Tracking Performance
of the Graal Compiler
on Public Benchmarks

Lubomir Bulej ' Francois Farquet 2 Vojtéch Horky !
Michele Tucci ' Petr Tama '

'Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics
Charles University

2Qracle Labs Ziirich

2018 - 2021

Department of
Distributed and
Dependable

Disclaimer

Development Versions

Performance and other measurements used in this presentation are
collected using development versions of the software involved.
As such, they do not represent product performance.

Modified Benchmarks

Benchmarks used to collect the measurements were often modified
to facilitate integration into the measurement infrastructure.

None of the benchmark results are standard benchmark scores.

Platform Specific

Measurements are platform specific. Platform information was omitted
for brevity, contact us if you need more details.

... and we are only human

The data may be influenced by mistakes we are not aware of.

Outline

@ Quick Platform Overview

About Graal Compiler
A just-in-time compiler for Java written in Java

@ Functions as the last tier compiler

@ Partial escape analysis and speculative optimizations

Part of a larger ecosystem surrounding the JVM

JS "‘@de"’ ﬂ@ Mg ®@@

GraalVM Compiler

Image from https://www.graalvm.org

https://www.graalvm.org

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.

Performance Testing Workflow

I
|
y

Write
Code

Performance Testing Workflow

I
|
y

Write

Code

I
A4

Write
More

I
Y

Write
Even
More
Code

T
|
\4

commit

Check
Out

Code

COV‘ Repository

Report Result

commit

Y

Build

Deploy

Run
Tests

Performance Testing Workflow

I
|
y

Write

Code

I
A4

Write
More

I
Y

Write
Even
More
Code

T
|
\4

commit

: OV‘

commit

Check
Out

Code

Repository

Build

Y

Plan

!

Deploy

Report Result g
Tests

Performance Dashboard

I ——

speson

https://graal.d3s.mff.cuni.cz

Overview Dashboard

v Within 15 days of
February 415:22.08
k0 7

v Mithin an hour of
January 22 02:52:19

Wit a dayof
© Febm!ly 13 US 124:51

© Within8 days of
February 13 052451
G o) €5

A k.o

Witin 6 dars o
© Fehm 1015:34:58

Witin 3 mths of
© February 503:33:11

© Within 2 months of
January 20 1451:25.

Febriary 11 050507

rop—

Within 16 daysof
© by $08e7

Febriary 11 050507

Within 4 months of
February 5 03:44:29

Fin il
wtazs

© Within 2 months of
February 5055311

Within 3 months of
February 503:33:11

X Within8 days of
February 13 05:24:51

Within 8 days of
Janiary 27063425
o 7 e

X Within 3 months of
February 11050607

Fote015n

Wit an o of
© January 22 02:52:19

X Within 4 months of
February 11 05:08:07

@ Grasl Benchmark Dashboard

ScalaBench tradesoap-large 249ms (2.2%) slowdown

New
o
Configuration

(Graal CE (devel) JDK 821.1.0-186
2021-02.05T02:33:112
(Graal CE (devel) JDK 8 21.0.0:317

2020-12-15T09:56:432 Craed zsme

Wallock e per eraton

Ny

erson e oo

Wil lock tme por eraton

Nongzg a7
Dz e

Overview

008%

Dashboard

s

N
s

https://graal.d3s.mff.cuni.cz

Performance Dashboard

https://graal.d3s.mff.cuni.cz

© Graal Benchmark Dashboard ” d © Graal Benchmark Dashboard Dashboard
Ve ra t re n s ‘ScalaBench tradesoap-large 249ms (2.2%) slowdown
e e New Graal CE (devel) JDK 821.1.0-186 —— o
waon : i 202102.05T0233:112 N 12% “0.04%
o St o Graal CE (devel) JOK 8 21.0.0317 Now26:03% Now 396099
g 2201215709564 e et -
g Configuration .
B - o PT——
o~ Wiin15 daysof ~ Witinannourof © Wininesayot O Vitinsdaysf
Fobniany 4 155508 Saary 2355819 P S 2a51 Rt Wo8sst
s -)
© b oran O T © it O o 38561 ‘ ‘
.- st — o~
@ Within 6 days of © Within 16 days of Within 4 months of ® Within 2 months of Walldock e pr feraton
[RS February 305430 el
© witin3monnsor Wiin3 montns of Within' daysof © Wit anhou of
Fobrunn's 551 Febniany 055501 Yoy 625 Saniay 2355810
© Win2momhsor x Wihingdaysof X Witn3memhsot x Withndmonthsof P
Saary 20451 Febniany 552451 et Februany 11 550807

https://graal.d3s.mff.cuni.cz

Performance Dashboard

https://graal.d3s.mff.cuni.cz

I ——

Overall trends

v Within 15 days of v Mithin an hour of © Withinadayof © Within8 days of
4152208 January 22 02:52:19 February 13 05:24:51 February 13 052451
yony S O e K Gl O) G) 65
]

Fobniany ¥ b401:30

Witin 6 dars o
© February 10 15:34:58.

3 months of
So33am

Wi
© Febr

© Within 2 months of
January 20 1451:25.

Within

Individual
performance
changes

February T 045651

o0

© Within 2 months of
February 5 033311

Within an hour of

X Within8 days of

Februa

ry T

amuary 27 06:3%:
o e 905

X Within 3 months of
05251 February 11 05:08:07

Fote015n

January 22 02:52:19

X Within 4 months of
February 11 05:08:07

© crasl Benchmark

oard

ScalaBench tradesoap-large 249ms (2.2%) slowdown

New Graal CE (devel) JOK 8 21.1.0-186 Wl clock ive Insiactions Cyes

Wallock e per eraton

Y

Wil lock tme por eraton

PORT—

https://graal.d3s.mff.cuni.cz

Performance Dashboard

https://graal.d3s.mff.cuni.cz

© Graal Benchmark Dashboard I l d © Graal Benchmark Dashboard Dashboard
Ve ra t re n s ScalaBench tradesoap-large 249ms (2.2%) slowdown
o New (Graal CE (devel) JDK 821.1.0-186 [[o— o
ason 2021-02-05T02:33:112 MY +012% 0.04%
- = | L | K N o
: V|| SR || Emdn || S
g Configuration .
PR | r— S N
we, v MmO mumama. O Mmeess Specific benchmark history
et RAE, s .

T T AT M

Individual
o il performance o s P—

February 5 033311

Within 6 doys of
O Foman W 5hase

© Within an hour of

© Within3 months of Within3
February 5 03:33:11 T Tanuary 27 0634 January 22 02:52:19

@© Within2 months of X Within8 days of X Within 3 months of X Within 4 months of O —
January 20 1451:25. February 13 05:24:51 February 11 05:08:07 February 11 05:08:07

- o 0 Fote015n

https://graal.d3s.mff.cuni.cz

Performance Dashboard

I ——

https://graal.d3s.mff.cuni.cz

Overall trends

v Within 15 days of v
February 4 152208

Within an hour of
January 22 02:52:19

Wit a dayof
© February 13 05:24:51

© Within8 days of
February 13 052451

Witin 3 montsof
© February 503:33:11 ©

x

Within 2 months of
O Laniay 145 s

Individual
mod performance
changes

Within3

Tanuary 27 0634

Within 8 days of X Within 3 months of
Feb 052051 ‘0807

February T 045651
oz

Wit 2 monts o
© 33

Wit an o of
© January 22 02:52:19

X Within 4 months of
5:08:07

hboard overv

© crasl Benchmark

ScalaBench tradesoap-large 249ms (2.2%) slowdown
New (Graal CE (devel) JDK 821.1.0-186

20m-020sT0z3311Z - s
ou GraalCE (devel) JOK 821.0.0317 o 15 Nowtaz 021 e 0

202012:15T09:56:432 i it o
Configuration .

Specific benchmark history

Shh MY

Wl dock tme per eration

https://graal.d3s.mff.cuni.cz

Dashboard Internals |

How to execute the measurements ?

Resource sharing and background load matter
Repetition count is determined on the fly

°
°
@ Need more than latest software version
°

Faulty setup may remain invisible

What we do

@ Use dedicated hardware infrastructure

> Multiple servers with equivalent parameters
> No other load than the benchmarks

@ Proprietary software to coordinate measurements

@ Iterative selection of versions to measure

Dashboard Internals Il

When to fail the test ?

