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Abstract

We present results from measurements of the thermal conductivity of sea ice,
ks, using two different techniques. In the first, ice temperatures were measured
at 10 cm and 30 minute intervals by automated thermistor arrays deployed in
land-fast first-year (FY) and multi-year (MY) ice in McMurdo Sound, Antarc-
tica, and in FY ice in the Chukchi Sea and shallow Elson Lagoon, near Point
Barrow, Alaska. Conductivity profiles through the ice were calculated from
the coupled time- and depth- dependence of the temperature variations using
a conservation of energy analysis, and a graphical finite difference method.
These profiles show a reduction in the conductivity of up to 25% over the
top ~ 50 cm, consistent with similar previous measurements. From simula-
tions and a detailed analysis of this method, we have clearly identified this
reduction (for which physical explanations had previously been invoked) as an
analytical artifact, due to the presence of temperature variations with time
scales much less than the 30 min sampling interval. These variations have a
penetration depth that is small compared with the thermistor spacing, so the
effect is shallow. Between 50 cm and the depth at which the method becomes
noise-limited, we calculate average conductivities of 2.29 + 0.07 W/m°C and
2.26 £ 0.11W/m°C at the FY McMurdo Sound and Chukchi Sea sites, and
2.03 £ 0.04 W/m°C at the MY site in McMurdo Sound.

Using a parallel conductance method, we measured the conductivity of small
(11x2.4 cm diameter) ice cores by heating one end of a sample holder, and with
the other end held at a fixed temperature, measuring the temperature gradient
with and without a sample loaded. From several different cores in each class,
we resolved no significant difference, and certainly no large reduction, in the
conductivity of FY surface (0-10 cm) and sub-surface (45-55 c¢m) ice, being
2.14+0.11W/m°C and 2.09 £ 0.12 W/m °C respectively. The conductivity of
less dense, bubbly MY ice was measured to be 1.88 + 0.13W/m°C. Within
measurement uncertainties of about 6%, the values from our two methods
are consistent with each other and with predictions from our modification of
an existing theoretical model for kg (p,S,7). Both our results and previous
measurements give conductivity values about 10% higher than those commonly
used in Arctic and Antarctic sea ice models. For FY ice, we tentatively propose
a new empirical parameterisation, kg = 2.09 —0.0117 4 0.117 S/T [W/m°C],
where T is temperature [°C| and S salinity [%o0]. We expect this parameter-
isation to be revised as thermal array data from other researchers are made
available.
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We also report thermal array measurements in ice-cemented permafrost at
Table Mountain in the Antarctic Dry Valleys, between November 2001 - De-
cember 2003. From 13 months of temperature data with a sampling interval
reduced from 4 hours to 1 hour (November 2002 - December 2003), we have
modified some aspects of an already published initial analysis [Pringle et al.,
2003]. Using thermal diffusivity profiles calculated from measured tempera-
tures, and a heat capacity estimated from recovered cores, we have determined
thermal conductivity profiles at two sites that show depth- and seasonal- vari-
ations that correlate well with core compositions, and the expected under-
lying temperature dependence. The conductivity generally lies in the range
2.5+ 0.5W/m°C, but is as high as 5.5+ 0.4 W/m°C in a quartz-rich unit at
one site. The wintertime diffusivity is 4 + 7% higher than the summertime
value, which we understand to reflect the underlying temperature dependence.
In this analysis we find our graphical finite difference method more versatile
and more accurate than common ‘Fourier’ time-series methods.
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Chapter 1

Introduction

Sea ice forms annually when the surface of high latitude sea water freezes in
the autumn and winter. A large fraction of sea ice survives less than one year,
typically growing to less than 2m thick before melting in the following spring
or summer. However some ice survives to become second-year or multi-year
sea ice, forming part of the pack ice around Antarctica or in the Arctic basin.
The areal extent of sea ice cycles annually between about 4 and 19 million km?
in the Antarctic and between 9 and 16 million km? in the Arctic [Dieckmann
and Hellmer, 2003]. These cycles are amongst the largest annual variations
on the planet and lead to a maximum sea ice coverage of about 10% of the
world’s oceans. Through its huge area and volume and the large heat, fresh
water and salt fluxes associated with its growth and decay cycle, sea ice is a
significant component in the earth’s heat balance and global climate system.
Sea ice models form an integral part of General Circulation Models (GCMs)
used to forecast the global climate response to changes in climate forcing.

Through a variety of feedback mechanisms, that primarily alter the ocean-
atmosphere heat exchange, sea ice acts as both an indicator and amplifier
of climate change [Ficken and Lemke, 2001; Dieckmann and Hellmer, 2003].
These effects include the ice-albedo effect, thermal buffering, and the thermal
insulation of the oceans. The ice-albedo effect is perhaps most well known;
compared with water, the higher albedo of sea ice, and the snow cover it
can support, decreases the amount of shortwave energy absorbed in the polar
regions. This process constitutes a positive feedback, as an increase in sea ice
extent leads to a decrease in short wave energy absorbed in the region, and
therefore to a further increase in ice growth. Similarly, the high latent heat
required to melt ice enhances the thermal buffering effect of the oceans which
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is due to the large heat capacity of water. This is a positive feedback because
a reduced sea ice cover requires less energy to melt, and re-partitioning of
the heat budget leads to a warmer ocean, and therefore less ice formation the
following season. Sea ice forms both a mechanical and thermal barrier between
the cold atmosphere and relatively warm oceans. In the absence of sea ice, the
ocean warms the atmosphere largely through turbulent heat exchange, but
also by long wave radiation [Dieckmann and Hellmer, 2003]. Neglecting the
turbulent flux, a sea ice cover of 1 m can reduce the conductive and radiative
flux by more than 50%. In regions of high turbulent flux, this decrease can be
as high as 90%. This causes a negative feedback; less ice leads to greater heat
loss, and therefore enhanced ice growth.

In reality the interplay of the various feedback mechanisms over a range of
temporal and spatial scales is very complex, and accurate modelling of them
requires an accurate representation of both thermodynamic and dynamic as-
pects of the ocean-ice-atmosphere interaction. Accurate observations of sea
ice extent have become available only since the satellite era, limiting the time
scales of trend analysis. Ice thickness measurements are harder yet to obtain,
and remain an area of current focus. Furthermore, the natural variability and
large amplitude of the annual cycles (and other cycles eg. decadal oscillations)
makes interpretation of the data difficult [Eicken and Lemke, 2001]. Observa-
tional sea ice scientists are seeking to improve the knowledge of sea ice physics
through both a better understanding of the interactions, and better measure-
ments of processes and properties. As modelling capabilities advance, these
results can be incorporated into the models.

