
cbea

Tracking Performance
of the Graal Compiler
on Public Benchmarks

Lubomír Bulej 1 François Farquet 2 Vojtěch Horký 1

Michele Tucci 1 Petr Tůma 1

1Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University

2Oracle Labs Zürich

2018 – 2021



cbea

Disclaimer
Development Versions
Performance and other measurements used in this presentation are
collected using development versions of the software involved.
As such, they do not represent product performance.

Modified Benchmarks
Benchmarks used to collect the measurements were often modified
to facilitate integration into the measurement infrastructure.
None of the benchmark results are standard benchmark scores.

Platform Specific
Measurements are platform specific. Platform information was omitted
for brevity, contact us if you need more details.

… and we are only human
The data may be influenced by mistakes we are not aware of.



cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

About Graal Compiler

A just-in-time compiler for Java written in Java

Functions as the last tier compiler

Partial escape analysis and speculative optimizations

Part of a larger ecosystem surrounding the JVM

Image from https://www.graalvm.org

https://www.graalvm.org


cbea

Performance Testing Goal ?

Make performance testing roughly the same as
standard (functional) regression testing.



cbea

Performance Testing Workflow

Write
Code

Write
More
Code

Write
Even
More
Code



cbea

Performance Testing Workflow

Write
Code

Write
More
Code

Write
Even
More
Code

Code
Repository

Check
Out

Build

Deploy

Run
Tests

Report Result

commit

commit



cbea

Performance Testing Workflow

Write
Code

Write
More
Code

Write
Even
More
Code

Code
Repository

Check
Out

Build

Deploy

Run
Tests

Report Result

commit

commit

Plan



cbea

Performance Dashboard

https://graal.d3s.mff.cuni.cz

https://graal.d3s.mff.cuni.cz


cbea

Performance Dashboard

https://graal.d3s.mff.cuni.cz

Overall trends

https://graal.d3s.mff.cuni.cz


cbea

Performance Dashboard

https://graal.d3s.mff.cuni.cz

Overall trends

Individual
performance

changes

https://graal.d3s.mff.cuni.cz


cbea

Performance Dashboard

https://graal.d3s.mff.cuni.cz

Overall trends

Individual
performance

changes

Specific benchmark history

https://graal.d3s.mff.cuni.cz


cbea

Performance Dashboard

https://graal.d3s.mff.cuni.cz

Overall trends

Individual
performance

changes

Specific benchmark history

Individual measurements

https://graal.d3s.mff.cuni.cz


cbea

Dashboard Internals I

How to execute the measurements ?

Resource sharing and background load matter

Repetition count is determined on the fly

Need more than latest software version

Faulty setup may remain invisible

What we do

Use dedicated hardware infrastructure
I Multiple servers with equivalent parameters
I No other load than the benchmarks

Proprietary software to coordinate measurements

Iterative selection of versions to measure



cbea

Dashboard Internals II

When to fail the test ?

Noisy measurements

Change can be legitimate

Absolute performance requirements not given

What we do

Compare performance of neighboring versions
Focus on low false positive rate

I Iterative measurement planning
I Observing multiple metrics together

Alongside commit pipeline but not blocking



cbea

Dashboard Internals III

Platforms

GraalVM CE/EE with OpenJDK/HotSpot JDK 8/11/17 using JIT/AOT

Only top level merge commits into master

… around 7800 last year

Benchmarks

ScalaBench (includes DaCapo) https://scalabench.org

SPECjvm2008 (non-compliant) https://spec.org/jvm2008

Renaissance 0.10 to 0.13 https://renaissance.dev

Plus internal microbenchmarks

… around 150 workloads

https://scalabench.org
https://spec.org/jvm2008
https://renaissance.dev


cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

Summary Performance History



cbea

Summary Performance History

Plot Info
Input Benchmark execution times collected across recent compiler

versions and all benchmarks.

Computation Express all execution times as speed up or slow down
relative to the execution times of the most recent compiler version
on the same benchmark.

X axis Commit time of the compiler version measured.

Y axis Geometric mean of relative speed up or slow down.



cbea

Summary Performance History



cbea

Summary Performance History

Jumps attract attention
to major changes



cbea

Summary Performance History

Jumps attract attention
to major changes

Note
But trends can be misleading …
All benchmarks have the same weight …



cbea

Detecting Individual Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Individual Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detecting Individual Changes

A time series change point detection problem with a few twists

We have more correlated time series rather than just one

We can add more data points to any version if required

Data points are in fact hierarchical sets from runs

We are more interested in changes near series end

Almost no assumptions about data distribution

We use bootstrap confidence intervals of mean differences

https://doi.org/10.1007/s10515-015-0188-0

Colors show runs

https://doi.org/10.1007/s10515-015-0188-0


cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes

Detection mostly
reliable enough



cbea

Detected Changes In Numbers
What share of versions have changes and how reliably are they detected ?

Renaissance 0.10 rx-scrb 4% 100% 0% scrfm-h 2% 50% 50% sci.spl 4% 100% 0% FJStr 7% 100% 0%

bench R D I sc-doku 1% 50% 50% scxb-h 2% 92% 8% serial 2% 75% 25% FltOdd 12% 50% 50%

aka-uct 1% 100% 0% sc-kmns 6% specs-l 1% 100% 0% sunflow 3% 100% 0% FndNgt 3% 62% 8%

als 5% 100% 0% sc-stmb 1% sunfl-l 2% 100% 0% xml.trn 3% 50% 50% FntNgtR 2% 50% 0%

chi-sqr 2% 100% 0% scrb 5% 100% 0% tmt-d 3% 25% 75% xml.val 2% 75% 25% FldSum 3% 100% 0%

db-shot 2% ScalaBench (with DaCapo) trdb-d 1% 100% 0% Internal Micros FldSumR 0% 0% 33%

dec-tre 2% 100% 0% bench R D I trds-l 2% 89% 11% bench R D I ForSum 1% 50% 0%

dotty 5% appar-d 3% 100% 0% xalan-l 2% 90% 10% StrDev 4% 33% 67% ForSumR 2% 12% 75%

fin-chi 1% 100% 0% avror-l 1% SPECjvm2008 (modified) SFndNeg 3% 36% 50% GrpRem 5% 85% 0%