@ Noisy measurements
@ Change can be legitimate

@ Absolute performance requirements not given

What we do

@ Compare performance of neighboring versions
@ Focus on low false positive rate

> lterative measurement planning
» Observing multiple metrics together

@ Alongside commit pipeline but not blocking

Dashboard Internals IlI

Platforms

@ GraalVM CE/EE with Open]DK/HotSpot JDK 8/11/17 using JIT/AOT

@ Only top level merge commits into master

@ ... around 7800 last year

Benchmarks

J

@ ScalaBench (includes DaCapo)
SPECjvm2008 (non-compliant)

)

@ Renaissance 0.10 to 0.13

@ Plus internal microbenchmarks
9

... around 150 workloads

https://scalabench.org
https://spec.org/jvm2008

https://renaissance.dev

https://scalabench.org
https://spec.org/jvm2008
https://renaissance.dev

Outline

© Detecting Changes

Summary Performance History
105.0%

102.5%

100.0%

GraalVM CE JD

97.5%

Speed relative to latest version

GraalVM EE JDK 16
GraalVM CE JDK 11

95.0%

2020-01 2020-07 2021-01 2021-07

Summary Performance History
105.0%

100007 (?mA /M FF IDK 17

Plot Info
Input Benchmark execution times collected across recent compiler

versions and all benchmarks.

1 . . .
Computation Express all execution times as speed up or slow down
relative to the execution times of the most recent compiler version
on the same benchmark.

X axis Commit time of the compiler version measured.

Speed relative to latest version

Y axis Geometric mean of relative speed up or slow down.

-
95.0%

2020-01 2020-07 2021-01 2021-07

Summary Performance History
105.0%

102.5%

100.0%

GraalVM CE JD

97.5%

Speed relative to latest version

GraalVM EE JDK 16
GraalVM CE JDK 11

95.0%

2020-01 2020-07 2021-01 2021-07

Summary Performance History
105.0%

Jumps attract attention
to major changes

102.5%

100.0%

GraalVM CE JD

97.5%

Speed relative to latest version

GraalVM EE JDK 16
GraalVM CE JDK 11

95.0%

2020-01 2020-07 2021-01 2021-07

Summary Performance History

Speed relative to latest version

105.0%

102.5%

100.0%

97.5%

95.0%

Jumps attract attention
to major changes

GraalVM CF IDK 11

Note

GraalVM CE JD

GraalVM EE JDK 16

But trends can be misleading ...

All benchmarks have the same weight ...

2020-01

2020-07

2021-01

2021-07

GraalVM CH

Detecting Individual Changes

| Colors show runs
T T35 R ek Losh

22
Oct 2020 Mar 2021 May 2021 Sep 2021

https://doi.org/10.1007/s10515-015-0188-0

https://doi.org/10.1007/s10515-015-0188-0

Detecting Individual Changes

| Colors show runs |
= Il

2 Oct 2020 Mar 2021 May 2021 Sep 2021
A time series change point detection problem with a few twists

@ We have more correlated time series rather than just one

@ We can add more data points to any version if required

@ Data points are in fact hierarchical sets from runs

@ We are more interested in changes near series end

@ Almost no assumptions about data distribution

https://doi.org/10.1007/s10515-015-0188-0

https://doi.org/10.1007/s10515-015-0188-0

Detecting Individual Changes

‘ Colors show runs \

22
Oct 2020 Mar 2021 May 2021 Sep 2021
A time series change point detection problem with a few twists
@ We have more correlated time series rather than just one

We can add more data points to any version if required

°

@ Data points are in fact hierarchical sets from runs
@ We are more interested in changes near series end
°

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

https://doi.org/10.1007/s10515-015-0188-0

Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

bench

aka-uct
als
chi-sqr
db-shot
dec-tre
dotty
fin-chi
fin-htt
fj-kmns
fut-gen
gauss
log-reg
mne
mov-len
nai-bay
neo-ana
pg-rank
par-mne

philos

reactr

Renaissance 0.10

R D I
1% 0%
5% 0%
2% 0%
2%
2% - 0%
5%
1% 0%
3% 0%
5% 0%
0%
1%

0%
5% 0%
6%
2%
4% 0%
1% 0%
4% 0%

2%
o [

rx-scrb 4% 0%
sc-doku 1%
sc-kmns
sc-stmb 1%
scrb | 5% - 0%

ScalaBench (with DaCapo)
bench R D I
appar-d
avror-1
batik-s
eclps-s
factr-d 1%
fop-d
h2-d 2%
jythn-1
kiama-d 2%
luidx-d
lusrc-1
pmd-1
sce-1
scdoc-1 1%

scp-1

scrfm-h

scxb-h

specs-1

sunfl-1

tmt-d

trdb-d

trds-1

xalan-1

2%

SPECjvm2008

bench

cmp. cmp

cmp. sun

compr

cry.
cry.

cry.

aes

rsa

sgn

derby

mpega

sci.

sci

sci.

R - versions with changes

ffl

~lul

R
%
2%
4%
4%
%
4%

(modi fied)

D

I

sci.spl 4% 0%
serial 2% 25%

sunflow 3% 0%

xml.trn 3%

xml.val 2% 25%

Internal Micros

bench R D I

StrDev 4%
SFndNeg 3%
SF1dSum 3%
SForSum 3%
SMapRed 3% 21%
STwoAvg 30%
TSP 0%
TxtSDF 10%
TxtRDD 0%
WrdCnt 0%
BufDec 15%
BufEnc 12%
ChrCnt 0%
ChrHis 20%
FJHis 0%

D - manually confirmed

FIstr
F1t0dd
FndNgt

FntNgtR
FldSum
FldSumR
ForSum
ForSumR
GrpRem
MapOne
NetDot
NetEig
Reduce
STMLst
STMMap
Scan
SrtRDD
StdDev
strCnt
StrDem

StrPer

| - invalid situations

Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 0%
bench R D I | sc-doku 1%
aka-uct 1% 0% | sc-kmns
als | 5% 0% | sc-stmb 1%
chi-sqr 2% 0% scrb | 5% - 0%
db-shot 2% ScalaBench (with DaCapo)
dec-tre 2% - 0% | bench R D I
dotty | 5% appar-d 3% - 0%
fin-chi 1% 0% | avror-1 1%
fin-htt 3% 0% | batik-s 3% - 33%
fj-kmns 5% 9% | eclps-s 1%
fut-gen 0% factr-d 1%
gauss 1% fop-d 2%
log-reg f% 0% h2-d 2%
mne ' ‘ 0% | jythn-1 1%
2%
Most benchmarks |
exhibit changes | =
123 pre-l 3%
par-mne 4% . % scc-1 1%
philos 2% scdoc-1 1%
reactr 2% - % scp-1 2%

scrfm-h

scxb-h

specs-1

sunfl-1

tmt-d

trdb-d

trds-1

xalan-1

2%

SPECjvm2008

bench

cmp.

cmp.

cmp

sun

compr

cry.
cry.

cry.

aes

rsa

sgn

derby

mpega

sci.

sci

sci.

R - versions with changes

ffl

~lul

R
%
2%
4%
4%
%
4%
1%
4%
1%

(modi fied)

D

I

sci.spl 4% 0%
serial 2% 25%
sunflow 3% 0%
xml.trn 3%
xml.val 2% 25%
Internal Micros
bench R D I
StrDev 4%
SFndNeg 3%
SF1dSum 3%
SForSum 3%
SMapRed 3% 21%
STwoAvg 30%
TSP 0%
TxtSDF 10%
TxtRDD 0%
WrdCnt 0%
BufDec 15%
BufEnc 12%
ChrCnt 0%
ChrHis 20%
FJHis 0%

D - manually confirmed

FIstr
F1t0dd
FndNgt

FntNgtR
FldSum
FldSumR
ForSum
ForSumR
GrpRem
MapOne
NetDot
NetEig
Reduce
STMLst
STMMap
Scan
SrtRDD
StdDev
strCnt
StrDem

StrPer

| - invalid situations

Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

Renaissance 0.10

bench R D

aka-uct 1%

als | 5%

Detection mostly

rx-scrb 4% 0%
sc-doku 1%
sc-kmns
sc-stmb 1%
scrb | 5% - 0%

ScalaBench (with DaCapo)

. bench R D 1
reliable enough || . g o
fin-chi 1% 0% | avror-1 1%
fin-htt 3% 0% | batik-s 3% - 33%
fj-kmns 5% 9% | eclps-s 1%
fut-gen 0% factr-d 1%
gauss 1% fop-d 2%
log-reg f% 0% h2-d 2%
mne ' ‘ 0% | jythn-1 1%
2%
Most benchmarks |
exhibit changes | =
123 pre-l 3%
par-mne 4% . % scc-1 1%
philos 2% scdoc-1 1%
reactr 2% - % scp-1 2%

scrfm-h

scxb-h

specs-1

sunfl-1

tmt-d

trdb-d

trds-1

xalan-1

2%

SPECjvm2008

bench

cmp.

cmp.

cmp

sun

compr

cry.
cry.

cry.

aes

rsa

sgn

derby

mpega

sci.

sci

sci.