Sea ice is a complex heterogeneous material. It is composed of pure ice, and air
bubbles and brine inclusions trapped during freezing. In compositional models
it is assumed that the brine inclusions are always at their salinity-dependent
freezing point and in thermal equilibrium with the surrounding ice. When the
ice is cooled, a small amount of pure ice freezes out of the inclusions to raise the
salinity and lower the freezing point of the brine accordingly. Similarly when
the temperature is increased, the inclusions are diluted by melting [Maykut and
Untersteiner, 1971]. This equilibrium creates a salinity- and temperature- de-
pendence in the physical properties of sea ice. Furthermore sea ice structure
and processes display large ranges of length scales, from microns to hundreds
and even thousands of kilometres [eg. Dieckmann and Hellmer, 2003]. These
factors lead to rich geophysical behaviour making sea ice a material that is
both interesting to study and difficult to model over geographical scales. As
technology has evolved, sea ice has been analysed in an increasingly sophisti-
cated manner. Laboratory microscopy has led to a better understanding of the



microstructure and small scale physical properties [Light et al., 2003a,b]. The
SHEBA (Surface HEat Budget of the Arctic) project has recently provided rich
information on the spatial and temporal variability in the year-round ice re-
sponse and surface processes [eg. Perovich et al. [2003], and papers in SHEBA
Special Section, J. Geophys. Res., 107(C10), 2002].

A crucial parameter in sea ice models is the thermal conductivity kg;, which
characterises the conductive heat flow through the ice between ocean and at-
mosphere. It controls the rate of ice growth which is limited by the rate
at which the latent heat of freezing released at the water/ice interface can
be conducted away through the ice, and it similarly controls the rate of de-
cay, and equilibrium thermodynamic thickness. It is also commonly used to
calculate the ‘apparent thermal conductivity’ of snow on sea ice via a quasi-
static analysis [eg. Sturm et al., 2002]. The thermal conductivity has proven
so difficult to measure that most models use either a single constant value
or the empirical parameterisation originally proposed by Untersteiner [1961,
1964], and implemented in the seminal thermodynamic sea ice model of Maykut
and Untersteiner [1971]. Several theoretical models deriving the conductivity
from first principles were published about the same time, [Anderson, 1958;
Schwerdtfeger, 1963; Ono, 1968], but the result of Untersteiner [1964] has re-
mained popular because it captures the first-order temperature and salinity
dependence in these more sophisticated models, but is simpler to implement
[Maykut and Untersteiner, 1971]. We discuss this parameterization in more
detail below.

The roughly four-fold difference in thermal conductivity between ice and brine
leads to the prediction that the thermal conductivity of sea ice is strongly de-
pendent on salinity and temperature. Therefore accurate measurements must
involve minimal disturbance to the ice structure. The difficulties associated
with such measurements mean that of the few made prior to the 1990’s only
those of Lewis [1967] claim the accuracy to compare with the theoretical pre-
dictions [Trodahl et al., 2000]. In fact the temperature-dependent thermal
conductivity of fresh ice, k;, required to model kg;, has itself only been mea-
sured to an accuracy of approximately 5%, with &;(0°C) ~ 2.1£0.1 W/m °C,
see Chapter 2.

In recent years the measurement problem has been addressed by Trodahl,
McGuinness and co-workers [Trodahl et al., 2000, 2001; McGuinness et al.,
1998; Collins, 1998] who began the program culminating in the present work.
Using thermistor strings they made high resolution in situ measurements of the
temperature profile in first year sea ice in McMurdo Sound, Antarctica. The
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analysis of these measurements suggested some departures from the predicted
behaviour of ky;. The most notable was a near-surface reduction with up to
~ 25% lower values over the top ~ 50 cm. It was proposed that this reduction
might be due to very small crystal size in the near-surface frazil ice causing
an enhanced scattering of phonons, the elemental excitations involved in the
heat transport [Trodahl et al., 2001]. An apparent increase in the conductivity
with depth was also resolved and thought to be associated with convective
transport in the brine fraction, which increases with temperature and hence
depth. Possible signatures of non-linear heat flow were also identified at lower
depths in the ice [McGuinness et al., 1998; Collins, 1998]. These measurements
are summarised in Chapter 2. In this thesis we present results from similar
thermistor array measurements after modifications to the arrays, data logging
and analysis scheme. As a ground-truth experiment a different method was
developed to measure the thermal conductivity of small sea ice cores drilled
from the surface and sub-surface at one first-year and one multi-year array
site.

In addition we present a thermistor array study of the near-surface thermal
regime of dry, cold, perennially frozen permafrost in the Antarctic Dry Val-
leys. The Dry Valleys have recently attracted increased scientific interest for
two main reasons. The first is the indirect dating in 1995 of the oldest ice
on earth [Sugden et al., 1995]. The second is the current interest in explo-
ration and remote sensing of Mars, because the Dry Valleys are one of the best
earthly analogues of the martian environment. Furthermore Dry Valley per-
mafrost represents a little-studied, very cold and very dry end-member of the
permafrost family [Putkonen et al., 2003] and our work represents the first ded-
icated study of the near-surface temperature regime and thermal properties.
Using equipment and analysis adapted from our sea ice measurements we have
resolved the depth- and time- dependence of the ground thermal properties of
two nearby sites at Table Mountain. This work was performed in conjunction
with researchers from the Antarctic Research Centre of Victoria University, as
part of an ongoing interest in the geomorphology and near-surface processes
in the Dry Valleys. This study was motivated by a desire to examine the
near-surface thermal regime and to investigate a factor-of-three difference in
the size of polygonal ground patterning at these two sites. We defer further
discussion of this project to Chapter 7.

In the remainder of this introductory chapter we next discuss heat flow near the
earth’s surface, and then effective-medium properties of composite materials, of
which sea ice and ice-cemented permafrost are both examples. This is followed
by a sea ice overview, focussing on heat flow. Finally we describe the structure



1.1. HEAT FLOW NEAR THE EARTH’S SURFACE )

of the following chapters.

1.1 Heat Flow near the Earth’s Surface

Heat flow near the earth’s surface arises due to both internal and external
processes. Variations in the surface heat balance (on many different time
scales) cause temperature disturbances which propagate to depth, and heat
flows upward from the earth’s warmer interior. The primary component of
this upwards flow is conductive, the so-called ‘terrestrial heat flow’, but there
are also convective and advective components, for example fluid migration and
volcanism. The terrestrial heat flow is a quasi-static process whereby the local
heat flux Jq [W/m?] is given by the product Jq = —kVT, where k [W/m °C] is
the thermal conductivity and V7, [°C/m]| the geothermal gradient at the same
site 1. On the other hand the propagation of surface temperature disturbances
is a dynamic process described by the thermal diffusivity, D [m?/s] defined by
D = k/c, where ¢ [J/m?] is the volumetric heat capacity.

A formal discussion of heat conduction is presented in Chapter 2. To describe
the propagation of surface temperature variations we discuss two well-known
results here. These are solutions to the one-dimensional heat equation in a
uniform, semi-infinite half space of diffusivity D, for two different boundary
conditions. The first is a sinusoidal surface temperature, 7'(0,t) = Tycos(wt).
For mean surface temperature 7, and geothermal gradient %—Zg the tempera-
ture field is given by:

T(z,t) =Tn+ 3 2+ Toe ™/ cos(wt — z/d) (1.1)

where d = (2D/w)'/? is the penetration depth. Equation (1.1) shows that
the sinusoidal surface temperature propagates downwards with a frequency-
dependent attenuation and phase lag given by d.

