (Bwing et a1., 1969; Houtz et al-. , 1973), On the Wilkes Laod

margln there arc no geophysicaL data for 170oE to 150oE, but further west

seismLc reflection and sonobuoy data rcveal- that the oceanlc basement of the

south Indian basin dips steepl-y tovards the margin (I{outz and Markl, L972).

Sediment thickness in the continentaL rise reaches 6 km, wlth the baseraent

at least 9 krn bel-ow sealevel even at 150 km from the contLnental margin -
the neat.'est to Ehe slope that its depth is knorm, On both the Wilkes Land

and I'l,arLe Byrd Land coasLs the depth of the continental shelf break ls
200 to 700 m, lvhlch ls deeper than ln mosE areas of the world.
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Ttre Ross sheLf, wl-th a mean depth of about 500 n (Houtz and Davey, 1973)

ls also deeper than nany contlnental shelves, but lt is interesting to note

that lts depth ls slnllar to that of the Canpbell plateau. AlL the avaiLable

data indicate that the Ross shelf is conti.nental: erustal thlckness about

30 kn, no appreclable oagnetic anomalies (Adarns and ChristoffeJ-, 1962l' Ross,

L9663 unpubl-ished data), marble and gneiss basement at deePsea drll-llng sl'te

270 (Fig. 2.2) (JoIDES, 1973c), basement velocitl-es typical of contlnental

areas (llouLz aod Davey, Lg73), and gravity anonalles conpatible with contioental

structure (Davey, pers conm f973). Iselln Bank, which extends northward at

1800, is probably also continental but data are lacking to establlsh that lt
ls structuralJ-y continuous ltith the Ross sheLf Proper.

The margin of the Ross sheLf can be divided ioto ttro parts (Houtz and

Davey, 1973). West of IseLin Bank the nargiu is cooplex with several basement

ridges and the oceanic basement depth not exceeding 4.5 km (Flg. 2.5, profLle

F). East of Isell-n Bank the continental slope and rlse ate relatlvely gentle

due to a wedge of sedfuoent up to 4 km thlck (Fig. 2.5, profile G). Iloutz and

Davey consider that thls profile shows a rift-ltke structure and naJor down-

fault of the basement. They note that no sinllar rift is seen off the Canupbell

plateau, whlch may once have been adJacent to the eastern Ross sheLf, and they

suggest that eiEher the faulting occurred after separation or the narglnal rlft
rernained at the Ross shelf nargin. Interpretation of the tectonlc history of
the margLn ls very dependant on the detatLs of any Antarctica-Canpbell pLateau

reconstrucLlon.

2.4 MACQUARTE RrpcE CIMPI,EX

Hayes et al. (L972a) lntroduced the term Macquarie rldge complex for the

compLex ridge and trough strucEure that extends southward from soutlreast

New Zealand to a corrnectLon with the Pacific-Antarctic and Indlan-AntarctLc
ridge system€ near 61.5o5, 161on (rig. 2.L). The compLex conslsts of a narrolt
dfscontinuous topographlc high, the Macquarle rldge, and several flanklng
trenches and elongate deeps.

Siaiplified bachynetry of the area is shown in Flg. 2.6 and some rePre-

sentative bath5rnetric and nngnetic prof iJ-es ln Fig. 2.7. The two major struc-
turaL el-ements of the coraplex are the ridge and the deeps. The relative
posltions of ttrese dellneate four sectlons.
(1) A northern secLion, New Zealand to 51oS, where a prornlnent trench, the

Puysegur trench, lles to the west of the ridge (Ffg. 2.7, profiLe A).
(2) A central sectLon, 51os-56os, where the Macquarle trench lies to the

east of the rLdge (proflle B).
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(3) A southetn section, 5605 to about 6005, where the arcuate Hjort trench

Ls west of the rldge (proflle D). In this secLion the ridge ls Less pro-

nouuced than further north. It branches eascwards and does not extend as

far as 60os.

(4) South of 6005 to about 6l.505. This section is not considered 1n the

I'tacquarie complex by llayes and Talwani (L972) but it wilL be shown ln l-ater

chapters that lt Is part of the IndLan-Paclfic boundary and should be included

in discussions of the complex. It ls characterised by a trough that strikes

SSE from near the southern end of the Hjort trench'

The Macquarte rldge area has attracted a Lot of attention recently and

in only the last six years at least 40 papers have appeared whl-ch dlscuss

detall some aspect of the area. Ilayes and Talwan| (L972) have polnted out

that mosL studies have been confined to llnlted portions of the area or have

treated only one or two geophysical properties. This has 1ed to diffetlng

conclusions on the nature of the complex. It has been consldered a mid-ocean

rldge (e.g. EwLng and Heezen, 1956; KlbbLewhite and Denham, 1967), an ls1and

arc (e.g. sumnerhayes, 1967, 1969; CulJ-en, 1967b) and a transform fault

(e.g. Chrl-stoffel-, L97L; lloutz et a1., 1971) '
The concept of plate tectonics has been lnportant to the recent discusslons

of the area. The coupl-ex is selsu;[cally active and lt dell-neates the southern

part of the Indian-Pacific boundary (Fig. 0.2). There have been severaL deter-

mlnatlons of the Indian-Paclfic pole positLon (see later) alL of which put it

less than 20o east of t'ire complex. They all- predlct that the dominant motlon

on the complex 1s right lateral strike-slip motion. Focal mechaulsm studies

(sykes, i967; Baoghar and sylces, 1969; Johnsoo and Molnar, L972) indlcate

this type of uotlon, and €l1oo som€ thrust motion of the Paciflc plate over the

Indian plate.
A1l- the earthquakes on the complex are reported as shall-ow, but in the

southwest of New zealand (Fiordland) there are earthquakes down to 140 kn

(Hanll-ron and Evl-son, 1967; SnlEh' 1971). These interrnediate earthquakes',

the presence of the Puysegur trench' pronounced gravity anoualies off Fiotdland

(Hayes and Talwanl, L972; Woodward, 1973), and the Quaternary andesite vol-

canism of Solander Island at the head of the Sol-ander trough, have 1ed to

suggestions that the northern part of the complex and Fiordland ls a subductton

Br€8. The Fiordland seismlc zone dlps to the southeast which is not in accord

wiLh northeastward motlon predicted by the Indian-Paciflc rotaLion vector'

chrlstoffel- and van der Linden (Lg72) and Hayes and Talwan| (L972) have dls-

cussed several solutlons to this corfLict. Hayes and Tal-wani prefer to

conslder that the area is not a subduction zone but merely a boundary where

oceanic plate ts sllpping PasL continentaL plate'
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The "trenchest' and deeps that are a part of the complex are all narrower

than typical trenches, and onl-y l4acquarie trench east of the ceatral part of
the ridge has any sedimenL in it. Deep troughs are conmon in active fracture
zones and plate tectonics suggests that the complex is prfinariLy a najor frac-
ture zone. The "trenches" could al-l be fracture zone feaBures rather than

subductlon feaLures.

Christoffel (1971) has used flnlte rotations about the IndLan-Paclflc

pole to investigate the evolution of the couplex during the last 10 ny. One

of his nodeLs predLcts crustaL extension in the centraL part of the complexl

the part that contains Macquarie Island. Varne et a1., (1969) and Varne and

Rubenach (L972) have concLuded from the geoLogy of the island that lt is a

sectlon of typi-cal oceanlc crust upllfted by about 3 lcu. The date of the up-

llft is tentativel-y rnld-Mlocene (15 nybp). Extensional- tectonlcs would not

be expected to produce the substantial uplift of the island, but maJor strlke-
slip notion wlLh some thrusting couLd. WllLianson and Rubenach (1972) have

poS"nteil out that oceaoic crust of l{acquarle Island need not have formed ln sltu
1.e. it doesnft, necessarily inrply crustaL extension in that portion of the

complex.

The conplex is separated from the Carnpbell pLateau by the Solander trough

and the Euerald basin. The Solander trough contains at least 1.5 km, probably

more, of wel-L l-ayered sediment, and parts of the Ernerald basin contaLn up Eo

I kn of sediment (Iloutz et al-., L971, 1973; llayes;:-id TalwanL, L972). The

southern part of the EmeraLd basin ls separated fro'- the smooth southwesE

Pacific basin by a zone of rougher topography that extends from the end of
the AuckLand slope to the southern end of the Hjort trerch (Fig. 2.8). The

bathymetry shows the Solander trough-Emerald basj-n area as an eLongate enclosed

basln. The basernent depth of most of it would be 4.5-5 km so if the depth-age

reLationship (Fig. 1.7) ls vaLid for the area the age would be at least 30 ury.

At deepsea driLl-ing site 278 Ln Ehe Emerald basln (Fie. 2.6) piL1ow basalt
basement was reached at 4.1 kn below seaLeveL and the contact sedlment was of

nld-Oi-igocene age (30 mybp). The basemenL age could be considerably ol-der than

this if bottorn cufrents had eroded seciirnent. At present bottom currents ln
the area of the compLex are substantial and flow paLterns are eritLcalLy
depenclent on the relatively snalL gaps 1n the Macquarie rldge (Gordon, L972).

Even minor changes in the configuration of the ridge couLd signiflcantly alter

sedinent deposition and erosion east of the compl-ex.

No magnetlc lineations have been detected la the southern Emerald basin,

although there are signiflcant anornalies (Christoffel and R.F. Falconer' i973).

Further north between 5Lo and 53oS Chrtstoffel arrd R.tr'. Falconer, and lndepen-

dentl-y llayes and TalwanL (L972), have tentatively tdentified llneations east
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of, and parallel to, the complex. The anooalLes do not obviously natch any

of the Tertiary anonaly sequence, and as they are associated witb basenent

reLief Christoffel and Falconer suggested that they may have orlginated fron

fracturlng accompanying the fornation of the couqrlex'

Deepsea drilling site 279 was on the southern end of the northern part of

the Macquarle rldge (Fig. 2.6). It reached vesicular basalt basement aL

3.6 km bel-ow sealeveL and the cootact sediment was of nid-lttlocene age (15 nybp)'

Again the basernent age couLd be oLder.

Basenent ages, or ages of uplift of the I'tacquarie complex wouLd not treces-

sarily relate to the age of the seafloor either side of the cotuplex' The sea-

fLoor age to the west as deternined fron magnetic anomaLies (Weissel and Hayes'

L972i Chrlstoffel and R.F. Falconer' Lg73) ranges frou zeto at 61'50S to

35 nybp at 53oS, and probably ol-der further north (see later). The age of the

Solaoder trough-Emeral-d basin afea is not known but the depth suggests 30-50

Dybp. The cor,pi-ex ltself is a zone of actlve shear, and for any part an age of

upLiftror leaky transform crustal forruatl-on (Menard and Atwaterr 1968) couLd

range froru present day to whenever motion conmenced'

The compl-exity of the tt.o maY be largely due to the proxirnlty of the

rotation poJ-e for the boundary. Snal-1 ehanges in the pole position and/or the

orientatlon of parts of the boundary with respect to the reLatlve veloclty

vector could l-ead to substantial changes in tectonlcs. The history of the area

is likely to have been complex but the donlnant motion along the boundary has

probably been strike-slip motlon.

2.5 l"IiE ALPI}IE FAULT

The zone of seismlcJ.ty that defines the Indlan-Pacific boundary (rlg. 0'2)

conElnues north of the llacquarie rldge complex through New Zealand to the

Tonga-Kermadec arc. In addition to shallow seisnicl-ty throughout the zor|e'

westward dlpptng deep and intermediate earthquakes (Isacks et al., 1968;

Harnl-1ton and GaIe, 1968) lndicate that as far south as the northern end of

the south Island the Paclflc plate ls subducLing under the Indlan plate'

Further south all- the seisrniclty is shal-low, apart f rom the l-ocalLsed zone of

Lntermediate depth earthquakes ln Fiordland that was referred to in the prevl'ous

section. The lack of deep or ingermedlate earthquakes in the south Island

does nct necessarily lndlcate lack of compression, and the actlve uprift of

the southern Alps suggests that^ there is some compressl-on' However dLrections

of motton calculated from the Indlan-Pacific pole (llayes and Tal"ranJ'r L972)

lndicrte prlmarily strike-sltp motlon along the South Island seismlc belt'

The motlon ls general-J"y consldered to be associated with the Alplne fault arrd

Lts branches.
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Ttre Alplne fault is a najor fault that extends from FlordLand to at

Least the northern end of the South Isl-and (Fig. 2.4a) (![ellnan' 1956;

Suggate, 1963). In the northern part of the South IsLand several uaJor

faults branch from the nain trace, and all these faults are often lncluded

in the Alplne fault zone. Continuation of the faults into others in the

North Island has been suggested (e.g. Suggate, 1963; lilellnan, 1972) but

definlte ev:idmce {s lacking. In terms of pJ-ate tectonics the AJ-plne fauLt
zone in the South Island ls the shear zone boundary between the Indlan and

Pacific pLates. In the North Island area the relative plate movement ls
nainly subductlon and the surface trace of the plate boundary is probably

the Hikurangi trench. The North Island faults therefore do not indicate the

plate boundary.

The AJ-pine fault can be very clearly defined fron the offset of naJor

Pal-eozoic and llesozoic geol-ogical structures. The offset ls 450-480 kn ln
a dextrai- sense (Well-nan, 1956; Suggate, 1963; Fleming, L969). The fault
is aLso morphological-J-y dlstinct and exhibits recent dextraL movement and up-

ltft (Suggate, 1963; We11nan, 1973a). Most authors accePt that there has

been some very recent strlke-slip movement but there are conslderabLe dif-
ferences of opinion on when most of the 450 lcm offset occurred. Suggate

(1963, Lg72) and Flernlng (1969) conclude that a1L the movement took place

during the Rangitata orogeny (upper Jurassic-lower Cretaceous). P. Wellman

and Cooper (1971) have the rnajority of the movement durlng the RanglLata oro-

geny but 120 kn of movement in the last 10 ny. GrLfflths and Varne (L972)

have all the movement between 50 and 10 nybp. Well-rnan (f973a) has it. alL

since 25 nybp w'lth rnost of it since 10 nybp. Christoffel (1971) tras it alL

slnce t0 mybp.

Various plate tecEonic models predict rates of movement on the faul-t of

3 to 6 crn/y during the I-ast 10 my. This would take up aLJ. the observed off-

set ln less than 15 my. As WeisseL and Hayes (L972) point out, what then

would be the nature of the Inclian-Pacific boundary prlor to 15 rnybp?

Griffiths and Varne (1972) eonclude that the totaL offset of the New Zeal-and

geosyncline (Flemlng, 1969) since mid-Cretaceous ls 1200 km. The Alpine

fault offset ls only a small part of thls and the extra offset Day represent

moveuenL prior to the Alpine fault movement. Griffiths and Varne suggest

bendlng and stretching rather than simpLe sttike-s1ip motion. A bettet under-

standling of the movements ln Lhe New Zeal-and area ls required to adequately

understand the evolution of the whole southwest Paclflc area.
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2.6 TASMAN BASIN

Many models of the evolution of Ehe southwest Paclflc area (e.9.

van der Llnden, 1969; Cu1-len, 1970; Griffiths, l97I; Suggate' L972)

start with a much dist,orted New Zealand plateau adJacent to eastel:n

AustralLa in the Mesozoic. To understaird the evolutlon to the Present con-

flguratlon a kuowledge of the age and mode of formatLon of the Tasman basin

is clearly inportant. It ls only from recentl-y obtained rnagnetic data

(Hayes and Rlngis, 1973) that definlte conclusions have been possibLe.

Hayes and Ringis (1973) have rnapped throughout most of the central

Tasman basin a pattern of magnetic anornaly lineatlons that trend northwest.

The anomalies are symmetrical- about an axls that is coincident with a burled

basement rldge revealed by selsrric profiler data. The anomaly at the axls

is nuofier 24 (60 rnybp)n r.rd the anornlles either side extend clearLy to 32A

(74 uybp) and tentativel-y to 36 (80 mybp). Anomaly 36 f.ies close to the

continental- etlges of east Austral-ia and the Lord Howe rise and the nagnetLc

pattern occupies all of the basln south to about 45oS. ALl" of the centraL

Tasman basln therefore appeais to have forured by conventional seafloor

spreadlng that started at 80 nybp and ceased at 60 mybp. The half spreadlng

rate was abouE 2.2 cmly.

There is a dl-stlnct morphologicaL boundary beLveen the central Tasman

basLn and the souEhern Tasuan basin. Ilagnetic anomaly l-ineattons J.n the

southern basin (see 1a:er) are related to the souLheast Indian ridge and

are almost ortlrogonaL to the cenLral Tasman anomalles. The souLhern Tasman

area lc younger than 50 my so the boundary between the areas must have beea

an area of najor shearing i:om 80 to 60 nrybP.

Hayes and Rlngis (1973) have used the central Tasman basin anonalles to

reconstruct the former poslLion of the Lord Howe rise-western New ZeaLand

area with respect to Australla. They then use the Sproll and D1etz (1969)

Australia-Antarctica reconstruction (see later) and 480 klr of movement un

the Alpine fault, to obtain a fit of AusLralla, Antarctlca, and the

New Zealanct plateau. The reconstruction produces some overJ-ap of Ehe southern

Canpbel-l- plateau on Marle Byrd land. Further discussion of New Zealand-

AntarctJ.ca reconstructions w111 be given ln Chapter 9.

*Throrrghout thls study the magnetlc anomaly nunrberlng sysLem used is that
established by Pitman et al. (1968) and extenCed by Chrlstoffel and

Falconer (Lg72) and this study. The anonaly dates are from Heirtzler et a1'
(196B), Talwani er al. (1971) and lalconer (1973b). Details are given later.
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2.7 SOUfiIEAST INDIAI{ OCEAI{

Most of the cunent licrowledge of the southeast Indian ocean between

Australia and Antarctica ls presented in several papers in Volune 19 of the

Antarctlc Research Series. For this study Che nost Lmportant papers are

those on the nrorphoJ-ogy (Hayes and Conolly, 1972), the rnagnetic anomalles

(Wei.sse1 and Hayes, L972), and the selsmic profiler resuLts (Iloutz and lfarkl,
L972). Thelr results are suilnarlzed ln Fig. 2.9. The area further \ilest l-s

less weLl surveyed and Fig. 2.10, fronMcKenzie and Sclater (197f), showe

the nain elements of what ls known of that area. Throughout the whoLe south-

east Indian ocean area the lnterpretations of the bathynetrlc and nagnetlc

data have been Lnfl-uenced by the seismicity data : epicentres from Barazangl

and Dorman (1969), USCGS, and Sykes (1970a); and focal mechanl.sm studies of
Sykes (1967) and Banghar and Sykes (1969).

The dou:inant rnorphol-oglcal feature of the area is the southeast Indl.an

rldge. It exteads from the Indlan-Antarctie-Paciflc trlple Jtmction near

61.5oS, 16!.oE, to the Indlan-Antarctic-Sornali-trip1-e JunctLon in the central
IndLan oce€m near 25oS, lOoE. Eastward of 140on the rldge ilstepstt southwards

l-n a serles of short r!.dge sections offset by seisrnlcally actlve fracture
zones. The lnaetive t,races of these fracture zones can be traced for large

distances away from the rldge axls. Fron l40oE to 10008 the ridge trends

approximateLy east-west. Further westward l-t Itstepsrt northward to the

central Indian rldge-ridge-ridge triple junctlon.
Throughouc most of the length of the ridge topographLc reLief on the

ridge ls minor, the axis is aseismic, and the present spreading rate ls
3.3-3.7 em/y. Ilorvever at the Trestern end the topography Ls rougher, there is
a nedian rlft, there ls selsnlcity on the axis, and the spreading rate ls
3.0 cm/y. Thls contrast in ridge character ls seen elsewhere in the iorLd
and the data from thls area support the suggestlons of Menard (1967b) and

Cann (L968) that the cutoff between the two types is at a spreading rate of
abouL 3.0 cur/y.

A najor exceptlon to the reguJ-arlty of the ri.dge is the Australlan-
Antarctic dlscordance between 120oand t28on. The dlscordance ls unllke any-

thlng yet reported tn the worl-d oceans. It is a very dlsrupted area Ln

which the topographlc graln trends at rlght angles to the axLs of the ridge.
It ls deeper than the unlform ridge areas east and west of it, is seisrnlcaLly
actlve, and receot (< 10 rnybp) magnetic anomalles have not been ldentlfled
ln Lt. The zone of dlsturbed rnorphology and napgretlc patterns extends onJ-y

500 ke either slde of the inferred rldge axls and is bounded by a clearly
observed anoroaly 6 (20 nybp). This suggests that the discordance Is a

relatl-vel-y recent feature. It uny be produced by down-well"ing ln the mpntl,e

(a negative pLune?).
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Magnetlc anornaly lineations have been rnapped in some detail fron the

MacquarLe ridge complex to 10008 by Weissel and l{ayes (Lg7Z), and i.n less
detail- further west by McKenzie and Scl-ater (1971). Ano-alies out to
nurnber 2I or 22 (55 rnybp) have been ldentlfied either sLde of the rldge
between l40os and 11008. 0lder anonalies have noL been ldentifled, anrl off
both Australla and Antarctica there are gaps of about 200 kn between

anomaLy 22 and the continenLal shelf. Magnetlc quiet zones occupy most of
the gaps. Easg of 1400, where the ridge axis rrstepstr southward, magnetLc

llneati-ons are not weLl- known south of the ridge but to the north they extend

to 45 nybp in the southern Tasman basin. Lineations extend right to the

I"lacguarLe ridge complex and so provide the age of the seafloor on the wester:n

slde of the coupLex. The age ranges from zero at 61.505 to 35 nybp at 52oS,

and posslbly older further north (i.lelssel and Hayes, L972; Chrlstoffel and

R.F. Falconer, 1973).
Seismic reflection and sonobuoy data (Houtz and MarkL, L972) have pro-

vided infornation on the conflguration of the oceaalc baseuent throughout

much of the area. It was mentloned ln section 2.3 that off the Antarctic
rnargin there Ls a considerable thlckness of sedinent and the basement dips

steepLy. At the Australian nargln there ls less sedlment but the shape of
the basement l-s very sinilar. Houtz and Markl have noted that there ate no

indicatlons of subductlon on either mesg{n so the deepened basement presunably

formed at a rlftlng masgln. The nargin of the western side of the Tasmanlan

sheLf is more complex and is sirnJ.lar to that west of Iselin bank - where

Tasmania is fitted in most reconstructions of the former positlons of Atrstralia
and Anuarctlca.

A computexi-zed reconstruction based on the fit of the 1000 fu contour
(Sproll and Dietz, 1969) ls shown in Fig. z.LL. Smlth and Hallarn (1970)

have obtaLned a very siuil-ar reconstruction using the 500 fm contour. The

tlme for whlch the reconstruction ls appropriate is not acctrrately known.

PaleoungnetLc results (McElhinny and Wellnan, L969) and the magnetic anomaly

lineations (Welssel and tlayes, L972) lndicate that Australia has been movlng

northward with respect to Antarctica since 55 uybp. At that time the contl-
nents were about 400 km apart so some separation had taken place prlor to

then. Snith and llallan (1970), Jones (1971) and others believe that lnitial
riftlng began in the uid-Jurasslc with the main phase ln the Tertiary.
Ilorvever pal-eomagnetLc results (McElhinny, L973b) lndicate that Australl-a and

Antarctica were conslderably more than 400 km aparE in the Jurasslc.

McElhinny concludes that the Lectonlc hl-story of eastero Australia was more

conplicated than a simple rifting history.
In the reconstruction shown in Flg. 2.11 the south Tasman rlse (Flg.

2.9) ls not lneludcd. The rise is continental (JOIDES, 1973d) and lf lt had
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been retained ln its present posJ-tion with resPect to Australia tt woul-d

have overlapped Iselin bank and part of the Ross shelf. A second |tdlscre-

pancy" ls that the present rLdge axes east of l40on are too far south to

accor'modate synmetrical spreading (WeisseL and Hayes, 1972). The tectonic

history of the eastern-most part of the southeast IndLan ocean appears to

have been complex.

The nagnetic data in the southeast Indlan ocean are important to under-

standl-ng that reglon, but the observatlon tbat ln ooe area there lras a perlod

of asyurmetrical seafloor spreading is of very general- i.mportance. I'Ielssel

and ltayes (1971, L|TZ) have shown that from 40 to 15 nybp between 128oand

l49ogr mat€t1aL was accretLng on the northern side 30-402 faster than on the

southern slde. In the adJaeent area to the ltest spreading was s)nmetrical

during the same interval-. Ttre totaL rate of opening was the sane Ln boEh

areas so there was no defo:mation within the separating plates. At the

time asymmetry connnenced the spreading ridge r"tas not offset between the two

areas so the asyrmretrical spreading led to an offset which lncreased rsith

tire. Ilad the rldge lnltlalLy been offset the offset would have el'ther

increased or decreased, depending on the particular configuration. The docu-

mentation of asynmetric spreadlng 1n this area has important lnplJ.cations for
the interpretatlon of other oceanlc areas.

2..8 SOUTH PACIFIC EAST OF 15OOI4I

Pitrnan et al. (1963) have presented magnetic data for the whoLe south

Paciflc east of 1800, and have shown that there ls an extenslve pattern of

ungnetlc anomaly llneations symetric abouE the PacLfic-Antarctlc rLdge.

A more detalled analysis of the area east of 150oW has been presented by

Herron (1971) (Fig. 2.LZ). Her analysls was based prlrnarll-y on bathymetrlc

and nagnet{c profiles and seisniclty data, avallable up to 1968. Vine (L966),

Pltman and HeirtzLer (196,6), and Pitman et aL. (1968) had previousl.y discussed

some of the rnegnetlc profll-es ln detall. Sedirnent distribution in the area

has been descrlbed by Ewlng and Ewlng (1967), Ewlng et al. (1969), and Houtz

et al. (1973), The setsml-cl-ty has been dlscussed by Sykes (1963' L967),

BarazangJ- and Dorman (1969), Northrop et al. (1970), Forsyth (1972) and

Northrop (1973); and the bathyuretry by Zhivago (1962) , Menard (1964) '
Heezen and Tharp (L972) and oEhers. AlL these results lead to an adequate

prelLnlnary understandlng of the area north of 600S, but the area further

south ls not adequately known.

The dorn:inant feature of lhe are-a (Fig. 2.12) Ls the Paclfic-Antarctlc

rldge, whleh ls also refened to as the Albatross cordllLera. The ridge is

a "type" exampl-e of a fast 1> : cr/V) spreading ridge - alnost trlangular
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in cross-secticrr, no ri.ft valley, aseismic, sual1 scale relLef no greater

than a few hundred meters except where there are fracture zones, virtually
no detectable sediment wlthin several hundred kllometers of the axls, and

easlly identlff-able nagnetic patterns either slde of the ridge. Several

fracture zones offset both the axl"s of the rldge end the anomaly lineations
either slde. /',t some of the ridge offsets deep troughs occur, wlth up Lo

5 kn rellef. rl-rnray from the ridge axls the fracture zonea are often expressed

as narrow rLdges or steps in the topography. Vlrtually all the seisnicJ.ty ln
the area is associated with the offsets of the ridge axLs.

Fig. 2.12 shows Herronrs (1971) Lnterpretation of the area. A1-1 the

nagnetic anornalies identified throughout the area are part of the sequence

I to 32 (0 to 75 mybp), except for some possibly ol-der anomaLies in the
extreme southe::st. The fracture zone ldentifications \rere based on topo-
graphy, nagnetic anomaly offsetsr and to a Lesser extent the earthquake

eplcentres. Herron pointed out that the trends of some of the fracture
zones, especiarly in the southern part of the Eltanin fracture zone, were

not'telL establi-shed from bathymetry, and the fractures erere drawn perpendicu-

lar to the maguetic LLneations.
The nagrretic lineations ln the area follolr tlro nain trends: north-

easterly foLlor.,ing the Pacific-AnLarctic ridge axis, and northwesterJ.y sub-

parallel to the Chil-e rise axls. lJest of the Eltanin fracture zone only the
northeasterly trends are present: on the north slde of the ridge out to at
least anomal-y 32 (west of 150oI,1 , see laEer) and on the south slde out to
anomaly 27 (67 nybp). (Herronrs LdentlflcatLon of anoma!.y 32 ln the south

ls dubious.) Ilast of the Ei.tanln fracture zone the extent of the n..r'th-
easterl-y trendiog anornalies decreases to the north, untlL at 3605 anonaly 5

(10 rnybp) is th* oldest northeascerly trendLng anomal-y that can be identLfied.
The boundary with the northrvesterly trending Chl1e rldge anomelies 1s cLear,

buL the inferred norEhwesterly trends vrest of the Pacific-Antarctic rldge are
based on anomal-y identifications that are at best weak. Northwesterly
trending anomalies may be pi:esent there, but any anomaly patt-ern is cer-
tainly not as clea-r as that west of the ELEanin fracture zone.

Morgan (1t68) and Le Pichon (1968) used Pituuan et al. rs (1968) magneEic

data to deteruij.ne. the Pacific-.Antarctic pole of rotation. Both obtalned
poles rsithln 20 of 70oS, L20oE. Le Plchon then used rotalions about his
pole to reconstruct the relative posltions of Antarstica and the Nelr Zealand

pl-ateau aE 38 en.d 72 nybp. llis ccnelusions need to be modified In the l-ight
of rnore recent data. Herron (1971) concJ.udes that the more complete data

east of 150oW fit a pole near 70oS, lZ0on only for the l-ast L0 roy. Prior to
then a po1-e near 62-05, 165oU woulcl be more suitable.
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Herron also concludes that the uniforn anoualy patterns west of the

Eltanin fracture zone lndlcate reLatl.vely uniform seafloor spreadJ-ng there

for the last 75 my, while the two dlfferent Erends east of the Eltanln frac-
ture zone indicate that the present Paciflc-Antatctlc rldge there, ls a

conparatively young system that has devel-oped on the western flank of an

older northwesE trending system. Although the portlon of the El-tanln fracture
zone wlthin the Pacl-fic pLate can be lnterpreted as the inactive trace of Ehe

present Paclfic-AntarctLc ridge-rldge transform, Herron belleves it could have

been the rnaJor pl"ate boundary between a large plate conslsting of most of the

Pacifl-c, and a smal-ler southwest Paclflc pl-ate.

2.9 SOUTIIWEST PACIFIC WEST OF 15OOW

The data whlch wilL be presented and analysed in thls study are prlnariLy
from the southwest Paclflc basin and the Pacific'Antarctic ridge system, Itest

of about l5OoW (Flg. 2.1). A brief descriptlon ls given here of the naJor

features of the area, and some of the prevlous work that has been done ln the

area. The descrlption wilL serve as an introduction to the more detalled
discussl-ons ln subsequent chapters.

A11 the maJor urorphological features of the area are effectlvely
sunnmarlzed in the bathynetric contours of Flgs.O.1 and 2.1, and the bathymetrlc

proflles of Fig. 2.13. Conmon seafl-oor features such as mid-oceanlc rldge,
deep basLn, AtJ-antlc type continental urargin, continental sheLf , and seamounts,

are aLl- present; and there is also a very extensive fracture zoner

The najor feature of the southwest PacLflc area is the vast triangular
southwest Pacific basin. In the northeast it extends 5000 km fron the

Paciflc-Antarctlc ridge to the Tonga-Kermadec trench, whl1e ln the southwest

it extends less than 500 krn from the Pacl-flc-Antarctl-c fracture zone to the

Caurpbell pLateau. Thls study ls concerned onLy with the southwestern part.
There the basin is bounded on the south by the PacifLc-Antarctlc rldge system,

and on the north by the Campbell plateau and Chatham rlse. It ls narrowest at
the west where there ls a marked boundary between lt aud the Euerald basln

(Fig. 2.S). Eastwards it broadens lnto the south Paciflc but for this study

the term southwest Pacl-fic basln wlll- refer to only the area west of the

Louisvllle rldge.
Choice of the Loulsvtl-le ridge as a boundary ls somewhat arbltrary as

there are no obvious morphologlcal- dlfferences ln the basln elther slde of lt.
Horsever it does appear to be a continuous feature of some sort. Hayes and

Ewlng (1971) first pointed out its extent, and they state that lt ls evLdent

as a narrord topographic hlgh on every sounding track across a line from the

Eltanln fract,ure zone to the Tonga-Kermadec trench at 2605. It ls usuaLLy
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less than 100 lcm wlde and although lts depth varies fron <500 n to 4000 n

Lts relief with respecc to the basin ls alvays 800 ro or more. llerron (197f)

and Hayes and lvring (1971) consi.der LhaE the Loulsville ridge rnay be a relict
plate boundary. If lt is, the basins either side of it could be structuralLy
different.

llost of Ehe southrsest Pacific basln has a depth close to 5 kn. It does

not have an abyssal plaln as Lhere are no f1at-lying Lurbidite deposits,
except localIy near the mouth of the Bounty trough (Ewtng et a1., 1969).

Sectlons of the only published seismlc reflectl.on proflles ln the basin are

shovm tn Fig. 2.L4 and it can be seen that there ls little sedlment. A sedl-
ment Lsopach map of Houtz et al. (1973), compiled from additlonaL unpubllshed

data lndicates that sedlment thickness is mostLy less than 200 rn throughout

the basln, except near the continental margln. Sediment depositlon near the

margln is very influenced by bottom currents, which hydrographic data (Reid

et al., 1968; Harren, 1973) and direct measurements (Jacobs et a1. , L97Q)

indicate are substantiaL. All the avall.able selsu1.c reflectlon proflles at
the nargin are shor,m in Fig. 2.3. The JOIDES results at profile B, dlscussed

in secELon 2.2, Indlcate that the observed sediment does not represent, a com-

plete time secLion. lloutz (Pers corrm, L972) reports that for proflle B a

sonobuoy gave u 5.6 kn/sec refraction precisely tangent to acoustlc basement,

so the vlsibl.e basement is undoubtedJ-y the top of Layer 2. None of the pro-
files across Lhe uargin indlcate basement dipptng towards the nargin.

The south"rcst Pacific basln nerges ln the south into the northern flanks
of the Pacifj-c-Antarctlc rLdge system. There Ls a marked contrast ln the ridge
system'within Lire area and thls contrast ls well lllustrated by the two pio-
files ln Flg. 2"L3, East of about 175oW the ridge is aselsmlc, broad, syrme-

tr{.cal, has onl-y rninor reLief, the axial depth is 2500-2800 rn, and there is
no sedlment wLthin several hundred kllometers of the axls. From about l75oI,I

to the junctlon r,rith the Macquarie complex and southeast Indian ridge near

61.50S, 16108 the ridge system has a1l- the characteristics of a ilajor fracture
zone rather than a uniform ridge. ChrLstoffel and Falconer (L972) have

suggested the Eerm Pacific-Antarctic fracture eone for thi.s section. It ls
characteriseel by seismLc activlty, ext,remely rough topography, relief of 4 kn

or more, depths as shall-ow as 1lcm, markgd asymmetry, and some sedi-menL cl-ose

to the axts (Fig. 2.15).
South of rhe Paclfic-Antarctic boundary there ls also a contraet east

and west of about U5oW. The area between 1B0o and lS0ow is not well surveyed

but the indlcations are that the Pacific-AntarctLc rldge symmetry extends

south into the Pacific-Antarctic basi-r. East of t5OoW the basin is lcrown to
have at least l kn of sediment (Hcutz et al., f973), consldera'o1-y more than ln
the southwest Pacl-fLc basin. The differenc.e is probably due Eo the a./aila-
bl1ity of sedi.rnent fron Antarctlca and different bottom currenL pattern$.
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The BalLeny basin south of the Paclfic-Antarctic fracture zone could be

considered a transltion becween the Paciflc-Antarctic basln east of about
r.t

175-q and the south Indian basln west of about the Balleny Isl-ands. Two

features of the Balleny basLn are consplcuous.
(1) It ls almost 2 kn sha1l-ower than the southwest Paclfic basln and the'
dlfference ls not all attrlbutable to sediment fl1L. There ls up to I kru of
sediment, in the Balleny basin (Figs.2.L5r 2.16) but the as)mmetry across the
Pacific-Antarctlc fracture zone ls still- evident ln the basement.

(2) Seamounts and large banks are numerous. This ls a nrarked contrast to the
other baslns in the southwest Pacific-southeast Indlan atea, where seamounts

are virtual-J-y unknown. Many of the Ball-eny basin seamounts are assoclated
wlth large nagnetic anomel-ies and they are presunably voLcanic. the Bal-Leny

Islands at the west are of volcanic origin (Berninghausen and van Padang,

f960) and consist of ollvlne basalt (J.W. Cole, pers corm 1973). Scott leland
to the east is also of volcanic orlgln. Ash in deepsea cores lndLcat,es that
there has been voLcanic activity 1n the Balleny basin area for at least the
Last 2 ny (LlsiEzin, L962; Huang et aL., L972; Goode1l, 1973).

The numerous seamounts, the voLcanic activlty, the very dlstorted sedlments,

and the graben-l1ke strucEure (Ftg. 2.L6) all suggest a complex tectonlc
history for the BalJ-eny basln area.

It has usuall-y been assuned that all the area between the New Zealand

plateau and AntarctLca l-s of ocea.nic crustal structure. Surface wave dLsper-
sion on paths to Antarctica from earthquakes 1n the Eltanin fracture zone and

further east, lndlcate a crustaL thlckness of 5-10 kn for the Paclfic-
AntarctLc ridge and the Paciflc-Antarltic basin (Evison et aL., 1960; Adams,

L964). Adams (pers conm, 1973) has found sindlar thicknc.:ses for the southwest

Paciflc basln. There are no selsmlc refractJ.on data to conflrm the surface

ltave results but a variety of other geophysical data Lndlcate thaE It ls
valid to assume that the area is oceanic.

Gravlty data on the tracks shown in Flg. 2.17 have been publlshed (Hayes

et al., L972b), and Talwanl and Meijer (L972) have brlefl-y dlscussed then.

The data are typ'ical- of what coui-d be expected from the urorphology of the

area. Large free-air anorualies are observed across the disturbed topography

of the Paclflc-Antarctic fracture zone, but the Balleny and southwest Paciflc
basins are featureless. Data across the continental nargins are ln agreement

with the seismic proflLer evldence that the basement does not dlp towards the

margins.

Heat flow data Ln the souttrwest PaclfLc area are shown in FJ-g. 2.L7.

The data are too few to draw any definlte concluslons from but Lhere ls
nothLng unusuaL ln any of the results.
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Magnetlc drta are the prfunary data for thls study, and have been the

prlmary data for most of the previous geophyslcal work in the area.

ChrlstoffeL (1961 arb) from only two magnetic proflles identlfied correlatlone

Ln the southwesg Pacific basln. Adarns and Chrlstoffel (1962), and Chrlstoffel
and Ross (1965) extended the correlatLons with two more tracks. Ross (1966)

presented a rpre detalled analysis of ten tracks, some with bathynetrLc data

also. He later (Ross, 1967b) dlscussed the Paciflc-AntarcLlc fracture zone

in more detall, although not as a fracture zone. Ee noted the depth asymetry

across the featnre and concLuded from estlmates of depth gs magnetic basement

that the basement was also asymmetrLc.

AlL the wqrk of Chrlstoffel, Adans, and Ross was between 170oU and 1800.

Ihey all cLearl-y came up against a loss of correlatlon between tracks south

of the flat part, of the southwest Paciflc basln, and not surprislngly no

symnetrical anonalies were observed. Operation Deepfreeze data across the

PacifLc-Antarctie rldge beEween 1800 and t5OoW whlch contain syrnmetrlcal

anomrlles were ?resented in a data report (U.S. Narry Hydrographic Office,
L962) but aLthough reverse ur.qgnetlzatlon was noted (Appendix lA) the synmetry

ltas not recognlzed. It wasnrt until 1966 that Vine (1966) and Pitnan and

IleLrtzLer (1966) identifled synrmetrical anonalles on the Paclfic-AntarctLc
rldge east of 150oI^1. Vine aLso poLnted out that the southwest Pacific basln
anomalies described by Chrlstoffel and Ross (f965) were identleal to those
ln the northeast Pacific. The ful1 lmpact of this was not apparent until
1968 when Pltman et al. (1968) presented. more data east of 1800 ttrat showed,

that there was a pattern of llneations, with some offsets, extendLng from the
Paclfic-Antarctic ridge to the New Zealand pl-ateau. AL1 or some of the sane

Pattern could also be seen ln other areas of the world, and from lt Helrtzler
et al. (1968) establlshed the magnetlc reversal tloe scale whlch ls now wldely
used.

It ls tempting to speculate on what ml.ght have happened lf the early
tracks of Chrlstoffel, Adams, and Ross had been a bLt further east beyond

1800, where the uagnetlc anomely patterns are clear right to the symrnetrlcal

Paclflc-Antarctlc rldge. The amount of data between 16508 and 1800 has more

than trebl-ed slnce 1965 but the correLat,ions are stLlL not much cLearer than

those established by Christoffel- and Ross (1965). There ls however a much

better understandlng of the rel-atJ-onshlp of that area to the rest of the

southwest Paclfic; and a preliminary plcture of the tectonic history of the

whole southwest Pacific area can be presented. This w1l-1" be done ln subsequent

ehapters.
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CHAPTER 3

THE DATA : SOURCES AND REDUCTION

This chapLer presents detalls on the sources, reliabllity, and methods

of analysls of the primary data used in the study. A$ lntroductlon (3. l)
is followed by details of the nagnetlc and bathyuetric data sources (3.2'1,

navJ-gatf-on calculatlons (3.3), magnetic data rellabiLlty and re-ductlon

(3.4), bathynetrLc data (3.S1, selsmlclEy data (3.6)r mdp projections (3.7)'
and computer programs (3.8).

3.1 INTRODUCTION

The prlnary data for thls study are nagnetlc fteLd neasurements! bathy-

netry; and data from earthquakes Ln the atea. Some of the bathyrnetrLc and

nagnetic data have been discussed previously by Chrlstoffel (1961 arb), Adans

and Christoffel (1962), Ross (1966 i 7967 arb), Christoffel and Ross (1965'

1970) and Pltman et a1., (1968). The data used by these workers were available

ln source form for thls study. It has been analysed |tafreshft with a large

amount of new data.

Ttre l-lrnitatlons of the data and the nethods of processlng it are very

relevant to the conclusions drawn from the data. Thls chapter descrlbes the

basic data and the methods used to prepare it for geophysical lnterpretatlon.
The brevity of the descrlption belLes the considerable amount of t{.me and

effort expended by many lndlviduals and organlzations that have been involved

ln the coLlection and reduction of the data.

3.2 MAGNETIC AND BATIIYMETRIC DATA SOURCES

The tracks for whlch tnagnetic data were avallabLe are shown ln Ftg. 3.1.

Tracks for south of 70oS, the llacquarie Ridge Complex, the Canpbel-l Plateau

and north of 45oS are not shown as those areas were not part of the nagnetic

anomaLy study. The data used came ln various forms from several sources.

In some cases the reLiability of the data ls related to the source so the

nomenclature used throughout for identlfylng profiles is indlcative of the

source. The nouenclature and sources are as foLLows:

(1) One or two alphabetical- lettersr e.8. H, AA: Data obtaLned on

New Zealand Navy antarctic resupply trips between New Zeal-and and McMurdo

Sound, Antarctlca. Three institutioos were invol-ved in collectlng the

loagpetlc data. Two profiLes, C and F, were obtained in L958159 by the Naval

Research Laboratory from the I'oLdrr wooden hulled HMNZS E44eegcar.
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ALl subsequent profiles were obtained from the "newtt steel-hu1led HMNZS

Endeavour; four by the Geophyslcs DivisLon of DSIR' 19 by the Physlcs

Departurent, VLct,orl-a Unlverslty of Welllngton. Bathymetric data from most

of the tracks is hel-d by the New Zealand 0ceanographic Instltute, DSIR.

(2) ELT plus two dlgitsr €.g. ELT23: Data coLlected by Lanont-fioherty

Geol-ogical Observatory fron the U.S. National Science Fouadation ship USNS

El-tanln.
(3) ODF p1_us one dLgltr e.g. 0DF3: Data obtained by the u.s. Narry on

Operation Deep Freeze crulses.
(4) The letter A plus three digitsr e.g. 4708: U.S. Naval 0ceanographlc

Of fice, Proj ect l"lagnetic aeromagnerlc f llghts
(5) V16: Lamont-Doherty Geological Observatory, cruise 1.6 of R.V. Vena.

(6) CO8: Lamont-Doherty GeoJ"ogicaL Observatory, cruise 8 of R.V. 9onrad.
(7) llN: Scripps InstLtution of Oceanography, Moosoon Expedition,

R.V. Argo.

(8) AR: Scripps InstituElon of oceanography, Arles ExpeilitLon,

R.V. Thomas ttrashington.

There are 52 separatel-y deslgnated tracks but some, e.g. A408, conslst of

two or more sectLons whlch for convenlence are seperately labelled, e.g.

A4O8N and A408S. This gives OZ t"U"tted sections, varylng in length fron

200 kn to more than 2000 kn. The data are not continuous on al-1 the sectlons.

For convenience all- the non-New Zealand data are referred to as USA data

as it aL1 originated from USA sources.

3.3 NAVIGATION

ALI- the uagneric and bathymetrlc data were obtaLned from ships or alr-
craft. The origi.nal data were recorded wlth respect to tlme and with a know-

ledge of the positlon with tlne the original data were reduced to posltional

data, Navigatlon r:ncertainties are a signlflcant factor in the use of the

data.

Navigation calculations for all the shipborne USA data were done at

Lamont-Doherty Geol-ogical Observatory usi-ng the computer system describecl by

TalwanL (1969). NavLgation calculatlons for all the New ZeaLand data were

done by tthandrr but some of lt was also couputer reduced at Lauont-Doherty

GeologicaL Obsewatory by D.A. Christoffel. There are no significant dif-
ferences between the resuLts of the two methods. The basie prlnclples of

the hand and corrputer methods are the sane, and are as follows.
T[e raw navigatlon data are records of all course and speed changest

flxes obtalned, and dead reckoned posltlons (usuatr-ly at 0800, 1200 and

2000 hours); as welL as pitLog rni.leage and estlmated speed every hour.
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With this data che track ls reduced to a series of segments over whlch the

course and/or speed is assumed constant. The segments are clellneated by

navigation polnt,s. The onLy real fixed points are where satel-l-ite or astro-
nornical- flxes, or coastal slghtlngs, ale obtained. Ttre track between fixes
is caLcuLated rniing the J"ogged course and speed changes to give a dead

reckoned track from one flx to the tiroe of the nexL fix. The difference

between the second fix and the dead reckoned posltion ls attributed to a

constant t'currentfr. This t'currenttf is then appl-ied to the navlgation polnts

between the trvo flxes to obtain the adJusted track.
The US Na-,7 satelllte na'rigatlon system (Guiet, 1966) was used on El-tanLn

erulses 20 onwards, and on the Aries cruise. The system provldes flxes at

lntervals of ur;',rally less than three hours and the accuracy of the flxes Ls

nornaLly bette;: than 1 km (Taltranl et aL., 1966). A1l- other cruises used

only ceJ.estiaL navigatl.on for whl-ch fixes are unlikely to be accurate to

better than ! 4 lor, frequentJ-y worse. In some cases no reliable flxes vere

obtalned for sectlons of more than 1000 kn. With course and speed changes

and varyLng werr:her conditLons dead reckonlng ovet long dlstances can be very

lnaccurat,e. Scae dead reckoned posltions were found to be up to 100 kn ln
error when fixes were obtained..

The navlgation data for each aeroilagnetl.c track conslsted of a lLst of

navigation pointo, between wbich the course speed and al-titude was assuned

constant. The fltght alfifudes were mostly between 2.5 km and 3.0 kn.

Navigatlon accrlcacy for the aeromagnet'Lc tracks is probably comparable with
the non-satel-Ltte controlled shlpborne tracks.

The accuracy of the satellite controLLed tracks is probably better than

t 5 km. The other tracks must be considered much less reliabLe but from

tracks rn'hich lntersect or are very close lt appears that errors are mostJ-y

Less than 25 km. Apart from a few cases, which wilL be speclfically refetred
to, none of the tracks has been adJusted on the basis of other tracks. Areas

in thls study r';here the track density is good, and detailed surveys elsewhere

(e.g. Grim and Erickson, L969, Chase et al., 1970; Loncarevic and Parker,

L971) show that smal-l- irregul.arities 1n magnetic anomalies Patterns and

battrymetry are conmon. Adjusting tracks on the basis of the fealures belng

investigated might obscure vaLid detail.
It must be noted that IN SOME AR-EAS NAVIC'ATION UNCERTAINTIES ARE tHE

FTJNDAMENTAL LI}trTATION ON TilE USEFIILNESS OF Tt{E DATA.
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3.4 REDUCTION OF MACNETIC DATA

3.4.1 General

The forn l-n which the magnetic data were finally used was ma1nLy anoualy
profiles, either plotted llnearly against latltude or dlstance, or plotted
on mercator charts perpendlcular to the shlprs track, tlhether processed by

hand or computer severaL steps were requLred to get the data to that forn fron
the origlnal magnetometer records. The orLgLnal records were avallable for
all- the New Zeal-and data, but not for the USA data. The latter were provided
Ln some or al-1 of the fo1-Lowlng forms. (1) Conputer listings of data
(Fig. 3.2), (2) Cornputer plotted l-inear profiles of magnetic anornalles'
(Fig. 3.3). (3) Anonaly profiles computer plotted on mercator proJectlons
(Fig. 3.4). Some of the USA data have been published in reports (listed ln
Appendlx 3A) but the magnetic data as used in this study r^rere more detalled
than shown in the reports.

The flrst step in the process of reducing the data of each track was

the digitiztng or replottlng of the origlnaL record. For the New Zealand

data the sarnpLing interval" was flve minutes or 1ess, always ensurlng that
sampl-ing was sufflcient to rec.ord all the detaLl which could reliably be

read ln the records. In the USA data 6hs samFling intervaL r,ras varlable
but it ls believed that alL signi.ficant detall was retained. After the digi-
tiziag or replottlng the record of fieLd viz. time was comblned with the
navLgation data to produce a record of total field vr'.2. positLon. From this
a record of rnagnetic anonaly vLz. positiorr rras prepared. Before descrLbLng

the l-ast step in more detatl the refiability of the total field readlngs

wl1L be dlscussed.

3.4.2 Accuracv of total fiel-d readingF

AlL the shipborne magneti.c data were obtained with proton precession

magnetometers, whlch give an absoLute measurement of the total field. The

cal-ibratlon of the el-ectronic system should be better than 12nT but as most

data were digitized off chart records the fLnal accuracy ls unl-ikeJ-y to be

better than 110nT. Noise in the system can lead to errors and Ln soo.e

New Zealand data variations of up Lo 150nT occur. The sensing Lead ls towed

behind the ship to rnJ.nfunise the effect of the ship and spinning of the sensor

could give errors of t25nT (Barrett, 1968) but errors as large as that do not

appear to be present. The New Zeal-and systems had preanpllfiers ln the towed

"fLsh" which contalned the sensing coil and lt ls posslble that magnetic parts

of the prearnpllfiers (e.g. relays) could have a sl1ght effect on the field
at the sensor. Thls rnrcuLd not slgnlficantly affect the use of the data for
crustal studies, but rnlght be slgnlficant for studies of the toEal field.
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The aeromagnetic data were obtalned with fLuxgate rnagoetooeters. Ttey

are not absoLuLe instruments but Lhe caLibratlotr should be better than t10nT.

Uncertalntles ln digltizing the ml.crofllm coples of the origLnal analogue

records are probably t20nT.

Ttre f1eld measured at the sensor may contaln a component due to the

permanent and/or induced magnetlzatlon of the shlp or aircraft. For aetu-

magnetic fJ.lghts special precautlons are taken to ruininlze ttre effect of the

alrcraft. For aLL the USA shipborne data the sensor was at least two

shlpsr lengths astern, whlch should make the effect of the shlp negllgible
(SuLl-ard and Mason, 1961). For the New Zealand data preclse lnfornation on

the distance astern is not known for most trips, but it is knonn that for the
ttnewtt Endeavour the distance was frequentLy less than the shlpfs length

(110 n). The effect of the ship is definitely signlficant for dlstances

less than 80 n (See Appendix 38) and lt must be assumed that at l-east some

of the New ZeaLand data may have been affected. Thls is not likely to produce

disturbances r.rith wavel-engths comparable to those of crustal anomalles, but

it coul-d be signlf icant for regtonaL anornalies.

3.4.3 Time variaLions of Lhe fie1d

Repeated neasurements of the fleld at arry p1-ace would show that the

field changes with tlne. Fluctuations with perLods of seconds to a few days

are produeed by effects externaL to the earth. Longer periods of tens to
hundreds of years, termed secuLar varlatlon, are produced by changes wLthln

the earthrs core. SecuLar variation ls not very irnportanL for crustal
studLes but the short perlod fLuctuatlons can be.

Due to the notlon of tt e ship or alrcraft time varlatlons of the fleLd

appear as psetrdo spatial variaEions. For alrcraft, periods less than l0

minutes produce effects comparable to crustal anonalies. For ships, short

periods appear ln the records as high frequency ttnolse'r, but bay-type

dLsturbances (periods of mlnutes to several- hours (Matsushlta, L967)) wouLd

not be distinguishabl-e from crustal anonralies. Dulrnal variatl-ons would

appear as regionaL auomalies wlth wavelengths of 250-500 km, depending on

the shitr speed.

Ionespheric effects are very Latitude dependent, being greatest ln the

auroral zone rvhich lies direetly across much of the reglon (Flg. 3.5). In

the auroral zone area short period field variatlons coul-d be more than 1000nT

under severe lonespherlc storm condlElons. Magnetic recordlng statlons at

Anberley, Macquarie Island, and Scott Base (Fig. 3.5) could pto.tid" records

of nagnetic fieLd variatlons, but lt is ftupractical to use those records to

correct alrcraft or shlp-borne data as there Ls co'nmonly no direct rel"atlon-
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ship berween Lhe anplltudes or phases of field variatLons at polnts eveu
100 kn apart (sato, 1965; Roberts and Knapp, l95g). All that can be done
is to detetmine when severe disturbances were llkely to have occurred.
Since ionespheric storrns are ln general r^lorLdwide the pl-anetary nagnet!.c
index Kp (Llncoln, L967) is a convenient lndlcator of when disturbed
condltlons occur. The index is based on dLsturbances recorded at sel-ected
Btat,lons throughout the worl-d. It is deflned for three hour lntervals and

indicates peak, not average, conditions during the interval_s. rt may not
adequately lndicate conditions in auroraL zones (Lincol-n, 1967) but the
genera1 1eve1 of L1ke1y variations can be obtained from the Local K vaLues
assigned to given anpl-itude ranges at a magnetic observatory. Table 3.1
gives the ranges for observatories in the area.

Table 3.1 Magnetic observatory K indices and local fleld varlarLons.

Station
llaxiruum peak to peak amplitucles (in nT) for K vaLues

K=0 L 2 3 4 5 6 7 B 9

Amberley

Macquarle

Scott

5

15

20

10

30

40

2A

60

BO

40

L20

160

70

2L0

280

120

360

480

200 330

6C0 990

800 1320

500 > 500

1500 >1500

2000 >2L'r, -;

The pubJ-lshed Kp lndexes (e.g. Lincoln L966) for all the periods during
which nagnetlc data had been obLained were checked. PerLods wlth Kp > 5

were not,ed and the rnagnetic daEa examirred for those perlods. Ihere were

four occasions when shipboard personnel- had noted that the records were nolsy,
readi.ngs fluctuating by up to 75 nT wlth periods up to a few minutes. 411
four occasions were either in, or adJacent Lo, three hour intervaLs with
KP > 7. Profile P of Fig. 3.6 shows one of these disturbed Lntenrals.
Durlng parL of the Kp = 7 period fluctuations were severe enough to malce the
record indecipherable. Hovlever as Fig. 3.7 shows ttnolsett was not apparent
throughout aLl of the period of high Kp. Such dlfferences can be expected
because of loca1 varlations and because Kp ls deflned frou peak, aoE average,
conditions.

Where the hlgh frequency nolse is not too severe it can be averaged out
when the records are digltized. However lt ls not possibLe to know whether
Lhe teruporal vari.aLions also had longer periods and so produced pseudo crustal
anomall.es. Some of the short wavel-ength anomalLes in profile P (fig. 3.6)
may be tenporaL varlatlons, but this sectlon of the proflle is over the
Pacific-Antarctic Fracture Zone and short wavel-ength crustal anouualies c<lul-d
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be expected. Proflle N (fig. 3.6) fron sirnlLar water depths, but obtaJ.ned

in qulet lonespheric condj,tions, has "real'r ghort wavelength anonaLLes

sini.lar to the posslbl-y pseudo anoinalies in proflle ?. 0nLy an extremely

accurately navigated repeat track along profile P wouLd resolve the arnbiguJ-ty.

In general- lt ls iupossible to be certain that a record has not been

affected by ionespheric disturbances. The only practical- solution is to

note when dlsturbances (say Kp ) 5) occur and treat the data concerned with

teserve. Temporal variations are unlikely to produce features which would

be correlated beEween tracks so the worst effect l-s a J-oss of correlatlon
when there oay have been some.

3.4.4 Removal- of regionaL fleld

The magnetic flel,d measured at or near the earthrs surface contains

spatial variations in two general- wavelength domalns; less than 200 kn and

greater than 2000 kn (Alldredge and van Voorhis, 1961, Alldredge et aL., 1963).

The long wavelengEhs originate from the earthts core, the shorter wavelengths

from the crust. The crustal variations have amplitudes typically less than

2000 nT, which for the area stud^ied is Less than 52 of the total fleld.
Since it is the short waveleugth variations rshlch are of interest for thLs

study lt is convenient to remove the Larger Long wavelength regional fieLd.

Thls ls done by determining the reglonal field at each data polnt and sub-

tracting it from the measured toLal flel-d, to leave what is referred to as

the magnetic anomaly.

First the regionaL field has to be determlned. A practi.cal nethod ls
to deterudne the fielcl fron the total field data itscl-f. For a sinc'J-e pro-

file a regionaL trend can be estimated either wisuaLly (Rossr 1966) or ntmerl-

call-y (Schtich and Patriat, 1967) on the assumption that the regional wave-

length ls J-ong. If there are several- profiles in an area a local reglonal

fiel-d can be determlnecl elther by siuple averaging (Heirtzler et al. , L966>

or by ftttlng a polynornl-al- ln latitude and longltude (Krause, 1966). An

alternative nethod for detenninlng the regional fleld is to use a fleld

whlch is based on independeat daEa. Analysis of global data has enabled

the eartht s fiel-d to be expressecl in terms of spherical harmonlc coefficients

up to degree and order 1.1. Given the coefflclents lt is posslble Eo calcu-

late the fieLd at any glven point for a particular time. Several different

sets of coefflcients have been published. Some (e.g.Hurwltz et aL.' 1966)

are defined for only one time, but orhers (e.g. Cain et a1., 1967; IAGA,

1969) take lnto account secuLar variation and so are appll"cabl-e over a period

of time.

For alL the computer reduced clata regi.onal field values were calculated

from sphericaL hannonic coefficients. The coefflcients used for most of
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the data were those for the Internatlonal Sgsmagnetic Reference Fleld (IGRF)

(IAGA, 1969), but for a few tracks and for al-l the data in the Lamont-

Doherty data reports the coefficlents used were those for the field GSFC

L2166 (Caln et al., 1967). the Latter yieLded magoetlc anonaLy proflles with
mean vaLues of -200 nT to -400 nT. The IGRF field gave mean values varying

frou approxlmateLy. -100 nT to +100 nT. More deEalled conpatisons befireen

observed and calcuLated fields are discussed 1ater. It ls sufficlent to say

here that the anomaLy proflles produeed wlth the spherical ha:montc fields
are adequate for the analysLs of crustal enomal,ies.

For the hand reduced Nevr Zealand data regional- field values were

deterurlned from the data itself. Ihe method used was as foLlows. After
navigatlon cal-culations for a Lrack had been done the total fiel-d data were

plotted ln proflle form, usually. wlth respect to l-atitude as most tracks

were approxluately north-south. Then a smooth regionaL fleld was sketched

on the profl1e, based on the assumption that the mean anomaly l-evel is zero.

Slgnificant course changes had to be noted as they can change the gradient

of the regional field. The magnetlc anomaly proflle is then obtalned by sub-

tracting the regional fiei-d value from the total fiel-d at each point. Wheo

data were available from severaL tracks a better estlmate of the regional
field was obtained by ploLting regl-onal values estimated from each track and

,contourLng the values. Fig. 3.8 shows an exauple of the regional fteld
determined this way. Because of the effects of secul-ar variation tracks

from only one sunmer se:.ion (Dec-Feb) were used at any one tlme. The regionaL

field obtained from the ,mp was then applled to the total fleLd profiles to
get anoualy profiles. In this way 1ocal effects artd errors ln a single
profile were mlnlnri ssd.

The rrhandtr meLhod ylelcls anonaly profiles which are qulte adequate for
this study, but Ehe methods based on numerically calculated reglonaL ftelds
are preferable. The Latter are better suiLed to conputer data reduction

methods, but ruore luportantly (Bu11ard , L967) they are objectlve and lt Ls

always posslbl-e to know exactly how particular data have been treated.

The prlmary use of the regional fleld data is the productlon of anornaLy

proflles frou the origiaal total field daEa. However the seperation of the

local- (crustal) anomalles from the total fiel-d also provl.des informatlon on

the regJ.onal field. Ross (1966) presented two applications. (1) The use

of regional field maps of cllfferent epochs to study changes in the regionaL

fieLd. (2) The rnapping of regional anomalles wlth wavel-engths of more than

100 kn. Both toplcs are of interest buL they are not centraL to this study

of the structure of the crust. They are discussed further in appendices;

regLonal- anomalies ln Appendix 3C, and changes in the reglonal field ln
Appendix 3D.
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3.5 BATIIYMETRIC DATA

The bathynetric data used were malnly echosoundlng proftles; charts

were used to a lesser extent. The profiles were obtained on tracks shown

ln Fig. 3,1 but bathynetric data were not avall-able for alL the tracks.
Since the bathyuetrlc profil-es were obtained slmultaneously with the nagne:l-c

data there are no navi-gatLon uncertainties when relating nagnetlcs and

bathymetry.

For New Zealand profl.les the origlnal records were avaii"able. Ttrey

were obtalned wlth an Edo sounder and detalls less than 100-200 n are not

well resol-ved in water deeper than 800 m. Horizontal resolution is not better
thao 2 km. Most of the USA profiles were obtained with preclslon depth

recorders. Resolutlon would be better than 5 n ln flat areas but less ln
rough areas due to side echoes. llowever most of the USA data were avallable
onJ-y fron the pubJ.lshed reports (See Appendlx 3A) in which the resolutlon le
not better than 100 ur vertically and 5 kn horizontall.y. Profiles fron parts

of tracks ELT 27, 32 and 33,0DF5, and Aries were avall-able in a sl-ightl-y

more detailed form. The proflles were not eorrected for variatlons of the

veLocity of sound ln water. The corrections would be of the order of
+ 150 n in 5000 m of water.

Bathynetrj.c charts which vrere consulted are listed la AppendLx 38.

Being compiled from ntrmerous tracks they suffer the navlgatj.on liuitatlons
discussed in section 3.3. Even the most recent ctrarts coutaln only a salall
nunber of sateLLite controLled tracks. The Macquari'.: Rldge ls the only area

for r,rhlch the charts are adequate, and even there the data coverage ls
lnsufficient to resolve several ioporcant problems. New data have shown that
parts of some existing charts are incorreet. Contours shown in varlous dla-
grams are based on the l-atest charts of the relevant areas, adjusted where

necessary from the avall-able prof 1J-es,

3.6 SEISI{ICITY DATA

3.6.1 Introductlon

The seisnicity data used Ln this study are the times, epicentre co-

ordlnates, depths, and nagnitudes of earthquakes detected 1n the area.

The ablltty to detect an ea-r-thquake and the aecuracy with whlch it can be

located depends on the nucrber, dlstribution and quality of ehe seLsrnograph

stations observlng the earthqualce. Pri.or to the installation of many statLong

ln Anrarcrica during and after the IGT (1957) reLiable detection ln the south-

west Pacl-fLc was probably l-imlted to earthquakes of rnagnltude greater than 6.0.

The l-nstallatlon of the !ilorl-d Wide Standard Network, begun ln 1'961t
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(Ollver and Mu'rphy, 1971) led to further lmprovement in detectiou level.

It ls probable Ehat now most earthquakes of roagnltude greater than 4.5 and

certainl-y a1-J- ggeater than 5.5 are detected (Everenden, L969) ' The

accuracy of location has also lmproved, especial-J-y in the Last decade.

Data for prior to 1963 (Gutenberg and Richter, 1954; Sykes, 1963;

Tol-stikov , L966) do indicate the seisrnlcal-ly active areas of the reglon but

the epLcmtre$ are probably subject to large errors. Only rnore recent data

are used for this study as it is necessary to be abl-e to closely reLate epL-

centres to morphologic features.

3.6.2 DaEa sources

The uain rlata source was rnonthly f-istlngs of earthquakes located by the

U.S. Coast and Geodetic Survey (USCGS). Ftom these a flle was compiled of

all- the earthqnakes south of 460S, between 1300[ and 110o!il. The epicentres

are shown ln FLg. 3.9. The file nor.r contains data on al-l the earthquakes

from January I.964 through December 1972, a tot,al of 297 earthquakes.

Ilowever most of the work done using seisnr:iclty data used data up to onJ-y

ldareh L972, a Lotal ot. 278 earthquakes, The epicentre coordlnates (Latltudet

J.ongltude) are given to the nearest 0. I of a degree, although this ls not

indicative of i:he accuracy. Depths are given to the nearest kilometerr btr.

for most earthrluakes the depths were constrained to 33 kn. Magnitudest

which are given to the nearest 0,1, are body wave megnitudes. They are not

reported for a.l-l eatthquakes.

A second clata source was Sykes (1970a). He relocated all the better
observed earLhrluakes ln the Indian Ocean area west of 1800, for the period

1950 to L966. Fron hLs data, l-isted in the nricrofiche version of his paper,

a file was cornpi.Led. It contalns all- the earthqualces llsted for south of

30oS betrseen 70oE and 1800, excepL in New ZeaLand. where the data are lln.ited

to south of 40oS. The epicerlttes are shown iu Flg. 3.10. The data are

similar to thaE of the USCGS file except that l-atitudes and longitudes are

glven to the nearest 0.01 of a degree. That accuracy is not i'mplied.

There are 300 earthquakes in the Sykes fiLe, 66 of which are also ln the

USCGS flle.
Data are also avaiLable from the bulletlns of the Internatlonal

Seismologl-cal Centre aL Edinburgh (LSC). The bulLetins provlde more

inforrnatlon about each earthquake than either the USCGS or Sykes (1970a)

and coverage is at present fron 1964 to 1971. Unfortunatel-y most of these

data dl-d not become avall-able unt1l after the work descrlbed here was

completed. The ISC data have not been usedr but they should provlde a

valuabLe source for future work.
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3.6.3 ReliabiLitv of data

It ls diffl,cult to assess the accuracy of the epLcentres because the
true position is not knoum for any of the earthquakes. Everendenrs (1969)

theoretlcal analysis of the capabilities of the Worl-d l,Iide Standard Network

indicated that errors of 30 knn are likely in the I'kcquarie Ridge area, wLth

even Larger errors elsewhere 1n the reglon. Ile considered a minLmum coo-
figuration of only four statlons, whereas the nlnimum nunber of statlons for
any earthquake in the USCGS flLe is six, and onLy L3% of the earthquakes

were observed by less than L0 stations.
Sykes (1970a) relocated onl.y rhe better observgd earthquakes, and for

most earthquakes he used more data than the USCGS. He noted that hls Locations

show less scatter than the USCGS l-ocations for 1961 to 1967 given by Barazangi

and Dorrnan (1969). Sykes consj.dered 66 of the 73 earthquakes which are ln
the USCGS file for the overl"apping period. Dtfferences between the posLtl-ons

given by Sykes and the USCGS for the same earEhquake show no strong blas
(Fig. 3.11). Only seven differences ar:e greater than 30 kn and the standard

devlatlon is 2/r kn. Brealcdown of the results i-nto the three plate boundaries

lnvolved lndicates no blas on a particular boundary. The seven USCGS eatth-
quakes which wer€ flot considered by Sykes rrere observed by Less than 10

stations and nny be l"ess accurately deterniaed than the others.
Everndenrs results and the Sykes:USCGS comparlson suggest that most c,

the eplcentres used in this study are accurate to wlthln 30 km, buE errors of

50 krn couLd be present. Thls estimate of accuracy relates Lo the precisLon

of the congutaLions lnvo1ved. In addition there nay be systeuratic errors
due to veloclty inhomogeneities in the earth. Errors ln locatlon of uP to

55 km attrlbutable to inhornogeneities have been reported for e:qploslon

locatlonsl 1.€. accurately known eplcentres (Davies and McKenzie, 1969).

Systenatic errors couLd be partlcuLarly slgniflcant ln the l'lacquarie Complex,

where veJ-ocity Lnhomogenelties night be expected and varlous elements of

strugture t'swap sidestt.

The reported ilepths of aLl the earthquakes in the USCGS flle are

shalLower than 44 km. Earthquakes clown to 140 km are observed between 44oS

aod 4605 ln Flordland (llanuilton and Evison 1967t Smith' f971) but these do

not extend offshore. However the dlstribution of stations is not favourabLe

for deterninlng depths and Adams (pers comm 1972) says that for the northern

Macquarie Compl"ex some earthquakes llsted as crustaL could have been deeper.
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3.6.4 Tftne var'-abllitv

The earthquakes are not uniformJ-y distributed in tlre; most of them

occur l-n clusters. Each cluster consLsts of severaL earthquakes near one

p1ace, all oecurrlng wlthln hours or days. Spatially all- the earthquakes

wlthln a cLuster could be at one place as posltlons vary by J-ess than 40 km.

However the spatial scatter could be reaL as most of the stress would not be

released at one polnt.
The maJority of clusters consist of only trto or three earthquakes wLth

a range 1n nagrtitude of less than 0.3. They are therefore oot typlcal-

foreshock or aftershock sequeoces associated with one maln earthquake

(Mogi, 1963b; Sykes, 1970b). On the northern Macquarle CoupJ-ex there are

three Larger clusters of,five, seven and ten earthquakes respectlvely.
Ttrese clusters are probabLy aftershock sequencea as each began with ao earth-
quake of rnagnitude greater than 6.0.

In addition to the ttrne clustering there are longer length tine trends.

lhe most notabLe ls on the 500 km of the l"lacquarie complex south of 57oS.

there vras no activity for three years then in the foll-owlng three years

there were nlne separate treventstt for a totaL of 15 earthquakes. Another

exaupLe is the short, well-clefined fracture zone at 55oS, l44og for whLch

aL1 the actLvity Ls from only two years.

It ls clear that the addition or omlssion of a few years data can con-

siderably alter the apparent pattern of seisnicity. CurrenEJ-y the spreading

rldges are asej.smic and most of the activlty is on fracture zones. tlowever

there are also weLL defined fracture zones wtrlch are aseisrdc. The guiding

prlnciple mtrst be that selsnlc actl.viLy reflects tectonic activlty i.'ut

aseisnuicity does not necessarLly lndicate lack of tectonic activlty'

3.7 MAP PROJECTIONd

Several different map projectl-ons have been used as each one has proper-

tles most suLtabLe for particular purposes. None is without some dlstortion -
an unavoidable consequence of the spherical nature of the earth. Measure-

ments involving dlstances and dlrections have taken into accor:nt the

particular projection used or were calcul-ated accuraLely assuning a spherlcaL

earth.
ALl- the navlgation cal-culatlons were done on mercator proJectlons. The

rnagnetic anorr,aly trends were also compiled and are presented on mercator

projectlons. TVo factors lnfluenced this choice of projectlon for the

ungnetic data. One, the reLationships bebween tracks are most important and

as much of the data were hand plotted tracks rlere most easily pJ-otted on
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mercator projec.tlons. Tno, the data reduced at Lanont-Doherty Geologlcal-

Observatory had anoural-y profiles drawn along tracks plotted on mereator

projections. As additional advantage of using the mercator projection Ls

that the maln nngnel-ic anorualy chart which wiLl be presented here ls the
same projection and scaLe as the anonaly charts of adJolnl-ng areas preseflted

by llerron (1971) and Weissel and Hayes (L972).