fin-htt 3% 100% 0% batik-s 3% 67% 33% bench R D I SFldSum 3% 25% 50% MapOne 7% 76% 14%

fj-kmns 5% 100% 0% eclps-s 1% cmp.cmp 2% SForSum 3% 42% 11% NetDot 3% 57% 0%

fut-gen 0% factr-d 1% 100% 0% cmp.sun 2% SMapRed 3% 43% 21% NetEig 2% 62% 25%

gauss 1% fop-d 2% 100% 0% compr 4% 75% 25% STwoAvg 4% 60% 30% Reduce 1% 50% 50%

log-reg 6% 100% 0% h2-d 2% 100% 0% cry.aes 4% 100% 0% TSP 4% 100% 0% STMLst 2% 50% 0%

mne 5% 100% 0% jythn-l 1% 100% 0% cry.rsa 2% 100% 0% TxtSDF 2% 80% 10% STMMap 3% 100% 0%

mov-len 6% kiama-d 2% 89% 11% cry.sgn 4% 75% 25% TxtRDD 2% 100% 0% Scan 1% 43% 57%

nai-bay 2% luidx-d 1% 100% 0% derby 1% 60% 40% WrdCnt 1% 100% 0% SrtRDD 2% 70% 30%

neo-ana 4% 100% 0% lusrc-l 2% 50% 44% mpega 4% 100% 0% BufDec 6% 78% 15% StdDev 3% 25% 44%

pg-rank 1% 100% 0% pmd-l 3% 67% 33% sci.ffl 1% 67% 33% BufEnc 6% 88% 12% StrCnt 2% 50% 50%

par-mne 4% 100% 0% scc-l 1% 100% 0% sci.lul 1% 50% 0% ChrCnt 2% 100% 0% StrDem 2% 50% 0%

philos 2% scdoc-l 1% 100% 0% sci.mtc 3% 88% 12% ChrHis 3% 73% 20% StrPer 4% 93% 0%

reactr 2% 100% 0% scp-l 2% 17% 83% sci.sol 3% 100% 0% FJHis 7% 100% 0%

R - versions with changes D - manually confirmed I - invalid situations

Most benchmarks
exhibit changes

Detection mostly
reliable enough

Microbenchmarks
sometimes misbehave



cbea

Take Away So Far …

Actual measurement protocol appears more important than subsequent
computation

Properly handling warm up

Executing enough measurements

Collecting supporting information

Change detection reliability per se not an issue

Change definition issues beyond math

Some benchmarks may require special attention



cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.

Initial execution slower



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.

Initial execution slower

Eventually stable



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Initial execution slower

Eventually stable



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Initial execution slower

Eventually stable



cbea

Warm Up

Some reasons behind warm up eliminated in our setup

Most power management features disabled

Initial and maximum heap size equal and fixed

Most (but not all) benchmarks stable after first repetition

But the elephant in the room is just-in-time compilation

Initial execution slower

Eventually stable



cbea

How Much Compilation On Average ?



cbea

How Much Compilation On Average ?

Plot Info
Input Cumulative compiler thread execution times collected during

benchmark execution across all benchmarks.

Computation Average processor utilization for compiler threads
relative to single core across benchmark suites.

X axis Time from start of the benchmark execution.

Y axis Processor utilization for compiler threads.



cbea

How Much Compilation On Average ?



cbea

How Much Compilation On Average ?

More complex benchmarks
induce more compilation



cbea

How Much Compilation On Average ?

More complex benchmarks
induce more compilation

Compilation
never really stops



cbea

How Much Compilation Per Benchmark ?



cbea

Detecting Warm Up

What do we want from warm up ?

Make sure we measure code produced by the last tier compiler

Move past the most egregious performance changes

Do not waste too much time on warm up

What we do

Monitor activity of background compiler threads

Establish thresholds across 60 s sliding window
The first window with activity within 10% of minimum is warm

I The algorithm is not online
I Used with runs of 300 s to 600 s
I Will always identify some repetitions as warm



cbea

How Long Do We Warm Up ?



cbea

How Long Do We Warm Up ?

Plot Info
Input Benchmark warm up times collected during benchmark

execution across all benchmarks.

X axis Warm up time.

Y axis Share of runs with that warm up time.

Color Distinguishes benchmark suites.



cbea

How Long Do We Warm Up ?



cbea

How Long Do We Warm Up ?

Average warm up time
around 160 s



cbea

What About (Much) Longer Warm Up ?



cbea

What About (Much) Longer Warm Up ?

Plot Info
Input Benchmark repetition times for arbitrarily selected

benchmarks and platforms.

X axis Time from start of the benchmark execution.

Y axis Time of single benchmark repetition.



cbea

What About (Much) Longer Warm Up ?



cbea

What About (Much) Longer Warm Up ?

Nice behavior except for outliers

Sudden changes after long stability

Very slowly deteriorating performance



cbea

Take Away So Far …

Some warm up properties complicate detection from time measurements

Performance can change at any time into benchmark execution

Performance changes possibly rather sudden

Performance changes in both directions

Reaching measurement stability not really the goal here

Looking (only) at repetition times possibly wrong
Warm up detection surprisingly important

I Too much warmup is prohibitive resource hog
I Too little warmup produces useless measurements



cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run



cbea

Handling More Runs

A single benchmark run does not really tell the whole story …

Compact results
coming from

one run

More runs
give more
variability



cbea

How Many Runs Needed …
… to compute average performance with at most 1% error in 99% of cases ?