The second readily-solved boundary condition is an instantaneous step in the
surface temperature. For a step of magnitude ATy the temperature profile at
a time ¢ later is:

T(z,t) =Ty + 5L 2+ ATger fc (ZL\/E) : (1.2)

'In general the thermal conductivity is a tensor quantity so the direction of heat flow is

not necessarily the direction of the temperature gradient, but in this work we consider 1-D

heat flow, so k is a scalar, and we write temperature gradients as %—Z.
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where erfe(z) = (2/ \/_ () x > exp(—s®)ds is the complementary error func-
tion.

Temperature [°C]
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Figure 1.1: Different perturbations to the geothermal gradient. Here
9L = 30m°C/m and D = 1 x 10~°m?/s for (a) 10°Camplitude daily cycle,
(b) 1°C amplitude yearly cycle, (¢) an instantaneous 2 °C increase in surface
temperature. The dashed lines in (a,b) give the envelope of temperature vari-
ations, and the solid line is T(z) when the surface temperature is maximum,
equation (1.1). The dotted, dashed and solid lines are for immediately before
the surface temperature step, and 5 and 50 years after it.

Figure (1.1) illustrates the effect of these disturbances on a 100m deep pro-
file for an average surface temperature 7,, = 15°C, %—Zg = 30m°C/m, and

D =1x10"%m?/s (similar to that of ice). Note the different depth scales. Fig-
ures 1.1(a,b) show the penetration of 10°C amplitude daily and yearly cycles
respectively. The dashed lines mark the envelope of temperature variations,
and the solid line is the temperature profile when the surface temperature is
maximum, according to equation (1.1). Figure 1.1(c) shows the much deeper
and slower temperature response of an instantaneous 2 °C step in the surface
temperature. Dotted, dashed and solid lines correspond to immediately before
the step, and 5 and 50 years after, as per equation (1.2).

Our thermistor array experiments involve high-precision temperature mea-
surements over small depth intervals and short time intervals, from which
we analyse the coupled time- and depth- variations in temperature. Because
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there are experimentally confirmed theoretical expressions for the heat capac-
ity of sea ice we are able to analyse what is essentially a thermal diffusivity
experiment, to instead determine the thermal conductivity (see Chapter 4).
In our permafrost measurements there is no such equilibrium property so we
solve directly for the thermal diffusivity. The thermal conductivity is then cal-
culated using the heat capacity calculated from the composition of recovered
cores.

In the study of both surface heat balance and terrestrial heat flow, accurate
measurement (or estimation) of the thermal conductivity remains a challenge
[Jessop, 1990]. This is largely due to the highly variable, heterogeneous na-
ture of the geophysical materials involved. For such composite materials the
thermal conductivity (and other transport properties) depend on the volume
fractions of constituent phases, their geometrical arrangement, and orientation
with respect to the direction of heat flow. Variations in the microstructure
and porosity of rocks can be caused by diagenetic and environmental factors.
These variations coupled with the need to preserve sample conditions makes
measurement of the thermal conductivity problematic. The same reasons make
theoretical estimates of a given rock type, in the absence of measured charac-
terisation, accurate to only about 25% [Jessop, 1990].

More generally, we note thermal conductivity measurements are much more
difficult to perform than seemingly analogous electrical conductivity measure-
ments. In each case a potential drop (temperature, or electric potential) is
measured in the direction of a known current (thermal or electrical). Both
measurements require that the current is confined to the sample with no ex-
traneous paths. This is much more easily achieved in the electrical case,as
insulators can have conductivities many orders of magnitude smaller than rea-
sonably good conductors. The range of thermal conductivities is much smaller.
The thermal conductivity of copper is only 2 orders of magnitude greater than
ice, which is only 2 orders of magnitude higher than air.

1.2 Effective Medium Properties of
Composite Materials

The geophysical materials studied in this work, sea ice and ice-cemented ground,
are both heterogeneous composite materials. Within a pure ice matrix sea ice
contains brine inclusions and air pockets ranging in size from microns to cm’s,
brine tubes 10’s of cm’s long, and vertical structural variations over metre- and
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Figure 1.2: Simple heat flow geometries for keg in a two-phase system. (a)
parallel flow; (b) series flow; (c) Maxwell random small inclusion model. See
text for expressions for kg in each case.

sub-metre- scales. The frozen ground we studied is an ice-cemented diamict - a
geological unit with a similar matrix-like structure - containing clasts, pebbles,
sands and clays as well as stratigraphic structure with length scales ranging
from sub-mm to metres.

For 1-D heat flow in a homogeneous material the thermal conductivity is given
by the magnitude of the heat flux per unit temperature gradient, k = Jg/| g—z .
For a heterogeneous material the heat flow is characterised by an effective-
medium thermal conductivity, for which we use the notation k., or just k
when it is not ambiguous. Computationally the effective conductivity can be
predicted by specifying the phase fractions and geometry of the individual
phases and assuming thermal equilibrium between the components. Outer
bounds on the effective conductivity of a two component system are parallel
and series heat flow shown in figure (1.2). For heat flow along parallel compo-
nents subject to the same temperature gradient, k.g is given by the thermal
conductivity of each phase weighted by its area fraction, which for a parallel
arrangement is equal to the volume fraction ¢, giving

For series heat flow it is the thermal resistivity (reciprocal of thermal conduc-
tivity) that adds in this way and the effective conductivity is therefore given

by »
ky = (Z %) . (1.4)

A variety of models have been proposed for specified arrangements of phases,
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including random and unknown geometries. Four commonly used results are:

1. Geometric Model. The simplest model for random inclusions is the ‘geomet-
ric mean’ model in which the effective conductivity is given by the geometric
mean of the volume-weighted component conductivities [Jessop, 1990]:

k= H k% = exp (Z @zn(/{i)) . (1.5)

2. Maxwell model. For a random distribution of small inclusions (ks) in a
matrix (k;) as in figure 1.2(c) the effective thermal conductivity is given by
Maxwell’s expression, originally derived for the effective electrical conductivity
for the same geometry:

_ 2kt ke = 200(1 — o)

k=
Y oky + kg + Pa(k1 — ko)

(1.6)

Although derived in the assumption that that ¢, is small, this result is often
applied across the range 0 < ¢ < 1.

3. Hashin-Shtrikman bounds. The Hashin-Shtrickman (H-S) bounds give the
tightest possible bounds for a disordered, isotropic material when there is no
precise knowledge of the geometric arrangement of components (two-point cor-
relation function unknown). Isotropic here means that there are no extended
paths in the direction parallel or perpendicular to the direction of heat flow
[Landauer, 1978], so the H-S bounds lie inside the extreme bounds of series
and parallel heat flow. For a 2-component system with higher conductivity
k1, and lower conductivity ks the upper and lower H-S bounds, related by the
substitution ky < ko, and ¢, <> ¢o, are [Hashin and Shtrikman, 1968; Tuch
et al., 2001],

ki + ko + ¢a(ko — k1)
ki + ko — ¢o(ko — k1)
ki + ko + ¢1(k1 — ko)

k= k : 1.8
: kit ks — 61 (ki — ko) (18)

ky, = Kk

(1.7)

Here ¢ + ¢1 = 1 are the volume fractions of the components. The arithmetic
mean of these bounds can be taken as a best-estimate of the conductivity
[Jessop, 1990].