The mercaLor proJection does produce large area dlstortlons, especially
ln polar regions. For snall areas lt is adequate but for large areas -azt-

muthal projectlons are better. Several of these have been used, alL as polar
proJections - (L) The equidlstant proJectlon: convenient for hand plotting
data. (2) Ttre equal area: has obvious advantag,cs for comparLng tt!€ae.
(3) The stereographLc: has the very usefuJ- property that a circle on the

earth projects as a circle on the nap, although the geonerrical- centre of a

cLrcl-e on the nnp is not necessarlly the geographical centre of the eLrcle.
Ordlnary rectangular grlds are used in a few situatlons.

Most, forrns of profiLe presentation involve some distortion as tracks

have to be projecte<l on to a llne. Anomaly profiles shorsn in sorne diagrans

are from mercato? projections and so do not have a fixed llnear scale. Al-1

dlstances, spreading rates, etc. quoted have been accurately measured off
charts or calcul-ated aseumlng a spherical earth.

3.8 COMPUTER PY.OGRAI"IS

Much of the r,rork has involved use of computers. Where possLble

avall-abl-e progr.cms were used but several programs had to be devel-oped for
speelfic proble'-rs; in particular for the numeti.cal correl-ation studies of

'Chapter 5, the epicenEral nethod of Chapter 8, and general nap plotting.
Brief detaiLs of the programs are given in Appendix 3F. The program

f-istlngs are not given as the programs were deveLoped speclflcally for
this project and are not very gcneral-. They were also wrltten speclfieally
for the Elliott 503 computer of the Applied Ma-thenatics Dlvision' DSIR.

The programing l-angunge is a modifjcd form of ALGOL 60. Some of the

programs whl-ch uay be of interest are belng uodified to make them

suitabl-e for nore general use.

Postscript to section 3.7 : Map Projections

It 'aas been Ciscovered that the Xerox nachlne that some of the dlagrans

were copied on produced non-linear dlstortlon. Thts is an unfortunate

addition to the distortion already produced by representlng the earths

surface on a flat surface.
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CHAPTER

TAE STRUCTURE OF TIIE SOIIIHIIIEST PACIEIC AREA

This chapter presents the avallabl-e data and describes the structure of
the southwest Pacl-fic area. A statement of the approach taken (4.1) Ls

folLowed by an lntroductlon (4.2). Then speciflc areas are descrl.bed:

the southsrest Pacific basin (4.3), Pacific-AntarctLc ridge system (4.4),
the transition area between the previous two (4.5), triple Junctlon area
(4.6), and the area south of the Paclflc-Antarctic rLdge system (4.7).

4.L STATEMENT OF PRI}ICIPLES

In thls chapter geophysical data are presented, and used to descrlbe

the structure of the southwest Paciflc area. The emphasLs ls on a descriptLon

of the structure not on interpretation of that structure in terms of tectonLc
models. PoLes of rotation are not discussed, spreadl.ng rates are noc calcu-
lated, detalled magnetic anonaly model studies are not given, and fracture
zones are noL coryared with arcs about- rotation pol-es. Such toplcs w111 be

discussed, but onl-y in later chapters.
The separate presentation of Luterpretatlon and description of the struc-

ture reflects the approach that was adopted during the data anal-ysis. Wtren-

ever possible data nere exam'fned, integrated with other data, and Che

structure of an area napped from the data. Then an :xplanatLon of the
structure was sought, or the structure was compared with what was expected

from a hypothesls. A conscious efforc was made to.avoid examlning the data
with an rre:rpected st,ructurett ln mlnd.

The rnaLn results of thls chapter are presented in Flg. 4.1, and most of
the chapter will be a deLatl-ed explanation of that dlagram. The diagram Ls

ahnost entirely based on magnetic data, but bathynetry and selsnicLty have

played an important subsldiary role. A fu1l understanding of the area cer-
talnly requlres data other thaD magnetic data, and Ln the deLaiLed dLscus-
sions tn subseguent secLions alL the avallable geophysical data are considered.

The lLneatioas shown in Fig. 4.1 have been rnapped by vLsually tdentifyl-ng
features cormon to two or more nagnetic anornaly proflles. The l-ineatlona are

numbered accordlng to a system establl-sherl by PiLman et al. (1968) and

extended in thLs study. The nurnerieal values of the nunbers are noE

significant, as the numbers are on1-y labels used to deslgnate partlcular
characteristic anomalies. The use of t,he nuurberLng system l-s hos:ever slgnt-
ficant, as lt lrylles that the anomal-1'pattern ln the southwest Pacific ls
part of a sequence of a.nonal-Les that has been obsecved in nany areas of the
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world. Aeceptaoce of the origin of the anornal-ies as belng due to seafloor
spreadlng inplies age siniLarLtj-es wlth other areas. According to current
estimates the seafloor wlll- range 1n age fron 82 my at auomaly 37 to zeto at
anornaly 1. Recagnition that the southwest Paciflc area ls part of a global
pattern, and kircwledge of the age of the seafloor in the area, are not
strlctly necessary for this chapter. The structure of the area could be

described Ln lsolatlon but there is no poLnt in not usLng uomencl-ature Ehat

is widely used, where l-t is appropriate.
There are substantiaL areas in Flg. 4.1 where no anom'ly identifLcations

are shown. In some areas there are no data, but ln others there are data aod

there are anonaLles. Ttre lack of ldentlflcatlons in the latter areas indl-
cates that no lineatlons or distinctive anomal-ies have been identified there;
Lt does not mereLy mean that there are none wlthln the sequence 1-37. The

standards used for accepting either identiflcation of a dl-stincttve anomaly
in a single track or correLatlons between tracks are conservatlve. The

structure of all the area is not slryle, the available data tracks are not
very numerous' and for nany of then navlgation uncertainties are sl.gnLficant.
T'here ls little point Ln assuming that every anonaly J.s produced by seafloor
spreading or thaE data from one track must correlate wlth other data nearby.
Mapping features ln an area is inrportant but lt. has been considered Just as
important to not EaP a feature which has not been adequately identlfled.
Areas which are too couplex to interprer sLrnply, need to be recognized as
such, as their ccnplerity {s infornation that may be as useful as that of
the easLl-y understood areas

4.2 IMRODUCTIOTI

Flg. 4.2 shows five bathynetric and nagnetic profiles that are represen-
tative of the area. They are also representative of the data available, whlch
are not contlnuous on alL the tracks ln the area (Fig. 3.1). The profLles
illustrate several features, the identiflcatlon of whlch slrupllfles the des-
crlptlon of the area.

The ELT25 bathyuetrlc profl1-e shows a relat{veI-y smooth s1nnmetrLcal-

rldge, which mer:ges into a basin to the north. The norther:n end of the track
goes up the Bounty trough which accounts for the gradual conEinental sLope.

The magnetic profiLe shows a section of hlgh anplltude short wavelength
anornalles symetrLcal about the ridge a:ris. Longer wavelength anonalLes ate
clearLy seen in the basln but the anomalles on the rldge flank are ln general
of l-ow ,:mpJ-itude.

The ODF5 megnetlc profile ls slmLlar to ELT25 ln that symmetry ls seen

about an axls. The sequence of anorual-ies from ?5 to 32 Ls also elearly seen,
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but aLthough the sequence ls of slnilar length to that tn ELT25 lt is closer
to the rldge axls.

The magnetJ-c profile H shows the anomaly group 25-32 wlth sim1Lar

length to the previous proflles. No symetry centre is obvlous in either the

bathynetrlc or nagnetJ.c profiLe. The topographlc a>ds is rel-atively rough

and the flat basln south of it is consplcuousLy shallower than the basLn to
the north.

ProfLle B stllL shows anomelies 25-32 but they ate closer to I'the

ridgett. The section of disturbed bathymetry is broader than to tha east.
The ELT27b nagnetlc profile cJ-early shows symmetry, and the anonaly

sequence agrees closely with that of current spreadlng rldges. The bathy-
netty ls aLso symetrical and is subdued..

Ttre representative profiles ll-l-ustrate: the uniformity and persistence
of a sequence of anonalLes ln the southwest, Pacifl.c basin; the progresslve

decrease from east to west of the distance of thls sequence from the topo-
graphlc axis of the Pacific-Antarctic ridge system; the regular topography

and synrnetricatr" anomaly patterns over the activel-y spreading Paciflc-
Antarctlc ridge; the rough topography and lack of synnetry of the Paclfl-c-
Antarctlc fraeture zone; and. onLy a short distance westward a smooth

symmetrical seetion of actlvel-y spreadlng Indian-Antarctlc ridge
These general observations lndicate that it is appropriate to consider

the whole area i.n flve sectLons: (f) the southwest Paciflc basl.n,
(2) the PacLfl-c-Antarctic ridge system, (3) the are: inbetween those two,
(4) south of the ridge system, (5) the Indian-Anr,arcELc rldge area.
These five areas are discussed separrteLy iu the foJ-l-owlng sections.

4.3 SoUI]IWEST PACIFIC BASIN

4.3.1 General-

Magnetlc anomal-ies iu the southwest Pacific basin are partlcularLy cLear

and it has been posslble to nap ungnetlc llneations in detall. The results

axe contained in Fig. 4.1 but Fig, 4.3 shows thero in greater detall. Before

further dLscusslng the results the nomenclature used for the anomalles needs

to be e:qpLained.

It has beeome customary to assign numbe.rs, or other label-s, to anomalies

whlch are distLnctJ.ve and have been ldentified at several- pJ-aces. Probably

the best known anomaly sequence is that numbered t to 32 by Pltnan et aL.

(1968) (Fig. 4.4A). Ir is observed ln m.ny areas of the world and the

geomagnetlc reversal tiure scale for the Last 75 rnybp ls based on lt (Flg. 4-48).

A collection of representatLve proflles fron the southwest Pacific basln
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(ffg. 4.5) show that che oldest part of the sequence is represented io the
basln. Fig. 4.5 also shows distinctive anornalies beyond nurober 32, TheLr

regular occurrence over a wide area Justifies labell-lng them, whlch has

been done as follows.
ChristoffeL and Falconer (1972) assl.gned the nrlnbers 34 and 36 to the

broad posltLve anonal-y beyond 32. The asslgnuent Ls unusual- in that the
numbers refer to the ends of the same anornaly, oot to two separate anomalles.
Nuurber 35 was used Ln the earJ-y conpilaEion stages but Lt is noE now used as

the peak to whLeh it, was assigned subsequently appeared Eo be only a Local
feature. Nuuber 33 ls here used for the snall but distLnctive positive
anomaly ln the negatlve beyond 32. IL ls not m'pped as a separate Lineatlon
but lt Ls very iroportant as it contributes to the distinctlveness of
anomal-ies 32 and 34. Anonaly 32 ts also -ode distinctlve by the peak prLor
to lt' whlch has been labelled 32A. A positlve anornaly beyond 36 has been

nr.rmbered 37, but it ls nore variabl-e in appearErnce than the other nnmbered,

anonalles, and uay be produced by basenaent structure rather than reversalg.
There is unfortunately sone duplicaLion io the nunbering of the

anomalies beyond 32, because McKenzie and Scl-ater (f971) used nuuber 33 for
the feature that Christoffel.and FaLconer (L972) Lndependantly nturbered

34-36. Mascle and PhlLLips (L972) have follor,red McKenzie and Sclater, but
Hayes and Ringis (f973) lrave followed ChrLstoffel- and Falconer; so the
confusion ls already estabJ-ished Ln the llterature.

The exlstence of the magnetlc lineatsLons in the southwest, Paclflc basln
has been known for some tLme from the work of christoffel (1961 arb),
Adans and ChrLstoffel (1962), Christoffel and Ross (f965, 1970), Ross (1956),
and Pitrnan et a1. (196s); ;ut the results shown in Flg. 4.3 are more

detalled than prevlously shown. A11 the data of the previous workers are
included ln Fig. 4.3, along with almost twice as much new data. New data
have led to mlnor revislons of some of the earl.ier work, incJ-uding the pre-
llurlnary version of Flg. 4.3 presented by Christoffel and Falconer (L972r.
The general pattern of lineations and offsets is not unexpected and ls
sLml-l-ar to many such patterns in the world. It l-s therefore of most inEerest
to discuss some of the unusual features of the area. Before doing this some

general polnts shoul-d be noted.
In Fig. 4.3 indlvidual anomaly llneatl-ons are uapped but the identLfl-

catlon of an iadividual- anonaly is usually dependant on its reJ-atlonshlp
to adJacent anoroalies in the sequence. For exanple anomaly 30 "reguires"
anonalles on both sides of ft, whereas anoutly 31 |trequiresrr no anomal"y on

one side of Lt. Figs 4.6 and 4.7 show most of the proflles on which
Flg. 4.3 ls based. Whilst some lndividual anornaly ldentlfLcations rnay not be
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strong the overall pattern ls convincLng, especially when worklng with
anonaly proflles plotted along the tracks and wlth tracl.ng paper avaLlable.
Mlnor klnks ln the napped anonaly llneations may be real or they nay be due

to navigatlon uncertaintles - none of the tracks has been adjusted. The

fracture zones are determlned only from the offsets of the Dagnetlc
anomalies' not from bath1rmetry. They have been drawn straLght, but in most

cases they are not tightly deternl-ned. They nay be wlder than the lines
1npLy. For eonvenlence the fracture zones have been named, and Fig. 4.8
shows a sfinpllfied version of Fig. 4.3 with the fracture zones l-abeLLed.

Details of the structure of the southwest Pacific basin are dlscussed
below. In general the discussion proceeds fron east to west in Fig. 4.3.

4.3.2 The Louisvl-lle rldge

Ttre Louisvllle ridge strLkes through Ehe northeast corner of the area

studLed (Fig. 4.3). The squares indlcate posltions of the ridge llsted
by llayes and Ewing (1971), and observed on ELT17 and ELT28. Two east-nest
proflles across the rldge near 161oW are shown 1n Flg. 4.9. Proftle ELT28

ls only 45 krn north of ELT17 so the difference ln the ridge Ls very narked

over only a short distance. Depths for oEher crossLngs ln the area are

equal-ly variable.
The ELT28 seisnlc reflectlon proflle (Ffg. 4.10) across the rLdge ls

l-nteresting because it shows flat rrbasementt' near tlie rldge. Flat basement,

more probabLy a flat reflector above basement (section L.2.5), ls rare ln
the south Paclflc (Houtz, pers comn 1973). The proxLnity of the flat Layer

to the LouisvLlle ridge suggests a causal rel.ationshLp. If lt ls ash at
leasE sotre part of the rldge nust have been subaeriaL to produce the ash.

If lt is smooth basalt flows, volcanlc actLvLty associated wlth the ridge
is stlll lnplied. The very variable depth of the rldge suggests a serleg

of volcanic seaoounts, rather than a tectonical-ly controJ-Led rtdge such as

the Macquarie ridge.
I(agnetlc anornalles are cl-ear west of the rldge; see for e:<auple

anomalies 32A-36 on proflLe A409 (fig. 4.6). Bast of the rLdge there are

anornalies, but they are not slnllar to Ehose to Lhe alest; and even wlth
Ilerronrs (1971) data east of 150oW no llneations are apparent.

4.3.3 TaLroa fracture zone

The existence of the Talroa fracture zone (Flg. 4.8) was

by Pitnan et al. (1968) from only proflle ELT23 (flg. 4.11).

data have more cl-early established tt; see for exauple the

flrst noted

Additlonal
duplLcatlon
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of anomalies Ln c08, ELT23 and A408N (Fig. 4.6) shown by spllttlng the
proflles. The offset across the fracture ls dextral; approxlnately 340 kn
for anomalles 25-31, but l-ess for older anomalies because of a I'mlsslng

sectlonn beEween anonaLles 31 and 32 wesL of the fracture. There Ls some

bathynetric rellef ln this rnlsslng sect,ion on profJ.le ELT23 (Ftg. 4.ll).
The Talroa fracture zone as mapped in Fig. 4.3 is not perpendicular to
the anoualy li-neatlons.

The ELT23 proflle across the fracture (Fig. 4.11) shows an unusual
blockllke bath5rnetric feature. The bLock ts 22Q kn wlde and up to 1200 n
higher than the surrounding flat fl-oor. BathynetrLc rell-ef greater than
a few hundred metres is rare throughout the southwest Paclflc basin.
Presuoably the block ls related to the fracture zone but Lt ls nostly on

one slde of it. rt ls interesting to note that the western set of
anomnlies 27-29 are dlrectly ovet the bl-ock but are not ln any way

lrregular.

4.3.4 Ranginra-Toarahi area

Between the TaLroa fracture zone and the Ranglrua fracture zone

(Fig. 4.8) anomlles 25-29 are qulte unlform, but there Ls a disturbance
of anomaltes 30 and 31. ProflLes ELT25, ODF6, A408S and V16 (Fig, 4.6,
sholr a progressive broadening of anomaly 30, untLl on V16 there ls effec-
tively a whol.e extra anomaly. 0n ELT25 the sectl.on fron anonaly 29 to 31

conesponds to a broad 300 n hlgh bathyuretrLc hump.

The irregularitl.es of anonalles 30 and 31 do not appear to be reLated
to the unusual configuratlon of anomalies 32A and 32 Just east of the
Bollons seamount (Flg. 4.I2). DuplJ-catlon of anomalies 32A and 32 is very
clear on V16 (Flg. 4.6) and Less clear but pl-auslble on A408S. The Toarahi
fracture zone is based on this Cupllcatlon, and numerLcal studLes to be

discussed later support the lnterpretatlon. The existence of the Toarahi
fracture zone appears definite but lts strl-ke ls very uncertaln as the

navigatlon control on V16 and 44085 is not good. A sltght shift of either
Lrack would a1Eer the fracture zone directlon consLderably. The ofiset is
dextral and about 80 kn.

The Rangirua fracture zone Ls a rnore substantial feature, evldent as a
slnistral offset of the whole anomaly sequence (Fig. 4,3). The offset Ls

about 100 kn ln the south, but 150 ox 220 km ln the north, dependLng on

whether the offset is measured to the east or west side of the Toarahi

fracture zone. The J.nterpretation at the southern end is not coupleteLy

clear and the navigation controL on ODFB and DD is extremely poor. There ls
nothlng notlceabLe ln the bathymetry on the two DD crossl"ngs oi thu fracture
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zone. At the northeru end no

A408S and the bathymetric and

sheLf edge,

anomalies beyond 32 are evldent ln V16 or
magnetic proflles are featurelegs to the

4. 3.5 Boll-ons seauount

The BoLlons seamount Ls lnterestlng for severaL reaeons. Flrstly
because it doesnrt appear to be where lt is shown on most Daps. fig. 4.13

shows one chart of the area, and baEhynetric proflles in the area are

shown ln Flg. 4.L4. It ls clear that the seamount is not between X and Xr

on Vl6 where the chart puts Lt. A locatLon about 110 kn to the southeast,
between A and Z, seems more probable; and profiLes T and I{ lndicate that lt
ls not a single peak feature. 0n nelther T or W are there any short wave-

length magnetic anomaLl.es assoclated wtth the peaks, which suggests but

obviously does not prove, that Bollons seamount could be contlnental ln
stxucture.

The very flat seafloor at the fooL of the contlnentaL sLope on V16,

1,I, and T (Ffg. 4,f4) probabJ.y reflects turbldLte deposlts. The channels

at the foot of the slope on W and T suggest that Ehe strong western boundary

current nay sweep between the'pJ-ateau and Bollons seauount.

4. 3. 6 The Wairnorl- Matua and Paheno fracture zones

From the Ranglrua fracture zone to about 178of the anonaly llneatlons
are ln general very unlforu. The only rninor feature is uncertainty of
anomal-J-es 25 and 26 at the western end; see for exaurple profiles L, ODF5

and A706 (Ftgs 4.6, 4.7). Thls uncertaln area ls assocLated with mlnor

bathynetrlc roughness.

Between l78or and l75oE Chrlstoffel and Ross (f970) mapped a fracture
zone wl.th sinlstral offset tending to zero at 6005. The addltion of more

data indlcates Lhat the area ls moxe complex and three fracEure zones are

presenL: the l{aturorl, the Matua, and the Pahemo (Flg. 4.8).
The I'latua and Pahemo fracture zones are each orthogonal to the linea-

tions, have a slnistral offset of about 50 kn, and are not consplcuous in
bathynetrlc proflles that cross them. the ELT32b selsmic reflectlon Pro-
fl1e (Fig. 2.L4, profile I) crosses the Matua fracture zone beu.*een 0 and

45 krn, and shows that basement expresslon of the fracture zone is sLight.
North of the l"ine of the Matua fracture zone (Fig' /r'3) magnetic anomaLies

are random, see for example proflles S, F and K (Fig, 4.7), and no

ll.neations have been Ldentlfied.
The Wairnorl- fracture zone ls identLfied fron the offset of anonalles

32A-34, see for example profiles ODF5, ELT27 and H (Figs 4.61 4.7r.
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The offset Ls dextral, about 80 krn. The fraeture zone ls a very 1oca1 fea-
ture as only anomaltes 32A-34 are offset, but the dLstance frorn anonaLy 34

to 36 JusU east of the fracture ls aEyplcal and couLd be related to the

fracture. The LnterpretatLon ln Flg. 4.3 shows track ELT32b Just west of
the fracture, not crossing it, but there is a disturbance ln the basement

Just south of anomaLy 32 on this track - see Flg. 2.L4, profile I, 350 to
400 kn. This suggests that the trend of the Waimorl fracture zone may be

more northeast than shown ln FLg. 4.3, Even wlth the trend shown lt ls
not parall-eL to the other fracture zones and is not orthogonal to the

l-Lneatlons.

4,3,7 West of 175of

I,Iest of about 175oe the anomaly pattern Ls cl-ear (Ftg. 4.3), and a

complete sequence of anornaltes 25 co 36 ls seen either side of the Kohlku

fracture zone (fig. 4.8). The offset across the fracture zone decreases

from about B0 kn at anomaly 25 to aboug 45 kn at anomaLy 34. Bathymetry

on profiles C and P ls not irregular where they cross the inferred posltlon
of the fracture and unfortunately there are no bathyrnetry data for proflle V"

The selsmlc reflectl-on profll-a A tn Fig. 2.3 ls from track ELT32a, and the

pronounced basement step at 115 kn ls at 5605, Just east of the fracture zone

l"ine drawn in Flg. 4.3. The northern part of the fracture probably trends

more northerl-y than shown, and it could be a broad feature.
The cl-ear anomal.y patEerns of the southrvest Paciflc basin do not extend

west of about t66on. Anornalles 30 and 3l are tentatively ldentified at
165oE on ODFS and lI (Fig. 4.7) but the oLher anomalies are not seen.

Christoffei- and R.F. Falconer (1973) have independently examined the nag-

netl-c data west of 16508 and they also found no lineations, although there

are anonalies. Flg. 4.15 shows thaL Lhe termlnation of the anomaly 1lnea-

tions probably coLncides wlth the termination of the fl-at part of the

southwesL ?aciflc basin.

4.3.8 Continental margLn

It can be seen In Fig. /r.3 that anomaly 36 ls close to the Carnpbe]-l

sl-ope, and iL uay be slgnlftcant that. It is equal-ly close to the BolLons

seamount. The fracture zones west of 1800 could be interpreted as rnaln-

talnJ-ng the basical-ly ENE trendl"ng anornaly lineations at a uniform

dlstance frorn Lhe irregular shaped continental margln.

East of the BoLLons seEroount anomzrly 36 1s not close to the south

Chatham slope, l.e. the continental margin. The area between the rnargLn and
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anomaly 36 ls Eot a nagnetl-c qulet zone but no llneatl-ons are evldent.

Flg. 4.16 showa so&.e bathymetrlc profll-es across the margin and lE l-s

noticeable that Ln several cases bathyroetrlc, presunably basenent, features

occur close to anom:ly 36. I'he basement off the south Chathan slope ls
more compLex than off the Carapbell slope (flg. 2.3) but in both areas the

uniform basin basement appears to extend to abouL anonaly 36. It nay'be
that east of the Bollons seamount the true mArgin of the southwest Paclflc
basln is not the south Chatham slope but ls further offshore.

4.4 PACIFIC-AJTARCTIC RTDGE SYSTEM

4.4.1 General

The PacifLc-Antarctlc rldge system cuts across the area studled (Fig. 2.L)i
the latltude of lts axls varying from about 60os at 150ow, to 65os at 1800,

to 61.505 at 161oE. The axLs could. be defLned by bathynetric, magnetic or
seismLcLty data, but no one type of data adequately reflects the dlfferlng
nature of the system throughout Lhe area.

Bathynetry profiles (Ftg. 4.2) dtscussed in secti.on 4.2 LlLustrate the

contrast of the regularlty of.the Pacific-Antarctic ridge east of 1800 with
the roughness of the Paciflc-Antarctic fracture zone from about 18Oo to 161oE,

Earthquake epicentres (Fig. 3.9) show the Paclfic-Antarctic fracture
zcne to be seLsmtcal-ly actl.ve whlle most of lhe Paclflc-Antarctlc rldge is
aselsm:lc.

Magnetic anomaly proflles (fig. 4.17) shoru at 150ol^l a syrnmetrlcal

sequence of anonalles so typlcal of seafLoor spreading durlng the lasL 10 mybp

that a nodel proflle (Fig. 4.4A) isnft needed to ldentify the anonalles. An

equatly clear sequence exlsts at the opposite side of the area at 15808

(Fig. 4.17). In between, the axis of the Pacific-Antarctic rtdge system ls
mostl-y characterized by htgh anplltude, short wavelength anonalies, but only
east of about 175oW are anooalies typlcal of recent spreadLng readiLy lden-
tlflable.

On the basis of the struclure of the area, and the availabLe data
coverage (Fig. 3.1) the ridge system (Fig. 2.1) wllL be discussed l-n four
sectl.ons: (l) near Lsoow, (2) l55ow to l66ow, (3) 166ow ro 1800,

(4) west of about 
1t0o.

4.4,2 150oW area

Ttre

deflne

further

prlnary area for thls study is west of
the structure of the Pacific-Antarctic
east have been consldered. Flg, 4.18

I50ow, but to adequateLy

rldge near 1500!,1 data

shows the interpretation of
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the magnetlc data l-n the area near 15OoW, and Fig. 4.19 shoss the track

coverage.

Pltman et a1. (f968) discussed four of the profiles Ln the area, notLng

that anomelles typlcal of current seafloor spreading were easy to recognlze.

Thelr profll"es were: V16; 0DF8 (fig. 4,I7); and 0DF6 and ELT19

(Fig, 4.48). Herron (1971) used also ELT20 and ELT25 ln her anal-ysLs of

the area easr of 150ow (Flg. z.LZ). The addition here of ELT33 and ELT43

has l-ed to some revLsLons of Herronts interpretatlon. It has al-so 1ed to

the ldentLfication of a new fracuure zone at t5Oott (flg. 4.18), for which

the name llangu fracture zone is here suggesLed.

The existence of the Hangu fracture zone is very clearly shown by the

nagnetlc profiles ln Fig. 4.20. In proflle ELT43, which is almost east-west

(Fig. 4.19), the dupllcallon of the central anonaLy is obvlous. Profile
ELT25 crosses the fracture close to the offset of the axis and a sectlon of

anonalles is nissing. Bathymetry was not available for BLT43 but ELT25

bathyrnetry does not obvLously lndlcate the existence of the fracture zote.
There Ls no selsmLcity associated with the fracture,

The identification of the Haugu fracture zone is slgnlflcant because lt
shorvs that a fracture zone wlFh a substantl"al offset (70 kn, rlextral) rnay

not be reflected in bathyrnetric and selsmlc data.
The fracture zone at 56-5705 betwecn 1400 and 145ow (Fle.4.18) Ls

defLned almost eornpletely fron bathyrnetrlc and seismic data, aLthcugh lEs

exlstence could be weakly inferred from nlgnetl-c dai:a (fig. 2.12). Bathy-

metrLcally the fracture zone appeara as extreme ridge aad trough topography

with up to 4 km rellef over distances of Less than 10 kn. The trend of the

fracture is well deterrnined as there are several tracks scross tt. The

epiceutres suggest that the ridge offset Ls about 310 kn and magnetic data

indlcate that iE ls dextral. It is probably approprLate to refer to the

fracture as the TaLroa fracture zoae, as lt appears (Flg. 4.1) to be con-
tinuous with the offset of magnetic lineations in the southwest Pacific basin,
that was naned the Talroa fracture zone (sectlon 4.33),

The posl.tion of the ridge crest Just west of the Tairoa fracture zone

(Flg. 4.18) and the orlentation of the ridge Just east of the Hangu fracture
zone, suggest that between 1450 and 149oW there eould be a dextral offset
of the ridge crest of about 75 kn. The ninor seismlc activity could reflect
such a fracture zone. However the anonalies near 6005, t44ow are offset
sinLstrally aod Herron (1971) used thls to lnfer a slnlstral rLdge offset
of 50 km at 149oW (Fig. z.LZ). Anomalles 8-12 on the north side of the

rldge are not offset either slnistralLy or dextrally. It has been shown ln
sectlon 4.3 that ln the southwest PacifLc basin there are anornaly offsets
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whlch are only l-ocal. It therefore uny be unwLse to lnfer offsets or lack

of offsets in the ridge axls from anornal-y Llneatlons away from the axls.
West of the Hangu fracture zone (Flg. 4.18) another fracture zone is

iqLted by the anornaly posluions and t'irregularityt' of anomalies on the

srestern end of proflle ELT43 (Fig. 4.2A). The detalls of the fracture are

very uncerEaln as the navlgation on ODFB (fig. 4.19) is bad and to reconclLe

it wlth ELT43 and ELT25 lt has been necessary to shift the anomalles about

40 kn northwards "a1ong the track". Shifting the track ln other directions
could alter the interpretation.

4.4,3 t55ow ro 166ow

For the Pacifie-Antarctic ridge system from about 155oI^I to 1660I^I

there were no bathpnetrlc or magnetlc datb (Fig. 3.1), and earthquake

eplcentres provide the only l-nformation. Fig. 4.21 shows the area.

The active spreading ridge west of 166oW is dlscussed in the next sectlon.
The epicentres near 160oW appear to form a group with a strike similar to
the fracture zones to the east (Fig. 4.18), and orthogonal to the

spreading ridge. Thls suggests that these epicenEres refLect fracture
zone act,ivity. There nay be one fracture zone wlth a dextraL (?) offset
of 200 km, or two shorter frabture zones.

4.4,4 166ow ro l80o

The area betvreen about 166ot^l and 1B0o cannot be easily lnterpreted in
terms of anomatr.y l-f.neations and fracture zones (Ftg. 4.22) desplte the
reasonable data coverage (flg. 4.23). The lack of : simple interpretatlon
probably refleets the complexity of the area, but it is also a product of
Lhe very poor navigation control. In this area north-bornd tracks are
often just emergtng fron long periods of nuunrous course and speed changes

Ln pack lceo while south-bound tracks have run hundreds of kilometres in
heavy seas. lfeather condltions and/or 24 hour sunlight mean that re1lable
fixes are rare, Posltlon uneertalntLes on many tracks couLd exceed 50 kp.
ThLs makes lE difficult to relLably nap anornaly Lineatl,ons, as many of the

anomalies have navelengths of 20 km or l-ess.

There certalnly are recognizable anomaLies j-n the area; see for exanple

Fig. 4.L7 profLLes MNW, MNH and 0DF5; and the existence of the anomaLies

mapped ln Ftg. 4.22 ts adequaEely established. Ttre strlkes of the Llneations
are probably not reliably deternined and no significance can be attached to
variations in their strikes. The strikes of Lhe fracture zones are

also very uncertaln. The tentative cenEral- anomaly identifications at
178ol^l and 1B0o are based on profiles T ancl ODF3 respectlvely (Flg. 4.L7).
Consldering the adjacent proflles: W, L and II; these central-.anonaly
ldentifications must be consLdered at best weak.



66

AnonaLies of the recen! seafloor spreadlng sequence are relatlveJ.y clear

at 16BoW, but the general pattern becomes nore confused westward. The bathy-

metry (Fig. 4.24) also reflecEs the trend frour uniform rldge in the east to
more chaoLic structure further westward. In conclusion it can be said that

the characEeri.etic bathymetric and nagnetic tmifornlty of the PacLflc-

Antarctlc rldge does noL appear to exLend west of about 175oW'

4.4.5 Pacific-Antarctlc fracture zone

The axis of the Paclfic-Antarctic ridge system ls approxlnately dellneated

by the 3 km contc,ur (Flgs O.Lr 2.i), and lt is noticeable that the contours

show a urarked chernge in trend just easL of 6505, l80o. EasL of there the

trend is southwes;ter}y, whiLe to the west lt is northwesterly. Ross (1967b)

was the first to discuss in detail the western section between 1800 and 16OoE.

From flve bathyru:Lric and seven magnetlc profiles he showed. that the bathy-

metrlc contours r:eflect a broad U65oW trendlng zone of disCurbed bathynetry

and nagnetics. lfhe data coverage ln that area is now extensive (Flg. 3.f)
but lt wiLl be shown ln thls sectlon that the main concluslons are stl1l that

the area is coup.lex. The bathymetrle and nagnetic profiles whlch wtLL be

presented are a representative sarrple of the availabl-e data.

Representative bathynetrlc profiles shown in Fig. 4.25 tllustrate the

coruplex topography. The nost notable features are: depths Less than 2 km7

relief greater than 4 krn; and the narked asymnetry about the topographlc

axis. The asyruretry evldent ln the bathymetry does not reflect s)rumetrlcal

basement buried on the south side by sediment. There is sedlmenE there

(Flgs 2.L5r 2.L6) but the basement is stLlL asymmetrical. East and west of
this area the ridges are smooth and symmetrlcal; the axes are deeper than

2 kn; and extrene topogtaphy l-s present only at active fracture zones.

Idagnetic anom.ely profiles shown ln Fig. 4.26 indicate a zone of high

amplitude, short wavelength anonalles trending about N65oW. The magnetlc

zone is coincident wlth the rough topography, which is approximaEely enclosed

by the 3 km contour. The track coverage ln the area Is quLte good (Fig. 3.1)

but no correlati.ons of anomalies beEween tracks have been established 1n or
adJacent to the zone of disturbed magneties. Consequently the roagnetlc

data do not lndj.cate whether there ere any local trends different from the

overall- N65ow tr:end.

It is natur:aL to examine the magnetic proflles for evidence of recent

seafloor spreadl-ng, partLcul-arly as that can be seen at 175oW and 16008

(Fig. 4.17). The profiles in Flg. 4.17 between 175oW and 16008 are all-gned

approxLmately on the axis of the rough topography, but more partLcularl-y

they are aligned on a squarlsh anonaly - where one is present ln a proflle.
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A squarlsh anornal-y ls characteristlc of f.he axls of current spreading

(Flg. 4.4A), but to identify recent spreading with any confldence it would

be necessary to :r1so have at least a few of the characteristlc anomalies on

boLh sides, or er/en only one side, of the central- anorualy. With this
crLterion curren[ seafloor spreading ls not readlly apParent anlmhere between

abour 1.75ow and L60oE (Flg. 4.17).
One profile which has attracted some attention because of its squarish

anonaLy is profi.Le B, shown in detaiL i-n Flg. 4.27, T.M. Geddes (pers coErIIl'

L973) has done e:stensive urodel- studies for this profile, taking account of

the bathynetry. He has used sequenees of normalLy and re'.rersely nagnetlzed

blocks defined b'y the reversal time scale (Flg. 4.4) and finds that a wlde

range of dlfferelt spreadLng rates, centre positlonsr or uurgnetized l-ayer

configuraEions wilL sirnulaue at least parts of the profile. Lack of a

simple unigue solutlon is not surprlslng, conslderLng the conplex bathynetry.

Model sgudies for other proflles in the area would aLso be donlnaced by the

effects of extrene topographY.

The magnerlc profiles (Flg. 4.17) have also been examlned for symmetry

of any sort. Linlted symnetry could be suggested in several proflLes; for

exanple ODF3, B, MNEb, P and N. Profl-le N (fig. 4,27) attracted attenElon

because of lts large aurplitude anomalies. There is some degree of syometry

ln its bathymetry, but numerlcal studies, which will be discussed nore fulLy

later, show that it ts difficul-t to justlfy choosing a unique magnetlc

sytrmeLry centre. Simllar conclusions are reached for other proflles'
A zone of s,eismic activLry is coiocident with the zone of dLsturbecl

topogra;hy and nragnetics (Figs 4.26, 4.25). The epicentres are scattered

and their locatl.ons could b: inaccurate by more than 25 krn (section 3.6.3),

so there is Ilttle point ln detail-ed comparisons of lndivldual epicentres

with bathynetrl(: features. The gaps in seismicity (fig. 4.26) are probably

not signiflcant as the clata cover on1-y nine years, and iluring that interrral

events occurred in only slx years. IL should be noted that east and west of

this area the r:idge axes are aseisnlc and al-l the seissdcity ls on acLlve

fracture zones.

The bathynetric, magnetic, and selsmlc data all suggest that the

prominent featu:re sErLklng N65oI,l between about 1800 and L60on ls a maJor

fracture zone. The name Pacific-Antarctic fracture zone was suggested for
lt by Christoffr:l and FaLconer (L972).

The area a,round 6oos, 160oc wtl-l
w111 be shown tl:at the western end ,>f

can be fairly r'al.lably deterrulned as

the fracture zone is less distiuct.

be ciiscussed ln section 4.6, and it
the Paclflc-Antaretlc fracture zone

61.5os, 161oE. The eastern liruit of

The seismlcity extends to 1800;
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active seafloor spreading ls clearly ldentiflabl-e at 175oW (fig. 4.22);

and the structure inbetvreen is indefinite. It is reasonable to conclude

that the easLern end of the Paclftc-Antarctic fracture zone is between

650 and 660S, and 175oW ancl 1800. The whoLe zone is more than 1000 kn long

whlch makes it one of the worldrs major fracture zones.

The bathynretric reLief of the Paciflc-Antarctlc fracLure zone is
typical- of roajor fracture zones, but the width of the dlsturbed area ls
greater than normal-. Flg. 4.25 shows that the disturbe-d zone ls 200 kn

wlde. Tracture zones elsewhere are frequently l-ess than 50 kn wide. The

srldth suggests that the zone may be severaL fractures with a more northerly

trend. The earthquakes are scattered brrt could be lnEerpreted as several

sections striking N45oW, especiali.y the group near 165oE. If there are

several fractures there may be short sectlons of ridge linklng them. If the

ridge axes were orthogonal to fractures t,rendlng N45oW, they wouLd be less

than 50 km long, as the fractures canno! be rnuch displaced. Such short

ridge sectlons woul-d be difflcult to detect wlth the data tracks that are

avall-able. .

In the Hayes and Conol:ty (L972) bathynetric map for west of 16908

(Fig. 2.8) the Pacific-Antarctic fracture zone area ls interpreted as con-

slstl-ng of orthogonal rldges and fractures with the fractures trending about

N30oW. The data coverage l-n the area is nlnlmaL end the contours are clearJ-y

ldeallsed. ltore detail-ed New Zealand Oceanographic Institute maps ln pre-
paration (Hurley and Krause, 1973a, b), aLso west of 169oE, show features

Erending N45oW. However the contours are not unlquely detern:ined by the

avallable data, and the interpretatLon has been partl-y based on Fa1:onerts

(Lg72) suggestion that fracture zones would trend tl45oW. Detal-led surveys

are needed to determlne local- sEructure withln the overall structure of the

PacLfic-Antarctic fracture zone.

4.5 BETWEEN AIIONALY 25 AllD THB PACIFIC-ANTARCTIC SIpCE SYSTq!

In seetlon 4.3 the southwest Pacific basln was dlscussed, and lt was

shown that there is a cl-ear pattern of magnetic anonalles extending south Lo

anonaly 25. In section 4.4 the dl,scussion'rjumpedttto the axis of the

Pacifl-c-Antarctic rldge system. Anomalles out to about number 5 eittrer side

of a smooth axls were shown to be clear easE of 175oW, while west of there

ls the dlsturbed Pacific-Antarctic fracture zone. In this sectlon the area

between the basin and the rlclge system ls dissussed. The area can be loosely

deflned as bel-ng between anomaly 25 ancl either anomaly 5 or the Paclfl-c-

AnEarctlc fracture zone. It can also be consldered as the northern fLanks

of the Paclflc-Antarctic ridge system.
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RepresentaLl.ve bathynetrlc and magnetic proflles (ffg. 4.2) show that
the width of the area decreases from east to west. In the east the distance

from anomeLy 25 to anoroaly 5 is almost 1000 kn. In the lresc the dLstance at
170oI^I between anomal-y 25 and the axis of the ?acific-AntarctLe fracLure zone

ls onI-y 200 kn, and further $rest even anomaLy 25 is "Lost" ln the fracture
zone. Flg. 4.1 shows that desplte reasonable data coverage onLy a few

rnagnetlc line;rElons have been identifled ln the axea. The difficulty of
identifying auonaly llneatlons 1s the rnain characteristlc of the area.

Magnetle anonaLies 25-35 ln the southwest Paciflc basin are dlstl.ncflve
and easy to correlate, but south of anouraly 25 the nature of the anomaLLes

changes markediy. In the east (e.g. proflle ELT25, Flg. 4.2) the anomaly

anpJ-itudes betsieen numbers 25 and 5 are low, there Ls a nlxture of wave-

lengths, and t:he generaL appearance of the profiLes is one of nol-se rather
than of distlnative anomaLy seguences. In the west, e.g. profll-es B and E,

the anplltudes are larger but dlstlnctive anomalles are stt1l not clear.
Some idencificatlons of llneations and individual anornalies have been

made in the a,r:ea (Flg. 4.1); mainl.y in the eastern part. Flg. 4.28 sho$rs

severaL profil.:s east of lTOoW wlth the assurned anomaly identlflcationg.
These ldenciflcatlons are based heavily on the work of Pitman et aL. (1968),

who establlshe.d the correlatlons shown between profiles ELT23, ELT19, 0DF6

and ODF8. The basis of the anomaly nuuberl.ng system is l-ndlcated ln
Fig. 4.4L, where a model proflLe based on a north Pacific type proflle is
shown wlth prci:tles ODF6 and ELT19. It Ls cLear that between anonalles 5

and 24 the cor::elatlons between the proflles are far less obvf.ous than

between anona-l-ies 25 and 32.
Although .anoualies 5 to 25 are observed 1n many areas of the world

detailed correlatlons of peaks in the sequence are rarely possibLe. Usual-ly

great reliance ls placed on distinctive features such as: the wldth of
anomaLy 5, the short waveJ-ength group beyond lt, the width of 6, the pro-

mLnence of 13 vith a gap beslde lt, the wldth of 20 ard 21. wlth a gap

between then, the unlformity of peaks ttt 2L-24, and the double of 25-26 wlb}:.

gaps either siJe. When the southwest Paciflc profiles in Figs 4.4A aod

4.28 are examlned 1-egltlnurte doubts can be raised about some of the asslgn-

uents of numbers to anomalies: peaks are nlssing between 23 and 25, the

distinctive gap between 20 and 21 ls hardly disLinctlven and 13 lsn't really
prominent. There are undoubtedly correlaLions between tracks, and the

lineatLons shorrn in the east of Flg. 4.1 are adequately established.
However the assignment of the nunbers to exact anoraalies berween 5 and 25

must be considered much less re1lable.



70

In the area north of the Pacific-AnEarctLc fracture zone (Fig. 4.f)
virtual.Ly no anomaly asslgnments have been made, or f-ineatLons ident{fl.ed'
desplte the high track density. Fig. 4.29 shows some of the proflLes from

this area. The most notable features are the decrease to the west of the

distance betr'reen anornaly 25 and the axls, and the apprecLable arnpliEudes

of rnany of che anonaLles 1n the area. CorrelatLon ls evident between

profiles ELTZ7a and H at their northern end but the two tracks are virtually
coincident there. A group of anomaLles that couLd be anomali.es 21 to 24 may

be present in, for exampl-e, Dn 11, ELT27a and T; and anomaly 24 has been

lncluded ln Flg. 4.L. The ldentlftcatLon l-s not strong though, as it aPPearg

on so few tracks. The ldentlflcatlon of anomalles 8 to 12 in ODF5 and T ls
possibly more acceptabl-e. Correlations between proflles could be suggested.

in several. places but the anomatrLes are mostly not distlnctive which meang

that the correlations are not unlque. When the data are examined in map form

with anomaly profiles along the tracks, most correlatlons are so arnblguous

that they wouLd be of llttle use.

Bathynetric reLief can have a subsEantl-a1 lnfluence on magnetl-c

anomalles especlally if water depths are not great. The rough topography

north of the Paclflc-AntarctLc fracture zone (Flgs 4.2, 4.25) undoubtedly

contributes to the difficulty 1n correlatlng anomalies there; but the fact
that the bathymetry ls rough, in ltself, suggests thaE the area is conrplex

and so lack of clear nr,agnetj-c patterns is not surprislng. To the east the

northern flanks of the PacifLc-Antarctic ridge are relatively unlform, e.g.

proflle ELT25 Flg. 4.2, and lt 1s there that some correl-atlons have been

possible.
A notabl-e rel-ationshlp between bathynetrLc and magnetLc structure

throughout the area ls that the sorrthern boundary of rhe easii-y ldentlfiable
anomal-les (usua11-y nunber 25) ls the southern boundary of the relatlveJ-y flat
basj.n topography. The profiles ln Fig. 4.2 ill-ustrate thls. On these and

1nany other profiles it is notlceable that rough topography first occurs Just

south of anomaly 25, Admlttedly none of the t.opography In the east ls very

rough, but thcre ls usually sone signiflcant rel-lef at the magnetic boundary

there. The transltion from basLn to rough topography becomes more abrupt

towards the west (Fig. 4.25), and iuvariably occurs cl-ose to the southern

llmit of the correlaEable anorra]-ies.

The lack of ldentlfiable anoroaly l-ineations wes! of about 165oW

(fig. 4.1) neans that lt ls not posslble to know lf the fracture zones to

the north 1n the souEhwest Pacific basin extend furtlrer south. lurther east

it appears that the Tatroa fracture zone exists from the basin to the ridge.

East of that fracture only anomalies rlor,m to nunber 20 are ldentifLable
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(proflles A408N and ELT23, Fig. 4.28) but to the west the full- sequence ls
ldentified (e.g. proflles ODF6, ELT25). The offset of anonaLy 20 1s about

350 kn dextral, which is sinrj-lar to the 340 kE offset of anoualy 25, and

the 310 km offset of the axis at 560S. The avaiLable tracks are widely
spaced near the fracture so the actual- posltlon of the fracture is not

well deternlned (Fig. 4.1). llowever it seems teasonable to lnfer that lt
continues from the well determ:ined offset ln the basin to the naJor fracture
at the rldge crest.

4.6 THE INDIA}{-A}ITARCTIC-PACIFIC TRIPLE JTJNCTION

4.6.L GeneraL

In thls section the area of lntersection of the PacLfic-Antarctlc and

southeast Indian ridge systems and the llacquarie ridge compLex (Fig. 2.1)

is descrLbed. The area ls referred to as the trlple junctlon area because

lt ls where the Indiirn, Antarctic and Paciflc pJ-ates intersect. Discussion

in terns of pLate tectonics ls deferred untll Chapter 9; here only the

basic structure is described.

Flg. 4.30 shows the area, with the track control for the nagnetic data

ln the vlcinlty of the tr1ple Junetion. The area was included 1n the

southeast Indian ocean norphology and magnetl.c anornal-y studies of Hayes and

ConolJ-y (1972) and Welssel and Hayes (L972) (Flg. 2,9). Falconer (1972)

qulte independently studied the area and as he had nore data lte described

the area ln greater decalL. The descriptLon given here foll-ows Faiconer

(Lg1Z) ."LEh some aclclttional seisrnlclty data.* Important data that WeisseL

and Hayes didn't have are r,agnetic proflles AA and AR a-e (fig. 4.30).

Two bathyrnetrlc charts of Lhe area, in preparation (Hurley and Krause, 7973a,

b), provide some bathymetric data that Hayes and Conolly didnrt have.

There are minor differences of interpretatlon between the dlfferent workers.

There are three major structural features fn the area' and they inter-

sect near 61.5oS, L6l.oE. These features bnd the bouudarles they define as

foll-ows. (1) Indlan-Antarctic boundary: a section of the southeast Indian

tidge striking N55oE. (2) Inclian-Paciflc boundary: the }hcquarie rldge

complex striking very aPproximately nsrgtr-ssrr'th. (3) Paclfic-Antarctic

boundary: the Pacific-Antarctic fracture zone strilcing about N7QoI'I. It ls

most convenlent to descrlbe these three features separately'

*Ir, F.l"orr.r (Lg72) and some other papers the name Indl-an-Antarctic ridge
is used for what is here referred to as Ehe southeast Indian rldge. The

usage here folLows thaL of many Papers on ttre lrea published ln Vol-une 19

of the Antarctic Research Serles.
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4.6.2 Indlan-Antarctic boundarv

The anonaly llneations shown in Fig. 4.30 cLearly indicate an actl.vely
spreading rldge striking N55oE between about 62.5os, I57.5oE and 61.5os,

161os. The nagnetic anonaly profiles on whleh the lineations are based are

shown in Fig. 4.31. Even r,rlLhout the nodel proflLe it woul-d be easy to see

that on nany proflles anomaLles are symmetrlcal about the anomaly labeJ-led 1;

and lt is clear that the sequence of anomalies are those indlcatlve of sea-

floor spreadiug durlng the l"ast lOnybp (the outer edge of anonaLy 5 ls
approximat,ely 10 nybp).

The Arie*; tracks (labeI : AR) and the f,ltanin tracks (label : EL) are

satelLlte controlled so the anomal-y posiEions are accurately established.
The anomaly llaeatlons (Fig. 8.30), lncluding several unnumbered ones not

shown, are closely paral1e1 to the axls. The Aries track ARc in fact con-

sists of four close tracks (two profiles are shown ln Fig. 8,31) and corre-
latlons show Lhat even over short distances lndividuaL anomalies strike N55oE.

Bathynetr.v also indicates a regular rltige (Flg. 4.32, profiLe fr.27a),

the axls of whtch coincides with the ur,agnetic axls. Hayes and ConolLy (L972)

have lnferred offsets ir the rirlge axis (Fig. 2.9), but Hurley and Krausets

(1973a, b) charEs in preparatlon do not l-ndicate any offsets. NeLther are

there any offoots in the anomaly Llneatlons either side of the ridge
(Flg. 4.30) .

The western end of the rldge Ls termlnated by a fracture zone striklng
N30oW. Thls feature i: c1-earLy identified fron epicentres (Fig. 4.30)'
bathymetry (fj.g. 2.8), and offset of magnetic anonall-es to the north
(Fig. 2.9). The rldge ls olfset about 320 km in a dextral sense. As a

noticeabLe battrynetric step the fracture zone exterrds south towardsr but

not rlght to, the Balleny Isl-ands. These isLands and nearby suburarlne banks

(Dawson, 1970) strlke about t'l35of. It seems reasonable to infer that they

are related to the fracture zone. T-he fracture zone was named the BaJ-J-eny

fracture zone by both Falconer (L972) and flayes and ConolLy (1972),

The complete l-ack of epicentres on the southeast Indian ridge sectlon
(tr.lg. 4.30) is io narked conErast to the high actlvity on the Ball"eny frac-
ture zone. Active spreadlng ridge secLions identified further west on the

southeast Indlan ridge are also aseisnric, and all the actLvity is on the

fracture zones offsettlng them. It is therefore likely that here the easterrr

end of the ridge is marked by the seisrnlcLty cJ-ose to 61.5o5, 161oE. It Ls

worth noting that !'alconer (1972) usecl only Sykes' (1970a) epicentres, r'rhlch

do not include the epicentres at the end of the ridge axls shown ln
rtg,4.30.
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Fal"coner (L972) determlned the end of the ridge from the bathynetrlc
and magnetlc data. The magnetlc anomalles characteristic of recent spreading
cannot be recognized on profil-e AA (Fig. 4.31) closer to the axls than
anonaly 2f on the south side of the rldge. Profiles A708 and ARb both show

the characteristic anornalies over the southern flank but they are not seen

north of the axial ano-aly. The bathyrnetry of profile ARb (fig. 4.32) south
of the axis is typical of the spreadlng ridge (e.g. profile Er,27b), but just
north of the axial anomaly there ls a ur,arked bathymetrtc change colucldent
with the loss of the characterLstic anomal_ies.

The Loss of nagnetic lineatlons, the change of bathynetrlc character,
and the earthquake epicentres, all l-ndicate that the rLdge ternlnates Just
east of the axlal- anornaly observed on track ARb, and possibly at the axlal
anomaly on trackATOS. Thls positlon could be given as 61.605, 160.7og but
an LupLLed accuracy of 0.10 is probably unwarranted and the positlon wiLL
be taken as 6l.5os, l6loE.

4.6.3 fndlan-Paciflc boundarl

The l'laequarie rldge complex has been dLscussed in section 2.4 and lt
was pointed otrt there that Hayes and Talwani (L972> did not consLder lt to
extend south of about 600S; a1-Ehough they did note that the structure
south of there tras not well deflned. I{ere the }lacquarle couplex ls consl.dered
to extend to 61.5oS.

The most prouinent feature of the southern parE of the cornplex is the
arcuate.HJort trench (Ffg. 4.30). ltagnetic lineatil:ns can be traced from
the west rlght to the trench and the bathlrnetrlc transition is very abrupt
(Fig. 4.32, profile Et36), East of the trench the topography associated
wlth the Macquarie rldge is much ruore subdued than further north. No

nagnetic lineations have been unpped beEween the trench and the southwest
Paclflc basin anomalles (section 4.3.7),

As a pronrinent feature the trench terminateg near 59.5os, 159.son.
However several traeks south of there show troughs, which are partialLy
reflected ln the 3 krn contour (Flg. 4.30). These deeps lie on a line stri-king
S25oE from the en<l of the trench. Thls line would intersect the southeast
rndlan rldge near 61.5os, 16108. profil-e ARb (rig. 4,32) crosses thls l-ine
Just north of the ridge axLs. The profi-1e shows the abrupt transLtion from
the rldge to the southwest paciflc basin.

The seismlcity data (Fig. 4.30) are important as they lndicate a con-
tlnulty from the llJort trench atea to the point 61.5os, 16loE. The eptcentres
are scattered but they are on or sllghtly west of the line defined by the
bathymetry. In Chapter 8 thls seisnlcity data wiLL be used to show that the
the feature defined by the selsmlclty can be best interpreted as a fracture zone.
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The bathynetric data can be lnterpreted as indicatLng a fracture zone.

Fracture zones are often characterised by deep troughs and marked differences
in the depth either side. The Hjort "Erench" and the llne to the sorrth show

these features (l'ig. 4,32, profiLes EL36 and ARb). Hayes and Conolly nap

the Llne south of the HJort Lrench, and refer to it as the HJort fracture
zone (Fig. 2.9)i but no dlscussion of the feature is given. They extend lt
south of the ridge.

4.6.4 Pacif:ic-Antarct{c boundary

The Pacific-Antarctlc fracture zone was described in section 4.4.5
although its western end r^/as not rnuch dlscussed. The seisnlcity east of

rt
161-E ln Fig. 4.30 ts seisnlcity of the Paciflc-Antarctic fracture zone.

It is clear that thls seismicLty intersects the southeast Indian ridge and

the southern end of the Macquarie compl-ex near 61.5o5, 161on.

Profll-e ARe, Flg. 4.32 ts across the Paclflc-Antarctle fracture zonet

and the bathyrnetrie contrasL wlth proflle EL27a across the southeast
Indian rldge and proflle ARb across the southernmost Macquarie eoroplex,

can be described as trul-y remarkabl-e. The considerable width of the dls-
turbed bathymetrlc zone makes lt hard to bathymetricalLy deflne the precise
trend of the fracture zone. The overall trend west of 170of is between 650

and 70o north of west, but as mentioned ln section 4.4,5 locaL trends of
It45ow w'ithin the zone are possible.

A marked change 1n depth across the Paclfic-Antarctlc fracture zone ls
evident in profile ARe (Fig. 4.32) just as a change ls evident across the

southern Macquarie eomplex. The sinpliclty across the Macquarie lrne is ln
marked contrast to the complextty across the Pacific-Antarctlc l-lne.
Both profiles go lnto the southwest Paclfic basi.n but obviorrsly the two

boundarles are quite different. The I'l,acquarle boundary ls probably a sinpl-e

fracture zone while the corrpl-exity of the Pacific-Antarctlc boundary ls
probabJ-y due to it belng several en echelon fractures.

4.7 SOUTH OF TIIE PACIT'TC-ANTARCTIC RIDGE SYSTEI'I

4.7.L Introduction

In the preface it rqas explalned that the initial intentlon of this
study was to concentrate on a liruitcd area of the southwest PacifLc basin,

but that when more data became avail-able and the structure of the whole

southwest Paclfic area became cl-earer the study ttas extended to the axial
area of the Paclfic-Antarctlc ridge system. The area south of the ridge

system (ftg. 2.1) has also been stutlied, but in less detall.
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East of about 175oW almosE no data were avalLable south of the ridge

system (Fig. 3.1), but data coverage is better ln the Balleny basin area

west of 1800. flg. 4.1 shows that at least from magnetic d.ata l-ittl-e
structure has been mapped south of the rtdge systen. It should be noted

that the mercaEor projection used ln Figs 4.1 and 3.1 overenphasises the

slze of the area south of the ridge system. The equldistant projection of

Fig. 2.1 glves a better l-dea of the relatlve areas.

The Balleny basin and the Pacific-Antarctlc basin will be dlscussed

separately, nainl-y because of the clifferlng data coverage but also because

they are probabJ-y structurally different.

4,7,2 BaLleny basLn

The Balleny basin (Figs 0.1, 2.1) Ls bor:nded on the north by the

PacifLc-Antarctle fracture zone and on the south by the Antarctic eontlnent.

Its western l-tm:it is not clearly deflned but can be consLdered to be the

Salleny Islands and the Balleny fracture zone. The eastern 1funit nay be

a definite structural bound.ary Just east of 1800.

The bathynretry of the basin Ls'illustrated by proftles ln FLgs.4.2

and, 4.25. The basin is about 3 kn deep Ln the west, deepenLng to 3.5-4.0 ko

in the east. The seafl-oor is reLatlvely smooth, apparently because of sedl-
ment covet. There ls up to l kn of sedinent,ln the basl-n (Fig. 2.16) and

most of lE ls hlghLy dr.stortecl sediment, not fl-at-lying turbidlte deposits.
Ross (1967b) deternine.l- depths to magnetic basement from magnetlc anomal-les

Ln the basin and obtained an average vaLue of 3.9 t 0.3 km, whlch ls in
good agreeuent wlth the basement depth indicated by selsnlc profil-lug.

Moderately f1-at baseme.rt and substantlal anounts of sediment extend

right Lo the PacLflc-Antarcti.c fracture zone (Fig. 2.L5, and unpubllshed

data (Davey, pera conm 1973)). The l-ack of any transition between the basin

and the fracture 1s In marlced contrast to north of the fracLure. At the

Antarctic margLn the basement is not deeper than 4-4.5 kn and there are

some basenent ridges (seetion 2.3).
It was mentloned in sectl-on 2.9 that the presence of isl-ands and

numerous seanounLs j-n the Bal-J-eny basin is atyplcal- of the southwest

Paclflc area. The volcanic Balleny Islands at the west of the basLn are

at least ur:ildl-y active, which is lnteresting since they are about 500 kro

from the axls of the southeast IndLan rLdge (Fig. 4.30). They are probably

related to the Ba1-J-eny fracture zone. There are no indications of a feature

continutng south of the lslands.
Scott Island ls at the east of the basin on 1800, sd just south of

the isLand ls an even more substantlal feature (proflle L, tr'ig. l+.25).
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The peaks at t[\e south end of that profile are at the western edge of
Iselin bank (Fig. 2.1), so the basin ls very rrarron at 1800. Proflle CC ln
Flg.4.24 shor.rl that southeast of the Scott Island features there are

another three prorrlnent features. A1l- these features combined must forsr

an alnost continuous structure from the Paciflc-Antarctic fracture zone to
Iselln bank; probably rnarking the eastern end of the Bal-1eny basin.

Seamounts in the basin are conmon but, the graben-like structure_shown
ln Flg. 2.\6r.grofile N, ls more unusual-. It apparently strikes NNW aad is
at l-east 120 lcn long (Davey, pers corm 1973). It does not continue either
to the shelf or to the Balleny Islands. Deepsea drll1lng slte 274 (Ftg. 2.2)
was on the northern flank of the graben, in 3.3 kn of water. It penetrated

415 u to basaLir and the overl-ylng sedl.ment age was approxlrnately 40 rnybp

(JOIDES, 1973c).

l'lagnetlc data are frequently inconplete on profiles ln the Balleny
basln (e.g. Figs 4,2, 4.L7) because pack lce ls often encountered there.
However the dl, |a are suf flclent to show that anorqaly wavelengths are sLmilar
on north-south and east-west tracks. Short waveLength hlgh amplitude anoma-

lies are obserred over seamounts, but in general wavelengths are sirnllar or
slightJ.y longer than those observed north of the Pacific-Antarctlc fracture
zone. Lineatians related to the southeast Indian ridge are observed in the

west to just ncrth of the.Balleny Isl-ands (Ffg. 4.30), but these have not
been traced furLher south or east. Throughout most of the basin correLations
between tracks ean be suggested but numerous aLternatlve correlatLons, antd

hence trendsr.rir'€ equally plauslble. Bad navigation controL on nany tracks
does not heI-p, but, even wlth Just satellite controlled tracks corrclatlons
are no flrmer. Feriel Fal-coner has lndependently examlned the data and

reached sirnll-ar conclusions.

ALl the daEa indicate that the Ba1leny basin ls a compLex area.

4.7 ,3 Pacif i-c-Antarctlc basln

The Pacific,-Antarctic basln (fig. 2.1) ls not welL surveyed, especlally

the west,ern parii of it. Bathymetrlc charts (e.g. Udintsev, L964; Heezen

and Tharp , lg72-' shop a gentle basin deepeni.ng eastward from about 175oW.

Most of ghs la.cin is 4-4.5 krn deep, which is shallower than the southwest

Pacific basin. Seisnlc profller results east of 140oW lndl-cate up to 1.5 kst

of undisturbed sediment (Houtz et al,, 1973), whlch suggests that the depth

of the basenent in the Paciftc-Antaretlc basin is sfuniLax to that 1n the

southuest Paciflc basin.

The onl-y track for which rnagnetic and bathyrnetrlc data were avallable

in the Pacific-Antarctlc basln area 1s track ELT33. It crosses the
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Faclfl.e-Antarctlc rldge near 640S, 168oW (Eig. 4.23) theo heads east!ilard

(Ftg. 3.:1) . From Jus.r south of che ridge axis to easE of 11l0o'W lnost of

the nagnetlc anonalles are less thar.r 300 nT and as eharacterlstie anosralles

have be-en ldentlfied. Throughout the t ack the:re ls bathyaetrlc rellef of

1 krt,or $of,Bi NorLh of the Pactftc-lkoearctlc ridge such relief is peen

onl.y where f-racture zones oecur. Thl.s suggeets that there rlay be seve:al

fracture zones south of the ridge beEw,een t65oW and 150oW. $I{th eo little
data extrap.olatl.ng possible fracbure zones f,ron the track to the a:de of

the rldge le uo'erarranted.

More data are avalLab1e 6outh o,f the ridge east of 150o!il (Flg. z.LZ),

but the co\rerage Le lnadequate south of abeut 620S. thLs is. u-nfortunate as

Xt neang that throughout the southwest Paelf,le area the stlucture on only

the northern sdde of the ?aeLfle-,AntarstLc ridge eysteu i.s ad,eqU-ately known'

Thie eertous.Ly- Llnits the anal-yaJ.s of the tectoalc hlstory of Ehe eouthwest

Pa,clf;i.c area which wi.1.1 be preseRted later.
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CHAPTER 5

NI]MERICAI CORRSLATION STTIDITS

This chapter presents the results of a study of the appl-lcatlon of
nunerical corr:el-atlon technlques to rnagnetic anomaly profll-es. An intro-
duction (5.I) Ls followed by results frorn studenLs (5,2), second moment

correlation (5.3) and first moment, correlation (5.4). Synruretry ln proflles
is considered ln section 5.5', and concluslons on the numerlcal technlqueo

given in 5.6.

5.1 INTRODUCTION

Marine geophysics has been revolutionised in Ehe lasL decade, prLorarily

through the study of marine aagnetic anomalies. Of particular lmportance

has been the identification of almost identical magnetlc patterns at wldely

separated parts of the earth. The identiflcations are based almost e.ntl-rely
on visual correlation between profLLes and the results presented in diagram

form. Fisher (1970) has sald "Di.agrams prove noLhJ.ng, buL bring outstandl-ng

features reaclily to the eye; they are therefore no substitute for such

crl.tleal tests as may be appLied to the data..." Critical Lests, ln the

form of numerical- correlaLion caLcuLations, have been applied to profiles
(e.9. Fu1l-er, 1964; Luyendyk et aL., 19681 Loncarevic and Parker, 1977,

Vogt et al., L97La, Schouten 1971) but consldering rhe nunber of publ-lcatLons..

whlch present correlations the number which contain crltical tests l-s snrnll.
The hurnan eye and brain is a very efflcient and adaptable correlator

but it is affeeted by factors such ;; the scale at which profiLes are
pJ-oLted, prealignment of proflles, lsolaLed l-arge aurplil'.rde peaks, data

8aps, preconceived ldeas, and the avail-abiLlty of traclng paper. The

posltion that produces maxiuruq agreement j.s generalLy talcen but that ls
not necessarlly the position of minimum dlsagreement. Usuall-y only ttre
pieferred correLation posltlon is shown, rvhlch makes it dtfficult for a

reader to Judge whether that is the best alignment position, Even when

different people agree on a particul-ar correlation they cannot easlly compare

their judgements. NumerlcaL correlation should overcome some of the visual
Linltations and would at least provlde a quantLtative esEinnte, of correlation.

In an attempt to evaluate the usefulness of nunerical corrclatlon
techniques a study has been made of correlation between some of the magnetlc
anornaly profiles dlscussed ln the prevlous chapter. The lntention was not
to identify correlat,lons between the profiles. The profiles corrsldered had

al-ready been correlated vlsually and in most places deflniEe oplnions were
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The lntention of the study was to apply

numerlcal correlation nethods to see if
what are the urost Lmportant factors and

study has also been made of symmetry in

5.2 STUDENTS' VISUAL CORRELATION
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is why the proflles were chosen.

to the anomaLy profiles various
they support the visual correS.atlons,

what are the lirnitations. A brtef
prof11es.

An admlttedl"y blased (but real-istlc) criterlon of the usefulness of
any numerical- correlatlon nethod is that lt indicate good correLatlon for
positlons at uhich profiles visual-Ly are consldered wel-l correlated. Ttris
will raise the question of whether Lhe profiles are in fact welL correlated.
There are nany examples ln the literature of what are consldered weLl corre-
lated profiles but there are few details on exactly which features of the
proflLes are consldered indicatlve of the good correlation. In an attenpt
to assess what features of a proflle are used when visually Judglng corre-
Latlon some tests r,rere done wlth groups of university students.

Eaeh group was a first year physlcs tutorial group consisting of 10-12

students. Virtually a1-1 of them had no knowledge of sea fl-oor spreadJ.ng or
magnetic anorualies and so rnight be consldered unbiased. No atteurpt was rnade

to e:rplaln the subject other than to brlefly say that the profiles rhey would

be glven reflected. the structure of the seafloor, were taken along paral.J-el

tracks soulh of New Zealand, ed that siud.lar features rnlght appear in some

or all of the proflLes. To l11ustrate, two sinilar profil-es, not those

they consldered, srere sketched on the blackboard and severaL correlated
peaks numbered. They were then gLven the data shown 1n Flg. 5.1 and asked

to number or l-etter any features whlch they could recognize in two or more

profiles. Fig. 5.2 and the foll-owing discussion is an attempt to sunmarlze

the results.
Preal-ignment of the profiles on anomelles 32-34 probabl-y had a domLnant

effect but the following aspects appear to have also been signiflcant.
Anplltude is uot very irnport,ant: note the identlficatlon of anonraly 33

whlch Ls very subdued, and the use of rhe snaLl feature beEween anomalies

31 and 32A. Anonaly 32A on profile three 1s qui.te lnsignificant but was

stiLl frequentJ.y associated with the larger feaLure on profiles one and ttro.

Horlzontal scale rny be lnportant. In profiles one, two and three

anomal-les 3f-34 are strongly L1nked, but anomalles 27-30 of profile three

were not picked often. Presumabl.y because the horizontal compression of
proflle three shlfts those anomalles out, of alignment with profiles one and

two.
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The order of the proflles is inrportant. Most of the identifications of

anomalies 28-3t on proflles flve and six were for those profiles alone, they

wexe noc Linked to profiLes one to three. This may be due to the data gaP

in profile four. Anomaly 32A on profile four was not assoclatetl wlth
proflles one and tlro, lnstead lt was assoclated with proflle flve. Surely

Lt would have been associated with proflle two lf profile three had not
l'intervenedtt.

Data gaps are probably cruclaI. Would anomal-ies A and B on profLLe

sLx have been chosen more often if anomaly C had exisLed? Woul-d anomal-y 32A

have been picked in profile six lf there hadnrt been a gaP beside it? It
may have been if proflle six had foLlowed proflJ-e two.

A fourth group of etudents qrere glven the same data as Ftg. 5.1 but

upsLde down (Fig. 5.3). They produced slmi.lar results to the oEher groupst

correlatlng only what were for thern posi.tive peaks (actuaL negative

anornal-ies). The anomalles 32-34 were in effect more strongl-y correlated by

thls group as everyone metched the 32-34 negative, several drawlng a llne
dor+n the page through lt. Small posltive peaks appear to be more slgoiflcant
than small negaclve ones as thls group made no attempt to use anonal-y 33 and

they dld use the snall posltLves E and F ln anoroal-y 32 (Flg. 5.3).

5.3 SECOND MOUENT CORRELATION

There are n€rny dLfferenE numerlcal- coefficients that can be used for
comparing proflles. The merits of particular coefficients have been dis-
cussed by, for example, Glbson (1950), Burnaby (1953), Ml-l-l-er and Khan (1962),

and KrumbeLn and Grayblll (1965). iu,r this study .the convent,ional second

moment crosa-correlatlon coefficlent was chosen, malnl1 because it is wldeLy

used, and lts statistlcaL properties are weLL understood (Bartlett, 1955).

5.3.1 The second moment rnethod

Consider Ewo profiles which when digitLzed at N equidistant points

glve two series x(i) and .y(i). A measure of the slnilarlty of the profiles
is the covariance coefftclent vr gLven by

lx(l) - rnxl. [v(r) - my] . . . .5.1

where mx and my are the neans of series x and y respectlvely.

The two profiles rnay be very slmil-ar but have different meart auplLtudes.

It l-s rnainly the shape of the profiles, not the arnplitudes, which are to be,

compared, so lt is reasonable to normallse each series to the game amplitude'

1Nvr=* E
^' i=1
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This gI-ves the correlatlon coefficlent

lx(i) - mxl. [v(r) - ny]

r=

,NI-
)

lit
l_= r

lvar(x) .var(y) ]z

where var(x), the variance of series x is glven by

var(x) = I I [x(1) - rorr]2tt i=l

....5.2

....5.3

Slnilarly for var(y), the variance of series y.