Renaissance 0.10 rx-scrb 75 60 20 23 scp-l 23 18 33 21 sci.sol 1 1 1 3 MapOne 99+ 99+ 90 1

bench C8 C11 E8 E11 sc-doku 99+ 99+ 99+ 99+ scrfm-h 33 33 30 56 sci.spl 1 11 1 1 NetDot 1 1 1 1

aka-uct 99+ 40 68 99+ sc-kmns 53 38 9 10 scxb-h 99+ 99+ 99+ 99+ serial 12 10 32 99+ NetEig 1 2 2 9

als 99+ 7 73 99+ sc-stmb 71 33 61 99+ specs-l 16 3 12 5 sunflow 7 6 7 7 Reduce 99+ 99+ 99+ 99+

chi-sqr 99+ 99+ 99+ scrb 99+ 99+ 99+ 99+ sunfl-l 6 14 24 20 xml.trn 9 10 18 72 STMLst 99+ 99+ 45 32

db-shot 99+ 99+ 47 60 ScalaBench (with DaCapo) tmt-d 13 19 12 17 xml.val 20 45 98 42 STMMap 99+ 99+ 97 60

dec-tre 73 94 31 24 bench C8 C11 E8 E11 trdb-d 14 26 14 21 Internal Micros Scan 73 99+ 99+ 99+

dotty 17 13 14 10 59 19 trds-l 7 5 2 4 bench C8 C11 E8 E11 SrtRDD 67 99+ 99+ 99+

fin-chi 99+ 99+ 99+ 99+ appar-d 99+ 99+ 63 99+ xalan-l 32 37 23 26 BufDec 4 41 24 40 StdDev 99+ 99+ 99+ 1

fin-htt 58 21 53 22 avror-l 5 11 8 2 SPECjvm2008 (modified) BufEnc 5 27 17 2 StrCnt 79 42 57 99+

fj-kmns 12 6 72 16 batik-s 1 4 2 7 bench C8 C11 E8 E11 ChrHis 99+ 99+ 43 99+ StrDem 99+ 99+ 99+ 99+

fut-gen 99+ 99+ 99+ 99+ eclps-s 3 16 cmp.cmp 20 10 ChrCnt 99+ 81 45 64 StrDev 1 1 1 7

gauss 99+ 99+ 99+ 99+ factr-d 99+ 99+ 99+ 99+ cmp.sun 8 13 FltOdd 99+ 27 21 1 SFndNeg 1 2 99+ 7

log-reg 34 35 26 19 fop-d 18 23 20 15 compr 9 3 87 90 FndNgt 1 6 1 1 SFldSum 44 1 11 8

mne 99+ 99+ 62 99+ h2-d 27 37 29 98 cry.aes 11 9 8 19 FntNgtR 2 1 2 1 SForSum 1 1 1 99+

mov-len 6 19 6 14 jythn-l 31 99+ 21 56 cry.rsa 6 9 6 8 FJHis 6 1 1 1 SMapRed 99+ 99+ 2 99+

nai-bay 5 5 99+ 99+ kiama-d 37 48 42 16 cry.sgn 12 5 1 16 FJStr 15 4 99+ 38 StrPer 99+ 38 99+ 99+

neo-ana 99+ 94 99+ 99+ luidx-d 94 64 30 34 derby 23 13 54 39 FldSum 4 99+ 99+ 99+ STwoAvg 27 99+ 99+ 99+

pg-rank 99+ 99+ 99+ 46 lusrc-l 38 34 27 18 mpega 1 1 2 2 FldSumR 1 1 2 1 TxtSDF 99+ 24 99+ 93

par-mne 78 84 53 99+ pmd-l 44 59 24 18 sci.ffl 99+ 99+ 99+ 99+ ForSum 99+ 99+ 99+ 99+ TxtRDD 99+ 99+ 79 99+

philos 99+ 99+ 99+ 99+ scc-l 65 99+ 21 22 sci.lul 1 1 2 2 ForSumR 99+ 1 1 9 TSP 99+

reactr 99+ 53 99+ 99+ scdoc-l 54 78 38 47 sci.mtc 12 5 99+ 1 GrpRem 57 99+ 66 28 WrdCnt 99+ 99+ 17 93



cbea

How Many Runs Needed …
… to compute average performance with at most 1% error in 99% of cases ?

Renaissance 0.10 rx-scrb 75 60 20 23 scp-l 23 18 33 21 sci.sol 1 1 1 3 MapOne 99+ 99+ 90 1

bench C8 C11 E8 E11 sc-doku 99+ 99+ 99+ 99+ scrfm-h 33 33 30 56 sci.spl 1 11 1 1 NetDot 1 1 1 1

aka-uct 99+ 40 68 99+ sc-kmns 53 38 9 10 scxb-h 99+ 99+ 99+ 99+ serial 12 10 32 99+ NetEig 1 2 2 9

als 99+ 7 73 99+ sc-stmb 71 33 61 99+ specs-l 16 3 12 5 sunflow 7 6 7 7 Reduce 99+ 99+ 99+ 99+

chi-sqr 99+ 99+ 99+ scrb 99+ 99+ 99+ 99+ sunfl-l 6 14 24 20 xml.trn 9 10 18 72 STMLst 99+ 99+ 45 32

db-shot 99+ 99+ 47 60 ScalaBench (with DaCapo) tmt-d 13 19 12 17 xml.val 20 45 98 42 STMMap 99+ 99+ 97 60

dec-tre 73 94 31 24 bench C8 C11 E8 E11 trdb-d 14 26 14 21 Internal Micros Scan 73 99+ 99+ 99+

dotty 17 13 14 10 59 19 trds-l 7 5 2 4 bench C8 C11 E8 E11 SrtRDD 67 99+ 99+ 99+

fin-chi 99+ 99+ 99+ 99+ appar-d 99+ 99+ 63 99+ xalan-l 32 37 23 26 BufDec 4 41 24 40 StdDev 99+ 99+ 99+ 1

fin-htt 58 21 53 22 avror-l 5 11 8 2 SPECjvm2008 (modified) BufEnc 5 27 17 2 StrCnt 79 42 57 99+

fj-kmns 12 6 72 16 batik-s 1 4 2 7 bench C8 C11 E8 E11 ChrHis 99+ 99+ 43 99+ StrDem 99+ 99+ 99+ 99+

fut-gen 99+ 99+ 99+ 99+ eclps-s 3 16 cmp.cmp 20 10 ChrCnt 99+ 81 45 64 StrDev 1 1 1 7

gauss 99+ 99+ 99+ 99+ factr-d 99+ 99+ 99+ 99+ cmp.sun 8 13 FltOdd 99+ 27 21 1 SFndNeg 1 2 99+ 7

log-reg 34 35 26 19 fop-d 18 23 20 15 compr 9 3 87 90 FndNgt 1 6 1 1 SFldSum 44 1 11 8