Figure 1.3 shows the above results for a two-component system with conduc-
tivity values approximating ice k; = 2.1 W/m °C, and brine, ky = 0.5 W/m °C.
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Figure 1.3: Geometric bounds on effective thermal conductivity kg in a two-
phase system. Here k; = 2.1 W/m°C, and ks = 0.5 W/m°C correspond to
the approximate values of ice and brine. Analytical expressions for the curves
are found in the text.

It is important to consider the sample heterogeneity when measuring the effec-
tive thermal conductivity of composite materials because an accurate measure-
ment requires that the measured sample is representative of the bulk average.
The size of samples should be large compared with the length scale of any
compositional variations. This point is relevant to the interpretation of the
diffusivity and conductivity profiles at the Table Mountain sites and is dis-
cussed more in Chapter 6.

A further complication is that the above models assume a static temperature
profile, so that the components are in thermal equilibrium. For time vary-
ing temperatures, it is the thermal diffusivity (via its dependence on the heat
capacity) that determines the rate of temperature response. Temperature equi-
librium will exist only for variations with a characteristic period larger than
the response time of the system, ¢t > L?/D where L is a local length scale. In
the thermal array ‘diffusivity’ measurements in this work, we assume thermal
equilibrium between constituent components, and use a theoretical equilibrium
heat capacity expression to determine the conductivity. The heat capacity de-
pends only on the volume fractions of ice, and brine and air inclusions and not
also their arrangement. Because it is an equilibrium property its measurement
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is more straightforward than the thermal conductivity. As discussed in Chap-
ter 2, experimental and theoretical values of ¢, (.S, T) are in good agreement.

1.3 Sea Ice Overview

As heat is extracted from the relatively warm water into the colder atmosphere
the sea water first cools to its bulk freezing point, suppressed below 0°C by
the presence of dissolved salts, and then freezes upon the removal of more
heat. The salinity of sea ice 0 = m,/mg; is the mass of salt per unit mass of
sea ice. Sea ice salinities are typically expressed in parts per thousand (ppt,
or %), S =10000. When we write S, it is salinity in parts per thousand.
The freezing point-salinity relation for sea water is approximately 7y ~ —55 5
and for typical seawater with salinity 34%o is Ty = —1.87°C. Whereas fresh
water has a density maximum (7),,,,, = 4°C) above its freezing point, for sea
water of S > 27, density is still increasing with decreasing temperature when
the freezing point is reached. Therefore convective over-turning occurs as the
atmosphere-cooled surface waters are denser than the warmer underlying wa-
ter, creating a layer of water at its freezing point. Ice formation now begins at
the surface and continues as heat is conducted away from the ice/water inter-
face through the ice to the atmosphere. The growth rate slows as the thermal
gradient over the ice decreases with increasing ice thickness and the maximum
thermodynamic ice thickness is given by the balance of heat conduction away
from the ice/water interface and the oceanic heat flux supplied from below.
When the oceanic flux exceeds the conductive flux, the onset of melting occurs.

Different environmental conditions during growth and decay cycles give rise to
a variety of ice types and features. An overview of these features and associated
nomenclature including pictures is presented by Eicken [2003]. The primary
categorisation of sea ice is age. Ice yet to experience a full melt season is called
first year (FY) sea ice. Second year ice has survived one melt season, and multi
year (MY) ice more than one. This thesis is largely concerned with first year
ice. However we do present results for MY ice from both of our methods.
Through the seasonal growth cycle FY ice constitutes a very large fraction
of the total sea ice cover, especially in the Antarctic, and therefore plays a
significant role in the total heat balance. Furthermore the structure of FY
ice is well related to growth processes, whereas older MY ice, with unknown
thermal and mechanical histories, displays a larger variance in microstructure.
The correlation between measured properties and underlying microstructure
is therefore possible in FY ice, and the measured conductivity is applicable to
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a large fraction of the ice cover.

We note that sea ice models have historically addressed the Arctic sea ice
cover, and therefore often use properties relevant to MY ice. We return to this
point in the final, conclusions chapter.

1.4 Heat Flow in Sea Ice

To model the atmosphere-ice-ocean interactions involved in and affected by sea
ice growth and decay requires a quantitative heat flux analysis. Maykut [1986]
and Steele and Flato [2000] present this analysis in some detail, and Eicken
[2003] provides a summary. Factors contributing to the overall heat balance are
shown schematically in figure (1.4). Advective and convective heat transport
are not usually separated from conductive heat flow and the ‘conductive heat
flux’ F.(z) = —ks(2)(0T/0z)|. represents the total heat flow in the ice at a
given depth 2. Some care must be taken when discussing the total heat flow
if not diffusive heat transport is involved. Strictly, the ‘thermal conductivity’
includes only diffusive transport, whereas what is important in modelling sea
ice, and what may be determined from n situ measurements, is the effective
linear heat flow coefficient. As far as we know, all models parameterise heat
flow only in terms of the intrinsic sea ice thermal conductivity, kg, whose
accurate measurement is the primary focus of the present work.

The total heat balance problem is non-linear and the ice temperature profile,
and growth and decay, are usually modelled numerically. Conceptually the ice
temperature profile and ice thickness H(t) are established by various physical
processes which serve to balance the heat fluxes at both the top and bottom
surfaces. The conductive flux at the surface F.(0) can be considered a residual
term whose value is such to achieve this balance at the upper surface [Lewsis,
1967; Eicken, 2003]. The rate of growth or decay of ice at the ice/water
interface then arises in order balance the conductive heat flux at the interface
F.(H) and the oceanic flux Fp represented heat supply from the warmer ocean.
For latent heat of fusion L [J/g] the thickness change dH/dt for ice with density
p s,
dH

Here F.(H) = —ky(H)(0T/0z)y is by definition negative for a flow of heat

2We here follow the conventional notation in the sea ice literature, in which fluxes are
denoted with an ‘F’.
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Figure 1.4: Simplified schematic diagram of heat balance of sea ice (with snow
cover), slightly modified from Maykut and Untersteiner [1971]. The surface
fluxes are: turbulent latent heat Fj, and sensible heat Fj; down-welling long-
wave radiation Fy; re-radiated longwave radiation e;oT*; down-welling short-
wave radiation F; reflected and scattered shortwave radiation afF); surface-
penetrating shortwave radiation I;. Oceanic flux is here represented by F,,.
Conductive fluxes at various positions are represented by k(07'/0z). Freez-
ing/melting of ice at the surface, and other effects associated with melt ponds
and brine drainage are not represented.

away the ice/water interface, ie. up through the ice. The relative magnitude of
the oceanic and conductive fluxes therefore limits the maximum ice thickness
from thermodynamic growth possible in a single growth season. For example
the maximum thermodynamic thickness of Arctic ice is given by models run
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over several years as approximately 3.5 m [Maykut and Untersteiner, 1971],
although convergent dynamic processes such as ridging and rafting can pile up
floes much thicker than this.