R - versions with changes

ffl

~lul

R
%
2%
4%
4%
%
4%
1%
4%
1%

(modi fied)

D

I

sci.spl 4% 0%
serial 2% 25%
sunflow 3% 0%
xml.trn 3%
xml.val 2% 25%
Internal Micros
bench R D I
StrDev 4%
SFndNeg 3%
SF1dSum 3%
SForsum 3%
SMapRed 3% 21%
STwoAvg 30%
TSP 0%
TxtSDF 10%
TxtRDD 0%
WrdCnt 0%
BufDec 15%
BufEnc 12%
ChrCnt 0%
ChrHis 20%
FJHis 0%

D - manually confirmed

FIstr
F1t0dd
FndNgt

FntNgtR
FldSum
FldSumR
ForSum
ForSumR
GrpRem
MapOne
NetDot
NetEig
Reduce
STMLst
STMMap
Scan
SrtRDD
StdDev
strCnt
StrDem

StrPer

| - invalid situations

Detected Changes In Numbers

What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 0% | scrfm-h 2% sci.spl 4% FIstr

bench R D I | sc-doku 1% scxb-h 2% serial 2% F1t0dd

aka-uct 1% 0% | sc-kmns ' 6% specs-1 1% sunflow 3% FndNgt

als | 5% sc-stmb 1% sunfl-1 2%

scrb 5%- 0% tmt-d 3%

ScalaBench (with DaCapo) | trdb-d 1%

xml.trn 3% FntNgtR

xml.val 2% FldSum

Internal Micros FldSumR

Detection mostly

. bench R D I trds-1 2% bench R D ForSum
rehable enough appar-d 3%- 0% | xalan-1 2% StrDev 4% ForsumR
fin-chi 1% 0% | avror-1 1% SPECjvm2008 (modified) | SFndNeg 3% GrpRem
fin-htt 3% 0% | batik-s 3%- 33% bench R D I SF1dSum 3% MapOne
fi-kmns 5% 0% | eclps-s 1% cmp.cmp 2% SForsum 3% .
ut-gon [toctrod [anp.sun srapredt [Microbenchmarks

gauss 1% fop-d 2% compr 4% 25% | STwoAvg Sometimes m isbehave
log-reg f% 0% h2-d 2% cry.aes 4% 0% TSP
mne ' ‘ 0% | jythn-1 1% cry.rsa 2% 0% | TxtSDF 10% | STMMap 3% 0%
Most bench marks d 2% cry.sgn 4% 25% | TxtRDD 0% Scan 1%
1% derby 1% 40% | WrdCnt 0% | SrtRDD 2%
exhibit chan ges | = npega | 4% o% | Bufdec 15% | staev 3% |
PE pme-1 3% sci.ffl 1% 33% | BufEnc 12% | strCnt 2% ‘
par-mne 4% . % scc-1 1% sci.lul 1% 9% | ChrCnt % | StrDem 2% 0%
philos 2% scdoc-1 1% sci.mtc 3% 12% | ChrHis 20% | StrPer 4% 0%
reactr 2% - % scp-1 2% sci.sol FIHis 0%

R - versions with changes D - manually confirmed | - invalid situations

Take Away So Far ...

Actual measurement protocol appears more important than subsequent
computation

@ Properly handling warm up
@ Executing enough measurements

@ Collecting supporting information

Change detection reliability per se not an issue
@ Change definition issues beyond math

@ Some benchmarks may require special attention

Outline

e Handling Warm Up

Warm Up

Time [s]

30

20

=}

100 200 300
Benchmark execution time [s]

Plot Info
Input Benchmark repetition times for an arbitrarily selected
benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.

Warm Up

Time [s]

30

20

=}

’ Initial execution slower

100 200 300
Benchmark execution time [s]

Plot Info
Input Benchmark repetition times for an arbitrarily selected
benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.

Warm Up

’ Initial execution slower

Time [s]

200 300

Eventua”y stable Lexecution time [s]

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.

Warm Up

Time [s]

’ Initial execution slower

Eventually stable L

200
execution time [s]

300

Warm Up

’ Initial execution slower

Time [s]

200 300

Eventua”y stable Lexecution time [s]

Some reasons behind warm up eliminated in our setup
@ Most power management features disabled
@ Initial and maximum heap size equal and fixed
@ Most (but not all) benchmarks stable after first repetition

Warm Up

’ Initial execution slower

Time [s]

200 300

Eventua”y stable Lexecution time [s]

Some reasons behind warm up eliminated in our setup
@ Most power management features disabled
@ Initial and maximum heap size equal and fixed
@ Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

How Much Compilation On Average ?

» ScalaBench (with DaCapo)
150%

.

« Renaissance 0.12
o’ Renaissance 0.10
.:0 Renaissance 0.13

-
100% '-::"

Internal Micros

.
I

Average compilation utilization [cores]
w
=3
R

0%

0 100 200 300
Benchmark execution time [s]

How Much Compilation On Average ?

. ScalaBench (with DaCapo)
150%

Renaissance 0.12
* Renaissance 0.10

Renaissance 0.13

et .

Plot Info

= . Input Cumulative compiler thread execution times collected during
benchmark execution across all benchmarks.

Computation Average processor utilization for compiler threads
relative to single core across benchmark suites.

axis Time from start of the benchmark execution.

< X

axis Processor utilization for compiler threads.

Average compilation utilization [cores]

0 100 200 300
Benchmark execution time [s]

How Much Compilation On Average ?

» ScalaBench (with DaCapo)
150%

.

« Renaissance 0.12
o’ Renaissance 0.10
.:0 Renaissance 0.13

-
100% '-::"

Internal Micros

.
I

Average compilation utilization [cores]
w
=3
R

0%

0 100 200 300
Benchmark execution time [s]

How Much Compilation On Average ?

» ScalaBench (with DaCapo)

150%

100%

Average compilation utilization [cores]
w
=3
R

0%

.
I

Renaissance 0.12
Renaissance 0.10

Renaissance 0.13

More complex benchmarks
induce more compilation

Internal Micros

100 200
Benchmark execution time [s]

How Much Compilation On Average ?

150%

100%

Average compilation utilization [cores]
w
=3
R

0%

» ScalaBench (with DaCapo)

.

« Renaissance 0.12
o’ Renaissance 0.10
.:0 Renaissance 0.13

More complex benchmarks
induce more compilation

Internal Micros

%
. o
o °®

g SPECjvm2008 (modified) Compilation

- never really stops

0 100 200

Benchmark execution time [s]

How

100%

cores]

— 50%

0%

200%

Average compilation utilization

100%

0%

Much Compilation Per Benchmark ?
chi-square jython-large
- [
< .
) 150% / .
=2 : M
(9] .
'*‘-‘ 100% H \
‘: o*- W a : 5
Hwvia Sy 50%] \
0%
0 100 200 300 0 100 200 300
naive-bayes neo4j-analytics
. 5
. 200% >
3 J
a 150% \':.
- 100%
W, :
%ﬁ- . 50% \
Ao . \
- AT AP 0%
0 100 200 300 0 100 200 300

Benchmark execution time [s]

Detecting Warm Up

What do we want from warm up ?

@ Make sure we measure code produced by the last tier compiler
@ Move past the most egregious performance changes

@ Do not waste too much time on warm up

What we do

@ Monitor activity of background compiler threads

@ Establish thresholds across 60 s sliding window
@ The first window with activity within 10 % of minimum is warm

> The algorithm is not online
» Used with runs of 300 s to 600 s
» Will always identify some repetitions as warm

How Long Do We Warm Up ?