mne 99+ 99+ 62 99+ h2-d 27 37 29 98 cry.aes 11 9 8 19 FntNgtR 2 1 2 1 SForSum 1 1 1 99+

mov-len 6 19 6 14 jythn-l 31 99+ 21 56 cry.rsa 6 9 6 8 FJHis 6 1 1 1 SMapRed 99+ 99+ 2 99+

nai-bay 5 5 99+ 99+ kiama-d 37 48 42 16 cry.sgn 12 5 1 16 FJStr 15 4 99+ 38 StrPer 99+ 38 99+ 99+

neo-ana 99+ 94 99+ 99+ luidx-d 94 64 30 34 derby 23 13 54 39 FldSum 4 99+ 99+ 99+ STwoAvg 27 99+ 99+ 99+

pg-rank 99+ 99+ 99+ 46 lusrc-l 38 34 27 18 mpega 1 1 2 2 FldSumR 1 1 2 1 TxtSDF 99+ 24 99+ 93

par-mne 78 84 53 99+ pmd-l 44 59 24 18 sci.ffl 99+ 99+ 99+ 99+ ForSum 99+ 99+ 99+ 99+ TxtRDD 99+ 99+ 79 99+

philos 99+ 99+ 99+ 99+ scc-l 65 99+ 21 22 sci.lul 1 1 2 2 ForSumR 99+ 1 1 9 TSP 99+

reactr 99+ 53 99+ 99+ scdoc-l 54 78 38 47 sci.mtc 12 5 99+ 1 GrpRem 57 99+ 66 28 WrdCnt 99+ 99+ 17 93

Perhaps 1%
is asking too much ?



cbea

How Many Runs Needed …
… to compute average performance with at most 5% error in 99% of cases ?

Renaissance 0.10 rx-scrb 2 3 1 1 scp-l 7 1 7 2 sci.sol 1 1 1 3 MapOne 99+ 17 59 1

bench C8 C11 E8 E11 sc-doku 99+ 72 99+ 99+ scrfm-h 2 2 1 1 sci.spl 1 3 1 1 NetDot 1 1 1 1

aka-uct 3 1 3 9 sc-kmns 1 3 1 1 scxb-h 26 23 28 14 serial 2 1 2 8 NetEig 1 1 2 1

als 28 2 2 4 sc-stmb 4 1 2 6 specs-l 5 1 3 1 sunflow 1 1 2 1 Reduce 6 14 13 43

chi-sqr 34 22 39 scrb 20 5 24 76 sunfl-l 1 3 2 4 xml.trn 1 2 1 2 STMLst 17 8 7 5

db-shot 6 6 2 2 ScalaBench (with DaCapo) tmt-d 1 2 1 2 xml.val 8 1 3 7 STMMap 19 15 6 4

dec-tre 4 4 7 1 bench C8 C11 E8 E11 trdb-d 1 3 1 2 Internal Micros Scan 5 14 20 99+

dotty 1 1 1 1 1 1 trds-l 4 1 1 1 bench C8 C11 E8 E11 SrtRDD 3 9 6 20

fin-chi 11 22 33 99+ appar-d 99+ 99+ 2 33 xalan-l 1 1 1 2 BufDec 3 6 1 1 StdDev 99+ 99+ 99+ 1

fin-htt 1 1 2 1 avror-l 1 1 1 1 SPECjvm2008 (modified) BufEnc 1 27 1 2 StrCnt 5 5 1 37

fj-kmns 3 3 1 13 batik-s 1 3 1 1 bench C8 C11 E8 E11 ChrHis 13 8 2 3 StrDem 99+ 26 10 16

fut-gen 5 3 8 5 eclps-s 1 3 cmp.cmp 1 3 ChrCnt 14 8 1 20 StrDev 1 1 1 7

gauss 21 12 99+ 99+ factr-d 8 11 35 70 cmp.sun 2 1 FltOdd 13 1 1 1 SFndNeg 1 2 62 6

log-reg 3 6 2 3 fop-d 1 9 1 5 compr 1 1 1 2 FndNgt 1 6 1 1 SFldSum 42 1 11 8

mne 5 9 14 4 h2-d 2 1 1 2 cry.aes 1 1 8 1 FntNgtR 2 1 2 1 SForSum 1 1 1 30

mov-len 1 1 1 1 jythn-l 2 12 4 1 cry.rsa 1 1 1 1 FJHis 1 1 1 1 SMapRed 59 50 2 6

nai-bay 1 1 95 68 kiama-d 1 1 2 2 cry.sgn 1 1 1 16 FJStr 2 1 6 3 StrPer 9 2 99+ 3

neo-ana 41 5 3 6 luidx-d 7 4 1 1 derby 1 1 1 5 FldSum 1 4 79 78 STwoAvg 2 35 10 17

pg-rank 7 5 8 1 lusrc-l 1 2 4 2 mpega 1 1 1 1 FldSumR 1 1 2 1 TxtSDF 12 2 4 8

par-mne 6 5 2 2 pmd-l 2 2 1 1 sci.ffl 31 12 26 6 ForSum 5 5 81 82 TxtRDD 11 12 2 55

philos 10 99+ 5 16 scc-l 4 9 1 1 sci.lul 1 1 1 1 ForSumR 10 1 1 9 TSP 42

reactr 3 2 19 13 scdoc-l 2 2 2 1 sci.mtc 1 1 9 1 GrpRem 9 11 9 16 WrdCnt 5 9 11 3



cbea

How Accuracy Relates To Run Count ?



cbea

How Accuracy Relates To Run Count ?

Plot Info
Input Benchmark repetition times for an arbitrarily selected

benchmark and platform.

Computation Size of 99% confidence interval for the mean relative
to the mean.

X axis How many times the benchmark was run.

Y axis Confidence interval width.



cbea

How Accuracy Relates To Run Count ?



cbea

How Accuracy Relates To Run Count ?

Roughly follows 1/
√
n



cbea

Take Away So Far …

Running benchmarks only once may not be enough

Non deterministic compilation especially with microbenchmarks

But the presented tables also include simple cases of high variance

Starting with accuracy as sole goal is not good

Aiming for excessive accuracy backfires quickly

Conditions impacting accuracy may change

How to define balance ?