The correlation coefficient r as defined above has been referred to as

the crose correlation eoefficient, the Pearson prodtrct momenE correl-ation

coefficient, and the second moment correlatlon coefflcienL. The values of r
w111 vary between *1 for perfect correspondence and -i for negatlve corres-

pondence of the serles, and r = 0 represents compl"ete non-correLatlon. For

convenlence values quoted wtl-1 be 100 r, 1.e. 100 for perfect correspondence.

If one profil-er say y, ls J.onger than the other lt is possible to calcu-

late the correlatLon coefficlent at several- alignment posJ.tions of the

proflles (Fig. 5.4). Thls glries

lx(r) - nxl. [y(l+d) - ny] . ,..5.4
r(d) =

1Yfi
[var (x) .var (y) lL

where Nx is the number of polnts in the shorter serles x. To preserve the

range tl for r the mean my, and varlance var(y), of serles y must be those

of section CD, not of the ful] 1-ength AB (Fig. 5.4). Calculation of r as

a function r(d) of distance d is equivalent, to slueeping profile x al-ong

profile y. A maximum tn r(d) l"ndlcates an alignment positlon.at which corre-

Latlon ls a rla>rtmnrm. In the example of Ftg. 5.4 proflle x is a portJ.on of
profile y. Hence the naxLmum of r(d) occurs where ttre short section ls
aligned with "ltselffr ln Lhe longer profiLe, and there r(d) = 196. Fig. 5.5

il-lustrates an exaurple for trvo different records.

For atl the profiles which wilL be shorsn rhe profiLe l-abe1 indicates the

number of data points in the profLi-e, e.g. R197 has L97 points. Most of the

profiles were dlgit'Lzed at intervals of one naut,l-cal, mlle vzhlch Ls sufflclent
to preserve the detalLs ln the profil.es and avold allasing problens

(Jenlcins and Watts, 1968).
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5.3.2 Statistical- signiflcance of correlatlon coefficlents

In Flg. 5.5 the allgnment posltion based on the maximum of r(d)
appears acceptable buE two questions arlse. (1) Is the correlation non-

zeto? (2) If so, are there other positlons at whlch correLation is also

non-zero? To answer these quantitatlvely requires a statlstical test.
The standard method is to use tlre Fisher z-transformation (Dixon and

Massey, 1969) to obtain the confidence llmlts on r. IE ls then possible

to test whether r is statistically dlfferent from zero, or to compare

different values of r. The z-transformation method assumes that the data

are normally distributed a:rd that successive observations are independent.

The normality requirement is not crLtlcal (3artIett, 1935) but the indepen-

dence assumption is very important. The data considered here are proflles
whlch were digitlzed aE close interval.s and under these condltions each

poLnt ls not independent of points adjacent to 1t. Ttre standard z-transfor-
sntion can stlll be applied (Awe, L964) provJ.ded the number of poinEs Ln

the serLes is taken to be the effective number of independent points, N€,

rather than the total'number, N. The probi-em then is to determine Ne.

Three oethods have been eonsldered.

The first method is based on sampling theory applled to time serles.
It can be shom (Jenkins and Watts, 1968) that there are two lndependent

points for each cycle of the hlghest frequency present in a record, Thus

if the shortest wavelength ), ln a record of N polnts is known the nunber of
independent points can be found fron

*"=T ....5.5

The shortest wavelengEh tr coul-d be estinated fron the povrer spectrum of the

proflle but this is not 1-lkely to be satj.sfactory. The length of proflle
used for correl-atlon is generally less than 200 polnts (see later) which

would not glve goocl resolution in the spectrum. Also there is not a definite
cutoff ln the short rravelength end of the spectrum. A uore fundamental

objection to the use of the spectrum is that the prr:flles may not be

staElonary i-n frequ"ney. The nature of the process producing the anomalies

ls such that the exi stence of a strort wavelength anonaly at one plzrce does

not neeessarily imply that the wa'relength:ls presenE eLservhere. This ls not

satisfactory for spectral- analysls. An al.ternative is to vlsua1ly estimate

the shortest wavelength ln a profLle and then use equation 5.5 to defermlne

Ne. Teble 5.1 glves values for profiles shor'm in Fig. 5.6. The vlsual

meEhod stilL assumes the conLinuorls presence of the shortest wa't'elength and

so the number of lndependent poLuts woul-d be overestimaLed by th{s method'
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Table 5. I Number of independent points in profiles

""=*
2NNe=f,- Ne from

maximaLProf 1l-e

N626

N280

NORM5OO

P480

T475

B370

R197

R120

R67

626

280

s00

480

475

370

L97

L20

67

4

4

2

5

7

7

I
9

5

4.8
6.6

1.0

7.9

7.8

7.L

7.4

6.4

6.6

323

70

500

192

L36

108

49

26

27

L74

34

340

48

52

44

28

16

L2

130

42

500

61

61

52

27

19

10

A second nethod for deternlning Ne ls to assume Ewo independent poincs

for each maxlma in the record. For some types of data this assumption can

be rigorously justified (Awe, 1964) and Lt ls intultlvel-y reasonabl-e that the

number of iadependent points is related to the number of maxima. It is dlffl-
cuLt to standardise the method of counting maxima but since sna11 varlations
ln a record do not contrtbute Duch "resoluLion'r to the calculatlon of r(d)
only dlstinct rnaxima need be consldered. Typical values of Ne found thls
way (Tabl-e 5.1) are, as expected, less than those calculated from the shortest
estimated wavelength.

A third uethod for deternining ';he number of jndependent poLnts ln a

record has been gLven by Awe (1964). It ls based on the varlance of the auto-

correLation function of the record. If series x and y are the same, r(d)
calculated wlth equation 5.4 ls a form of autocorrel-ation. Rearuanglng Awers

results for dlgltal analysls glves

Ne=* .. '.5.6

....5.7where

The sunmation is carried out only over the central peak of the autocorrelation
function and for r(d) > 0 (fig. 5.7). OnJ-y half the autocorrel.atLon functlon
ls calculated slnce it ls symmetrlcal. The value L is a measure of the Length

over which correlation exists between points in the profile and w111 be

referred to as the correlatlon l-ength. Typical values of Ne dett,rmined thls
way (Tab1-e 5. 1) are l-ess than those f ound f rom the shortest wavel.engLh and

are mostly sJ-ightly greater than those found from the number oi maxlnra.

L = Ir(d) 2
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The correlation between proflles x and y at any particular allgnrnent

posltion involves only a section of the longer profile y (Flg. 5.4). The

number of polnts of profile y eonsidered at any posltion wil.l- always be

equal to the number of points Nx in profile x. The effective number of

polnts ln x, Nex, is invariant but the effective number for y, Ney, ls that

of sectlon CD (Fig. 5.4), and uay vary with d. If the naLure of proflle y

does not vary along lts I-ength Ney can easlly be found from the effectlve
nunrber of points in the full J-ength AB, and the ratio CD:AB. If the nature

of proflle y does vary al-ong lts LengEh Ney wou1"d have to be redeterrnLned

for various posltlons. The nethod based on the nunber of maxima would be

easiest to use Ln this situatlon.
In practice it is the number of independent points Ne for the cross-

correlation of proflles x and y that is wanted, and thls rny not be the saue

as elther Nex or Ney. A good approximation for the effective nunber of lnde-
pendent points can be found from the correlation length nethod (Awe, 1964)

lf equatLon 5.7 is repl-aced by

L = Xrx(d).ry(d) ....5.8

where rx(d) and ry(d) are autocorreLation coefficlents of profiles x and y

respectively. lhe sunrmation Ls carried out onl-y for the central posltJ.ve

values of both rx(d) and ry(d). Tabl-e 5.2 Lists Ne values found this way

for varioug cross correl-atlons.

Table 5.2 Nuurber of lndependent points for cross correlatlon

xony Nx*"=TL
From correl-ation

length
Nex Ney

Fron maxima

Nex Ney

R197 :

R197 :

R67 :

R197 i

R67 :

R120 3

R197 :

R197 :

R197 :

N626

N280

NoRlfs00

NORMsOO

8370

8370

8370

T475

P480

4L

4L

28

20

83

73

51

36

60

5.6

7.4

1,0

1.0

6.8

6.7

7.2

7.6

7.6

35

28

67

L97

10

18

27

26

26

27

27

t0

27

10

19

27

27

27

4T

30

67

197

9

t7

28

25

25

28

28

r6

28

L2

16

28

28

28

28

28

45

134

10

L4

24

26

24
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For the correlation of R197 on N626 the posltion of rnaxlmum correlation
is in the left ha:rd part of N626 (fig. 5.6), and for R197 on N2B0 the posf-
tion is the same because N2B0 is the l-eft hand hand end of N626. Ilowever

the nunber of independent points Ne (Table 5.2) ls different for the two,

effectively ldentical, correlations. The difference arlses because the

autocorreLation length values used throughou! Table 5.2 for Ne (and Ney)

were those of the ful1 l-ength of profile y. The right hand part of N626

(Fig. 5.6) contains general-ly shorter wavelengths than the left hand part and

the short wavelengths contrLbute to the short correlation length, L = 5.6
(table 5.2), It ls onLy the left hand part of N626 that ls relevant for
the poeition of maxl-mum eorreLation and the correLatl-on length for that part
(N280) is L = 7.0 (Table 5.2). Strictly the value of L, hence Ne, should be

calculated with onl-y the exact 197 potnts of N626 or N280 used at the maxLmum

correlatLon posltlon, If this vas done for every step of r(d) the value of
Ne couLd change throughout the correlatlon sweep.

Once the effective number of independent points ls known the standard
z-transformaElon test can be applied. The confldence llmlt,s for any vaLue

of r can be found or the confidence lin:its fcr noncorrelatLon can be deter-
mined. The latter ls probably nrore useful. The noncorrelatlon Level Ls the
maximum value of r which would be expected if the correlation between the
proflles was zero. Flg, 5.8 shows hor,r th.e 952 confidence noncorrelatlon
leve1 varies wlth the number of Lndependent points. This 1eve1 will be used

subsequently and the vaLue of r for it will be referred to as zr.
To deternine zr the value of Ne must be speelfted. As the discussion

above lndicates, several alternative methods for estlmatlng Ne are avall-able,
and the possibllity of varlatlons of Ne throughout a cor;eLation sweep must

be recognLzed. A pragmatl.c approach would be to use values of either Nex or
Ney rather than do a full anal.ysis for every value of d. The sirnpLlficatLon
ls reasonable because 1f elther profile contal.ns obvious changes of wave-

length or anrplltude structure wlthln its length lt should not be considered
as a whole for correlatlon study,

The correLation between two profiLes'Ls determlned nainly by the rnost

random proflle (Bartlett, 1935) so it would probably be sufficienL to take
the greaLer of Nex or Ney for the value of l{e. If holrever Nex and Ney differ
considerabl-y caution Ls required. The data in Fig. 5.9 lllustrate it. For

R67 eorrelated with 8370 different methods for deternlnlng Ne give a range

for Ne of 9 to 12 (Table 5.2). This glves a range for zr of 59 to 55

(fig. 5.9). However for R67 correlated with NORM50O the ranges for Ne and

zr are 10-67 and 55-20 respectiveLy. For zr - 20, which is deterin1.ned fron
N0RI'I500, 4.57" of the calculated r(d) values are above zr; in good agreement
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wlth the expected 5%. The value zt = 55, deterrnined from R67, would give

a nisleading iupresslon of the signlficance of the correl-atlons. This

example is adrn:ittedly extreme and correlation between profiles such as

N0RM500 and the others would not normally be atteupted. Nevertheless it
il-l-ustrates the generaL princlple that correlation will be deterrnlned by

the most randon prof1Le.

The method used to determlne Nex and Ney ls a natter of choice.

Values determioed frour el-ther the number of rnexima or the correlation
length method are sfunllar (Table 5.1 and 5.2). The shortest wavelength

nethod is probabl-y less useful as lt ls too dependenr on the srnallest

features (Table 5.1). Ttre correlation J-ength urethod is quantltatlve but

the vLsual nethod based on the number of maxima shouLd be adeguate and

1s easy to apply to onJ-y the relevant sectlons at a given a1-ignment positLon.

It wlLl be used ln subsequent appllcations.

5.3.3 Second Eoment results

The numerLcal correlation tests were applied to several of the magnetlc

anouraly profile.s of the Southwest Pacific Basin dlscussed in the previous

chapter. A large nurnber of differenL correlations rqere calcul-ated but to
better ilLustrate the detalls of the results exauples from on1-y a few diffe-
ren! correl-atlons are presented. They are typical- of the results obtalned.

The eorreLation between profile R and profile B (flg. 5.10) illustrates
nany facets of the numerLcal method, The maximum value of r(d) for R197 on

B37O (Fig. 5.10A) occurs for the alLgnruent position at whlch the profiles
are vlsualJ-y very simllar. The naxlmum correlation, r = 51, ls well above

the non-correlaclon level- r = 32, and there is only one acceptable allgnment

position, More speciflc correlation can be obtalned by breaklng R197 tnto

ssnller pieces and streeping then along 8370. Flgs 5.10BrC show that the

maxinum of r(d) aLlgns the pLeces where they obviously flt. The peak r(d)
values are higher than for the l-onger sweeping piece, but the fluctuations

tn r(cl) are greater. Since the swepE piece ls short the number of indepen-

dent points is enall- and the nou-correlation 1eve1 is higher. The best

fitting posltions are clearly non-zero but there are also other positions

whlch statlsti(:ally are correlated. The longer sweepi.ng se-ctlon R197 gives

more unique a'l ignment.

The advantages of short sweeping sections are illustrated by the

profiLes ln Flg. 5.11. The rnaximum correlation of 69 is weLl above the non-

correlation level 32 but Ls lors consldering lhe appearance of the profi-les.

If pieces A and B of R197 are swept separately each give r = 100 because
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RL97 and X207 are identical- apart from 10 points artificial-ly added ln the

niddLe of X207. Extra sections, or misslng sections are conrmon in profiles

which cross fracture zones. The onl-y reliable way to detect Lhern ls to use

short sectlons.
The numerical correlation ls not very sensitlve to very snaLl- features.

For instance in Flg. 5.10 removal- of the characteristic but sna1l anomaly 33

from profile R67 changes the peak correlatton with 8370 by only three.

Sinllar small changes were obtained with other correlations using R67. Wtth

longer sectionsr e.g. R197, the smal1 peak ls even less slgniflcant.
Differentlation of the profil-es wouLd arnplify srnall- peaks but lt compllcates

the statistical tests for the sigoificance of the calculated correlation
(Yul-e, 1921; Bartl-ettr 1955) o .

Fig. 5.12 shows one of the .few cases encountered ln which the aLlgnment

posJ.tlon determlned by nunerical correlatlon was not at the preferred vlsual
posltlon. The correLation of 36 is only Just above Lhe non-correlatlon
l-eveL (32) but it ls the only statlstically acceptable posltion. The preferred

positlon (Ffg. 5.13) gives r = 25. It ls cLear that R197 is compressed rela-
tl-ve to T475. If R197 is progressively stretched the nuximum value of r at

the preferred correl-ation position varLes as tn Flg. 5.14. The number of

maxirna ln R197 are not altered by the stretchLng so the effective nuniber of
poJ-nts lsnrt alLered. Eence the rise in correlation from 25 to 76 ls very

significant wlth respect to the non-correLatlon l-evel of 32.

Profiles R197 and 8370 (Flg. 5.f0) provide further evidence of the

lmportance of horizonti.l scale. R197 on 8370 (Fig. 5.10A) gives r = 51,

but a decrease in the J-ength of R197 by only 6% wLLL lncrease r to 78, which

is comparable to the values obtained from the short sectlons. However the

scale variation ls not trniforml-y distributed. For R67 on 8370 (fig. 5.10C)

the maximum value of r, 84, is obtained for 2% decrease in the l-ength of R67

whereas for R120 on 8370 (Fig. 5.108) the maxlmum, r = 81, ls wLth a 52

decrease ln R120.

Valuable data can be obtalned from onLy one profile lf that profile
crosses a fracture zone ln a directlon which produces dupLlcation of anomaLles.

Fig. 5.15 shows the previously discussed ELT23 proftle across the Talroa

fracture zone. The dupllcation of anomalies 27-31 ls conflrured by sweeping

one set of the anomalies along the full- profiLe. The pl-ot of r(d) peaks

(a = 76) exactly'^rhere the profiLes would be visual-1y al.lgned. The r = 100

peak 1s where the short section is aligned with itself. Varying the I-ength

of the short sectlon indicates that the best fit ls obEained with no scale

variatlon.
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The ELT23 profile (Fig. 5.15) al-so il-l-ustrates the problem of data gaps.

The correlation value of. 76 was obtained with the data gap replaced by a
straight line betrqeen the known val-ues. Replacing the gap rvith vaLues equal
to the mean of the courplete profile gives r = 70. Neither uethod ls satls-
factory since each effectively inserts an anomaLy structure whlch may not
be present. A possible alternative ls the om:ission of any data gap terms

from the sunrnations in the caLculatlon of r(d).
It was mentioned earlier that to retaln the range t 100 for r it is

necessary to use the mean and variance of only thaE part of the longer
serles being compared at any given vaLue of d (Flg. 5.16). when thls ls
done care has to be taken because as Fig. 5.f6 shows it is possible to get
hlgh va1-ues of correLatlon for posLtions at which the section CD l-s not
typtcal of the fu1-1- length AB. Ttre probLem Ls usual-ly great,est for short
sweeplng sections against relatlvely t'flatrt sectlons of the Longer proflLe.
The propertles of the full length AB can be used in place of those of CD

to glve what will be referred to as a non-normalized correlatlon eoefflclent.
severaL trials have shown that it is generally not satisfactory. The

resuLts can be very variable wlthin a sweep (rig. 5.17) and r Ls not
restricted to t 1 (Flg. 5.18).. The results are most extreme wlth short
sweeplng sectlons.

5.3.4 AppllcatLon to fracture zones

The aLm of the numerical correlatLon study was to study the technigue,
not to ldentify correlatlons. However the numerical results had an
influence on the anomaLy lnterpreta:lon of the Toarahi and Rangtrua fracture
zones (flg. 5.19). The anomaly ldentifications had Een;gtively been made

prior to the appllcatlon of the numerlcal- nrethods, but the numerical results
provided the confidence requlred to name the fracture zones.

The fracture zones were lnvesLlgated numerically with sections of pro-
files A408, v16 and T (Ftg. 5.19). pieces of each of rhese profiles (Fls.
5.20) rrere swept along the other profiles but only the peak values of r(d)
are discussed. In al-l cases the lengths of the pieces swept are short so

the statisLical uncertaintles are conslderable. The correLation of 65 for
section A*B of V16 on 4408 supports the anonnaly Erencls between V15 and A408

shown in Fig. 5.19. The duplication of anomalies on VL6 ls confirmed by the
high correLatLon r = 74, of A on B, and ttr.elr identificatLon as:rnomall-es
32L-32 is shown by T on A and B respectlve.ly. Varying the lengths of the
sectlons will- ralse alL three correl-ations to 85 or more, cl-earl'l above the
noncorrelation level of 65. The identiflcation of the southern set of
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anonaLies on A40B as anomalies 32A-32 ls confirured by T on D and B on D.

The vlsual uncertainty of sectLon C of A408 is also reflected in the numerl-
cal resulEs. All the correlatlons with sectlon C are relatlvely low and

numerlcal-ly it is not cl-ear whether or not it ls anomalies 32A-32.

5.4 FIRST I"lOI"{E]IT CORRELATION

If the alignrnent position for maxlmum similarlty of two profiles is
determined numerically the position may depend on the numerical urethod used.
In an attenpt to see lf the type of coefflcient is iurportant another coeffl-
cient was selected for detalled conparlson with the second moment method.

The coefficlent chosen was the flrst moment coefflclent described by Gibson
(f950). It ls referred to as the first moment coefficient because lt involves
surnstation of single terns, whereas the second moment nethod involves strrmna-

tion of products. The flrst momenE nethod was chosen for the detaiLed con-
parison prfinarlly because it aLso gLves correlatlon values in the range t 1.

5.4.L The flrst moment nethod

The flrst moment correlatLon coefficLent can be defined as foLlows.

nod[x(t) - rx]
1Ndx=* [
^' l-=l

where rox is the mean of
to zero mean and scaled

serl-es

the series, Each tern x(1)
by the mean devl-atlon dx to

....5.9

l-n the series ls adJusted

give a nerr norrnllzed

xn(i) _ x(1) - nr<

dx
N

It can be shown that f, :nr(l) = 0 antl f, nod[:ar(l)] = 1. In a similar way
i=l 1=1

series y(1) is converted to series yn(i). Let s(i) measure the slnrllarlty
between tr.ro values:m(i) and yn(l) such thaE the modrrlus of s(1) stifl egual

the rnoduLus of the small,er, and such that s(i) wi.l-l be posltive or negative

accordingl-y as nx(t) and ny(1) are the same or opposite slgn respectlvely.
Thls may be wrltten

....5.10

....5,11s(1) = 0.5 mod xn(i) + yn(i) - mod :m(r) - yn(l)

The first momerrt, correlation coefflcient rf ls defined as

lNrf =* [t* i=l
s (i) ....5.12
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The coefficient rf, like the second moment coefflcient r, varies between
I 1 wlth * 1 for perfect c.orrelatlon and zero for noncorrelaEion. The coef-
ficlent can be considered as being nade up of trvo parts: (l) the flt, due

to terms when:m(i) and yn(i) are of same slgn; and (2) the nonfit, due ro
terms which differ ln sign. This gives

rf=fit-nonfit ....5.13

Low correlatLon arlses rshere the flt and nonflt are sfunll-ar, high correLatlon
requlres both good flt and Low nonflE. The coefflcient rf can be calcuLated
at different alignment posLtions of the profiles, givLng rf(cl), which is
anaLogous to the second moment r(d) described previously.

If serles x(1) and y(i) are both norinally dlstributed 1t can be shown
(Glbson 1950) that the first and second moment coefficients are related as

follows.

(1-rr2)2=!-12 ....5.14

Both coefflc{ents wouLd rank normeL data slmilarLy, but they may differ wlth
non-normal- data, especially if there are very dlvergent pol-rrts. The second
moment nethod involves nultipLylng palrs of terrns whereas the flrst moment

always takes the smaLler of the t!f,o terxns. Thus the flrst moment nrethod

should be less affected by l-arge peaks in only one of the profl1es.

5.4.2 Flrst m-oment resul-ts

Most of the proflle correLatLon-. studied wlth the second moment rnethod

have al-so been done wlth the f irst moment method. The .{ tscusslon whLch

folLows eoncentrates on the dlfferences and siuilarlties of the results
obtalned wlth the two nethods. As before onLy a Lfunited number of examples

are discussed.

An example of the way in which the fit, nonfit and rf vary with alignnent
posltlon ls shovrn ln Fig. 5.21. Positions at vrhl-ch flt is maximuro are usual.Ly

aLso positlons of l-ow nonfit. For perfect correlatlon (rf = 100) the agree-
ment of Lhe profiLes would have to be exact (f1t = 100) and the dlsagreemenc

would have to be zero (nonfit = 0). In practice the amount of disagreerDent

was usua.lly much closer to ldeaL than was the amourrt of agreenient (fig. 5.22).
Fi-ts of more than 70 were rare and the maxlmum was only 76. Nonfits less
than 30 were conmon and the positions of uraximuru correlation, 1.e. maximum rf,
usually had nonfit Less than 10.

The correlation between two profLl.es varies vrLth positJ.on in a slnJ.lar
way with both the first and second moment coefficients (Flg. 5.23).
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Equation 5.14 predlcts r > rf and this was so for the highest eorrelation
of every pair of profiles compared (Fig. 5.24). For lesser maxima of some

pairs r was not always greater Lhan rf (fig. 5.23) but the correlation at
sueh positions was usually 1.ow, probabl-y noE nonzero. Throughout the fu11
length of a correlation sweep the rel-at,lonship bet,reen r and rf usually
agreed reasonably wlEh rhat expected cheoreticaLly (Fig. 5.zs).

For every pair of profiles examined the best alignnent positlon as
defined by the maxinum numericaL correlatl_on lras the same for the two
methods. llowever the positions of second best, thlrd best, etc., were not
always the sane (Fig. 5,26),

Horizontal scal-e varl-ation has a signifleant effect wlth both the fl.rst
and second momenr eerhods (fig. 5.27)

The probLen of good correlatlon when the sweeping section is allgned
with a portion of the long record that ls aLmost fLat is still- present ln
first moment correlation. As wlth second moment correlation the properties
of the full Length rather than of just the particular plece of the longer
record that is being correl-ated ean be used - giving what has been referred
to a non-normal correLation. The non-normal vsrJ.ues obtained throughout one

correl-atlon sneep can be sirnilar Eo the regular values but substantlal dlf-
ferences can also occur (Flg. 5.2S). The variability of the results depends

on the partictrlar records being correl-ated (Flg. 5.29) but the fLrst moment

results are much less extreme than the second moment resul-ts (fig. 5.30).
The effect of non-normalLsation is, as would be expected, more pronormced

for short sweeping sections than for long sectlons, e.g. compare R66 and

R197 on T475 (rig. 5.30).
The advantages of shor,: sweeping sectLons have been diseussed ln the

section on second troment results. The same disadvantages apply wjth the
fLrst moment and the resulEs are similar. Short sectlons Eend to give higher
correl-ation valuesr e.B. compare the rf values of R66 and R197 on T475

(Fig. 5.30). llowever, as wlth the second moment, more positions of hlgh
correlation are found so there is less uniqueness in matchlng the profl-les.

To concLude: Al-1 the cornparlsons of first and second moment results
lndlc.ate that the two correlatlon eoefficienLs produce simllar resulte.
The flrst moment is nore subdued with irregular data but for both methods

the length of the sweeping bit and horizontal scale varlations appear to
be the critlcal- factors.
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5.5 SY}T"IETRY

5.5.1 Introduction

A sequence of normall-y and reversel-y magnetized bl-ocks symetricaL
about a cenLre need not produce symmetrical nagnetic anonalies, but the
orientation of most presentJ-y active spreading centres is such that
synmetrical anomalles are produced (Schouten, 1971). Thls ls fortunate as

syrnmetrLcal nagnet.ic aaomaLies have been the keystone of the seafloor
spreadlng concept. Since the first resulte of Vlne and llilson (f965) at
least one new active or extinct spreading centre has been ldentifled fron
nagnetic anomalLes every year (e.g. vine, Lg66; schlich and patriat,
L967; Dlckson et a1., 1968; Demenlrsk-aya and Karasik, 1969; Morgan and

Johnson, L97Qi Bergh, L97L; Ben-Avraham et al., r97z; Hayes and RingLs
1973). rn sor€ cases (e.g. Larson et aL., 1968; Bergh, 1971) new cletailed
surveys produced the requlred data, but in other case6 (e.g. vine, 1966,
Pitman et al., 1968) sufflclent data had been available for some time.

It ls teu'pting to speculate that the fallure to recognize some cent,res
earlier was due !o the dlfftcultles of recognizi-ng synrnetry in a nagnetic
anomaly proflle. Once a symletry centre has been narked it is usua1Ly easy
to identify the matchlng anomalies, but the first ldenttficatlon of the
centre appears to be dependent on pointers such as: a bathyrnetrlc ridge,
earthquake epieentres, large anpl-itude short wavelength anonaltes, the now
well-known central posi-tive anomaly, and predict1ons from adjacent areas.
The essence of the problen is - glven a profile, ldentify in lt two
identlcal (slmilar) sets of anourl-ies where one set is ln lnverse -;der Eo

the other. It i-s baslcally a correl-ation problern simllar to those dis-
cussed prevlously and subject to the sanre llmltations, but the required
lnverse order of one set addri problems. In the Literature a comnon method

of presenting eymmetry is to ehow two prof iJ-es, one the rn:irror ftnage of the
other, and l-abeL the correLated anomalic.s of the profiles. The method

subtly enhances the syrouetry because every anornaly is presented twLce so

twiee the number of correlations are shovm, i.e. the information is doubl-ed.

Strictl-y the proflle. shoul-d be spllt about the centre and one hal-f presented,
corre-'l-ated wlth the other hal_f .

Nu.merical- correlation rnethods deseribed previously are applicabLe to
the symnetry problen so a brlef study has been made to assess their useful-
ness. Since part of the evaluation of rhe results is judgenent of how the
numerical resuJ-ts compare \rrith vlsr:aL estlmates some tests were done with
students.
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5.5.2 Student results

The student tests were simllar to those described in section 5.2.
Different students were used. They were given the dara of elLher
Flg. 5.31A or 5.318 and asked to mark any symetry centres and number
tnatched anomalies either slde of the centre. Two blackboard examples were
done, one wlth a positlve anomaly as centTe the other with a negative.
There !'tas no mentlon of onLy one slnmetry centre per proflle. The results
for the two data sets (Flg. 5,32) are quLte different and rsill be dlscussed
separately.

For FLg. 5.32A an average of two centres per profile were picked, but
al-together 31 different places were selected in the three profiLes. In
generalr detail was concentrated on ancl urAtched anopelLes were not extended
far either slde of the centres - the linits shown in Tlg. 5.32A are the
maxlmum. These proflles had been exanlned prevlously by several geophysi-
cists but the good eentres cl, c3, c5 and cg had not been noticed,
ptobably because a knowledge of the bathyrnetric structure was lnfJ.uenclng
their cholce towards the area of centre c9 ln profile B, centre c4 tn N

and centre c10 in EL. Thls appears to be a good exampl.e of the bLas of
preconceived ideas

OnLy 23 students recei-ved the data of FJ.g. 5.318 but the results
(Flg. 5.328) are sufflcient to indicate substantlal- dlfferences from data
set A. Fewer centres were picked; onJ_y one other than rrthe centrefr Ln
ELT 27 and two in ELT 19. The "success'r wlth ELT 2l is good but the
ttfal-lure" with ELT 19 ls surprlslng. Inforrnal dLscusslon with ihe students
Later lndLcated that the splkeyness of the proflle.EtT 19 troubled them.
As rvlth data set A, not nany ano?n'lies either slde of a centre T.rere usuaLLy
plcked, but six students marked the fulL length of ELT 27. That profile
ls the same as profiLe EL of data set A, except for the "errorsrr in EL at
c6 and to the left of clo. rt l-s obvious that such srnall thlngs,
especially the one in the central anomaly, had a cruclal- effecb

The student correlatlons in sectlon 5.2 suggested that inexperience
lead to lack of success Ln correl-atlng anomalles betrrreen profll.es. The
results here indtcate that inexperLence lncreases perceptlon. Although
large scaLe symmetry such as in profiles ELT 27 and, ELT 19 was not well
plcked smaller scaLe features were conslstently seen. lhe centres C1, C3,
c5 and c8 are certaln!.y as convinclng as nany in the literature. The
ready acceptance of nore than one syru[etry cenLre per proflle is i-nterestlng.
Attenpts to identify symnetry centres on the franks of other syrmetry
centres (rldges) are not numerous in the li.terature. It ls interestlng to
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conslder what the resuLts wouLd be with an unbiased approach concentratlng
on short sectlons and detaiL.

5.5.3 NumericaL tests for svurmetry

Symmetry in a profile can !s nrrmerically tested with a modlflcation of
the previously descrlbed nethod for correlatlon between profiles. A section
of the proflle ls selected, inverted and swept along Lhe parent proflle.
lhxirna in the correlatlon coefficient indicate positi.ons at r.rhich there are
anomalies sinillar to but in reverse order to those in the sectlon selected,
The sweeping sectlon need not contaln the centre of syruaeLry. The method
has been applied to the profiles N, B, and ELTII of Fig. 5.32. As the
primary aim was to assess the usefulness of the numerlcal method ln compari:
son with visual methods, attention was concentrated on the centres selected
by students (fig. 5.32). The second moment correlatlon coefflcient r was
used, and the noncorrelation Level zr deternined from the autocorrelatLon
length of the sweeplng section.

rn profile B the students chose three centres (Flg. 5.324). The
centre C3r for exampLe, ls tested numerical-ly by selecting just Ehe sectLon
of proflJ-e over which students narked anomalies either slcle rif thc centre,
1.e. section A of Fig. 5.33. When this section is inverted and swept along
the parent proflle the maximum correlation oecurs at the symnetry centre.
The correLation, r'= 54, is well- above the zero 1evel zr = 36, but there are
two other alignment. positions rvith r = 48 arrd r = 45 respect1-vely whLch are
also non zero. llhen Just one side of the symetry centre (Flg. 5.338) ts
swept a1:ng, the correLation at, the synmetry centre is hLgher (r = 66) and
non zero but there is a posltion el-sewhere for which r = 86. The centre
c2 (rrg' 5.32A) ylelds hJ-gh correlarions when elrher one side (Frg. 5,33D)
or both sldes (Ffg. 5.33D) of 1t are swept along. llowever for section D

there are three other positions wlth r ) 80, one of r = 90, and for
section C there are correlations of, 66 and 58 el-sewhere. Ihe most popular
student centre, cl, (rig. 5.324) ylelds coirelarlon welL bel_ow the zero
leveL at the chosen centre.

The nunerical results for profiLe N (Fig. 5.34) are similar to those
of profiJ-e B. For both centres C5 and C4 the maxlmum correlation is at
the slmnratry centre but ln each case there are two other places with corre-
lations above 55. Other sections of proflle N (Flg. 5.35) show that non
zero correi-ation can be achleved in several pl-aces even with qulte long
inverted sectlons (Fig. 5.358).
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The numerical resuLts wlth profiJ-e ELT27 (rig. 5.36) are more declsive.
For every test section the positi-on of maximum correlatlon is the
rrexpectedrr positlon, and ln each case the correl-atlon is well above zero
leveL. For section A, the cornplete length of one side of the symrnsg3y

Pattern' there I's no alternative position that is non zeto. For the other
sections there are alternattve non zero posltions but onLy for section D

are the alternatl-ve correlations more than rnarginal-1y above the zero level.
Section C lLLustrates how syrnmetrical- anomalies can be identified without
aetually ldentifying the syormetry centre.

It has been shorsn prevlousLy thaE horizontal seale varLations can have
a crlticaL effect on nunerical conel-atlons betr^reen different profiLes.
siurllar effects can be expected wlth numerical tests of synneEry. The
effects can be eurployed to deternlne scale varlatlons either sLde of a centre.
Proflle ELT27 (Fls' 5.36) illustrates it weIl. For secrLon c the correlatlon
rlses to 70 for a 4.52 decrease ln the length of c. on the other hand, for
section D the hlghest correlaEion (r = 83) is produced wLth a l0lz increase
ln length' For sectlon A a decrease of 5Z produces the maximum eorrelatLon
but the change in correLation is only from 56 to 58. section A conLalns
sections c and D and since they require scale changes ln opposlte cllrections
the sura1l change in correr-ation for section A is not surprlsing.

5.6 CONCLUSIONS

rt cannot be denled'that visual correlation has been very successful
ln marj-ne geomagnetlc research, but it is clear that the nunerical corre-
lation n"thods Lnvestigated ln this study could usefully supplement vlsuaL
methods. Particular aspects in whLch numerlcaL nethods can overcone visual
difflcuLtles are as fol-lows.

Preconceived i'deas: without doubt a crucial- factor in vlsual corre-
lacion' Nunerlcal methods Largely overcome the problem. However, with a
large amount of data some element of preconceptlon is probably requlred as
it is very time consumlng to correl-ate successive short seetLons of every
proflle with the fu1L J-ength of every other profile. rn symmerry analysls
of a slngle profile it is nore inportant that conplete objectivi.ty ls
retaLned by sweeping successlve sections of the profile rather than Just
the parts expected to be symmetrical. Numerl.cal correlatlon obviates the
need for pointers to symmetry such as a bathymeLrlc rldge.

Preal-ignrnent of proflles: student results and the l-iterature indicate
that thLs has a slgnlficant influence. Numerical correlation is not
influenced by it.
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The scale aE which profiles are p1-otted: Important vlsually, but not
numericaLly. hwever the actual amplitudes of the anomalies can be inpor-
tant in numerlcal correLation. With short sweeping sections it is possLble
to get hlgh correlations with sections of the longer recorcl which do not
have what aright be consLdered signlficant anomaties. Crtteria for consl-
dering on]-y sectlons with anonaly arnpl-ltudes above certaln 1evels could
easl-ly be incorporated in a numerlcal system.

Data gaps: A problem for both visuaL and numerlcal methods. The

advantage with a numerical system is that lt need not lntroduce any anomaly
structure ln the gap, something which visually i.t is difficuLt to avoLd
dolng.

There are three aspects ln whlch visual correl-ation is apparently
better than a sinrple nuruerical- correlation system; (1) surall buE charac-
teristlc anomaLies, (2) horizontal scal-e variatlons, and (3) mlssing or
extra sections. Visual comelations presented ln the LiteraEure frequentJ-y
use small featr-ues arnld larger ones. SometLmes their smallness is considered
diagnostic, som:times they cause si-ight sp1-its Ln najot anomalies, other
tiures they nake an otherwise regular sequence of anomelies particularLy
dlstinctive. lTre student results indicate that the use of smal-l features
is not confined to nthe trade". The numerical nnethods used in this study
are not sensitlse to very snal1 features. DifferentiatLon of profiles to
amplify sna1l peaks has been used in visuaL correlallon (Avery et a1.,
1968). Since iE al-so aurpllf ies I'noisett in the recordg and complicates
statistlcal tests differentlation ls probably of litnlted use Ln a siurple
nt'merical correlation system. Mathematlcal methods for Lnverting an anonaly
profLLe to give a proftle of magnetlzation (Bott, L967; En1lia and
Bodvarsson, L970; Bott and Hutton, 1970a; Schouten and l1cCanry, L972) cart
be used to anplify srnal-l anomalies, but the validlty of the technlque ls
a subject of mr:ch dlscussion (e.g. Bott and llutton, 1970b; EnlJ_ia and
Bodvarsson, 1970; van den Akker et al., 1970; Blakely and cox, l972ai
Woodward, 1973). The problem is essentially the same for visual- or rnathe-
natlcal rethods - does d partlcular sma11 anonaly reflect regular crustal"
structure or is it Just noise? Consistent appearance on several proflJ-es
1s (or shouLd be ) the most funportant, criterion. Stacking of proflles
(Keen, 1969; Blakely and Cox, L972arb) will ellnrinate nolse and enhance
conslstent anornalies but horizontal scale variations can cause difficulties
(Blakel-y and Cox, L972a) ,

I{crj.zontal scale variation ls probabLy the most lmportant factor J-n

a slrnple numerical correlatlon nethod such as that studled here.
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Varlations in length beLween two proflLes by 20% or more do not appear to
slgnlficantly affect visual- correLatlon (Vine, 1966), but even a S'A dtf-
ference can substantially affect numerical correlatlon. rt is not
difficuLt to numerically alter the scale of a profile but if any scal-e
varlation changes withln a profile lt is nore dlfficult. Numerlcal corre-
lat'Lon can however be used to lnvestigate scale varlation ln profiles.
Since correl-ation effectively uses the ful1 waveforn lt is probably better
than least squares analysis of the spacrng of anomoly peaks.

The use of short sweeplng sections partially overcomes scale variation;
it also helps when there are nisslng or extra sectlons ln the longer
proflle. Such sections are common when tracks cross fracture zones. Ihe
problem wlth a short sweeping sectlon is that Lt lncreases the likeLihood
of there belng several posltions of high correlation. The shorter the
section the wlder the confldence lirnlts on the correl-ation coefflclent so
1t is dlfflcult to choose between alternative positlons. VisuaL correLation
is also Less reliable when only a short sectLon is compared.

CalcuLation of a nr:mericaL vaLue of correLation for any position of
profiLe allgnnrent ls relativel-y slmple. Determlnlng the statLstlcal signi-
ficance of the calculated value ls more difficuLt. The. inportant poLnt is
that the slgniflcance of any correlation value depends on the nature of the
profl'les. A correlatlon of 45 cal-culated with 200 points may be slgnificant
in one case but may not be in another, It Is the number of independent
polnts that ls iurtrlortant.. As dlscussed. in sectlon 5.3.2, a quick estimate
can be obtained fron Ehe number of ma:rirna in the sectlons belng correlated,
and a more qu:lnti.tatlve measure can be obrained fron the autocorrelatlon
function of the proflles. hhen the number of independent polnts is known
the standard statistlcaL tests can be used to determine the confldence
linits of any cal-culated correLation value. Some assessment of the confi-
dence limlts can, and should accompany any numerlcal value of correlation.
Wlthout lt l-itt1e Progress has been made towards objectl,ve assessment of
the correlatLon.

This study has concentrated on the first and second, moment correl-ation
coefflc{ents. ALternative coefficients have been suggested by, for example,
Burnaby (1953), Francheteau er aL. (1969) and llarrLson (1971). Mosr forms
of coefficlent wil-1 be substantially affectett by horizontal scale variation
and it is probable that the exact foru of correlation coefflcient is not
important. The conventional second rnoment coefficlent has the advantage
that lts statlstical propertles are lrel-l known.
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Nunerlcal correlatl-on is usefuL for comparJ-ng proflles expected to
be simlLar, but even wlth the nost ideal data eorrelation of rnagnetlc

anomaLy profiles between r,ridely spaced areas can be difficuLt. Thls 1s due

to the nature of the process which produces m.agnetlc anorualies. The forn
of an anooaly profil-e over a partlcular structure depends on the lncllnatLon
of the nr,agnetic fleld and the orlentatlon of the structure with respect to
fieLd; for both the present fieLd and the fletd at the time at which the
structure acquired its uragnetization. Consequently the same magnetlc

reversal sequence at different places on ttre earth can produce anornalles

whlch vary considerabJ"y. Even in a srnaLl area the effects of different
orientations of the anomaly Llneatlons can be very pronounced (Schouten,

1971). The numericaL methods studied here w'il-L not overcome such varlatlons,
nelther will vLsual nethods aparL from the experience of the observer.
Some of the difflcultles are belng overcome with nathematlcal technLques

for effectlvely transforming profil-es to a cormtron slte, usualJ-y the poLe

(Schouten, L97L; Blakely and Cox, 1972a; Schouten and McCamy, 1972), and

lnversion to a proflle of nagnetl.zation is also useful (Bott, L967; Enllla
and Bodvarsson, 1969; Bott and Hutton, 1970a; Schouten and McCamy, 1972).

Most of the methods require ideal data, e.g. no data gaps, relatively
smooth topographlr no diurnaL variatlon errors. They are undoubtedly use-
ful for clarlfying any correlatlons in the orJ-ginal- data but the finaL
concLuslons of most studLes are sEll-l belng drawn from correlations beEween

profiles of some parameter" tr{hen these correlatLons are done vlsually all
the llnlEations of vlsuaL methods stilL exist. Nunrerlcal- correlation coul-d

be Just as usefully applied to the orocessed profiJ-es as to the orlglnal
profiles.

To conclude: Vl.sual nethods of correlation ar-e simpl-e, adaptable, and

successful, buE the fact that they do not provlde a quantitative assessment

of the quallty of any correl-ation 1s a unjor Limltation. Nurnerical corre-
lation methods provl-de guantitative comparisons that are uninfluenced by.

personaL bias and are amenabLe to statistical testing. Flnal interpretatlon
will always be a personatr matter but numerl-cal- coefficients at l"east pro-
vide a precise means of communicatlon for discusslon of the correl-ations.
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Postscrlpt to d:hapter 5

After the work in thls chapter was eompleted and typed an r:npubl-ished

report by Morgan and Loonls (1969) was received. The report descrlbes a

numerical correlation method for determlnlng the spreading rate of a

magnetic anomal-y proflle and for detecting gaps or extra sectlons fn the
proflle. The method is baslcally as foLlows. A nodel profl1-e based on
the reversal t{-ne scale and a chosen spreading rate ls cal-culated, dlvlded
into short secEions, and eaeh section ls slrept along the profil-e to be
i-nvestlgated. The second mornent correlatiou coeffLclent ls used and the
correlation varlues axe presented in an age-offset dLagram, from whlch the
spreadLng rateg and/or presence of discontinuities ln sect,lons of the
profile can be detected. Applicatlons of the technique t,o one profile are
glven.

lfuny of t-he probl-ens encouni:ered and coueLustons reached by Morgan and
Loomls are sir.ii-1ar to those reached in chapter 5. The numerical technlque
produced a saLisfactory result for the visually eotinnted interpretatLon,
but al-so ylelded an alternatlve "unseen" soLuti-on which was Just as satls-
factory' A variatlon of 102 in the model spreading rate, l.e. a horlzontal
scaLe change of L0"/', r,rould drastlcal-ly alter the correl-atlon val-ues obtalned.
Because of sc.ef,-e variation and discontinuities it was necessary to use very
short, sweeping sectlons. They used sections with onLy 24 points and the
data were such that there would have seldom been mo^g than sLx or elght
independent poi.nts. They recognized the signifiearrce problem and wlthout
any analytlcal- tests adopted x = 75 as the minlmum acceptable correLation.
Their overal-l concluslon was that the resul-ts obtalned rilere not as deflni-
tlve as had been hoped, but the advantage of the numericaL technique is that
it ts quantitaE,lve and unbtased.
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CHAPTER 6

I'IAGNETIC ANOI'IALY }IODEL STT]DIES

This chapter presents urodel studies rvhich provide infornation on the
origln of magnetl-c anomalies, ln particular of the southwest Pacific basln,
but in general of the seafl-oor. After a brlef introduction (6.1) the
valldity of the assumed nodel ls exanlned (6,2). Then a revised and extended
rngnetic reversal time scale and its impl-lcations are presented (6.3). The
possibll-ity of using nodel profiles to determlne the position of formatlon
of the observed anomalles Ls consldered in section 6.4, and the thickness of
the source l"ayer of the anomalies is discussed ln section 6.5. Variatlons
ln the anomaly amplitudes are dlscussed i' iectlon 6.6.

6.L IMRODUCTION

The general characteristlcs of rnarine uragnetic anomalLes are now well
known for many areas of the seafloor but the orlgin of the anomalies ls stiLL
not adequately trnderstood. Access to the source ur,aterlal is the prlrnary
difficulty so most dl"scussions of the cause of anomal-l.es have been based on
elther a snaLl collection of sanples or modeL studles of observed anoanlies.
Ifrcdel studies are lmportant because they can be applied to anomal-ies of any
area and so can provide infornation on Lhe sinil-arlties and dlfferences in the
nagnetlc structure of the eeafloor in dlfferent areas. It ls unlikeJ-y that there
will ever be adequate direct sanpling coverage of the seafloor but modeL studles
will provlde the Links between detailed knowledge of a few p].aces.

The essence of model studies is the comparison bf an nbserved anomaly
proflle wlth a profile calculated fron a proposed morlel of the uragnetic structure
of the seafl-oor. A large nurnber of effects nay contrlbute to the anomalies
observed at any place but a nodel cannot easii-y represent then al-1. Consequently
an understandLng of the major factors lnvelved is best obtalned by studying
anonalies frorn areas where possible extraneous effects are nlnimized. The

anomaLles nuobered 25 to 36. in the southwesE ?aciflc basln should be sultabLe.
They are well developed and easily correlated; and che seafloor ls 5 knr or
more deep and rel-atlvely undlsturbed. the studies in this chapter are conflned
to these anomal-ies because the sinple structure of the area should mean that
simple nodels have some validity. The models arrd methods used are l-ess

sophlsticated than those of, for example, Botr and rngles (1972), Blakely
and Cox (L972a), Schouten (1971), and Scliouren and McCamy (1972), h'hil_st
those nethods would have nade this worlc easier and ena.b led rrore cornplex

models to be used the sirnple approach has provided valuable information.
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Ttre basic model- used ls as follows. The anomali.es are assumed to be

due to a serles of bLocks of alternately normally or reversely nagnetized,
material. the blocks are assumed Lnflnite aLong the strike of the anornaly

lineations. The tops and bottoms of the bLocks are f1at, and the sLdes

vertical. Only renanent magnetizatlon is consLdered and the direction of
magnetlzatlon is based on a geocenErlc axial dlpole fleld. The courputatlons
were carried out wlth a program based on that described by HeirLzler eE aL.
(L962). I am grateful to T.M. Geddes for provLdlng the program,

6.2 THE VALIDITY OF TI{E },IODEL

An exampl-e of a caLculated model- proflle is shown In Fig. 6.1. It can
be seen that the simll-arity of the model profile and the observed profJ.les
Ls reasonable. Nevertheless lt would be naive to assume that such a simple
nodel truly refLects the magnetic structure of the seafloor. A discussl-on of
the assumptlons of the nodel follows. The dlscusslon also serves as a revlew
of factors which nay be important to the origin of magnetlc anomalies. It ls
set out as a series of comrnents and repl_ies.

Cosment: The basic assunption of normal and reverse rnagnetization nay
not be valid. Reply: It cannot- be proved that reverse nagnetlzatLon
is requlred (Bott 1967; Emi.lia and Borlvarsson 1969) and typical anomaLles
can be nodell-ed with varying but only positJ.ve nagnetization (e.g. Ilelrtzler
arrd Le Plchon, 1965; Ross 1966; Brakl et al., Lg6gl warklns, 196g).
Especlally in areas of pronounced rell-ef reversals are not requl.red
(Woodward, L973) but there are also places where anything other than reverse
nagnetization would requlre extrenely unusual structure (Ross, Lg66; Talvranl
et aL. t L97L). Reversely ua3netized naterial has been sarnpl-ed from the
seafloor (Cox and DoeLl, 19627 de Boer et al. , L96gi Lowrie et a1., 1973)
and there is no questlon that flei-d reversals do occur (nullard, 1968).
If seafloor spreading is accepted Lt is dtfficul-t to see how reverseLy
nagnetized materLal could be avoided.

Comment: The assumptton of linear bLocks extendlng to lnfinity elther
slde of a proflJ-e is not reasonable. RepJ-y: Provided. the along strlke
length of a block is at least flve times the depth to Lts top the lnfl-nlte
length assumption is a good approximation (Gay, r963). The topographLc
trend of abyssal hills 1s usually paral-Le1 to anomal-y trends (Menard and

Mamnerlckx, 1967; Moore and Heath, Lg67; spiess and Mudle, 1971) and

anonaly llneatlons are usuall-y very J.ong; thus the assumption of Long blocks
ls realistic. llowever pronounced topography such as a fracture zone scarp to
the slde of a profile can have an effect (Rea, L972; Mal"ahoff and !trooL1ard,
L97L). At such places it would. not be reasonabl-e to expect a cLose match

between a model profile and an observed profile, even lf the seafloor clirectly
underneath ls f1at.
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corument: The depth to the top of the blocks is not known. Reply:

Model studies can be used to estimate the depch to the source (e.g. SmelJ.ie,
1956; Naudy, i971) and although nost netlrods are notverysensltlve depths
close to the depth of the seafLoor are usuaLly obtalned (e.g. Ross , Lg66).
It is usually assumed that the upper surface of the rnagnetized layer is
the top of Layer 2, L.e. the basesrent. Adnittedly inodel profiJ-es often have
gradients sharper than those typically observed, but the inclusion of reaLlstic
seafLoor structures would produce effects which would smooth eaLcul-ated
profJ-les. Blocks with tops bel-ow Layer 2 are adequate for anornlies observed
at sealevel (Bott, L967; peter, 1970; peter et al., l97l) but anonaLtes
observed near the seafl-oor require sources at or near the seafloor (Luyendyk,
1969; Larson, l97l; Klitgord er al. , LgTz). There ls arnpl_e evldence (see
Later) that the nagnetizatlon of Layer 2 1s substantial so if sources only
below Layer 2 ate assumed unlform magnetlzatlon of Layer 2 is implied. If
seafl-oor spreading and reversals are assumed lt doesnrt seem reasonable thaE
Layer 2 should be unlformly magnerized (Luyendyk 1969, 1970b).

Conqment: A f l"at top to the block is unreasonabl-e ln vlew of observed
topographic relief of the basenent. Reply: Thls is definitely a valid po{nt
for shallow depths and it can be shown that topograptry alone can produce
anomalies (e.g. vogt and 0stenso , Lg66; Talwanl et a1. , Lg7!). However the
depth to basement for the anomal-ies considered here is 5 lm or more and at
that depth onJ'y extreme topography would have an effect (Hayes and l1elrtz!er,
1968).

Conment: The conflguration of the bottom of the magnetized l-ayer 1s not
known. Reply: The assumed thickness of the bLocks, hence the depth to the
bottom, is a soutce of much debate and r.rill" be discussed nore fully 1.ater.
Any relief on the bottom surface has less effect than that on the upper sur-
face and so probably isntt very iurportant, especialLy for this study where
the depth Eo even the top is 5 km.

Comment: Vertlcal sided blocks are unrealistic. Reply: The faultlng
and tiltlng that is apparent at rlfts (van Andel- and Bowln, 1968; Atwater
and Uudier 1968; Larson, 1971) nay produce contacts between successlve
portions of the crust which aren't vertical. Inc]-inn:d blocks can be success-
fulLy used to model anomalles (e.g. Hel.rtzler et al. , L966; waukins and

Richardson, 1968) but the models are sonewhat complex. Incllned contacts
are realis'tlc but they are not requlred for adequate nodeL1lng of typical-
anonalies.

Comment: VerticaL sided bl-ocks irnply dykes whlch t,eradnate at the top
wlth no horlzontal fLows. Reply: the existence of pillow lavas on the sea-
floor (Ileezen and Hollister, 797I) does suggest some extrusive flor.r of materlaL.
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Thls night produce a layer of nixed polarity florss which could smear out
anornal-ies due to dykes. However nodel studles by l,Iatkins and Richardson
(1971, L972) have shown that flows need not have a great effect. Although
Harrison (L972b) Ehought that the models llarklns and Richardson assumed

r.7ere too sitnpl-e they do show that for an elementary study surface flows
can be lgnored.

comrent: rnduced nagnetlzaLion of the souree layer Ls ignored.
Reply: The availabLe studles of seafloor materlal llkely to be involved ln
produclng anomalies (sunrnarized in Appendix 6.A) indlcate that the natural
reuanent maglreEizatlon (IIRM) ls high, a.nd aLmost certainl"y due to stable
thermoremanent rnagnetl.zatlon (TRM) acquired at the tlne of initial cooling
(Ade-HaLl' 1969). The ratio of permanent to i.nduced uagnetLzation
(Koenigsberger ratlo, Q) is typlcalJ-y grea.ter than 10, so lnduced effects
can reasonably be ignored. The existence of worldwide correlatable anornaly
lineations ls Ln ltseLf support for the importance and stabf.i-ity of remanent
nagnetization.

Conment: The dlrectlon of remanent nagnetlzation Ls based on the
assunPtlon of an axLal dipoLe fleld. Reply: The magnetic fiel-d if averaged
over at least a thousand years will probably have been axl-a1_ dlpolar
(sectloq f.3.f). The blocks considered have wtdths of effectively more than
2000 years so the assuuptlon is valld. It appears that field reversals are
complete, i.e. 1800 lnelinatj.on change (Opdyke, 1972) so the dipole assunp-
tlon ls valld for both normal- and reverse bl"ocks.

Corrm,ent: The nnagnetizatLon is assumed to be uni.forn with depth i-n the
bLock. Reply: The varLation of magnsgization with depth is an iniportant
j.ssue whidr will be discussed more f*-l-ly later. dt this stage lt ls
sufficlent to assume that the unlforn block represents ti,a average magnetl-
zatlon wlthln the depth range of the block.

Comnent: The nagnetization ls assumed to be uniform horizontal-ly, and

sLnce the magnetic properties of naterial-s are affected by petrologlc
properties uniform petroLogy ls lmpl-led. Reply: Petrologic contrasts can
produce anomaLles (e.g. Watkins and Richardson, 1968; van Andel- and Bowln,
1968). At rldge axes and'fracture zones, the on1-y seafloor areas extensively
sampled, there are clearly very substantiaL variatlons ln petrology (e.g.
van Andel and Bowin, 1968; Irving, 1970; Kay et al. , L9701 Tirompson and

Melson' L972). IntrusJ.ve actlvity stiL1 talces place off the axls (risher
et a1., 1968; Menard, t969; Luyendyk, 1970a) and such naterial may vary
petro1oglca1Ly from axlal naterial (e.g. Kay et e1., 1970; MlyashJ.ro et
a1. L9701 Gass and Smewing, L973), Differences ln the petrology of nornal
and reversely magnetized naLerLal have been reported (e.g. I.Ii1son, L966;

lJil-son and Watkins, L9673 tr'Iatklns and Haggerty, f96B). Nevertheless Ehe
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existence of vrorld wlde correLatabLe anomalies argues that despite alL the
possLble disruptive effects of petrologic variations such variations are.not.
of major importance. The possibility that systematic variations in petro-
logic propertLes beEween dlfferent pLate boundaries or tectonic reglmes
(Thompson and lfelson, L972; shido and l"tlyashiro, 1973) nay produce
systematlc regionaL varlations in magnetic propertles is worth consl-derlng.

Corrment: If lt is assumed thaE the norrnal and reverse blocks are a
product of seafLoor spreading the assumed uniform horlzontaL magnetization
iroplles that the fieLd sErength $ras conscant. Reply: The implicatlon arlses
because the magnetization of the source layer ls alnaost certainly due to TRM,

the intensity of which woul-d be proportionaL to the field at the tlne of
coollng (Ade-llaLl-' 1969). Variatlons ln the strength of the fieLcl wlth tine
would thus produce variations in the magnetization of the seafl-oor. Ttre

strength of the dlpoJ.ar nagnetic fleld has varled by up to L00% ln the Last
1.0 nill-lon years (cox 1968 , Lg6g; smirh , !967a3 Kono, l97l) and sin:iLar
varLations occurred ln earLier periods (Snlth 1967brc; Carml-chaeL Lg67).
Fluctuations wj.th periods of a few nllllons of years appear probable and
periods as short. as thousands of years have been observed (cox, 1969;
Bueha, 1970). Current theories of the origl.n of the field lmp1y that short
period osclLlations are J.llce1-y' (A1-1an, L962; Cox, 1968). The probabiJ.ity of
fiel-d variatlons shows that a ','ery goorl match of the ampJ-ltudes of model and

observed profil-es throughout an anomaly sequence shoul-d not be denanded.

Conment: The assuued blocks inpLy that reversals are lnstantaneous.
Reply: At a reversaL tt.: LB0o change in dlrection takes place in 2000 years
or less (NlnkoviEch er a1., L966; cox, 1g6g; McElhlnny, LSTL; opdyke, 1g7r)
and this is effectiveLy instant ln terurs of the seafloor record. The fleLd
intensity decreased to at least 202 durlng a reversaL (Nfnkovltch et al.,
L966; Coe, L967) and the decrease takes place over up to 10rC00 years eLther
side of the reversal (Cox and Dal-rymp1e, 1967). ?he t,ime spae of the reduced
fiel-d coul-d produce some blurring of the edges of polarLty lntervaLs of l-ess
than 1001000 years, but woul-d have littl-e effect on longer lntervals.

Comient: The blocl: moclel assumes infinitely narrow boundaries between

reversaLs. Reply: If the uode of crustal formation at the ridge axis Ls

injectlon of narrow dykes lt ls reasonable to suppose that injection would
not take place exaetl-y into the centre of the prevlous dyke. A spread of
injection is nore 11ke1.y, and this woul-d smear out the reversal boundarles.
There is much discussion of the ltkely lnjectlon wldth, anC it w1.11 be

discussed further later. Injection of a hot dyke nl1L heat the surrounding
materiaL which will- then be remagnetized on cooling. Reheatlng ls unlikely to

extend beyond a fer"r metxes (Harrison, 1968a; Doe11 , 1972) and the resuLt Ls

only an effective j-ncrease in the wldth of the intruding dykes.
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To conclude: Desptte aLl- the lirnltations discussed above the sJ-mple model

of reversal blocks is usefuL. Numerous publicatlons i.n recent years have

shown that slrnpl-e as lt ls it does yield anomalles re-markably similar to
those observed. If simple models can explaln uhe major facEors lnvol-ved ln
the source of anom"lles more sophisticated models can be used later to study

details.

6.3 RXVERSA], TIME SCATE

6.3.1 The S?AC reversal time scale

The magnetic fleld reversal tiure scale of Heirtzler et al. (f968) 1s

defined onLy for anomal-ies out to number 32, approrinately 75 nybp. The

identlfi.cation of anomalies beyond number 32 ln the soutttwest Pacific basln

enables the tine scal-e to be extended. The assumptlons inherent ln the

priociple of deterrolning a reversal tlme scale from marine magnetlc anonalles

have been discussed Ln section 1.3.2 and w111 not be repeated here. The

general agxeemeat between deep sea drllltng results and the Helrtzler et al.
(1968) scale ls sufflcient Justiflcation for proposing an extension of the

scale.

fn practice a tlme scale can be defined from a slngle profl1-e as follows.
A sirnple model of normal and reverse blocks is assumed and the posltions of
the polarlty changes are adjusted until the proflle caLculated from the nodel

blocks agrees with the observed protile to the deslred accuracy. Assumption

of a spreading rate and a date for one polnt on the profile enabLes the

spacing of the assuned bl-ocks to be Eranslated into dates of the fteld
reversals.

Flg. 6.1 sh{rrf,s an observed profiLe from the southwest Pacl-flcr SPAC;

the normal and reverse blocke whlch yield a nodel profile that flts the

proflle SPAC; and the time scale for the bLocks. The dates of the reversals

are given in Table 6.1 overleaf. Justification and discussion of these

dates will occupy the remalnder of thls chapter sectlon.

6.3.2 The basis of the SPA.C tine scale

Although a Eine scale can be deflned fron only one profLle such a scaLe

is much more credibLe tf the anoroaly sequence that deflnes lt has been

wlclely observed. This is so for the SPAC scale of Table 6.1. The anomalies

25 to 32 have been obse::ved in many pl.aces thtoughout the wor1d. The

anomal-ies 33-36, and less tlef initely 37 , are widely observed in the south-

west Pacific basin but thelr exlstence elsewhere has seldom been referred to.
They can however be seen elsewhere as follows.
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Table 6.1 reversal

Anornaly Interval of norrnal polarity (rybp)

25

26

27

28

29

30

31

324

32

33

34-36

37

62.75

64,L4

66.65

67.75

68.75

70.00

71. 60

73.95

7 4.30

75. 80

76.20

80. 75

63.28

64.62.

67. 10

69.45

69.40

7 1.50

72.40

7 4.05

7 5.60

75. 88

90.40

81.55

Anonaly 33 aLthough snall is dlst.lnctlve. Apart frou in the southwest

Paciflc it can be seen ln the north-south lineations of northeast Pacifl'c

(fig. 6.2I), the eastwest li.neatlons south of the Aleutlan trench (fig. 6'28)

and the Indian ocean (rig. 6.3A). AnonaLy 34 is iroplted south of the AleutLans

(Frg. 6.28) and in the Indtan ocean (Flg. 6.3A). Thevhole of the long posl-

tive anomaly 34 ro 36 can be seen in the northeast Paeific (Fig' 6'2A) anil

tentatlvely ln the South AtLantlc (flg. 6.38). AnomalY 37, if present in the

northeast Pacific, is not readlly apparent (Fig. 6.2A) and in the southwest

Paciftc it may be a structural anornaly assoclated with the contifl€rrudl' mArgln'

NevertheLess it will be included in the reversal- time scale. The promLnenE

anonraly nuribered 38 ln profile SPAC shown in Fig. 6.1 can be modelled by a

slrnpl-e reversal bLock nodel, but it is not lnc1uc1ed in the tj-me scal-e because

it is noc seen el-sewhere ln the southwest Paclflc and it ls underLain by

prominent topography (Fig. 6.4).
The spacing of the anomaLy llneatlons in the souchwest Pacifl-c basin

varles across the area, so one type profile r'ras sel-ected from which to

determ:ine the tirne scaLe. The type profile chosen' sPAc (Fig. 6'1) ts a

composite of profiles T and W (fig. 6.5). Proflle W, whlch is adJacent to

profile T, was used for anomal-ies 25 and' 26 because anomaly 26 Is not clear

on proflle T. The remainder of sPAC is profiLe T. These proflles were chosen

because the anomalies ln that area are vrell developed and the lineations

are uncisturbed. The choice was made on the basis of on1-y the uragnetic

data. The bathymetrlc clata for profil-e T becane availabl-e only later and in

retrospect a better profile rnight have been chosen. However lhe choLce

appears justlfiabLe because the SPAC tlme scale glves good linear spreadlng
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rates for other proflles l-n the southwest Paclfic (see laEer).

The model $sed for cornpuEing the tirne scale assuned a magnetized layex

2.0 km thick wlth the upper surface 5.0 kn below sea level, the approxlmate

depth to the seafloor at profile T (Flg. 5.4). The calculated anomaly

profil-e tn Fig.6.1 is what would be observed for bl-oeks formed and observed

rrith a fleld inclination of 90o. The inclination at profile T is approxl-

nately 75o but the difference wouLd have no signiflcant effect on the bLock

boundary positions.
The tlne scale 1s essentiaLl-y deterrnj.ned fron the close sirnilarlty of

profile SPAC to the north Pacific profile NPAC (fie. 6.1). That proflle
(from Raff 1966) is the type profile that Heirtzler et al., (1968) used for

this part of thelr time scale. The scaLe they gave (Heirtzl-er et a1.,

Table I and Flg. 3, 1968) does not match their type profile beyond anomaly 31,

and presumably because of drafEing errors. TtreLr dates for anonalies 25 to

31 gtve a spreatting rate in the north Pactfic of 4.74 cnlp. Conparison of

profLles SPAC aad NPAC gives 4.37 .cmlyr for S?AC. This rate was assumed for
the full extent of proflle SPAC, The Heirtzler et al. dates were takea for

anomalies 25-27 so thoqe blocks were fLxed. The remaining bI-ocks were

adJusted by triaL and error to give a model profl1-e rvhl-ch reasonably matched

proflle SPAC. The dates of the reversals (Table 6.1) were then detenolned

fronr the nodel blocks.

6.3.3 Comparisoa wlth other tlme scales

Flg. 6.6 shows several tlme scaLes rshich have been proposed for the

anomalles beyond nunrber 25. Vine (1966).didntt give reversaL dates but he

asslgned dates to a conposite north Paciflc profile on the assulrptLon of a

uniform spreadtng rate of about 4.5 cn/yr prior to 10 nybp. Hl-s dates are

about 5 ny younger than thosc strown tn Fig . 6.6. It is his composite pro-

file that has become the standard profile. Ileirtzl-er et al. (1968)

det,ermined their polarlty lntervals from iL but the abscLuLe dates were

derlved by compa.rison with an assumed uniform rate in the south Atlantic'

McKenzie and Sclater (1971) lndependently notlced the errors in the

Helrtzler et- al. scale beyond anonaly 31. Using a spreading rare of 4'74 cmlyx

ln the north Pacific they revised the dates of anomalles 31, 32A and 32 and

added dates for anonraly 33 and the reverse-normal transitlon that defines

anonaly 34.

The Lamont scale ls an unpublished revision of the Helrtzl"er et aL. scaLe

and ts used at Lamont-Doherty Geologlcal Observatory'

La:son and pitmat (L972) state that they have extended the lleirtzler

et al. scale and that for their scale "The negatlve iuterval at 82 to 85 nybp

has been added by measuring west of anonraly 32 on Raffrs (1966) north Paclflc

profile at 40o 30r N". Ttrat ls the sEandard profile NPAC and Figs 6.1 and
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6.6 show that their assumed negatlve lnterval wouLd not be as old as they

state. The younger boundary of it would be no more than 80.5 mybp

For the anoualies 25 to 34 the reversal dates of the dlfferenc scales

(excl-uding Vinefs) are trot very di-fferent. Variations between profiles in

a sroall area are likely to be just as large as the differences between the

north and southwest Pacific type profiles. The SPAC dates for anomaly 36

arrd beyond do not agree with those of Larson and Pitrnan (L972) but the

SPAC dates are preferred.

6.3.4 Absolute dates and the Cretaceous normal- l"nterval

In previous sections leversal dates have been quofed to 0'01 ury' WhiLst

the Lengths of partlcular polarity lntervals nay be correct to that accuracy.

absolute ages are very uncertaln.. The dates of the Heirtzler et al' scale

were based on an extrapolation from 3.35 nybp and the other scales are only

revisions relatlve to that scale. Deepsea dri1"1tng results have confirmed

that the tlme scale ls at l-east reasouably correct buf the confirmatlon ls

not detailed. van Andel (Lg72) has discussed the l-imitatlons involved Ln

datLng the oceanic crust from deepsea drilling results and concludes that

a reasonable error estinate for the J0IDES ages in the interwal of lnterest

here *ould be t5 iny. Table 6.2 shorvs data for sites at whlch basement was

reached and the age was expected from magnetlc anomalles at or close to the

site to be ln the r.ange 60 to 85 rnybp. The JOIDES ages are based on paleon-

Lologlcal dates of the .ontact sediment and ln general they are younger than

the magnetlc anomaly dat:s, The differences are greater than the uncertain-

tl-es Van Andel suggested and might reflect lnaccuracies in the rnagnetlc

reversal scale. However it J.s not dlfficult to provide plauslbJ-e reasona

which could explain the rrdlscxepancies".

Table 6.2 Basement ages at JOIDES sltes

Slte Location JOIDES Magnetie

2-9

3-20

5-39

5-4r
L2-LLz

22-2L3

z4-236

25-245

29-283

85

70-72

50

50

55

56

55-60

63

65

N. AtLantlc
S. AtLantlc
E. Paclfic
Equat. Paciflc
Labrador Sea

NE Indian
NW IndLan

SW Intllan

Tasman Sea

81

67

60

67

67

63

68

68

75

Data from Van A^ndel- (L912) and JOIDES (1972arb,c, 1973d)'
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It is possible that the magnetlc anouraly reversal time scal-e could also

be checked by paleoxnagnetic analysis of dated samples from land. OrdinarlJ-y

the land record Ls too discontinuous and datLng lnaccuracies too great to

allow a daCed sanrple of knor.m pol-arlty to be assigned a Partlcular point of

the seafLoor reversal sequenee. Ilowever there is a loug inte:rra1 from

approximateLy 80 to 110 nybp durlng which the field was epparently of constant

norulal polarity. The paleoinagnetlc data for this interval, whlch Ls referred

to as the Cretaceous normal po1-arlty interval, have been dlscussed by Helsey

and Steiner (1969), l'lcElhinny and Burek (1971), Creer (1971) and Irvlng and

Couillarcl (1973). The most complete and up to date corupilatlon is that of

Irving and Couillard (1973) and they state that there are no known reversalg

berween 109 and B2 nybp. If the fieLd was indeed normal throughout this perlod

it provldes an imporLant constraint of the reversal time scale.

The existence of anornaly 37 bnd a reversed perlod beyond lt rnight be

conslderetl equlvoeaL but the existence of the reversed lntervaL immedlately

beyond anomaly 36 ts unequlvocal. If there ls no reversed polariEy beyond

82 nybp the seaftroor reversed period rnust be younger than that' If anomal-y

37 is accepted the end of the reversed perlod beyond iU (fig. 6.1) agrees well

with the 82 rny age of the start of the Cretaceous normal- poJ-arity lnLerval'

If.the longer reversed interval- of Larson and Pitman is taken but correctl-y

calculated fronI{PAC (Fig. 6.1) the reversed interval ends at about 82.5 uy.

nlther $ray the seafloor reversal scale agrees with lrvlng and Couil-l-ardts data.

The Cretaceous'norrraL interval provides only an oLder llldt to the sea-

floor reversal time scal-e. The reversed anomalies could be younger than

82 nybp. llowever the general lack of anornalies beyond anosnlles 36 and 37 ln

the nortl"east Paciflc, south Atl-antlc *Id possibly the north Atlantle
(Vogt and Johnson, f971) suggesEs that the napped anomaLLes extend to the

sLart of the nornal interval and thus the time scale is correcE' Detailed

surveys ln several areas of the antomalies beyond nunber 32, coupled wJ'th deep

sea dril-Llng, could better deflne the upper boundary of the Cretaceous norInal

lnterval. As lrving and Couillard (1973) poLnt out, it ls a potenttally

lnportant global tlne marker.