3.0%

2.0%

Share

1.0%

0.0%

Internal Micros
Renaissance 0.10
Renaissance 0.12
Renaissance 0.13
ScalaBench (with DaCapo)
SPECjvm2008 (modified)

0 200 400

Benchmark warmup time [s]

600

How Long Do We Warm Up ?

3.0%
B Internal Micros
B Renaissance 0.10

Plot Info

Input Benchmark warm up times collected during benchmark
* execution across all benchmarks.

X axis Warm up time.

Share

Y axis Share of runs with that warm up time.

1 Color Distinguishes benchmark suites.

0.0% —

0 200 400 600
Benchmark warmup time [s]

How Long Do We Warm Up ?

3.0%

2.0%

Share

1.0%

0.0%

Internal Micros
Renaissance 0.10
Renaissance 0.12
Renaissance 0.13
ScalaBench (with DaCapo)
SPECjvm2008 (modified)

0 200 400

Benchmark warmup time [s]

600

How Long Do We Warm Up ?

3.0%

2.0%

Share

1.0%

0.0%

Internal Micros
Renaissance 0.10
Renaissance 0.12
Renaissance 0.13
ScalaBench (with DaCapo)
SPECjvm2008 (modified)

Average warm up time
around 160 s

0 200 400

Benchmark warmup time [s]

600

What About (Much) Longer Warm Up ?

als

N W A G

philosophers

Time [s]

reactors

0 2 4 6 8
Benchmark execution time [h]

What About (Much) Longer Warm Up ?

als

N W A G

Plot Info
Input Benchmark repetition times for arbitrarily selected
@' benchmarks and platforms.

—

o1
E , X axis Time from start of the benchmark execution.

€Y axis Time of single benchmark repetition.

0 2 4 6
Benchmark execution time [h]

What About (Much) Longer Warm Up ?

als

N W A G

philosophers

Time [s]

reactors

0 2 4 6 8
Benchmark execution time [h]

What About (Much) Longer Warm Up ?

als

6
5 Nice behavior except for outliers
4
3
philosophers
—14 Sudden changes after long stability
h .
o 1.2 .
£
= 1.0
0.8
reactors
13 R R
; Very slowly deteriorating performance
11
10

0 2 4 6 8
Benchmark execution time [h]

Take Away So Far ...

Some warm up properties complicate detection from time measurements
@ Performance can change at any time into benchmark execution
@ Performance changes possibly rather sudden

@ Performance changes in both directions

Reaching measurement stability not really the goal here
@ Looking (only) at repetition times possibly wrong

@ Warm up detection surprisingly important

Too much warmup is prohibitive resource hog
Too little warmup produces useless measurements

Outline

@ Handling More Runs

Count

Handling More Runs

A single benchmark run does not really tell the whole story ...

0 1

670 675 630 685 690 69
Benchmark repetition time [s]

Count

Handling More Runs

A single benchmark run does not really tell the whole story ...

Compact results
coming from

one run

0 1

670 675 630 685 690 69
Benchmark repetition time [s]

Handling More Runs

A single benchmark run does not really tell the whole story ...

Count

Compact results
coming from

one run

670 675 680 685 690 69
Benchmark repetition time [s]

Count

670 675 680 685 690
Benchmark repetition time [s]

6.9

Count

Handling More Runs

A single benchmark run does not really tell the whole story ...

” Compact results ” More runs
coming from give more
one run variability
10 o 10
c
>
o
|©]
5 5
0 1 0 1 |
6.70 6.75 6.80 6.85 6.90 6.9 6.70 6.75 6.80 6.85 6.90 6.9
Benchmark repetition time [s]

Benchmark repetition time [s]

How Many Runs Needed ...

... to compute average performance with at most 1% error in 99 % of cases ?

scrfm-h 33 33 30 56| sci.spl 1 mn 1 1 NetDot

Renaissance 0.10 rx-scrb

bench C8 C11 E8 EI1 | sc-doku

aka-uct 40 sc-kmns scxb-h serial 12 10 32 NetEig
als 7 sc-stmb specs-1 16 312 5 | sunflow 7 6 7 7| Reduce
chi-sqr scrb sunfl-1 6 14 24 20| xml.trn 9 10 18 STMLst
db-shot 47 60 ScalaBench (with DaCapo) tmt-d 13 19 12 17| xml.val 20 45 42| STMMap
dec-tre 31 24| bench c8 €11 E8 EI trdb-d 14 26 14 21 Internal Micros Scan
dotty 59 19 trds-1 7 5 2 4| bench c8 C11 E8 EN SrtRDD
fin-chi appar-d - 63 - xalan-1 32 37 23 26| BufDec 4 4 24 40| stdDev
fin-htt avror-1 5 1N 8 2 SPECjvm20@8 (modified) BufEnc 5 271 17 2| strCnt
fj-kmns batik-s 1 4 2 7| bench c8 C11 E8 EN ChrHis StrDem
fut-gen eclps-s .cmp 20 10 Chrent StrDev
gauss factr-d .sun 8 13 F1t0dd SFndNeg

.aes 11 9 8 19 | FntNgtR

log-reg 34 35 26 fop-d SF1dsum

mne h2-d SForsSum

mov-len ythn-1 rsa 6 9 6 8| FIHis SMapRed
nai-bay kiama-d 37 48 42 16 |cry.sgn 12 5 1 16| FIstr StrPer
neo-ana Luidx-d 30 34| derby 23 13| 54 39| Fldsum STwoAvg
pg-rank lusre-1 27 18| mpega 1 1 2 2 |FldsumR TxtSDF
par-mne pmd-1 24 18| sci.ffl _ ForsSum TXtRDD

philos sce-1 21 22sci.lul 1 1 2 2|ForSumR TSP

reactr scdoc-1 38 47 |scimtc 12 5 - 1| Grprem Wrdcnt

How Many Runs Needed ...

... to compute average performance with at most 1% error in 99 % of cases ?

scp-1 23 18 33 21| sci.sol 1\ 1 3‘ MapOne

serm Perhaps 1%
is asking too much

Renaissance 0.10 rx-scrb

bench C8 C11 E8 EI1 | sc-doku

aka-uct 40 sc-kmns scxb-h

als 7 sc-stmb specs-1

chi-sgr scrb sunfl-1 6 14 24 20| xml.¥rn) O T8 TMCST
db-shot 47 60 ScalaBench (with DaCapo) tmt-d 13 19 12 17| xml.val 20 45 42| STMMap
dec-tre 31 24| bench c8 €11 E8 EI trdb-d 14 26 14 21 Internal Micros Scan
dotty 59 19 trds-1 7 5 2 4| bench c8 C11 E8 EN SrtRDD
fin-chi appar-d - 63 - xalan-1 32 37 23 26| BufDec 4 4 24 40| stdDev
fin-htt avror-1 5 1N 8 2 SPECjvm20@8 (modified) BufEnc 5 271 17 2| strCnt
fj-kmns batik-s 1 4 2 7| bench c8 C11 E8 EN ChrHis StrDem
fut-gen eclps-s .cmp 20 10 Chrent StrDev
gauss factr-d .sun 8 13 F1t0dd SFndNeg
log-reg 34 35 26 19| fop-d ompr 9 3 - FndNgt SF1dSum
mne - h2-d .aes 11 9 8 19 | FntNgtR SForsSum
mov-len 14 | jythn-1 rsa 6 9 6 8| FIJHis SMapRed
nai-bay kiama-d =~ 37 48 42 16 |cry.sgn 12 5 116 FJistr StrPer
neo-ana luidx-d 30 34 derby 23 13 54 39| FldSum STwoAvg
pg-rank lusrc-1 27 18 mpega 1 1 2 2 | FldSumR TxtSDF
par-mne pmd-1 24 18| sci.ffl _ ForSum TxtRDD
philos scc-1 21 22 | sci.lul 1 1 2 2 | ForSumR TSP
reactr scdoc-1 38 47| sci.mtc 12 5 - 1| GrpRem WrdCnt

How Many Runs Needed ...

... to compute average performance with at most 5 % error in 99 % of cases ?