A thorough understanding of the factors maintaining heat balance at both
the top and bottom ice interfaces is essential in understanding sea ice mass-
balance and predicting its response to future climate variability. Numerous
studies have been undertaken in the Arctic and Antarctic in order to measure
the variability in the heat flux components at the top and bottom ice surfaces.
The SHEBA project has led to the systematic study of many processes in the
surface heat balance in the Arctic. These include the thermal conductivity of
snow [Sturm et al., 2002], the effect of the evolution of surface melt ponds on
the total albedo [Eicken et al., 2004], melt water circulation and permeability
[Freitag and Eicken, 2003]. Complementing these measurements is our present
work on thermal conductivity, which because of measurement difficulty, has
seen little previous experimental attention.

We note two studies which identified departures from the simple thermal con-
duction picture of heat flow in sea ice. The study of Lytle and Ackley [1996]
identified convective heat transport in MY ice in the Weddell Sea, Antarctica.
In this case, heavy snow loading lead to surface flooding and formation of a
slush layer at the snow /ice interface in early autumn (February/March). Over
a 2-3 week period, snow ice formed and the cold dense brine rejected in this
process drained through the existed brine tube network, replaced by less saline,
warmer water from the upper ocean, constituting a convective contribution to
the heat flow from the ocean to ice surface. This process is relevant only in
MY ice with a negative freeboard due to heavy snow loading.

The impact of solar radiation on the heat flow in fresh Antarctic plateau ice
and sea ice was examined by [ Weller, 1967]. Using harmonic analyses, Weller
observed an unphysical depth-dependence in the apparent thermal diffusivity
of both ice types, associated with the effect of solar radiation. We discuss this
work further in Chapter 2.

In sea ice models the thermal conductivity is typically represented by the ap-
proximate formula of Untersteiner [1964], used in the seminal thermodynamic
sea ice model of Maykut and Untersteiner [1971],

B8S
Here k;( is the conductivity of fresh ice, S is salinity [%00], B is a fitted con-
stant, and T temperature [ °C]. Particularly since its use by Bitz and Lipscomb
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[1999], equation (1.10) with k;o = 2.03 W/m°C and 8 = 0.117W/m%o is
firmly established in sea ice models. It is used in the following ice and coupled
climate models: Los Alamos Sea Ice Model (CICE) ; (American) National Cen-
ter of Atmospheic Research (NCAR) Community Atmosphere Model (CAM2);
Community Climate System Model (CCSM3.0); Canadian Ice Service Com-
munity Ice-Ocean Model (CIOM); Bohai and Baltic Sea Ice models [Cheng,
2002].

Untersteiner [1961, 1964] originally used units of [g/cm?] for salinity in equa-
tion his version of equation (1.10). Converting from the original c.g.s. units,
equation (1.10) should be written ky; = 2.03+0.117 pS/T [W/m °C] if p [g°m?]
and S [%g0] have their presently conventional units. Untersteiner [1964] as-
sumed a constant density of 0.9 g/cm3. Subsequent papers have either over-
looked this density dependence or omitted it for simplicity, and typically use
ks = 2.03 +0.117.S/T [W/m°C]|. This difference is becomes noticeable only
for temperatures near the melting point, and for S = 6%y, amounts to at
most a 1% change in k,; for T < —4°C. As this is less than the roughly +5%
uncertainty in k; (see below), this difference is perhaps not important. Ref-
erence in the literature to the parameterisation of equation (1.10)is variously
cited as Untersteiner [1961], Untersteiner [1964], or Maykut and Untersteiner
[1971]. Hereafter, we use the latter, which reflects the small departure from
the original form, and the importance of the Maykut and Untersteiner [1971]
paper in the development of sea ice modeling. Note that Maykut [1986] gives
B = 0.13W/mppt., which differs from both the original, and the commonly
used value. We can only speculate that this reflects either an error in division
by p rather than multiplication, or a typographical error.

Following the ‘zero layer’ thermodynamic models of Semtner [1964] and Parkin-
son and Washington [1979], some models use just Untersteiner’s constant term,
2.03 [W/m°C]. Such models have tended to be those concerned with large scale
coupling to atmospheric forcing, including the Antarctic sea ice models of Wu
et al. [1997] and Lemke et al. [1990]. The US Navy Polar Ice Prediction System
(PIPS 2.0) model uses the constant value 2.1656 [W /m °C].

Our interest lies in measuring and understanding heat flow in sea ice. Our
study is not concerned with, or directly relevant to models that treat the ther-
mal conductivity as a tunable parameter. These tend to be coupled models,
and in order to accommodate many complex interactions desire the simplest
parameterisation of the thermodynamics that still gives accurate model output
leg. Gough, 2001]. For example, the thermal inertia (heat capacity) can be set
to zero and the thermodynamics treated as quasi-static by tuning the conduc-
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tivity (see Steele and Flato [2000] discussion of so-called 0-layer models, Gough
[2001] and references therein). In such cases parameter tuning is performed
by constraining model output with observations. With increased modelling
capability, most large scale community models do not use this approach now.

Further to its application to sea ice modelling, the thermal conductivity re-
mains one of the least well measured properties of sea ice, and its accurate
measurement presents an experimental challenge in itself.

1.5 Structure of Thesis

The body of this thesis is as follows. Background to theoretical and experimen-
tal determinations of the thermal conductivity and heat capacity is presented
in Chapter 2. In Chapter 3 we provide a full description of the thermal arrays
used in our sea ice and permafrost measurements. In Chapter 4 we discuss
conductive heat flow and show how our temperature measurements can be
analysed to determine the thermal conductivity of sea ice, and thermal diffu-
sivity of permafrost. All details of our analysis method are presented and the
method’s performance is assessed from an analytical basis and via simulations.
We relate the these results to the previous conductivity results of Trodahl et al.
[2000, 2001] and McGuinness et al. [1998]. In Chapter 5 we describe our sea
ice array measurements in Antarctica and Alaska, and present results of these
experiments. Chapter 6 contains full details of our direct measurement of the
thermal conductivity of small cores of sea ice using a new method. At the end
of this chapter we discuss the results of our two methods and compare them
with theoretical predictions and the parameterisation of Maykut and Unter-
steiner [1971]. We present all aspects of the Dry Valley permafrost project
in Chapter 7. Conclusions from this work are presented at the end of this
chapter. Then in Chapter 8 we summarise the key results of our sea ice mea-
surements. Conclusions are drawn, including recommendations for the future
parameterisation of kg in sea ice models, and possible future work discussed.



Chapter 2

Background

In this chapter we present background to both the theoretical modelling and
measurement of the thermal properties of sea ice. We are primarily concerned
with the thermal conductivity, k,;, but also discuss the heat capacity, c;, be-
cause we require an expression for ¢ (S, T') in the data reduction of our temper-
ature array measurements (see Chapter 4). The thermal properties, like other
bulk properties of sea ice, can depend strongly on composition because of large
contrasts in the physical properties of the pure ice, brine and air components.
In developing theoretic models of sea ice thermal properties there is a progres-
sion of increasing complexity: the heat capacity depends only on composition,
density requires knowledge of the air content, and thermal conductivity (and
therefore diffusivity) requires information on the spatial distribution of phases
[Yen, 1981]. We therefore first present an overview of the composition and
empirical phase relations of sea ice, before discussing theoretical results for k;
and cs;. We then summarise the approach, analysis and results of previous
measurements of kg;.