6.3.5 Short Po1s.ritv intervals

The duration of the nornaL polarlLy lntetval- that deflnes anomaly 33 ls

only 0.05 ruy 1n both ttre SPAC and McKenzie and Sclater (1971) time scales.

fhere are only slx shorter intetval-s in the 171 intervals of the Heirtzler

et aI. tlme scale fronr 0 to 76 mYbP, and none in the 41 intervals of the

Larson and Pitrnan (1972) scale from 115 to 148 nybp. The shortness of this

interval ls slgnlflcant in vlew of the current interesE in statistical

aspects of the duration of polarlLy lnterval-s (Cox, 1968' L969, I97O: Nagata'

1968; Parker Lg6g, Naidu, I97L; Blakely and Cox, 1972 a, b)'
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Models whlch e:cp]-aln reversals of the nagneLtc field Ln terms of

statlstLcaL fluctuatlons In the core (Cox, 1968; Nagata, 1968; Parker,

1969) lead to the concluslon that reversals as a funetlon of time shoul-d

be Poisson dlstribu;ed. Naldu (L968) has shown that the polarity LntervaLs

of the tlelrEzler et al. (1968) tlme scale are Poisson distrlbuted for 0 to

45 nybp but prior to that they are not; the number of short intervals being

nuch less than expected. The generaLly greater depth of old seafLoor wiLl

dimlnlsh the anomaly a short lnterval produces at the surface, but this ls

not sufficient to account for the Lack of short intervals' El-ther the short

intervals are present but have not been deteeted for some reason' or they

are not present and the proposed rncdels are not applicable for earlier

periods. The existence of anomaly 33(duration 0.05 ny) shows that at least

one short lntervaL does exlst. Blakely and Cox (1972b) have appLled their

(L972a) technlque of stacking profiles to slx profiles covering the perlod

54-69 nybp anrl detected several- addltionaL reversals as short as 0'02 ny

duration. It is probable thaL sinll-ar technlques lf applled extensively wi1-L

detect further short intervals. The existence of anonaly 33 and Blakely and

Cox's results show that the lack of short interval-s ruay be only apparent'

PALEO-POSITIONS OF A}IOMALY LINEATIONS6.4

If it is assumed that observed anomalies can be adequatel-y mo'JelJ-ed by

lormal and reverse blocks modeL studies can provide Lnfornation on the possible

positions the rmomalles were at the time at whlch they forned. The form of an

anomal-y profile observed over lineated normal and reverse blocks depends on

the orientation of the lLneations wj.t,h respect to both the directlon of the

remenent nagnetizatlon of the blocks and the present day fleld direction'

Consequently the modeL studles requlre as lnput parameters the strike of the

lineatlons, the incllnation and decllnatlon of the present fiel-d, and the

incllnation ancl declination of the remanent magnetlzatlon of the blocks'

The remanent paraneters are not known but lt ls they which are used to derLve

paLeopositions. The parauet,ers are varied untll the calculated anonaly pro-

flle best fits the observed profll-e. If an axial- dipol-e fleld is assilned

fhe remanent inclinatlon lndicates the latitude of the anonalies ats the time

of magnetLzation and the declination gives the strike of the lineations'

Unfortunately there will be a family of palrs of incl-inaEion and declinatlon

values whlch yield the same anomal-y Pattern (Schouten, 1971) so additlonal

constralnEs are required to select unique values'

Sor.re rnodel studj-es have been done to see lf J-L is possible to determLne

the paleoposltions of the anomalles 25-37 of the souLhwest ?acific basin'

From west to east in the area the present field lnclination clranges from

80o to 70o, the declinatlon from 0400 to 0250, anci the strLke of the
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anonalles from 0750 to 0400. The strike of the anomalies with respect to

nagOetic north, 1.e. the effectlve declination, changes froro 0350 in Ehe

west to 0l5o in the east. To l-imit the n,mber of varlabLes the model

studies whlch are Presented assume a Present field incLinatlon of 70o and

an effective decLination of 30o. The SPAC tine scale was used with a

spreading rate of 4.0 cmlyr. ltre bLoeks were 2 km thick with their tops

5 kur beLott sea level.
Ftg. 6.7 shows the anomaLLes which woul-d be observed if the lineations

had been formed at approxlurately Lheir present latl-tude but at different

orlentations. The dtfferences for various orientations are smal-l, the naln

effect being an increase Ln synrmetry as the lineatlon paleo-strike approaches

north-south. Fig. 6.8 shows the anomalles which wouLd be observed lf the

l-ineations had formed striklng east-west at a d"lfferent latitude. The

differences for various l-atitudes are slight, the synmetry increaslng for

higher paleo-i-atitudes .

The variations !n Fig,6.7 and 6.8 coul-d have been expected from the

mathematLcal descrlption of the anomaly produced by a llnear bLock (See

Appendix 68, part 1"). It shows that for a glven l-atltude the degree of

symmetry lncreases as the lLneatlon strike approaches north-south, and for

a gLven strike the symretry Lncreases for higher latltudes. The Fig' 6'8

proflle for latltude 45oS shows the maximum amount of asyumetry 1-1ke1-y to

be observed ln the area as any llneatlons forned souLh of 45oS, irrespective

of their orientation, would be more symmetric. Slmilar proflles appear ln

both diagrams because the strike and latitude are interrelated ln thelr
effect on the anonalles. For example lineat,ions formed sLriking 0400 at

55oS would produce the same effect as lineatlons fo.rmecl striking east-\dest

at 65os.

Fig. 6.9 shows that there are considerable variations j.n the shape of

the anomalles observed throughout, the area. Almost any lndividual- anomaly

could be matched somewhere in the Eheoretical- anomalies shovn in Figs 6.7

and 6.8. Ilowever compared wlth the theoretical anomall-es the observed anomaly

32 doesntt have a marked northward tfl-t, anomaly 31 is not very prornlnent

relative to anomall 30, anonralies 29 and 28 tend to be fLat topped rather

than spiked, and the dip to the south of anomalLes 25'27 is not very

pronounced. The overall appearance of the observed anomalies ls sinllar

to that of the more synmetrical model proflles. If the lineations forned

north of thelr present position the observed syrnnetry requires that as well

as a southward translatlon they must have also rotated from tr more north-

south strike. Even for in sltu latitude formatlon the strike wou].d have to

be more north-south than present. A degree of symmetry is more readLly

achieved if the lineat,ions forned further south. For higher l-atitudes

sLrike variations have l-ess effect.
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Wtren the ideaL nature of the assumed model is recalled and the

inherent arnblgultles recognLzed, lt is clear that these model studies do

not provide a preclse indication of pa1-eo-positlon. Neverthel-ess they

suggest that the lineatLons probably forrned south of their present posl-tlon.

6.5 THIS{\IESS OF TTTE IV!\Q{HTZM I.,AY:ER

6.5. I GeneraL

Two important unknowns in present understanding of the source of

nagnetLc anomalies are the thickness of the magnetlzed layer and the

intensity of m;rgUetization of the layer. The two factors are not J-ndepen-

denti if either is specified the anpl-itude of the anornalles deterrnlnes the

other.
Layer thlcknesses of 5 km or more \\rere used in some early studies

(Vine and Matttrews, f963; Helrtzler and Le Plchon, 1965; Vine and Wil"son'

1965), rhe deprh to the base of the layer being chosen nalnly fron the

probable depth of the Curie temperature isotherm. However thinner layers

soon became preferred, partly because they gave sharper anomalles but maLnly

on petfologlcal grounds. Hess (1962, 1965) argued that Layer 3 was L1ke1y

to be serpentinized peridotlte. This probab!.y woul-d not be highly magoetl-zed

and has a lorv Q (Watklns and Paster 1971) and therefore nrould not contribuLe

much to surface anonalies. Layer 2 was considered to be nalnly basalt;

rapidLy cooled ln sltu a::.d capable of having a high remanent magnetlzatLon'

Slnce Layer 21s typlcaLl-y 2 km or less many studles have assurnecl magneEtzed

layer thl-cknesses of the order of 2 kro (e.g. Vine and Wilson, 1965; Vlne,

L966i B^*L, L967; Hayes and HeirtzLer, 1968; MeKenzie and Sclatgr' 1971)'

Recently thicknesses of 500 ; or less have come into favour (e.g. Irvlng

et a1. , L97O; TirLwanl et a1., !.971; l{eissel and Hayes, !972; Blakely and

Cox, 1972b).

For sinple nodel studies the thickness of the magnetl-zed layer is not

very importanE but for an adequate understandlng of the strueture and com-

position of the oceanlc crust a knowledge of magnetization distribution is

vitaL. l{odel studies cannoL provide a unlque solutlon but broad constraints

are provlded by Ehree faegors: (l) the shape of anomali-es; Q) the amplitude

of anomalies; (3) the pLausibtllty of the deduced intenslty of rragnetlzation'

6.5.2 Thickness and anonal-y amplljFude and shape

The amplitude and shape of anomaltes ls affected by Lhe thickness of

the magnetized layer. Fig. 5.10 shows some models for different Ehlcknesses

1n whtch the uagnetizatlons have been scaled linearly with respect to the

thickness to proiluce simllar anonal-y aurplltudes. The intensitles of the

thicker layers should have been slightly greater but it is clear that the
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thicker the layer the l"ower the required magtetization. The effect of a

change in thickness is not Just a uniform change of amplitude; the small

anomaliesr e.g. 32A, and 33, are reduced relatLve to the naJor anomalles as

the thickness ls lncreased. This is what would be expected from Eheory

(Appendtx 68, part 2) as the snall anomalies arise from narrow blocks and

so ate most affected by thickness. The smal-l anomalies could however be

increased for thick blocks by only slight increases in the width of the

bl-ocks which produce thern. The SPAC tine scale hras determlned usLng 2 km

bLocks and the shorter intervals mlgtrc be alterecl tf a dlfferent Layer

thickness was used.

The most obvious effect of a thl-cker layer ls the smoothing of the

anomalles. The sharpness of the anomalles is to a certal-n extent affected

by inclinatlon and decllnatLon (Fig. 6.7 and 6.8) but the thickness effect
is more pronounced. Typical observed anomalies (Fig' 6'9) are more lfke the

smoother profiles of the 5 km thick layer than the sharper 0.5 ku profiles.
However most naturaL crustal effects wll-1 tend to smooth anomalles so a

thin layer could be acceptabl-e. So many factors can alter the shape of

anomalles that lt doesn'rt seem proml.slng to estioate the layer thickness

from anomal-y shape alone.

6.5.3 Ttrl.ckness and basement relief

An unusual seafloor structure associated \"rith the Tairoa fracture

zone that was dlscussed in section 4.3.3 may provide lnformatlon on the

thlckness of the magnetized layer. Fig. 4.11 shows the relevant bathynetric

and magnetic profiLe across the fracture. It ls the two sets of anomalles

27-Zg which are of speclal interest. The set on the western side of the

fracture ls over the raised seafloor but is quite simllar to the eastern

set, apart from havlng higher ampl-itudes. There Ls no seismic profiLe

record for this profile buE other tracks in the area indicate sedlment

thicknesses of less than 100 m (n.g. Houtz' pers colm., L972). It is there-

fore reasonable to assune that the bathyuretric profile approximates the

basement surface and that the raised block is uplifted or thlckened basement.

, Fig. 6.11 shows model studies in rohieh the upper surface of the baseu''ent

has been approxiraated by flat surfaces at a depth of 4 km for the raised

bloclc and 5 krn for the surrounding area. In each case the anomalies produced

by a uniform layer at 5 km are comParcd with those produced by the raised

block. The two cases for which the uragneXLzed' layer is assumed to be up1-lfted

(A and B) produce snalL increases ln the anomalles over the block and both

cases are qulte slmil-ar. When the bottom of the magnetlzed layer is hel-d

constant (C and D) the effects are much more pronounced and the thto cases

are quite different. Models using a 5 km thlck 1-ayer prodrrce similar effects
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to those shown in Ftg. 6.ll but the uplifted and thf'ckened cases are not

very dlfferent.
Table 6.3 presents a more quantitative assessment of the models.

The ratlos glven are the anornaly ampl"itude over the raised block

divided by the aurplltude over the uniform layer. The ratlos for the models

in which the nagnetlzed layer 1s upli.fted agree welL with the ratios observed

on the ELT23 profiLe. For a thlckened J-ayer the model ratio of a 5 km Layer

agrees wlth the observed ratlo but the ratios for 0.5 kn and 2 km Layers do

not agree.

Table 6.3 Ratlos oJ anonaly anplftudes

Anonaly
ELT23

west : east
Upllfted :

0.5 km 2.0 km

Thlckenecl : flat
0.5 kn 2.0 kn 5.0 kn

flat
5,0 km

27

28

29

1.30

L.24

t .28

L,29

r.32
L.25

1.24

L,26

L.24

l,2L
L.23

1.. 18

3.37

3.35

3.L2

L.67

1. 68

L.62

r,33
1.33

t.29

The model shapes used are'adnlttedly very simple and unlforru magnetiza-

tLon is assurned, but it appears that lf the magnetized layer thickness Ls

2 kn or Less it is necessary to assume that the J-ayer ls upl-ifted rather

than thLckened. For layers thlcker than 2 krn it wouid be less necessary to

assume uplift. The model studies do not provide a. ui.lque determlnation of

the thlckness but a thin l-ayer leads to a much more unusual configuratlon

and so mtght be considered Less preferable. If the'l-ayer is only 0'5 km

thlck the whole layer and several- hundred meters of the material bel-ow 1t

ls potentially exposed on the sides of the block. It would be a good plaee

to dredge for samples of the nagnetized layer.

6.i.4 Thickness and intensitv of mametlzatioo

The interdependence of the thickness and the intenslty of magnetization

of the magnetlzed layer has been discussed in section 6.5.2. The anplltudes

of anomalies observed io the souttrwest ?acifl-c basin vary but if a nagnetized

layer 0.5 kn thick is assumed lntensities of magnettzation of 15 to

20 x l0-3 "r.r/"*3 are required to produce the observed anomalies. For a

2 knr layer 5 x Lg-3enu/cr' i" sufflcient and fot a 5 krn J-ayer 2 x lO-t eo,u/"m!

is adequate. Courparison of these derived values of nagnetization wlth

observed values is probably the best means of assesslng the actual thiekness

of the uagnetlzed laYer.

'vlcroEta I,Ji''l'. :- : -' : aF v"'ELLINGToN
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Ibowledge of the magnetizaLlon of oceanic crust has been derlved urainLy

from measurements of the magnetizatj.on of dredge samples. A sumary of data

presented in the literature is given in Appendlx 6A. Magnetl.zations of
15 x 10-3 e.,r/"*3 or greaLer have been reported but such high values are

almost compl"etely confined to the ridge axis. DetaiLed sarnpl-lng on the

Reykjanes ridge (de Boer et al., 1970) and the mid-Atlantic ridge at 45oN

(Irving et a1., 1970) has shown an almost ten fold decrease ln nagnetizatlon

within 50 km of the ridge axis. From model. studies of speciaLly controlled
profiles aE the Reykjanes ridge Talr;ani et aJ-., (1971) de'Juced magnetiza-

tions of 30 * 10-3 emu/cmt at the axls, 12 x 10-3 at 75 kn and 7 x 10-3 at
100 kn off the axis. Possible reasons for the decrease away from the axLs

have been discussed by, for example, de Boer et al., (1970), Carn:ichael

(1970), Irving et al. , (1970), and BanerJee (1971 , 1972). Irrespect,Lve of
the reason lt appears that high nagnetlzation will- be present only near the

axls.
Samples typlcal of the ocean baslns are diffLcult to get because of

sediment cover but the rnajortty of magnetizations reported frosr basins are

less than 10 x 10-3 emu/cm!. Dredge sampl-es rnay be biased towards unugual

features such as fracture zone scarps and seamounts so the deepsea dr11-Ling

data are particularLy lnrportant. The range of nagnetization from the Mohole

(Cox and Doe11, 1962) was 1-10 x 10-t emu/cm3, the higher val-ues belng from

withln one metre of the surface of the f1ow. JOIDES data frorn the

Caribbean and Atlantlc (Lowrle et al., 1973) give a range of 0.1-10 x 10-t
. 3 .^-3 , 3

emu/em . Flve sites frorr Legs 2 and 3 had a mean of only 1 x 10 emu/crn ,

and Lorsrle et al., (L973) polnted ouE that thls wouLd require a maguetlzed

layer 2.c km thick to produce the observed nagoetlc anomall-es near the sites
in the south Atlantlc.

The available daEa suggest that nagnetizatlons in excess of L0 x 10-3

emu/cm3 are unJ-j.kely In the basins. This sets a mlnimum thickness of the

order of 1 kn for the uagneEl-zed layer in the southwest Paclflc basin.

Magnetl.zations of 5 x l0-3 emu/cm3 or less seem nore probable which requlres

the layer thickness to be 2 km or more.

Apart from the difflcuLties of hlgh nagnetization a thin layer also

presents the problem that it ignores Ehe magoetic effect of materlal beLow

it. Away fron the axis all of the crust would be above the Curie tempera-

ture lsotherm and so could be rnagneLized. A1l of Layer 2 (approxirnately the

top 2 km) is generally consldered Eo be basalElc and so could have a high

remanent magneEization. On1-y its upper surface is l-ikely to be very highly

magnetize.d, rapidly cooled pi1-1ow lavas, but lf hydrothermal clrculation is
as signifLcant as Llster (L972) belleves most of Layer 2 woul-d be cooled
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rapidLy enough to acqulre substanti-aL ungnetization. Layer 3 rnay also be

magnetized. Cann (1970), Moores and Vlne (1971) and others beLieve that

Layer 3 is gabbro-not sepentlnized periodotite (Fig. 1.1) and Vine et al-'

(1973) report rnagnetJ.zations of 6,5 x 10-3 etu/.t3 for ultramafics of the

Troodos Complex that are considered to be sinilar to Layer 3. I^Iatklns and

paster (197I) have reported magnetizations of approxiurately 5 x 10-3 et,r/.t3

for harzburglte from the }tacquarie ri<lge. If a substanLiaL thlckness of the

oceanic crust is stgnlficantly magnetized it is not valld to assume a thln

rnagnetlzed layer thus ignoring other magnetized material.

6.5.5 Thlckness and crustal foruatlon

The resul-ts dLscussed in the previous sections favour a magnetized

layer thickness of 2 km or more. Assumption of this thickness has interes-

tlng iuplications for the crustal- formatlon Process.
If the adclitlon of crusEal material at the ridge axis takes place by

dyke injectlon the injectlon ts likely to take place over a range of dis-
tances from the centre. llodel studles by Loncarevlc et al., (1966),

l-latthews and Bath (1967), and Matther,rs (L969) shotted that for a normally

distributed injection process a standard devlatlon O of 5 to 10 kur would

produee anomall-es sLrnlLar to those observed. A more detailed study by

Harrlson (1968) showed that for a layer t.hickness of 1.7 kn o = 3 km, or

J-ess, was required to preserve snall anomelles. Blakely and Cox (1972b)

uslng 0.5 kn thlck bLocks found o = 3 km satLsfactory, which 1s surprlslng

as some of their bl"ocks were only I kn wlde. Values of O of several klLo-

meters conflLct r,rlth some deeptow results which lndicate that o < 400 ur ls

required (Larson, L97l; Blakely and Cox, 1972b).

If a thin nagqetlzed layer ls assumed the anomalles produced by an ldea1

model (o = 0) produces anomalies which are too sharp. Random injectlon

removes the obJection provided o 1s a few kiLometers. A thick magnetized

layer produces anonolies whlch are already srnooth so virtual-ly no random

lnjection is required; indeed the need to maintain small anomalies deroands

a very narron inJection wldth.
The range of reported standard dcviations niay not reflect a real range

of inJectlon "ticlths. Rather it nray reflect differenees in the assumed, or

actual, thlckness of the rnagnetlzed layer. On1-y drilJ-ing at least 2 knr

into the seafloor is ltkely to procluce data capable of resolvlng the

inrportant issue of the ttrickness of the nagnetized layer.
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6.6 VARIATIONS OF ANO}L\LY A}IPLI.TUDE

The data density in the southwest ?acific basln is sufflcient to permlt

an analysls of varl-ations in the amplitude of particular anomalies.

Fig. 6.12 shows the mean and range ln amplitude of the clearly observed

anornalies. Some 348 individual aurplltude oeasuremeots are involved. In

vlew of the discuseions ln previous secEions detall-ed comparisons of

observed ampl-itudes with modeL aurpLitudes are not justlfLed, but some general

comparlsons are in order.

The mean anplitudes of the observed anomaLies 27-36 agree atlequately

with model amplitudes, especially when the l-ikelihood of variations ln the

paleo-lntenslLy of the magnetic field is recaLl-ed. However the observed

anplitudes of anomalies 25 and 26 are Lower than models predLct. The depth

to the seafLoor isn l-f anything, shallower under anooalies 25 and 26 than

the older ones so depth to the source is unlLlcely to be an explanatlon.

A l-ower fieLd intensity at that tlme cannot exPlain lt as in NPAC and other

north Paciflc profiles the arupl-ltudes of anor,alies 25 and 26 are not low

relatlve to ttre older anonalies. In Chapter 4 it was polnted out thaE there

Ls a change J.n the general anomaly structure of the ares at about anonal-y 25.

Some effect associated wlth thls change could eri:Lain the lower auplitudes.
possible effects are changes in (1) the thickness of the magnetlzed layert

(2) petrology, (3) therrnal conditlons at the tlme of fomation of the anomaLies.

I{hatever the cause 1t appears to be regional.
Substantial variations withln the region also oncur. The area has ber:n

divided into six zones separated by fracture zones (Fig.6.13). The anomaly

ampl-itudes for each zone are shornm in Fig. 6,1'4. The ranges in each zone

are large but zones two and three tend to have lower arnplitudes than the

other zones. Flg. 6.15 shows lt nore c1-early.

Several possible causes of zone differences can be discountedl

(l) Varlation ln the paleo-intensity of the magnetic fiel-d would affect al-1

the zones; (2) Variation of present or paleo-posltion would produce insuf-

ficient effect, even lf zones two and three were considered to have originally

been subsLantially dlspLaced relative to the other zones - whlch is

inprobable; (3) Depth to the seafl-oor and basement is not substantially

different in any of the zones t (4) Spreadlng rates do differ between the

zones (Flg. 6.16). Fig.6.17 shows that this could affect the aruplitude of

anomaly 32A but Ehe major anonalles are not affected. Anonaly 32A ls more

affected because the r.ridth of its t'source block'r, 4 krn at 4'0 cn/yr, is in

the range where reidth varlatlons substantiaLly alter the anplitudr:

(Appendix 68). The rnajor anomal-ies all- have widths beyond the crlticaL range

and so their arnplltudes do not alrer much wl-th spreading rate'
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It is probable that the difference between zones two and ttrree and

the other zones reflects a thinner rnagnetized layer and/or a l-ower intenslty
of magnetization of the crust in zones two and three. Both could be pro-

duced by differences in thermal conditions aL and/or subsequent to the tine
of fornation of the anomalies. Therual differences are an obvlous possibllity
when spreading rates differ. The problem is that the rates in zones two and

three do not differ significanLly fron those in zone one, which does not

have low amplitudes. Thernal effects associated with fracture zones could

be an explanatlon, as zones two and three are narrower than the other zones

(Fig. 6.13). llowever throughout the southwest Paelfic basln there are no

indications that amplltudes of anomalies close to fractures are low.

Weissel and Hayes (1971, L972) al-so have found variatlons ln anomal-y

ampl-itudes south of AustraLla. Amplitudes (of the same anomalies) ln three

zones differed, and in one zone the anrplitudes south of the ridge were lower

than to the north. The latter suggests that some effeet reduced the effec-
tive nagnetization of the crusL after the anomalies had forned and uoved

away from the rldge axis, Such an effect could explaLn the lower amplltudes

of zones two and three i.n the souEhwest Paciflc basin. However the tllfferences

between zones south of Austral-ia; and the l-ow arnpLltude of anomalles 25 and 26

throughout the southwest Paclfic basin, suggest that reglonal effecLs are

aLso requlred. Syetematic differences in petrology between different tectonlc

regines and different plate boundaries have been reported by, for example,

Mel-son and Thonpson (1971), Thourpson and l"lelson (L972) and Shido and

Miyashiro (1973). Such differences rury be the source of systematlc regtonal

or loca1 variations in the magnetic propertles of the crust. Data to confLrm

this interesting possibillty woul-d not be easy to obtain.
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CHAPTER 7

E+RTLQUAKE UAGI{ rTUpE -r' REQiti}r Cy RELATT ONS r{rp S

thls chapter is a study of earthquake magnitude-frequency reLationships.
An introductlon (7.1) ls followed by a descriptlon of the rnethod of analysLs
(7.2). Then resuLts from prevlous work (7.3) and from the southwest Paclflc
area (7.4) are presented. Interpretations of the results are discussed ln
sectl-on 7.5.

This work has been done l.rith R. Ferlel Falconer.

7.L INTRODUCTION

The posltlons of the plate boundaries in the southwest Paciflc area

are reasonably welL dellneated by bathymetric, magnetlc and epicentral
data. In most places the nature of the boundaries is cLear but, for the
Macquarie complex and the Paciflc-Antarctic fracture zone the data do not
provide a defl-nlte indication of Ehe boundary t)rpe. It would be useful to
have other means of deflning the type of boundary.

One possible relatlonship'for characterising a boundary 1s the rel-ation-
shlp between earthquake nagnitude and frequency

. . .. 7 ,IlogN=a-bM

where N ls the nuuber of events of nagnitude M or grFlter, and a and b are

constants. the constant a is determined by the ler,'el of activlty and ls
not consLdered here. It ls the coefficient b which'is of interest. It
depends on the proportLon of large to smaLL events 1n a glven group of eatth-
quakes. A high b vaLue indicates a greater proportion of smaller events, a

low b value Lndicates a greater proportion of larger events.

. The value of b depends on the magnitude scale used but where M ls the
surface rtave magnltude Ms, b lies between 0.5 and 1,5, averaging about 0.9

(Gucenberg and Richter, L954; Isacks and Olivex L964; Evernden, L970;

Acharya, 1971). Results from several- studies suggested that b vtas consLant

in both tlme and space (Isacks and Oliver, L964; Syices, 1965) but there is
lncreasing evidence that this is not so (e.g. Utsu, 1965; Francis, 1968arb;

Evernden, 1970; Karnlk, L969, 1971).

The resuLts of Franeis (1968arb) are partJ-cularly signlflcant. They

show that for the m:id-Atlantic trLidge the b vaLues are hlgher for ridges
than fractute zones. It wouLd be very useful if thls difference coul-d be

shown to be general. It would then be possibJ-e to uake hypotheses" based on
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b values, for boundaries which are ej-ther not well surveyed or difficult to

interpret. i{ith this in mtnd an anaLysis has been nade of the b values of

the plaEe boundaries ln the southwest Pacific 4r€€1. The data used were the

nagnitudes in the USCGS file (Section 3.6) and the area consLdered ls eholm

in Flg. 7.L. The lntentlon r,ras flrst to see if b vaiues frou clearLy under-

stood sectlons of plate boundary agreed with Franclsrs resul-ts; then to

see lf anythl.ng coul-d be Learned about the J-ess well understood sectlons.

Before presencing the results the method of analysis w111 be described.

7.2 ANAIYSIS METT1OD

Several aspects of b value study are oPen to discussion. In partfcular:

the fornulae to be used for calculating b, the validity of the baslc equation,

magnitude scales, range of magnitudes, and rel-iabll-ity of data (Evernden,

L97Ai Karnik, f971). llany papers do not give fu1-1 details of the anaLysls

method usecl, which nnakes it difftcuLt to compare results.
It appears that b is often determ:ined by vlsual fitting of a straJ-ght

Line to the graph of Lo9 N agalnst M. A more analytlcaL nethod is preferable

but Least squares is not very satisfactory (Karnik, L97l; Vere-Jones,

pers. courn. 1972). The estimator used here I's

7.2

where the earthquake magr.ltudes are gtven in intervaLs of A, the minluuu magni-

tude considered ls llo and fr is the mean rrragnltude of those earthquakes wlth

nagOltudes I l,Io. This estima:or ls a nodified forn of that given by Utsu

(1965), and takes lnto account the grouping correction dlscussed by Utsu

(1966). AkL (1965) has shown that it Ls the maxlmuo likelihood estluator for

grouped data.

When determlning b thls way it is assumed that the linear relationshlp

between 1og N and M ls reasonabl-y val-ld. Fig. 7.2 shorvs that thLs ls not so

f or all" uagnitudes. Ttre Lack of linearlty for low rnagnla"*" is mainly due

to reduced sensitlvity of the detectlon netrvork for 1ow nagnitudes (Everndent

1969), and most studies throughout the world show a simllar effecL' For this

study another posslbl-e reason for the low rnagnitude nonlinearlty is t'hat ulagnl-

tudes are not given for a1-1 the earthquakes reported (table 7' 1)' This ls not

a untform factor throughout the area. For lnstance inagnltudes are given for

all of the reported earthquakes east cf L4oow (r1g. 7.1) but they:rre glven

for onl,y 55|z of those oa the Indian-Antarctlc boundary. For Lhe Eltanin

fracture zone area (120o-140oW1, th. llnear relationshtp hol-ds down to m = 4'7

I r alb = ir"r [.fr-%l
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(Fig. 7.3) whereas for the whole area (Fig.7.2) lt holds only down to m = 5.1.
Thls suggests that the earthquakes elsewhere for which nagnltudes are not'

given are probably the lorver magnltude evenrs. llhen cal-culatlng b the mininun

nagnitude consldered (llo) must be chosen such that the linear relationship
hol-ds reasonably wel-1 for all rnagnitudes : %. The value Mo = 5.1 wtll be

taken throughout. It does mean discarding sorne information but shoul-d give

a degree of uniforrnity between different, areaa.

Table 7.1 Nunbers of reported magnitudes

Sectlon Number of
earthquakes

I{ith rnagnlt,udes ). 5.Lwith nagnitudes

Number 7" of
tocal

ol ^s J' of tlrose
Number : :'. with

EOEAI magnitudes

Whole area

Indian-Antarctlc
Pacific-Antarctic
Indian-Pacific

WtroLe
North of 57oS
South of 57oS

297

102

L23

209

56

110

70

60

85

L24

33

51

42

32

42

59

59

47

93
97
85

40 56
29 52
11 69

43 60
30 54
13 Bl

72
s.6

L6

The value of b depends on the rnagnitude scale used. The rnagnltudes used

here are the body wave nagnitudes \ Siven by the USCGS. Ttre najority of

previous studies use either c,rrface wave nagnitudes M" or nagnltudes whlch

approximate the surface wave scale (Richter, 1958; Karnik, L969; Evernden,

1970). The relatlonshlp betwe.r rb and M, is complex, probabl-y depending on

factors such as focal" reglon, type of focal nechanlsm and transnisslon path.

A reLationship can be given by

"=0%+g
where o and B are constants (Gupta and Rastogl"t

b ln equatl-on 7.1 for Mu and b 1s the value for

b = cr br

L972). If br is
mO equetions 7.3

...,7.3

the value of
and 7,1 give

7.tt

The reported values of o range from 0.,70 to 2.63 with a median of 1.20

(Gupta and Rastogi, Lg72). Many studies using M" find br values close to 0'9

and this value is often referred to as the normal b value. Because of the
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uncertalnties j.s cr, it is difficuLt to say what the value of b correspondLng

to bt = 0.9 would be. The vaLue bt = 0.9 seems to apply to world stati-stlcs

as nel-l- as srnaller areas so it is reasonable to assume that a value of b

(for nO) calculated from vrorld data would be suitable for comparison' For

L97O (f036 earttqualces with %:5.1) b = 1.35. For 1971 (1193 earthquakes)

b = 1.37. The rralue b = 1.36 wll-l be assumed and be referred to as the world

value.
Evernden (1970) has questioned whether the relationship between 1og N

and I"1 ls 11near for body wave magnitudes, especlally for rnagnitudes greater

than 5.5. The nonl-inearitLes that he fomrd may be relatecl to Tcuboifs (1958)

observation that superposition may not ho1d. That {s, if 1og N ls 1-lnearLy

related to M lrith different values of b in a nun$er of areas then J-og [N ls

not linearLy related to M. A non-Linear curve nay resul-t from data which

consists of two or mole sets with dlfferent b val'ues. I{owever such data can

also yield a gooct linear curve (Francls, 1968a). The only practical- solution

ls Eo break the data into differen! areas and/or time intervals' If subsetg

of a data set yielcl b values which are siml-l-ar the b value of the r'rhol-e data

set should be valid. The mean of subset b values should also be vaLid' The

extent to which data can be subdivided is l-trnlted by the need to have suffl-

cient data in a set for the b value to be rellab1e'

The confidence linrits of any b value can be estlnated from the fact that

the esLimator used (equat-ion 7.2) l-s approximat'ely chi-squared distributed

wlth 2N degrees of freedom, where N is the total number of earthquakes (Utsu'

1966). TLre b vaLues of thro data seLs can be compared wiLh the F test' If

tr^ro sets \ arrd B with No and Nu earthguakes respectively have estinaLes bo and

bu then for bo ( bB, bB/bA ls dlstrlbuted as the F distribution wlth 2No and

2tt' aegrees of treeclom (Utsu, 1966). A nean b value calculated from the b

values of several- data sets can be corupared to another nean value wlth the

standard t test.

7.3 EARLIER WORK

Ttrls b value study lnvolves comparison of resul-ts from the southwest

Pacific area wlth results from other areas. since the southwest Paciflc

seismicity i.s associated with cnly oceanic pJ-ate boundaries the resulEs from

other oceanic boundaries are of most lnterest. Not many determinaLlons of b

have been made for the nid-oceanic ridge sysLem. Gutenberg and Richter

(1954) using surface wave rDagnitucles of 6.0 and above obtaj-ned bt = 1'4 for

27 Atl-antic earthquakes, and bf = 1.3 for 19 Indian ocean events' sykes

(1965) corrsidere d 267 events north of 60oN, prinarily on the ridge extending
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plot was linear for uragnltudes (surface wave) fronn 4.5 to the maximum of 6.9,

and bt = 0.91. For ridges in the Indian ocean Stover (1966) obtained

bf = 0.91 from 76 events wlth surface wave magnltudes greaEer than 6.0.

Stover (1968) also studied, as one data set, ttre mid-Atlantic ridge south

of 4oN, the Southwest Atlantic ridge and part of the Southeast Indian ridge.

He found br = 1,01 for 51 surfaee wave rnagnitudes greater than 6.0. For

83 USCGS bodywave nagnitudes in the range 4.7 to 5.9 he found b = 1.04.

Francis (1968arb) uslng USCGS located earthquakes on the nld-Atlantl-c
rldge has obtained resuLts more detail-ed than any of the above. He first
(1968a) considered. bodywave magnitudes of events in areas where the ridge
was well mapped. One hundred and flfty-fogr events gave b = L.28

(Fig. 7.4 A). He then separated the events inLo those on fracture zones

(75 events) and those on Lhe rldge axls (79 events) and obtained b = 0.99

and b = I.72 respectlvely (Fig. 7,4 B). If the data in Flg. 7.4 B are con-

sidered Linear above uragnitude 4.6 the two b values are dLfferent at the 95"/.

Level. Francts then considered l-ndividually the four fracture zones whlch

the fracture zone events represenEed and got for the mean of the four
b = 1.03 t 0.33*. Sln1larly three certain ridge axls sections gave

b = 1,73 ! 0.65. Incl,uslon of data from less well napped areas, 50oS to 55oN

gave three more deflnite fracture zones and nlne more ridge axis sections.
Addlng these to the prevlous data gives a fracture zcne mean b = 1.00 t 0.31,

and a ridge axis mean b = 1.88 t 0"68. These are dlfferent at t}r.e 99% l-eveL.

FrancLs (1968b) repeated the anaLysis of the inltial four definite fracture
zones and three deflnite ridge axis soctions using.surface \rave uagnitudes
(flg. 7.4 C). This gave for fracture zones br = 0.63 t 0,14 and for rldge

axes bf = 1.08 r 0.18. Ttreee are different at the 95Z. Level.
It ls noteworthy that before Francis separated the fracture zone and

ridge axls events (Fig. 7.4 A) he obtained a rel-lable valu€, b = L,28, which

is cLose to the world value 1..36. Sykes (1965) and Stover (1966, 1968)

obtained values close to the worl-d val-ue for surface waves. Their data

encompass both fracture zones and ridge axes, It is quite posslbl-e that if
they had separated the two they rvoul-d have found dlfferent b val-ues for the

two boundary types. It is cLear that at the very least boundary types

should be separated; further subdlvision ls preferabLe.

The pLate boundarles ln the iouLhwest Pacific area are probabl-y of

either fauLt or ridge type but subducrion has been suggested for parts of
the l"Iacquarie cornplex. The most thorough b value analysis of trerreh areas

Error lirnits quoted in the text throughout this chapter are our! standard
deviation,
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l-s that of Acharya (1971). Ile has analysed mnny trench sections

lndividual1y. For shallow seLsmieity (surfaee rvaves) the bf values range

frorn 0.70 to 1.04, but most are between 0.80 and 0.90. Evernden (1970) pre-

senEed USCGS bodywave magnitude data for the Tonga-Kermadec trench. He

considered the data nonlinear but b = 1.40 wouLd fit the data very we1L.

In generaL the b values for shaLlcw seisniclty at trenches appear to be

close to rrnormnlrt. For intermedlate and deep seisnlcity, b values tang,e

from normal to welL bel-ow normaL (Acharya, l97L). Al-l- of the seismicity in
this study ls shallow.

7.4 Ti{E SOUn{WEST PACIFIC RESIJLTS

7.4.L Whole area

The seismlcity of the area studled is shown in Fig. 7.L. For the

whole area there are 124 earthquakes with m > 5.1. They give b = 1.24

(fig. 7.2) whtch ts not slgnJ.ficantly different from the world value 1,36.

A breakdown of the data lnto the three boundaries concerned is shown ln
Fig. 7.5 and Table 7.2. The b value of the Pacific-Antarctic boundary (1.41)

dlffers from the complete data b vaLue (L.24) at the 75% LeveL, and the

other two boundarles dlffer from 1,24 at the 902 level. The differences
lndicate that the whoLe area should not be considered as one data set.
Each boundary is considered separaEely and ln more detail ln the folLowing

sections.

Tabl-e 7.2 Southwest Pacific area b values

Sectlon Number ol
earthquakes

Nurrber wlth
magnltudes

Nuurber with
m ) 5.1

Whole area

Indian-Antarctlc
Pacific-furtarctlc
Indian-Pacific

297

102

L23

72

209

56

110 ..

43

I24

33

51

40

L.24 + 0.19*

L.62 ! 0.47

1.41 r 0.34

0.92 ! 0.27

*902 confidence Llml-ts.

7.4.2 The Indian-Antarctic -te"@ly-

That part of the Inclian-Antarctic boundary east of 135on is considered

(Flg. 7. f). It contalns most of the se:isnlclty of the whole boundary

(Sykes, 1970a) which ln thls area consists of short easE-wesl- sectlons of
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actlve sPreading rldge offset by north-south fracture zones. The rldge
sections are consplcuousLy aseismlc and al-l the earthquake actlvity can be

considered fracture zone activLty.
The b value for the boundary as a whole is 1.62, which is greater than

the world value (1.36) at the 757, LeveL, and ls greater than Francisrs frac-
ture zone vaLue (0.99) at the 98% leveL.

Most of the epicentres occur Ln three maJor secttons (fig. 7.1) whtch

can be considered separately (Table 7.3). The number of epicentres availabl-e
ln each section is insufficient to justify further subdivision even though

the 140oE section is definitely taro fracture zones and the Long section
between 54oS and 6005 nay be several separate zones. The mean b value of
the three sections ts 1..54 t 0.1.3 whlch ts greater than Francists mean frac-
ture zone vaLue 1.00 t 0.31 at tU.e 95i( l-eveL.

Table 7.3 Indlan-Antarctlc boundarv b values

Sectlon Number of Number wlth Nurnber w{th
e4rthquakes rnagnltudes M > 5.1 b

lJtrole boundary L02 56 33 1.62 ! 0.47rr

5o-55os, t4ooE zg L7 8 1.40 t o.B9

55-600S, 145-15008 44 24 15 1.63 I 0.75

5o-63os, 155oE zL 11 8 t.6o r L.o2

*90% confldence limits.

7.4.3 Pacific-Antarctic bgundarv

Since there is no seisniclty on Ehe PacifLc-Antarctic boundary north of
48oS effectlveLy a1-1 of the boundary is consldered (flg. 7,1). EasL of
l5OoW the selsmLcity, a1-though scattered, is all associate<l wtth fracture
zones which have been mapped from bathymetrle and magnetic data (Herron, 1971).

Ttre activity between 155oW and 170oW ls probabLy on one or more fracture
zones but, these have noE been rnapped. All the areas east of 1B0o where

actlve spreadl-ng ri<lges have been identified are aseisnric, so it is probable

that aLl the seisrr{c actlvity east of 1800 is fracture zone actj-vity. The

section fron 180o to the trlple Junction- the Pacific-Antarctic fracture
zone, ls probably one or more fracture zones. Some of the seisnricLty there

nlght be associated with short sectlons of active ridge.
The b value for the botndary as a whole ls 1.41 (Table 7.4). Thls is

greater than Franclsts fracture zone value (0.99) at the 95% leve1.
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Table 7.4 Pacifl.c-Aptarctic boundalv b values

Section Nurnber of
earthquakes

Nurnber with Nunber wlth
magnltudes M > 5.1

llhole boundary

5oos, l15ow

55os, l2o-14oow
(Eltanin F.Z.)
57os , t4o- 145oI{

63os, 160-17oow

63os, l8o-l63oE
(Pacif ic-Antarctl-c F .2,)

*902 confldence llnlrs.

Individual sectlons, some composed of several fracture zorlea, range

from 0.93 to 2.43 (Table 7.4). The mean of the seetlons is 1.53 t 0.56

which ls greater than Franclsrs fractuxe zofie mean value (1.00 t 0.31) at
the 907 level-.

One of Lhe afuns of the b vaLue study lvas to see if the b value of the

PacifLc-Ant,arctic fracture zone would provide any lndicatlon of whether l-ts

seismicity was assoclated with fracture zones or rldges. The b value is 1.62

whlch ls not slgniflcantt-y dtfferent from the b values of sectlons on the

IndLan-Antarctlc and Pacific-Ant,arctic boundarles that are known to be frac-
ture zones (Tables 7.3 and 7.4), There is no seismlcity on the rldges Ln

the southwest Paciflc area to provide eompardLive ridge b values, but ln
the Atlantic Francls (f968a) found a mean ridge b value of 1.88 t 0.68.

The Paclflc-Antarctic fracture zone value ls not signiflcantly dlfferent
fron that. Thus the b value does not provlde an unegulvocal indication of

the nature of the seisurlclty on the Pacifl.c-AntarctLc fracture zone.

7.4.4 Indlan-Paciftc boundary

The Indlan-Paclflc boundary from New ZeaLand southward is weLl recog-

nlzed as complex, and elements of ridge, trench and fauLt have all been

suggested. It is clearly quite different fron the sirnple ridge-faul-t boun-

daries of the Antarctic pLate with the Indian and Paclflc plates. Eatthquakes

north of 48oS may be assoclated wlth the New Zealarrd continental margin so

on1-y data south of 48oS are consldered.

The b value of the whole boundary Is 0.92 (TabLe 7,5). This is lower

than th'l world, Indian-Antarctlc and Paeiflc-Antarctlc values at greater

than the 982 signtflcance 1eveL.

L23

L4

52

L2

15

25

110

L4

52

11

L2

16

51

6

L7

6

6

L4

1.41 + 0.34*

2.43 t 1.83

t,23 t 0.52

0,93 r 0.70

1.46 r 1.09

L,62 ! 0.74
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Table 7,5 Indian-Paciflc Bouniary b values

Section Number of
earthquakes

Nunber of
rnagnj-tudes

Number wlth
M > 5.1

I,ltrole boundary

South of 57oS

North of 57oS

48-5 los
5 1-57os

43

13

30

18
L2

o.92 ! 0.27x

1.48 t 0.90

0.80 t 0.26

0.84 t 0.35
0.76 t 0.39

*90% confLdence limits.

There ls a gap in seisn:icLty at about 57oS. The sectlon south of there
is characterised by the lljort trench. Subductlon has been suggested but aLl
the earthquakes are shaLLow. The b value for the section is 1.48 (flg. 7.6
and TabLe 7,5); not significantly different from the t'normal" srorld va1ue,

1.36, ShaLlow seisrnlcity assoctated r.rLth trenches elsewhere appears Lo have
Itoornalr' b values (Sectlon 7.3) so on the basls of b val-ues the sectlon
coul-d be a subduction area. Ihe observed b value is comparable to those

found for fracture zones on the-Paclfic-Antarctic and Indian-Antarctlc boun-

dar{es (Tables 7.3 and 7.4) so from b val"ues the area could also be a fracture
zong.

The section north of 57oS has a b value of 0.80 (Fig. 7.6 and TabLe 7.5).
This ls different from the southern sectlon at the 952 level and Ls different
from the world, Pacific-Antarctic and Indlan-Antarctlc values at the 982

Level-. Wlthln the section north of 57oS there ls a gap in selsmic!.ty at
;1oS. SouEh of there the deeps associated wlch the Macquarie ridge are east

of the rldge, while to the north they are to the west. The b values of the

two sections are not slgnlficantly dlfferent (Table 7.5).
Ttre Indlan-Paclfic boundary north of 57oS differs from the other secLions

in severaL ways. Six of the seven earEhquakes of nagnitude greater than 6.0

Ln the whole study occurred there. The onl-y large clusters also occurred

there (Section 3.6.4). 0n1y 37. of the earthquakes with rnagnitudes are less

than nnagnitude 5.1, compared with 4L"l and,532 on the Indian-Antarctic and

Paclflc-AntarctLc boundarles respeetivel-y. The Lorqer the b value the smaller

the proportlon of low magnitudes relative to higher magnitudes, but Ehe

observed nunber of low magnltudes is Loo snall to be accounted for by the low

b alone. It Ls not l-tkely to be an observational- factor as the percentage

of earthc.uakes for which ur;agnitudes are reported is comparabLe to that of

the other boundarles (Table 7.1).

72

16

55

33
23

40

11

29

L7
L2
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7.5 DISCUSSION

six of Ehe elght fracture zones along the Antarctlc boundary studied

here have b values higher than the rrorld b value. Slx of the seven fracture

zones ln the Atlantle studied by Francls have b values Lower than the world

value. The mean for Ehe AnLarctic fraeture zonesr 1.54 t 0.43, is higher

than the Atlanti-c fractute zone mean, 1.00 t 0.31r at the 99% LeveL' The

Antarctic fracture zone mean is not signifleantly dlfferent from the nean

of the active ridge sectlons of the AtLantlc, 1.88 t 0.68. Obviously the b

value alone cannot be used to deterrn:ine whether a sectlon of plate boundary

is a fracture zone.

ThLs result is in ltself useful- but the differences whlch have been

found between the AtLantlc and the southwest Paclflc area are probably more

useful. They may provide infornatlon on the tectonic signl-ficance of b

values. To facilitate further discussion varlous factors whLch have been

suggested as lmportanc tn determlnLng the b val-ue of an area are Listed ln

Table 7.6.

Table 7.6 Factors whlch may lnfluence b values

Hlgh b Low bFactor

boundary type

type of faultlng
space-tin- sequence

texcperatute

node of defornation

naterlal
stress distrlbutlon
stress leveL

stress drop

rlft zone

normaL

svarm, clusterlng
htgh

cataclastic
heterogeneous

nonunlform

l-ow

smaLl

fracture zone

strike-s1-ip
noncLustered

1ow

brlttLe
homogeneous

uniforn
htgh

large

The b value difference between rldges and fracture zones in the Atlantic

ls signlflcant irrespecElve of wheLher surface slaves or body waves are con-

sidered (Section 7.3). Thls indlcates that' the cause of the dlfference is

source effects, rather than propagation effects such as attenuatlon in high

tenperature areas of the rldge axis, or orlentation of seismograph stations

with respect to the source (Francis, -968b). One possibl-e source effect is

the nature of faultl-ng. Foca1 mechanlsm studies Lndlcate that strj'ke-s1-tp
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faul-tlng predorninates on fracture zones r+hLle normal faultlng occurs on rldge
sections. Francis (1968a) polnEed out the possibll-ity that b ls a function
of rhe type of faulting; high for normal faulting, low for strlke-slip
faulting. There are four reliable focal mechanism studies for the Antarctic
bor:ndary fracture zones, and each indicates predominantly strike-sl-lp
faulting. There ls no reason to suppose that the faultlng on any of the

fracture zones is not strike-sllp. The high Antarctic boundary b value thus

negates the possLbiJ-ity that strlke-sL1p faulting produces 1ow b values.

In a study of earLhquake srilarms on midocean ridges (inainly the Atlantic)
Sykes (1970b) suggested that the b value of the rldge axls ls high because

much of the seissdc activity ls of the swarsr type. Ilowever Francis and

Porter (1971) have shown that nonswarm actlvlty also has a high b va1ue.

The Antarctic botrndary activity ls not of Ehe swarn type (Sectlon 3.6.4)
so the hlgh Antarctic b vaLue further supports Francls and Porterts concluslon

that htgh b is not Just a swarm effect.
Francis (1968b) suggesced that at a ridge axls high temperatures and

relatl-vely lovr pressures lead to cataclastic defornation, which has a hlgh

b value (Scho1z, 1968a); rvhtl-e at fracture zones temperatures are lower and

brlttle fallure would occur, for whtch the b value is Low. If FrancLs is
correct Ehe high Antarctic boundary b values inply cataclastlc defornation
along the Antarctic fracture zones. Thls ls not contradictory wlth the

Atlantic fracture zones undergoing brlttle fracture if lt ls the temperature

regime, not the boundary type, which determines the mode of fracture. For

all the Antarctic boundary fracture zones the lengths of the fracture zones

J.n reLation to the spreading rates are such that the age of the seafloor
:ither slde of the fractures is less than 10 rny. In the Atlantic the age

differences across the fracture zones studied are more than 20 rny. Since

crusEal temperature ls Lnversely related to age the AntarctLc fracture zones

are aL hlgher temperatures. They are stilL cLose to ridge axls condiLlons

and so could be e:rpected to behave in a ridge nanner, The slmilarity of the

b vaLues of the Antarctl-c fracture zones and the AtLantlc ridge axls could

thus be due to simllar thermal- environments.
The results for the l"Iacquarie ridge complex provide support for severaL

aspects of the preceding discussion. Firstly the section south of 57oS.

The seafl-oor west of the boundary is the northern fLank of the Indlan-
Antarctlc rldge. The age of the seafloor ranges from zero al 6t.5oS to 20 ny

at 57oS. The eastern slde is a part of the Pacific plate for which the age

Is not known. Frorn the depth and relaticnship to the Cretaceous anomal"ies

east of 165on it is J-ikely to be considerably o1-der than the adjacent Indian

pLate. Although the age difference across the boundary is probably more than
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10 rny most of the erest side ls less than 10 ny olil. T'he boundary rvould there-

fore still be ln a high temperature environment. The reLatively hlgh b val'ue

(1.48) is consistent with the association of high b with high tenperature

observed on the Atl-antic ridge and Antarctic botmdary fracLure zones.

Secondly the section north of 57oS. The age of the seafloor on the west ls

20 ny aE 57oS, 35 ury at 52oN and probably o1-der further north. The age of

the eastern side is not known but l-t is not l-lkeJ-y to be young. Although

the topography of the llacguarie Rldge probably reflects recenE tectonic

activity the area is baslcalJ-y a bor:ndary between two oldt cold crustal

sections. The low b vaLue (0.80) is consistent wLth the assoclation of Low b

value wlth Lower teniperatures observed on the Atlantic fracture zones.

The association of htgh b with hlgh tenperaLure areas and Low b wlth

Low tenrperature areas appears to be valld, but does not explain the basLc

cause of the differences ln b. The cause probably lles ln (1) the nature of

the fracture process, (Z) the type of material, and (3) the stress condltions

in the source reglon of the earthquakes. ALl three factors are probabJ-y

lnterrelated.
Laborarory Beasurements of Mogl (1962, 1963a) and Scholz (l968arb) have

shown that nonuniform stress and'lot heterogeneous materlaL can produce high

b values. Sykes (1970b) suggested that the Atlantic rldge axls hlgh b values

couLd be due to volcaoic activity produclng boch nonuniform stress and hetero-

geneous structure. Earthquake swarm actlvity is probably the best indicator

of volcanic aetiwlty. The USCGS data and T-phase dara (Northrop et al-. r 1970)

do not indicate such actlvity on the Antarctlc boturdary fracture zones.

Thus even if volcanism does produce high b it is not the only reason'

SchoLz (f968a) suggesteri Ehat b refLects the l-evel of stress; low b for

hlgh stress and vfce-versa. On the Macqriarie rldge cornplex north of 57oS the

large nurbers of high magnitude earthquakes suggest high stress' In the

Atla.ntic the stress appears to be high on the fractute zones, as they have

the highest nagnitude earthquakes and account for most of the energy release

(FrancLs, 1968a). Both areas have 1ow b values, in agreement with the hlgh

stress, low b reLatj-onship. Ttre Atl-antic ridge axes also agree with the

reLatLonshlp as they appear to have low stress and ttreir b values are hlgh'

Intul"tively 1t rnlght be expected that fracture zones wouLd be high stress

areas, and in the Atl-antic they appear to be. However if the relationship

between stress and b is correct the high b vaLues of the Antarctlc bor:ndary

fracture zones lnclicate l-ow stress. The Antarctic ridge axes are aselsm{e

whlch indl-cates that they are even J.ess stressed. Thus in both the Atlantic

and the south$test Pacific area the fracture zones are relatively higher
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stressed than the ridge axes. However l-t ls lnteresting to note that

Lachenbruch and Thompson (L972) concLude from the orthogonality of ridges

and fracture zones that fracture zones provide less resistance to motlon

than ridge axes.

GlbowLez (pers. coutr. , L973) has suggested that the b value refLects the

rnode of stress release rather thern rhe level of stress; 1ow b vaLues indi-
catlng hLgh stress drop at each event, htgh b values indicating lower stress

drop. High stress drop at each event leads to a lorv b value because most of

the stress is released as a one shot process and the residual stress, if
reLeased at aL1, is released only ln much lower nagnitude events. Such a

process r,rould expl-aLn the l-ack of low magnitude events on the Macquarie ridge

complex north of 57os, where the b vaLue is very 1ow.

The ualn concluslon of this study is that several of the suggested

relationshlps between b value and other factors (Tabl-e 7.6) are not vaLld.

In parLlcular b does not lndicate: (1) boundary type - fracture zones can

have high or low b, (2) type of faultlng - strike-s1ip fauLts can have high

or lorv b, (3) space-time sequence - hlgh b occurs for clusLering and non-

clustering. The relationshlp of b value to stress level rnay appJ.y onLy to

reLative stress rather than to absolute stress - the lov,lest b value areas in

a region indlcating the highest stressed areas.

The aseoclatlon of high b rsith high temperatures and low b with l-ow

temperatures appears to be cl-early established. The b value may fundarnen-

tally be related Co one cr all of the more detail-ed factors: type of ftacture'

sLress distrLbution, sLress drop, aIId type of naterial; but temPerature

probably nas a controlling influence on all of these factors. As n<rre data

becomes aval1ab1e furLher b value studies should provide constraints on the

present hypotheses. A detailed study of the rel-ationship between b vaLue

and crustal temperature would be useful.
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Pe€rt:qsrlpt to Ch4PLre,r 7

Arr. J.qortant paper by Wyse ([973) has beeoue, aval].able 
",touu 

the reeeareh

desctlbed {n thl.g chapter was eonpl,eted and typed. t{yss conbl.nes nagni,tude-

frequencXr aod nagnltude-rnonent relatlonships and derlves a relatl.onshLp whtch

shsws that b l,s reLqted to the stre€,s drop attd Lhe source area of an earth-
qualeei high b for low strege drop and/or sxnall sourc€ area; and con:versely

low b for high etr€ss itrop and/or Large e:orrtG€ €tr €:4. Applytng hle results
to: Fraseig r e data Wyss estimatee that f or the uid-.Atlantl.c rJ.dge systeo tte
fracture zone events (lW b) could herre 30fr hl,gb€r srress drops or 207"

la ger so'uree dlneneions than the rldge crest e\rents (hlgh b). He euggests
that lolret sLress ilrop on the rLdge eould be tlue to hLgher ternperatures and

we,al3-er etust, there; aLternati$ely latg€r soutce dinensf.ons on the fracture
zones eou-1d be due to a gteater thLctrness of brttthe cruet ln the cooler
af,eas awaf frou Ehe ritlge ere6t. .Both suggestlons are ln aacprd uLth the
chapter 7 c,onclrrsloo that there ls a relatloneh:l.p between b value and

ten[tetauure -'l"cw b for low temperature and htgh b fon high ter,nFerat,utre.
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CHAPTER B

EPICE}TTRAI, POLES

In this chapter a new method of cl.etermining poles of rotation is
presented. A$ introduction (8.1) is foll-owed by a descrlptLon of the method

(8.2). Use of the rnethod to obtain the Indian-Paclfic, Paclflc-Antarctic and

Indian-Antarctic poLes is described in section 8.3, and the consistency of

the pol-es is exagrined 1n sectlon 8.4. The epicentral" results are conpared

wiLh other results ln sectlon 8.5.

8.1 INTRODUCTION

The baslc prlnciple of plate tectonlcs Ls that when plates are consldered

to be rigld the'motLon of one plate relative to another can be descrlbed by a

rotatlon about a po1e. A consequence of thls ls that any pure sL1p boundaries

between plates (transform faults) ntrst 1le on snal-l circl-es about the pole of

rotation. Using this fact the posltion of the rotation po1-e can be found from

a knowledge of the transform faults.
Several methods for flndlng the rotatlon po1-e ha're been described ln

section 1.4.6. A new nethotl dependent only on earthquake epicentres is
presented here. It ls based on the fact that most transform faults are

seisnl-call-y active, Eurd that the faults shouLd be small clrcles about the

rotation poLe. For couvenience the nethod w111 be refened to as the epi-

central method, and the rotation pol-es deterained wLtl the methorl rsill be

referred to as epicentral- pol"es.

8.2 TIIE EPICENTRAL METHOD

Suppose there ls a group of N epicentres which are aL1 assocLated wtth

one transforn fault. Ideal-ly the epicentres would 1ie along the arc of a

circle centred on the rotation pole (Fig. 8.1). In practlce they are scatfered

about the arc, either becauso the epicentre locations are not accurately deter-

rnined or because the tectonic activl-ty at the transform fauLt ls not concentxated.

If the pole posltlon ls known the distance ri of each epicentre from the poLe

can be cal-culated. If the dlstance of the transform faul,t (i.e. the arc of the

circle) from the pole is R the dlstance d, of an epicentre from the arc is

dr=rr-R ....8.1

In practtce the transform faultl 1.e. 3IC, ls nog preclsely defineci so R is

not knogn. Ilowever lf che epicentres are randonly distributed about the arc
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a good estimator for R wll-1 be the mean dlstance i where

The standard deviation
then glven by

where Sr, the standard

of the distances d, of the

...,8.2

epicentres from the arc ls

....8.4

ls given by

....8.5

1N
f = - L T.N.. 1

l-= l'

....8.3

Now suppose that the poJ-e posLtlon is not known. The standard deviation

S can be calculated about any polnt but the rni.nimum 
"a1ue 

of S wlLl be obtained

for calcuLation about the centre of the arc. It ls this rninimum proPerty that

ls used to deterf,lne Lhe pole positLon. A pole posltion Is assumed and S cal-
culaLed and this is repeated for other positions chosen in any way desiredt

e,g. a regular grld about the lnltlal polnt. The position that gJ.ves the nrini-

mum value of S can then be considered the best estirnate of the pole posltlon.

Ln general Ehere may be several transform faul-ts along a boundary, each

one an arc about the rotation poLe. Each fault ur.ay have associated earth-
quake activlty and the method outlined above can be extended to conslder al-L

the faults.
Suppose there

faul"t (Flg. 8.2).

g = 
Fr 

j, (rr 
"1'

are k groups of epicentres, each group rePresentlng one

The mean standar-d devlation for aLl the faults ls glven by

1k=Erl,t:

of the j tth

*J

i]r 
(trJ

s

deviatlon

l-'si=lffi
'LJ

fault

1u
;r, l

and i. ls the aean arc distance of the N. eplcentres agsoclated with the J 
t th

JJ
fault

As before S ls ealcul-ated for several positions and the pole ls glven by

the positlon for whlch S is mlnimum. The rninimurn position could be found by

a gradient search uethod from the lnitial point but in Practice lt is becter

to calculate S at a series of grld points. This enabl-es the exlstence of

seconclary minima to be identifled and contouts of S can be used to indicate

the uncertainty Ln the pole position (see later).
The fracture zones ruay differ and Lt, seems deslrable to calculate the mean

standard devlatlon from weighted values of the S.. ThLs gives
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srhere h, is the welght for the jf th fault.
J

Some factors which could be taken into account for determinlng the lteLght

of a fauLt are rs follows:

k
x h.s.

J=l J J

k
I h.

j=l J

(1) lhe nsmber of epicentres, N

(2) The standrta a..rf.tlon, Jr.''
(3) The length of the fault as defined by the
(4) The distrlbution of the epicentres within
(5) Ttre clistance from the po1e, ir.
(6) The ac,curacy of the epicentre locatlons,

bound.cy.

The welght:lng functlon

epLcentres.

the fault Zon€o

which may vary al-ong a

....9.7

used Ln this study ls
(2N{ )rtnj=T

Lt takes into e:plicit account only factors (l) and (2) above. More couple-x

welghring functions coukl be suggested but a sirnple treatment 1s preferabJ-e,

at l-east lnitiartr-1.y. The particular funcEion used can be Justlfied on statls-
tical- grounds. If the deviaEions abouL the jrth faulL are norurally distrib-

s.
uted the standard devlation of S.will tend towards 

-j; 
for large N..

'J
Thus in uslng equation 8.6 to determine the mean standard deviation, each

S.r is weighred by the inverse of its standard devl-ation.
J

The length of a fault ls not dlrectly taken into account in the present

method. It is bowever lndirectly considered because for a sna11 dLspl"acement

from the true pole position the standard deviatlon wll-L lncrease more rapidly
for a J.ong zone than a short zone. Hence the nnlnimun wll-1 be sharper for a

long zone. Nornally several- zones at different azimuths froo the pole are

reguJ.red to get a tightly constrained pole but a good pole can be determlued

from on1-y one zcse if lt is long enough to form a signiflcant arc.

The cllstributions wi-thin the fault zones are lmportant' A distrlbutlon
such as that in Fig. 8.3A ls clearLy Less suitable than that of Fig. 8.38.

tsoth dlstributions wi1-l give the same contributlon to the mean standatd

deviation S, but case B wil-l lead to a sharper minimum than case A. The contri-
butlon to S wili- be the same for each of the distributions shown tn Ftg' 8.4.
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However these cases would be dLstLnguished because the standard devLations

wouLd show ninina at dlfferent pole posltlons.
The basic sEartlng point of the nethod is a set of epicentres of earth-

quakes known to be on transform faults. The epicentres are then grouped so

that each group conslsts of epicentres associaLed wlth only one fau1t. Thls

J-nplies sone knonl-edge of the location of the transform faults. For midocean

ridge pJ-ate boundaries the orthogonal-ity of the rtdges and transforns, and in
places the aseisnicity of the ridges are useful lndlcators of the transforD

fauLts. Other boundaries are usualJ-y more dlfflcult as pure transforms nay

nerge into sectlons wLth onLy a conponent of slLp along the bouodary. Epi-

centres are normalJ-y scattered whrch can make it dlfficult to dlstingulsh one

long fault from a series of shorter ones wlth a dlfferent trend. The anaLysis

urethod is however tolerant of both invalid "nontransforn epicentres'r and

incorrect grouptng of epicentres provided noc too nany lncorrect eplcentres
(or even groups) are incl-uded. In faet one of the mnln beneflts of the method

ls that it w111 indicate such nisinterpreted epicentres.
A particuLarly lmportant aspect of the method ls a careful exaulnation of

the distrl-bution of eplcentres withln each fault zorre. The program used lLsts
vari.ous data of each zone for the best pole positlon found. The deviatlons

from the arc for each eplcentre are glven so that the dLstribution can be

checked. Isolated irregular epicentres can be detected from thelr l-arge

devlations and vhole zones which do not fit the calculated poLe can be detected.
Crlteria can be estabLlshed for rejection of epLcentres with large devlatlons
and epicentres can be regrouped for further recaleulatlon.

8.3 APPLICATIONS OF THE EPICENTML }MTHOD

8.3. 1 Indlan-Paciflc

The boundary between the IndLan and Pacific plates extends from southeast

Asla to the souEhern end of the Macquarle complex (Fig. 0.2). From AsLa to the

northern end of the Tonga trench the boundary ls compl-ex anct several sma11

platee rnay be invoLved (Johnson and Molnar, L972i Krause, Lg73). From the

northern end of the Tonga trench to the centre of New ZeaLand the exlstence of

intermedlate and deep earthquakes inc{lcate that subductl-on is taklng p1ace.

In the South Island the bormdary is generaLly associated with the Alpine fauLt

and its branches but seismicity is scattered (Evi-son, 1971) and tectonlc
activlty appears to be distrlbuted over a wide atea. In the southwest part of

the Sour-h Island (Flordland) lnterroediate depth earthquakes (Smithr1971)

suggest subduction. FurLher south the seismiclty is assoclated wlth the

Macquarle complex, the preclse nature of which ls not clearly defined.
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The lack of any clearly defirred transform faults on the boundary rePre-

sents a difflculty for the appl-lcatlon of the eplcentral uethod. However

when the USCGS eplcentres south of New ZeaLand are plotted on a sEereographic

projectlon al-1" those south of about 49oS 1ie close to the arc of a circle
(Ffg. 8.5). In a stereographl.c proJecti.on a clrcle on the maP represents a

circle on the earth. In plate tectonics a circle about the pole of rotation

deflnes the l-ocus of a possibLe transform fauJ-t. Ihus if the earthquakes on

the Macquarle cornplex are considered to be on a circuLar arc they deflne a

transforrn fault. They can therefore be used for the epicentral method.

As a starting point lt ls assumed that aL1 the epicenEres south of 49oS

are assocl-ated with one fauLt zone. An initial- pol-e is taken at 55oS, UsoE

and the epicentral standard deviation S is calculated at tvro degree lntervals
for 30-80os, lsooE'lsoow. A slngl-e m{nimum ls found at 56os, L76oE. A search

at 0.1 degree lntervals about there glves a nrinimum"alue of S = 27.1 krn at
56.0os, \75.20F . The dlstrlbution about the arc (Flg. 8.6) is normal when

tested with the chi-square test. There are rlro epicentres close to each other

at 53.2oS whieh axe 67 and 69 km respecLlvely from the arc, For a normal dis-
tribution wirh a standard deviation of 27 km there is less than 2% chance of
even one deviation as large as, 67 km. Since ihere are only 59 eplcentres it
is probably justifiable to reject these two epl-centres from the calculation.
Wtren this ls done the eplcentral pole for 57 epicentres ls found at 56.0ost

175.6oE rsith a value of S = 24.0 km. The distributlon abor:t the arc ls
nornal (Fig. 8.7).

The contours of S (Figs 8.8 and 8.9) lndlcate that the pole posLtion is
more conrtrained in ttre north-south directJ.on than the east-west dlrectlon.
The confldence Llmits on S crrould be an adequate statistlc to use for quantl-

taclvely assesslng the accuracy of the pole. If the deviations about the arc

are considered normall-y distributed (which ls acceptable sLatistically) the

90% confldence upper bound for S ls 1.24 S. The eontour of 1.25 S is pro-

bably a reasonable measure of the accuracy of the po1e. The area it encloses

wil-l be called the confi.dence area.
Ttre sinple dlstribution of devl-ations about the arc (fig. 8.7) ls useful

but does not take l-nto account the spatial dlstribution of the epicentres.

If the epicentres represent several faul-tsrnot just on€ as assuned, the

devlations about a singLe arc iuay be normal but probably would not be random

because runs would occur, The latltudl-nal distribution (Flg. 8.10) ls not

random when tested with the run test. It is the eplcentres frorn 49oS ro 50oS

which are not random (fig. 8.11). Those south of 5los are random when tested

separately.
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The epicentral rnethod should be satisfactory Lf not aLl of a fracture
zone ls included. Since there Is doubt about the 49-50oS secti.on it can be

onitted, leavtng 33 epicentres all south of 52oS. They glve a pole at 56.20S,

U4.tog, which is inside the confld.ence area of the 57 epicentres solutlon.
The eplcentral standard deviatlon ls 23.3 kn which is less but not signlfl-
cantly (F test) Less than the 24.0 kn of the 57 epicentres (Table 8.1).

Table 8.1 Indlan-Paciflc epJcentraL poles based on Macquarie comrrlex

epicentres.

Data set Nunrber of
eplcentres 1at os long oE

S (kur)

USCGS

USCGS south af 52o

Sykes

USCGS-Sykes mtx

USCGS 2 zone

USCGS 3 zone

Sykes 2 zone

Sykes 3 zone

57

33

47

61

57

57

47

47

56,0

56.2

55.8

56.0

56.0

55.6

55.8

55.8

L75.6

L74.L

L76.4

175.8

1.76.0

L75.2

1.75.9

175.8

24.0

23.3

25.L

24.4

24.L

23.0

25.3

25.3

A second, although not entlrely independent, set of data for the area are

the Sykesr eplcentres. They are fewer in nurnber Gig. 8.12) buL probably

nore accurately l-ocated. A preliminary trial- with arL those south of 48.5oS

yields four eplcentres nrore than Lbree standard devlatj-ons frou the arc.
El-inlnating them leaves 47 epicentres whlch give a pole ri 55.8oS, L76.4oE

wiEh S = 25.1 kn (Table 8.1). The pole is inside the confidence area of the

poLe of the 57 USCGS epicentres.
The distribution of epicentres between 48oS and 50oS Ls better for the

Syltes epicentres (Flg.8.13) than for the USCGS epicentres (Fig,8.11). The

arc of the USCGS pole fits the Sykes epicentres vreLL. A data seL conslsting

of Sykesf epicentres north.of 5IoS and USCGS epicentres south of there glves

a poLe ar 55.0oS, 175.8oE (Table 8.1). The latlrudinal distribuEion of the

deviations fron the arc for the nlxed set is random when tested with the run

test.
So far al-1 che epicentres have been assigned to only one zone, which

assumes that the llacquarie cornplex ls one fracture zone. A good test of thls
assumptlon is to sp1lt Lhe area into sectlons each of ru-hich is regarded as

an indivldual fracture zone. The pole can then be computed from the sum of

the sections. Resul-ts for four data sets are shown in Table 8.1 with
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details of each set ln Table 8.2. All the pole positlons fal-l within the

confldence area of the pole of the 57 USCGS epicentres. The standard' i

deviations of ai-L the sectlons do not dif fer signlfl-cantJ-y (F test). The

radil of the individual sections wlthln each data set do not differ slgnifl-
cantly (t test)! except for the three zone USCGS. The solutions based on

more than one zone yield standard deviations comparable to those of the

single zone sol-utions (Table 8.1). But if the zones can be validly considered

part of one zone the sl-ngIe zone soluclon ls beLter because the confl.dence

area is smaller (flg. 8.L4).

Table 8.2 Results for data set,s consisElng of severaL zones.

Data set Nurnber of Radlus of o /r-_\ Contrlbutlon
and zones epicentres arc (deg) u(Km,l to mean s (Z)

USCGS 2 zone 57

49.0 - 55. l. 38 9 .92

56.2 - 6L.7 19 9.82

USCGS 3 zone 57

mean 24.1

22.2 64

28.2 36

mean 23.0

23.9 40

19.3 33

26.1 27

mean 25.3

25,5 s4

25.L 46

mean 25.3

25.5 46

23.0 32

29.0 22

49 ,0 - 52.8 29 9. 15

52.8 - 56.9 1.3 9.31

58.0 - 61.7 15 g,4g

Sykes 2 zone 47 .