Accuracy is a function of more than just the benchmark



cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

Runs Needed When Different Metrics Used …
… to compute average performance with at most 1% error in 99% of cases.

Renaissance 0.10 rx-scrb 75 67 54 scp-l 23 94 69 sci.sol 1 1 1 MapOne 99+ 99+ 99+

bench time clk ins sc-doku 99+ 99+ 99+ scrfm-h 33 69 75 sci.spl 1 1 1 NetDot 1 1 1

aka-uct 99+ 99+ 99+ sc-kmns 53 53 99+ scxb-h 99+ 99+ 99+ serial 12 12 3 NetEig 1 1 1

als 99+ 99+ 99+ sc-stmb 71 99+ 99+ specs-l 16 26 9 sunflow 7 6 11 Reduce 99+ 99+ 72

chi-sqr 99+ 99+ 99+ scrb 99+ 99+ 99+ sunfl-l 6 6 8 xml.trn 9 9 2 STMLst 99+ 99+ 99+

db-shot 99+ 99+ 99+ ScalaBench (with DaCapo) tmt-d 13 18 78 xml.val 20 26 1 STMMap 99+ 99+ 99+

dec-tre 73 84 78 bench time clk ins trdb-d 14 99+ 99+ Internal Micros Scan 73 99+ 44

dotty 17 18 16 59 99+ 99+ trds-l 7 12 7 bench time clk ins SrtRDD 67 99+ 26

fin-chi 99+ 99+ 99+ appar-d 99+ 99+ 99+ xalan-l 32 99+ 99+ BufDec 4 3 1 StdDev 99+ 99+ 99+

fin-htt 58 99+ 33 avror-l 5 24 91 SPECjvm2008 (modified) BufEnc 5 8 1 StrCnt 79 99+ 64

fj-kmns 12 14 13 batik-s 1 1 1 bench time clk ins ChrHis 99+ 99+ 53 StrDem 99+ 99+ 99+

fut-gen 99+ 99+ 99+ eclps-s 3 16 3 cmp.cmp 20 21 36 ChrCnt 99+ 99+ 89 StrDev 1 1 1

gauss 99+ 99+ 99+ factr-d 99+ 99+ 99+ cmp.sun 8 7 11 FltOdd 99+ 99+ 99+ SFndNeg 1 1 99+

log-reg 34 35 99+ fop-d 18 17 15 compr 9 9 4 FndNgt 1 1 15 SFldSum 44 44 42

mne 99+ 99+ 64 h2-d 27 15 12 cry.aes 11 11 7 FntNgtR 2 2 1 SForSum 1 1 1

mov-len 6 13 14 jythn-l 31 32 12 cry.rsa 6 14 1 FJHis 6 9 57 SMapRed 99+ 99+ 99+

nai-bay 5 6 16 kiama-d 37 60 56 cry.sgn 12 12 25 FJStr 15 12 8 StrPer 99+ 99+ 31

neo-ana 99+ 99+ 99+ luidx-d 94 28 1 derby 23 23 5 FldSum 4 3 1 STwoAvg 27 27 12

pg-rank 99+ 99+ 99+ lusrc-l 38 49 36 mpega 1 1 1 FldSumR 1 1 1 TxtSDF 99+ 99+ 25

par-mne 78 80 57 pmd-l 44 16 11 sci.ffl 99+ 99+ 99+ ForSum 99+ 99+ 1 TxtRDD 99+ 99+ 31

philos 99+ 99+ 98 scc-l 65 72 99+ sci.lul 1 1 1 ForSumR 99+ 99+ 1 WrdCnt 99+ 99+ 8

reactr 99+ 99+ 99+ scdoc-l 54 65 99+ sci.mtc 12 12 22 GrpRem 57 58 99+

time - wall clock time clk - thread clock time ins - instruction count



cbea

Runs Needed When Different Metrics Used …
… to compute average performance with at most 1% error in 99% of cases.

Renaissance 0.10 rx-scrb 75 67 54 scp-l 23 94 69 sci.sol 1 1 1 MapOne 99+ 99+ 99+

bench time clk ins sc-doku 99+ 99+ 99+ scrfm-h 33 69 75 sci.spl 1 1 1 NetDot 1 1 1

aka-uct 99+ 99+ 99+ sc-kmns 53 53 99+ scxb-h 99+ 99+ 99+ serial 12 12 3 NetEig 1 1 1

als 99+ 99+ 99+ sc-stmb 71 99+ 99+ specs-l 16 26 9 sunflow 7 6 11 Reduce 99+ 99+ 72

chi-sqr 99+ 99+ 99+ scrb 99+ 99+ 99+ sunfl-l 6 6 8 xml.trn 9 9 2 STMLst 99+ 99+ 99+

db-shot 99+ 99+ 99+ ScalaBench (with DaCapo) tmt-d 13 18 78 xml.val 20 26 1 STMMap 99+ 99+ 99+

dec-tre 73 84 78 bench time clk ins trdb-d 14 99+ 99+ Internal Micros Scan 73 99+ 44

dotty 17 18 16 59 99+ 99+ trds-l 7 12 7 bench time clk ins SrtRDD 67 99+ 26

fin-chi 99+ 99+ 99+ appar-d 99+ 99+ 99+ xalan-l 32 99+ 99+ BufDec 4 3 1 StdDev 99+ 99+ 99+

fin-htt 58 99+ 33 avror-l 5 24 91 SPECjvm2008 (modified) BufEnc 5 8 1 StrCnt 79 99+ 64

fj-kmns 12 14 13 batik-s 1 1 1 bench time clk ins ChrHis 99+ 99+ 53 StrDem 99+ 99+ 99+

fut-gen 99+ 99+ 99+ eclps-s 3 16 3 cmp.cmp 20 21 36 ChrCnt 99+ 99+ 89 StrDev 1 1 1

gauss 99+ 99+ 99+ factr-d 99+ 99+ 99+ cmp.sun 8 7 11 FltOdd 99+ 99+ 99+ SFndNeg 1 1 99+