Renaissance 0.10 rx-scrb 2 3 1 1 scp-l 7 1 7 2 |sci.sol 1 1 1 3| MapOne - 17 89 1
bench €8 Ci11 E8 E11 | sc-doku _ scrfm-h 2 2 1 1|sci.spl 1 3 1 1 NetDot 1 1 1 1
aka-uct 3 1 3 9 | sc-kmns 1 3 1 1 scxb-h 26 23 28 14| serial 2 1 2 8 | NetEig 1 1 2 1
als 28 2 2 4 | sc-stmb 4 1 2 6 | specs-1 5 103 1 | sunflow 1 12 1 Reduce 6 14 13 43
chi-sqr 34 22 39 scrb 20 5 24 - sunfl-1 1 3 2 4 [xml.trn 1 2 1 2| STMLst 17 8 7 5
db-shot 6 6 2 2 ScalaBench (with DaCapo) tmt-d 1 2 1 2 | xml.val 8 103 7| STMMap 19 15 6 4
dec-tre 4 4 7 1 bench €8 C11 E8 EM trdb-d 1 3 1 2 Internal Micros Scan 5 14 20 -
dotty 1 1 1 1 1 1 trds-1 4 1T 1 bench €8 C11 E8 EIl SrtRDD 3 9 6 20
fin-chi 11 22 33 - appar-d - 2 33 |xalan-1 1 1 1 2| BufDec 3 6 1 1 StdDev _ 1
fin-htt 1 1 2 1| avror-1 1 1 1 1 SPECjvm20@8 (modified) BufEnc 1 27 1 2| strCnt 1 37

fi-kmns 3 3 1 13 | batik-s 1 3 1 1 bench €8 C11 E8 EIl ChrHis

5 5
3 8 2 3| StrDem 26 10 16
1

fut-gen 5 3 8 5|eclpsss 1 3 cmp.cmp 1 3 chrent 14 8 1 20| StrDev

gauss 21 12 - factr-d 8 11 35 - cmp.sun 2 1 F1t0dd

log-reg 3 6 2 3| fopd 1 9 1 5| compr 1 1 1 FndNgt 1 6 1 1|SFldsum 42 1 11 8

3 1o 1 | SFndNeg 1 2 62 6

~

mne 5 9 14 4 h2-d 2 1 1 2 |cry.aes 1 18

FntNgtR 2 12 1 | SForSum 1 1 1 30

mov-len 1 1 1 1| jythn-1 2 12 4 1|cry.rsa 1 1 1 1 FJHis 1 1 1 1| SMapRed | 59 50 2 6

nai-bay 1 1 - kiama-d 1 1 2 2 |cry.sgn 1 11 16 FIstr 2 1 6 3| StrPer 9 2 - 3
Fldsum 1 4 - STwoAvg 2 35 10 17

neo-ana 41 5 3 6 | luidx-d 7 4 1 1 derby 1 1 1 5
pg-rank 7 5 8 1| lusrc-1 1 2 4 2 mpega 1 1 1 1 | FldSumR 1 1 2 1 TxtSDF 12 2 4 8
par-mne 6 5 2 2 pmd-1 2 2 1 1| sci.ffl 31 12 26 6| ForSum 5 5 - TxtRDD 11 12 2 55

philos 10 - 5 16 sce-1 4 9 1 1]sci.lul 1 1 1 ForSumR 10 1 1 9 TSP 42

reactr 3 2 19 13| scdoc-1 2 2 2 1|scimte 1 109

GrpRem 9 11 9 16| WrdCnt 5 9 3

How Accuracy Relates To Run Count ?

30.0%

10.0% 1

Accuracy as 99% confidence interval width

5.0%T

0 30 60
Run count

90

How Accuracy Relates To Run Count ?

30.0%

Plot Info

Input Benchmark repetition times for an arbitrarily selected
benchmark and platform.

Computation Size of 99 % confidence interval for the mean relative
to the mean.

, X axis How many times the benchmark was run.

Y axis Confidence interval width.

Accuracy as 99% confidence interval width

5.0% \

0 30 60 90
Run count

How Accuracy Relates To Run Count ?

30.0%

10.0% 1

Accuracy as 99% confidence interval width

5.0%T

0 30 60
Run count

90

How Accuracy Relates To Run Count ?

30.0%

Roughly follows 1/4/n

10.0% 1

Accuracy as 99% confidence interval width

5.0%T

0 30 60 90
Run count

Take Away So Far ...

Running benchmarks only once may not be enough
@ Non deterministic compilation especially with microbenchmarks

@ But the presented tables also include simple cases of high variance

Starting with accuracy as sole goal is not good
@ Aiming for excessive accuracy backfires quickly
@ Conditions impacting accuracy may change

@ How to define balance ?

Accuracy is a function of more than just the benchmark

Outline

@ Handling Different Metrics

Runs Needed When Different Metrics Used ...

... to compute average performance with at most 1% error in 99 % of cases.

Renaissance 0.10 rx-scrb scp-1 sciisol 1 1 1| MapOne
bench time clk ins | sc-doku scrfm-h scispl 1 1 1| NetDot
aka-uct sc-kmns scxb-h serial 12 12 3 NetEig

als sc-strb specs-1 sunflow 7 6 11| Reduce
chi-sqr scrb sunfl-1 xml.trn 9 9 2| STMst
db-shot ScalaBench (with DaCapo) | tmt-d xml.val 20 26 1| STMMap
dec-tre bench time clk ins | trdb-d Internal Micros Scan

dotty 59 trds-1 7 12 7| bench time clk ins | SrtRDD
fin-chi appar-d xalan-1 32 - BufDec 4 3 1| stddev
fin-htt avror-1 SPECjvm2008 (modified) | BufEnc 5 8 1| strent
fj-kmns batik-s 1o 1| bench time clk ins | Chrhis 53 | StrDem
fut-gen eclps-s 3 16 3|cmp.cmp 20 21 36| Chrent StrDev

gauss factr-d _ cmp. sun 8 7 11| Fltodd SFndNeg
log-reg fop-d 18 17 15| compr 9 9 4| FndNgt 11 15| SFldsun

mne h2-d 27 15 12 |cry.aes 11 11 7| FntNgtR 2 2 1fsforsum 11 1
mov-len jythn-1 31 32 12 |cry.rsa 6 14 1| FlHis 6 9 57| SMapRed
nai-bay kiama-d 37 | 6@ 56 |cry.sgn 12 12 25| FJstr 15 12 8| StrPer 31
neo-ana luidx-d- 28 1| derby 23 23 5| Fldsum 4 3 1|STwoAvg 27 27 12
pg-rank lusrc-1 38 49 36| mpega 11 1| FldsumR 11 1| TxtsoF 25
par-mne pnd-1 44 16 11 [sci.ffl _ Forsum 1| TxtrRoD 31
philos scc-1 | 65 sci.lul 11 1| Forsum 1| wrdent 8

reactr scdoc-1 54 sci.mtc 12 12 22| GrpRem 57 58

time - wall clock time clk - thread clock time ins - instruction count

Runs Needed When Different Metrics Used ...

... to compute average performance with at most 1% error in 99 % of cases.

Renaissance 0.10 rx-scrb scp-1 sciisol 1 1 1| MapOne
bench time clk ins | sc-doku scrfm-h scispl 1 1 1| NetDot
aka-uct sc-kmns scxb-h serial 12 12 3 NetEig

als sc-strb specs-1 sunflow 7 6 11| Reduce
chi-sqr scrb sunfl-1 xml.trn 9 9 2| STMst
db-shot ScalaBench (with DaCapo) | tmt-d xml.val 20 26 1| STMMap
dec-tre bench time clk ins | trdb-d Internal Micros Scan

dotty 59 trds-1 7 12 7 bench time clk ins SrtRDD
fin-chi appar-d xalan-1 32 - BufDec 4 3 1| Stdbev
fin-htt avror-1 SPECjvm2008 (modified) BufEnc 5 8 1 Strcnt
fj-kmns batik-s 1 1 1 bench time clk ins ChrHis 53 StrDem
fut-gen eclps-s 3 16 3| cmp.cmp 20 21 36| chrent strdev
gauss factr-d _ cmp. sun 8 7 11| Fltodd SFndNeg
log-reg fop-d 18 17 15| compr 9 9 4| FndNgt 1 1 15 | SFldSum
mne h2-d 27 15 12 | cry.aes " 1 7 | FntNgtR 2 2 1 | SForSum 1 1 1
mov-len jythn-1 31 32 12 |cry.rsa 6 14 1 FIHis 6 9| 57| SMapRed
nai-bay kiama-d 37 60 56 |cry.sgn 12 12 25| Fistr 15 12 8| StrPer 31
neo-ana luidx-d - 28 1 derby 23 23 5 F1ldSum 4 3 1 | STwoAvg 27 27 12
pg-rank lusre-1 38 49 36 \%ﬁ 1 1 1 | F1dSumR 1 1 1 TxtSDF 25
par-mne pmd- R . TXtRDD 31
itos 4 Instruction count quite stable @ |, ... s
reactr sdoc- even when time is not s

time - wall clock time clk - thread clock time ins - instruction count

Runs Needed When Different Metrics Used ...