2.1 Composition and Phase Relations

When sea water freezes the salt ions are not incorporated into the ice crystal
lattice but are instead rejected into the melt. Brine inclusions form when the
lamellar ice-growth interface ‘pinches off’ small volumes of the melt, and air
bubbles, which are trapped in ice grain boundaries as the interface advances
into the melt Weeks and Ackley [1986]; Light et al. [2003a, eg.]. For the brine
and ice fractions to remain in phase equilibrium, differential melting or freezing

17
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of pure ice occurs at the inclusion boundaries so that the salinity-dependent
freezing point of the inclusions is adjusted to the ice temperature. With further
temperature reduction various salts precipitate out of the brine, lining the

inclusions.
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Figure 2.1: Phase relations for ‘standard’ sea ice. Circles on the brine-salt line
indicate temperatures at which solid salts precipitate. Several but not all of
these points coincide with kinks in the upper curve. Figure from Assur [1958],
reproduced from Weeks and Ackley [1986].

The mass fractions of ice, pure water, and dissolved and precipitated salts
is represented in figure (2.1), the ‘standard sea ice’ phase diagram of Assur
[1958] reproduced from Weeks and Ackley [1986]. Note the log-linear axes.
‘Standard sea ice’ is sea ice with composition such that its meltwater has the
same relative concentration of ions as normal sea water [Assur, 1958]. Barely
visible on the upper ice/brine equilibrium line are the temperatures at which
various salts precipitate.

Figure (2.2) shows more clearly the salt content dependence of the freezing
temperature, T, and the onset of salt precipitation. The vertical axis of this
phase diagram is not salinity, but instead is fractional salt content, s, defined
as the mass of salt divided by the mass of water: s = mg/m,. (Salinity
is the mass of salt per unit mass of sea ice ¢ = my/my.) Fractional salt
content is used here only because Ty shows linear trends in s rather than o.
For T'> —8°C, s o« T, and equilibrium is maintained by freezing/melting of
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Figure 2.2: Freezing point of brine as a function of fractional dissolved salt
content (see text). Solid dots, data from Nelson and Taylor [1954]; open circles
computed from Ringer [1906]; dashed line, possible path if salts precipitate in
a different order. Reproduced from Yen [1981], after Schwerdtfeger [1963].

ice. At approximately —8 °C mirabilite (NagSO,4 - 10H;O) starts to precipitate.
The precipitate fraction p = m,/m,, is a linear function of temperature down
to approximately —23°C at which point hydrohalite, (NaCl-2H,0) also starts
to precipitate, then MgCl, - 2H,O at —36°C. We note that there is some
discrepancy in reported values of the precipitation onset temperatures and
slopes of lines in the (s,7) diagram. For T" 2 —8°C we use the result of
Schwerdtfeger [1963],

s=al, a=-0.01848°C™" . (2.1)
As discussed below the precipitates play a negligible role in the thermal proper-

ties so any small differences in these parameters are unimportant in the present
work.
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To model the thermal properties of sea ice the volume fractions of the com-
ponents that are required. For T' > —8°C all salts are dissolved, in 1 gram of
sea ice there are o grams of salt and o/s grams of water. The mass of brine
is o(1+ 1/s) and its density is py (M, + ms) /My = puw(l + $) so the volume
of brine is v, = 0/(spy), where p,, is the density of pure water. The mass of
ice in 1 gram sea ice is 1 — 0 — 0/s and the ice volume is (1 — o — a/s)/p;.
Making the substitution s = T, the fractional volumes for brine, ice and air
(volume in unit volume of sea ice) are therefore [Yen, 1981]:
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2.2 Theoretical Thermal Conductivity of Sea
Ice

To model the effective-medium thermal conductivity of sea ice, one requires
a model for the geometry of ice, brine and air components as well as the
temperature-dependence of the component conductivities. Yen [1981] de-
scribes the slightly different models of Anderson [1958], Schwerdtfeger [1963]
and Ono [1968] and presents graphs of kyi(p,S,T) based on Schwerdtfeger’s
approach but using results for component conductivities not available to Schw-
erdtfeger. Schwerdtfeger’s model considered a matrix of ‘bubbly ice’ enclosing
parallel, vertically-oriented bubbly-brine cylinders. The air bubbles were con-
sidered to be randomly distributed through the ice component and Maxwell’s
result, equation (1.6), applied [Schwerdtfeger, 1963]. Ono instead considered
the air bubbles to be dispersed uniformly through both the ice and brine [Ono,
1968]. Recent work by Light and co-workers on the temperature-dependent
micro-structure of FY Arctic sea ice using modern image processing methods,
has shown air bubbles only in (present or previous) brine inclusions and not
originating in the ice itself [Light et al., 2003a]. They determine a power-law
air bubble size distribution, and a bubble number density (number per unit
volume) only ~ 5% of the brine inclusion number density. Schematic represen-
tations of Schwerdtfeger’s and Ono’s models are shown in Figure (2.3) together
with an image from Light et al. [2003a].
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Figure 2.3: Highly simplified sea ice structure for thermal conductivity models:
(a) Schwerdtfeger [1963] model: bubbly ice and brine; (b) Ono [1968] model,
bubbly ice and bubbly brine; (c¢) our model, ice and bubbly brine; and (d)
photograph of first year sea ice at —15°C from Light et al. [2003a]. For parallel
heat flow, only the volume fractions are important in (a,b,c) so the brine
component does not need to be represented as tubes. In (d) the vertical brine
tubes are a darker gray, and the edge of air bubbles are dark. The arrows point
to drained brine tubes, and the insert shows several ‘inactive’ air bubbles.

With these results of Light et al. [2003a] in mind, we have modified Yen’s
adaptation of Schwerdtfeger’s model, by considering parallel components of

pure ice and ‘bubbly brine’. We use Maxwell’s result for the conductivity of
the bubbly brine,

iy + kg — 204 (Ky — k)

k P—
P 0k + kg + valky — ko)

(2.5)

For k;,, we here use the same result as Yen, the thermal conductivity of NaCl
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and NaySO, solutions ( S < 150%gy ) as measured by Lange and Forke [1952],
ky = 0.4184(1.25 + 0.030 T + 0.00014T?%)  [W/m°C] . (2.6)

For the thermal conductivity of air we use a temperature-dependent expression
not used by Yen (who used k, = 0.0251 W/m °C) [Di Nello, 1995],

ko = 0.0277 + 0.00010T  [W/m°C] . (2.7)

The dominant term in modelling k; is the conductivity of fresh ice, k;(T),
which in fact is not well known at all. There is good agreement on the temper-
ature coefficient of k;(T") but k;(0°C) has been determined only to an accuracy
of about 5%, or 0.1 W/m °C. Reviews of previous measurements of k;(7") have
been made by Slack [1980] and Yen [1981]. From a graph of several data sets,
displaying a scatter of approximately +£15%, Yen gives the following best fits,

ki(T) = 9.828¢ 00057TIK]  [W/mK°C] (allT) |, (2.8)
ki(T) = 6.727e C0UTIEL W/meC] (T >195K) . (2.9)

From Yen’s figure (14), the all-temperature fit is clearly too steep for T' >
195 K, reflecting a bias from a large scatter in data below 150 K. For the tem-
peratures that we are interested in, equation (2.9) is the best estimate of k;(T)
with this functional form. Despite this, Yen uses equation (2.8) to model k.
Between 0°C and —30°C these two fits are well described by the linear fits:

k(T) ~ 2.07-0013T [W/m°C] (allT) : (2.10)
k(T) ~ 219-001T [W/m°C] (T >195K) . (2.11)

These linear forms show a ~ 6% difference in k;(0°C), and both values are
larger than k; o = 2.03 W/m°C originally adopted by Untersteiner [1961].