log-reg 34 35 99+ fop-d 18 17 15 compr 9 9 4 FndNgt 1 1 15 SFldSum 44 44 42

mne 99+ 99+ 64 h2-d 27 15 12 cry.aes 11 11 7 FntNgtR 2 2 1 SForSum 1 1 1

mov-len 6 13 14 jythn-l 31 32 12 cry.rsa 6 14 1 FJHis 6 9 57 SMapRed 99+ 99+ 99+

nai-bay 5 6 16 kiama-d 37 60 56 cry.sgn 12 12 25 FJStr 15 12 8 StrPer 99+ 99+ 31

neo-ana 99+ 99+ 99+ luidx-d 94 28 1 derby 23 23 5 FldSum 4 3 1 STwoAvg 27 27 12

pg-rank 99+ 99+ 99+ lusrc-l 38 49 36 mpega 1 1 1 FldSumR 1 1 1 TxtSDF 99+ 99+ 25

par-mne 78 80 57 pmd-l 44 16 11 sci.ffl 99+ 99+ 99+ ForSum 99+ 99+ 1 TxtRDD 99+ 99+ 31

philos 99+ 99+ 98 scc-l 65 72 99+ sci.lul 1 1 1 ForSumR 99+ 99+ 1 WrdCnt 99+ 99+ 8

reactr 99+ 99+ 99+ scdoc-l 54 65 99+ sci.mtc 12 12 22 GrpRem 57 58 99+

time - wall clock time clk - thread clock time ins - instruction count

Instruction count quite stable
even when time is not



cbea

Runs Needed When Different Metrics Used …
… to compute average performance with at most 1% error in 99% of cases.

Renaissance 0.10 rx-scrb 75 67 54 scp-l 23 94 69 sci.sol 1 1 1 MapOne 99+ 99+ 99+

bench time clk ins sc-doku 99+ 99+ 99+ scrfm-h 33 69 75 sci.spl 1 1 1 NetDot 1 1 1

aka-uct 99+ 99+ 99+ sc-kmns 53 53 99+ scxb-h 99+ 99+ 99+ serial 12 12 3 NetEig 1 1 1

als 99+ 99+ 99+ sc-stmb 71 99+ 99+ specs-l 16 26 9 sunflow 7 6 11 Reduce 99+ 99+ 72

chi-sqr 99+ 99+ 99+ scrb 99+ 99+ 99+ sunfl-l 6 6 8 xml.trn 9 9 2 STMLst 99+ 99+ 99+

db-shot 99+ 99+ 99+ ScalaBench (with DaCapo) tmt-d 13 18 78 xml.val 20 26 1 STMMap 99+ 99+ 99+

dec-tre 73 84 78 bench time clk ins trdb-d 14 99+ 99+ Internal Micros Scan 73 99+ 44

dotty 17 18 16 59 99+ 99+ trds-l 7 12 7 bench time clk ins SrtRDD 67 99+ 26

fin-chi 99+ 99+ 99+ appar-d 99+ 99+ 99+ xalan-l 32 99+ 99+ BufDec 4 3 1 StdDev 99+ 99+ 99+

fin-htt 58 99+ 33 avror-l 5 24 91 SPECjvm2008 (modified) BufEnc 5 8 1 StrCnt 79 99+ 64

fj-kmns 12 14 13 batik-s 1 1 1 bench time clk ins ChrHis 99+ 99+ 53 StrDem 99+ 99+ 99+

fut-gen 99+ 99+ 99+ eclps-s 3 16 3 cmp.cmp 20 21 36 ChrCnt 99+ 99+ 89 StrDev 1 1 1

gauss 99+ 99+ 99+ factr-d 99+ 99+ 99+ cmp.sun 8 7 11 FltOdd 99+ 99+ 99+ SFndNeg 1 1 99+

log-reg 34 35 99+ fop-d 18 17 15 compr 9 9 4 FndNgt 1 1 15 SFldSum 44 44 42

mne 99+ 99+ 64 h2-d 27 15 12 cry.aes 11 11 7 FntNgtR 2 2 1 SForSum 1 1 1

mov-len 6 13 14 jythn-l 31 32 12 cry.rsa 6 14 1 FJHis 6 9 57 SMapRed 99+ 99+ 99+

nai-bay 5 6 16 kiama-d 37 60 56 cry.sgn 12 12 25 FJStr 15 12 8 StrPer 99+ 99+ 31

neo-ana 99+ 99+ 99+ luidx-d 94 28 1 derby 23 23 5 FldSum 4 3 1 STwoAvg 27 27 12

pg-rank 99+ 99+ 99+ lusrc-l 38 49 36 mpega 1 1 1 FldSumR 1 1 1 TxtSDF 99+ 99+ 25

par-mne 78 80 57 pmd-l 44 16 11 sci.ffl 99+ 99+ 99+ ForSum 99+ 99+ 1 TxtRDD 99+ 99+ 31

philos 99+ 99+ 98 scc-l 65 72 99+ sci.lul 1 1 1 ForSumR 99+ 99+ 1 WrdCnt 99+ 99+ 8

reactr 99+ 99+ 99+ scdoc-l 54 65 99+ sci.mtc 12 12 22 GrpRem 57 58 99+

time - wall clock time clk - thread clock time ins - instruction count

Instruction count quite stable
even when time is not

Time quite stable even when
instruction count is not



cbea

Different Metrics Not Always In Sync



cbea

Different Metrics Not Always In Sync

Plot Info
Input Benchmark repetition times and dynamic instruction counts

for all pairs of platform versions with suspected change.

X axis Change in average repetition time.

Y axis Change in average instruction count.



cbea

Different Metrics Not Always In Sync



cbea

Different Metrics Not Always In Sync

Instruction count
and repetition time
change together



cbea

Different Metrics Not Always In Sync

Instruction count
and repetition time
change together

Repetition time changes
when instruction counts

stays constant



cbea

Different Metrics Not Always In Sync

Instruction count
and repetition time
change together

Repetition time changes
when instruction counts

stays constant

Instruction count changes
when repetition time

stays constant



cbea

Wall Clock Time Changes Not Always Portable



cbea

Wall Clock Time Changes Not Always Portable

Plot Info
Input Benchmark repetition times for arbitrarily selected pairs of

platform versions with suspected change.