48.t - 49.9 26 9.66
50.2 - 61.9 19 9.59

Sykes 3 zone 47

48.L - 49.9 28 9.66
50.2 - 53.0 lt 9.57

55.0 - 61.,9 8 9.62

Considering the resul-ts of the various data sets (Tables 8.1, 8.2) the

fol-lowing concluslons can be made. Ttr.e sfunllarity of the standard deviatlons

and rad1l of the different sections of ttre MacquarLe cooplex indicates that

lt ls valid to assume that the epicentres south of approxftnately 48.5oS

deflne one sLngle transform fauLt. Thls gives an epicentral poJ"e at approxl-

roatel-y 55oS, I76oE. Uslng the 1.25 S contour as a confidence region the pole

positl-on can be glven as 56.0 t O.3oS, L76.O t 3.008, or 56.0os + 35 kn,

176.OoE I 190 kn.
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8.3.2 Pacific-,tntarctic

The rnajority of the seisnicity on the Pacific-Antarctic boundary occurs

in distinct linear sections (fig. 8.15) . The only reliable first motion

sol-ution for the whole boundary is in the section aE 5OoS, Il5oW (lorsyth,

L972). It indicates pure strike-slip motion along the trend of the epicentres.

A very unreliat:Le solutlon at 55.4oS, 1Z8.2ow (Sykes, Lg67) is compatible with

strike-sl-ip moLflon along the trend of the epicenLres there. The baLhymetric

and magnetic daria are sufficient to indicate that east of 1800 the epicentre

lineat,ions are along active fracture zones. It should be valid to assume

that these acti're fracture zones are transform faults. In the Paciflc-
Antarctic fractiure zone area, lBOo - 161oE, the seismicity could be on ridges

and/or fracturc zones. Since there are sufficient distinct sections of

epicentres that are associated wiLh transform faults the epicentral method is
readily appl-icalrle to the boundary.

The epicentre l-ineations are approximately easr-west (Fig. 8.15) so

sections are initlally chosen by longitude. The few obviously isolated
epicentres are uot considered and four sections are taken at 55oS between

118oW and 138otr{. The Pacific-Antarctic fracLure zone is incl-uded and Eaken

as one section. There are eight sections aLl together. An initial run

yields four epicentres (open circles in Fig. 8.15) which have deviations more

than 2.5 tirnes tire st,andard deviation of Eheir respective zones. Omitting
them leaves 100 eplcentres. A search at five degree intervaLs over a wide area

gives a pole at 75oS, 150oE. A one degree search gives a pole at 7605, l44ol
with a standard deviation S = 15.5 km. This pole will be referred to as the

eight zone pole; an alternative pole based on ten zones will be discussed later.
A simple means of assessing the pole is Eo examine the standard devi-ations

of the indivl-dual zones used (Table 8.3 overleaf). In section 3.6.3 it was

shown that the uncert.ainty in epicentre locat.ions is likely to be at least
25 km so a1l the individual standard deviations are satisfactory. The

distribution in each zone could be checked with various sLatlst.ical tests,
exauples of which were gi-ven in the previous section, In practice the

rigorous tests are needed only when the interpreeaEion is uncertain. A slrnple

Lnspection of the discribution about Lhe mean arc of each zone is usually
sufficient.

The seetion ar 50oS, ll5ow (Fig. 8.16) is remarkably linear. rE is
170 kn long, the standard deviation is only 5.8 km, and only one of Ehe

epicentres is more than I km from the arc. The disrributions between

ll8ow and 145oW (Fig. S.17) also fit rhe eighE zone arcs well. It should

be noted that when the pole ls calcul-ated from several sections there is no

requirement that every section fit the pole well-. The disLribution at
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l6OoW (Fig. 8.18) is not ranclom about the eight zone arc. The sLandard

deviation is only f8.5 km but a lower sEandard deviation would be obtained for
an arc trending more east-r^/est. Two separate fracture zones would probably be

more satisfactory. In the Pacific-Antarctic fracture zone, 1800 - 161oE,

(Fig. 8.19) the dlstribution abouL the eight zone arc is visually reasonable

but the run EesE indicaLes that it is nonrandom at El;.e 9514 level.

Table 8.3 Pacific-Antarctic epicentral poLes

Zone
Nurnber of
epicenEres

B zones:. 76os. 14408

. Contrib. to5j \Kn/ mean s (Y")

1Q zones: 7los.1221n

s. (km) contrib' to
mean S (%)

115ow

l2oow

L25ol^r

l.3oow

t36ow

L42ow

l6ool^l

Pac-Ant

11

3

T2

29

5

t2

7

2T

5.8

18.9

23.3

24.6

15.3

L7.3

I8.5
20.8

mean S = 15.5

33

5

9

l3
8

11

8

13

29

5

7

11

7

9

5

6

7

15

5.8

19.0

25.1

25.0

15.0

19.4

28.r

25,5

L5.7

8.2

L4.9

(N)
(1) I
(2) s
(3) 6

mean S =

In the Pacific-Antarctic fracture zone (Fig. 8.19) the gaps in the sels-
nicity suggest that the area could be considered as three zones. When this ls
done there are ten separate sections on the whole Pacific-AnLarctic boundary.

They give a pole at 71oS, l22ol. The standard deviation is 14.9 km, a slight
but not significant improvement on the 15.5 kn of the pole calculaEed with
elght zones.

The arcs about the eight and ten zone poles dl-ffer l-ittl-e for the

sections east of 150otq (Figs 8.16 and S. f7), and the standard deviations

are similar (Tab1-e 8.3). At 160ow (Fig.8.1S) the ten zone standard

deviation is 28.1 km compared with 1B.5 kxn of the eight zone, However

if the section is considered two separate fracture zones the best fitting
arcs are those about the ten zone po1e.

In the Pacific-Ant.arctic fracture zone (Fig. 8.19) the dlfferences
between the two poles are signlficant. If there are three separate fraeture
zones they fit the pole at TloS , I22oE adequately, especially the western-
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most, third zone (Table 8.3). When the likel-y uncertainties in epicentre

locations are considered (Tig. 8.20) three separate zones would al-so fit the

pole at 7603, L44oE. For that posiE,i-on rhe slandard <leviaEions of zones one

and two are virrually the same as for the pole at 71oS, I22oE, buE for zone

three the standard deviation is 24 kn compared with B lan. If the area is
one single zone both poles are not acceptable. For the pole at 7los, l22ol
the standard deviation of the single zone is 98 km, and it is clear from

Fig. B.19 that the single zone strike is too easl-wesL to fir that pole.

Some contours of the epicenEral standard deviation for the ten and

eight zone daEa sets are shown in Fig. 8.2I. The 902 confidence limiE is
17.9 kn and 18.6 km respectively which gi-ves confidence areas not much

small-er than the area inside the 20 km contour. However the contours may

not adequately indicate the confidence lirnits for the epicentral- pole.
For example 71oS, I22oE is inside the confidence area of the eight zone data

set, buE Figs 8.19 and 8.20 indicate that that position is not adequate for
the eighth zone of the data set i.e. Ehe Pacific-Antarctic fracture zone as

one zone. Thus Lhe 902 confidence area defines an area of adequate standard

deviations but no! neccessarily adequate distributions. Alcernative means

of assessing the confidence limits for the pole are required.
To conclucle: Fig, 8.21 indicates that the Pacific-Antarctic epicentral

pole ls nof tightly determined, but wiEhouE discussing any other geophysical

data a pole at 71oS, lz;oU can be considered preferable. It fits al-l the
epicentre lineations wei.1 and it produces the lowest epicentral standard

deviatlon.

8.3.3 Indian-Antarctic

For the Indian-Antarctlc epl-central pol-e Sykesr epicentres (fig. 3.10)

are used. Firstly because they show less scatter than the USCGS epicentres
(Fig. 3.9). Secondly because the USCGS file was set up with data only east

of 13508, whereas the Sykes fil-e has daEa for the whoLe Indian-Antarctic
boundary.

The area east of approximately 135oE (Fig. 8.22) is relatively clear
so that area is considered first. The available bathymetric and magnetl-c

daEa indicat,e that all the seismic accivity is associated with fracture zones

that offset east-wesE sect,ions of spreading ridge. FocaL mechanism studies
(Banghar and Sykes, 1969) for two earthquakes at the northern end of the
long zone from 55o to 600S indicate predominantly strike-slip motion along

t,he trend of the epicentres. It should be valid to assume thaL all- the

activity, apart frorn a few isol-ated epicentres, is on transform faults.
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A longitudinal division into Lhree sections, ignoring the sma1l section

at 14408, is seosible. However in the section at 14008 there is a short

length of spreading ridge at 52.3oS, (Weissel and Hayes , lg72), so the 14008

section is considerecl two sections separatecl aE 52.3oS. This gives a total
of four separafie sections. They yield an epicenlral- pole at 2605, 163oW,

with an epicentral standard deviation S = 21.3 !m. The standard deviations

of Che individual zones are betr.reen 18 and 25 km. Contours of the epicentraL

standard deviation are shown in Fig. 8.23. The 9O% confidence llrnit is
25.8 km so t.he 25 h eontour approximates the confidence area. It can be

seen that this area is very large, but it probably overestimat,es the

uncertainties it the pole position.
In the loog section from 55oS to 6oos (Fig. 8.22) none of the deviations

from the arc is more than two standard deviaEi-ons and the distribution is
random with the run test. NeverEheless there is a suggestion that it ls more

than one zone. Data sets using several different subdivisions of this section
produce poles less than four degrees from 30oS, t66ow. Hor.rever the disErib-
utions in the sualler sections are not all random, the short sections lead to
large confidence areas, and a t'false" secondary mLnimum occurs near 50oS,

160oE. For that position the'Balleny fracture zone (Fig . 5.24) has a

standard devi-ation of 75 krn, and it contributes only B% to the mean standard

deviation. The posltion is obviously unsuitable for the Balleny fracture
zone btit it is not clearly discrepant. for Lhe shorEer sections furEher north.
The false mininum is a product of the welghting systeu used. The standard

deviat.ion of the Balleny fracture zone for posit-ions off the "truet' pole is
such that its weigtrting compared with the other sections decreases roo qul-ckl1'.

It is effectivly weighted out of the sum of all the zones and so has little
effect.

Next the boundary west of 135of is considered. The epicentres between

13Oo and lzOon Gig. 3.10) are associated with the Australian-AntarcEic
discordance and are not considered for the epicentral method. I'lest of
l20on (fig. 8.25) epicentre lineations are not striking but there are

seven small areas with slightly concentrated activlty. The six areas west

of 10008 are associ-atecl with fraet.ure zorres which McKenzie and Sclater
(1971) have tentatively identifiecl from magnetic and bathymetrlc data;
and the area at tt8of coincides r,riLh a fracture zone mapped by Weissel and

Ilayes (Lg72). These seven zones give an epicentral pole ac 2BoS, 1620I.I,

very close to the pole position from data east of 135otr (Table 8.4 overleaf).
The st;rndard deviations of the separate zones are beLween 9 and 20 km.

In rhe gxoup at 32oS, 7goE, tlro focal mcchanism studies (Banghar and

Sykes, 1969) indicate normaL faulting not strike slip motion so this area

may not be a transfonn fault arrd so shoul-d not strictly be considered.
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The distribution at 11808 is not good and possibly should not be considered.

El-iminating these two areas leaves five zones which give a poLe at 31oS,

166ow (Table 8.4).

Table 8.4 Indian-A.tar"tic epi"e

Data set Number of
epicentres lar os long oI{

S (kn)

4 zones east of 135on

as above : equal weighting
USCGS east of l35of (4 zones)

7 zorres east of t20on

5 zones east of l20ou

9 zones, whole boundary

as above : equal weighting

80

80

91

42

31

111

111

26

26

27

28

31

30

30

163

163

164

t62
166

L66

L66

2L.3

2r.o
24.5

13.5

14.4

16. 6

16. B

When the best data east and wesE of l35on are combined there are nine
zones for the whole boundary. . They give a pole at 30osn l66ow with
S = 16.6 km. Contours of the epicentral sEandard devlation are shown in
Fig. 8.26. The 90% confldence limit is 19.5 krn so the 20 kn conEour

approximaEes the confidence area.
For the complete boundary daEa set the secondary minLmum discussed

prevlously i-s present. One way of "avoiding" i.t is weight each section
equally i.e. use h. = I in equaEion 8.6. This produces an identical
epicentral pol-e poiiaiorr, 30oS, l66ow, and nearly the sanL mean sEandard

deviation as the nore complex weighting system (Tabl-e 8.4). The standard
deviation contours (Fig. 8.27) are similar in shape and the confidence area
(approxiurately the 20 km contour) is smaller. Equal weighuing a1-so gives the
same pole as the more complex weighting for the data east of l3BoE only
(Table 8.4).

The USCGS epicentres easr of 135oe (Fig. 3.9) give a pole at 2705,

164oW; virtually the same as the other poles found using Sykest data.
To conclude: the results for the Indian-Antarctic boundary reveaL

deficienci-es in the weighEing system used but a wide variety of data sets give
poles near 30oS, 166o1,tr. The convergence of the differenL data sets probably
indicates that the confidence area as defined here j.s too conservative an

esEimate of the uncertainties in the epicentral- poLe. The Indian-Antarctlc
epicentral pole ls close to 30oS, 166ow.
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8.4 CONSISTENCY OT THE EPICENTRAL POLES

The epicentral poles for the Indi.an, Pacifj.c and Antarctic interactlons
are listed in Table 8.5. It should be noted that each pole has been

deterrnined quiLe independantly.

Table 8.5 EpicenEral pol-es

Pacific-Antarctic
7los Lzzo1

An important check of the reliability of the poles is that they should

form a consistent set. The poles define the directions of the angular

rotation vecEors of the interacting places, and if the plates are rlgid the

vectors shoul-d be such that
rrr(Pac-Ant) +o(AnE-Ind) *ur(Ind-Pac) = 0 .......8.8

A neccessary condition for equation B.B to hold is that vectors are coplanar;

which means that the rotation.poles must lie on a great circle. Fig. 8.28

shows that the epicenLral- poles very closely satisfy that condition; in fact
no pole 1s more than 35 km frorn the great circl-e. The consistency ls
remarkable considefing the uncertaintles in each individual pole.

Collnearity of t.he. poles is a necessary condition bur it is not

sufficient - the vectors must also add correctl"y. If the pol-e positions
1.e. thp vector directlons are fixed, the vecLor nagnltudes i.e. rates of
angular rotation, must be crasist.ent. The epicentral- method does not provide

the rotation rate so additional- dat,a must be used. A rate of motion at a

single point on any one of the boundaries would completely determine the

system. Ridge spreading rates wiJ-I- provide rates of movement, anci since they

are available at several places the system is in theory overdetermined. In
practice the uneertainties in the data are'considerable and only an

approximate check of the consistency is possible.
Before discussing the rotation rate data lt is important to point out

that the epicentral method provides essentially insLantaneous poles. The

seismicir-y data are for the l-asr decade and if all- the earthquake fault
movements were strike-slip the epJ.centre lineations irrdlcate the direcEions

of pl-ate motion durlng the last decade. The epieentral po1-es therefore apply
for motions in t.he last decade. Mosr other methods of finding rotation poles

provide poles which represenL movement during longer intervaLs; often uP to
10 ny.

Indi-an-Pacif ic
s60s tz6oe

Indian-Antarctlc
3oos t66ow
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The rates of movement required to check the epicentral poles should

strictly be for only the last decade, but chat is not practical. New Zealand

data of observed fault movements, a geodetic survey, and dlsplacement of
.-( 101000 y old ri"ver terraces (Wel1-rnan, L973a) provides some recent data for
the Indian-Pacif,ic boundary. Ilowever the boundary is a broad zone in most of
New Zealand (Evison, I97I; Wellman, 1973a) so iL is not possible to be sure Ehat

data from severa.l small areas reflect the total movement between the two plates.
The most reliable data for determinj,ng the rotation rates are ridge

spreading rates determined from magnetic anomal-ies. They yield an average

rate over the anomaly span used. The minimum span is the first reversal at
0.69 mybp but this would be very difficult to use reliably. Probably the
best rhat can be done ls to use anomaly 2 (1.79 nybp). If plate motlons do

not change rapidly the rates calculated over the 1.79 my interval should be

adequate. Figs 8.29 and 8.30 show that the considerable scatter in the !

available data make it diffieul-t to accurately define the rotaEion rate for
either the Pacific-Antarctic or the Indian-Antarctic poles.

Table 8.6 shows the results of several data sets used to check the
rotaEion rates appropriate for the epicenEral- poles. rn each set the
rotat.ion rate fgr one of the poles is assumed and the ot,her tr^ro rates are
calculated by vector addition.

Table 8.6 Bpi-central pole rotation rates

Set Pacific-Antarctic Indian-AnEarc tic Indian-Pacific

I
2

3

4

7,4

10. 5*

8.6

10.2

6.9
9.8

B. 1*

9.5*

L2.6'*

L7.9

14.8

L7 .4

:t Indicates rate that was assumed.

Rates in untts of 10 -? d"g/y,

Set one use-s the New Zealand data Eo det,ermi.ne Ehe Indian-Paclfic rate.
Wellman (1973a) concludes that recent nrovement across the boundary in the
South Island is of the ord,er of 3 cm/y. For the Inclian-Pacific pole at 5605,

t76on Ehis gives a maximum rare of 13.5 cm/y at 90o from the pole, i.e.
L2.6 x L0-7 d.eg/y roration rate.

Set two uses the Pacific-AntarctLc data of Fig. 8.29. A best fitting
straight line through the origin should enable the rotatLon rate to be

determined from Ehe maximum rate at 90o. The data are scatterecl but the
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maximum half spreading rate can be esEimaEed as 5.8 t 0.6 cmly. This gives

a Pacific-Antarctlc rotation rat,e of approximaEel-y 10.5 x LO-7 degly.
Set three uses the Indian-l^ntarctic data of Fig. 8.30. The data do not

fit a straight line at all vell which rnay be due to inaccuracies in the data

or it may indicate that the pol-e posiEiorr is not appropriate. A maxlmum hal-f

spreading rat,e of 4.5 cmly gives an Indian-Antarctic rotatlon rate of
8.1 x L0-7 d,eely.

Set four uses daEa from the southeast Indian ridge near the Indian-
Antarctic-Pacific triple junction (Section 4.6.2). Anomaly 2 has been

clearly identified at several places there. It gives a half spreading rate
of 3.4 t 0.1 cm/y perpendicular to the ridge trending N55oE. For a pole at
30oS, 166oW a ridge perpendicular to the motion would strlke N52oE. The rate
perpendicular to this gives a maximtun half spreading rate of 5.3 crn/y, or a

rotation rate of 9.5 x L0-7 d.eg/y for the Indian-A.ntarcLic po1e.

The data in the whole of Table 8.6 indicate that it is difficult to
check the consistency of the epicenEral poles fron the rotati.on rates. For

any pole the rates deduced by different methods vary by up Eo 30%. For Ehe

Indian-Pacific pole the "observed" rate (set one) is lower than any of the

indirectiy calculated raLes and the observed rate l-eads to rates for the two

other poles which appear to be too 1ow. The Pacifie.-Antarctic observed rate
(set two) is probably correct to wiLhtn 10% and only set four agrees with it.
However set four j.s based on an Indian-Antarctic raEe vrhich appears too high
even for that boundary (!'ig. 8.30) and it produces a high rat,e for Lhe Indian-
Pacific boundary.

Tn conclusion it can be said that it is diffieult to fully check the

consisteney of the epicentral po1es. The rotation rates agree to within
only 302, but considering the data used that rnay well be good agreement

The condition that the poles be on a great clrcle certainly is very closely
meE, but considering the uncertainEies in the pole positions Lhat agreement

may be fortuitous. The requirement that the poles be consistent is based on

Ehe assumption that the plates are behaving in a truely rigid manner. This

may noE be rralid. Some of the epicencre scaLter at the plate boundaries may

reflect local non-rlgid behaviourr and some non-rigidity of the Indlan plate
is indicated by the sediment deformaEion (Eittreim and Ewing, 1972), and

minor seismic acEivity (Sylces, 1970a), in Ehe northeasL Indian ocean. Rarher

than demaud that the epicenEral poles be eonsisten[ their general consistency
may be considered indicative of the rigid behaviour of the plates.
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8.5 COMPARISO}IS I^]ITH OTHER DATA

8.5. f General

The examination in the previous section of the consistency of the
epieentral poles is one way of assessing the validity of the poles. In lhis
section each pole is assessed individually by comparing predictions based on

the epicentral poLe with observations lndependent of the method, and by

comparing the epicentral pole with other poles. Before discussing each pol-e

separately the fol1-owing general- points should be noted.

The epicentral method uses epicentres from transform faulEs and the

epicentral pole yields arcs that best fit the epicenLres. The arcs define

acEive fracture zones and these will be conpared with fracture zones. that
have been defined independently. Ilost of the ldentified fracture zones have

been mapped from bathyrnetric features and offsets of magnetic anomalies and

in only a few places were the data from the actj-ve portions of the fracture
zones. In mosl places the position and strike of the acti-ve portion was.

lnferred from epicentres and from the strike of the fracture zone beyond the

actlve part. If a pole posit,ion has moved rrith time a fracture zone strlke
defined from lnactive portions nay be different from the strike of the active
transform fault porLion.

Harrison (l9l2a, 1973) has shown that the use of inactive portions of
fracture zones for determinlng pole positions can lead Eo substantial errors
in the pole positions. This coul-d be significant for soure of the alternative
poles that will be discussed. The epicentral- poles are not effecLed as they

use only the true transform port.ions of the fracture zones.

A complete list of published pole positi.ons is give: i.n Appendlx 8A but

only the more reliable <ieterminations r,rill be discussed in detail in the

following secEions.

There wil-l not be detailed discussions of the strike of ridge sections

with respect to spreading directions predicEed by the epicentral poles.

Plate tectonics geometry does not require tirat ridges be orthogonal- to the

spreading direcEion so ridge strikes do not provide definitive data for
assessing the epicentral poles. On the Indian-Antarctic and Pacific-
Antarctic boundaries the ridges do appear to be orthogonal to Lhe spreading

directions.
It is interesting to note that the standard deviation of every individual

fract,ure zone considered on the three boundaries is l-ess than 30 kn. Tlre

uncertainties in epicentre locations are likely to be of similar order so

statistiall-y the fracture zones defined by seisrnicity coulrl be of "zeto
width". .
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8.5.2 Indian-Antarct,ic

The Indian-Antarctic epicentral pole ar 30oS, 166oW was determined with
data from two areas: east of l35oE, and west of l00og. Each of these areas

separately gave similar pol-e positions (Tabl-e 8.4), which can be considered

good evidence of the continuity of the Indian and Antarctic plates ln this
area.

For the area east of 13508 the morphology and magnetic anomalies have

been described by l{ayes and Conolly (1972) and I'Ieissel and Hayes (1972)

respectively (Fig. 2.r. Both have identified active fracEure zones but Lhere

are significant differences in the positions and Lengths of individual zones

depending on the type of data prirnarily used. There is therefore l-lttle poinr

in a detailed conparison of their fracture zones with those defined by the

epicentral method. It is sufficienL to say that the strikes of al-l the

alternative fracture zones agree co within 10o. Two focal- nechanism studies
of Banghar and Sykes (f969) are available in the area (Fig. 8.22). Both

solutions are primarily strike-slip and the slip direcEions agree to within 60

with the direction defined by the epicentral pole.
The structure of the area west of 100otr has been described by McKenzte

and Sclater (1971). The fracture zones chey idencified (Fig. 2.10) are

determined from bathynetry and magnetic anomalies but are also very dependenE

on epicentres. Therefor:e detailed comparison wirh the epicentral results is
unrvarrented. The strlke of their fracture zones agree to within Bo w{-th the

strikes given by Ehe epicentral pole. Three focal mechanism studies are

avai.labl-e frour Banghar and Sykes (1969). The slip vector of a strike-slip
solution at 4605, 96oE (Flg. 8.25) is wirhin 80 of the predicted epicentral
directj.on. The dLrections for two normal faulting solutions at 32oS, 78oE

are more divergent, but for both sol-utions the slip vector is not well
deterurined.

The Indian-Antarctic epicentral pole is well southwest of several

alternative poles for the boundary (Tie. 8.31). WeisseL ancl llayes' (1972)

pole is dete::mincd from superposition of anomaly 5 (10 mybp) either side of
the southeast Indian ridge east of 105oE. They indicate an uncerEainty of

l-ess Lhan 30 j-n the pole position. The McKenzie and Sclater (1971) pole is
from a matrix rnethod using spreading rates, fracture zone strikes, and focal
mechanism slip vectors. Data mainly west of 105oE were used, but some data

east of l35oE were also included. Thus contrary to l{eissel and llayes (Lg72)

statement the lrleissel and Hayes and ]IcKenzie and Sclater poles are not

independent, The Chase (1972) pole is one of the set, of similEaneous poles

determined rvith his n-plate method, and is one of the best determined poles
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of the set. Seven spreading rates and 14 directions from focal mechanlsrn

studies or fract,ure zones on the In.dian-Antarctic boundary were lncluded in
the global data seE used.

The confidence area of the epicentral pole (Fig, 8.26) is very elongate

because the narrow azimuEhal- distribution of the fracture zones l-eads to
poor conLrol in the direction of perpendiculars to Ehe fracttrre zones. The

alternative poJ-es (Fig. 8.31) are between 17o and 260 from the epicentral
pol-e but they are close to the axis of ninimum epicentral standard deviation,
and rhe standard deviarion at all of then is Less than 10% greater than at
the epicentral- po1e. At any given point on the Indian-Antarctie boundary

the directions of rnotion predieted by the different poles differ by less than

l0o. Consequently fracture zones provide l-ittle control for assessing the
merits of the different po1_e positions.

Spreading rates provide control along the axis of the epicentral
confidence area. Table 8.7 lists calculaEed and observed spreading rates at
three widely spaced points on the boundary. The Weissel and Hayes pole and

rate appears Lo be the. best fit and the epicentral pole does not fl-t very
well. However Ehe rates at TBoE and ll5oE are 10 my averages and the rate at
l6oon is a 1.8 qy average. Wliat is strictly required for the epicentral pole
is the present day rate.

Table 8.7 Observed a_nd calcrrlal-ed spreading rates on the Indian-Antarctic
boundarv

Source for raLe 62os, l6oor 5oosn l15oE 38o$r7BoE

Observed

I'Ieissel &^Hayes (1972>
I2"s, 145"w trJ = 6.75 x l0-7
McKenzie & Sclater (1971)
l los , l/r8ow t$ = 6. + x rb -?

Chase (I972\
16os, iseow- &r = 6.5 x l0-7
Epicentral o = 8.1 x 10-7
gbos. 1660r.l' trt=9.5x10-7

o/y

oly

oly
oly
oly

3,4

3.4

3.1

2.9

2.9

3.4

3.7

3.7

3.5

3.5

3.9

4.6

3.2

3.4

3.2

3.5

4.s

5.3

Spreading rates are half spreading rates in cm/y.

It is difficult to give a definate conclusion on the validity of the
Indian-Antarctic epicentral pole position 3OoS, l66oW. The po1-e is compatible
with the available data on directlons of motlon buE a pole furEher norEheast

along the axis of the confidence area may be a better position for rales of
movement. More detailed spreading rate data are reqrrired to check the

epicentral pole.
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8.5.3 Indian-Paclflc

The data used for the Indian-Pacific epicentraL pole were selected quite
independently of any other geophysical data. The very tight deternr-inatlon of
the pole position (Flg. 8.9) coul-d be consldered good evLdence that the pole ls
valld, but it is preferable to also exarnine what the poLe predicts on the
boundary.

The basic assumption of the nethod implles pure stri.ke-sJ-ip motion along
all of the Macquarle complex south of about 49oS. Focal- mechanism studies are
avail-able from Sykes (1967), Banghar and Sykes (1969), and Johnson and Mol-nar
(L972), (Fig. 8.32). Only two indlcate pure strike-slip motion, the others
indlcate some thrustlng of Uhe Paclfic p1-ate over the Indian pl-ate. The slip
vectors of the thrust solutlons are not well deternrined (Banghar and Sykes,
1969). The thrustlng is not necessarlly lncompatibLe wlth reglonaL strl.ke-s1-ip
ootion because focaL mechanisms indJ-cate onLy local- motion. Any structure
obLique to the boundary rnay lead to locaL notlon that is dlfferent from the
reglonal one.

The existence of the substantial ridges and troughs that make up the cornp1ex

could be consldered evidence that it is not a sJ.rnple fault boundary. Ilowever

the topographLc structure nay be a result of novement ln tir,ue of the positlon
of the po1e. The pole is close to the boundary so any shift could cause large
changes in motion along the boundary leading to the development of maJor struc-
tural features. Changes with tLure coul-d expJ-ain why the southern part of the
Hjort trench strlkes across the boundary (Fig. 8.3?). The scatter of the epi-
centres and the possiblllty of systematic errors in .epicent,re l-ocation nake Lt
unwlse to suggest that the boundary 1lne defined by Ehe eolcentral pole (Fig.
8.32) 1s assoclaLed with any particular feature of the compl-ex.

North of about 49oS the eplcentres diverge from the singLe arc (Flgs 8.5 and

8.LZ), so the boundary cannot extend as a continuous strike-sl-ip fault into
New'Zealand. In the South Island the boundary is generally associaEed with the
Alpine fauLt which goes offshore from Fiordland. The vector of motion predlcted
for the area betvreen 49oS and Fiordl-and impll-es a conponent of compression.

If some of this compression is t,akeo up by urrderthrusting the interrnedlate depth
earthquakes observed in Fi.ordl-and (Snith, 1971) couLd be explalned. ChrlstoffeL
and van der Linden (L972) have proposed a urodel which woul-d reconciJ-e the south-
eastward dtp of the earthquake zone with the northeasE direction of relative
motlon.

At the centraL part of the AJ-pine fault at l70og (Fie. 8.33) the dlrection
of motion predlcted from the epicentral pole strikes 20o east of the faul,t.
The conponent of motion normal to the fault explalns the observed up1lft and

thrust of the eastern slde. Further north the Alolne faul-t branches Lnto
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several faul-t traces (N.2. Geol. Survey, 1972). The strikes of these faults
where they break off from the main trace are within 50 of the strike of the
epicentral pole vector. After a short distance, hor+ever, they reorlentate
to a more northward Erend. The structure of the area may be a consequence

of the present motlon being, oblique to pre-exlsting structural trends.
The predlcted directlons of relative motlon change from east-wesE at the

northern end of the South Island to 15o north of west at the northern end of
the Tonga trench. The directlons agree welL wlth those glven by focaL meehanlsm

studies (Johnson and MoJ-nar, 1972), and are compatibLe with the underthrusting
lndLeated by the distribution of earthquakes (Isacks et al., 1968).

The eplcenLral pol-e posltion is signlflcantly dlfferent from other published
pole posltions (Fig, 8.33). The dlfferences are probably a result of dlfferent
lnitlal- assumptions rather than uncertalntles in pole deterninations.
ChrLstoffelrs (1971) poLe (DC) ls based on the assumptlon that the Indlan-
Paclfic boundary is a continuous transform fault from the trlpl-e Junctlon to
the southern end of the Kermadec trench. This seens unJ-ike.ly. Wellmanfs
(f973a) pole (I'IIJ) ts a graphicaL detercrinatLon based on the directlon of the
soulhern and centraL Al.pine faul-t. Some account was taken of non-pure strlke-
sJ-ip motlon and the proxinity to the epicentral pole ls support for the valldity
of the eplcentral poLe positl-on. The McKenzie and Sclater (1971) pole (I4S) and

the l,Ieissel and Ilayeg Q972> pole ($lH) are indirect poles calcuLated from
Le Pichonts (1968) Pacific-Antarctic poLe and their respective Indian-Antarctic
poles (Flg. 8.31). Chascfs (Ig72) pole ls one of his sinrultaneous set" It
incl-udes data from onLy three focal mectranism studles on the Indfan-PacLfic
boundary and sc is malnly an indLrect pole.

A11 the poles predlct predornlnantly strlke-sLip notlon on the Macquarie

conplex but the Lhree southern poles (Flg. 8.33) predlct some subduction l-n che

Hjort trench area and aknost pure strlke-slip Ln the southern and centraL

Ai"pine fault. There is no positive evidence of subduction at the HJort trench

and there is some evidence for uotlon obllqug to the Alpine faui"t so the epl-
central pole posrtj.on would appear to be better.

The epicentral method does not give the rate of motlon but if the three
epicentral poles are assumed to be consistent the rotatLon rate can be estimated

Eo be 13 to LB x l0-7 o/y (t.ute 8.6). A rate of 15 x 10-7 o/y would gLve

2.8 crrly surike-slip uoti.on on the Macquarle complex. The componeut paralleL to
tlre central A1-p1ne fault at 170oE woul-d be 3. 5 cm/y r^filch is of the order of
that estioated by Wellman (f973a) from geomorphic eviderrce. The rates predLcted

by the oLher poles are simllar.
It is reasonabl-e to conclude that the valldity of the Indian-Pacific epi-

central poLe positlon 5605, !7608, has been established. The pole predlcts



pure strlke-sllp motion for most of the Macquarie coropl-ex.

epicenEres mlght urake it possible to detern:ine the role of

of the conplex with regard to thts motion.

8.5.4 Paciflc-Antarctic
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More accurate

various features

Ttre Pacifie-Antarctic boundary and rotation poles will be dlscussed

nore fulLy in the next chapter so on1-y a brief discusslon is given here.

The Pacific-Antarctic epicentral pole position thaE has been adopted is
71oS, lzzoln but an aLternative pole at 7605, 144on is statisttcally aknost

as good. The l-atter pole is based on the Pacific-Antarctlc fracture zone

belng one fau1t, the forruer pole assumes that lt is at least three faulte.
The only reLiable focaL mechanism solution for the whole Pacifie-

Antarctic boundary Ls in the very linear fracLure zone at 115oW (fig. 8. L6).

The solutlon (Forsyth, L972) indicates pure strike-slip motion, wlth the

slip vector only 20 from the directlon predicted from the epicentraL pol-e.

East of L50oW dtrections of motlon predicted by the two epicentral-

poles differ by J-ess than 50, and the directions of all the mapperl fracture
zones (f'tgs 2.11, /r.18) are within l0o of the epl.central directions (Ftg.

8.17). The fracture zone at .142oW ls of lnterest because lt ls the onLy one

that ls adeqr.rateJ.y defined by data from wlthin the active portlon. The

direction defined by the bathyrnetrlc data is exactly the same as that
predicted from the edcpted epicentraL pol-e, 71oS, L22oE, The alternatlve
pole ylelds a etrj-ke 50 more westerly.

In the area just east of l80o (Fig. 4.22) the clirections pre<licted by

the two eolcent-ral poles differ by up fo 15o but the fracture zone trends are

not reliably enough deterndrted to provide useful comparlsons, The ridge at
l.68oW strlkes lt4Oon. For a ridge orthogonal to the motion the adopteC pole

predicts u44oll whil-e tire alternative pole gives N32og.

The interpretation of the Pacific-Antarctj.c fracture zone as several

smaller zones striking sllghtJ.y across the trend of che whoLe zone ls
preferred (see l-ater) and the adopted eplcentral pole clearly flts this
interpretation satisfactorlly whil-e the alternative pole doesnft (Fig. 8.19).

Published Pacific-Antarctic pole positions (Appendix 8A) are al1 near

7oos, l2OoR (t'ig.8.31) excepr for one ar B2os, 120oE (christoffeln 1971).

The laEter was based roainly on the strike of the Paclflc-Antarctic fracture

zone as one fault. Al-L the other poles used daEa only from east of 1800.

Their proximity to the epicentral pol-e 71oS, t22o1, r'rhich uses tlata fron both

east and west of 1800, supports the validity of tlre epicentral pole positlon.

To concl-ud.e: The PacLfic-Antarctic eplcentral pole at 71oS, 122og flts

the avallable data weJ-l, but positions further souLheast cannot be
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deflnitely excluded. AdditlonaL data rvest of l70oW could confirm the pre-

ferred eplcentral poLe positJ.on,

8,5.5 Changes ln pole positLons

The positions of the Indian-Antarctlc poles shown tn Fig. 8.31 form a

fairly regular progression ftom the Weissel and l{ayes po1-e to the epicentraL

poLe. A slnlLar progresslon is seen l-n the Indlan-Paciflc poles (ffg. 8.33)

but as some of these poles were indirectly calculated their positions are

dependent on the Indlan-Antarctic poles and the two progressions may not be

independent. The progression of the poles becomes more signiflcant when the

basis of each poLe is exaulned.

The Welssel and Hayes pole is fron the superposltion of anontaly 5 and

is an average of l0 ny of movenent. The llcKenzie and Scl-ater pole uses

spreading rates based on anomaly 5, but it also uses fracture zone trends

which uay be deflned from younger data, and focal mechanlsm sllp vectors

which are effectlvel-y instantaneous data. Chasets method usea a g1oba1 data

set that contains spreading rates, fracture zone directions and nany focal
mechanism vectors. It probably produces poles which represent average

motlons over an even shorter.tLne than the llcKenzle and Scl-ater pole. The

epicenLraL nethod ylel-ds instantaneous poles.
The progressl.on of pole posltlons ts thus a uniform progression from a

positlon representing ten mlllion years of movemenl, through ttyoungertt

positions, to the instantaneous position. The progression suggests that
with tine the IndLan-AntarcLic pole has moved southwest and the Indian-
Paciflc poJ-e has moved westward. T}^e Paclfic-Antarctlc pole has probabLy

not moved significantly.
The constraints of rigld plates mean that lf one of the poles noves at

Least one of the others must aLso rnove, except when the novement is along

the great cl-rcl-e through the pol-es. In the latter situation only the ratee
of rotation need change, in the former the rates needntt necessarily change.

Flg. 8.31 shons that the pole movements are not aLong the great circLe so

movement of both the IndLan-Pacific and Indlan-Antarctic poles vrould be

reguired if the Pacific-Antarctic poJ-e dld not move. The fact that the

avall-abl-e ttoldert' Indlan-Pacific poles are lndlrect calculalions based on

the other two poles does not necessarily mean that rnovernent of the Indlan-
Paciflc poLe ls a consequence of the Indian-Antarctic pole movement. It ts
not possibl-e to determlne whether eiEher movement controLs the otherr or

whether al-1 the movements are produced by effects external to this sytem of

lnteractlng plates.
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It uay be signLfieant that the Indian-AntarctLc pole oovenent i.E

towards the bouq ary ln a dlreetloo approxtmately along the perpendiculare

to the boundary f,racture zoaea, Fole moveuent, in this dl"rectLon means that
d{rection$ of movenent on tbe boundary do not change muefi. l{hen a borutdaty

eonslgts of eeta-blLshed Grthogonal rldges and f' aciure zones mlninurn ene!$y

consideratl-ons suggest that if there are pole trov€Bents thoee whleh

ninlmLze ehanges of dLrectlon would be preferred.
The eplcentral method descrlbed tn thl,s chapter has yleldeil three trlole

posltLons that forla a consLsteot cec' ad each itdivldual pole has been

ehswrr to be re1iab1e. A1-though f,urther wor[< Ls required to b€tter detet-
mlte the accuracy of the epl-central poles it does appear that thete ale

systematl,c dlfferenceg between the eplcentral poles and poles detemined by

other mears. Further appli.catLons of the epLeentral method s-houl-d eonflrn
vbether o't not Lt ic possible to etud5r detalled rnovenents of rota,tion goles

by cornparlng th€ epieertral resuLts vitlt the reeults of other ruethods.
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CHAPTER 9

AI{ INTERPRETATION OF THE STRUCTURE OF TI1E SOUTHI{EST PACIFIC AREA

This chapter draws on roaterlal ln the previous chapters to glve an

interpretatioa of the.teetonic development of the southwest PacifLc area.

An lntroduction (9.1) ls folLowed by discussions of several areas: the

currently active Pacifl-c-Antarctlc boundary 0-10 mybp (9.21; the Indian-

Antarctlc-Pacific tripl-e junction (9.3); the Cretacecus area of the

southwest Paciflc basln (9.4); and the area representing 10-63 nybp (9.5).

Then the southrrrest Pacifie area is consl-dered as a whole (9.01 followed by

a discussion of its relatlonship to the rest of the world (9.7)

9. 1 IMRODUCTION

In this chapter the tectonic hlstory of the southwest Paciflc area is
discussed. lluch of the dlscusslon ls l-n terms of plate tectonics so lt ls
worth restating the basic assumptions on rvhlch plates are defined. Plates

are defined as belng rigid areas, which effectively means aseisnlc areas.

The pJ"ate boundarLes are defined by tecLonlc activLty. Selsmic activlty
is a suffielent indication of a plate boundary, but aseismic boundaries

aLso exlst. Many active spreading ridges, which are defined as plate

boundaries, are aseismlc. The world seisnicLty shown in Flg. 0.2 clearly
lndlcates the rigid, aselsmic nacure of large areas of the earthts surface.

The plate bousdarles deflned by seisur:icity are easy to see, and the posittons

of the boundaries between the seisnlc sections can be reliabLy Lnferred.

Three of the worlclts Largest p1-ates, the Indian, the Paclflc and the

Antarctic, lntersect in the southwest Pacific area. Ftg. 9.1 shows the

seisrnlcity in Ehe area and it l-s cLear that the plate boundarles are

preci-sely defined by the epicentres. The aseismic portions Linklng the

eplcentres are known in many places to be the axes of spreading ridges.

The pl-ate boundaries in the area coul-d al-so be defined from morphologLc

features, a.s Fig. 9.2.shows.
In terms of plate tectonics thls study is prirnarily concerned wlth the

southwest parE of the Paciflc plaEe, and its boundary with the Antarctic
plate. In plate tectonics the continental CampbelJ- plateau-Chatham rise
area l-s not dlfferentiated from the oceanic southwest Pacific basln - it ls
aLL part of the Pacific pLate. However this study is concerned only with

the oceanic part. The structure of it has been described in detall in
Chap.:er 4; here an aLtempt ls made to understand the origln of that
structure. It is convenient to fLrsc conslder various parts of the area

separately, then |tput then together" for a view of the evol-ution of the

whol-e area, then consicler the area J.n relation to the rest of the world.
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9.2 PACIFIC-ANTARCTIC BOTINDARY O-10 MYBP

The boundary bethreen the Pacific and Antarctic plates ls the axLs of
the Paclfic-Antarctlc ridge system. Flg. 9.3 sholrs the seisnlcity on the

boundary, the places where the axLs of an activeJ-y spreading ridge has been

identlfled fron aagnetlc anomalies, and the positions of anomaly 5. The

data west of 144oW are shorsn in more detail tn Flg. 4.1 and have been dLs-

cussed ln section 4.4. The magnetic data east of 145oW are from Herron

(1971), €md her interpretation of that area is shown ln Fig. 2.12 and has

been discussecl in seetlon 2.8.

Also shor.rn Ln Fig. 9.3 are representative arcs about a pole at 70oS,

12oon. It wiLl be shown that this pole is appropriate for the relatlve
motion between the Pacific and Antarctlc plates durlng the lnterval repre-

sented by anoma].ies l to 5. In the time scale of Talrqanl et al-. (1971) the

centre of anomaly 5 is 9.32 nybp, and the outer edge ls 9.94 rnybp. The

anomalLes frour the ridge centre (anonaly 1 = 0 mybp) out to anonaly 5 can

thus be LooseJ-y referred to as representLrrg the intervaL 0 to 10 nybp. IL ls
the Pacific-Antarctic boundary for this interval that is discussed ln thLs

sectlon.
The structure of the Paclfic-Antarctlc boundary differs markedly elther

side of about 175oW. West of 175oW the general trend of the boundary as

defined by selsrr1c, magnetlc, and bathynetric data is about NTOoI^I. No

classical nagnetic anomalles have bee-n identified, ncLther have any J-lneatLong.

The bathynetrlc reLief is extrene and the whol-e topugraphlc structure ls
markedly aslrrrnietrlc. The boundary can be considered a rnaJor fracture zone:

the Paclfic-Antarctic fracture zone. The general strike of the zone ls about

N7OoI^I, but lt probabLy conslsts of several" indlvldual fractures striking uore

northerLy, possibly at N45oW.

East of 175oW the boundary conslsts of a smooth ridge, the axis of whlch

coincides wtth the classlcal centraL magnetic anonaLy. Anomalies out to

nunber 5 either slde of the axis are clear ln most places. The trend of the

axis varles from n40on near 170oW to N15oE at the eastern end of the boundary.

Offsets of the axls are evident fron offsets of magnetlc anomalies and topo-

graphy. Vlrtuall-y aL1 the offseEs are dextral- and mostr but not all, are

seisnlcalLy active. The length of offset ranges fron 500 to 70 kmt but

smaller offsets could be present. The rldge axls is aseismlc and almost all
the seisnlcity occurs betryeen the offset portions of the axls. One reliable

and one poor focaL nechanism solutlon support the loglcal Lnterpretation that

the actlve offsets are rldge-rldge transform faults. The trends of fracture

zones and anomal.y f-ineatlons away from the axls are seldom determlned to

better than 10o, but the fracture zones and J-lneations appear to be orthogonal.
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DeterrnLnatlons of the pole of rotatlon for the relatlve movement

between the PacifLc and Antarctic plates have been published by several

authors (see Appendix 8A). Morgan, Le Pichon, Chase and Wellman alL used

effectlvely the same data; which were spreadlng rates and fracture zone

strl-kes deterlrined from nagnetic anornalles east of U5oW. The data were

gLven by Pltman et a1. (1968) and Helrtzler et al. (1968). Chase (L972)

aLso used data from eLserohere ln the world for his n-plaEe pol-e. It (7OoS,

lO7oE) and Christoffel"fs pole (82os, 120oE) are the only poLes more than

two arc degrees from 70oS, 12OoE. Christoffelrs pole was based rnalnly on

the overall strtke of the Paclfic-Antarctic fracture zone.

Chrtstoffelfs pole and the epicentral pole are the only poJ.es that use

any data west of L75oI^1. As Morgan (1968) and Le Plchon (1968) have polnted

out, accurate determ'fnation of the Paclflc-Antarctlc pol-e ls very dependent

on data at the western end of the boundary. The resuJ-ts obtained with the

epicentral nethod (sectlon 8.3.2) ernphaslse this. Wtren the Pacific-
AntarcEic fraciure zone was assumed to be one zone a pole was obtalned at,

76os, 14408. ,'i{owever when three zones were assurned the pole was almost 80

away at 71oS, l,22on NumerLcall-y the latter pole was marginally better.
The epicentral method has also been applLed to several- Paclfic-Antarctlc
boundary data sets with the Pacific-Antarctic fracture zone excluded. The

poles obtalned rrere very 11L-defined because the epieentral standard

deviation mlniwrum was almost ttflattt over an area of iens of degrees.

Clearly tlre interpretation of the Pacifie-Antarctic fracture zone Is
l-mportant. Bilthyrnetric and nagnetlc daEa do not yet provide adequate tnfor-
matlon on any Local strikes wLthin tl-^: whole zone, aad much depends on the

seisrnlelty. It should be noted that the selsmicity need not necessarily be

only on fractrrre zones. It was mentioned in sectlon 2.7 i'}:.at ridges are

generally aseism{c only when the spreading rate is greater than about 3 cm/y.

Rates of spreadlng predicted in the PacLflc-Antarctlc fracture zone area'

from for exanple l{organts po,l-e and roEation rate, are between 2.5 and 1.8 crn/y.

Thus if there are any sections of rldge ln the fracture zone area some of the

seisniclty may be assoclated wlth thern. It is interestlng to note that the

Less than 3 cm/y area is west of about 165oW, and Just west of 165oW

(Fig. 4.2L) there is seismicity which could be on a rldge axls.

The b value study in Chapter 7 was partS-y notLvated by the desire to see

if b values rvould l-ndicate whether the Paclfic-Antarctic fractute zone

seismlclty was on fracture zones or rldges. The concluslon reached

(section 7.4.3) was that the b value, L.62r',ras similar to that of known

fracture zones on the ?aciflc-Antarctic and Indlan-Antarctlc boundaries.

Ilence ftacture zone activity was possibLe. However the b value was not
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dl-fferent frorn the value for sLow (< 3 cn/y) rtdge axes ln the AtlantLc;
thus rldge axls activity cannot be ruled out.,

There are two alternative approaches that could be taken to the related
problems of interpreting the Paciflc-Antarctlc fracture zone and determining
the Pacific-Antarctic rotatlon pole. One is to interpret the structure of
the fracture zone and use that structure as a constraint on the poLe; the

other is to use the pole as a constraint in l-nterpreEations of the fracture
zone structure. A cornbinatlon of both approaches appears most useful.

Suppose that the Paciflc-Antarctic pole is near 70oS, l20oE, and that
the Paciflc-Antarctic fracture zone morphology and seisrelcity defines the

western-most part of the boundary. Fig. 8.19 shows that transform faults
io the area woul-d strike about N45oW. to acco odate the overal-L strike of
the disturbed zone there would have to be several faults. These would pre-
sunably be l-Inked by short spreading rldges wbich r'rould probably, but not

necessarlly, strike n45oE. The avaiLable tracks are not wel-1 orLentated

for detecting lhsse rldges. The seismicity does fit Lhe predicted structure
adequately.

ALternatively, suppose that the Paclflc-Antarcttc fracture zone is ooe

long fauLt. IE so the Pacific-Antarctic pol-e cannot be close to 70oS, 12OoE.

Chrlstoffel (1971) assumed that the fracture zone nas a single fault strlking
N75oW; whlch, conbLned wlth data east of 1800, gaveapole at 82oS, 120oW.

The epicenLral method p'.:ts it. at 760S, 144oW, without any a prlori assurtrp-

tlon of the stri.ke of tne zone. If the Pacifl-c-Antarctic fracture zone is
a single fauLt it wouLo be the longest ridge-ridge transform in the world.

That in {tself ls not a reason to suppose that l-t lsntt one faul-t, but the

conslderabLe width of the wbole feature (at least 200 k.m) does suggest

several fracture zones.

The best way of assessing the merlts of alternative poles, and therefore
lndirectly the interpretation of the Pacific-Antarctic fracture zoie, ls to
examlne how we.j.l the poLes fit the structure ou the rest of the boundary.

As pointed out in sect,ions 8,3.2 and 8.5.2 a pole at 7605, 144ow would flt
the eplcentres east of about 150ow Just about as well- as a pole near 70ost

L20on. The only fracture zone for which the strlke of the actlve portion is
knorrm from anyching other than epicentres ls the Tairoa fracture zcne at
1400 to 145ow. rts strlke, as deternined from bathymetry, is 50 from the

direction predicted by the 760S, L44og pole, but exactly that of the 70oS,

120og pole, At l6OoW the epicentres favour a pol-e at 70oS, 120oE (flgs. 4.2L,

8.18). Between 165oW and 175ow fracture zones are poorly determined but the

rldge dlrection at 170oW favours the 70oS, l2OoE pole.
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Possibly the best data for decldlng between a pole at 760S, l44oW and

one near 7OoS, l2OoE are spreading rates. Fig. 8.29 shows that a rotatlon
rate of 10.5 x tO-? olV about a pole near 70oS, 120oE fits the data we1l.

Fig. 9.4 shows that the observed rates do not adequateLy fLt. a pole at 7605,

144on. A reasonably flttlng straight line glves a positive velocity at
zero dlstance from the po1e, and suggests that the true poJ-e is of the

order of 10o beyond 76os, 144ou. 7oos, 120oE ls 9.10 beyond 76os, 14408.

It can be concluded that a pole based on the Pacific-Antarcttc
fracture zone as one fault does not adequatel"y ftC the structure of the

whoLe Paclfic-Antarctie boundary. A poJ-e at 70oS, 12008 ls adequate, and

inplles that the Paciflc-Antarctic fracture zone is several faults strlklng
across the general trend of the zone.

The Pactfic-Antarctlc rotation rate determined from anomaly 2, i.e.
averaged over the last 1.8 rnybp, is 10.5 x 10-7 o/y, r^rlth a probable uncer-

tainty of less than 102. Rates of 10.8 and 10.3 have been obt,alned'by

Le Pichon (1968) and l"lorgan (1968) respectively, from anomaLies forued since

8 nybp. The posltions of anomaLy 5 on one side of the ridge can be super-

irnposed on those on rhe other side by a rotation of 10o about 70oS, 12OoE.

This gives a rotation rate of 1C.7 x 10-7 oly f,ot the l-ast 9.3 nybp. It ls
reasonable to conclude that the relative motion between the Pacific and

Antarctic plates durlng the last 10 mybp can be represented by rotation at
10.5 x ,O-7 o lV abouL 70oS, 120oE. The known structure on the Pacific-
Antarctic boundary is 1n accord with, and can be explained by such a
rotatloo.

9.3 THE INDIAN-ANTARCTIC.PACIFIC TRIPLE JUNCTION

9.3.1 General-

The Indlan, Antarctlc, and Pacific plates lntersect Just south of 6005,

near 160oE (Flgs. 9.1r 9.2). Major resul-ts for the area are surrunarized ln
Ftg. 9.5, The structure of the area is shown more fulLy ln Fig. 4,30 and

has been discussed in sectlon 4.6. The epicentral- rnethod results htere pre-
sented in sectlon 8.3 and discussed in sections 8.4 and 8.5. In this sectlon
the structure of the area is considered in terms of plate tectonics. The

nature of the three plate boundaries w111 be discussed first, then plate
tectonics models wll-l be examlned. It wil,l be shown thaE the Indian,
Paciflc, and Antarctlc plates lntersect near 61.5oS, 161oE, formlng a stabLe

triple JunctLon of the ridge-fault-fault type.



9.3.2 Indian-dntarctic boundarv

The Indlan-Antarctic boundary in the trlple Junctton area is a sectl-on

of the actlvely spreading eoutheast Indl.an ridge. The rldge axis strikes
N55oU and nagnetic anomal-y l-ineations elther slde of the axls are parallel
to the axls. the anomalles closely natch a model profil-e based on the
Talwanl et a1. (1971) time scaLe (Fig. 4.31). The spreading rate has been

caLculated fron the satellite-navlgation controLled tracks whlch crosi the
ridge axls. Lsast sguares fLts were made of anomaly distance agalnst age;

usLng the Talrcani et a1. (1971) tlme scale and only anoma.lles out to
nunber 3 (4.57 aybp). The mean rate north of rhe rldge is 3.40 t 0.L4 cmly,
the rate south is 3.37 t 0.L7 cmly, A deternrlnation based on anonaly 2

(L.79 nybp), wkich is clearly deflned ln several places both north and south
of the axls gires 3.37 ! 0.08 cn/y.

One of the proflles across the rldge, ELT27b, was exarnJ.ned Ln the
numerlcal- symlll"trT tests described ln sectlon 5.5.3. The resul-ts glven
there confirm;he generaL symetry of the anornalles about the ridge, but
show that over short, intervals wlthln the anomaly sequence there may have

been up to 102 dlfference in the spreadlng rate either side of the ridge.
The easte'cn end of the spreadlng southeast Indl-an ridge Ls probably a

good indication of the position of the tripLe junction. If so the posl.tlon
Ls close Lo 6l.5oS, 161oE.

9.3. 3 -fnaia*i?"fffc U."naarv

The best i:rfornation on the nature of the Indian-Pacfflc botmdary

probably comes from the epLcentral results presented in section 8.3.1. It
was shown there that the whole of the Macquarle compl-ex south of 49oS can

be consLdered a transform fault. The epicentres at the southern end of the

boundary (Ftg. 9,5) fit that interpretation wel1. Note that the arc shown

is based on the whoLe Macquarle conpJ-ex, not Just the area shown.

?rior to the devel-opment of the eplcentral method, Falconer (1972) had

suggested - priararll-y on the basis of the reglonaL bathyrnetry - that the

boundary in the trlple Junctlon area was a fault striking N25oW. The b

value study was partly motivated by an attempt to assess this suggestion.

The b value obtained for the southern Macquarie complex (1.48) supports the

fault hypothesis, but ls also acceptable lf there is subductlon ln the area.

Subductlon has been suggested because of the presence of the llJort trench

(Fig. /..30) buL the "trench" can equal1-y wel-L be Lnterpreted as a fracture

zone.
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The anomalies east of the boundary (Ftg. 9.5) show that the seafloor
at 16508 ls of Cretaceous age (see later). Betrdeen these anomrLles aud the
boundary the depth of the basement and JOIDES results indLcate an age of at
least 30 nybp (section 2.4). The seafloor lmnedlately west of the southern

part of the boundary is young maEerial" formed at the southeast Indlan ridge.
Even at 57oS lt is only 20 nybp. Clearly there ls a substantial age

difference across the boundary. The Pacific plate is effectlvely a cold
fixed boundary for Ehe material forrning at the southeast Indian ridge.
Sleep and Blehler (1970) have suggested that ln such circumstances deeps ean

form, due to hydrostatlc head loss as spreading material blnds to the flxed
boundary. The HJort I'trench" couLd therefore be a deep associated with a

naJor fauLE.

The topography observed across the boundary (profiles ARb and EL36,

Flg. 4.3) is just what would be expected lf the boundary ls a faul"t between

the old, cold, deep, Pacific pLate and the younger, hottet and shaLlower

Indian pLate. The selsniclty indicates that thls faul-t boundary lntersects
the southeast IndLan rldge r,rhere the ridge ends, i.e. close to 61.5o5, 161oE.

9.3,4 Pacific-Antarctic boundary

The Paclfic-AntarctLc boundary ln the area of the triple junctlon 1s the

Paciflc-Antarcll.c fracture zone. The Antarctic plate in the Junction area is
the young fl-anhs of the southeast Indian ridge, whiLe the Paciflc plate is
o1d cl-ose to the boundary. Bathynetry across the boundary (e.g. ptofil-e ARe,

FIg. 4.32) altirough complex, refl-ects the transltion from a young, shall-ow

area to .:n ol-d, deep arda.
The detailed structure of the Pacific-Antarctic fraeture zone Ls not

clear and much depends on the selsrdclty. The overall trend of the zone

lntersects the junctJ.on of the Indlan-Antarctic and Pacific-Antarctic boun-

daries, but ln the section 9.2 reasons have been glven for preferrlng the
lnterpretation that the whol-e fracture zone consi-sts of shorter fractures
strtking approxirnately N45oW. The epicentres on the boundary near the

Junction indicate a fault striklng N45oW, but lt would not Lntersect the polnt
of Lntersection of the other two boundaries. If there ls a ridge lJ.nking the
fault to the Jr:nctlon lt is not evLdent frou magnetic anomalies on profiles
AA and oDFgb (Figs 4.30, 4.31)

The positlon of the triple jtrnctlon defined by the intersectlon of the
IndLan-Antarctic ard Indian-Paeific boundarLes could be quJ-te closely deflned

as 61.605, 160.7o8, but the Paclfic-Anrarctlc boundary ls not well deflned.
The structure where the three plates rreet is 1-ikeLy to be compLex and lt
does not seem reasonable to irupJ.y that the positlon of the Junctlon ls
deflned to 0.1o. Eowever lt is considered that the junction Ls wlthin 50 kn

of 6l.5os, 16loE.
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9. 3.5 Stabll-i.ty of the J r:nctlon

In order to discuss the triple junction in terns of pLate tectonlcs it
will be assumed that: the junctlon is at 61.5o5, l6lon; the IndLan-

Antaretic boundary is a rldge strl,klng n55on spreading synmetrLcally at
3.4 cmlyi the Indian-Paclfic bor:ndary is a transform fault strikLng lt25oW;

and the Paciftc-Antarctlc boundary is a transform fau!-t striking N45oW.

Fig. 9.6A shovs the basic data wlth the assumed dl-rections, and Flg. 9.68

shows the plate configuration. It is acknowl-edged that the assumed Pacific-
Antarctic boundary Ls not welL established.

Fig. 9.6C shows the junction in velocity space fol-1"owlng the notatlon
of McKenzie aad l'{organ (1969). The heavy lines represent the relatLve
plate veloclties. For exampl-e, line AI ls paral-1-e1 to the motion of the
Indlan plate reLatlve to the Antarctlc plate, and its length is proportional
to the reLative veloclty. The assumption of transform fault boundarles

deflnes the directions but not the rates for the Indian-Paclfic (Ip) and

Pacific-Antarct,ic (PA) notions. It is assumed that southwest Indian ridge

is orthogonal Lo the Indlan-Antarctic motion (IA), so the directlon of IA ls
perpendtcuLar to N55oE. The total spreading rate, 2 x 3.4 cm/y, defines the
length of IA. The assurnption of rigld plates means that the veLoclty
triangLe IPA must close, so the l-engths IP and PA are deterurined. They show

Ehat the sllppi-ng raEes on IndLan-Paciflc and Paciflc-Antarctic transform
faults are 3.5 cmly.

If the geometry of the plate boundarles at the junctlon does not change

with tfuoe the junctLon l"s said to be stabl-e. Cert,ain veLoclty relatlonshlps
between the boundaries must be satisfied for this to be so. The condltlon
in the velocity spacp- dlagrarn ls that the lines al, ap and lp must lntersect.
Each l1ne represents the velociiy l.ocus of points in a reference fraue wlth
zero velocity wlth respect to a boundary. For example a reference frame with
a veloclty corre.sponding to any poJ.nE on ai moves paral-lel" to the rldge.
The lntersectj-on of al, ap and ip glves a reference fraue ln whlch the

triple junctlon does not ehange with tlme. The lLnes ap and ip are along

AP and IP respectlvely, as these boundarl.es are assumed transform faults.
Since the ridge is spreading synmnetrically, aL ls the perpendLcuLar bisector
of IA. Flg. 9,6C shows that al, ip and ap do intersect at a point, so the

stability condltion is satlsfLed. The trtpl-e junction deflned in Ftg. 9.68

ls therefore a stable rldge-fault-fau1t junction.
Ttre lntersection of ap, ip and al Ls at P whlch means that the EripLe

Junctlon ls stationary with respect to the Paclflc plate. The veloclty of
the Junction relative to the rldge is given by PX which indicates that the

actlve length of the rldge is shortening at 0.6 cn/y. RelatLve to Antarctica

the Junctlon le moving northwest at 3.5 cn/y.
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9.3.6 Cornparison with predictlons

The velodty vectors given above have been deduced from data only in
the trlple Jurrction area. The pole posltions and rates of rotation for the
plates involved are knoqm so it is possibl-e to calculate the expected

velocity veccors at the trlpl-e Junction. Table 9.1 shows the velocltles
determlned frcm the most reliably deternlned po1es. The pole sources are
i-isted J.n Appurdix 8A and were discussed in sectlons 8.5 and 9.2. Sihce the
poles are deterorlned wlth data fron areas other Lhan the triple Junctlon the
predlcted moticns are essentlalLy Lndependent of those deternlned fron the
trlpLe Junctlo: data.

Table 9.1 $!r.tive velocities at the Indian-Antarctic-PacifLc trlple -'iunctLon

Indla-Antarctica

Source

Ridge strike
Ilalf spreadlng rate cn/y

Junctlog IA9

N55oE u5oon

3.4 3.4

Indla-?aclfic

Junction IPlO

N250W

3.5

IA6

N6 loE

3,4

IP6

o0oo

3.4

IA5

N6ooE

3.1

IP5

Nloow

2.7

IA7

N53OE

2.9

TP7

N23oI.I

1.8

PA6

N450W

4.2

Source

Fracture
SJ.tpping

Source

Fracture

Slipplng
sgrike
w,ly

N45oI,I

3.5

N29ol^l

3.3

u48ow

3.5

tt45ow

3.9

zone strike
rate im/y

Pacif ic-Antarcti.ca

Junctlon PA8

zone

rate

Source code letters refer to data in Appendix 8A.

The agreerreut between the dLrections deduced from onl-y the trlple JunctLon

area and those deduced trlheoretically" from the poles of rotation is in general

good. fite rates cllffer nore, especially those of the last col-umn, which are

based on Chaset s (L972) n pl-ate uethod. The columr two resuLts are from the

eplcentral poles, and the rates are not independent of the junction area as

they are based on the rates of set 4 in TabLe 8.6, ln which the Indian-

Antarciic rate stas determined from the spreading rate in the junctlon area'

Each of the epicentral poles 1s deterrnineil lnclependently so the dlrections

are independent. It is notable that they form a set satisfylng the stabillty

conditLon.
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The most dlvergent direction ls Ehe Indian-Paciflc direetlon IP6 based

on the Welssel and Hayes (1972) poIe. Strictl"y the rates and direetlons
glven in Table 9.1 are for the rel-ative motions not the motions on the boun-

darLes. Thus if the Indlan-Paciflc boundary does strike W25oW the 0000

veloclty vector lnplies compression on the boundary. WeisseL and Hayes
(L972) noted this in their discussion of the junctlon, and they concluded
that the JunctLon was of the rldge-trench-fauLt type. The interpretation
given here is preferred.

The fact that the Junction is at present a stabl-e rldge-fault-fault
junction does not rnean that it has always had that form. In view of the
complexity of the Pacific-Antarctic boundary it seems probabl-e that the
Junctlon will- have eLther had a dlfferent form, or wiLl have Jr:nped to its
PresenL posltion from a position further east on that boundary. Is lt slg-
alficaat that a stable ridge-faul-t-fau1t junctlon would also be produced by
an Indlan-Pacific fault bor:ndary strlking 0OOo, and Paciflc-Antarctlc fault
boundary striking N75oW - the strike of the whole Paclflc-Antarctlc fracture
zone neat the junctlon?

9.4 THE SOUTFII,IEST PACIFIC BASIN

9.4.L General

l'Iagnetlc anornlies provide the nain information on the structure of the
southwest' Paciflc basin. They are shown ln Flgs 4.i and 4.3 and some of the
key anomalles are shown in Fig. 9.3. The structure of the basin area has been
fuLly deseribed in section 4.3. The souttrwest New Zealand plateau, whlch
forrns the northern nargin of the basin, was dj-scussed in section 2.2.

The seafloor and basement structure j.s relatively uniform throughout the
basln. 0ffsete of the anomaly lLneatlons l-ndlcate flve long fracture zones ,

and two smaller ones. Apart from the 'rblock" at the Tairoa fracture zone
(Flg. 4.11) there are no rnaJor topographlc or basement features associated,
wlth the fractures. The anomaly lineations term'lnate in the west close to
a deflniEe structural- boundary wLth the Emeral-d basin, The Louisville ridge,
probably a seamount ehain, appears to form an eastern boundary. Apart from
one identification of anompLy 25 there are no rel-iable identiflcatlons of
anomalLes 25 to 36 east of the Louisvlll-e ridge (Fig. 9.3). The slngLe id.en-
tiflcatlon of anomaLy 25, and anoualles younger than 25, lndlcate a dextral
offset of the order of 1000 km across the ridge. The l-ack of anomalLes

beyond 25 on the eastern sLde suggests that the difference across the
Louisvl-lle ridge 1s more than just a substantial offset.
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The overall nagnetlc structure of the southwest PacLfic basin ls very

uniform and lt ls the minor features that are of most inEerest. Not

speclflcally for the interpretation of thls area, but more because they are

lndicative of courpLlcatlons that coul-d affect the irterpretation of areas

eLther that are more compLex or where the data coverage is sparse. Irregu-
larities of arromaly llneation directLons and spaclngs are evldent throughout

the basln. Some of these are probabl-y due to navlgaElon errors but others

are aLmost cerEainly due to sna11 offsets or genuine lrregularltles.
Absence of small- parts of the sequence are present, whlle ln other places

the anomaly sequence ls considerably trstretchedtt, even to the extent of a

whol-e extra anonaly. Both affect spreadi-ng rate determlnations and make Lt
difftcult to apply numerLcal correlation techsiques. The Toarahi and l{aimori
fracture zones indicate that local- disturbances can substantiaLly affect a

small- area witlrln an othenuise uniforrn area. Such areas could be produced

by a brief period of extreme asynrnetrical- spreading in a short sectLon of a

spreadlng ridga. Variatlons ln the offset along a fracture zone, as are
seen on several of the fractures, could also be produced by asymmetricaL

spreading (see later).

9.4.2 Age of fhe basin and formatlon of the Bounty trough

A revised and extended rnagneLlc reversal tlme scale based on the south-
west PacifLc basln anom:iles eras presented in section 5.3. It shows that
anomal-Les 25 ta 36 repr-.ient the lnterval 63 to 80.5 mybp. Thus most of
th.e oeeanLc besement of basin formed during that lnterval. Slnce the Tertlary-
Cretaceous boundary ls 63-65 nybp the basin can be referred to as of upper

Cretaceous age.

An addltlonal anoroaLy (number 37) is present in some places but anomaly

36 ls the oldest anomaly consistentl-y ldentlfled. At the Canpbell plateau
margln anour,al-y 36 ts general-ly not more than 100 km fron the base of the
slope (Flg. 9.7). The basenent Ls flat rlght to the margLn and there are no
indlcatlons of any subduction, so the Campbell margln can be considered to
have formed just prl.or to anomaly 36, A tine of 81 to 83 nybp wouLd be a
reasonabl-e estinate from the distance of ano*ly 36 fron the slope.

East of Bollons seamount anomaly 36 is at least 250 kn from the south
Chathan slope. llowever lt is cLose Eo baseuent structure (Fig. 4.16) that
uray mark the boundary of the regular southwest Paciflc basln. The lnterestl-ng
question ts: what is the crustal- strucEure and age of the area betrreen the
boundary and the Chathan rise? It le not a magnetic quiet zone but no anomaly

lineatlons are evldent. The basement structure is more compJ-ex than off the

Canpbell nargin and basement ridges are present (Fig. 2.3). The area couLd
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be transistlorral between oceanic and continental crust, LLke some other areaa

off complex ularglns (Talwanl and Elholn, L973). Some relatlonshlp to the

Bounty trough seems probable.

Several workers have suggested that the Bounty trough ls an extensional

feature formed by relative rotatlon between the Chatham rlse and Carnpbell

plateau (section 2.2). Rotation of the Chathan rlse to close the Bounty

trough would a1so bring the south Chathan s1-ope cLose to anornaly 36. The

continental nargin-anomnty 36 rel-atlonship wouLd then be sfunllar to that off
the Canpbel"L margln. Thls suggests that the formation of the r^rtrole southwest

Pacific basln began Just prior to anomaly 36. The lack of any dlstorted
sedlments at the mouth of the trough suggests that the opening of the trough

pre-dates the foruatlon of Ehe basin, i.e. prlor to 81-83 mybp.

9.4.3 PoLe of rotatlon

The anomaly Llneations and the najor fracture zones ln the southwest

Paclflc basin are quite unlform, which suggests that lt rnay be possibl-e to

describe the origin of the basln ln terms of rotation about a poJ-e. Arcs

drawn about the pole for the last 10 mybp, i-.e. 7OoS, 12OoE, strike across

the fractures at up to 40o, whieh cLearly indlcates that that poJ-e ls not

approprlate for the Cretaceous movements. llayes and Ewing (1971) fltted
the ful-1" extenL of the Louisville ridge to a pol-e in the eastern equatorial
Paclfic at 5oN, 120oW. Christoffel and R.K.H. Fal-co'rer (1973) shorsed that
a pole close to there, at 0oS, 120ol,r would fit the -cuthwest PaclfLc basln

fracture zones well-. They noted some irregularities in the spreadlng rates

in the basin, but lt was not appreciaced that the spreacling rates lndicate a

pole to the west of the basln, not to the northeast in Eire ecluEltorlal- area.

The seafloor spreadlng rates in the basin can be reliably ealculated

froro the anornalLes and the revised reversaL time scale. In Flg. 6.16 data

for the spreaCing rates ln six areas of the basin are shown. The plots

indLcate very unLform spreading throughout the intervaL 63 to SL mybp.

However the profiles were chosen from where the Llneations are most uniform.

Other daga would show more irreguLarity and the rates within each zone vary

by up to I57". NevertheLess there ls deflnite trend of increaslng rates to

the east. ThLs lndicates a pole west of the basio, and the rate of lncrease

of the spreading rates indicates that the pole wouLd be 20 to 30 arc degrees

west of the western end of the basl-n.