Slack [1980] addresses the underlying mechanisms of heat transfer in ice and
seeks to analyse previous conductivity results based on then recent measure-
ments and calculations of the phonon-dispersion curves. He rejects some of
the data Yen included in his curve-fitting exercise, and rather than fit an
equation to the still quite scattered data, Slack tabulates ‘best estimates’ of
k;(T) from 0°C down to 10 K for which he quotes an accuracy of 10%. 'Of
the many references available for k;(7")He gives a higher precision estimate of
ki(0°C) = 2.14W/m°C. A linear interpolation of Slack’s best estimates for
0°C and —30°C gives,

ki(T) =214 —0011T [W/m°C] . (2.12)
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Figure 2.4: Modelled sea ice thermal conductivity, ks (p, S,T), for parallel
conduction along pure ice and bubbly brine. Adapted from Yen [1981] for
salinities and densities appropriate to FY ice, see text for details. Upper
curves, S = 0, 5, 10 and densities p = 0.89, 0.91g/cm?. Grey lower curves:
parameterisation used in Maykut and Untersteiner [1971].

A translated version of the Russian text ‘Sea Ice’ [Doronin and Kheisin, 1977
gives the following relation for pure ice, from the measurements Nazintsev,

ki(T) =222 —0.035T [W/m°C] . (2.13)

This temperature gradient is more than twice that of the other results, but
may be a typographical error as there are others in the same chapter of that
book. The original reference could not be acquired either in Russian or in
translation.

We consider equation (2.12) to be the best estimate of k;(7"), and use it in our
model of kg (T). The temperature gradient is similar to the linearisations of
Yen'’s fits, and Slack specifies the 0 °C value to a higher precision that his other

'In support of Slack’s tabulated values, the 2005 CRC Handbook of Physics and Chemisty
[Lide, 2005] quotes them for the thermal conductivity of ice.
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values indicating a greater degree of confidence. We have therefore modified
the Yen/Schwerdtfeger model by considering bubbly brine in parallel with pure
ice and by using different expressions for k;(7T") and k. (7). Figure 2.4 shows
ks(p, S, T) from evaluating equation (1.3) with equations (2.5, 2.7, 2.12). From
the uncertainty in k;(0°C) the underlying absolute accuracy of this model is
about £0.1W/m°C.

Structural models could be developed to include the size- and number- distri-
butions of air bubbles and brine inclusions measured by Light et al. [2003a]
from which effective medium parameters (electrical, and mechanical as well
as thermal) could be predicted. However these refinements would result in
changes in the predicted parameters that are likely below the present experi-
mental resolution, and at a cost of increased mathematical complexity. Given
the natural variability in sea ice microstructure this level of sophistication is
probably not justified.

2.3 Theoretical Specific Heat of Sea Ice

The specific heat of sea ice differs from non-saline ice because the saline brine
inclusions contribute a ‘distributed latent heat’ below the bulk freezing point.
At low temperatures the brine volume is small and the specific heat of sea
ice approaches the temperature-dependent specific heat of fresh-ice. However
just below the freezing point the strongly temperature-dependent brine volume
results in a strong temperature-dependence in the heat capacity. Because it is
an equilibrium property the heat capacity is much easier to both model and
measure than the thermal conductivity, and there has been good agreement
between theoretical and experimental results.

Schwerdtfeger [1963] incorporated the sea ice phase diagram of Assur [1958]
(figure 2.1), and from first principles derived models of the specific heat, den-
sity, and thermal conductivity of sea ice. Within uncertainties his own mea-
surements of ¢4 (S, T) in the Canadian Arctic were consistent with his the-
oretical results. A small error in his theoretical treatment was corrected by
[Ono, 1968] who produced a series of papers on the thermal properties of sea
ice including both theoretical modelling and experimental results from Mom-
betsu Harbour in the Okhotsk Sea at the far north of Japan [Ono, 1965, 1967,
1968]. Schwerdtfeger took the heat required for differential melting/freezing
of ice mass dm to be dQ) = dmLg, for all temperatures, where L is the latent
heat of fresh ice at 0°C. Correcting this to account for the temperature-
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dependence of the internal energy of water and ice, Ono [1968] obtained
0Q = om(Lo + (cp — &;)T).

Ono’s work is now the standard reference for the heat capacity of sea ice. For
T 2 —8°C in which there are no precipitated salts, his result for the specific
heat of sea ice is:

ci=atola—c)— —(cw—a)-—L . (2.14)
Here m; and my, = mg+m,,, are the mass of ice and brine in one gram sea ice,
Ci, Cp, Cy are the specific heat of fresh ice, brine and water respectively and Ly
is the latent heat of fresh ice at 0 °C. Because there is no salt precipitation in
this temperature range the mass of dissolved salt per unit mass sea ice equals
the mass of total salt per unit mass sea ice, o and the mass of water per unit
mass of sea ice is w = 0/s = o/aT according to the salt-content /temperature
equilibrium line in figure 2.2. We use the results in Ono [1967], Pounder [1965]
and Nazintsev [1964], here in SI units,

Pure ice ¢; =2.113+0.0075T [J/g°C] (2.15)
Pure water ¢, = 4.205 —0.0087 [J/g°C] (2.16)
Brine e = 4.205+0.092T [J/g°C] . (2.17)

With these and o = —0.01848 °C™', equation (2.14) gives 2,

S
st = 2113+ 0.00757 — 0.0034S +0.000085T + 18.04 5 [J/3°C] , (2.18)

for S [%0] and T [°C].

Ono did not consider the effect on the specific heat of salt precipitation below
—8°C, probably because these temperatures are rarely reached at Mombetsu.
Schwerdtfeger did this calculation for —8°C < T' < —23°C by assuming a
linear rate of precipitation of NayS04 - 10H20. The dashed line in figure (2.2)
shows the line s + p; = oT where p; is the fractional content precipitate.
Applying Ono’s correction to Schwerdtfeger’s treatment leads to the following
result,

ci = ctole,— )~ —mlew—a) ~ Lot ..
o
== Y B+ — i1+ Bieyy) - (219)
7=1,2

2Note that Ono used slightly different notation to Schwerdtfegers’s convention that we
are using here: apn, = —1/a = 54.11°C, equivalent to v = —0.01848°C ™.
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Here j = 1,2 indexes the precipitates mirabilite and hydrohalite, p; the mass
of precipitate j, ¢,; their specific heat, and f; is the ratio of water of hydration
to salt mass. The relevant properties are,

(1) T S —800, NaZSO4 . IOHQO ﬁl = 127, Cp1 = 2.11 J/gOC, P1 = O/(T + SOC),
o =—0.01°C™".

(i)T < —23°C, NaCl - 2H50: (5 = 0.67, ¢ = 0.75 J/g°C, ps = (T + 23),
o = —0.007°C~".