... to compute average performance with at most 1% error in 99 % of cases.

Renaissance 0.10

time clk

bench

aka-uct
als
chi-sqr
db-shot
dec-tre
dotty
fin-chi
fin-htt
£i-kmns
fut-gen
gauss
log-reg
mne
mov-len
nai-bay
neo-ana
pg-rank
par-mne

philos

reactr

ins

rx-scrb
sc-doku
sc-kmns
sc-stmb

scrb

ScalaBench (with DaCapo)

bench

appar-d
avror-1
batik-s
eclps-s
factr-d
fop-d
h2-d
jythn-1

kiama-d

lusrc-1

time

clk ins

scp-1
scrfm-h
scxb-h
specs-1
sunfl-1
tmt-d
trdb-d

sci.sol 1 1 1
sci.spl 1 1 1

serial 1212 3
sunflow 7 6 1
xml.trn 9 9 2
xml.val 20 26 1

Internal Micros

trds-1 bench time clk ins

xalan-1 BufDec 4 3 1

SPECjvm2008 (modified) BufEnc 5 8 1

LR ¢h time clk ins| ChrHis 53
Time quite stable even when

instruction count is not |' *

TS T Try.ae TT TT TTITNETR 2 1

31 32 12 | cry.rsa 6 14 1 FJHis 6 9 57

37 60 56 | cry.sgn 12 12 25 FIStr 15 12 8

28 1 derby 23 23 5 FldSum 4 3 1

38

49

N

F1ldSumR 1 1 1

pmd-
scc-

scdoc-

Instruction count quite stable

1

even when time is not d

time - wall clock time

clk - thread clock time

MapOne
NetDot
NetEig
Reduce
STMLst
STMMap

Scan
SrtRDD
StdDev
StrCnt
StrDem
StrDev

SFndNeg

SF1dSum

SForSum 1 1 1

SMapRed
Strer 31
STwoAvg 27 27 12
TxtSDF 25
TXtRDD 31
Wrdcnt 8

ins - instruction count

Different Metrics Not Always In Sync

60%

30%

0%

Change in instruction count

-30%

-40% -20% 0% 20% 40% 60%
Change in wall clock time

Different Metrics Not Always In Sync

60%

.
._.’
o

30% . . T T

Plot Info

Input Benchmark repetition times and dynamic instruction counts
for all pairs of platform versions with suspected change.

X axis Change in average repetition time.

Y axis Change in average instruction count.

Change in instruction count

J ey o 0 E
-30% ey, gt o4 . 1
8 o0 & v . .o .
S e a-
-40% -20% 0% 20% 40% 60%

Change in wall clock time

Different Metrics Not Always In Sync

60%

30%

0%

Change in instruction count

-30%

-40% -20% 0% 20% 40% 60%
Change in wall clock time

Different Metrics Not Always In Sync

60%

30%

0%

Change in instruction count

-30%

Instruction count
———_and repetition time
. change together

-40% -20% 0% 20% 40% 60%
Change in wall clock time

Different Metrics Not Always In Sync

60%
. .
. * . o
. . . .
.
. ? . RN LI
e e * o v s
k= 309 ° e * _..'-'"..' st *
S 30% . . ‘r’-‘. K -.‘.... o
g : o
c had 2 T8t
2 .t e
3] .o
2 . .
@ . R :
£ 0% o, e B o nmdoay St co g a' e ® g o0 o
£
[}
o0
c
4]
<
O

Repetition time changes
when instruction counts

-30% P
" .| Instruction count stays constant
~——"and repetition time
. change together
-40% -20% 0% 20% 40% 60%

Change in wall clock time

Different Metrics Not Always In Sync

Change in instruction count

602

l

Instruction count changes
when repetition time =~ —*
stays constant .

30%

0%

-30%

Instruction count
———_and repetition time
. change together

. .
.
. -
e e s . . 8
o 23" o e aqee o
[Rl .
PP 3 ~ *

Repetition time changes
when instruction counts
stays constant

-40% -20% 0%

20% 40% 60%

Change in wall clock time

Wall Clock Time Changes Not Always Portable

Q 10%
o
)
c
o
>
2
o
o . .
o .
L 0% - LI :
£ . . . Using Cores
- .
= = All
3 . + Half
° &
= .
3 o
£ -10% . —
)
o0
o .
]
=
)

20%] .

-20.0% -10.0% 0.0% 10.0%

Change in wall clock time on our hardware

Wall Clock Time Changes Not Always Portable

S
NI

Plot Info
Input Benchmark repetition times for arbitrarily selected pairs of
platform versions with suspected change.

X axis Change in average repetition time on our hardware.

Y axis Change in average repetition time on cloud hardware.

Change in wall clock time on cloud nodes

-20% .

-20.0% -10.0% 0.0% 10.0%
Change in wall clock time on our hardware

Wall Clock Time Changes Not Always Portable

Q 10%
o
)
c
o
>
2
o
o . .
o .
L 0% - LI :
£ . . . Using Cores
- .
= = All
3 . + Half
° &
= .
3 o
£ -10% . —
)
o0
o .
]
=
)

20%] .

-20.0% -10.0% 0.0% 10.0%

Change in wall clock time on our hardware

Wall Clock Time Changes Not Always Portable

=
o
32

Even large local changes
may not reproduce

0% ° *.

Using Cores

. All
* Half

-10%

Change in wall clock time on cloud nodes

-20% .

-20.0% -10.0% 0.0% 10.0%
Change in wall clock time on our hardware

Wall Clock Time Changes Not Always Portable

=
o
32

Even large local changes
may not reproduce

%]
[}
el
<}
-
o
>
o
<
o .
o
Q0% . ks :
£ . . ‘ Using Cores
- .
X - Al
8 . * Half
<
3
z J .
£ 107 . - Improvement vs regression
[} e
2 also platform specific
g .
@)

-20% .

.720A0% -10.0% 0.0% 10.0%

Change in wall clock time on our hardware

Wall Clock Time Changes Not Always Portable

@ 10%
3 Even large local changes
< may not reproduce
E
o
<
c . .
S .
L 0% - LI :
E . . : Using Cores
x < Al
8 . * Half
2
E
£ -10% . Improvement vs regression
) .
%J also platform specific
=
O
Note
0% Measurement variance not shown ... J

-20.0% -10.0% 0.0% 10.0%
Change in wall clock time on our hardware

Take Away So Far ...

Looking at more execution metrics can improve accuracy
@ Can help developers trust detected time changes

@ Or even direct investigation of change causes

Not really clear how to combine multiple (possibly) conflicting results
@ Some metrics changing and some not
@ Some platforms improving and some regressing

@ Some benchmarks improving and some regressing

Outline

@ Relying On Measurement History

Is Historical Data Useful ?

What use for historical measurements ?

@ Not in time series analysis

> Old history not necessarily relevant
» Enough data in recent measurements

@ But other system properties may prove stable

@ This can help with warm up and accuracy computations

What we plan

@ To reduce too long warm up

» Use recent warm up history to set measurement duration
> Occasional long measurements to probe for warm up changes

@ To reduce too high run count

> Use recent accuracy history to set run count
> Incremental measurements to avoid false negatives

Warm Up History Per Benchmark

—

Average warmup duration [s

205.0
202.5
200.0
197.5
195.0

250
200
150
100

50

230

210

190

170

als

Oct 2020

Apr 2021

Jul 2021

Sep 2(

Warm Up History Per Benchmark

als
205.0 . *

202.5
200.0
197.5 . < .. .
—195.0 . B
Plot Info
Input Benchmark warm up times for arbitrarily selected benchmarks
and platforms.

X axis Commit time of the compiler version measured.

Y axis Average warm up time.

230 e

Average warmup duration [s

210 “ e . .o .o .« "o,
190

170 ° . .