By trlal and error a pole has been found that will fit the directlons

of the najor fracture zones and the spacings of the anonaly l-lnerrtions.

The pole position is 560S, L26oE, and the angle of openlng for anonaly 35

to 25 is approximately L2o; Fig. 9.8 shows that the pole posltlon fits most
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of the fracture zones very weL1. Before commenting on some detalls of the

flt it ls worrh emphasising that the anomaly interpretatlon and the napping

of the fracture zones was courp.Letely fLnalized before this pol-e posltlon
was deterolned.

The ftt of an arc about the poLe to the LoulsvilLe ridge does not
appear very good tn Fig. 9.8, but Fig. 9.3 shows that over a longer length
to the north the fit Ls good. The Walmorl fracture zone (Fig. 9.8) does

not fiE but lt ls obviously aa irregular feature an1nray. Between the
Loulsville rldge and the Talroa fracture zone the anornaly f-ineatlons are

not orthogonal to the directlon of motion, but el-sewhere they are.
The Rangirua fracture zone shown in Fig. 9.8 is noticeably "dlscrepantrr,

but the theoretical fraeture zone through there suggests an interesting
reinterpretation of the area. Flg. 9.9 shows some of the area ln more

detail. An interpretatLon of the long Ranglrua fracture zone as following
the predlcted arc, with the short Toarahi fracture to the west of lt ls
acceptabLe anrl in several ways Ls "tldler". The anomaly lineatlons are then
orthogonal to the fracture zones, and the general unlformity of anomalles
31-36 is pres.,:rved elther side of the najor fracture zone. The northward
offset of the .smal-l group 32L-32 ls still mainte.Lned. It ls natural. to
wonder lf the presence of the Bollons seamount is important.

Acceptance of the reinterpretation of the Rangirua fracture zone

would meao that al-L of the najor fracture zones in the southwest Paciflc
basln satlsfactorlly flt a pole at 56os, L26oE. The irreguLarlty of the
spreading rate-s means that the pole position ls not preclsely defined, but
the position aJopted is probably relr.qbLe to w'ithin flve degrees.

9.5 SOUTHWBST PACIIIC 10-63 MYBP

The area between the uniform southwest Pacific basln and the axial
region of the Paciflc-Antarctic boundary was described in sectloo 4.5.
The area Is botmded by anornalles 5 and 25, so it represents the Lnterval
10 to 63 nybp. Thts 53 my intervaL ls approximateLy 657, of the time l-nvoLved

in the formation of the southwest Pacific oceanLc crust. Fig. 4.1 shows that
it has not been possible to deternlne detailed structure throughout most of
the area, so tbere is a substantiaL tlme lnterval for wtrich only a very

lncomplete understandlng can be achleved.

In the western part of the area between anomaly 25 and the PacifLc-
Antarctlc fracLure zone there are numerous magnetlc anomalLes but the

identificatlon of lLneations or characteristic anomal-ies ls very difflcult,
the few shown in Fig. 4.1 are very tentatl-ve. The bathynetry ls rel-atlvely
dlsturbed. Further east the area between anornalLes 5 and 25 ts the
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relatively genLl-e northern flanks of the Paeiflc-Antarctic ridge and some

anomaly Llneations are reasonably well established (Flg. 4.1). Based

largeLy on the work of Pltuan.et al-. (1968) oost of the anomalLes in the

classieal sequence between numbers 5 and 25 have been ldentified wesE of
the Tairoa fracture zone. That fracture zone is the only one ldentlfied
throughout the whole 5-25 axea. Its exact positlon ls not well determlned.

In Fig. 4.1 1t was drawn Eo as to Joln the cl.early i.dentified offset Ln the

Cretaceous anoaaLies with Lhe marked offset in the ridge axls at 5605,

144oW (see also Flg. 9.3, where the rldge offset is cLearer).
East of the LouLsvll-Le rldge-Eltanin fracture zone l-ine (Flg. 9.3)

Herron (1971) has identlfied sone anom4lies between 5 and 25 (Flg. z.LZ).
The direction.s of the anomaly trends are Dot well estabLished though
(sectlon 2.8).

With so f.ittle inforrnation on the strucEure of the area between anomall.es

5 and 25 lt ir; difficul.t to rellably determine whether rotations about pol-es

will adequatel.y e:<pLain the structure of the area. Herron (1971) suggested

that for the acomalies prLor to number 5 east of 150oW, a pole near the end

of the Macquari-e rldge at 6205, 165oE was approprlate. Chrlstoffel (1959),

considerLng da.i:a west of 15OoW, noted the narrowlng towards the west of the

distance betweerr anos,rly 5 and 25, and from it suggested a pole at 6405,

l.600S. Christ;rffel and R.K.H. FaLconer (t973) showed that for that pole an

angle of opening for anonaLy 25 to anornaLy 5 of 21o was satlsfactory, A re-
examinatlon of the dat,a west of 150oW indicates that a poLe at 7205, l6OoE

with an angle .;f openir^; of 22o is better.
the revls;d pole was deteruined by trial and error, wlth primary

control for the directLon of the poLe being the strlke of the Tairoa fracture
zone (admittedLy il-1 defined), and the assumpEj-on that the anomalies either
side of the frscture qtere orthogonal to the directLon of motlon. Dlstances
between anoy'lelies 5 and 25 throughout the area provided control for the dis-
tance of the pole from the area. Fig. 9.10 shows that the adopted poJ-e

positlon is mose satisfactory than the prewiously assumed poslLlon. The

angJ.e of openlng of 22o is based only on the distances from anonaly 25 to
anoualy 5, but Fig. 9.11 shows that, at l-east, near the Tairoa fracture zone

the rate of spreading was uniform vrlthin the 53 my LntervaL.
formation of the anornaly 5 to 25 area by rotatton about a pole at 72oS,

l60oe suggests severaL reasons for why anomaly llneatlons were identiflable
in the east but not ln the wesL. In the east the tracks were aostly ortho-
gonal to the llneatLons and do not cross fracture zones, which slrnpl-ifies
the identiflcation of l-ineatlons. West of about L75oW the strlke of fracture
zones woul-d vary between N45oW and almost east-lrest. With predomlnantLy
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north-south tracks, lineations - lf offset, by such fracture zones - wouLd

be dlfficult to detect, especLally as the shapes of anomaLles in the area

are nol distLncti.ve. Varlations in spreadtng rates couLd also contribute
to the differences between east and west. In the easE, rvhere the lineations
are clear, the spreading rate is uniform and about 1.7 cmly (Flg. 9.Ll).
West of 175oW the rate would be of the order of I cm/y. It is frequentJ.y

difflcult to identlfy anonnaLies when spreading rates are 1ow (Pltrnan and

Talwani, L972) especialLy lf the topography is rough, as it ls in the rrresc.

In concluslon it can be said that for the lnterval 10 to 63 nybp a pole
at 72oS, l.6OoE wLth a rotatlon of 22o not only saElsfles nost of what is
known of the area, but also provides lnslght lnto why Lt has not been easy

to ldentify structure throughout all of the area.

9.6 SO}18 APP],T.CATIONS OI PLATE TECTONICS TO TIIE SOUTHI{EST PACIFIC AREA

9.6. I Introcltrction

In CtrapEer- 4 it was found convenient to descrlbe the strucLure of the
southwest part of the Paclfic plate in three sections: ttre basin, the ridge
system axls, ald the area inbetween. These subdivisions refLected the con-

trasts ln magn':Eic and bathymetrlc structure in the three areas. In the
preceding sectj.ons of this chapter it has been shown that the structure of
each of the arl:as can be explalned by rotation about a different po1e. The

results are sll:r:rutrlzed Ln Table 9.2.

Table 9.2 Rof;rtion deta for the ""rr-nr-s! 
p,ttt "f tlt*

Anomal-y
span

Time span
(mYbP)

PoLe
positlon

Angle of
openlng

Angular rate
dee/y x 10-7

1-5

5-25

25-36

0-10

10-63

63-80

zoos lzoog

72os 160otr

56os 12oon

rt 50

220

L20

5.3
4.1

7.1

llalf the total angle for anomaly 5 either side of the rldge; symmetry assumed.

In thls section features r.rithin the southwest Paclflc area wLLL be corn-

pared with predictlons based on plate tectonies theory, usj.ng the data ln

Table 9,2. Reconstructlons of the continents will- also be discussed.

Before proceedlng, the limitatlons need to be clearly recognized.

Movements in the area have extended over at least 80 my, but Ehese

movementg are described by only three poles with unlform rotatlon rates for

each pole. i{hilst uovement nay take p1-ace about a flxed pole for a perJ'od
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lt ls unllkely that the transltlons between the poles woul-d be by flnite
ttJumpstt. Continuous movement frorn one posltion to the next ls more

probable. Continuous changes in rotatlon rate are also more probable.

The three intervals are rnarked by anouralies 5, 25 and 36, and Lhe dates

are referred to as 10, 63 and 80 nybp. The anomaly dates are more preclsely

defined but as they are not absoLute, and the boundarles between the intervaLs

are not exact, integer dates for the inEervals are reasonable. Complete

transltlon fron one poLe to the next, even within tl my of the dates, is not

impll-ed.

The pole positlon for the 0-10 rnybp interval is based on the whole

Paclfic-AntarcEic boundary, and so assumes rigid behavlour of the Paciflc

and Antarctic plates ln the area, at Least for that lnterval. The poLes for

the other two intervals apply on1-y to the ?acific plate west, of the LouisvLlle

rldge, and they assume rigld plate behavlour of that atea. The presence of

more plates in the area, or non-rlgld pLate behavlour, clearly could affect
both the pole determinations and any eoncLusions drawn from them.

9.6.2 Structure in the southwest rrart of the Pacific plate

This sub-section could be described as a pot pourrl of observatlons.

Some of them posslbLy trLvial, others posslbly very eignlfLcant for thls and

other areas. AlL of then could be discussed more fully but they have not yet

been lnvestlgated thoroughly.
Hayes and Ewing (1971) have descrLbed the Loul^vi1le rldge as a seml-

conEinuous feaLure from the Tonga-Kermadec trench to the Bltanin fracture

zone (Flg. 0.1). They have fitted 1t to a pole at 5oN, 12OoW. However

Fig. 9.3 shor+s that the rldge at its southern end fits tire southwest Paciflc

poles rather well. Its detail-ed relationship to the Eltanln fracture zone

is not clear, as the fracture zone conslsts of several- fractures and the

whoLe zone has a width of at least 200 km. In places the reported positions

of the Loulsvllle ridge also extend across 200 km.

The wldth (- 200 km) and lengrh (- 1000 km) of the whole Elta.nl-n fracture

zone is sinll-ar to that of the whole Pacific-Antarctic fracture zonet and

both conslst of severaL shorter fractures striki.ng across the trend of the

whole feature.
The Tairoa fracture zone is the only rnajor fracture ln the southr+est

pacific basin with a dextral offset. It Ls also the only one traceabl-e

fron the southwest Pacific basin to the rldge axls. South of the ridge

anorn^Ly 12 is dextrally offset across where a theoretlcal continuatlon of

the fracture zone goes through (Fig. 9.3). The offset there, -320 km' is

slurllar to the 310-350 km offseEs observed between the ridge axls and
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anonaly 31 in the southwest Paciflc basin. Further north the offset nay be

only 150-200 krn. ContlnuatLon of the fracture zone northward on the 25-36

trend shows It passing close to the end of the Chatham rise.
The changes from one pole to another involve changes in the directlons

of fracture zones, or rnore generalLy changes in Lhe direetion of spreadl-ng.

Changes Ln rate aLso occur. Fig. 9.3 shows that for the change at anomaly 25

the direction changes are rnarkedr' especially in the west. At the Talroa
fracture zone the direction change is 25o and the rate decreases (comlng

forward In tiure) frorn 4.5 to 1.7 cm/y. In the hrest the dlrecLlon changes

are up to 70o, with rates decreasing fron about 3 to 1 crn/y. The bathymetrl-c

contrast across the anomaly 25 boundary has been noted previousl.y (sectloa 4.5)

and the increase to the west in the contrast (Fig. 9.7) probably reflects the

increase ln the severity of the direction ehanges.

It ls unlikely that changes in movement, especialLy tn direction,
would take place ln a very short time or coul-d be aceouunodated in a short
dlstance. In the east, anomelies 25 and 26 ate very cLear and anornalles

20-23 are reasonabJ-y clear, but there is some dlfficulty lnbetween (section

4.5). This may indlcate that the major changes took place between anonaly 25

(63 nybp) and anomaly 23 (59 uybp). West of the Tairoa fracture zone

(fig. 9.10) the gradual changes of anomaly trends suggest either a slower

change of poJ-e position or a slow readjustrnent. The urarked change shown in
the trend of the TaLroa fracture zone is diagrammatle; data are Lnsufftcient
to deflne ttre precise trend.

The changcs at anomaly 5 are less than at anorn*iy 25 (fig.9.3), In the

east the direction changes are less than 50, which probabl-y explains why

there are no narked conErasts at around anonaly 5. Near the Tairoa fracture
zone the expected increase in rate frorn 1.7 to 3.3. cn/y (conLng forward in
time) is seen (flg.9.11). Near the eastern end of the Paciflc-Antarctic
fracture zone the dlrection change is 25o and the rate increases fron 0.9
to 2.8 cn/y. ltre greater direction change nay account for why anonalles
beyond nrmrber 5 are not clear there.

At pJ-aees where there are fracture zones changes Ln movement nay be

lmportant over J-onger intervals than nornal. For exampl-e at the Talroa

fracture zone anomaLy 25 on the west is opposite 71 nybp seafloor, whlle
on the east it is opposite 55 mybp seafl-oor. Consequent.ly a change occurrtng
at about anornaly 25 (63 urybp) could affect crust Ln the interval 55 to TL nybp.

Flg. 9.12 shot's three sets of arcs which were initlall-y drawn Just for
interest but which proved instructive. Each arc can be considereil a hypo-

theticaL fracture zone for the Lnterval 0 to 80 nybp, The anom:lles should

be orthogonal to the arcs. They clearLy show the major change at anonaly 25
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ltlth Lesser effects at anomely 5. The two eastern Llnes also show that
the rotations flt the anooaly positions very well. Details of each lLne are

of interest.
The eastern-most one starts at the western side of the aselsmic Hangu

fracture zone (section 4.4.2) and so should be a fracture zone throughout.
There ls no fracture zone between anonalies 25 and 32 where the arc goes

through, but that ls the area where there Ls the 'fstretchlngt' between

anomaLies 29 and 31. The arc is not far from the rrirregulart' Toarahi frac-
ture zone, and lt was this diagram whlch l-nitiated the re-exarnlnatLon of
that area discrrssed Ln section 9.4.3.

The centre Line (Flg. g.LZ) starts frour the western end of the fracture
zones that harre been i.nferred at l6OoW from epicentres alone. It, too,
shoul-d be a fracture zone throughout. In the area where it lntersects
arrornaly 25 the anomal-ies 25 and 26 are not very clear and there is some

bathyroetric disturbance. Further north it passes close to the ttlrregulartt

Walmorl- fractuce zone.

the westi:i:n-most lLne starts from the eastern end of the Paciflc-
Antarctlc fracture, cLose to a very tentative identlficaLlon of the spreadlng

axis. The I'ntsfitrr of the line to the anonalies indlcates that the ridge is
'rtoo far southn'. The trend of the Line towards the end of the Auckland

sLope ls interestlng. Of greater interest is the parallelism to the overall
trend of the P*:cific-Antarctic fracture. Fig. 9.13 shows the area in detail-.
The arc for 10 to 63 uybp is quite close to the overaLl trend of the fracture
zone. Even if there was a regul-ar transltlon of che pole from the 0-10 nrybp

posltion to the 10-63 mybp posi.tlon a;cs wouLd be between those shorf,n. The

arc orlent,ations, and the anount of rotation (Fig.9.L2) show that for up

to 63 nybp the Paelfic-Antarctlc fracture zone area could have been primaril-y

a fracture zonla borurdary. This could expl-ain the siae and complexity of

the feature.

9.6.3 Fractur-g zone offsets and asynnnetrical spreading

ALl- the fracture zones on the Pacific-Antarctic ridge have dextral

offsetsi all the maJor fracture zones in the southwest Pacific basin,

except the Tairoa, have slnlstral offsets. This observation led to a brlef

study of how tlre differing offsets rnight have arlsen in an area Ln whlch

the rotatl.ons appear relatlveLy uniform.

Anornal-y offsets across a fracture are norrnally considered as originatlng

at an offset in the ridge axLs (Fig. 1.5). The anornaly offset ir; equal to

the offset of the rldge and irresPective of spreadlng rate or poLe posltion'

all anonalLes produced w111 have the same offset, Pg!!g! the offset of
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the rJ.dge stays the same. The southwest Paciflc data indicate that, ln
upper Cretaceous times the ridge offsets were sinlstral- but since then

they have changed to dextral.
Change lrr the offset of a ridge can be produced by two unlformly

separatLng plates if there is some asymletrical spreading on at least one

side of a fracture zone. Flg. 9.14 shows this schenatically. At tines 1

atd 2 the two plates are moving apart at 4V with symetrically spreadJ.ng

rl.dges movlng at 2V relative to the left pl-ate. Sinistral-Ly offset anomalies

are produced either side of the rldge. At tLme 3 the upper ridge starts
movlng at 3V reLative to the left-hand plate, This glves asymmetrlcal

spreading: 3V co l-eft, V to the right. The lower rldge contlnues spreadlng

symetrical-Ly at 2V elther side. The upper ridge is movlng rlght etlth
respect to the lower rldge at velocLty V. By tlme 4 the ridges are not off-
set at all, and subsequently the orl.glnal sinistral offset becomes dextral.
By tine 6 ther*r are anonalies on the left and rlght which show offsets that
are sinistral, dextral and zero. Throughout the whole sequence the only
relative mctlc.rr is between the offset ridge axes, and the sense of movenent

there Ls stiLL that of a conventional- fixed offset ridge-ridge transform.
The schema in Flg. 9.14 has obvious applications to the southwest

Paclflc area, ;rB it shows how the Cretaceous slnistral offsets could be

llnlced with thc present dextraL ridge offsets. The amount of asyrmetry
required ls vc:ry snall a-s most of the obsenred offsets are of the order of
100 km. A spreadlng raLc difference of only O.25 cm/y would change a 100 kn
sinistral offsel Lnto a I00 kn dextral- offset in 80 ny. Wei-ssel and Hayes

(L97L, L972) ha.ve documented dlfferences of up to 0.9 cmly south of
Aust,ral-ia.

In nature the sltuation could easlly be more complex than shown in
Fig. 9.I4. It isntL necessary that the spreading be synmetricaL on one

sectl-on; alL fhat is requlred is that the asymetry be different across the

fracture. If a rtdge vras inltlal-1y straight it could become offset - thls
apPears to have occurred south of Australla. I{tren two offset ridges becone

.stralght the strift of the fault to somewhere else rnight be favoured.
Asyrmretry couLd start, stcp, or reverse at varloug 'tLmeg.

It is clear that even slight asJrmuetry cau produce variable offsets on

fracttrre zones, sna1l sectlons lrlth opposlte offsets, disappearance or
appearance of fract.ure zones, and shifts in the ridge axis, An lmportant
poLnt Ls thaE none of this vioLates the baslc eoncepts of pJ-ate tectonLcst

as there ls no defornatl-on withln the separating pl-attis. Plate tectonics
does not require symmetrical spreading.
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9.6,4 ContLnental- reconstructions

At the m'rgin of the Chathan rLse ruith the southwest PacLfic basin there
are some basement compl-exities whlch may reflect movement between the Chatham

rlse and the basin south of anonaly 36. At the Canpbell- plateau margin there
are no lndlcations of reLatLve motion between the basln and the plateau, so

the plateau can be considered flxed to the oceanic seafloor. As the plateau
is part of thc New ZeaLand continental- block, the southwest Paciflc basLn
seafloor can be considered to have formed by seafloor spreading arising fron
relatlve movement, between the continental block and the axis of a spreading
ridge. The history of the relative movement is recorded l-n the seafloor so

it is posslble Eo reconstruct the movements. The age of the seafLoor at the
nargln is 81-83 nybp so the relative movement back until then can be

determined.

The Antarrtic contLnentaL rnargin also appears to be passlve so it would
be possible to reconstruct the movements between Antarctica and the rldge.
The movement of Antarctica relative to the Canpbell plateau (Loosely referred
to as New Zeal. i,rd) coul-d then be determined. It is not however possJ.ble to
do this with a:'y certalnty because there are lusuffl-cient data south of the
rldge to deterr,:ine the movements between Antaretica and the ridge.

If lt is rt$sumed that the ridge has not ehanged shape and that seafloor
spreadlng has Leen synmetrJ.cal it would be possibLe to determlne ttre movements

between New Zerirland and.ntarctica from only the data north of the rldge.
However the reiiirlts disr:r,ssed in the previous sectLon Lndlcate that the rl.dge
has changed shr-rte and that an easy rvay for this to have occurred ls by
asymmetrlcal sp.readlng with the rate faster on the north side of the ridge.
Fig. 9.14 shows that wlth data from only the left-hand pJ.ate (analagous to
the Pacific plale) an assumpLion of symnetrical motion would over-estlmate
the movement befiveen the plates, if the data were from an asymmetrical sectLon.
An estimate frou a symmetrLcal section woul-d be correct, but the changing off-
sets can also be produced withouE any synmetrLeal- sectlons.

It ls diffl-cul-t to determine how much asyunnetry there r,rlght be in the
southwest Pacific. For the interval 0-10 mybp data are too few west of 16OoW,

but east of there there are adeguate data for both sfules of the ridge. At the
Ilangu fracture:zone at L50ow (Fig. 4.r8), spteading for anomalies 1to 5 is
symmetrLcaL west of the fracture, but to the easE lt, 7s L2% faster on the
south slde. FurEher east on the boundary (FIg. 2.12) there are pJ-aces at,

which the rate is up to 20% (-lcm/y) faster on the south sLde. Faster spreadlng
on the south is opposlte to what is requlrecl for the change from slnistral to
dextral offsets.
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Herron (f971, L972) has suggested that for the period prior to anonoaly 5

the EltanLn fracture zone-Louisville ri.dge line uray have been a plate

boundary. That is, the spreadlng east of the 11ne nay have Lnvolved different
plates fron theL t,o the wesf. It is difficult to prove, so as a conserveative

approach only rire area west of the Louisvllle ridge ',v111 be eonsldered for
prior to 10 mybp. Either side of rhe Tairoa fracture zor.e Lhe spreadlng raLe

to anomaly 12 is the same north and south of the ridge, which is what woul-d

be expected frr:m the relatlveLy unlform offsets along the fracLure. Further

east the rate lc anomaly 25 could be IO% hJ-gher on the south sl-de.

For the a;omalies prior to number 25 there are no data south of the

ridge, sd con:lusions from the southwest Pacifi.c basin are difflcult. Off-

sets on the M.r.;ua and Pahemo fracture zones are constant, on the Ranglrua

they decrease r:o the south, and on the Talroa and Kohiku they lncrease to Lhe

south.

There arcr rbviously considerabl-e spreading rate lrregularitl-es throughout

the area, whir:',, makes it difficult to reliably reconstruct the relative pJ-ate

move&ents l-n t..l I area. However it ls of lnLerest to attempt a reconstruction

and this has ir,'iu done. Clear1-y acknowLedging the uncertainty it tras been

assumed EhaL cr ieading has been synrneLrical throughout the last 80 rny. The

data for onl-y i're Pacific side (Table 9.2) are Lhe-n sufflcient.
Before pr(;:eedlng, the frames of reference need to be stated. The poleo

shown in Fig. 1.3 and listed ln Table 9.2 are determined from data in the

Pacific plact'., ';r: fracture zones ln uhe Paclflc plate'fit those pol-es.

The poles.arc latlve to tlie Paciflc plate. Fract,ure zones ln the AntarcLLc

plate producc*l ;y rotation about the same rldge wllL not flt the Paciflc
poles, becaus,:r :f rotation of the coordinate system of the po1es. FJ.g. 9.15

shows sample fr.'LcLure zones based sn the Paciflc poles being fixed relative
Lo the Paciflc';,l-aLe arid Lhe Pacific rotaEing aruay from Antarctica. When it
ls recaLled tli';r. an ayc north of ttre rldge for a parELcular interval would

orlginally have forrned a continuous smalL circle wllh the similar arc to
the southl tl.c iffects of fhe plate rotations can be fully appreciated. The

effects are par:Eicularly marked in this area because the poles are so close

to the area,
The poles for the AnLare.tic fracture zones ln Fig. 9.15 are found by

rotaLlng the Pacific poles. The anomaly 1 to 5 pole is the same for both;

70oS, 12008. the 5-25 Ant,arctic poLe is the 5-25 Paclfic pole rotated l0o

about 70os, l20oE, which gives 74os, 16108. The 25-36 Antarctlc pole ls the

Pacifl-c 25-36 pole rotated 10o about 7oos, 12OoE, then 44o about 74oS, 16loE.

Anticlrckr,rise rotations p.bout the Aniarctlc poles wllL descrlbe the motlon

of New Zeal-and rrith respe-ct to Antarctica. Reversing Ehe rotations wll-L

reconstruct the forurer positlon of New ZeaLand wlth respect to Antarctica.
Flg. 9.16 shows the reconstruction for anomal-y 36 tirue (- 80 raybp). The

required poles and angles are given in Table 9.3.
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Table 9.3 Rota.tlon data for the movement of New Zealand relatlve to Antarctlca

Anornaly span Tlme span
(rnybp) Pole posltion Rotatl-on angLe

36-25

25-5

5-1

80-63

63- 10

r0-0

53os

74os

Toos

155oe

16 toE

t2oon

240

440

loo

Considering the assumptLons required to obtaj.n the reconstruction shown

in Flg. 9.16 there is Little point in very detailed dlscussion of lt. Some

general- coaments are however ln order.
The bathynetrLc contours are deliberately shown generalLzed as lt is not

clear exactly r,'hat deflnes the edge of the contlnentaL bLocks elther nost or

at 80 nybp. Tb,e reconstruction is for anomaly 36 (- B0 rnybp) but the

Carnpbell plate,:u rnargln is 81-83 nybp. Reconstructlon to about 83 mybp would

almost exactl-y elose the gap evldent at the Ross shelf nargln. It would

hovrever Lncrease the overlap further east.
The reconstruction is sLrlctly only for the Canpbell pl-ateau relatlve

to Antarctlca. A11 of the New Zeal-and plateau ls shown for lllustratlve Pur-
poses with lts present shape, but thls is probably Lncorrect for B0 nybp.

There has been at least 480 km of dextral shear on the Alplne fauLt and

posslbLy a tot;,il of 120u km dextral shear across the New Zeal-ar.d plateau
(section 2.5). If all che shear took place prior to 80 urybp the shape as

shown ls corree.E. It seemsr'''oreprobable that at least the 480 km Alpine fauLt

movement took place since B0 mybp, so the posltion of western New Zealand as

shown is lncorrect. Any movements between the CarnpbeJ-l plateau and the Chatham

rlse and/or eastern Nerl ZeaLand (sectlon 2.2) would also affect the posltions

shown, if they occurred since B0 mybp.

It is interesting to note that movlng western New Zealand 1200 kn back

along the AJ-plne fauLt ancl Auckland slope would bring the southern end of

erestern New Zealand to a fit wlth Iselin bauk and the end of the Caqbell
plateau. Such a reconstruction ls not prohiblted by the presence of the

Solander trough-Bnerald basin area as that, area ls probably not more than 50 ny

o1d (sectlon 2.4) and so it ls I'not presentrr prlor to 50 mybP.

The oceani.c basement at the Canrpbell slope margln does not show the

rtft-l-lke deepening towards the margin that is evl-dent off the Wilkes Land

coast and south AusEraLia. AustralLa and AntarctLca aPpear to have moved

apart almost, perpendicular to thelr margins and the dlfference between their
rnarglns and the Carnpbell- plateau margln l"ed lloutz and MarkL (L972) to suggest
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that there rlay have been a large component of shear when New Zealand and

AnLarctlca separated. The initial dlrection of notion beEween New Zealand

and Antarctica ls shown by the fracture zones at the Antarctic margln ln
Fig. 9.15. Although there are components of shear the motion ls prinarlly
directLy ar'ray from the marglns. The basement difference nay instead be due

to different thermal condltlons at break-up. It ls noticeabl-e that there are

sngnet,ic quiet zones at the Austral-ian and east AntarctLc margl"ns but not at
the New Zealarr.d m€Irgln. Thls night refl-ect thernaL differenees. Qulet zoneg

uay also be related to thtck sediment, which ls present off Australla and

east Antarctica but not off New Zealand. Magnetlc data from the Ross shelf
margtn east of Iseli.n bank would be lnteresting as the basement depth and

sediment thlck-,ress there is lntermediate between that of the Carnpbell plateau
and that of the Australian-Antarctic margins (sectlon 2.3).

Quantitati-ve reconstructions of New Zealand and Antarctlca have also
been gLven by Chrlstoffel and Falconer (1973) and Hayes and Ringis (1973).

The Christoffel. and Fal"coner one (Flg. 9.I7) is based on the three anomaly

intervaLs used for Flg. 9,L6. For the anomaly intervaLs l-5 and 5-25 the
pol-es and anglrs etere slm:ilar to those used here, but fot 25-36 the poLe was

in the equatorj.al eastern Paclflc. It is not now considered thaL that pol-e

is rel-iable, buE 1t is interesting that such a dlvergent pole produces a

plausible recous tructLon.
The Hayes and Ringis (f973) reconstruction (flg. 9.f8) s/as constructed

as fol-l-ows. The Tasroan basln opened between anonaLy 36 and anomaly 24

(section 2.6) so cLoslng up this gave the positlon of west-ern New Zealand

and the Lcrd ll,:,we rise relaEive to eastern Australia at anomaly 36 ttne.
Austral-ia, r'rith New Zealan-d -ttached, was then cLosed to Antarctlca, and

flnally eastern Ners Zealand was moved along the Alpine fault 480 krn northwards

wJ.th respect to western New Zealand. The resulting lndirectly deteruined
posltLon of the Canpbell plateau wlth respect to Antarctlca should be valld
for anomaly 36 ti.ne. It is clear that lt dlffers conslderab.ly from that
determ:lned rnore directly fronr the southwest Paeiflc data (Flg. 9.16). If
the Flg. 9.16 position for the Canpbel.1- pl"ateau-Chathan rlse area ls correct,
and the Hayes and Rlngls posltlon for western New Zealand ls also correct,
there must have been substantlal gaps between parts of New Zealand at 80 mybp.

Another reconstrucEion Ls shown ln Fig. 9.19. It ls not based on any

quantitative nethod but it would not be difficul-t to achieve by plausible
rotations. The reconstruction was done by flttlng the Campbell- plateau to
Antarctlca in a posltion that avoids overlaps of continental areas. An

unintentlonal by-product is that closLng up the Bounty trough by rotation of
the Chatham rise towards the Campbell plateau brlngs the western end of the
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Chatharn rLse nicely agaLnst the Antarctic contlnent. Bol-l-ons seamount cait

wlth only a snal-I amount of noveuent wl-th respect to the Caupbell plateau'
t'f111 up" the smal-L gap between the rnajor contlnentaL areas. Orphan l(nol"It

a feature off Newfoundland simLlar in form to Bollons setmount,, has been

shown to be continental (JOIDES, 1970). Bollons seamount could.be a similar

continentaL fragment, so lt is appropriate to retaln lE in the continental

reconstruction. IL is probabJ-y rel-ated to the formatlon of the Bounty trough

and it fits wel-l in the area.
The south Tasman rLse ls another continental fragnent (JOIDES, 1973d).

For elarity it was omltted from Flg. 9.18 but if retained ln its present

posltlon with respect to AustralLa it overlaps IseJ-in bank and part of the

Ross shelf. There is pl-enty of room for it Ln any of the reconstructlons

offered, lf either it or Isel-l"n bank is pernltted to move relatlve to the

naJor continental areas. The margLns of the south Tasman rise (Houiz and

I4arkl, L972) and the western side of Isel-in bank (tioutz and Davey, L973) ate

complex, which nny reflect complex moveElents of these features.
In the xec\)nstructions shown AntarcEica has been kept statlonary at its

present positj.on, This ls somer+hat arbitrary as the seafl-oor data provide

infornratlon on only the relative movemenLs. Paleomagnetic data (Francheteau

and Sclater, 19ii9; MeElhinny, 1973b) suggest that east and wesL Antarctlca

have been with-ln 5-l0o of their present latitudes slnce the upper CreLaceous

so naJor Bov€rtrs-ir.t of Anl;rrctica cioes not seem 11keLy.

I{ayes aucl it-ingis (1973) notJ-ng their overlap of the Campbel-1 plateau

onto &-est AntarcLica (Fig. 9.18) suggested that relatlve movement between

east anC aest A.nLarctica wotrld renove the inconsistency. The reconstrucLlon

shown in Flg. 9"16 j-s probal:y more reliable for the Campbell platearr relative
to wesE Antarctica. It too sholrs some overlap, but only a srnall- amount

of movenent of wesL AntarcLJ.ca would renove the overlap. The reconsEructions

all horvever ha-re liuitat,ions, malnly due to insufficient data, and they

cannot be consldored deflnitive. llovements between east and west' Antarctica

are not as yet "demanded" by the seafl-oor data.

9.7 SOUTTII.IEST PACIFIC MOVEMENTS A}ID MOVEMENTS EI,SEWHERE

9.7 .L Introduction

The prevlous sections have been primarlly concerned with the structure of

the southwest parE of the present Paciflc p1ate, and relatLve movements between

the New Zealand and Antarctlc continents. At present the New Zealirnd-

Antarct,ica movement is part of the movement between the Pacific and Antarctlc
plates. It I.s posslble that prior to 10 nybp the southwest PacifLc basin and
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New Zealand wece separate fron the large Pacific plate; the boundary belng

along the Louisvil-l-e rldge, Movements west of the ridge would then be part

of the movement between the Antarctlc plate and a sualler southwest Pacl.flc

plate. These Eovements can be described from data in the area without con-

sldering other areas. However one of the lmportant aspects of plate tectoalcs

is Lhat with tte earthrs surface consisting of several rlgltl platesr two

pl-ates cannot uove in isolation. The movements of two plates lnfl-uence, and

can be influenced by, Dovenent,s of at, least some of the other plates. It Ls

therefore worih consl.dering the southwest PacLfic movements in rel-atlon to
other movementa. A geometrical analysis would be dlfficult but a conslderatlon
of Just the tining of rnovements is relatively easy and provides valuable
lnfornatlon.

9,7 ,2 Plate $,rements in the southwest Paciflc area

The sLruc:ure of the southwest part of the Paciflc plate, ild the move-

ments between ]iew Zeal-and and Antarctica are probably most influenced by

pJ-ate noveuente in the lmrqedlate area. Several i.nteresting inter-relatlonshlps
are apparent.

At about 81-83 nybp (just prior t,o anomaly 36 tine) the Campbell- pLateau

and the Chathas rise were adjacent to west Antarctica, the exact detalls of
New Zealand are unclear but most of the Tasman basin was cLosed up, and

Australia was sdjacent to east Antarctica. Larson and Chase (1972) consider
that east of ttre Louisvllle-ridge there has been spreading between the Paciflc
and Antarctic i:rlates slnce 150 nybp, so at 83 urybp rnotion had been taking
place east of the llew Zealand-Antarctica-Austral-ia bl-ock for some tlme. The

motion apparent-ly sJ-owed doran very considerably at about 82 rnybp* (Larson and

Pitman' 1972). This time co1ncldes with the start of separatlon of the
Canpbell pJ.atei,u from west AntarctLca. The Chatham rise nay have prior to
then moved a litule reLat,ive to west Antarctlca and the Carnpbell pLateau to
open up the Botraty trough, or it rnay have moved relative to the Canpbell
plateau as the stajor separation from west. Antarctica began. However the
Carnpbell plateatr and Chatham rLse predomlnantly move togeEher, starting at
81-83 mybp. At the same time the Tasman basln also started to open, separatJ.ng

the Lord Howe rise and western New Zeal-and from eastern Australla.
After 82 uy'bp movements in the southwest PaclfLc and the Tasman basLn con-

tlnued smoothly for about 20 ny. Then at about 63-58 rnybp (anonal-les 25-23)

there was a chaage in the southwest Pacific: the roEaEion pole shlfted and

*Larson and Pitrnan (1972) glve the date of rhis change as
basls of their extens{on of the reversal time scale. In
shown that theLr scal-e needs revislon, whleh brings their
about 82 nybp.

85 nybp, on the
section 6.3.3 it
date of 85 nybp

was
to
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the spreadlng rate sLowed. At the same time the Tasman basin stopped

spreadLng. Betsween Australia and Antarctlca the oldest ldentifiable anomaly

ls 21 ox 22 (- 55 rnybp) but there is a gap of 300-400 km. With the spreadLng

rate at anomal-y 2l tiure the gap would represent 6-8 ny so Australla and

Antarctica may have started to separate at close to 60 mybp, coincldent wlth
the haLt ln the Tasrnan basln and the changes Ln the southwest Pacific.

After 60 rrybp movements between Austral-ia and Antarctlca and New Zealand

and Antarctica continued smoothly for about 50 rny. Ihen at about 10 nybp
(anonaly 5) there were several changes. The pole for the southwest Pacific
moved agaln and the spreading rates increased. The AustralLan-Antarctfc
poLe, whlch had been movlng smoothly, changed direction, md spreadlng rates
increased (l^Ielssel- and Hayes , L972). East of the Louisville rldge there were

some changes and it appears that from then on the southwest Paciflc did not move

separateLy froin the maJor Paclfic plate. In New Zeal-and the najor movement on

the Alpine faulL may also have cornmenced at about 10 nybp.

9,7 .3 GLobal J:late movements

It ls clear that the najor changes ln movement of the southwest part of
the Pacific plat.e are assoclated with rnajor changes ln plate movements in the
whoLe southwesL Paclfic area. A brief survey of the l-iterature indlcates
that there uay be synchronous changes throughout the world.

Some uajor events at 81-83 mybp are as folLows. Changes in the directions
of novement betr'reen AmerLca and Europe, and Ameriea .nd Africa (Pltman and

Talwani, L972). Slowing of spr:eading 1n the sout-h Atlantic (I{ascle and

PhllJ.ips,1972), Labrador sea sEarts to open (Le pichon et al-., 1971c).
Tasman basin starts (Hayes and Ringis, 1973). Changes of movements in the
centraL Pacific (Larson and Chase, L972). Changes of dlrectlons in the north-
east Paclfic (Vacquler, L972). Change frou. extremely fast to average rates
for Pacific-r\ntarct,ic spreading (Larson and Pltman, I97Z). Separatlon of
New Zealand frorn Arrtarctica.

At about 60 nybp the following events are reported. Spreadlng in the
Indian ocean sl-ows down (McKenzie and Sclater, 1971), Changes in movements

between Amerlca and Europe, and America and Afrlca (Pltnan and Talwani, L972).

Labrador sea ceases or slows (Le Pichon et al-., 1971). Norweglan sea starts
(Avery et al. ' 1968). Changes of direction 1n the northeast Paclflc
(Atwater and Menard, 19703 Peter et a1., 1971). Changes on the east Paclflc
rlse (Herron, 1972). Tasman basln stops (Ilayes and Ringls, 1973). Australia
separates frour Antarctica (Welssel and Hayes, L972). Changes in ::he southwest
Paclfic.
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Sone uaJor events at 10 mybp are as foll-ows. Reorganizatlon on the

Chlle ridge (Herron and llayes, i969). Changes on the east Paciflc rlse
(Herron, L972). Increase in spreading rates throughout the Indian ocean

(McKenzle and Sclater, I97L). Changes in the northeast Paciflc (Atwater

and Menard, 1970; Chase et al., 1970). Changes of dlrection in the north
Atlantie (Pltman and Talwanl, L972). Spreading rates change south of
AustraLia (WeLssel and Eayes, L972). Changes in the southwest Paciflc.

There are changes in varlous places at times other than 82, 60 and

10 mybp, but lu most areas the most significant changes are those that occurred

close to those times. The ehange at 82 nybp ts very najor as it involves vir-
tualLy aLl of the Pacific and AtLantic oceans, md is a change from very,rapld
movements (up to 18 crn/y) to more norrnal- rates (f-6 cur/V). Larson ana C'trli'f'
(1972) have poi-nEed out that the perlod of rapld movements (- 125 to 82 mybp)

colncides with extenslve vol-canic and tectonic activity in the circum-Pacific
area. The charrge near 60 mybp is probably the most wldely referred to event,
and lt ls interesting to note that lt ls cl-ose to the Cretaceous-TertLary

boundary - a rraJor geological and evolutionary boundary.

9.7.4 Causes cf movement

The marlne geophysical data ln the southwest Pacific area provlde a

reasonably goocl picture of the structure of at leasL the oceanic area. I^flth

the aid of place tectonlcs lt is possible to reconst^uct movements in the
area and understand some of the tectonics of the a.xLc. Knowledge of the

movements does not, however, expl-ain the origln of them. It is clear that
the southwest P;rciflc movements could be described as belng a response to
movenents elser+here, but that does not help explain why such movements occur.
The baslc. causes of plate movements and the drlving forces for them are sub-
jects of considerable Lnterest, but they have not been a part of this study.

Some of the structure ln the souuhwest Paciflc area is however of interest
wlth respect to possible causes of plate movenents.

Mantle pl-urnes (section 1.3.4) have been suggested as a driving force

for plates. The locations of the plurnes can be inferred from the presence

of volcanic actLvity away fron the m:ld-ocean rldge crest (e.g. Hawall) or
pronounced activity at the crest (e.g. IceLand). Morgan (1972a, b) has noted

the presence of the volcanlc Balleny Islands and assumed a plume ln the area.

The unusually large number of seamounts in the BalLeny basin supports the

idea of pronounced volcanic activity in the area. So, too, does Scott Island

and the very large features near to lt.
Reglonal depths also support the ldea of a plume ln the area. Morgan

(L972a, b) concludes that one feature of pJ-aces where plurnes are evldent
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is that seafloor depths are shal-l-ower than usuaL, presumably because of the

thernal upwelling. The section of the southeast Indlan rldge adJacent to
the trlple junction increases in depth away from the axLs ln a similar way

to typical nldocean rldges (Fig. 1.7), but the depth of the whole feature is
abnorrnal-Ly shal-low. The ridge axls near l7OoW (Fig. 4.24) also has the
trright shapett but is 4OO-500 m shallower than normal. The depth to basement

in the Balleny basln ls 3 to 4 kur, and the depth-age relationship (Ffg. 1.7)

suggests an age of less than about L5 ny for thLs depth. Anomalles back to
10 rny are very clear north of the Ba1-leny Islands. It is likeLy that much of
the bas{n further southeast was aLso produced by seafLoor spreading fron the

southeast Indiaa rldge, and so lsouLd be conslderably older than 10 mybp.

A JOIDES site ia the east of the basin (fig. 2.2) yieLded an age of at least
/r0 nybp. The depth throughouE the basln therefore aeens to be shallower than

woul-d be expected frou its probable age. Thls ls further support for the ldea
of a plune ln tiie area.

It ls dlfficult to detendne how long such a plume would have been actlve
and hol much effect it would have on p1-ate motions ln the area. An interestlng
observation ls that l,lorgan (I972b) suggests that asyrmetrical spteadlng wiJ-l

occur if there is spreading from a pJ-ume-fed rldge, and one of the plates is
not free to movt'r aruay from the plume (fig. 1.6). I.letssel and llayes (1972)

have noted thaf Ehe eastern-xnost sections of the southeast Indian ridge
(those nearest the triple Junction) are Loo far south to perm:it syumetrlcal
spreading elthe:: side of the ridge for the time interval represented in the

anonnlies nortlr of the ridge. The schema ln Fig. 1..6C suggests that if the

Antarctj... p.!-ate has been statlonary for some tlme and the Balleny plume Ls

stationary raiLh respecL, to uhe mantle, s)rnmetrical- spreadlng would not be

expected. Spreii'Cirrg tlrat was asynmetrical- but not compleEely one sided wouLd

l-ead to the obsetved conflguraLion of the ridges.
Plumes are bel-leved to be the orlgin of uany linear chains of seamourrts,

and the Louisvli--l.e ridge does appear to be either a long chaln of seamounts

or a dlscont,inuous ridge of volcanic orlgln. It Is posslble that it is
related to a plune, presumably at its southern end 1n the vlcLnity of the

naJor Eltanin fracture zone. The orlgln of the Loulsville rI-dge may, however,

l-le ln actLvlty associated with lts suggested role ag a maJor plate boundary.

Ridge depths in che area of the Eltanin fraeture zone are not shallow whlch

tende to support a non-plume orlgln of the LouLsvLlle rldge.
These brlef discusslons of the Ball-eny plume and the Louisvil-le rldge

are il,lustrations of contributlons that the concept of pLumes could make

towards a better rmderstanding of the structure of the southwest PacifLc area.

and the reasons for that, structure. Equally well the knowledge of the
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Etructure of ths ar€a eould eoattlbuEe qrch tonatds underet€odlng plu@s 4.d

the-Li Eff,ec-ts. Xn partLculer lt wotrf.d be of Lpterect to [tnOw whether or nol

,the structure adr plate. uovenents w{.L1 {.nd{eat. httn l,ong a plrne nay hale

b:een d.cG:hile ln ttre ,Atr€a, A knowl,edge of thle could ptovide ,i.dforoattrou on

the gg.a,eral prohleu of how uuch e,ffeet E-he ,lntrtLatlsn :rnd cout'inued acti'tlty
of any pl,trre has on plate @veuents.
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CHAPTER 10

REVIEW AND FUTTJRE WORK

Thls chapter ls a very brief review with corments on posslble future
work. It ls not intended to be a complete revlew, nelther ls it lntended fo
be a conplete list of possibl-e work. The structure of the area is dlscussed
first (10.1) the-a the special studles that were part of the overaLl study are
discussed: numerical correlation (10.2), nagnetJ-c arromaly model studies (10.3),
the b value study (10.4), md the epicentral method (f0.5).

10.1 Southwest Paclfic structure

The geophyslcal data available for this study have made it possible to
describe the structure of the southwest part of the Paclflc plate in more

detail than was previously posslbl-e, and the Indlan-Ant,arctic-Paclfic tripl-e
Junction can aL:r: be better understood. There is no polnt reviewlng al-L the
findlngs here as they have been discussed tn the previous chapter. With

respect to posslbLe future work, two main areas c.an be suggested. One Ls the
coLlection of more data in the area, the other ls further work on the avallabLe
data.

Fl-rst, the eoLlection of more data. Two approaches are posslble and both
woul-d be useful-. One is very detailed work in sunl-l areas, the other is more

reconnaissance surveying. The latter could be accomplished qulte effectively
from shlps in L,rcnsit through the area. There are large gaps ln track
coverage between about 170oW and 155oW and data from this area would considerably
assist in declphering the area north of the rtdge beLween anomalies 5 and 25.

A single z'Lg-zag track 1n the ridge crest area near 160oW (Fte. 4.2I) would be

a good test of the whol-e principle of plate tectonics, as it is posslble to
predLct for that area the almost exact location and strike of'the'tldge;crest
sections, and the aroount of offset of them. A few tracks across the PacifLc-
Antarctlc fracture zone just east of the trLple Junctlon would also consLderably

improve knowl-edge of that important boundary. It is obvlous that any tracks

south of the Pacific-AntarctLc rldge east of L80o would be very useful. That

area should be a top prlority area for any reconnaissance work as wLthout a

knowledge of the older anomalies in the area it is dlfficul-t to assess various

posslbLe reconstr{rction positlons of New ZeaLand and Antarctica.
Detalled surveys of smaLler areas would also be very valuable as It ls

fair to say that norhere is there a detailed knowledge of the snal-l- scale

structure. There are too nany areas of interest Lo discuss then a1-1 here but

the followlng appear most profitable. The Louisvllle rldge: Is lt really
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continuous? What Ls the age of varlous sectlons and what ls the petrol-oglcal
nature? These are important for the hotspot origLn. How extensive ls the
fl-at basement and ls it basement or ash? Are there anomaly llneatlons east of
lt? If so, they could be ln the lmportant normal interval beyond 82 nybp.
The Bol-lons seanount: Where is it and what is its exLent? Is lt contlnental?
Dredging ntght show but driJ-llng seems to be the onJ-y conclusive means. Wtrat

are the precise trends and offsets of the anomalies Just east of it at the
Toarahi and RangLrua fracture zones? The Pacific-AnLarctLc fracture zones:
detailed surveys are requLred to verify the exlstence of the predicted short
sections of spreadlng ridger m{cro-earthquake surveys would provlde val_uable
data on the probabLe fracture zone trends. lticro-earthquake surveys on the
Macquarle ridge conplex wouLd also be very useful. The western teraLnation
of the southwesI Paciflc Cretaceous anomalLes also needs to be determined to
understand the boundary betr^reen the southwest PacifLc and the Emerald basln
area. A better knowledge of the Enerald basin-Sol-ander trough area ls vitaL
to the contlnenLal" reconstructLons.

Much valus.::le work can be done without colLecting any more daLa. The

data coul"d wel-l be looked at agaln in the l-ight of the plate tectonlcs con-
cluslons gLven here. The sEructures mapped here were not based on plate
tectonics conclrsions, and the approach taken was conservative. It nay be

possibl-e to dete.ct trends ln some areas when possible trends have been suggested.

In particular tte data between the Paciflc-Antarctic fracture zone and the
southwest Paclfic basin could be examined with the idea of fracture zones

trending very o'':liquely across the area. The data ln the Balleny basin could
also be re-exaurlned. In both of theso areas a tirree-dimensional perspex

rnodeL like that used by Christoffel and R.F. Falconer (19;3) would be very
useful. ?o1es of rotation could be deterrnlned in shorter tine intervals
(T,lI. Geddes is startlng this). New ZeaLand Oceanographlc Instlfute are

worlclng on some of the bathyrnetri.c naps for the Pacific-Antarctic fracture
zone and the conpletion of detalled maps for alL the area is very important,

IO.2 NIffERICAL CORRELATION

The numerl-cal correl-atlon studies descrlbed ln Chapter 5 were aLned at
studyl-ng the appllcation of numerical technJ-ques to correLatlon of rnagnetic

anomaLies. The results are applicabLe to any correlatlon problem. The nain
concl-uslons reached were that the exaet form of correLatlon coefflclent is
probably not important, and that horizontal- scale variatLons and any misslng

or dupllcated sectlons can have a crltical effect. The use of short sweeplng

sectlons partially overcomes the problems of nlsslng sectlons, ed varlabLe

length correlatl-on can overcome scale varlatlons. Statistical uncertainty
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estlnates based on the autocoxrelatlon functions of the records appear to be

rei-lable and quick estimates based on the number of maxiroa are probably

adequate.

The numerlcal technlques appear to be well sulted to the sltuatlon where

one proflle is controll-ed, such as in a model study where it is deslred to find
the nnodel that best fits the data. Numerical- correlatlon techniques should be

applied to the final results of the sophisticated model studies and proflle
manl-pulatlons that are now being published. Numerical correlations can aLso

be used to more cbJectlvel-y assess symrctry in proflles. Since a synmetry

study would usua!-ly Lnvolve fewer profiles than general correlatlon studles

a rlgorous analysis can be done in a reasonably shorL time. Overlapping

Long and short sveeplng sect,ions could be used, coupl-ed wlth variabl-e horl-
zontal scaling arid compleLely quantitative error estlmates. Some form of
estiruate should irccompany all correl-atlon results.

IO.3 MAGNETIC AJ;'JT{ALY MODEL STUDIBS

The magneti,: anomaly rnodeL studles presented in Chapter 6 were realJ.y a

series of separate studies, but all were based cn Ehe same model of norrnally

and reversely rna;;netlzed blocks. The rnodel was critlcalLy discussed and

although recogni;:ed as siraple lt r,ras considered useful. The results obtained

support the sl.nrplifled approach.

First a revj-sed and extended geonagnetic reversal time scale for the

upper Cretaceouli r{as p:iesented. The validity of dating anomnfy 33 and tlte

extengion to anr.;ilal-y 36 arrd a reverse lnterval beyond ii have been confirned

by the inclependc-.':t recoglition of Lhese features by McKenzie anci Sclaler (1971)

anrJ Larson and P.itnan (1972). The briefness of anomaLy 33 (0.05 nry) places

constraints on niodbl-s of the mode of formation of the seafloor and of the

thLckness of the nagnetized layer. It also supporEs other evidence for short

polarity intervals l-n the lower Tertlary and upper Cretaceous; lt has been

tlior:ght that short. Lntervals were not present, The unifornlty of the southuest

Pacific Cretaceous anomalies suggests that they r+ould be useful for further

refinemenLs of the reversal tir,e scale anil the. detectlon of other short

polarlty j.nt,erva1s, uslng the proflle averaglng and processing technlques of

Blakely and Cox (1972a, b).
The possible positions of forrnation of the Cretaceous anomalles were

brlefly studied, but the results were noE very conclusive. The more sophlstl-

cated techni.ques nohr avail-abl-e could be nore useful.

The, thLckness of the nagnetized l-ayer was studied and it was concLuded

from several lines of evldence thaE a layer thickness of at least 2 krn would
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be most suitable. This ls somewhat thicker than is frequently assumed.

Deepsea dril-ling at least 2 kn lnto the basement at many sltes could help
resolve the lssue, but model studies of anomalles away from the ridge axls
elsewhere woulrl be easy to do and would partially check the concluslons
reached from the southwest Pacific.

Variations in anomaLy arnplltudes wlthln the area were shown to exist.
Slnilar variations have been documented south of Australia. Further studies
elsewhere could confirn whether the variations are produced at the tlne of
fornation, or subsequentLy, or whether they reflect petroJ-ogLcal- differences.
$he anornaLies between numbers 5 and 25 have amplitudes considerably l-ess than
would be produced lf the rnagnetized layer propertles were slmllar t,o those of
th.e older anomalies. Global studies of relative anplitudes 1n anomaly

seguences coultl determine whether such effects are due to total fleld
variations.

IO.4 THB b VAI,TIIi STTIDY

Earthquake magnitude - frerluency rel.ationsh;i.p b val-ues rsere determined
for the plate bcundarles in the southwest ?acific area. The northern and

central- lnlacquai-'ie ridge conplex was found to have a l-ow b val-ue (- 0.9),
while all the oi;her areas had hlgh b values (- 1.6). Couparison with results
from the mid-At,1-antie rldge shorr'ed that contrary to previous suggestions b

values are not determined by: the nature of the bour:Jary - ridge or faul-t;
the type of faulrlrrg * normal or strtke-sllp; clust:.'rng or non-clusterlng.
An association r:f high b wlttr high temperature and J.ow b wlth Iow cemperaturc

is indicated.
The b value study is one study which is readily amenable to further

work. It is pJ-anned to repeat the study with the InLernatlonal Sej.srnological
Centre (ISC) data ruhich are probably ulore conslstent than the USCGS data used,

Statistical- uncertal-ntles due to lack of data made usefuL comparisons of
individual fracture zones difficult, but more data are becoming available all
the tirne. It shoul-d soon be possj-bl-e to check the suggested b value - tempera-

ture relationsl'rip by considerlng a serles of fracture zones that have dlfferent
crustal ages Juxtaposed. This should glve a range of temperaEure environments.

10.5 THE EPICENTRAL METI{OD

In Chapter 8 a new method for determlnlng poLes of rotation was presented.

The only data reguired are epi.centre locations from one or more transform

faul-ts. An application of the method to the llacquarie ridge complex showed

that the whole feature south of about 49oS could be consldered a single trans-
forn fault boundary. Thls yielded a very tlghtly defined Indlan-Pacific pole
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positlon - the flrst quantltatlve deterrn'ination of this pole pos{tlon lrot

based on other poLes. The Paciflc-AntarctLc and Indian-Antarctic poles were

also independently determlned. According to plate tectonlcs theory the three

poles should forrn a conslstent seE, md they dld,
The results obtained $rith the nethod are ln agreement with lndependent

data on the three boundarles. The Pacific-Antarctic results highlighted
the difflculties of lnterpreting the Paclfic-Antarctic fracture zone but
provided val-uable quantl.tatlve support for the inEerpretation of the areat

and other deternr1-natlons of the Paelflc-Antarctic rotation pole.

The method yields effectlvel-y instantaneous poles, and comparlsons with
pole posltLons determlned by other methods yiel-d lnforioation on movements of
the poles during the last 10 nybp. Thls feature of the method ls of consi-
derabLe interesu. Further applicatlons of the epicentral method to poles

elsewhere lo thr world should conflrn whether it ls possible to rellab1y
invesLigate pote movements this way.

The meLhocl also provides some information on the processes occurring

at transform faults as lt yiei"ds quantj-tatlve vaLues of the scatter of the

earthquake acEi.rrity. The results obtained suggest that the activLty Ls in
general very cLosely confined to a single llne. Appllcatlons of the method

to only weLL losated eplcentres should not only verify this but shoul-d provide

much better located pole posit.ions.
The epicent-ral meth:''d neads more sEudy, particularly the aspects of

weighElng l-ndi'.ri-dual fracture zones, and deternining the best parameter to
use for statist.i.cally assesslng the confidence area of lhe pole posltion.
One of irs naJ.n advantages ls thaL continual iuproveuents in pole posiElons

will- be possible as nore data and better loc.ations becoare avallable. The

rnethod has already provided some predictlons whlch hove Lmportant implleatlons
for tlre sor-rthlrest Pacific 4rea. It appears probable thaL lt ean become an

important nerv fool for lnvesLigating plate movements aird tectonics oE plate

boundariee.

This thesLs is a contributlon towards a better knowl-edge and

of the southwest Pacific area. The area is onJ-y a snal-l part of

surface but it is hoped that the study will also contribute to a

standing of the whoLe earth.

understandlng

the earthrs
better under-
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APPENDIX 1A

BIBLIOGM?HIC }IOTE ON THE VINE AND },IATT}IEWS I{TPOTHESIS

The hypotherds that the rnagnetlc anornalLes observed at sea are caused by

nornally and rer.'lrsely rnagnetised blocks cl.earLy orJ-ginates wlth Vine and

Matthews (1963). Ilowever they did not state the irnportant corollary that the

anomalies could te used to date the seafloor nor did they expl-ici-tJ-y sfate
that synnretrical anomal-ies would be produced.

Morley and l,arocheli-e (1964) very clearLy state the same hypothesls as

Vine and Mattheli* (1963) and they note that Morley stated lt at a conference

ln 1963. ltrey give the corollary of deternLning reversal. dates from magaetic

anomalies (not siated by Vl-ne and Matthews) and they also give a further irnpor-

tant extension. fhey state
t'If thfs flgure (seafLoor spreadlng rate) could be determlned

accurately for the varlous geologlcal- perlods, it would then be possible

uslng the d:'ta from a nagnetometer survey of the ocean basin floors to
reconstruct aot only the hlstory of reversals of the earthts field but

also the di;ectLon and rate of the drift of the continents."
There ls an earll-er account r'rhlch although not, very e:1p1lcit suggests the

posstblJ.lty of deEermLning the age of seafloor from aaorrrnLLee. It ls in the

Geomagnetism sectl.on of Operatl-on Deep Freeze Report 61 (U.S. Navy Hydro-

graphle Office, L962) written_by R.H. Hlggs and R.W. Seaton (Htggs, pers, conn.

L973). After noFing nagnetl-c lineatlons parallel- to the Pacl-fic-r\ntarctlc
Ridge and in plares an lnverse rel-ationship between bathymetric and.magnetic

rellef they suggest as a posslbLe. etqrlanatlon
I'The rc,ck comprlsing the bathymetric relLef is in actuaL fact

reversely magnetised. This would indlcate that there probably hae been

a teversaL of the earthts mngnetic field since the tlne of origlnal
solidiflcatlsn of the rock.
renanent rnagaeELsm derJ.ved from mognetie data in the ocean areas then

can be compar.ed vlLh paleomagnetic data from Land areas. The conblned

data ttree nfuht nake it possibLe to draw lnferences concerTling the age

of oceanlc crustal rocks,t'
Thls inportailt prlnciple is not stated by Vine and Matthews (1963) or

l4orley and Larocirolle (1964). It was Vine and Wl.lson who flrst used Lt la
1965, wlthout expll.eltly statLng 1t.
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APPENDI X 3A

PIIBLISHED DATA REPORTS

Fifteen of the tracks userl in thls study have been published ln data

reports. Details are given below.

Track: V16.

Reference: I-leirtzler (1961), Vema Crulse No. 16 Geonagnetic Measuremetrts.

Data format: 'Irack charts with nlleage annoLated. Total fieL<l and bathynetry
proflles, J.lnear with uileage.

Track: ODF3, ODF5, 0DF6, 0DF8.

Reference: U.S. Navy llydrographlc 0fflce (1962), OperatLon Deep Freeze

L960-1961 Marine Geophysical Investigatlons.
Data format: Gne track chart wlth nagnetlc anoualies plotted perpendlcular

to tracks. Also one diagram wlth bathymetrlc and total
m,agnetic field proflles of part of ODF3.

Track: ODF9

Reference: U.S. Naval Oceanographic 0fflce (1965), OperatLon Deep Freeze

t96I-L962.
Data format: Diagrams wlth toEal field and bathymet;:/ profLles pl-otted ln

relatLon to sections of track chart.

Track: EtT16, ELTI7, ELT19.

Reference: llelrtzl-er et aL. (1969) USNS Eltanin cruises 16-2I,

Ilavlgation bathymetrLc and geomagnetic measurements.

Data format: Track charts; llsting of navigation lnfornatLon; bathynetrlc

and magnetlc anomal-y profiles plotted with respect to dlstance.

Track: ELI23, ELT25, ELT26, Fl.f,z7. .

Reference: Hayes et al. (1969) USNS El-tanin cruises 22-27 '
Navigation batlrynetric and geomagneLlc neasurements.

Data format: As for ELT 16-21.

Track: ELT2B, ELT32.

Reference: Ilayes et aL. (1972b) USl.lS Eltanin cruises 28-32, Navigatlon,

bathynetric, geornagnettc, gravity and selsnic reflectlon
reasurenents.

Data forurat: As for ELT L6-27 buE free air gravlty anoroal-y proflles also

given, and photo reductions of seJ.smlc refLecLlon profll-es.
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APPENDIX 3B

TIIE }IAGINETIC EI'FECT OF TI}INZS ENDEAVOIIR

The magnetic effect of a ship wlJ-l vary with the posltlon of the sensor

rel-ative to the shlp, the sh{prs heading, and the aurbient fieLd. It l-s con-

venient to assuue that the nagnetizatLon of the ship can be divtded Lato two

parts; one, a penulnent magaetization independent of the fleLd, the other,

an tnduced rnagnetlzatLon proportionaL to the applied ftel-d (Bullard an-d

lf,ason, 1961). To the first order the field due to the shlp can then be

e>rpressed by

F=A*BcosO*Ccos29 38. I

where 0 ls the Eagnetic headlng of the shlp, and A, B and C are constants

reLated to the Dermanent and induced magnetization. A theoretical descrip-
tLon of the variation of the field with distance from the ship requires a

model- of the d:i:tributlon of magnetlzation within the ship. Bullard and

Mason (1961) discuss a plausible model which enabled them to determlne the

coefflcients of equation 3B.l- for a partlcular ship. Their model- should be

appllcable generall-y, but to determine the coefficients data are required
from two sensors at varlous distances from the ship and on various headiugs.

Such data are not availabLe for Hl6trZS Endeavour. However some lnfornation
on the effect of the ship has been obtained frour a set of data that was taken

whlle routinely under:uray.

The test r++'s carrLed out in the Ross Sea starting at 74.7oS., L72.5oE

and extending orer 60 kn. The shtprs headlng was NSOo$l nagnetie, vrlth the

anbient field strength approrimatel-y 661000 nT and inclination 85o. lbo

sensots A and B were streamed astern. A was kept at 140 m whlLe B was

varied in steps of approximatel-y B m between 45 m and 100 m, the uaximtru

length available. At each distance the sensors were alternately connected

to the same EragoeLometer electronlcs to give between six and eight sets of

readi.ngs for each sensor. Each seE consisted of four to six lndLvldual readings.

Use of the same ele.ctronlcs elinninated any errors of calibratlon in the system.

Fig. 3B,L shows all the readings for one dLstance. In some sets there

ls a range of up to 50 nT that was probably due to noise ln the system (both

sensor systems roere below par), and to iunespheric effects. It was dlscovered

aftervrards that at the tlme the test r+as underway the Kp index was flve'
whlch coulcl have given short period variatLons of up to 350 nT in the area.

Despite the scatter in the readings ttlere is a clear difference betseen the

field measured by the ttro sensors. The Lncreasing trend for both sensors is
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Probably due to a crustal anomaly. Thts effect can be adequately eJ-irnlnated

by calculating the mean of adjacent, sets for one sensor and taking the
difference betlzeen this and the mean of the intervening set of the other
sensor. This gives several differences from whlch the mean difference and

standard devlati.on can be caLcul-ated. Flg. 38.2 shows how the fleld difference
between the two sensors varies wlth the distance astern of the cLoser sensor.

Since ttre dtfference appears to approach zero whll-e the sensors are sti11
apart, the sensor at 140 m is probabLy free of any infl-uence of the shJ.p.

Fig. 38.2 ls thus effecti-vely a plot of the effect of the shlp wlth distance.
Ttre fieLd at 140 m was always greater than that cl-oser to the ship, that ls,
the effect of Lhe shlp was to reduce the total flel-d.

On one other cru:j-se two uagnetometers were run slmultaneousLy on several

separate occasions. The results are not directly courparable to those des-

cribed above because ln thls case the two sensors were connected to separate

electronics. Unfortunately the distances of the tswo sensors are not known

but they were uot, varied during each occaslon (D.A. ChristoffeJ- pers. coun.).

There were confiisLent dlfferences between the se-nsors of up to 90 nT.

As in the more deLalled study descr{bed above, the effect of the shLp was

to reduce the total- fleLd.
The avail*rbl-e data (Flg. 38.2) indicate that the effect of the shlp

would be signlficant at distances less than 80 m but would probably be

insignificant at 100 n or more. It is not possible to tel-l how much of the
effect is due to induced noagnetlzai,ion, hence depend..nt on the shiprs posltion
and heading, and how uuch ls due to perrnanent rnagnelizatlon. The constants
B and C in equation 3B.L.are proportional to cosl, where I is the Lacl-ination
of the earthrs field. The fleld inclination ln the regic:r studied varles
betsreen 70o ancl B5o so any effect due to the shiprs headiug is not likel-y to
be 1arge. A1so, Endeavour tracks generally invoJ"ved long sections (hr:ndreds

of kn) on near eonstant course so heading effects would not produce sLgnLflcanL

anomal-ies of crustaL wavelengths. They could, however, produee long lravelength

anonalies. The constant A in equation 38.1 is dependant on induced as well as

permanent uagnetization so even if headlng effects were inslgnifLcanE there.

nay still- have been effects whlch varied with the posiLlon of the ship.
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APPENDIX 3C

REGIONAL I"IAGNBTIC ANO}IALIES

Ross (1966) produced magnetic anomaly proflles from total fiel-d proflles

by removlng a visual"ly estinated J-ong wavelength regional field' lle noted

that the anonal-y profiles thus produced contalned long wavelength anornalies;

ln addition to the typLcal- short wavelength crustaL anomalies. The long wave-

l-ength anomalies had amplitudes of up to 350 nT and lengths of 100 krn to

300 kn. New methods of analysis indicate that although some regional anomalies

may be present they are probably dlfferent to those that Ross mapped.

The inportant ner.r factor is the use of an lndependently defined regional

fleld when producing anomal-y profiles from the observed tota.l field data'

Fig. 3C.1 shows an anomaly profile that was produceil by subtractlng a regLonal

fieLd deflned by the IGRF. Long waveJ-ength osclllatLons are evident ln the

anornaly profiLe and Ehe heavy line is a base-l-ine which coul-d be taken as the

zero level. This base-lIne is only sketched, it ls not quantltatively
deterrni.ned, Differences betweeu the baseline and the zero line of the IGRF

define regional- anomalies. BeLor,r the anomal.y profile in Fig. 3C.1 is the

corresponding regicnaL anomaly proftl"e given by Ross (L966). Ills regiooaL

anomaLies dlffer conslderably fron those suggested in Lhe anonaLy profile.
'Itre prinary reason for the differences is that Ross assumed that the majorlty

of the observed short $ravelength anomalles were positive. Tttls had a consl-

derabl-e influence on his cho{ce of regional" field and regLonal anornaly.

Regional irncnralies that he deflned in other profiles are simllar to those shown

in Fig. 3C.L.

I[e subjective elenent in Rossrs uethcd is too great to justlfy detailed

anal-ysls of the particular regional- anornal-ies that he defioed. I{owever long

wavelengLh anom:rlies are pr:esent in the profile of Flg. 3C.l- and sin{-l-ar varl-

atlons can be seen ln other proflles. The variations are not due to

defLciences in the IGRF as lt 1s deflned up to only degree and order elght and

so does not conLain ruavelen6ths as short as those shown. Some factors whlch

could contrlbute to the regionaL anomalles are as follows
(1) For New ZeaLartd. daLa the pcssibillty that the effect of the ship is

present ln sotrle of the rccords has to be admltted'

(2) NavigatlonaL errors: The regional- ficLd ls ealculated for an assunred

position and lf the actuaL posiElon was differeni the regionaL field would be

rlrrong. Tor exaruple at 55oS, LSOo if the true position was 25 km north of the

assumed posltlon the assuued regional- flel{ wouLd be 100 nT too high' The

effects of a navigatlonal error qlisrril.luted over several hundred kilometers

woul-d produce a 1-oug waveJ"cngth anornaly.
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(3) Teryoral variatLons. FleLd varlations wlth perLods of a few hours up

to dlurnal could produce long wavel-ength anomalies. It has been assumed

(e.g. Hayes et al., 1969; Ileirtzler et a1-., 1969) that diurnal varlations

in the area would be of the order of 50 nT, However Davey (pers. cornl. 1973)

has found thaL dlurnal- varLations are up to 180 nT ln the Ross Sea 8f,€8r

Al-though varlaELons are J-ikely to be reduced 1n deep !,tater (BulLard and

Parker, I97L) local topography can be loportant. Roden (1964) has sholtn

that ternporal variations can be amplifled by 2001l at the edge of the -con-

tlnental sheJ-f, and Duba and Lil1ey (1973) showed that a typicaL mldoeean

ridge structure couLd produce anpllflcatton of 757". Long perlod tenporal

variations ln axcess of 100 nT could therefore be present in some of the

area.

Discussicn of these factors ls not meant to lnrp1-y that all the reglonal.

anomaLl-es obscrved are ln fact onJ-y pseudo-anomalies. Regional anomaLies

due to crustal or upper mantle variatlons may well be present, and such

anomalles are cf considerable interest. The point of the discussion Ls

that a very cF.reful, and probably comple:<, analysls ls required to va11dly

extract true regional anomalies from the exlsting data. A posslble approach

wcu!-d Lnclude all or some of the followlng. (1) Productlon of anomal-y

profiJ-es only by subtractlng an expllcitly defined field such as the IGRF.

(2) Dlgital fllterlng of the anonaly proflles to extract regional anonr,alies

ln an unbiased rEmner. (3) Conslderation of lonespheric dlsturbances and

diurnal effects especlally with regard to topographlc structures.
(4) Analysls of any track crossovers. (5) Analysis of mode1 profiles for
various crustal stxuctures. Ttre lnl-tlal- data would probabJ.y have to be

onLy from sate1llte-navlgated tracks and of unquestlonable quaLity.
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APPENDIX 3D

SECULAR VARIATION

The magnetic anom:ly profiles produced by subtracting a reglonal
field based on the data itself have mean val-ues whlch are constant and

approxirnatel-y zero. Thls lurpl-les that Ehe asstmed regional fleld is a

good representatlon of the actual regional field. Regional fleLd naps pro-

duced from the data for epochs L966.0 and L967.0 are shown in Figs. 3D.1

and 3.8 respectiveLy. They are at least superflciaLLy sintlar to the

caLculated GSF€ field shown ln Fig. 3D,2, and the IGRF fiel-d ts not very

different frou the GSFC fleld. A more detalLed sornparlson (Fig. 3D.3)

shows that at 1east for that speciflc courparison the IGRF is closer to the

observed fieLd than the GSFC. Throughout the area the IGRF appears to be

a better fit as anonaly profiles produced with it have mean vaLues closer

to zero. A rtlgional- fieLd deteruined fron the data ls probably a better
estimate of tl:e actuaL regional fiel-d than the IGRF or GSFC fleLds.