X axis Change in average repetition time on our hardware.

Y axis Change in average repetition time on cloud hardware.



cbea

Wall Clock Time Changes Not Always Portable



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce

Improvement vs regression
also platform specific



cbea

Wall Clock Time Changes Not Always Portable

Even large local changes
may not reproduce

Improvement vs regression
also platform specific

Note
Measurement variance not shown …



cbea

Take Away So Far …

Looking at more execution metrics can improve accuracy

Can help developers trust detected time changes

Or even direct investigation of change causes

Not really clear how to combine multiple (possibly) conflicting results

Some metrics changing and some not

Some platforms improving and some regressing

Some benchmarks improving and some regressing



cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

Is Historical Data Useful ?

What use for historical measurements ?

Not in time series analysis
I Old history not necessarily relevant
I Enough data in recent measurements

But other system properties may prove stable

This can help with warm up and accuracy computations

What we plan

To reduce too long warm up
I Use recent warm up history to set measurement duration
I Occasional long measurements to probe for warm up changes

To reduce too high run count
I Use recent accuracy history to set run count
I Incremental measurements to avoid false negatives



cbea

Warm Up History Per Benchmark



cbea

Warm Up History Per Benchmark

Plot Info
Input Benchmark warm up times for arbitrarily selected benchmarks

and platforms.

X axis Commit time of the compiler version measured.

Y axis Average warm up time.



cbea

Warm Up History Per Benchmark



cbea

Warm Up History Per Benchmark

Stable across long period

Rare but quite large change

Possibly more small changes



cbea

Accuracy History Per Benchmark



cbea

Accuracy History Per Benchmark

Plot Info
Input Benchmark repetition times for arbitrarily selected

benchmarks and platforms.

Computation Size of 98% confidence interval for the mean relative
to the mean computed from 33 runs.

X axis Commit time of the compiler version measured.

Y axis Confidence interval width.



cbea

Accuracy History Per Benchmark



cbea

Accuracy History Per Benchmark

Note
Accuracy is relative to repetition time…



cbea

Take Away So Far …

Some measurement properties exhibit useful stability across history

Warm up duration

Benchmark accuracy

Not yet clear how to use this information in automated measurements



cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

Manual Change Classification
We used manual classification to assess functionality

Ad hoc selection of compiler version intervals

Benchmarks not necessarily represented equally

More measurements added when not sure

We have no classification information about false negatives

Likely impacts especially small changes relative to variance



cbea

Manual Change Classification
We used manual classification to assess functionality

Ad hoc selection of compiler version intervals

Benchmarks not necessarily represented equally

More measurements added when not sure

We have no classification information about false negatives

Likely impacts especially small changes relative to variance

Plot Info
Input Benchmark repetition times for arbitrarily selected pairs of

platform versions with suspected change.

X axis Benchmark repetitions and runs ordered sequentially.

Y axis Time of single benchmark repetition.

Color Distinguishes versions.



cbea

Classification Example: Trivial

An obvious difference that is trivial to classify

Very low variance both within run and between runs

Difference of large relative magnitude

If all data looked like this we would have little to talk about …

Samples from version one

Samples from version two



cbea

Classification Example: Trivial

An obvious difference that is trivial to classify

Very low variance both within run and between runs

Difference of large relative magnitude

If all data looked like this we would have little to talk about …

Samples from version one

Samples from version two



cbea

Classification Example: Small Change

Computed difference in average repetition time around 0.6%
Variance between runs large relative to the computed difference
Outliers large relative to the computed difference
Maybe we need more data ?



cbea

Classification Example: Small Change

Computed difference in average repetition time around 0.6%
Variance between runs large relative to the computed difference

Outliers large relative to the computed difference

Maybe we need more data ?

Variance between runs



cbea

Classification Example: Small Change

Computed difference in average repetition time around 0.6%
Variance between runs large relative to the computed difference

Outliers large relative to the computed difference

Maybe we need more data ?

Variance between runs

Instruction count difference
may appear convincing



cbea

Classification Example: Outlier Definition Issues

Computed difference in average repetition time around 0.9%
The computed difference very much depends on outlier filtering

Are we sure we have enough data ?

Assume 10% change in outlier runs and 10% chance of such runs

This would result in an average repetition time change of 0.9%
There is around 35% chance of getting 10 fine runs

Obviously the example can be stretched in various directions



cbea

Classification Example: Outlier Definition Issues

Computed difference in average repetition time around 0.9%
The computed difference very much depends on outlier filtering

Are we sure we have enough data ?

Assume 10% change in outlier runs and 10% chance of such runs

This would result in an average repetition time change of 0.9%
There is around 35% chance of getting 10 fine runs

Obviously the example can be stretched in various directions

Outlier run



cbea

Classification Example: Outlier Definition Issues

Computed difference in average repetition time around 0.9%
The computed difference very much depends on outlier filtering

Are we sure we have enough data ?

Assume 10% change in outlier runs and 10% chance of such runs

This would result in an average repetition time change of 0.9%
There is around 35% chance of getting 10 fine runs

Obviously the example can be stretched in various directions

Outlier run



cbea

Useless Change Reports ?

Typical scenarios assume cause-and-effect relationship between commit
and performance change

Commit introduces reason for performance change

Performance change observed in measurements

Change can be undone by reverting commit

But what if the situation is more complicated ?

Change caused by commit but commit not responsible for change

Change impacting different benchmarks in different ways

Change impacting different platforms in different ways

Change expected but need to assess cost vs benefit

Change seen on benchmark believed artificial

Change impacts outliers

…



cbea

Regression Example: Processor Scheduling I

Code
A microbenchmark that locates the first negative array item.

def run () {
for (i <- 0 until REPEATS) {

blackhole += findNegative (numbers)
}

}

def findNegative (numbers: Array[Int]): Option[Int] = {
numbers.find(_ < 0)

}

What the measurements said
Clear repetition time change between roughly 230ms and roughly 170ms
No change in other observed counters like instruction count
Observed multiple times in versions across several days
Commit changes often clearly unrelated



cbea

Regression Example: Processor Scheduling II
Assembly
Compilation results in reasonably compact assembly code.