Oct 2020 Apr 2021 Jul 2021 Sep 2(

Warm Up History Per Benchmark

—

Average warmup duration [s

205.0
202.5
200.0
197.5
195.0

250
200
150
100

50

230

210

190

170

als

Oct 2020

Apr 2021

Jul 2021

Sep 2(

Warm Up History Per Benchmark

als
205.0 . *

2025 .o ‘ Stable across long period

200.0
197.5 . < . 7 . .
— 195.0 . -

finagle-chirper

zzz -, - 4 Rare but quite large change | = . .* , ce e

150
100

50 . e

230 .

Average warmup duration [s

190

170 * . .-.*| Possibly more small changes

Oct 2020 Apr 2021 Jul 2021 Sep 2(

Accuracy History Per Benchmark
finagle-chirper

15.0% . .
= 10.0% e
S
B e . W .
3 s50% .. .o o ..t
I\ . ° ¢ . . * *
>
o
g fj-kmeans
S 150% .
o . . s
< 1.20% S e
Q .
=
& 0.90%]
8 .. i [
g 0:60% . . .
® : o .
(e}
%] .
4] mnemonics
>
1<} o
S 60% <. .
>
[} .
Q .
< 4.0%

2.0% . 2 _

.. * oLl . .,‘.'.' ..."'oo.
Oct 2020 Apr 2021 Jun 2021

Sep 2021

Accuracy History Per Benchmark
finagle-chirper

15.0% . e
10.0% s * »

5.0% . .« . .ot

Plot Info

"Input Benchmark repetition times for arbitrarily selected
benchmarks and platforms.

“ Computation Size of 98 % confidence interval for the mean relative
to the mean computed from 33 runs.

~

X axis Commit time of the compiler version measured.

Y axis Confidence interval width.

Accuracy as 98% confidence interval width

4.0%

2.0% . 2 - ..

Oct 2020 Apr 2021 Jun 2021 Sep 2021

Accuracy History Per Benchmark
finagle-chirper

15.0% . .
= 10.0% e
S
B e . W .
3 s50% .. .o o ..t
I\ . ° ¢ . . * *
>
o
g fj-kmeans
S 150% .
o . . s
< 1.20% S e
Q .
=
& 0.90%]
8 .. i [
g 0:60% . . .
® : o .
(e}
%] .
4] mnemonics
>
1<} o
S 60% <. .
>
[} .
Q .
< 4.0%

2.0% . 2 _

.. * oLl . .,‘.'.' ..."'oo.
Oct 2020 Apr 2021 Jun 2021

Sep 2021

Accuracy History Per Benchmark
finagle-chirper

15.0% S e e
10.0% * *

5.0% .. .« . .o .

1.50% .
1.20% . . %t .
0.90% =

0.60% . .

mnemonics
6.0% <. .
. Note

Accuracy is relative to repetition time...

Accuracy as 98% confidence interval width

>
o
R

g
o
N

e, ° * el e . “.,‘.'."'-o ® e, '.'-_" .

Oct 2020 Apr 2021 Jun 2021 Sep 2021

Take Away So Far ...

Some measurement properties exhibit useful stability across history
@ Warm up duration

@ Benchmark accuracy

Not yet clear how to use this information in automated measurements

Outline

@ Back To Defining Performance Changes

Manual Change Classification

We used manual classification to assess functionality
@ Ad hoc selection of compiler version intervals
@ Benchmarks not necessarily represented equally

@ More measurements added when not sure

We have no classification information about false negatives

@ Likely impacts especially small changes relative to variance

Manual Change Classification

We used manual classification to assess functionality
@ Ad hoc selection of compiler version intervals
@ Benchmarks not necessarily represented equally

@ More measurements added when not sure

We have no classification information about false negatives

@ Likely impacts especially small changes relative to variance

Plot Info

Input Benchmark repetition times for arbitrarily selected pairs of
platform versions with suspected change.

X axis Benchmark repetitions and runs ordered sequentially.
Y axis Time of single benchmark repetition.

Color Distinguishes versions.

Classification Example: Trivial

0.20

o Samples from version one
—0.18
[}

£
F 016 Samples from version two

Classification Example: Trivial

0.20
- \E'lples from version one \
QE) 0.18
F o6 gples from version two }

An obvious difference that is trivial to classify
@ Very low variance both within run and between runs

o Difference of large relative magnitude
If all data looked like this we would have little to talk about ...

Classification Example: Small Change

Classification Example: Small Change

10

. ‘ Variance between runs \ I

6

Time [s]

4

Computed difference in average repetition time around 0.6 %
@ Variance between runs large relative to the computed difference

@ Outliers large relative to the computed difference

@ Maybe we need more data ?

Classification Example: Small Change

. ‘ Variance between runs \ .

N

Computed difference in average repetition time around 0.6 %
@ Variance between runs large relative to the computed difference
@ Outliers large relative to the computed difference

@ Maybe we need more data ?

=2}
a

Instruction count difference
may appear convincing

Instructions [G]
[=2)
(=}

51
a1l

Classification Example: Outlier Definition Issues

0.36

Classification Example: Outlier Definition Issues

0.36

Computed difference in average repetition time around 0.9 %
@ The computed difference very much depends on outlier filtering

@ Are we sure we have enough data ?

Classification Example: Outlier Definition Issues

0.36

Computed difference in average repetition time around 0.9 %
@ The computed difference very much depends on outlier filtering

@ Are we sure we have enough data ?
Assume 10 % change in outlier runs and 10 % chance of such runs
@ This would result in an average repetition time change of 0.9 %

@ There is around 35 % chance of getting 10 fine runs

@ Obviously the example can be stretched in various directions

Useless Change Reports ?

Typical scenarios assume cause-and-effect relationship between commit
and performance change

@ Commit introduces reason for performance change
@ Performance change observed in measurements

@ Change can be undone by reverting commit

But what if the situation is more complicated ?

@ Change caused by commit but commit not responsible for change
Change impacting different benchmarks in different ways
Change impacting different platforms in different ways
Change expected but need to assess cost vs benefit
Change seen on benchmark believed artificial

°
°
°
°
@ Change impacts outliers
°

Regression Example: Processor Scheduling |

Code

A microbenchmark that locates the first negative array item.

def run () {
for (i <- @ until REPEATS) {
blackhole += findNegative (numbers)
}
}

def findNegative (numbers: Array[Int]): Option[Int] = {
numbers.find(_ < 0)

}

What the measurements said

Clear repetition time change between roughly 230 ms and roughly 170 ms
No change in other observed counters like instruction count

Observed multiple times in versions across several days

Commit changes often clearly unrelated

Regression Example: Processor Scheduling Il

Assembly

Compilation results in reasonably compact assembly code.

0x00007f115c894¢00:
0x00007f115c894¢03:
0x00007f115c894c09:
0x00007f115c894c0e:
0x00007f115c894c11:
0x00007f115c894c17:
0x00007f115c894c1d:
0x00007f115c894¢20:
0x00007f115c894c23:

Analysis

cmp
jbe
mov
test
jl
test
inc
cmp
jg

%r13d, %edi ;loop iteration count test
0x00007f115c89561¢

0x10(%rdx,%r13,4),%r10d ;fetch array item

%ried, %ried ;negative test

0x00007f115c894c2a ;found negative
%eax,0x1942d3e9(%rip) ;safepoint poll

%r13d

%r13d, %edi ;loop iteration count test (again)
0x000071115c894c00

Inner loop executes at IPC 6 when fast or IPC 4.5 when slow

Performance difference inflated from mere 0.5 cycle per iteration
Instruction scheduler counters report different pops port use as the reason
Actual scheduler choice only indirectly influenced by code

Regression Example: Inlining Heuristic |

Code

A microbenchmark that filters odd array items.

def run () {
for (i <- @ until REPEATS) {
blackhole += filterOdd (numbers).length
}
}

def filterOdd (numbers: ArrayBuffer[Int]): ArrayBuffer[Int] = {
numbers.filter (_ % 2 == 1)
}

What the measurements said

Times always stable within each run

Repetition time of a run flipping between 5s and 5.6 s

Rarely observed runs with repetition times of roughly 3.4s

Share of runs with each time sometimes changes between versions

Regression Example: Inlining Heuristic I

Analysis

Fast and slow runs differed in what code gets inlined

Inlining heuristic (also) relies on low level graph size of the callee
@ If callee previously compiled, a cached value was used

o If callee not yet compiled, an estimate was made

Caller and callee invocation counters necessarily similar
Hence compilation jobs launched close together in time
That increases the likelihood of the inliner flipping

Take Away So Far ...