Regional fleld maps deternined from data in the area have been glven by

Christoffej- (i-961b) and Ross (L967a). Christoffelts nap, for epoch 1959.0'

was based on Llro tracks in the sunmer 1958/59. Rossts map, for epoeh L964.5t

was based on two tracks Ln L963164 and two in L964165. Ross (L967a) noted

that the tr,ro maps were different and he interpreted the clifference in terms

of rvestward drift of the nondlpol-e field. To superrmpose some of the fiel-d
Lines of the ti^/o maps required a drlft of O.2solyr for between 50oS and 6005,

and nearly Lo/yx south of 6005. Ross's (1967a) analysis was not strictl"y
valld as he assumed thaL the differt.^ces between the rrurps we.xe due only to
wesf*ard drlft of the fleld lines. That thls is not necassarlLy so can be

seen as folLows.
Suppose t.hat at a particular place the east-west field gradient ls

€* tt/U"rree and the rate of change of flel-d (secular variatLon' ' - dF,1sE

nT/yr. Then if the whole fleld pattern drlfts without change the rate of
drlft is given by

... .. . 3D.1

If however the fleld gradient changes with ti.me aa observed westward drtft
of a fLeLd line does not necessarily lndicate dri-ft of the whole pattern.

For example the J.soporie cencre is west of the area (Fig. 3D.1) and a general

decrease ln fiel-d intensity will appear as a collapse of the fle1d l"ines

towards the cent,re. This gives an apparent westward drlft in the area; buE

west of the isoporic centre lt would give an eastward drift. The IGRF and

GSI'C further lllustrate the l-inrltations of extending secular variatlon

dL dF dL

-=-dL dt'dF
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to westward drift. Secular varlation as given by the IGRF is shown in
Fig. 3D.4 and as glven by rhe GSFC in Fig. 3D.5. Table 3D.1 shows values of
weshrard drtft deduced frorn fleld gradients and the secul-ar variatlon tising
equation 3D.l-. C1ear1y the wesEward drift so determined is very dependent on

the secular varlatlon distrlbutlon. Even when the secular varlation ls
adequatel-y knorrn it is not valid to di.rectly deterur:ine westward drift from lt
(Nagata, L967).

Table 3D.1 Westward drlft from secular variatLon

Westrsard drlft in degreeslyr.

16ooE
IGRF GSFC

uootr
IGRF GSFC

1900
IGRF. GSFC

4oos

5oos

6oos

Toos

0.11

0.17

0.40

1. 38

0.11.

0.17

0.10

0

0.10

0.20

0.37

0.97

0.14

0. 15

0. 10

0.07

0.15

0.21

0.18

0.1g

0. 17

0.26

0.42

0.85

When data are available from only a smal-l area it is preferable to
analyse only tire secul-a.: variatlon. In the souEhrwest Pacific area secular
variation daEa are available from several magnetlc observatories (Flg. 3.5).
Mal-in (ry69) has given data from Anberley and Macquarie for the lntenral
1957.5 to 1962.5, and Cullington (1968) has given data from Scott for 1958

to 1965, and HalLer for 1961. ar.d L962. The IGRF and GSFC are not deflned for
prlor to 1965 but cornparisons of their secul-ar varlations with the observatory
data shouLd be reasonably val-ld. Flgs 3D.4 and 3D.5 indicate that a better
fit to the observed secular variatlon is obtained with the IGRF than wlth the

GSFC. It Ls of obvious interest to aLso conslder the marlne magnetf.e data.

Will-lans (1967) and Whitrnarsh and Jones (1969) have determined secuLar varl.a-
tion from track crossovers but that method has not been used for this area

as there are insufficient crossovers, as welL as problems of navlgatlon
uncertaintles and di-urnal variations. Instead reglonal field maps have been

considered. The results are not very satlsfactory.
First Rossrs epoeh 1964.5 nap (Flg. 3D.6) rras compared wlth the 1.967.0

urap (Fig. 3.8). Field dlfferences bctlreen the Lsro maps were detennined on

l-ong!.tude 175oE betwee.n 45oS and 65os, where control ls gootl in both maps.
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The secular varlatLon values deduced were lrregul-ar wLth respect to Latltude

but aL1 tilere between -50 and -80 nT/yr. I{owever when the 1966.0 map

(Flg. 3D.1) was compared with the 1964.5 nap the secqlar variatlons on the

sane merLdlan were between -90 and -160 nT/yr. CoruparLson of the L966.0

and 1967.0 maps throughout the area gave var!.ations ranglng fron -190 to

+70 nT/yr.
Clearly the e:d-stlng uaps are not adequate for determlning secular

varLation. That does not necessarily ueaa that the exlsting data are-

inadequate. A nore careful anaLysis may provitle good secuLar varlation data.

The naJor diffieulty is probably the long wavelength anonalies dLscuseed

previously as they represent pronounced locaL anonalles in the reglonal fl'eLd.
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APPENDIX 3E

BATIiYMETRIC CHARTS

The fol-lowlng bathynetric charts which cover aLl or part of the area

were used:

Ctrart: GeneraL Bathynetrie I'Iap of the Ocean:Paclflc Ocean

Area: All of the area west of l40oE

Reference: Udtntsev (1964).

Chart: Bathymetry and Selsrniclty
Area: Equldistant projection of all areas soulh of 40oS

Reference: Tolstikov (1966).

Chartt New Zealand Region Bathyoetry

Area: 24os-57.5os, 157oe-167ow

Reference: Lawrence (1967),

Gtrart: New ZeaLand to Cape Adare, AntarctLca.

Area: 41os-7L.5os, 157on-166ow

Reference: U.S. Naval Oceairographic offlce (1957).

Chart: Bathlmetrt of uhe Southwest IndLan Oceab

Area:. 3oos-69os, l.1ooE-16gor

Reference: Hayes and ConoLly (1972)..

Chart: Macquarie Ridge Couplex

Area: 42os-6oos, l5oog-l59or
Reference: Hayes and Talwani (1.972).

Chart s ErneraLd Sheet

Area: 57.5os-61.5os, 15708-16908

Reference: I{urLey atrd Krause (1973a).

Chart: HJort Sheet

Area: 6!..5os-65os, 157o8-169oE.

Reference: Hurl-ey and Krause (1973b)

CharL: Ball-eny Sheet

Area: 65os-68os, 157ou-t69oE

Reference: Dasson (1970) o



198

Chart: C-lr'atham Sheet

Area: r+2os-49os, l79ol^I-167ow

Ref erence: C'dLen (1969a) ,

Chart: Submarl-ne and subglaclal topography.

Area: Al].l the southern oceans south of 35oS.

Reference: lleezen and Tharp (1972).

(This rnap did not become available until after the
scudy was virtually conpleted.)
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APPENDIX 3F

COMPUTER PROGRAI"IS

Computer programs which were devel-oped are listed below. A1l- are

written in ALGOL for use on the Elliott 503 computer of the Applled

Mathematics Divislon, DSIR. Some details of the formulae are given in
the relevant chapters.

GBNERAL PURPOSE

Card to tape

Reads cards and produces compacted paper Lape copy and lineprlnter
listings. Useful for preparing data files or programs on card and then

converting to paper tape for the Elliott 503 which has fast paper tape

readers but a sl.ow card reader. Also useful for interchange between

Ell-iott 503, IBlt 1130, and PDP 15 eonputers, a1-1 of which were used.

Plot and list profile
Reads a data string (profile), pl-ots it on the plotter, and lists

and p1-ots it on the lineprinter. Also cal-culaEes mean and standard

deviation. Useful- data checking program.

Draw maps

A collection of programs that draw a grid and plot data. Data can be

eiEher continuous e.g. coastlines, or point e.g. epLcentres. Data can be

sel-ected by area so that for instancc only part of a complete epicentre
file is plotted. Different programs for stereographic, -quldistant,
equal area, and mercator projections.

TOTAL FIELD SecEion 3.4.4

Total- field
Cal-culates total field from spherical- hannonic coefficients. Calcul-ates

and pri-nts a table of vaLues for a specified epoch for specified grid points.
Any set of harmonic coefficients can be used. The basic routine was provided

by D.J. Woodward, Geophysics Divislon, DSIR.

NIIMERICAL CORBEI^ATION Chapter 5

Second moment cross-correlation
Reads two data stri-ngs (profiles) and cross-correlates the slorter one

with the 1-onger one for all posslble allgnment posltions of the proflles.
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Variable second mom.ent

l{odifleation of the above progr€ln so that the leogth of the ghorter

profile can be altered to any deslred leagth, then cross-correlated,

l'lrsg uotnent eorfel-atiqn
Src programs slmj-lar to the above two but cal-culaLlng the flrst

nomenE correlarLon coefficlent rather than rhe seeond noment.

Nolr-4grma 1 i.zeil eorreLat=i.ol

Modifications of above programE to catrculaue non-noinallsed comelatlon
eoefflcieuts.

Symetry }ilrot
Ptograns sLnllar to all Ehe above btrt the sho,tter profile Le lnverted

before correl-aEion with the longer profl.-Le.

EPICE{TRAL UETIIOD Chapter I

Eplcentral. poLe

Perforrns epfcentral pole celeul.ation. Reads groups of epi'aentrest

and calculates and prlnte epLeentral standard deviation at a serles sf
grld polnts absut a specif,Led Bolnt. Grtd slza and spaeLng variable.
For pos{rlon of ninlnun standard deviatLon prlats various data for each

epLeentre.



201

APPENDIX 6A

MAGNETIC PBoPER.TIES 0q OCEAIIIC BTNSF{E,{T

The aceompanylug: table liste data reported for seafloor samples that
were beU.eved to be non-erf,atLc and there-fore reprecentat{ve- of oceanlc

baeesen!. Ranges aod/or neans are glvea only where stated ln the referenee€.
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APPENDIX 68

TTTEORETICAL AI{ALYSIS OF AI{OI4ALIES

The foll-owing resulte apply for the anomaly produced by a slngle bLock.

they would not necessarlLy appl-y exactly ln Lhe typicaL situaElon of a

sequence of adJacent blocks. The equatl.ons are from Schouten (1971) who

based hls fornrrlatlon of the problem on Bott (1967) and Gay (1963).

68.1 Synmetry

Ttre synnetry of the anomaly produced by an lnflnltely long bLock ls
dependent on a phase factor 0 glven by

0=180-2Tl

where It, the effectl.ve lncLl.natlon, is gl.ven by

_rr- 1I = tan ltanl/elncllL -J
and .I = tt"ta f.ncllnatlon

o = strlke of block with respect to nagnetlc north.

Couplete slmnetry ls produced when 0 = 0, as1rmmetry for g = {!o, and

antlsymnetry for g = 90o. For aLL Lineations striki:3 north-south C)| = 0

so 0= 0 and the anomalies are syuunetrLcal. The greal'rst degree of non-

s)rmnetry at a gtven latitude (L.e, glven I) ls for east-west strlklng
llneatl-ons.

Sone exanples:

(1) Latitude = 55o hence T = ?Lo

Lineatlon strLke cr = 0400

EffectLve incllnatlon It = 72o

Phasefactor 0=260

(2) Latltude = 650 hence I = 77o

East-west lineatlon q = 0900

It= I = 77o

g=260

The two sltuatlons have the same phase factor and so produce the s.aue

shaped anomal-ies. .
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(3) Latltude=45o I=630
East-west lineation cr = 0900

Ir=I=630
0=54o

(4) Latltude=45o I=630
North-south llneatlon cr = 0000

If = 90o

0=0

68.2 Anpl-ltude

The anpl-ltude over an lnflnltely long block ls proportlonal to a

factor A(w) glven by

58. I

where Cp = (stnl/slnlt)2

a = depth to Lhe top of the block

b - depth to the bottom of the block

w = rsidth of the block.

The factor Cp depends on the inclinatlons and the strike of t'he

lLneatlons. In the south',ilest Paciflc area it is not very importanE

because the incl-tnatlon'rs hfgh. For example at 45oS the values of I and Ir
cal-culated ln examples (3) and (4) above show that the anplltude of north-

south lineations would be 791l of the ampJ-itude of east-west ll.neations.

This is the maxinum possible aurpl-itude effect due to strike variatlons at

that latltude. !'or all l-atltudes further south the effect wouLd be less as

the rnaximr:m posslble I' ls 90o and I wouLd be greater than 630. Thus south

of 45oS differences of latltude or strike should procluee l-ess than 202

varlation ln the amplitude of a given anomaly.

The term ln the brackets In equation 68. I ls dependent on the wldt'h of

the block 1n relation to lts depth a, and thickness b-a. Fig. 68' l showe

how the amplltude varies r,rith bloclc width for several block thlcknesses'

alL cases for a depth of 5 krn. The curves are broadly sirntlar but the

differences are stgnificant for narrow bLocks (ffg. 68.2) ' For exampLe

with a 3 km wide block the ielatlve amplltude for a 5.0 km thickness ls

half that for a 0.5 km thiclcness. A bl-ock 3 kn wide and 5.0 km thlck would

have the same relative amplitude as a block 2.4 km wide and 0'5 krn thJ'ck'

Clearl-y for narrow blocks a substantial change ln arnplirude can be produeed

by elther a change ln thlcknesa or a change ln wldth'

A(w) = sn [*nf-z"lw) - exp(-2blw)]
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Ttre anonaX.y produced by a thLck block le f,arger thatr that produced

by a thlnuer bloek lf the rnagpet{zation of the two ts the 6,are. To yleld

the sarne aa.omal;r anpllt-ude the lntensities can be scaled. Flg. 68.3

shows the fac-tor by tuhtch the uagoetlzalloa approprLate for a 0.5 tm
thi.ck bloek wsuld have to be dtvJded to produce the serne anoualy auplltudes

tf, a thtcker bloek ls used. the scali.ng Ls aoE lLnear nnd al,so depeads on

the lridth of, the bloc-k, As tbe Eh{cknese Ls lncreaeed narr-olt bloeks

regulre relatlvely htgher nagnettrzations thaa wide bloclts. Ttre effeet ls
that Lnereaslng the bloek thlckrrrese ,doeg not hsve a ll.near effeet - the

anomalles of narrow bLocks aEB roro attenuated than thsee of wlde bloekE,
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PUBLISIIED POLE POSITIONS

Code Referen Rotation Pole Rotation Rate Method for
'ce LaE Long o x l0 -t o ly Po1-e positLon
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71os 118oE 10.3 Fracture zones and
spreadtng rates

Toos tl8ou 10.8 Fracture zones

68os t23os 10.8 spreading rates

70os 118os 10.8 Fracture zones

Toos lo7oE 9.76 n-plate
Toos 120on 10.8 spreading rates and

ne fracture zone

Epicentral

PA4 Christoffel(f97l) 82os l2OoE 10.3 Fraeture zones

PACIFIC-ANTARCTIC 
.

PAI Morgan(1968)

PA2 Le Pichon(f968)

PA3 Le Pichon(1968)

PA5 Chase(1971)

PA6 Chase(L972>-

PA7 Well-uran(1973a)

PAB This study Tros Lzzog

INDIA}I-ANTARCTIC

IA1 Le Pichon(1968,1970) 4.7ott l72.7ow 5.7I 4 term suu

rLz Christoffel(l97l) 30os L60ow 10.5 Fracture zones
Model (1)

rA3 Model (2) 21oS 167oW 10.4 PAA + rP3

rA4 Chase(1971) 7oN 136ow 5.86 Fracture zones and
focal- mechanisms

IA5 McKenzie & SclaEer(1971) lIoS l4BoW 6.40 Rates, fracture zones
& focaL mechanisms

IA6 Wei.ssel & tlayes (Lg72) 12os t45ow 6.75 SuperposJ.tion anom. 5

rA7 Chase (Lg72) 16os l56ow 6.50 n-plate
rA8 wel-1man(1973a) 10os 150ow 7.0 PA7 + rP9

IA9 This study 30os 166oW Epicentral

INDIAN-PACIFIC

rPl Le Pichon(1968,1970) 51.2os t61.1ou L2,4 5 term sum

TPz Chrisroffel(r97l) 58os 169ow 18.3* PA4 + rA2
Model (1)

IP3 Model (2) 53oS l8oo lB.3 Macquarie - N.z.
one fault

rP4 chase(1971) 5BoS r7?oW 11.1 ?A5 + rA4

rP5 McKenzie & sclater(1971) 58.2os 179.5ow 13.4 PAz + rA5

rP6 welssel & Hayes (Ig72) 59.oos 173.0ow 13.6 PA2 + 146

rP7 chase (tg72) 58os t74ot Lz.g n-plate

* Published rate (20.8) is an error (Christoffel, pers. conm.).

Continued overleaf



Code Reference

Z:.86

Rotatl.on Fole Rotation &ate Method f,or
Lat Long rrt x 10-7 o ly Pole posltl-ou

ID,IAIF-PACIIXC Csntl.nued.

IP8 Fal-c,oner(L973a) 55.8os LVA.IaE Prellud.nary
. ePl.centraX

IPg trfe11nan(1973a) 55os l80o f3.9 Al-pine fault
IF10 this study 5,60$ l.76oE EpLeeatral
Illote: Ltrayeq and Tahrani- (1972) have llsted s,ev,eraL orhe.r lrridi-an-FaaLfLe poles

bae.ed on differe-nt palro of, PAZ or 4 and IAl, 2, 31 5 or 6.

NloEe,l llost poles and rates are not as aec;ut€te as the nrrmber of slgolfLcant
flgures 'mFlJ, Val-ues gLven are as 1tr the orlglual ref,€.re{ceg,
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Section D frsur }louts et al-. (1967, I'ig. 4), Nlrmbered aarows Ln sectioo B
ate the ap,pnoxi"nace 1oeaelons of JOIDES drilltng sltes 275 arrd 276.

Contl.nued overleaf .



n

t-E65
or

L'
t{Io

..,* (p @|

ttlll

UJ

TE(s
,lorl\l) ltl\(\
{
I

l
I

ft
T

\
I
.;

do
d
ar{
}J

o(,

3rr
a

CN

a-6.t{
h(

/
I
(
(

lrlrl
or N.f

\-

m

ru



L2

CA

o0.r{
h

(rl

A C'\
r-l Fl

00.
'.'l rl
ft.d
-+Jmo

cc
F{ .rl

(o,a
F{<
q,

E+JO
OH(H
c.r{
{Jtr(0o
5T{<00

oEt{o
[rrc,${tr

al
tt Floct.r{ A,qJN
.rl
'ctOBEoz
oo}{T
=rJI|
o rt{50h}Jtroorltr+,oodJo0t-
0, +r
L{ tt

F.do
HO(Il(u
rll.t
doo
N'rlEFA(u.d
AA

6I)..o<o
Fl
(U

P{.it
c.l m

oo.rl
f4

zi E*
?= $ i3:
l!ulri zif E $:i E

m+.1 s

iil d: f II



t3

270km

*S
n-t

-.1

------/

---7-A\'i

Flg. 2.5 SeisnLc refleetlon profiles across tte Ross ehelf nargLn.
Loeat{.ons of profiles sh-or,rn in Fig. 2.2. Nunberg and hatehing f,nptof!1es are vetrocitiee and Layets deE'elutned froq so.nobuoys. From
Houtz and Davey (1973, Flgs ll and 1.4,),
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2.6 Bathymetry of the Macquarie
and R.F. Falconer (1973n Fig. l).
Fig. 2.7. Numbers indicate JOIDES

ridge compLex, from Chrlstoffel
Lines indicate sections shown in
driJ-ling sites.

Fig'



15

-"1 
"'1*d\d4/th"droioo", troush

Puysesur trench. I t/

*ol 
Wfl*r-l^* 

^

llocq,soltic

-2A

I

'o'lq[;f.tr -o

,*t \f1tr|u@\tr -o

Fljort

Ftg. 2.7 Eathyuetrl,c and nagnetAc profilee aeross uhe l[aoqrurie ridge
e,o,uplexn fron ChtLetoffel and R.F'. X'a1co.oer (1973, Ftg. ?).
Bathyqetriie seale i,n ki'lqetres, verttcal exagg.etauio l00ll, frere
was e sev€rc, ionespheric storm f,or the right hand half of sectlo{i B.

B

'I

c -2

D



15 50

t6

1 500

Fig. 2.8 Bathymetry of the
of a section of Fig. I

1 600 165 0

Macquarie ridge compl-ex. A
of Hayes and ConolLy (1972),

very reduced copy
Contours in fathoms.



L7

t.ra l4 t9 ,4t ,at taa ta tat

S H E Lf

-9-------.-C

\,qiz
3r3}t:;*. $ .

r---l

LO W E e
ats 

a

\*'-*""q;&"

Fig. l. Phlsir,gral'lric lrtrvinr:es of tlrc snutlreast Inrlirru O,'ern rrrr,rlilicd ironr l/a.yes ontl Conolly Ithis rolrrmel. ltagnetic lin.
eatitrtrs are lukcn frotlr llcissel ntul lluyes Ithis r,rlurnel. Stlet:ted serlirncnl isopachs in tcnrhs o[ r sr.r.ond of rellection linrc
(0.1 sec : 1(10 nrr'lers of setlinrr:nt) are llken frtrnr //oat: ani .llurl;! [fIi-s volunrc], Epicclrters {.lrrrlrnerl circ['s) arc from

tlw Ralr2tn,,ti oni I)ormnn Il9r-r9l lile. flercltor projcction.
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Frc. 28. Ship tracks, 4-km contour, epicutres, fraclure zoncs, coasttincs aod
recognizable maguctic lioeations in the south-east Indian Ocean.

l'ig. 2.10 The rvestern part of the southeast Indian ocean, from McKenzie
and SclaEer (197f, Fig. 28). Triangle indicaLes the centraL lndlan
ocean triple junction.
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lj!:,s. l'ttubestlltofAustraliasithre-rpcct.toAntrrctlc{bycornputcrizcdnlttchingof thel,000fathomhobrths. Rulcdlitrepattcmindicatesonuneortrr Blreu rud 6lopc from shoreiine (lnnor cotrtour) to.:i"itig*"tili"$i"tsoliaur (ouEr conrour). Or.erlap areas aro-cross-ruled sad

Fig. z.LL Reconstruction of AustraLia and AnLarctica, from Sproll and
Dietz (1969, Fig. 3).
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235km

Fig. 2.L4 $elsrnic reflection proflles ln the southroest Faclfic basLn.
Locations ehor+n in Fig. 2.2. vertlaal exaggeration tu 30:1,.
Frorn Hayes et al. (1972b). Sone of pro.f,ile I rouched up.

430 km
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310 km

i 26.89

Flg. 2,L6 SeLsolc refleetlon profiles in the Balleny basln. Loeatl-ons
shown in Fig. 2.2. Vert1cal exaggeration tu'30:1. FrofiLe L fron
Ilayes et al. (1972b)'. profile N from Ewlng and Ewtng (1971., Fig. 60).
Prof{Le N from Ewlng et al. (19G9, Fig. 16t. oue o,f-profir.e L -
touched up. Approxlmate location of JOrDEs stte 274 shown in
proftl-e N.
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1.57 '

: r: lgq

Fig. 2.I7 Heat flow and graviry data in the southwest Pacific area.
Heawy lines lndicate Lhe tracks for which gravity dara have been
published (Hayes et al., L972b). Numbers indicate measured heaE
flow in unigs of pca1."*-2.s"" -l; dat.a from von l{erzen (pers.
comm., 1973).
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fl'g. 3.1 Tracks for- whictr uagnetl-c data were analysed. lialo,r sectl.ons
of trare;li for whlch there are no data are showrr hy dashei or gape;
mfnor gaps ar€ not shsrtn.
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Flg. 3.5 The auroraL zone (frour Bond and
locat{ons of nagnetic field recordl-ng
not operate after March L964.

Jacka, 1950) and the
stations. Hallett dld
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Fig. 3.8 Total fleld map for 1957.0. cornpl"led from data obtaloed
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3t 30 29 28 27 26 e5

F1'9. 4..5 Ptoftl.e SF.AC fron the north Saclfle, euil ty.p.treel ptofflee
f,ton the ssuthwest Facffic basln. Some profiiL,es ec4ogLtei
eaatern @at oJxe a€ the top. Profi.le NP,A0 1g tha ty,pe profile
f,ot the ltrel.rtzler et al. (1968) geomagoeed.c tlme seale, Nuabetg
above NPACI i.ndLeate tlle aaoqaXy nruaber,lng s}fsteft.
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track. azirnrths v€ry consLderably and the p-rofllea were proJected
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Fig. 4.9 tho east-west bgthynetrlc proflleg acroas the LouLsvlLle
rLdge. EtTl7 on 43.6"5. EtT28 on 43.2"S, eeetloa above
dashed llne ahorfir in Fig. 4,10.

4.1,0 SeLsnl.c reflectLon
rldge. Fron llayes et al-.

profltre YLT28 seross the Loul.svLlle
(1972b).
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Contours in fathoms.
shown 1n l-tg. 4.14.

the Boll-ons seamount area, from New Zealand
(U.S. Naval Oceanographic Offlce, L967).
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Fig. 4.L4 Bathyrnetrlc proflles Ln the Bollons seorrcun EE€Er
PoeLtl,ons of, tracks and label"led polnts ehornr in Fig, 4.13.
Vertl.cal exaggeratl.ou 60: 1.
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157" 1 600 1 650 16 90

Ftg. 4.I5 Magnetic anomalLes at the western end of the southwest
Paciflc basin. Tracks for trhich magneLlc data were avallable are
are shovm. Definj.te anomal-y identifications are shown by
closed circLes, tent,ative identlfications by open.circles.
Bathynetrl (ln fathoms) fron Hayes and Conolly (L972, Flg. l).
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500 km

Flgo 4.16 Bathyhetrf.e rofLles acf,.osa tbe squth Ctratham eX.ope; except
Et[27 rrtrich ls aero,ss the CqspbelX slope at the Antipodes Isl,qpde.
Depthe fu h, vertlc,al exa:ggeratLoa EO:L" Nrmbere lnilicate the
poattl,ots of auoneLles 34 and 36, Froflles ,itrigined o4 these aoonatrteg.
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Fig. 4,L7 llagnetic anonaly proflles aqross the Paciflc-AntarctLc
rldge sysier between tbOoW and 161os, dnd across the I'rdlan-
Antarctic rldge between 1600 and 158otr. Eastern most track at
the top, wlth the longttude aE the crosslng of the axls shown
for selected tracks. Profiles aligned on the axis of the
ridge sysLem, Idenrifiable anornalles nuribered or correlated.
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Fig. 4.18 Pacific-Arttarctlc riclge near 150oW: magnetie anomaly LLneations
and fracture zones. Nr:mbered Lineations are determined from two ot
more tracks; single numbers represent an anomal-y ldentiflcatlon from
only one track. CenEral anomaly shown shadeC. F11led circl-es :
fracLure sones from offseE of l-ineatlons. Open citcles : fracture
zones fron bath)rnetry. Crosses : USCGS epicentres L964 - L972,

Flg. 4.I9 Track control
BathyneErlc data not

for the lnterpretation shotm ln Fig. 4. f8.
aval1ab1e for all tracks.
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4.20 BathynettLc and rnegnetie prof,i.J.ee f,ron tf,aeks acrose the
Haugu fraeture zon€r Lower prof,'lle ls the EWi25 bathynetry.
Bathlroetry not aval.lable for ELT43.

Fig"
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Fi-g. 4'21 Paclf{e-antarctic rJ.dge sy€ten tr55u to t7otw, DoEs are ltsccsepicentres 1954 - lg7l. OoubLe- lines indicate possible ridge axes.No'Ecl These pestulated rldge axes ar,e based only on the seielrleitydata, not on any batlr.grme.fril.c sr negnetie data.
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Flg. 4.2,3 Track. control for lnterpretatLon s,bowtr Ln F!-g. !+.2?., Dotted
portione lndlcate bathy,netry only, but bathy,netry was not avaj.lable
fot a1I- rhe o,ther tracks.
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etlreert 168*W end 178"8, EasBern molst track at, the topr tracks Fftorra
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Fiig. 4,25 Bathynetrlc proflle€ acros.e the Pacif,ic-Antr4rctlc fracture zone.
Tn.*e pro.files, nhi.eh are approxinately north-south, are al.LEned on ttrc
topographic axie and the labeLs indleate the Xongi-tude at the axl,s..
Ag'telLske lndlcaLe the approxtr4ete poe{.tl,on of eeis.is{.clty adJaeerrE
to ttte profi.le. l{trmbero on profLles ltd{cate poslttron of the esuthaEr
mo,st eaelly tdentlflad anpnalJr.
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Ei:g" 4,26, The Pacific-Antaretlc fracture zone. atea: magre:ilc anomaly
prof,iles, the 3 kn bathynetrLe cotrtouri an4 IISO€S. epLcentres 1964-1972.
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Flg, 4.27 Bathyrnetric and nagnettc profLles from lwo nortf;-south tracks
across the Paelflc-Antaretlc fracture zone. N at l70oE. B at 17408.
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Fl'g. 4.29 MagnetJ.c anonaly prgflles norlh of the paelfLe-Antaretrc
f,ractrlre zone between 170"8 and 175"W. Easterm no t p.rofile at
the top. Frofl16s are alLgned at th.e Lef,t ,En anomalies 25 - ZGt
and extend (wtrere eouplete) to the axte of the paclfl-c-Antarctlc
fracture zone.
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Fig, 4.30 The Indian-Antargtic-Pacific tripLe Junctl-on area. Anonal-y
lineations south of 600S are based or, *rgnetLc data on the tracks
ehovrn. Llneations west of the Macquarle compJ-ex north of 600S
are from Christoffel and R.F. Falconer (1973). Epicentres (dots)
are from the USCGS for 1964 to 1972 and Syk*s (f970) for 1950 to
1966; for duplicated earthquakes the Sykes locations were taken,
Bathymetry, ln netres, from Hayes and ConolL-t (1972) and Hurley
and Krause (l973arb).
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Fig. 4.31 Magnetic anounly profiles ln the trlpl-e Jturctlcin area.
Profiles proJected perpendicular to the southeast Indian rldge.
Model profile based on the time scale of Talwani et al. (1971),
wlth a half-spreadlng rate of 3.4 emly.
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E!g. 1r.32 BathSrnetr{e and nagnetic profi.les frou tracka aeross the
uajor f,eat'sres ln the Erf-ple june-tlon area.. For each track the
uPp€r profLle is uagaetlc ,anonrall,ee ln nT, and the trowar profl.Le
le bathlmetry ia kn. traek, loce-tlone shovrn ln Flg. 4.30.
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#^ll
Flg. 5.1

The
ProfLles glven to

actual" elze glven to
students for correlatlon study.
students sras twlce that shbwn here.
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u

Fig. 5.2 Results of student correlation tests. Upper profile Ls
a type proflle with anomaly numbers. Profil-es 1-6 are the
student profl.J-es of Fig. 5.1. Nuuibers above peaks indLcate the
nuriber times each peak was chosen. Total number of students
was 34.
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IL.h^

Flg. 5.3 ProfLles gLven to a fourth group of students. Same data
as Flg, 5.1 but upslde down.
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Flg. 5.4 Crse.s-correJ,atl.on of pro-f,i.lg r wi.th profLle 12. prof,lle
x Ln the allgnurent Xrosltion at nhf.ch the correlatlm ftqctlon
r(d) ls nasiotru.

Flg'. 5-5 correlation of profile Rt97 wlth prof!.le p480. Rr97
the posl.ti.oa deternfoed b the .nAx.inirp value (60) of r(d),
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I'Lg. 5.6 Some proflles ueed in the nr"roerLcal correlatlon study.
' Proflle N0RM500 tre 500 nornalJ.y dlstrlbuted random nuuber6.
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Fl.g,. 5.9 lllustratlve proflles arrd thej.r correlati.on funetl.oas.
The das'h*dotted end dashed LLnes os the plota of r(d) are
resXreetlvely.tbe maximun anil nLninum values of, zr.
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5.10 c^orrelations of pro'f,rle 8370 lr'lth profl,le Rtr9z and lte
subsections R120 antl R67', Dashed l-lnes on the plots of r(dl are
the noncorrel-ation leveL,.
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Flg. 5.11 Prsflles X2-07 End R197.

El.g. 5.12 Corlelation of R197 spd T475.
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Flg, 5.15 Corselation 1o the ELT23 profll,e acros$ the fel.noa
f'r4eture zo.ue! Prsf,i.le 8200 i.e the left halrd e'et of anonalLee
27-31 ln p,rcofl.le 8440.
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Ftg. 5.16 Correlatlon poeltJ.on whlch vlsua!.ly would probab'ly not be
eonsXdered because of the dLfference ln qupAltudes,
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'F:l.gr 5.17 Goryarsson qf r(it) v.altaee aaleulated Lu regular osnner ro
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correlattron. For each palr of proflJ-ee the eight highest regular
valuee (op,en elreles) are pl.otted ln descendlog order, rrd.th thE
assoclated narq-notnallaed val,rre (.erAsees) f,sr that, aLLgiireot
posl.t:[ou.

Rl l : t475
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Flg. 5.19 The Toaraht and Ranglrua fracture zones. Heavy llnes
indicate the sections of profiles T, v16 and A408 shown ln
Ftg. 5.20 and used Ln gftg nrrmgllcal correlation study.
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Fi.r,et modent eorrelatl,on variatlon ry!"th
for R57 on 8870,

rf=fit-honfit

d of, fLtn aoufi,t,
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FLg. 5.22 FJ.rst nonent co-rte1Etl.oa. n'otr eaeh paLr of proflles the
etght best paalc eotrelat{on valtes (c{reles) are.plotted lu
descendLng order with thel-r aseociated flt (crossee) aad uouflt

Contlnued overleaf .

R66 : T475



83

R 67 : P48fl

nontir ,o-o/o
-g,--O#El5-g'

. -o/o-o-./od/'

o-'-'\,--,
-o\-o\- 

\..--t

rf -\
o\o- 

ro

R67 I 8370

'.-o\-

o '-r\i .(-- x-x
l.-,-*\,
\ 

^\1-x

o ' -o' r€\o€1.

x\-x-r_

'\ \"/*\'
o_o\"_o_o

40

order

/o--o- 
* 

'o/



E3

tr'ig. 5,23 Van{^atioo $rlth d
. llnee) and firet rnomeot

eectlons of R67 eo N626.

of second monent correlatLon (fu11
eorrelation (dotted lioes) for three
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rf

5.21+ Conparl'uon of peak correlati,on values deterul,ned wlth
ftrst no&en (rf) anil second uorrent (r) correl,ation. Datted
1Ine ls 1:1 relationship, solid LLne ls the relatl.onahLp
pnc.ed,treted by eqgaElon 5.14n
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Etg. 5.25 Coqarf-son of- fLrst and eecsf,d sloutrqt correlatl.on values
for all posftions of R67 on 8370. Soltd X.ln€ le the reLatl,on-
shi.B, pred{.cted by equari,on 5.14.
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FJ-g," 5,.26 C,oryarleron of peak values of comelatLon, For eaeh pair
of proflles tha etght best second noment value,a. (cl'reles) are
plotted ln deseendi-og order i.rlth thelr cers@s.Pondlng ftrgt
nof,eot valueg (crosses).

Gontlnued overleaf.
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l'Lg. 5.26 contlnued.
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Aa/o zo% 30%
Increcse in length of Rt97

Flg. 5,.27 varlation iu correlatlon value at the bes,t \rieual
allgnnent posLtlon of, profiLe Rl97 on T.4l1,
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FtB. 5,28 Flret oometrt correlatlon: comparLeon of rf (d) valuee
calculeted in reguJ-at sanner $"Ith those fsund by non-notnall.zed
colrrelattqn. R67 on 8370. Compare rrith second momeqt results
ln F{9. 5.17.
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R67 ; tl626

Fig. 5.29 Ftrst noment
regulat c.or,reletloo
(erogses).

eorrelati.oor conparlson of peak valuee of
(ef.rel-es) wlth non;nornalLzed correlgtslon
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Elg. 5.30 Peak values of teguler crr,tel4tlon
norratrlzed conrelaEJ,cn (eioereee) fer both
fl.rst moment (rf,) correlatl.olr.
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5,'31 Data gi,veo to studenLs for symetry te8t,8. the actuaL
elze given-to atudents'itas twj.ce that ghown bere. .4tr etud€ots
receiveil A, 23 studeats 8.
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ELT19

5.32 ReeuJ.ts of, student symetry tests. Centres pLcked by
Fore than 20f, of tbe sturilents ane sholrnn wirh the nunber (l.:r
pet cent) that choee each eetrtre. Dotg el.ther sLde of centreg
indlcate the peaks uarked by students.

F!-9.
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F{9. 5.33 NrrnerLca!. syuqetry cotrelarloa: pro-f.i,tre B. Invarted
secEl.ons of B are ehown above and belsw the parent prof'1.Le at
Bos,ltLons wtriah we,ne uaxlua'l.n the correlattroa frrnetLon r(d).,
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2r=55
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Fl.g, 5.34
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]44
I

Nr,rnerical symbtry correlatLgns pfqfL!.e N, centree G4
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zr= 26

F!9, 5135, Nunerical Eypqetly conel.att,qr profile N.
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Flg. 5.36 Nrse-rLcal syretry correlation: ptof,lle ELiTZ.*7'
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34 ,&r 32 32A 3l

| | | t?bt I t r6Ll r rrgr(rrryJ

Flg. 6.1 The SFAC rev-etsal E:lne seale and ob,served and qaXeuLated
ringnetl-c anonaly ptofi.les. NPAC - t-he northeaerE Faeifie .type
prof,i.le. SPAC - the southwest, Pacific type profile. MODEL -
prof[le eal.culated from Ehe polarity Lnterva].s shown uuderr-
neath as,srnfng r"ruo"oi ana present fLeLil inclinatio:r o,f '90o.
Polari.ty intqr,vals ba"eed on proflJ.e SPAC, nqr.na.l polarl.ty
shaded.

363V38 252627282930
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T

SPAC

Fig. 6.5 l4agnetic arroualy profLles Wn T and SPAC for the
compooLte porEion of SPAC. furouall.es 25 aad 26 ln SPAC

are fron proflle Wn rem4inder of SFAC ie proflle T.
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2526363.?

6d

Fig. 6.V ?rsfiles for trtneations formed td.th Ehe strfke eaet
or ee€t of, north ae l-abelled* and subsequently rotated Eo
che presenti orientet,.on (N3O"E).^ Initial^and ftnal
La.titude as at p-resent (Lat - 55", I = 70"),
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8ig. 6.8 Ptofilee for llne-etions fsrned at the latiEudes ae
tebelled and subsequently moved t,o pr,esent litLrude (55o).
Inl.tial- strike e.a€t-srest, present strLke N30"8,
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3/. 33 32 324

6,9 Profile NPAC and tyPleaL prof,iles fro.m the southltest
Paclftc bEsil. Sorne prof,lle,s eouposLte; eastetrn Doat one

at the toP.

Fig.
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Fig. 6.11 Model proJiles for the Tairoa f,racture zone topography,
Dot,ted prof-iles for the dotte.il block conf'lgurettons, solld
prof,iles f,or ruled confi-guratl.ons.
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Flg. 6.LZ Anplitudes of nunbered anoma,lf.es. Olosed cl.rcles,
the southlte,gt P.aelf Lc baeln neqns, b,ars in(llcatXrlg ttle
raag€. Open circles, NPAC profi.le, Crossesr modeL proftle
for i-n sl.tu formatLon.
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Fig, 6.13 Souttmest Pacific basin
a{E zones dell_neated by uaj:or

anomaly l-Lneatloos, wlth
fract-ure zones Lndicated,
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BaEe lndicat€ feng€, gynbols shor E..he meEss. S,ynbolg
nithout- ibare d,eaote sdngle val-u€g.

I
32A

I



r13

Zonco e.3
. 1.4.6.6

NT

800

I

?
I

3t 32A 32 Cl 3628

Fig. 6.15 Aaoaa).y anplltudes of zones, tws and three eonpared
with the other zrones.

vlcToRlA uNl'/En5i r-r c r v'/Et*l-:i\GTON



114

€Ot{r{ cl
ilFl(l)5s(,qlTl
F{ 'Ocr'(,hr\lr
Holor
dal.Fl E|."{
f' r{

@oo+l>
(0 .d
p4+r

d
.urd(rl o

Fa(0
r.{}

\O_ l{
rArO

@}{.rl
fcr ;ql

EI iET{O
H

G t+{
Eao
,6ku)d

qt
o o;t
oJ 00 r{
dFtt'O'Fl aO

N L(l
rd 0l(,rE

S (os{
P+lhC!rl().H cl ,<l

EPr6 0uloFl+J(l
(il
!oo

..d tr
ooeJ o
A rr{.rl O +,dtrd
6OqloNfit{d
AE Flgr (,

st(uug'\O- +r
FrH

rQ@
\o Fr +l

!
00
!d
tq

d
rF(O
6 ai) otr

$g



l15

s.0
e$lYE

4.0
c$lyr
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b=1-24

7 rZ Cuuuletlve plot for the whole 6rrea. N ls tbe number of
earthquaAee of nagrLtude M and greater. The llne for b = l,'24
lgas ealcu,l"ated f,r.on rna,gnlEudes 5.1 ead abover-ahorn by solLil
synbols.

Fig.
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N

rnb

Blg. 7.3 Cunulatlve plot f,or the
Llse b - L,23 f,ro uagulrudes
LLne b = 1.07 from nragnLtudes
cLtcles).

Elranjn fracture aone area,
5.I and aborra (ctrosed elrcLes),
4.7 and abo,ne (open and closed
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Fig. 2, Curuulativc plot of I54 ,\tid-Atlantic ridgc carthquakcs
for the prriorl tanurry 1963 to ltay I967.lV is thc nirmbpr 6f

evcott of magnitude /U ond greater.
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Fig. 3. Cumulative plols of the I 54 earthquakes of flg. 2 dir
tinguished rs 79 rift zone cvenls (solid circles) and 75 ftacturc

zone cYents (oPcn citclca).
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Flg. 7.4 Cumulatlve pLots for the nid-Atlantic ridge system.
A and B for body wave nagnitudes, from Francls (1968a).
C for surface rrave magnitudes, from Francis (1968b).
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r1g. 8.1 Epieent,ral
tr.ansfsrm farrilt

method notsttoni Sel$tric
about the rotatioo Pole P.

actXviGy olr a

I'1.g. $.! Notatlou for serreral transforgn faults abotrt D
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Flg. 8.3 .C1re {{sutbutions whleh have the eqlqe standard devi.ati.on
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PlateAntdrctlc

Fig. 8,.5 U$CGB epic'enttes eouth of /160Sr oD € sEereographie grojection..
Closed eLrcles are the ep,ieeotres uEed for Indian-Paciflc, epicentral
pol.e eeLeul-aEl-ons. Arc ls about :[he pole at 56*3, 176"8 (s,quare).
Ileavy Xlnes Ln the South Islaod, Nei,r Zealand indieace the ALplae
fault and its maJor branches.
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Flg. 8.6 ^Distrtbutl-on of
56,0"s, 175.2-8. 59
normsl dLstributLon.

of,
57

dsrl.atlons frrorn the arc of a pole at
USCGS eple€nqrea, Dashed e,urve ls

devlattrons from the arc of a poLe at
U8CGS epf.celtres.

Fie. 8,7 Dl.stributisn
56.oos,175,60r.
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FXg. 8.8 'Con:EOUrs of eplcenttal stendard devLatlo:l fot Indlan-
PacLfLc pole from 57^USCGS eplcentres (circi.es). Crose -

indicates pole, 56.0"5, 175.6"8. Contour units are km.
Ilatrue at the pele, 24.0 kn.
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Fi.g. 8,9 Detall,ed eontsure for Indlan-Facifl.c epLeeuttal Pol.e
from 57 USCGS eplcentres. Contours {n unlt,s of the standard
deviatlon aE the pol,e (eross).
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Fig'. ,8.10 Latltudf.nal- tlisgrlbutlon^of IISCGS deviations f,rorn the
arc of a pole at 55.0"3, 175.6"8.
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Fig. B. i 1 USCGS distribut'!on near 49oS.
pole ar 56.oos , I75.6o8.

Heavy line is arc about
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vectors deduced from focal mechanism studies are indicated by arrows
centred on the rel-evant eplcentres. Dashed arro!'ts - thrust motion;
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Flg. 9.4 Pacific-Antarctic boundqry sprgading rates as a function of arc
distance g from a pole at 76'5, L44"8. Rates are haLf spreadLng
rates, caleulated from the distanee between anomaly 2 (L.79 nybp) on
opposite sldes of the Paclfic-AnLarctic rldge. Distances measured
fron proflles crossing the ridge, and proJected parallel to the
dlrection of motLon piedicted from the poLe positlon. If the poLe
posltion was "correctrt the data should fit the sEralght llne through
the orlgLn. Dashed Llne ls a visually estimaLed straight lLne
through the data; but note that a best fltting llne should not be
exactJ-y straight unless through the orlgin.

+

+/
*r/

//
/+



155

1520E 1 600 1700
560

600

650

670

560

o

/:;6 a
OO

-.-''-3\''

o

o

oa
g0

Z9

---?8

--27o
ot'

o

"r?
o./

,/

"/,t/

gotte ny\.
Isl onds

€

600

650

670
1 520E 1600 | 700
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lineations are shown nuubered; anomaly I is the axls of the southeast
Indlan rldge. Arcs through the epicentres (dots) are the arcs
defined by the epl.central- rnethod. The dashed l-ine ls-about lhef'aLternativefi Pacific-Antarctic epicentral pof" .a 7605n L44oE.
Note: The epicentres shovn are for 1950 - L972, fron Sykes and the
USCGS. The Pacific-Antarctlc and Indlan-Pacific epicentral arcs
were defined from only USCGS epicentres 1964 - 1972, and tte Indian-
AnEarctlc arc (the Balleny fracture zone) from only Sykesr eplcentrea
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Flg. 9.7 Representatlv,e bathynetric profLles bet'ween 17aoW and 16508.
ProfLles are approxlultely north-south; easEetn moat one Et tae
t'op. They ate aligned approximaeely on the Gaupbell plateau
uarglnp except for p,rof{le T wh{c-h at the rrorth Pa.Bsei o1er Part
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Ftg. 9.9 The area of the Toarahl and Ranglrua fracture zones. A copy
of Fig. 4.L2, wlth arcs (heavy soLid l-fnes) about the Cretaceoua
poLe added. The long lLne is a detail of that sholrn ln Ftg. 9.8.
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Fig. 9.14 A model for changing a sinistral offset lnto a dextral offset.
Movement of two plates is shown for flve equal tlme intervals. The
plates are separating at a relative veloclty of 4V throughout. Left
plate is shown fixed but it neednrt be. Double l-ines are the
positions of the spreadlng axes, and velocLtles on the ridge are
the velocity of the ridge relative t.o the left plate. Veloclty of
upper ridge changes at time 3 but stays at 3V thereafter. Lower
ridge moves aE 2\ throughout.
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l'l-g. 9. 15 Eypot-hetleal fractufe sonea
f,rou furfrarctLca as gl.ven by date
st-ar-tj.ng fr,ou poaitiose. ctroee totrasin. G,enerallzed, 2 kn cotrtours
fJ-ow paths for New Zealand.

fot the Eoveuent of Nerr Zealand.
lp Table 9.3. Ttre arcs wAre drawn
nno.naly 36 f.n the eouthwest FacLfl.a
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Foles afir{ 'aqeles of ro.tatlon fot spr*rding bet*rlen Antarctica and
Ncw Zealand.

Anomalv I Ti,n" sroo I o"n" I

. snan 
- 

| ff. y: I Location 
i

r\ngle
of Roution

Degrces

'-;-T--;rl'**;;;l5-25 | tO+r | 84o S, 160' E I25-36 I 63-84 | o" S, l2o'W I

r,0-8
4l
l4

I'1g. 9.17 New ZeaLandl-Antaretlea reconstructlor, froo 0hri.stoffel
R.K.II. I'alcsner (X973). Antaretlca was rotsated back to l{elf
Zealand uslug the poles aud angles llsted in the tabne.

Ernd
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Fig. 38,1 Totel fteLd readlngs w{Ctr seasors A, €r1d B at f,Lxed dLgtsnces.

Distanco of B actern (m)

3D .2 Varlatlon with dletance ef ftetrd d{fferenee betw,een sensora
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Fig. 3D.3 Ccmparison on
with the L967 ,0 f leld

longitude l72o9 of the GSFC and IGRF fiel-d$
determined from the data (FALC).
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fig. 3E.5 Seeutrar varlatlon! contourB
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width lkml

Fig. 6B.f Variatlon wlth btrock width of the amplJ-tude over a
etngle bl-ock. Curves for three block thlckness,es as
shown. Top of the bloek at 5.0 km.

rels.liv.e
qnpliirde

Fig. 68.2 DeLail of Fig. 68.1.
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lReprined lrom Nutnre Physrczl Science, Vol. 213, No. 128, Fl.97-99,
lraa l l, 197-1)

Indian-Pacific Rotation Pole
determined from Earthquake
Epicentres
THE boundary between the Indian and Pacific platest in the
south-west Pacific is defined by the zone of seismic activity
that extends along the Tonga-Kermadec Trench, through
New Zealand, and along the Macquarie Ridge Complex2 to
the Indian-Antarctic-Pacific triple junction3'a. Neither
spreading axes nor active transform faults have been identified
on this boundary2'5'6 so it is difficult to determine the Indian-
Pacific pole of rotation from the boundary itself. I present
here a new determination of the pole position, based entirely
on the location of earthquakes on the Macquarie Complex.

When plotted on a stereographic projection (Fig. I ) all the
earthquakes on the Macquarie Complex south of about 49" S
lie close to the arc of a circle. In a stereographic projection
a circle on the map represents a circle on the Earth. In plate
tectonics a circle about the pole of rotation of two plates
defines the locus of a possible fracture zone. Thus if the
earthquakes on the Macquarie Complex are considered to be
on a circular arc they define one continuous fracture zone
separating the [ndian and Pacific plates. The centre of the
arc specifies the position of the lndian-pacific rotarionat pole.
This is at 55.8o S, 174.7' E, and is here referred to as the
epicentral pole. The position is tightly constrained, as any
shift of the pole by more than 50 km gives a noticeably poorer
fit of the epicentres to a single arc. The scatter about the arc
could be a consequeoce of the spreading out o[ tectonic activity
within the boundary and of inaccuracies in deternrining the
epicentre locations. The standard deviation of the distances
o[ the epicentres from the arc is 26.5 km. Their locations are
not likely to be determined more accurately than this.

The epicentral pole position is significantly different from
other published pole positions (Table l). These differences
may be a result of different initial assumptions rather than
uncertainties in pole determinations. pole 3 is based on the
assumption that the Indian-pacific boundary is a single
continuous transform fault from the triple junction to the
southern end of the Kermadec Trench. All the other potes
are calculated fronr summation of rotation v€ctors. pole 2
is given only for reference because Le pichon?'8 has pointed
out that it is subject to large errors. poles 4-9 are calculated
from various Indian-Antarctic and pacific-Antarctic poles.
Pole l0 is based on the simultaneeus calculation of the relative

VICTORIA lJrrlv c,r5rIY OF WELLIi.IGTOll|
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Fig. I Earthquake epicentres and Indian-Pacific rotation poles.
Enicentres (O) are for tbe period January 1963 through March
1972, and only south of 46' S. They were compiled from USCGS
montily listings. Pole positions are numbered as in Table l.
The heavy arc is the arc about ttre epicentral pole (l). The
triangle indicates the Indian-Antgrctic-Pacific lriple, junction.
Heaw lines in the South lsland of Ncw Zealand are the Alpine
Fauliand its principal branches. Polar stereographic projection.

Tabte I Indian-Pacific Rotation Poles

Model Source and
No. source nrodel No.
I This communication
2 Le Pichon?'8
3 Christoffele 2
4 Christoffele I
5 Weissel, Hayes3 I
6 Weissel, Hayes3 2
? McKenzie. Sclaterro
8 Hayes, Talwani2 8 t
9 Chase't l97l

l0 Chaser2 S005ALL

Latitude Longitude
(s)

55.8
5l.l
53
58
59.0
60.0
58.2
6t.0
58
58

74.7 E
6t.l E
80
69W
73.0 W
57.0 W
79.5 W
6t.l w
77W
74E

Rate l0-7
deg yr-r

13.0
12.4
18.3 *
I8.3
13.6
13.6
13.4
13.2
il.1
12.9

+ Original published rate (20.8) is an error (D. A' Christoffel'
oersonal conrmunication).' t Other model numbers refer to poles included in this table.



motions of eight plates and includes data fronr three focal
mechanism studies on tlre Indian-Pacific boundaryrr.

A useful way to assess the validity of the epicentral pole is
to examine what it predicts along the plate boundary. The
basic assumption of the method implies pure strike-slip motion
along all the Macquarie Complex south of about 49' S. The
epicentres do not give the sense of motion but other work2'e
indicates that it is dextral. The fact that the Macquarie
Complex consists of substantial ridges and troughsz could be
taken as an indication that it is not a simple fault boundary.
But the topographical structure may result from movement
in time of the position of the rotation pole. The pole is close
to the boundary so any shift could cause large changes in
motion along the boundary. This could lead to thc develop-
ment of the major structural features.

There are reliable focal mechanism solutions for five earth-
quakes associated with the Macquarie Complex6,!r'14, One
(at 56" S) indicates strike-slip motion. The fault plane selected
by Banghar and Sykesto is almost east-west. But the alterna-
tive plane striking N 04" E agrees within one degree with the
direction predicted by the epicentral pole, and gives dextral
motion, The other four solutions (between 49" S and 52" S)
indicate predominantly east-west thrusting. This is not
necessarily incompatible with regional strike-slip motion
because focal mechanisms indicate only local motion. Any
structure oblique to the boundary may lead to local motion
which is different from the regional one.

North of about 49" S the epicentres diverge from the single
arc, so the boundary cannot extend as a continuous strike-slip
fault into New Zealand. In South Island the boundary is
generally assumed to be associated with the Alpine Fault,
which goes offshore from Fiordland. The vector of motion
predicted for the area between 49" S and Fiordland implies a
component of compression. lf some of this conpression is
taken up by underthrusting the intermediate depth earthquakes
observed in Fiordland are explained. They are not easily
explained by poles 3-9 which predict almost pure strike-slip.

Poles 3-9 also predict almost pure strike-slip motion along
the central Alpine Fault. The epicentral pole vector, however,
strikes 25" east of the fault. The component of motion normal
to the fault explains the observed uplift and thrust of the
eastern side. In the northern part of the South Island the
Alpine Fault branches into several fault lracesrs. The strikes
of these faults where they break off from the main trace are
within 5" of the strike of epicentral pole vector. After short
distances, however, they seem to reorientate to a more north-
ward trend. The structure of the area may be a consequence
of the present motion being oblique to pre-existing structural
trends.

The calculated directions of relative motion change from



east-west at the northern end of the South Island to 15"
north of west at the northern end of the Tonga Trench. The
directions agree with those given by focal mechanism studies6
and are compatible with the under-thrusting indicated by the
distribution of earthquakesr6.

The epicentral data do not provide a determination of the
rate of rotation. But pole 10, which is closest to the epicentral
pole, predicts similar directions of motion along the boundary.
It has a rotation rate of 12.9x10-1 deg yr-r. Most of the
other poles have higher rates. If a rate of 13 x l0-? deg yr-l
is assumed the epicentral pole predicts 2.3 cm yr-r dextral
strike-slip for the Macquarie Complex. At Fiordland the rate
is 3.1 cm yr-r and it increases to 3.5 cm yr-t at the northern
end of South Island. The component parallel to the central
Alpine Fault at 170' E would be 2.8 cm yr-r, which is less
than the range 3.3-7.9 cm yr-t predicted by poles 3-9.

The epicentral pole is essentially an instantaneous pole, and
pole 10 has elements of an instantaneous solution because it
includes data from many earthquake focal mechanism studies.
The other poles are largely based on magnetic anomalies
formed during the past l0 rn-y., and thus are average poles.
Their positions relative to the epicentral pole suggest that the
Indian-Pacific pole has moved westwards with time.

R. K. H. FlI-coxen
Physics Department,
Victoria University of Wel lington,
ll/ellington, New Zealand
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R. K. H. FALCONER
P h 1,s i", D cp a t t m c,t t, V i c t o ria IJ n iv e r si t1' <t I llt e II ingt o n'

llcllittgtott, Ncw Zcaland

Received 7 August l9?2
Revised version received I 8 September I 9?2

Bathymetdc, magnetic and epicentral data have becn analysed and show that the Indian, Antarctic and Pacific

plates intersect in a ridge-fault-fault triplejunction at 61"30'S, l6l"E. The Indian-Antarctic boundary is an active

spreading ridge, striking N55"E, rvith a hali'spreading rate of 3.4 cm/yr. The Pacific-Antarctic boundary strikes N?5"W

irom torigituie t 80" to'ttre triple junction. lt is an extensively fractured area with the fractures probably striking

N45"W. ihe Indian-Pa"ilic boundary is a fracture zone which strikes N25'W from the triple junction to the southem

end of the Hjort Trench. The trench is probably a continuation of the fracture zone. The obsewed configuration is in

agreement witlr predictions based on plate tectonics, and would give a stablejunction.

l. Irrtroduction

T'he concept of plate tectonics [], 2] supposes

that the Earth's crust can be considered a mosaic of
large rigid plates. The boundaries of the plates are of
three basic types.

(l) Ridges, where new crustal material emerges.

(2) Trenches or fold belts, where material is respec-

tively either absorbed or compressed.
(3) Fault boundaries, along which plates slip.

Thrr:e plates may meet at one point, called a triple
junc tion [3]. The intersecting plate boundaries can be

of any type arrd this leads to the classification of trip-
le junctions in terms of the intersecting boundaries. For

example, the intersection of a ridge and two faults
gives a ridge-fault-fault junction.

Itre structure in an area where three plate bounda-

ries meet is likely to be complex and therefore it may

not be valid to give a precise position for a triple junc'

tion. However, if the nature of the three boundaries

in the vicinity of the triple junction is determined the

type ofjunction can be specified. The extrapolated

region ofintersection of the boundaries could then be

taken as the triple junction, even if the boundaries

iue not precisely determined right at the position.

Fig. l. The area in which the lndian, Antarctic, and Pacific

plates intersect. The earthquake epicentres, shown by open

circles, indicate the plate boundaries'
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Pacif ic
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One of the present major triple junctions is fonned
at the intersectiorr of three of the largest plates; the
Indian, Autarctic and Pacific plates (fig. I ). Le Pichon

[4J placed thisjunction in the region of 60o5, 160"E;
while Sykes [5J placed ir near 62"5, 160"E. The pre-

cise lbrrn and position of the junction was not known
because the nature of the tlrree plate boundaries rn
tlte area was not clear. On the basis of computed vec-
tor motions McKenzie and Sclater [6] conclude that
the junction is of the ridge-ridge-fault type*.

Recent geophysical suryeys south of 60'S, be-
tween l55oE and 165"E,now provide enough data
to identify the fbnn and location of the plate bounda-
ries. These data will be presented so that a direct esti-
mate may be made of tlre type and position of the
triple junction. The regions containing each of the
three boundaries will be considered in turn.

2. Data sources

The nragnetic data presented are fronr the tbllow-
ing sources. Tracks labelled NZ are from HMNZS
Endeavour cruises, Victoria University of Wellingtonl
EL, from USNS Eltanin cruises, Lanront-Doherty Geo-
logical Observatory: AR, fionr Aries Il cruise, Scripps
lnstitute ol'Oceanography; .4708 frorn Project Mag-
nct acronragnetic survey, U. S. Naval Oceanography
Office; DF, from Operation Deep Freeze, U. S. Navy
Hydrographic Oilice [71. The satellite navigation sys-

tenr was used on Eltanin cruises and the Ar-ics ll ex-
pedition. Conventional celestial and dead reckoning
rlavigation was used for the remaining tracks.

Bathynretric data are prinrarily fronr N. Z. Oceano-
graplfc Institute l:l 000 000 charts of the area [8j.
There are considerably nrore tracks for bathymetry
thau magnetics and althoug1lr the ropo$aphy is rouglr
in sonte parts, the charts should fairly well describe
the area. The bathymetric profiles shown are from the
sources of the nragretic profiles.

The earthquake epicentres used are fronr Sykes [5],
for the period 1950 to 1966. Sykes also gives some
epicentres for prior to 1950 but as they are not so

well determined, they are not used.

* Note added in proof: There is a misprint in McKenzie and
Sclater [6], P.494 (McKenzie, pers. comm.). In lact they
meant that thc junction is of the ridge-fault-fault type. Their
suplpBstion thus agrees with the conclusion of this paper.

3. lndian-Antarctic boundarv

The boundary between the Indian Antarctic plates
near the triple junction has not previously been clearly
delined, althouglr it is usually assumed to be of the

ridge type [4, 5].
The profiles of fig. 2 clearly show the rnagnetic

anornalies associated with an active spreading ridge.
The axis is determined from several track (fig. 3) and
anonraly lineations are identified on botli sides of the

ridge. The bathymetry also indicates a regular ridge,
tlte axis of which coilcides with the lnagnetic axis
(profile EL27. fig. 4). The lineations of anomalies
(fig. 3), including several unnumbered ones not shown,
are closely parallel to the axis, which strikes N55"E.
The Aries track ARc south of 63"40'S in lact consists
of four close tracks (two proliles are shown in fig. 2),
and correlations show that even over short distances
individual anornalies strike N5 5"E.

The spreading rate has been calculated fiom tlre
satellite navigation controlled tracks which closs tlre
ridge axis. Least squares fits were rnade of a:rornaly
distance against age. The time scale assumed was that
ol- Talwani et al. Il0l and only anomalics out to nunt-
ber 3 (4.6 nry)were considered. The rnean rate north
ol' the ridge is 3 40 t 0.14 cm/yr, the rate south is
3.37 1 0.17 cmlyr. There is tfus no signilicant ditte-
rence between the spreading rate north and south ol'
the ridge. A deternrination based on anomaly nurn-
ber 2 ( I .9 nry), which is clearly defined in several pla-

ces both north and south of the axis (fig. 2) gives 3.37
t 0.08 cm/yr.

TIle western end of the ridge is terminated by a

f,racture z-one [5] striking approximately N30"W.
This feature is clearly identified from the epicentres
(tlg 3). The bathymetry contours also suggest that
the ridge is olfset about 320 km in a dextral sense,

As a noticeable bathymetric step the fracture zone con-
tinues south to tlre Balleny Islands. These islands and
nearby submarine banks strike N351M, and are presum-

ably associated with the fracture zone. The name

Balleny Fracture Zone is suggested for this prominent
fracture.

The complete lack of epicentres on the lndian-Ant-
arctic Ridge in this area (fig. 3) is in marked contrast
to the high activity on the Balleny Fracture zone.
Active spreading ridges can also be identified lurther
to the west on the Indian-Antarctic boundary [13,
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Fig.2. Magnetic anomaly profiles pr<rjected perpendicular to the Indian-Antarctic Ridge. Anomalies nunrbered after [91. Model

basedonthetimescaleofTalwanietal.[0] andlhalfspreadingrateof 3.4cm/yr'

closer to the axis than anomaly 2A on the south side

of the ridge. Profiles A708 and ARb botlt show the

cluracteristic anomalies over the southern flank of the

ridge but they are not seen trorth of tlte axial anomaly-

The bathymetry ot-profile ARb (fig. 4) shows a marked

change, coincident with the loss of the characteristic

anomalies. The smooth bathymetry typical of the

spreading ridge (profile EL27) is not observed north

of the ridge crest.
The loss of magnetic lineations, change of bathyme'

tric character, and the earthquake epicentres all indi-

cate that the Indian-Antarctic Ridge terminates just

east of the axial nragnetic anomaly observed on track

ARb, i. e. close to 61o30'S, l6l'E.

l4l. They are in aseismic sections. which are offset by
epicentre lineations [5]. The tendency in this, and in
other areas [15, l6], for earthquakes to be prirnarily
on tlre fracture zones rather than on the ridges may be

uselul for distinguishing ridges frorn faults at complex
boundaries.

The closest determination of the triple junction po-

sition would probably be given by the eastern termina-

tion of the lndian-Antarctic spreading axis. The epicen-

trcs (fig. 3) suggest that this may be near l61"8. How-
ever,lhe magnetic and bathymetric data provide a

nrore precise Iocation.
The magnetic anomalies characteristic of recent

spreading cannot be recognised on profile NZ (fig. 2)
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Fig. 3. The region surrounding the Indian-Antarctic-Pacific triple junction. Magnetic anomaly trends shown where identifiable;
those north of 60"5 from [1ll for east of 160'E, from [2] for west of 160'E.Epicentres shown by solid circles. Bathymetry in

metres; hatched area, deeper than 6000m, delineates the Hjort Trench.
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Fig.4. Profiles from tracks acros the plate boundaries. For
each track the upper profde is magnetic anomalies in gamma,

and the lower profrle is bathymetry in km.

4. Pacific-Antarctic boundary

The boundary of the Pacific and Antarctic plates in
the triplejunction area has been considered a ridge

[17]. However, Christoffel and Falconer Il l] show
that it is probably a substantial fracture zone. This
zone, which they name the Pacific-Antarctic Fracture
Zorre. extends frorn l6loE to 180". It is characterised
by seisrnic activity, rough topography, and disturbed
magnetics.

Profile ARe (fig.4), shows topo$aphy typical of
the zone [17j. The roughness is distinctly different
from the regular ridge features observed both east of
I 80o , on the Albatross Cordillera I I I , I 6J, and west
of l6l"E, on the Indian-Antarctic Ridge. The whole
feature is asymmetrical, the Southwest Pacific Basin

to tlre north being 2 knr deeper than the Balleny Basin
to the south.

Seventeen magretic profiles Il l] between 180" and

l62oE show short wavelength, high amplitude anoma-
[es, but no clear indication of sea floor spreading. The
seismic activity [5]is in conkast to the lndian-Ant-
arctic Ridge and Albatross Cordillera. The epicentres
are scattered but coincide with the disturbed magne-

tics and bathymetry.
The whole structure has the characteristics of a ma-

jor fracture zone but the width of the disturbed area

makes it difficult to precisely define the boundary. The
general strike is N75"W but Christoffel and Falconer

[18] suggest that it could be considered a series of
smaller fractures N45'W. The fracture zone as a whole,

which defines the Pacific-Antarctic boundary, inter-
sects the Indian-Antarctic Ridge at 61o30'S, 161"8.

5. lndian-Pacific boundary

The lndian-Pacific boundary south of New Zea-

land is generally considered to be associated with the
Macquarie Ridge [4]. However, its precise nature is
complex and elements of all three types of plate boun-
dary; ridge, trench, and fault, may be present [19, 20].
The name Macquarie Ridge Complex has been sugges-

ted for the boundary [19].
The most prominent morphological feature of the

southern part of the complex is the arcuate Hjort
Trench (ng. 3). Magnetic lineations can be traced from

the east right to the trench [12] and the bathymetric

sllAl-

y''-''**z,.rf ^J v,A' n-lru'il,-,.t.u]'*

r,\+ur/t*.
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transition is very abrupt (prot)lc EL36 fig. 4). East of
the trench the topograplty associated with the Macqu-

arie Ridge is nrore subdued tltan lurther north [201.
No magnetic lincations havc been identified between

the trench ard the well-rnapped Cretaceous anoma-

lies east of 165'E Il l. I 21.

The word 'trench' nornrally irnplies a cclnsuming
plate boundary. Flowever, deep'trenclres' have else-

wherc also been associatcd witlt fracture zone [21].
Sleep and Biehler [22 | suggest that such deeps may

form when spreading material binds to an efflectively

fixed boundary. The seafloor west of the H-iort Trench

isless than 25 rny old I I 2l. The age east of the trenclt is
not known but the basenrent is at least lkm deeper [23],
which suggest [6. 24] that it is older than west of tlte
trench. Thus the Pacific plate could act as a fixed
boundary for spreading from the lndian-Antarctic
Ridge, and the Hjort Trench is not a trench but is a

nrajor fracture zone.

As a pronrinent featurc the trench terminates near

59"30'S. 159"30'E. However. several tracks south of
there show deep narrow troughs. The deeps lie on a
line striking 525hrom the end of the trench. This
line would intersect the Indian-Antarctic Ridge at 61"
30'S. 161'E. Profile ARb (fie.4) crosses the line just
north of the ridge axis. The observed topography is

what might be expected across the lndian-Pacific boun-

dary if the Pacific plate is old and therefore 16,241
deep rrear the boundary, and the boundary is a fault.

The low seisnricity of the southern Macquarie Ridge

Complex [5] does not provide much information on

the boundary. However urost ol the activity is on or
slightly west of the fracture zone defined by the

bathymetric and magnetic data.

6. Discussion

The boundaries of the lndian, Antarctic, and Paci-

fic plates established above intersect at 61"30'S, l6l"
E forming a ridge-fault-fault triple junction. If the
strike of the Pacific-Antarctic Fracture Zone at the
junction is N45"W then the configuration is as shown

in fig. 5(a). lf the geometry of this configura[ion does

not alter in time, the junction is said to be stable [3].
The stability can be determined by vector addition of
the relative plate motions at the junction (fig. 5(b)).

The motion of the Indian and Antarctic plates

would be parallel to the Balleny Fracture Zone. The

(o) (b)

Fig. 5. (a) The physical configuration ol' the triple junction.
(b) The velocity space configuration, following the notation

of McKenzie and Morgan [3l,spreading rate in cnr/yr.

lndian-Antarctic Ridge is perpendicular to the frac'
ture zone so the spreading rate determined for the

ridge should give the separation rate of the Indian and

Antarctic plates. Since the ridge is spreading symme-
trically, the condition for stability of the triple junc-

tion is that the line of the ridge bisects the angle be-

tween the two fault boundaries. The configuration
shown in fig. 5(a) does satisfy this condition; lrence

the triple junction would be stable.

Since the ridge spreading is symmetrical the rate

of motion would be the same on both the fault boun-
daries. The spreading rate and the angles between the

boundaries are known,.hence the slipping rate on the

faults can be found. It is given by AP or IP in the velo-

city triangle (fig. 5(b)) and is 3.5 cm/yr. Relative to
Antarctica, the triple junction is moving to the north-
west at 3.5 cmiyr, however tl-re junction is stationary
with respect to the Pacific plate. The active length of
the Indian-Antarctic ridge is shortening at 0.6 cm /yr.

The velocity vectors given above have been dedu-

ced frorn data only in the triple junction area. How-
ever several authors have determined the poles of rota-

tion rates for the plates involved, and this enables one

to calculate the velocity vectors at the triple junction.
Table I gives the motions determined by both means.

Since the rotation poles were determined with data
from areas other than the triple junction, the two me-

thods are essentially independent.
The agreement is in general good, the greatest dif-

ferences being on the fault boundaries, which are dif'
ficult to determine precisely. It is interesting to note
that an Indian-Pacific fault striking due north, and

a Pacific-Antarctic fault striking N75"W would be

close to a stablejuqction configuration.

N25'W
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Table I
Observed and calculated motions on tlre plate boundanes.
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India-An tarctica

Ridge strikc
I{a-ll' spreading rale cm/yr

lndia-Pacillc

Fracture zone strike
Slipping rate cnr/yr

Paciftc-An tarctica

Fracture zone strike
Slipping rate cm/yr

This papcr

N55" E
3.4

This pirper

N25"W
3.5

This paper

N45'W
3.5

wtl
N6I. E

3.4

ctl
N27.W
3.6

XL
N45"W
3.9

MS
N60'll
_r. I

WI
000"
3.4

CII
N75"W
4.t

WH: Weissel and Hayes,given in [20]; MS: McKenzie and Sclater l6l;Cll: Christoffel [25]; XL: Le Pichon l4l.