0x00007f115c894c00: cmp %r13d,%edi ;loop iteration count test
0x00007f115c894c03: jbe 0x00007f115c89561c
0x00007f115c894c09: mov 0x10(%rdx,%r13,4),%r10d ;fetch array item
0x00007f115c894c0e: test %r10d,%r10d ;negative test
0x00007f115c894c11: jl 0x00007f115c894c2a ;found negative
0x00007f115c894c17: test %eax,0x1942d3e9(%rip) ;safepoint poll
0x00007f115c894c1d: inc %r13d
0x00007f115c894c20: cmp %r13d,%edi ;loop iteration count test (again)
0x00007f115c894c23: jg 0x00007f115c894c00

Analysis
Inner loop executes at IPC 6 when fast or IPC 4.5 when slow
Performance difference inflated from mere 0.5 cycle per iteration
Instruction scheduler counters report different μops port use as the reason
Actual scheduler choice only indirectly influenced by code



cbea

Regression Example: Inlining Heuristic I

Code
A microbenchmark that filters odd array items.

def run () {
for (i <- 0 until REPEATS) {

blackhole += filterOdd (numbers).length
}

}

def filterOdd (numbers: ArrayBuffer[Int]): ArrayBuffer[Int] = {
numbers.filter (_ % 2 == 1)

}

What the measurements said
Times always stable within each run
Repetition time of a run flipping between 5 s and 5.6 s
Rarely observed runs with repetition times of roughly 3.4 s
Share of runs with each time sometimes changes between versions



cbea

Regression Example: Inlining Heuristic II

Analysis
Fast and slow runs differed in what code gets inlined
Inlining heuristic (also) relies on low level graph size of the callee

If callee previously compiled, a cached value was used

If callee not yet compiled, an estimate was made

Caller and callee invocation counters necessarily similar
Hence compilation jobs launched close together in time
That increases the likelihood of the inliner flipping



cbea

Take Away So Far …

Reasons for performance change
not always directly connected to committed code

Especially microbenchmarks may exhibit fragile performance

Responsibility for addressing changes therefore not clear

Hard to tell what performance regressions should be addressed

Especially with benchmarks that
do not represent application performance

Effort needed to investigate reasons is not very predictable

Not clear what to do with small regressions



cbea

Thank You !

Interested in our data ?
… most data CC-BY, we also have an API

Contribute to Renaissance
… and we will start benchmarking your code too :-)

https://renaissance.dev
https://d3s.mff.cuni.cz

https://graal.d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz


cbea

Thank You !

Interested in our data ?
… most data CC-BY, we also have an API

Contribute to Renaissance
… and we will start benchmarking your code too :-)

https://renaissance.dev
https://d3s.mff.cuni.cz

https://graal.d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz


cbea

Thank You !

Interested in our data ?
… most data CC-BY, we also have an API

Contribute to Renaissance
… and we will start benchmarking your code too :-)

https://renaissance.dev
https://d3s.mff.cuni.cz

https://graal.d3s.mff.cuni.cz

Our work is kindly sponsored by Oracle Labs.

https://renaissance.dev
https://d3s.mff.cuni.cz
https://graal.d3s.mff.cuni.cz


cbea

Outline

1 Quick Platform Overview

2 Detecting Changes

3 Handling Warm Up

4 Handling More Runs

5 Handling Different Metrics

6 Relying On Measurement History

7 Back To Defining Performance Changes

8 Even More ?



cbea

Warm Up Enough Or Too Much ?

Plot Info
Fast The first repetition that is at least as fast as the warm one.

Warm The repetition that our heuristic marks as first warm.

Last The last repetition.

Fast Warm Last



cbea

Do We Warm Up Enough ?



cbea

Do We Warm Up Enough ?

Plot Info
Input Benchmark repetition times and compiler thread execution

times across all benchmarks from many runs.

Computation warm execution time−last execution time
last execution time

X axis Relative difference in the repetition execution times.

Y axis Share of runs with that difference.

Color Distinguishes benchmarks.

Simply How much will performance change after warm up ?



cbea

Do We Warm Up Enough ?



cbea

Do We Warm Up Enough ?

Symmetry is important



cbea

Do We Warm Up Enough ?

Symmetry is important

Constant
compilation

churn



cbea

Do We Warm Up Enough ?

Symmetry is important

Constant
compilation

churn
Leaky

benchmark



cbea

Do We Warm Up Too Much ?



cbea

Do We Warm Up Too Much ?

Plot Info
Input Benchmark repetition times and compiler thread execution

times across all benchmarks from many runs.

Computation warm repetition start time − fast repetition start time

X axis Time interval between the two repetitions.

Y axis Count of runs with that time interval.

Color Distinguishes benchmarks.

Simply How long before warm up are benchmarks already fast ?



cbea

Do We Warm Up Too Much ?



cbea

Do We Warm Up Too Much ?

Less complex benchmarks
show peak performance

before compilation subsides



cbea

Do We Have Too Many Benchmarks ?



cbea

Do We Have Too Many Benchmarks ?

Plot Info
Input All detected performance changes across measurement history.

Computation Count how many benchmarks are impacted by
particular compiler version commits.

X axis Count of benchmarks changing together on the same commit.

Y axis Share of compiler versions with that count.



cbea

Do We Have Too Many Benchmarks ?



cbea

Do We Have Too Many Benchmarks ?

Majority of changes
limited to single

benchmark



cbea

Do Benchmarks Change Together ?



cbea

Do Benchmarks Change Together ?

Plot Info
Input All detected performance changes across measurement history.

Computation Count how many times a given pair of benchmarks
changed performance on the same commit.

X and Y axes Individual benchmarks.

Size How often the two benchmarks changed performance together.

Color Distinguishes benchmark suites.



cbea

Do Benchmarks Change Together ?



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another

Some benchmarks almost
never change with another



cbea

Do Benchmarks Change Together ?

Only few benchmarks
often change with another

Some benchmarks almost
never change with another

Artifact of one suite
not being around so long


	Quick Platform Overview
	Detecting Changes
	Handling Warm Up
	Handling More Runs
	Handling Different Metrics
	Relying On Measurement History
	Back To Defining Performance Changes
	Even More ?