Reasons for performance change
not always directly connected to committed code

@ Especially microbenchmarks may exhibit fragile performance

@ Responsibility for addressing changes therefore not clear

Hard to tell what performance regressions should be addressed

@ Especially with benchmarks that
do not represent application performance

o Effort needed to investigate reasons is not very predictable

@ Not clear what to do with small regressions

Thank You!

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz

Thank You!

Interested in our data ?
.. most data CC-BY, we also have an APIJ

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz

Thank You!

Interested in our data ?
.. most data CC-BY, we also have an APIJ

Contribute to Renaissance J

... and we will start benchmarking your code too :-)

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz

Outline

e Even More ?

Warm Up Enough Or Too Much ?

_‘30' Fast Warm
%20 *
'_.

100 200 300
Benchmark execution time [s]

Plot Info

Fast The first repetition that is at least as fast as the warm one.
Warm The repetition that our heuristic marks as first warm.

Last The last repetition.

Do We Warm Up Enough ?

Share [%]

100%

75%

50%

25%

0%

40%

20%

0%

Internal Micros
80%

60%

40%

20%

0%

100%

75%

50%

25%

0%

Renaissance 0.10

SPECjvm2008 (modified)

|

b

-20.0%

-10.0% 0.0% 10.0% 20.0%

-200% -100% 0.0% 100% 20.0%
Difference between warm execution time and last execution time

Do We Warm Up Enough ?

Internal Micros Renaissance 0.10

100% 80%

75% 60%

Plot Info
Input Benchmark repetition times and compiler thread execution

times across all benchmarks from many runs.

. warm_execution time—last execution time
ComPUtatlon last execution time

X axis Relative difference in the repetition execution times.

Share [%]

Y axis Share of runs with that difference.

Color Distinguishes benchmarks.

Simply How much will performance change after warm up ?

4370

i
PRPPNRAVITY ... V" 0% I | W

200% -100% 0.0% 10.0% 20.0% 200% -100% 0.0% 10.0% 20.0%

Difference between warm execution time and last execution time

Do We Warm Up Enough ?

Share [%]

100%

75%

50%

25%

0%

40%

20%

0%

Internal Micros
80%

60%

40%

20%

0%

100%

75%

50%

25%

0%

Renaissance 0.10

SPECjvm2008 (modified)

|

b

-20.0%

-10.0% 0.0% 10.0% 20.0%

-200% -100% 0.0% 100% 20.0%
Difference between warm execution time and last execution time

Do We Warm Up Enough ?

Internal Micros Renaissance 0.10
100% 80%
75% 60%
50% 40%
Symmetry is im ortant|
- | Symmetry is imp
X 0% 0%
g ScalaBench (with DaCapo) SPECjvm2008 (modified)
<= 100%
wn
40% 5%
50%
20%
25%
0% 0% J L

200% -10.0% 0.0% 10.0% 20.0% -20.0% -10.0% 0.0% 10.0% 20.0%
Difference between warm execution time and last execution time

Do We Warm Up Enough ?

Share [%]

100%

75%

50%

25%

0%

40%

20%

0%

Internal Micros

80%

60%

40%

Renaissance 0.10

| Symmetry is important |

e

/

ScalaBench (with DaCapo)

0%

100%1

75%

Constant
compilation
churn

50%

25%

y

"

0%

-20.0%

-10.0% 0.0% 10.0%

20.0%

-20.0% -10.0% 0.0% 10.0% 20.0%
Difference between warm execution time and last execution time

Do We Warm Up Enough ?

Share [%]

Internal Micros

80%

60%

40%

Renaissance 0.10

| Symmetry is important |

100%
75%
50%
25% /
0% i A4
ScalaBench (with DaCapo)
40%
Leaky
207 benchmark
0%

0%

100%1

75%

Constant
compilation
churn

50%

25%

y

"

0%

-20.0% -10.0% 0.0% 10.0% 20.0%

-20.0% -10.0% 0.0% 10.0% 20.0%
Difference between warm execution time and last execution time

Do We Warm Up Too Much ?

Internal Micros Renaissance 0.10
60%
40.0%
40% 30.0%
20.0%
20%
10.0%
—
X 0% - 0.0% L
o ScalaBench (with DaCapo) SPECjvm2008 (modified)
® 100%
<
«» 60%
75%
40%
50%
25% | 20%
0%1 — = 0% t A
0 100 200 300 400 500 0 100 200 300 400 500

Time interval between fast repetition and warm repetition [s]
[SlolGle)

Do We Warm Up Too Much ?

0% Internal Micros Renaissance 0.10
o ‘0
40.0%

Plot Info
Input Benchmark repetition times and compiler thread execution
times across all benchmarks from many runs.

Computation warm repetition start time — fast repetition start time

(%]

1 X axis Time interval between the two repetitions.

(5]
]
iy
“ Y axis Count of runs with that time interval.

Color Distinguishes benchmarks.

Simply How long before warm up are benchmarks already fast ?
I

I
V \ |
ﬂ'j}yé%" Qs e 0% ”u}i; 'i\ \AM:‘J:\M)W‘-.M-.R/’.‘»ED\}«LLMJA WAL o on e

207

0 100 200 300 400 500 0 100 200 300 400 500
Time interval between fast repetition and warm repetition [s]

Do We Warm Up Too Much ?

Internal Micros Renaissance 0.10
60%
40.0%
40% 30.0%
20.0%
20%
10.0%
—
X 0% - 0.0% L
o ScalaBench (with DaCapo) SPECjvm2008 (modified)
® 100%
<
«» 60%
75%
40%
50%
25% | 20%
0%1 — = 0% t A
0 100 200 300 400 500 0 100 200 300 400 500

Time interval between fast repetition and warm repetition [s]
[SlolGle)

Do We Warm Up Too Much ?

Internal Micros Renaissance 0.10
60%
40.0%
Less complex benchmarks
10% show peak performance |s0.0%
before compilation subsides
20.0%
20% v
10.0%
X 0% 0.0%
o ScalaBench (with DaCapo) SPECjvm2008 (modified)
@ 100%
=
o 60%
75%
40%
50%
- 20%
0% 0%
0 100 200 300 400 500 0 100 200 300 400 500

Time interval between fast repetition and warm repetition [s]

Do We Have Too Many Benchmarks ?

60%

40%

20%

Share of versions with changes

0%

‘II.I.II---_-_ -
0 20 40

Number of benchmarks changing together

60

Do We Have Too Many Benchmarks ?

60% I

Plot Info
Input All detected performance changes across measurement history.

4

Computation Count how many benchmarks are impacted by
particular compiler version commits.

X axis Count of benchmarks changing together on the same commit.

Y axis Share of compiler versions with that count.

z

Share of versions with changes

0% “II.I.II---_-_ — _ 1
0 20

40 60
Number of benchmarks changing together

Do We Have Too Many Benchmarks ?

60%

40%

20%

Share of versions with changes

0%

‘II.I.II---_-_ -
0 20 40

Number of benchmarks changing together

60

Do We Have Too Many Benchmarks ?

60%

40%

20%

Share of versions with changes

0%

Majority of changes
< limited to single
benchmark

‘II.I.II---_-_ —_—
0

20 40
Number of benchmarks changing together

60

Do Benchmarks Change Together ?

Benchmarks Change Together ?

(828R TT01%o T3T1s T EfTzevoTiiniibas
52388 Trvsvo FEYrz T frdEeroIifslibade

Only few benchmarks
‘| often change with another i

Do Benchmarks Change Together ?

2282 Tr1rvo TRl7z T EsFIeyois

588525

Only few benchmarks
often change with another fi:

}fg H Some benchmarks almost
Eff : ’*ij never change with another

e
% ”

Do Benchmarks Change Together ?

££2 Trrge, 13Toe T TelzesoIiiigss
SSEE 5T liTo ERiTZ_E_EfRZvR-Eg

Only few benchmarks
often change with another fi:

8 i S A
st

Some bench marks almost

] ! ’*ij never change with another
: e .”
4,

Artlfact of one su1te
not belng around KYo) long H

	Quick Platform Overview
	Detecting Changes
	Handling Warm Up
	Handling More Runs
	Handling Different Metrics
	Relying On Measurement History
	Back To Defining Performance Changes
	Even More ?