The fact that the junction is now a stoble ridge-
fault-fault junction, does not nlean that it was always
so h the past [31. More detailed surveys in the area

would provide data that might reveal whether it has

evolved from sonre other fornr.
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"lbstract. 
Anrrll'sis of 4l rnagrretic profik:s in the southrrest Pacific has cnubled thc pattern o{

rnilgnetic unonrulv corrcllti('ns in the urcu to be clarilicd aorl erttnrlurl. 'l'he time seole for sea
fl,ror spreading recognizuhle, by clrlrirr'leristic rnagnctir arronralics lras brt'n irrcrt'lsed fronr 76 lo
8l rl.1-. Vc tlecluct: lhut \Tcst Arrtarr;ticir rnd Nes'Zr.aland riftcd just plior to 81 nr,y. ago.
Distinr:t periods of sca fit,r'r splcading can bc idt:nlificrl with dillcrcnt pol:s of rotation lor tlre
tttolion betrvcen the llcific anrl arrtarctic plutes. South of Ncrv Zealund. thc Albirlros.r corrlillcra
Itcc(tllreri a fructurc zonl'irl ltast 1200 knr lotrg, and rvr. lrropr)sc lo nilnlt: this section tlrc Pacific.
,{ntarerlic froctttre zt ne. ;t rcvised polc of 82'S, 120'E is suggesttxl for tlrr: plt'scnt Par:ific-
ilntflrctic pole oI r.otalion

'fhe pattern oI magnetic lineations in the southu'est in t]re stiutheastt:r'n Pacilic as far lvest as 150'W.
Itacific Ocean rras lirst delrronsirirterl {rom tr\r) rnflg- }iuch atteltion lras recently beetr given to the
rrr:tic proliles by C/rrj.stolJcl [196]). 'fhese proliles trlacquarie rirlge liy IIayes et aI. fl')72f, Itou.tz et qI.

arrtl thtrsc ol ChristolJel onil Ross I19651 for jusr [19?t], an,l Ciri.stofict [l9?f ].
soutll oI the Carnpbell platc.tu assistcd in establistr.ing Wc lrave r:btaine.l nuulerous rnagnetic arrd llathy-
the r:oi'rclation of nru-snelic nnnrualies acruss the metric nleaslll'Lrlnents betrreen liell Zealarrtl and Arrt-
irlryssrl plain rcgions oI the rnain ocean:i fVin.e, 196(i l. trrctic:r rrith our ol-)criltions frurn the .Nerv Zen]and
1'he glolral p;tttcrn of sea lloor sprclrlirrg and the rcla- nrrllrrctic supply ship, IININZS ,'ndaaoour. We pre-
tive poles o[ rolatiott betl'een tlre Pacilic antl atl- scrrt here bathymetric nrrd niagnetic clatir, both fronr
joirrirrg plati:s assigrretl by Le Pichon [196lll rrere our own nreilsurenlents irnd lronr l)reviously published
shcrstr lry ChristulJcl and /lo.rs [970] to be rrot en- dirta. fol the reiJion betrvecn 150'\\r orrtl l(t5oE that
tirell cotrrllatible s'ith the pirltcrn of magrrtrtic anom. cxtcrrtls flonr tlre Canrpl,rclI platt'att ir. the norttr to
itlics bel*'eerr the Canrlrbell platelu antl tlre shelf of south of the Pacific-r\nt:rtctic ritlge. 'l'hese dnta calt
tho lrrtlrctic continerrt. The Pacific-{ntarctic pole of be used to solre sonre of thc questions raised in the
rotation of 70oS, IIB"E assignctl by Le Pichon does intclpretation o[ the plrrte tectonics of this and other
not r-'orresporrd rvith the trentl of the rnagnclic anorn- regions.
alies inrnrerliately. south of the Camplrcll plate'au.
South of tlre Catnpbell pl.rtenu, ponr corrclatiorr fias DATA RIDUcTIoN
bt'c'rr lourrrl betrreen magnetic a.o'ralies yorr'gcr lhnn DaIa sources
rtuntl-'er 20 on the classificatiorr of lleirtzler ct ol.. For the region soulS of the Campllell plateau, most
f lD08l' o[ the margnetic tl.[u have becn obtainetl rlit]r our'I'lre rnost conrJrlehensive arrnlysis of masrretic arr(l s6i'6orne 

''r.ot..,r, 
nragletometer torved frorn the

lrathlnretric rlata irr the southn-est llacific Oceur lras 8,,,!r,rrrorr, [ChristolJet nrrl /toss, fg65]. .l'hose lB
been lrresentcd hy Pitutan et al. tl968l, IIerron. tracks are identifierl in this paPer bv siugle lctters,
If97f] has interl-rretcrl magnetic antl blthynrctric rlata por1ions of the t6cks [ror1 the LrSNS X/lanin cruises

*N,rry ar Vicroria Univcrsirl- of Vcllingron, Wellingron, 19. 23, 25, anrJ 27 lravc becn uscd ltleirtzlcr et al.,
NrrvZcaland. 1969: Ilaycs e.t al., 1969 | and ure identified in the

Vlcroii LeT - ._:NGTON,
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I'ig. l. 'I'racks trst'rl in tlrc prcsrnt stu,11'. 'fhe follr'rling lblrrt'silliuns ltar', hcllr uscd: [, Enlcamur; EI"T, Olarnin;11N.
ll0nS(|0tll').rpeditiorr(RV..|rgrl);()DF'()1r..a|illn

prrlliles fnrnr Plojr'ct ,\lagncLi Y,l'cntu; (.'.O, ()tnntl. llathrrur,tly r'.)nt{)ul'i ure iu rnctcrs,

foflorr'ing tert and fiuttres by IiLT and the cruise IJurton Islunl. hote l,etn rllrtninetl from the U.S.
Irl.rnrl)or. Nrrvigation, lrtrthr.nretric, urrtl nragrretic rueas- fi'spy llrdr<tgral,hic Oilice ll()(t2l antl the l/..5. A/arral
uf'etrrcfrlri fr'r:rn tlre Opcrirlion I)eep I''r'r:ezc trlcks 3, 5, Ou:nnogruplti,: ()llire [|96;1.'I'lrcse nleasureluellts flre
6. nntl [f <rf ttre Stut,:tt Islunrl antl one tlacli 'of the lalrclctl Ol)l-. .t\r:ronrirgnetic prolilts florrr ['r<rjecl

,r

(-;
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trfagnet ure it.lentified Ly tlre letler A ancl the flight
nurrrl)er. [)ortions of I''ema cruise ]6 are identi(ierl
by \il(r. itnrl portions aI Rob<'rt D- ConruJ cruise tl
ale identilied b1' COB. Tracks froru the trlonsoon
Crtrise of the [tV zlrg,r frorn Scripps Institute of
Or.'eano{r'aphy rrre labelcrl }lN.
Nuuigotion

nlost narigation rvas by conventional celestial and.

rletrl reckoning nrethods. The nrore occurate satellite
navigirtiorr rrus availrrble |oc Eltanin cruises 23. 25,
arrd 27. l)osition err'<lrs for corrr.entir-rrral navigation
could lle up to 75 km. f)ata {ronr intersecting tracks
shon' llrat alerage position elrors ilre less than 25 knr.
'frentls or ollsets in anolnaly piltterlrs are corrsitlered
estlblisherl onlt' to the lllter liurit rurless several tracks
tlrlineate tlre feirture.

tr I u gt e t ic I) u t u Retluc tio rr.

1'he nragnetic anonrall'profiles rvcre protluced Ly
suhtractins frorn tlre recortletl total ficltl trrclsuremeuts
:t regional maqnetic l'rekl calculated {r'our tlre irrter-
nirtionnl ceomirgnetic rt'ft rence lield ( ltlltF t coelli-
cituts IiraDittno und Itultlie, f969]. 'lltc IGRF t--o-l

cll.ieierrts nrav rcquire sorrrc rr:r'ision sinct lhe :rnonraly
pr',r[iles irr this nrea hirrl nrean valuos rlilli'ring con-
siderablv frrlnt zcto. l\lost of the unornirlv tlcnrls rtith
rtate lengths sreater tlrrrn 200 krrr rlere renrovc'd by
this rnethorl.'1'lre only' rrlditional arljusturcrnt to irny
prolile rras the shiftin;; of thc zcro r.efercnn: line:
thc shift rrrrs erluivalcnt to the ronrnvll of vc.y l.,rrg
rr'ale lenglh cutnponrrnts. No corr,:ctions l'cre. rnnrle
[or lettrlrnlal varialiorrs. lior the IinduuL,our ruises,
lhe nrllrrrtic I{ inrlicres irnd magnetic vor.iogr.rl)h re.
eortlin;rs f ronr Scott Il;rser .i\rrtlrctica ( ?7"51'S,
166'4,5'U l. and Anrlrr.rlcl', Nct' Zeulanrl ( l.llol0'S,
1T2",1.5'l-t. hnve lrt'en checkerl ovcr the cruise pcrirrils,
No subslantial rnap;ut:tic storms occurrerl tluring the
per'iods of measurcrrrent.

i\nurnalics nre nurnbt.r'erl according to. tlre syslenr
ol Pittnnn cl al. I196ll]. \\'e have adtlcd the idcntifi-
cation ii2-.\ for a chaltrcteristic positir.c lnonraly just
prr:ceding lnouraly 32.

D,\Tr\ r\N'tI.YSIS
Figure I rltorls the tnrcks for rr'lrich rnir.qnetic datu
:rlc preserrlgl. r\!s,t slr,rrln are bnthl nretrl' contorrrs
tlrirt rr+'rc r:rrnrlriletl Intnt [,,tttrctrcc Il9ti7l . Lt.S. Nat.,il
()u,anogru1ltic OlJice LlU6()1, Ldintsct: ct al. 119(t\f ,

itrrrl llrr, \trl ZeaIlnrl Occtrroglaphic Institute (un.
pulili.shetl tlltrr, 197) ). l;'igure 2 shorls Iire hathr'.
nretlic lrrtl rrurgrretic prolilcs tlrirt rve corrsitlt:r'to be
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replersentative of the area. Thcse profiles illustrate
soveral features the iclentilication of uhich sinrplifies
tlre anall'sis.

The ELT25 m:rgnelic profile eshibits svmmetry
alrout tlre rid;tc ccnter (the r\llntross corrlillera) ancl

corrtitirts an alnrost conrplete sequerlce of nragnetic

rr-.r'ersals. T'he r:orresponding bathl'nletric prolile also

slrorls gleneral svtnntetry and is typical of buthl'nrctry
fourrrl ovel the liast Pitcific rise.

Profile Ol)I'5 is sirnilar to profile ELT25 in that
slrnrnetrv about a spreading centcr is observed out to
iruornah 5. 'l'[re sequence of arromalies from 2.5 to 32

is nlso clearl.t' seen, but, although tlris seetion is of
sirnilar length to that in EI.T25, this section is closer

lo the riclge asis nncl the anotnalv sequence 5-25 is
n.,i rtholly clear.

The magnetic ptofile [I shorrs the anomaly' group
2.;-;12, aglin \rith similar lcngih to tlre previous plo-
liles, No slnrnretricitl centel' is r.rbvious on eitlrr:r tlre
nragnetic or thc llrrthvmctric prolile. Iligh arnplitucle,

short rlave length arromalies are observed rtltere the

trrpograpLl' is ntost brokerr.
I'rolile B still shorls tlte anorrurlies 25-32 brrt slrorvs

llrenr closer to the 'ritlgc.' Thc sccti<>n of distulbed
. lulhymetry is lougler and broirrler tlran that to the

cirst.

The lil.l'2?b rnagrrelic prolile clearly shos's sym-

rnctry, anrl tltr, anornnly se(luence agrees closelv rtitlr
thlL erf the eulrr.'ntl1' splearling ritlges l'Iline, 1966 1.
'fhc buthl'nretr-y' is also sylnrnelrical. 'fhis prolile incli-
c'iltes fln area (r[ active scir floor spreirding sitnilar to

tlrlt obsertcd nrur:h farthct to tlre ettst nlong the I'lt,T2s
t lirck,

'l'hese relrrrrserrlittire profiles illustrate thc uni-
folrlitv irtrd pr:rsisttnce of thc older magnetic atronr.

alies throurhout trrost of thc area. lhe pt'esetrce oI
ilrtive sll'e.r(lirrg in both the eust ittttl llte rvr:st, autl a

regiorl of rlisturllt'tl birthyrnetll alrtl maiinetic sii{nn'

tult's in betl'et:tt. lrr the light o[ these gt:nerul obser'
lllions, rre shrrll divi<le tlrr:,arcir into tlrr:ee regions
lrrtl cl iscuss tlrenr st'yritrately.

Iiegiotr. I
'l'lris region inclLrles thc area contairling nlflgnetic

anonralies ttuutheretl 2.i lrrd rll)llar(1. Tlte sr'tlttcttce

r,I lnornalies rrunrbered fronr 25 to 32 is rlatecl by
II rirl:Iar el ul. fl')61]'l ns cotct'irrs tlre tinre spnn of
6ii-76 nr.y. ll'he: s,xluettce is itlt'rrtifiirble otr uln'rost

el el'y trilck in this nreir.

l"igurc ,3 sltorrs thr: positiuns o[ these anotualies to.
gr'ther rvitlr assnrrrctl trcntls ancl ollsets. All the proliles
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Fig. 2. llrrgne.ti<: and h;rlhynrelric profilcs fur firc tracks acrtss the Soulhrrust ltlcifit: basin shotring churaclt't'istic fcattlles

discusscrl in the tc'rt, 1'he uppcr ttace in ra<'h pair of prufiles slrows lhc tnuglnclic itnornnly arul scRlr: in gantrrras; thc lower
truce in ca,,h pair of profiles sltorvs lltc Lrathl'metry sc:rle in kilotleters.

on r,-hich tlris figure is based are shorrn in Figures rcason, the positional reltrtionships of thc atrornalies

4 snd 5. The azinrtrths of the tracks tary considcl'- should be takerr nnly frorn Figure 3.

ably, and thc profiles have been projectecl to produce A prolile fuom the Nor:th Pacilic (labeleil NPAC)

roughly the sarne length of the sc(luence. For this is included in Figures 4 arrd 5. This prolile from ,ltaf
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In prr-'lile Atl.09 alon;5 ,l5oS, the identification of
anomalies 32,\-36 is tentatire bul reasonable. The
anorualies to the east of 32A are not very similar to
those olrsen'ed to the -.outh. IIuyes and Ercing

Ilt7lI have identified an apparentlr- continuous
a-.eismic rirlge (the Louisville ridge) inrlicated in the
upper right-hancl corner in figure 3. lf theil sulrges-

tion lhnt this ridge is ir rresterly extension of the
E,ltatrirr lraclure zone is correct, the scu floor to the
east oI the riclge could be rprite dillerent frotn lhnt
to lhe rrest. This suggestion rlould e-rplain the ir-
regular anomarlies obserr.etl on A,1.09 arrd at the
eustern cntl of C08.

In Figure 4, profiles COB, ELT23, anrl A,I.OBN are
each split'into two, althor.r.qlr the tracks nre straight
ttntl continuous. \\'e see that arrornalies 27-30 are
duplicatetl. Figure 3 shorss that this drrplication indi-
cotrrs an offset in the anttntaly pattern oI nbout 3,10 km

5@.
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Fig. 4. lfagnctie an']nrlly ptofile* flotn thc rtorthcastcrn por-

Iion of rcginn l. Prtrfilco are alip:n "l on ant'tnirl) series 2l-31.
(irrrelrrtions of sr:lertctl :tnr;,i;.:,;;J:::"t:r'n tracks arc sltorsn

It9(l(ll has prelit-'usl.r' lleen usetl oul to irnornaly 32
to estirlrlish the geom:rgnetic li.rne scale Il/eirz:ler el uI.,
lq63 l. Arr extcrtsion of this tirnc st:ale is intlicated
by the {nirl1-regular occulrctrce of a broacl positive
anornuly lreyond anornnly ll2. 'Ilris broatl artontitly,
laheletl by the nunrbels 3-l' nnd .3Cr. is sccn clear'ly on

pruliles A-109, A'l0tji\, ODF{! anrl tr[N\\/. The anorn-
al1 r:rn alro be irlerrtifietl on sonlc Nnrth Pacilic pro-
files [/ial, 1966- ]'igure 2, traeks r\, B, Q, R, uncl Sl.
I3y assumins the sca floor spreading rate for the

section 32-36 to Jre the sarne a-s lhat iurnretliately prior
to anornaly 32. the agc of anonral\' .36 is allproxi-
nratcll' 8I rn.y. r\nonrnlies older than this age cnn-
not l.re fir'mly corrt-lutetl il this area.

I)etlils of the anr,nrall pnttern lre tliscrtssed belorv.
In general, tlte rliscussiou proceeds florn east tn trest
in l"igure 3. The profiles in F'igurcs '1. and 5 ar€ ar'-

rangtrd rrith the most easterly llrofilcs at the top.
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fig. 5, trIagrretic anomaly profile,. fronr tho soulh,rvcstcrn por.
tion of region l.
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irr a dcxtral sense. The strike of the presumetl frac-
tule zone is probably'Jrsllreen due nolth ancl:i0'
'rvest of north. The strikes oI the arronralies irr this
area lie betrr-een 30o ancl ,1.0o easl of north. .Thus
tlre {r'ncture zone is not lt riglrt angles to tlre alomrrl.y
trenrl. Pittnun eL al. ll96i3, !-igure 2 | shorr lhirt
lhele ELI'23 crosses the ollset there is a blocklike
bathvmetric featule. 'flre top of the block is lbout
220 krn rride and is 1200 meters higlrcl th.rn the
surrourrtling flrrt setr Iloor. Note tlrat the rrestern scI

of arr<rrrrrlies 27-2t) are tlirectly over this block but
are nrrt in artr, rvuy iueguli.rr.

\\'r-rst of the lracture zorre, lhe pttlt:rn is clear e.\cept

for ir <.listurbanr:e bet*een anornllies 29 and 3l ar
t;0'\\'. Profilcs [LT2.5, Ol)F(r, A,1085, and Vl6 inrli-
cate il bloadening o[ itnonrall' 30. On E[.1'25, this
l;roirtlening corresponrls to a tery slight brtthlmetric
hunrll.

The anomrrll- patteln betrleen 1;.5o\\/ nntl 1t10" is

rluile legular rrith a trcnrl of N ?0"E. This area lras

not been linketl rrith that to thc east for the follouing
reilsons:

l. Prollles Ol)lifr arrrl V16 both .sltorr' att irl)pa(ent
dulllir:ttitrn of irnotualies 32r\ ond 32 nntl rlo rrr.ri ltave

an(,lilnlics :J l-36.
2. 'Ilrc group of anornalies ll2A ortrl 32 is tlis-

plncetl 200 knr ttortlrllrr<l rrith rc;pr:c[ 1o tlre sinrilar
ittrcrrttalies tlcst of l?;"W.

?t. I)rofiL: ODI|B slrows rto un(,tnirl)' l]0 or' 31.
.,1. I'hc trtrrcl oI nnomitlies 25-2r) rrest of 175"V

is rlifLrerrt {roru thlt to tlre enst. ]lotret'et', lhc eastt'rtr

trentl, N 30'-li, is clitit'ul,lv tleteunitretl by tlack Ol)IrB.

Thcsc points suggest tltnt bell'etrn :1.?0"\Y ancl 175"\\i
tlrcrc is r:ith ,r t nurrketl clralge of trenrl or otle or
nrore oll.*ets, The data nre irrsullicit'rtt to resc,lve

thesc alter-nirtives.

IJetrrt'crr 175'Ii anrl lt!0", Christoflil anti.Ross
Ifr,t)'| ha'r'e rrrapped a fmctrrre zone- lith a vitriithlt:
sirristral ollsel lenilins to zcro at 60'S. The additiorr
o[ tn,rrc rlrrta in this stutlv irrdicates that this ateu is
nrole cornplt.x, Otr urost profilr:s. irnonraIies 25-l] I
atc relirtively clear (e.g.. A?()6, OI)F3, ['i). llorlevcr',
tlre nre:r lorth of illronritly 3l is be;'t .-c,nsirlelecl utt-

cle:tr te.g., profiles S. I'-, Ti). At l78'li, profiles
Ol)l'5 arrd Il indicate a tlextral offset oI ittroltrillit:s
32;\-lll. hrrt this ollset ciurnot be idcrrtilietl either to

the nortlr in anonrall' llfi ol to thc south. It is tlrns ir

localizr,rl featrtre. ["arther rresf. the Iirrtleirvour fnrc-
ture zorre of, ChristolJcl anrl /loss [970j consists o[
trro selrarule fraetures, each rlith a sinistral ufiset
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antl each strikirrg rrorlual to the attomaly trentl. The
ilislrluc:ement $cross each fracture zone is clillicult to

tletermine bucause tlte offsets ale clcar onll' over short
lcnr.rths. 'l'hc rlisplacenrerrt acl'oss the fracture at
appro-riurattrll' 179"11 is about J5 lTn, The fracture
at I77o-E indicales a clisplacenrerrt of 55 lsn. \\/hen
the fractures are considere(l tog(.ther, the tot:rl tlis-

lrlaccrnettt is cornparable to that given b1' Clvistouel
untl Ross [1970].

\\'est of 17;"11. the pirttern is relatively cleirr. The
conrplt:te sL-quence 25-36 is iclerrtiliable frorn several
pro{iles, e.S., B, C, A?07, }lliL. A sinistral ollset
occurs betrr cen l?3"Ii nnd l?2o8. The offset of
rut,ntaly 25 is about 80 knr. but tlre ct{Iset of flnouraly
32 is onl,"-' 4;-r km. This diflerence is not conclusive
because proliles P and r\707 are distur:betl north of
anornaly 30 anrl prolile V is rlistulbed rrorth of
nuornaly 2[]. Thus, possilllv, the ollset alorrg this
{ractttt'e tlt.,crcilscs to the north.

\\;'est o[ 166'Ii, the pattelrr is confused. r\nornalies
liO ant.l 3l are tentirt.ir.elf iderrtilied orr ODI:l and l'I,
but the other nlonralies oI the serltrenr:e :rre not
nbr-icrus. l-rrpul;lislretl Eltnnin <lala recorcled far:ther
to tlre rf r:st nlso suggest that thc regulitr artomaly
patlerrt tloes not extenct br:folrd alroul l(r5oE.

'fhc arroural.\- serluence 25-32 shorvs thaI ll:trleen
150'li antl l6j;'\\/ the sea floor of the Srlulhrvest
Pacilic lllsin is basically unilornr in sllrrcture, al-
thoush nunrerous olTsets rlo occur', Iirrlrn [igure 3

uc lrotice thltl. l'cst oI l[]0'o irnouraly 116 is close to
thc contirrerrtnl slope . Thc ofTsets on lhe frlcture
zonos at'e sutll thct the anorrrrrlies flr'e succcssiyely
tlislrll.:ed southrlirrd to tlre rlcst ancl thus nraintaiu a
ruttifulnr rlistarrce frottr tlltr slccp cortlilrerrtrrl stope.

Enst of 17;'\\'. the conlineltal slope is not so

stcep. bul. thcr rtrromalies still tllpcar to rnlirrlain a

t:onslitnt tlisttn<re from thc Nerr' Zealantl continent.
'I'he rlestral olTset on the runjor lirrrlt at 163"W is
r:orrsislr:rrt lith lhc eastl'arrl trerrd of the continent
rrolth of J.5''S.

Arourrtl 50'S, l80o, the bathymetry is not rrell
knc,u rr-. but n prontinent hrtlryrnetric fcature, the

lJollturs tablcnrr.runt fLau'r,:ttcc,, 19671, is usually
chrltr:tl. l'hc Vl(r trnck slrr:trs no sign of this fea-

trrlr. buL it is sr-ren otr traek l'. 'I'ltu feitture ltas thus
bcen lrlotterl stttirllcr anrl faltlrel to tlte south tlran is
rusuully sltorr rt. 'l'he fact that itrrornaly li6, thich
Lr{r('urs jtrsl. snullt oI this fr:ature. js elsettltere close to
lhr: contirrr:ttt sui{gesls tlrirt the lJollons tirblelttourrt

ma1' be a r:otttitrctttal fragrncrrt. T'lte ltre-*ertcc of n
cuntinrrntal {rttgtncnt nr:ry erlllain rlhy the ntirgnetic
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I"ig. 6. 1lagnetic anontaly profiles over lhe Pnr:ific-r\ntarctic
ridge (regi<in 2t. Earthqua[r: t'piccnters trout l]am:ungi and,

Dornnn [l9fi9l and the 3O0&rnctcr buthlntuttic contour are

shoxrn,

trends are tlistLrrbccl in the area' Anonraly 32 just

to the eusl. o[ tlre titblenrrrutrt rvoultl be relatetl to the

continentll sh'pe l'ell to the northlrest.
The recognizable pirttcrn of attotnllies teuninates

to the rvest ulong 165"Ii; this longitutle is in line
rvith the -i\ucklaircl slope that fornrs the tvest.trn

bountlary oI the Campbell plttcau. This locatiolr

lurther suggcsts that tlte artotnalies flre closcly relatcd

to the contin,:nt bountlitlg tllctu to the nortlr.

Region 2

The pr:ofiles in Figure 2 shorv thnt lctive sea floor

sprcading occurs cast o[ 175"W aud ttest of 160'[i.
Irregular higlr unrplitude rnagnetic artotttalir:s flre ob-

served orr scctions oI profiles betrtectr those lougi-
tudcs, Iiigrrre (r shorvs tlrat lhe irlegular unouralies

occur on nranl' ptofiles an{l that thel definr: a lincar

letture strikirrg N 75"W. 'fhis feature coincides rvith

an irregular bathl'rnetric featttt'e Illrrss, 19671 antl is
.associnLe(l lr-ith nutnerous earthquake cpicr:ntr:rs IBcr'
.azttttg,i untl l)ornttrn, 19091. All the profiles rvest of

ls()aE 'tlrat cross eithcr the spreatling ridge or the

liuear featur,-, aLe shotvn in Figure 7. They have been

plottecl so as to align the ltrottrinent ct)ntral ilnolnirly
'of each profile nnd have bcert ttrrattgcd in orcler of

longitudt.: rlith the Inost eastetn profiles at lhe top'
I f rye consitlet thc evitlcrrce for ret:ent setr [loor

spreading to be the typical prominerlt scluarislr cetrtral

an()lnalv anrl the charncteristic attonrall' s,r1,,",,." u,,

botlr siclcs or even on only one side fl/ine, I966f,
then sea floor spreatling is cle:rr on onlv rt ferrt pro'

-liles. 'fhese pr,>liles are ODFB, \tNW, \{NtI, and

la5
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Irig. 7. llagnctic plolilcs across the Paci6r:-.rl,ntarctic ridgc.,
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ODFS, (all east of t{J0o) and lil'l'27b, ODFIb, anrl

i\708 tall rvest of 161"E). Profile ODFIa intlicatt's
part of the nortnal sequence on the s,ruth sirle. I he

ce.rrtral anomaly with the peak on eitlrer side associ-

ated tlith the JaranriIo event can be suggesterl f,lr
seleral othr-.r profiles but can be considered clear ,rrrlv

on T nnd IINEb. Lirrrited s)'nrmetry is visible in \\',
ODF3, II, B, C, P, aurl N. Iu profiles FI, B, XINIib,
antl N. possible alternative centers of sy'mrnetlv irre

recognizcd. Ihese centct's are rnarkecl rtith itn X in
Figure 7.

'l'hc ali.gnrr:ent of profiles plej uclices the visual iden-

tification of the protuinent anonr:rlies, syntnretr')' ccrt-

lers, and iderrtifier{ se(luences. l'csts 'rvith 50 lirst vear
univer.*itl' students suggest that pclccption of suclt fea-

tures depencls largclv on the sr:alc in shich profiles
nrc rlrartn, sirrrilar trnrplitudcs for symmetric arrontir-

lies. lack oI <lata gaps, prealignrnent, ancl the nvail-
abilitt' of tracing papcr. Nurneticll nrethorls being rle-

r-eloperl by R. K. II. Falconer shorv signs of being aLle

to orercolue the visunl problerns.

/ios.s I t967], usin{ Iive bathl'tnctric profiles arrtl
scr'('n nragnetic profilt's betweerr l(r3oli an,l '180o. lur"
shortn tlrat the lrigh runplitutle rnirgrrelic anorrrirlics
are as,.ocirrted rvith the crest o[ rr rouirh ridge. \Iolc
lecent data confinn that tlris ridgc is ntuch rou-ghcr

than the sections to tlte east atrrl trcst ott rrhir:h lctivc
sprcadirr.s is ohselut:tl (liigure tj). The ridge is also

not icerrbly aslnrtnettir-'. 'lihe Ralk:ny basin inrnrrrli-
nl^it' -qouth of the ct'est is Jlnt-llrr<lletl tvilh it ttrc'art

rlepth oI iJ krn. 'flrelc is virtrralll' rro trirnsition z()rre

L"rrlet'n the riclge lrrrl this basirr. Nolth of tbe ritlgc
crest, r'ough flanks .e-rtcntl to the Sc'uthrtest I'u,:ilic
hirsirt at a depth of 5 knr. This tlepth is 2 knr rletpcr
than lhe Ballenl' l-rasin.

llagrrctic t[ntl irrc inconrplete orr ntost profiles in
thr: Rallelry basiu Lecuuse pack icc is often cncoun-

trlr:d there. IIotte\:cl'. the datn are sumcient lo slrut'
llrat anornaly tr-trr,c lr:rrgtlrs are longer than tlrosr: ob.
st'r-r'etl across the rirlge llunks to the north. No clelr
auotualr corlelations have lleen estalllishr-'tl. Calctrlir-

tious of t.he tle'pths to arronrall- s{)rtrcLas by Ross I l9fr7l

€ravc ir rnean ilnonlall' depth that rr'as lcss tlrart I krtr

dt r'per than the sr:a llo.:r. Seisrnic prol-rle r.:,.',tt',ls

ftom lloutz et al. I 19?1] antl uroLe unpLrlrlislrt,rl

Eltnin <lirta also shorv tlrut the sedinrent thickru:ss in
the Brrllerrr basin is L,'ss than I krn. 'l'he bathlurellic
rrst'nrnrr:trv is thercfore not due to -qedinretrt irr tht--

Bull.rny basin.

["rrr tlre period 196].-1967, Roroatng,i nnd Dorrtttttt

Ii969l list 19 earthrluakc epicenl.ers firr this lt'el l;c-
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trveert lfiOoE and lB0o. r\ll are on c,r close to the

linear fealure clcfinecl bt' the bathymetrl' and mag.

netics. For the 20o o[ longitude from l80o to

160'W. onlv three epicenters are given, l)ata from
many sections of tlte tuid-ocean riclge suggest that

most of the ar:tivity is ort fl'actut'e z(rtlt's that offset

tlre ridge clest fSy/ies, 19;0].
The ruagnetic. bathl'nretric, and epicentl'ill data all

suggest that the protnitrent feature stt'iking N 75"W
betrleen ltiOo ancl l60"li is a major fraclttre zone'

\\'e propose to call this feature the Pat'ific-Arrtarctic
{racture zonc.

In [igure 6, tte see that tlre disturbed magnetic
zone, presullrallly the result of fracturing, is about 70

knr lrirle. I'his rr,itlth irlso corresponcls to tlre tvidth
of the ritlge shorr'n lry the l;rrth;'metry. 'l'Le epicenters

oI Burazang,i nntl Dormarr f 1969'1 4n1l .$yli;es If970]
for this region are scattere<l frorn a Jine to tlistances

Sreater than lhe statetl accuracy of <letcnnination.
,,\ll these r.:sults shorr tlre Paci[ic-Antarctic fracture
zr)ne to bc tr broa<l feature. The short scctions of
sl nrmetr): on sc,nre nragnctic profiles srrggtrst that tlte
fractrtrc zore llray corrsist of l series o[ ert echelon

flactures.
Thc rvcstern end of lhc flacture zune is Irot rvell dc-

fined Lrr.rt tlre actir,ely sprcacling ridge clerrlf identified
fronr profilt,s ELT2?b, ODl"lb, A70B (l'igure 7) ancl

thc urrlrrrlrlisl'tel Ellanin drrtir strikcs N 55"8 and

rvoultl intetscct tlre fuacl.ure zone at nbotrt 6loS,
l62"li. 'l}e fornr of thc }lnctluarie riclge in this area

is lot at'cuLulcly ktrrrrt'rt, hut in general lhc fornr ap'

peiu's to ltc a fractttre zone ratltcr tlran a ri<lge [C/rrls'
rolJcl,I)iIi llaycs et il\., 19721. Tlre Pacilic, Irtdian,
anrl arrtalclic platcs tlrt'rcforc lneet irr a triple jun-':ion

tfrat is of tlre riclge-fault-farrlt ty'pe I lIcKenzic anil
.lIorgan,1969]. 'Ihis junction is ut 61"S, 1620E.

A chrrnge in the bathlntr:tr1' tretrd of approxirnatcly
90o ot:curs at 65"5 belrreetr 180o arrtl l?S"W, the

rpicenter lintatiorr tertttinltes rt 65oS, J.77oW, ancl

sr:a lloor spreading is clcrarly identifiable on profile
ODFS at l7.5oW. These three observntions suggest

tlrnt the I)aci['rr:-Antarctic' ftat'ture zottc tet'ttlintrtes in

lhe e:rsl lt (r5'S betwr:en l{j0o ancl l75o\rir. TIre zone

is thus aplrr:oritnalel,v l1{)0 km long.
Thc slrikr: ,rf thc rid;lc {,\lbatross corrlilk:ra) east

of tltc fr'lctrtre zotre is tlilllcult to tletelrrrinc because

-spreatling is clerrrly seerl olr orrly i\lN\\', llNFI, and

Ol)F.;. Ilrofile NlNt{ is iurpt-rt'tarrt bcr:ause it is the

orrll onc rurtrtitrg prerlotrtitranLly eirst-rvesl. Arrolrlalies

-1-2 are r'[t'ar but are tlisplaccd consitlerably from a

s1n'taclirtg cctrter to the east that js irlcrrtifiecl by the
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ridge sections ale ol)served farther east over much of
the r\llratross cordillela lll erron, 19;t ].

Ilegion 3
'Ihe area betrleen the rlell-identificd cnomalies 2J-?'6
anrl tlre rirl-e.e antl fractule zone [o tlrc south is rlif-
ficrrlt to interpret (Figurc U). East of 170"W, blthy-
rnetl')' profiles shorr re.lativel-r' snrooth ridge flirrrks
tltat nrerge into tlre Southrlest Paciiir: l.rasin. IIcirt;lL'r
et ul. ll9(t?l hlte sltortn that nragrrelic arrornnlics
alons some sections ,rt ODF6, El,'l'19. and lllll'2ll crrn

be crlrrelated rr ith profiles frorn r:lsen'here in the
trrtrld. .ilorr'er,er. lhroughout the aLt-a east oI l7(]"\\',
the irrronralies otcf the flanks betrreen the nutrrl,ers 5

antl 25 have anrllliturles less thln half of those oldcr
than 25. 'l'he rvate lclgths ale also gcneralll. shollr:r.
'flre gent'ral appecl'nnce of the pri,tilcs is one rlf rr.,ise

rathel than tlte trtore distinctir.r: patterns oI lloth
the oltlcr anomllies anrl the grest rqgion. Dctailerl
correlations arre llossible only rlrcrr lracks ale closc,
arrd evcn tltetr corrclirtions ilrt: not unanrbi.uc.rtts,
Itlr:ntilicd atroutnlies are shorr'n in ['i-:lure B. ]rut thc
trcnrls irrrlicated throughout ttris flrirrli regiori east oI
1?0''\\' shoultl bc r:orrsirlerecl tcrrtatire only.

'l'o ilre t'est of l;0"\\'', the tlatir rorcr'flge is lx,lter,
l.rut tlrc interpretltitirt is rrt; clr.aL,rr'. llltlrvntellr' lrlo-
files shul' tlrat tlrc llanl*s oI tht Piu'ilic-r\ntarctic [riu:-
turc zone irte rott3hrr tlrln tlre rlr(Jrc convelrtirirrll
rirlglc Ilarrks trr the elst uf 170 '' \\'. r\lso, ir sharpr.r'
balhr"nctrit: bountlirrr' occurs lretrrfr:n tlrc flarrlts rrnd

lhc i,itsirt l.ChristotJcl cn</ ,l?rrss, I'Xr.:> l. Neitlrt'r' thc
ttra: n.:tic anotnal-r anrliliturles lrol' tlre rlarc lurgtlrs tlif-
fcr glcatll' frorn lltost-. in tlre rcgirrns to tlro nolth or
sorrtlr. In tlri.s resp(:ct. the;'contra.'.t rtith llre arrrrrrr-

alies to lhc otst of l70oW.
(lorrelalrt trs lrcltrct-tr the tlacks c.,ultl be su;lgeslcri.

Lut thesc corlclalions rloulcl be so nrul:igrrous tlrrrt
thev rrould be of littlc leal vrrlu,:. 1'he rougher lratllr,-
nletr'l- l)r'esunrlblr- is l rlist.urbirrg factoL, btrt lhc llr:a
afl)rill's conrplex. fi'acks rrith oricutalions othel lLan
norlh-soutlt antl closcr trirck sprrcirri{s are neetlcrl if
corlrlirtions are [o be identiliecl,

CONCLUSIONS
\\'e carr norr' ertcntl oul' interpretltion of the south-
tr,:st Plcific Or:can in terrns of plate lectonic'5 bq,yrrrrrl

thrrt of ChristolJel trrrrl lloss [1970 l. Irigtu'e 9 s]ross
tlu: rulirr fellurcs tlrat rr'e interrtl to rliseuss.

()n thc basis of a consistent nragnetic anornalv pat-

tcrn soulh and east of tlre Canrplrcll pllteau. u'e lcel
jrrstiticd in erterrrlingl Ilrc IIcirt:lcr et uI. [196lJl
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arrunralv sequence frorn lJ2 to 36. Anomalv 36, cal-

culated at 8l m.r., r'losel\- follotts the lli>00'nleter

contour at the base of the subantarctic slope. Our'

data extenrl just Lctontl the ,\lbalross cortlillera and

allow us to recognize orrll' orte-half the nlagnetic

arronralr paltcln. I.Iorr'cver. r,'e feel confirlertt in pre-

tlictirr;1 ll're rnirror pattertt to exist in the Southeast

Ita,.ific basin. \Ve therefore conclude tlrat the Nerv

Zealand continent riftetl [r,.lrn lhe region of West Ant'
arctica just prior to Bl nr.1'. ago. 'l'he Lorrisville ricli5e

possiblv fornred an eastern hounclart- l ith a South

,\tnerir-'an plnte in a lnnnnel' similar to tlrc prescnt.

tlav Clrile rise lllerron und IIuycs,1969].
r\t the time of anorrraly 25 (i.e..62 ur.1'. ago) r a

change in the sprc'irrling occtn'r'ecl. Rccogrrition of
\'ouni{el' anotualies hecOntes lrroglessil'cly less clear

so tlral. lest of l?0oW. attontalies betrleen 25 and

5 are urrrccognizecl. 'l'he rnost probable reason for
this can l,te st'en fronr FigLrre-s B tnd 9. The meart

strike ol each of the lracture zones btlrtcen anotnirlies

25 irnrl 36 soutlr oI the sulr,rrrtarctic slopc is reitsonnbly
rlell established fronr our rneitslrretrtcnts. 'lhc prest-'nt

strike of the Pacific-Arttnrctic fritcture zone is also

ur'll tltlter'nrinr.rl. and rre also ossutlle that the strikes
'of tlrc oilrcr frnclrrle zom's ucross llris sortthern sec-

liorr of tlrt' .\lL'atross c<-rrtlillera rlill be tletelruinetl lly
tlre sanrc lrole oI rclative tnotion. lJetn-ecu irllotnnlies

2ir arrrl 5. rr clrnngt'iu stlike of over'l5o lras to be

accorurnorlllctl. I"r'otn l;'igules [] antl 9. tvrr see that
the tlilrrgrrlirr regirrtt blrssv{1'11 by lon.qitrrtlt's l?0"I
and .l;0"\\' is pitllit'ttl:tllv affer:tetl. Cortsitlerable
flacturirrg rvuul,l bc espected arttl is bortrc ottt by the

rlistur:bctl tr.r1roglu1rh1,. l)r'oblblr,rrrly sh,rlt segtrlents

of r-'rrhc,r't'nt sprearling rirlges rrill be plescnt. these

sltort se;rtrtt:trls lt:ryrtirittt conrpt'ehtlttsivc rttagttetic antl

blllrr rrrctlir; strrrer's to t:slablish iltt)' l'eilsortilble cor'

rclntion of rrtotrtalies.

u\f tlroup,lr thc tneasurenlcnt-s of ChristolJcl anrl rRo.rs

[1970 | can bc intelpretctl as short'ittg it cotrtinttal

llansition of tlre splcarlirtg tlirection, lhc rirtc of

chal.qe tnust ltale consitllraltlf incteasetl lllorc r-e'

centll' than anortral,v 20. '[lrc traces of tlre old trans'
fornr faults srrtttlt of tltc sttlrrrttalt:tic slopc ltave sinis'

trll rlislrlacr:ttterlts. l'hc plrrscnt ones alc,ll$ the Alba'
tloss corrlillcla hetu'een l.;0''\\' and 17.5'-W obviously

havc rlertral tlisPlacettrerrt. \\te ale urral.tle to trace

llre olt[ flat'tulc zones to tlre south bclonrl artontaly

25. lrut thcre ruay be ir pirttctrt oI corltirlual trarrsi'

tiorr oI s]rikc sirtrilar to lhat reportetl in the Nolth
Pacific Ocean by llcrutnl untl Atu'ulu [1968]. If so'



208 CIINISTOTTEL AIiD FALCOIiEIT

Fig. 9. llodcl nf sea floor sprcading irt lhe soutlnvcstern Pacific. Solid lines nrurk cstolrlislrr-d fracturc zonos; brokcrr lincs
shorv inferred trends. .drrorvs inrlicatc dircctious of rntrtion, Clostrl circles on lhe ,,\llrutross coldillcra are erlict'ntcrs frurn

llnra:ongi. and Dormnn Ll969l.

the fracture' zones could colltinue in a ntanner. shorvtr
lry the brokerr linc extensions in Figrrre 9.

Since ilnortrirlr' 5 (i.e., l0 nr.y. a!{o), thc l)iltterll of
spreac.ling seenrs to have persisterl about the slnre rel-

ative pole of rolalion until the l)r'escrt, We cirn
idcntifv a nrajor fllt:lute zone. lrhich \re proposc to
cull thc Pacific-r\rrlalr.lic fracture z()lte. thitt exLerxls
at lcast l20U knr fr<.'rrr appro.xinratell, 65'S, 175'W
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to 6105, 162"E. This fracture zone corresllontls to a
p.rl: of relati,r'e motion Ior the Pacific and antarctic
plates at B2'S, 120'[ rather than to the /,e Pichon

[968], pole at ?0'S, llB'E.
{rknorcled;4nrents. \1'e gratefully ncknowlcdge thc roopera-

tiort frorn th,: Rol'al Nerv Zealand Nary and tlrc ollicers and
Inr:[ of ]Ill\ZS Endaauour for uraking our unlarctic opera-
tir.rrts ptrssiblr. We thrrnk lI. I'. Stockard, U.S. Nrval
Oceanoglagrhic Office. for supplf ing us rsith nricrol'rltu copics
ol the Prrrjcet -\lagnet records. .\Irs. Feriel Falconrr grve
raluablc assistunre in <lata r*dur:tirrn nnd interprt,totion and
in thc drarring of sunre of thc diagranrs, D. ,t. Clrristoflel
is intlebtetl to Waltcr B. Pitnran IIl. to the Nationrl Science
l'()uil(latiiln grunts Gi-l415 antl CV-23.131, and to the Offir:e
of Naral Ilcscnrclr erront li000l+{.r7:\-0108.0004 far nraking
possillle a pcriod oI lcave ut l.irnrorrt-l)ohcrtl' Geological Ob-
srrlslol-\-. n'hcrt' lhe aeronragnetir: :rnrl nruch of thc shipl-rorne
tkirr rt-'duction rcas carricd out,

(irrtlribulilrr 1779, Larnont-Dolrt.rty Ceological Obsr.rvatory.
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Changes in the Direction of Sea Floor Spreading

in the South-west Pacific

D. A. CHntstonnEl AND R. K. H. Fnlcor.trn
Physics Department, Victoria University of Wellington, Wellington, New Zealand

Abstract

A study of magnetic anomaly and bathymetric data extcnding from the Subantarctic slope to the Albatross

Corditlera-Pacific Antarctic fracture zone gives evidencc for at least three separate episodes of sea-floor

spreading.

During the Upper Cretaceous (84-63 nr.y.) relative spreading between New Zealand and Antarctica
occurred about a pole north-east of the region at 0'. 120'W. During the Lower and Middle Tertiary
(63-10 m.y.) the polc rvas possibly near the southern end of the (present) Macquarie Ridge 64' S, 160' E.
Spreading for the Upper Tertiary has probably taken place about the pole determined by Le Pichon
(70" s. r r8" E).

Rotating of Antarctica back to New Zealand about thesc three poles gives a plausible reconstruction of

thc original fit between these two continents.

INTRODUCTION

I

Correlations of marine magnetic anomalies south
of the Campbell Plateau have established the existence
of five substantial fracture zones (ChristolTel and Ross'
1970: Christollel and Falconer, 1972). The fracture
zones appear as offsets of the Cretaceous ntagnetic
anomalies 25-36. (63 m.y. to 82 m.y. on the time scale

of Falconer (1973)), Fracture zones about the present
Pacific-Antarctic pole of rotation at 70o S, I l8o E,
calculated by Le Pichon ( 1968), differ by 45-50" fronr
the strikes of the Cretaceous transform frasture zones
(fig. l). The difference indicates that substantial
changes in relative plate motions have occurred since
the Cretaceous.

The anomalies 5-25 (10-63 m.y.) can be identified
on magnetic profiles east of l75o W in thc region
50o to 600 S. Howevcr. west of l75o W these arromalies

Oceanography
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cannot be recognised and there is a lack of correla'
tion of anomalies between tracks south of 600 S.

(Christoffel and Ross, 1965: Christoffel and Falconer,
19721 . Becausc the anomalies 5-25 are not seen in
this particular region Christoffel (1969) proposed that
a pole of rotation for these anomalies lay at
640 S, 1600 E.

The aim of this work is to examine the magnetic
and bathymetric data south of the Campbell Plateau
and find the best fit poles of rotation for the South-
west Pacific. Following Christoffel and Falconer
(19721, the region is divided into three sections which
are defined by well-marked bathymetric and magnetic
anomaly discontinuities. An attempt is then made to
find a pole of rotation which best fits the data for each
section.

of the South Pacific t972, utntp. R. Fruser. New Zealand National Comnission lor UNESCO,
Wellingtrtn: 1973.

VICTOR|A UNt.,.ERStTy OF WELLING, _ ry
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REGION 1: CRETACEOUS SPREADING
This region includes the magnetic anomalies 25-36

and covers the time 63 to 84 m.y. The five well-defined
fracture zones are shown in fig. l. In addition the
Louisville Ridge (Hayes and Ewing" 1971) strikes
across the north-east corner of the area forming the
eastern boundary of the anomaly sequence. Its strike
is sufficiently similar to the other fractures to allow
the assumption that they were all formed about a

common pole of rotation. Hayes and Ewing ( l97l )

determined a pole at 50 N, 1200 W for the mean strike
of the full extent of the Louisville Ridge from the
Pacific-Antarctic ridge to the Tonga-Kermadec Trench.

In fig. I fracture zones drawn about a pole at 0o,

l20o W are superimposed on the fracture zones
determined from the anomaly pattern. The strikes of
the synthetic fracture zones agree to within 50 with
those observed. This asreement is within the accuracy

of the determinations. For comparison, fracture zones
about the Le Pichon Pacific-Antarctic pole at 70o S,

I l8o E are also shown. The strikes of these fractures
differ by up to 50o from the observed fractures. Spread-
ing rates in the area are between 4.1 cm/yr and
3.6 cm/yr but do not vary in a regular nanner.
Christoffel and Ross ( 1970), and Christoffel and
Falconer (1972), have shown that displacements across
some of the fracture zones south of the Campbell
Plateau are not constant. The variations may be due
to adjustments in spreading rate after spreading
comnrenced from an irregular shaped boundary (the
Subantarctic slope), To obtain good estimates of the
rate of spreading the other half of the pattem (in
the Bellingshausen Basin) would need to be considered. -
Data for that area were not available. Based on the \
observed spreading rates a reasonable estimate of the
half spreading anlle for the Cretaceous pattern is 7o. .'

RBGION 2: RECENT SPR-EADING

This region is centred on the Albatross Cordillera
and the Pacific-Antarctic Fracture Zone.

The Le Pichon (1968) pole at 70oS, ll8oE, for
the motion between the Pacific and Antarctic plates
is generally regarded as well determined. However,
Morgan (1968) and Le Pichon (1968) point out that

the pole position is very dependent on the strikes
of fracture zones west of 160" W. These are not well
known. The pole position has important implications
for the interpretation of the Pacific-Antarctic Fracture
Zone between longitudes 160" E and 1750 W.

Christoffel and Falconer (1972) have shown that

\/=
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Ftc. l. Marine magnetic anomaly correlations and fracture zones for the Cretaceous anomalies, after Christoffel and Falconer
(1972). Dastred lines are fractures estabtshed from the data. Heavy solid lines are fractures generated about a pole of rotation at

0', 120'W' Dash and dot lines are fractures generated about the pole of Le Pichon (1968) at 70" S, I l8o E.
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70
180 w 174160 E 170

Frc- 2. Magnetic anontaly profiles across the Pacific-Antarctic Fracture Zone (from Ch4slo]fe! and_Falc-oner, 1972). Eartllquake
cpicentres f-rom Barazanfi irnd Dorman (1969). Dashed lines. fractures about a pole at 70" S. ll8" E; full lines, fractures about a

pole at 8?" S. 120'E.

although there are high anrplitude short wavelength
magnetic anomalies between l6lo E and 175" W
(fiS. 2) the characteristic anomalies l-5 cannot be

recognised. The first profile east of 1800 along which
recent spreading can definitely be identified is that
of ODF 5 (fig. 3). This track crosses the ridge at
650S, l72oW, just east of where the ridge turns
abruptly north-east. Westward of the bend the high
amplitudc anomalies arrd rough bathymetry are more
characteristic of a fracture zone. The fractured nature
of the ridge is apparent on profiles H and B (fig.3)
which are typical of crossings between I75oW and
1610 E. The interpretation of this section as a fracture
zone is conhrmed by the high seismic activity (fig. 2),
in marked contrast to the ridges to the east and west.

The bathymetric, magnetic, and seismic data indicate
that the Pacific-Antarctic Fracture Zone is broad and

so may be a series af en echelon fractures. The
difficulty lies in determining the strikes of thesc
fractures. If fractures are generated about the Le
Pichon pole they strike across the general bathymetric

L7*
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170

axis trt angles of around 25o, (figs 2 and 4). The five
fractures showu in fig 4 fit the Sykes ( 1970) epicentres
rather well. These epicentres are more accurately
deterntined than those of Barazangi and Dorman
(1969) but cover only the area west of 180o. Since

the cpicentres are slightly scattered and there are not
morc than five per fracture the reliability of the
correspondence is low.

An equally plausible fit of the epicentres to fracture
zones is to consider that the epicentres lie on fracture
zones striking approximately N 75o W. A pole of
rotatiorl at 82o S, l20o E gives fractures with the
correct strike, as shown in figs 2 and 4.

The pole at 82o S, l20o E with the same angular
rotation rate as Le Pichon is compatible with spread-
ing rates and fractures to the east across the Albatross
Cordillera (ChristolTel, 1969). Thus with the existing
data it is difficult to choose between the two poles

suggested. Mainly on the epicentre lineations the Le
Pichon pole will be adopted here. However the othcr
pole is not ruled out.

w

:
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Frc. 3. Bathymetric and magnetic anomaly profiles across the
(H and B), and Indian-Antarctic Ridge (ELT 27 b).



\ \o\

,t"
\o

t
\'- O
o\

CHRISTOFFEL AND R, K, H. FALCONER-SEA FLOOR SPREADING

E 160 170 w170

Frc. 4. The Pacific-Antarctic Fracture Zone. Epicentres fronr Sykes (1970) shown by circles. Fracture zones as in fig. 2. Heavy
dashed line. thc Indian-Antarctic Ridge from Falconer (19721 . Other spreading centres shown by squares; open-tentative,

closed-definite.

REGION 3: LOWER AND MIDDLE TERTIARY SPREADING

Anomalies 5-25 represent the period from approxi-
mately l0 to 63 my. One way of explaining the inability
to identify this anomaly sequence westward of 175o W is
to assume that thc spreading rate was low. Since the
anomalies are identified further to the cast it suggests
that the pole of rotation may be south of thc Campbell
Plateau. Following Christollel (1969) a pole at 640S,
l600 E is taken. Fracture zones about this pole, drawn
through the continuations of the Cretaceous fracture
zones are shown in fig. 5. For this pole the half angle of
rotation from four determinations of spreading rate is
20.80 r- l.7o (table l).

Trslr I

Determination of nrean half spreading angle for region 3, about a
pole at 64'' S, 160' E.

IPosition Angular Spreading
Degree Lat,

Frc, 5. Fracture zones generated about a pole of rotation at

64" S, 160" E for the region containing anomalies 5-25.

Double line, spreading oentre; single line, anomaly trends;
dashed lines the observed Cretaceous fracqure zones.

Y.un half snreadine angle ?O:! ,, ] .3

245

5l's t52'w 9"
56"5 160 W 8"
59'S 174'W 4.5
60.5'5 r78'E 3.5

Half-spreading
Angle Degrec

t9.2
22.2
t9.7
22,0
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COMPOSITE
Putting together the spreading pattern given by the

three separate poles of rotation (table 2) and assum'
ing continuous extensions of the Cretaceous fracture
zones the traces shown in fig. 6 are obtained. There
is'no reason for these fractures to be continuous and
data are insufficient to trace them all the way. Never-
theless several of the fractures extend to presently
active seismic areas on the ridge. Offsets in the ridge
at l50oW (Herron, 1971) coincide with the inter-
section of one of the major fracture zones, and offsets
in anomalies near 170" W are observed where a
fracture zone is predicted.

Trnle 2

Poles and angles of rotation for spreading between Antarctica and
New Zealand.

I ange
of Rotation

Degrees Flc. 6. Composite fracture zones generated about the three
poles of rotation of table 2. Anomalies 5. 25, and 36 shown.
Epicentres from Barazangi and Dorman (1969). Double line,

spreading centre.

OCEANOCRAPHY OF

PICTURE

THE SOUTH PACIFIC 1972

Anomaly
Span

Time Span
m. y:

I

Pole
Location

l-5
5-?5

2s-36

I

0-t0 | 70' s, I l8' E
10-63 | 64" S, 160'E
63-84 0" S, 120'W

10.8
4l
t4

DISCUSSION
There is no doubt that changes in spreading have

occurred in the South-west Pacific since the Cretaceous.
The analysis presented here in terms of three poles
is adequate although somewhat arbitrary. Continuous
changes in the pole positions rather than discrete
changes are more probable.

The change in spreading at anomalies 24-25 is rather
abrupt and could well be related to the cessation of
spreading in the Tasman Sea at this time (Hayes and
Ringis, 1973). It could also be related to world-
wide eftects associated with the Cretaceous-Tertiary
boundary.

The initiation of spreading between Australia and
Antarctica at approximately the time of anomaly 18
(45 m.y.) presumably would have some effect,
especially in the western part of the region con'
sidered. This may explain why our poles do not give
as good a reconstructisn of that area as the area
further east. The shift of the pole from 640 S 1600 E
to a pole between 70 and 80o S. near l20 E could be
gradual. However some world-wide change at ano-
maly 5 (l0 m.y.) is often suggested: e.9., Herrou
(1971), Morgan (1968), Menard and Atwater (1968).

The accuracy with which the poles of rotation ancl

spreading rates can be determined is limited both by
the small extent of the region over which the anomalies
are found and also because data exist for only half of
the spreading pattern. Many of the observed changes
and apparent inconsistencies in spreading rate could
be explained by asymmetrical spreading^ The angles
of rotation given in table 2 are also limited in accuracy
for this reason.

A stringent test of the poles and rotation angles
is to rotate Antarctica and New Zealand back about
these poles of table 2. The reconstruction is shown in
fig. 7. It is seen that the Subantarctic Slope on the

Frc. 7. Antarctica rotated back about the poles and angles
of table 2.

edge of the Campbell Plateau fits reasonably well
along the coastline of Western Antarctica but there
is some overlap in the Ross Sea area. Either asymme-
trical spreading or some relative motion between east
and west Antarctica since the Cretaceous could account
for this overlap. However bearing in mind that the
poles are likely to be nrean poles of rotation, this lit
is better than could be expected.

Since the region is limited in extent, the only way
to improve tlre precision of the deterninations is to
analyse data south of the Albatross Cordillera in the
Pacific-Antarctic Basin, and to accurately survey the
fracture zones extending southward from the Campbell
Plateau.
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Numerical Studies of Cretaceous Magnetic
Anomalies in the South-west Pacific Ocean

R. K. H. FalcoNnn
Physics Department, Victoria University of Wellington, Wellington, New 7*aland

Abstract

Nrrmerical correlation of magnetic anomaly profiles is investigated using the product moment correlation
coefficient.

Application of this method to an area of well-mapped magnetic anomalies indicates that consistent
correlations can be obtained numericallv. Fracture zones are confirmed and numerical results used in the
interpretation of a small complex area. An extendcd geomagnetic time scale, back to 83 mybp, is given.

Numerical correlations betwecn a model profile bascd on the time scale. south Pacific profiles and the
north Pacific type profile confirnr the assignment of the anomaly sequence in the South-west Pacific to Upper
Cretaceous age.

INTRODUCTION

Marine magnetic anomalies are used extensively in
the study of the evolution of oceanic areas. Correla-
tion of anomalies between closely spaced tracks has
revealed the structure of particular areas (Mason and
RalI, l96l: Talwani et al, 1971). Comparisons between
widely spaced areas (Pitman and Heirtzler, 1966) have
contributed to the concept of plate tectonics (Morgan,
1968; Le Pichon, 1968) which reveals the structure of
much of the earth's crust.

The identification of magnetic anonraly patterns de-
pends on correlation of anomalies between tracks.
Satisfactory correlation is possible only when distinc-
tive sequences are identifiable in the profiles. It is difli
cult to assess the uniqueness of a particular sequence

and to determine the reliability of correlations. Up to
the present, numerical correlation has rarely been used
(Fuller, 1964: Luyendyk er al., 1968: Loncarevic and
Parker l97l). Visual correlations are adequate but are
influenced by personal factors such as the scale of
plotted profiles and preconceived ideas. Even when
different investigators agree on a particular correlation
they cannot easily compare their judgments. In an
attempt to overcome some of these human limitations,
numerical techniques are applied. To judge of the use-
fulness of such numerical methods, they are applied
here to an area which has already been well studied
(Christoffel and Falconer, 1972) using conventional
methods.

THEORY

Consider two ntagnetic anomaly profiles which when
digitised at N equidistant points give two series x(i)
and y(i). A good measure of the similarity of two
profiles is the covariance coefficient vr given by

lN
vr:- 2[x(i)-mx].[y(i)-my] (l)

N i:r
where mx and my are the means of series x(i) and
y(i) respectively.

In comparing profiles in which the anomalies are
similar but have different mean amplitudes, the amp-

litude variation is not very important. It is reasonable
therefore to normalise each series to the same ampli-
tude. This gives the Pearson product moment correla-
tion coefticient r.

N
2 [x(i)-mx]. [y(i)-my]

i:l
(2)

[ 
] O,',-*x1,. ty(i)-myl']+

the Sout,h Pacific 1972, comp. R. Fraser. New Zeuland National Commission for UNESCO,Oceanr>graphy of

-upronrl'!'("f'o:", !" lr ;.=-LrNcTgL{
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r will vary between * I for perfect correspondence of
the series and - I for negative correspondence. r: 0

represents cc.rmplete non-correlation. For convenience,

uoluer given in this paper are 100'r, i.e.. 100 for per'
fect correlation.

If one profile is longer than another it is pos-sible to

calculate ihe correlation coefficient r for several differ-
ent alignment positions of the profiles' If r is plotted

as a function r(d) of distance, this is equivalent to

sweeping profile x along profile y. A malimum in r(d)
will indicate an alignment position at which the correla-
tion is best.

To statistically compare different correlations it is

necessary to know the confidence limits on r. The

OCEANOGRAPHY OF THE SOUTH PACIFIC I9i2

Fisher (1970) z-transformation method cannot be

used automatically, since when profrles are digitised
at close intervals each point is not independent of
points adjacent to it, and hence the assumption that
all N values of the series are independent is not correct.
Awe (1964) has given methods for determining the
eftective number of independent points, Ne, but these

methods apply only to particular types of data' The
assumption, based on sampling theory (Jenkins and
Watts, 1968), of two independent points per maximum
could be used, but it is diffrcult to standardise the
nethod of counting maxima. Considering only promin-
ent maxima should give the minimum value of Ne.

This would give the maximum range for confidence
intervals on r.

REGIONAL CORRELATIONS

Christoffel and Falconer (1972) showed that there is

a clearly identifiable sequence of anomalies in the

South-west Pacific (fig. l) corresponding to the period

63 to 82 mybp, i.e., Upper Cretaceous age (Berggren.

1969). Six widely spaced profiles typical of the

sequence are shown in fig. 2.

Correlations between the profiles are visually good'

They shoultl therefore provide a good test of the

numerical method. Fifteen different comparisons are

possible, giving a range for r of 47 to 18, with a nlean

of 33.

The correlations appear to be quite low, but the
hypothesis that two profiles are uncorrelated can be

statistically tested. Taking Ne : 30 and 5/o signi-
ficanc-e levels, the hypothesis would not be reject'
ecl for 8 of the 15 correlations. lt is clear that low
correlations can result from profiles which are in fact
visually similar.

One possible explanation for this is horizontal scale

variations. Profiles B and Rl (fig. 3)' are obviously
similar and have a correlation value of 42' However, a

change of only 31o in the length of Rl increases the
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Ftc. l. Cretaceous magnetic anomaly correlations; based on Christoffel and Falconer (197]. fig.3). Fracture zones shown dashed.

anomoii"t numbered after Le Pichon a a/. (1968) and ChristolTel and Falconer (1972).
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Frc. -5. Anomaly correlations and fracture zones in the
small area near the Bollons scamount.

near the Bollons seamount (Fig. l) provides a good
test area. Christoffel and Falconer (1972\ recorded
the structure as complex and did not map any definite
fractures. However, partially on the basis of the numeri-
cal results, an unusual configuration of two fracture
zones (the Toarahi and Rangirua fracture zones) is
here suggested (Fig. 5).

The Toarahi fracture zone is identified on iracks
Vl6 and 4408. Sweeping the section A + B of Vl6
(Fig. 6) along ,{408 gives a maximum correlation of
65. The position of maximum agrees with the best

TIME
The identification of anomaly trends allows an

assessment of the structure of an area. However, dis-
cussion of the tectonic history requires additional
information. The anonralies must be assigned an age,

either absolute or relative. This involves comparisotr
with a type profile suclr as the composite north Pacific
Ocean profile NPAC (Vine. 1966), to which ages have

been assigned.

The good correlations within the South-west Pacific
anomalies allows one to establish a South Paciftc type
profile, SPAC (fig.7). The Hgh correlation value (89)
of SPAC with the north Pacific type profile NPAC
clearly shows that the anonralies in the South-west
Pacific are of the same age as those of the north Pacific
profile.

Vine (1966) gives the ages for anomalies 25 and 32

as 59 and 72 mybp respectively. Heirtzler et al- (1968)
date them as 63 and 75 mybp respectively' Heirtzler

OCEANOCRAPHY

North

JO

OF THE SOUTH PACIFIC 1972

South

l-A 
-r- 

B 

-JFlc. 6. Magnetic anomaly profiles used in, the numerical
tests applied to the area of fig. 5'

visual correlation. Correlations of 64 for A on C, and
85 for B on D also confirm the anomaly trends between
Vl6 and ,4408 shown in fig. 5. The visual similarity
of sections A and B in Vl6 further suggests a fracture
between them. Correlation of 74 for A on B confirms
this. and correlation of 69 for C on D further indicates
that the fracture crosses between C and D.

T'he Rangirua fractttre zone is confirmed by sweep-

ing a section of profile T (fig. 6) along Vl6 and 4408.
Correlations of 82 and 58 for T on A and C respect-

ively. and 7l and 82 for B and D respectively, support
the identification of anomalies 32A and 32 shown in
fig. 5.

The numerical tests applied in this area use only
short sections of profiles and hence the statistical uncer-
tainties are greater. Section C is the one section rvhich
is visually dissimilar from the others and correlations
involving it. always give values lower than those for
other sections. This indicates that the numerical cor-
relations will give consistent values which can be used

to aid interpretation.

SCALE
et al. (1968) have tabulated the ages of the boundaries
of a series of normally and reversely magnetised blocks
which could prodrrce the observed anomaly pattern.

A^'\f,r._*r i'f ,l\ AA i --4-\*"o,V V W V \/ J

mrr-r--T-r
I r t'gb' | | r/ | l' tTbt I I 1615r I tage(myJ

Frc. 7. North Pacific type profile NPAC. South Pacific type
profile SPAC. Model pidfile-calculated from the model blocks- based on SPAC.
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correlation to 64. Such differences in length of the
same anomaly sequence on different profiles can be
due either to variations in the orientation of the pro-
files with respect to the anomaly trends, or to difter-
ences in sea floor spreading rates at the location of
the profiles. Visual correlation is not significantly
affected by the variations, provided that profiles are
drawn approximately the same length. However, the
numericai method appears to be critically affected. It
is easy to vary the scale of a profile numerically and
recalculate the correlation, but the problem is more
serious if the scale varies along a profile.

Low correlations can also be caused by a missing
section in one profile. The eftect is illustrated by profiles

1

,

s

6

Ftc. 2. Typical magnetic anomaly profiles of the Cretaceous
sequence. NPAC from the north Pacific (Vine 1966), l-.,6

from the area shown in fig. l.
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R2

r-_A B-+J

Frc. 3. Profiles which illustrate amplitude differences
nrissine sections.

Rl and R2 (Fig. 3). They have a correlation of 54 but
are identical except for the insertion of a short artificial
section between anomalies 31 and 32. Missing or extra
sections in profiles are comnron if a track crosses a
fracture zone.

R1

B

and

The problems caused by missing sections or scale
changes within profiles can be partially overcome by
breaking one profile into shorter sections, then sweep-
ing the short sections along the other profile, e.g.,
sections A and B of profile Rl (Fig. 3) both give
r : 100 at the appropriate places on R2. Obviously
the sections cannot. be too short, since the statistical
reliability of the correlation decreases with N.

Profiles B and Rl illustrate the need to normalise
the profiles. The average amplitude of B is 350 ganma
while that of Rl is 500 gantma. Use of the covariance
coefficient lequation (l)l instead of the correlation
coefficient [equation (2)] would be misleading in such
cases.

FRACTURE ZONES

The identification of a fracture zone normally
requires several profiles for anomaly trends to be
mapped, and the fracture position inferred from the
offset of the anomalies. However, if the same anoma-
lies occur twice in one profile, a fracture, although not
its strike or offset, can be inferred from that profile
alone. The large fracture zone at 1650 W (Fig. l),
here named the Tairoa fracture zone, was initially
identified from the ELT 23 profile only (Pitman et al,

Frc. 4, ELT 23 profile across the Tairoa fracture zone, with
the left hand 32-27 section above it in the best alignment

position determined by the correlation coefficients r(d).

1968). Fig. 4 shows the profile, on which the duplica-
tion of anomalies 27 to 3l is clear.

The numerical verification of the fracture is accom-
plished by sweeping one set of the anomalies along
the fulf profile. The plot of r(d) peaks (r :79)
at one position, which corresponds to the position
of best visual correlation. The r : 100 peak is as
expected at alignment of the short section with itself.

This profile illustrates the problem of data gaps in
correlation analyses. A correlation value of 79 was cal-
culated with the data gap replaced by a straight line be-
tween the known values. Replacing the gap with values
equal to the mean of the complete profile gives a correla-
tion value of 69. Neither method is satisfactory, since
each effectively inserts an anomaly structure which may
not be present. A possible alternative is the omission of
any data gap terms from the summations in the calcu-
lation of r.

Data gaps present a similar problem in visual cor-
relation, and are a source of considerable personal
bias. The extent of the gap is an important factor for
both visual and numerical methpds.

The numerical method is probably most useful when
there is ambiguity in the visual correlations. An area
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TeeLE L Ceomagnetic Time Scale Based on profile SPAC the reversal time scale. A scale is given (table 1)'
based on the SPAC profile and the Heirtzler et al.
(1968) dates of anomalies 25 to 27. The similarity of
SPAC to NPAC and to other north Pacific profiles
(Peter et al., l97l; Raff, 1966) suggests that the scale

can be applied elsewhere.

Correlation between different areas of the world is

often carried out by comparing profiles with a model
profile calculated from a time scale (Pitman and Heirt-
zler, 1966). The correlation between SPAC and the

model based on it is 94. Such a high value indicates
that in general a sinrple model of normal and reversed

blocks with the appropriate time scale will be adequate

to describe the observed anomalies.
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Anomaly
25
26
L'

28
29
30
3l
324

33
34-36 ..
17

R-N N_R
62.75 63.28
64.14 64.62
66.65 67.10
67,75 68.45
68.75 69.40
70.00 7t.50
11.60't2.40
?3.9_5 ',t4.O5
'r4.30 '15.60
?5.80 '75.85

76.20 80.40
80.?5 8r.55
82.00 82.75

The identilication of anonralies beyond number 3f
(ChristolTel and Falconer, 1972\ allows an extensiou of

CONCLUSIONS

Numerical calculations using the correlation coelli-
cient r can be usefully applied to the correlation of
magnetic anomaly profiles. This method overcomes
the problem of which scales are best for visual corre-
lation and avoids the problems of preconceived ideas.
Long profiles can present difliculties because of vari-
ations within the profiles. Short sections give good
results, but determination of an adaluate length of
profile to give statistically meaningful results is diflicult.
Visual nrethods involve the problem of establishing an
adequately unique section of profile, but more com-
parisons of visual and numerical results may indicate
the necessary criteria. Definite methods for handling
data gaps may also be developed. The reliability of
models can be rigorously checked by numerical cor-
relation because one profile is controlled. This will per-

Awe, O. 1964: Errors in correlation between time series.
J. Atnns. Terr. Phvsics. 26: 1239-1255.

BERccREN, W. A. t969: Cenozoic Chronostratigraphy, Plank-
tonic Foraminiferal Zonation and the Radiometric Time
Scale. Nolrrre, Lond. 224: 10'12-1075.

Cunrslorrnl-, D. A.t FALcoNER, R. K. H. 19'12:. Marine
masnetic measurements in the south-west Pacific Ocean
and' the identification of new tectonic features. in
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Sector. ed. D. E. Hayes. American Geophysical Union.
Antorctic Research Series 19: 191-209^
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mit good comparison between areas in which the same

structure gives dilTerent anomaly shapes.

The product moment correlation coefficient r is not
the only coefiicient which may be used for correlation
stu<lies. Further studies are planned to investigate the

tusefulness of first moment correlation (Gibson' 1950)'
goodness of fit (Francheteau et al., 1969) and other
coefficients (Harrison, l97l).

Nunrerical coefficients are unlikely to supersede visual
comparisons especially as most data need scrutinising
befoie numerical methods can be usefully applied.
However, numerical values provide qrrantitative com-
parisons, uninfluenced by any personal bias. Final
interpretation will always be a personal matter but
numerical coefticients at least provide a precise nreans

of communication for discussions of the correlations.
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