Evaluated with these parameters the precipitate (last) term in equation (2.19)
is about 0.50¢; for —8°C < T < —23°C, and 0.450¢; for —23°C < T <
—30°C. These corrections are very small. In his original paper Schwerdtfeger
[1963] neglected the term oc;. And at low temperatures cg(7T) — ¢;(T) so
the fractional size of the term o¢; is 0.5 — 1% for 0 = 5 — 10%y. As these
variations are below the experimental resolution of our array measurements,
we neglect the effect of precipitation on ¢, and in our conductivity analysis
described in Chapter 4, apply (2.18) at all temperatures.

2.4 Previous Experimental Results

We present here the methods and results of previous experimental results for
the thermal conductivity of sea ice. We describe in detail the various experi-
mental methods, and the data analysis used to calculate the conductivity.

2.4.1 Stefan, 1873

The first experimental value for the sea ice thermal conductivity was deter-
mined by Stefan [1891] from an analysis of ice thickness measurements from
British Arctic surveys in the Canadian archepeligo from 1829-1853 [Malm-
gren, 1927]. From the rate of ice growth, assuming constant specific heat,
density and a latent heat of fusion, Stefan found an average conductivity of
k =1.7W/m°C. The validity of this analysis has been questioned due to the
expected salinity of the ice [Malmgren, 1927], and possible departures in the
ocean heat flux from that assumed in the analysis [ Wettlaufer, 2001].
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2.4.2 Malmgren, 1927

Malmgren [1927] wrote the first comprehensive report on the thermal proper-
ties of sea ice based on experiments performed adrift on the ‘Maud’ during the
Norwegian Arctic expedition, 1922-25. He reported experimental work on the
density, salinity profile, specific heat and thermal conductivity of various sea
ice types. He measured thermal conductivity with three methods: two from
the analysis of T'(z,t) data, and an independent hot-wire method.

Malmgren Method I: 1-D Heat Flow Analysis

Malmgren’s first temperature profile measurements were made in multi-year
ice from October 1922 - August 1923. Four Ni resistance thermometers were
placed at different depths, one in each of four bore-holes in a straight line. The
laterial separation of the holes was 50 cm. They were back-filled with water
and temperatures were read manually via a galvanometer once per day.

Malmgren considered the net 1-D heat flow into a cylinder of ice. If over a
period of time ¢ the average temperature of the ice changes from 77 to T, the
heat balance is given by,

dr ar
2

Here h, p and c are the height, average density and average specific heat of the
cylinder over the interval ¢, and k; and ks the thermal conductivity at the top
and bottom depths. If the temperature record shows times over which T} = T5
equation (2.20) becomes:

T T
nL e

— 2.21
dz 1 2z o ( )

Malmgren analysed the temperature record to find periods for which the tem-
perature difference (77 —T3) was large (~ £10°C), and those when it was zero.
Equations (2.20, 2.21) were then applied to find the temperature-averaged con-
ductivity at each measurement depth. Temperature gradients were found from
interpolation of the measured temperatures. The results were shown in Table
(2.1).

This method suffers from several short comings including coarseness in the
analysis scheme, and time and depth resolution. The thermometers were
arranged in separate bore holes, so the assumption of 1-D heat flow must
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Depth T range p S | k (meas) | k (model)
[m] [°C] lg/cm?®] | [%00] | W/m°C | W/m°C
0.00 | =8 to—17 0.89 0 1.0+ 0.1 | 2.22 £ 0.05
025 | =8 to—17 0.89 0 1.3+£0.1 | 2.22 = 0.05
050 | —4 to—19 0.91 1.0 | 1.7£0.1 | 221 £0.10
1.25 | =4 to—19 0.91 1.5 | 1.8£0.1|221+£0.10

Table 2.1: Conductivity results for MY ice using from Malmgren’s first method
described above [Malmgren, 1927]. See text for details. k(model) indicates the
value predicted by our modifation to the Schwerdtfeger model for the measured
p and S (see section 2.2).

hold over the total horizontal separation of 2m. In ice with uneven surface-
and/or bottom- topology, this assumption doesn’t hold.

Malmgren Method II: 1-D Heat Flow, Monthly Analysis

Between November 1923 - May 1924, a second set of temperature measure-
ments were made in second-year ice with possibly the earliest forerunner of
modern thermal arrays. Temperatures were measured with an array of 6
copper-constantan thermocouples mounted on a wooden board, positioned
vertically down one water back-filled bore hole. Manual temperature mea-
surements were made daily with a galvanometer. As the gradients were better
known this year a more robust but computationally intensive adaption of the

previous method was used in which monthly calculations were made.

Depth T range 0 S k (meas) | k (model)
[m] [°C] [g/cm’] | [%00] | W/m°C | W/m°C
0.00 | —16 to—23 0.89 0 0.7+£0.2 | 2.30£0.03
0.25 -9 to—16 0.89 0 1.4+0.2]2234+0.04
0.75 -9 to—16 0.9 08 [1.9+0.1]223+£0.04

1.25 —6 to—14 0.9 22 |1214+0.1]218+£0.04

Table 2.2: Conductivity results for 2nd year ie using Malmgrens’s second

method described above. k(model) as in table (2.1).
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Two thermo-piles were also installed during the second measurements. These
consisted of a ‘large number of series-coupled copper-constantan thermocou-
ples’ giving a direct measurement of the temperature difference over 10 cm
to within 0.05°C. Centered at depths of 25 and 200 cm, these provided a
more direct and accurate measurement of the temperature gradient at these
depths. The period of reliable data was short however. Using the ratio of
ko.osm = 0.772 k1 25, from table (2.2), the average conductivities from the di-
rectly measured gradients are kg5 = 1.5 W/m°C and kj o5 = 2.0 W/m°C.

Compared with the values predicted by our model, Malmgren’s conductivity
values using Methods I and II are all very low. Intriguingly, they show a
surface reduction that is similar to that observed by Trodahl and McGuinness,
see below.

Method IIT Hot Wire Method

Malmgren also performed a direct ‘hot wire’ measurement with the equipment
sketched in figure (2.5). He stretched tight the thermocouple wires and hot
wire on a wooden frame to maintain the distances a (wire to centre of ther-
mocouple) and Aa (spacing of thermocouple wires) and froze the frame into
‘young ice’. The heating wire (AB) and the two thermocouple wires were
arranged radially. For a current I the heat dissipated per cm is A = I?R,
where R is the wire resistance per cm. Eventually all of the applied heat will
have passed through the cylinder with axis AB and radius a. The heat through
each square centimeter is then Q = A/(2mwa), and as this heat flows outwards
there will be a variation in the temperature gradient at radius a. The total

heat flow is given by,
A [e.e]
Ay / ar
2ma w dz

0

dt (2.22)

a

Replacing the integral by the average value over the time interval At of mea-
sured non-zero temperature gradient AT /a gives,

B A
 2malAt < % >

(2.23)

One set of measurements was made in ‘young ice’ giving k = 2.1 W/m°C at a
depth of 35 cm. This value is high compared with Malmgren’s other results but
no uncertainty is quoted, and he reported no repeat measurements to assess
reproducibility.
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Fig. 1). Arrangement lor experimental determinations of
' heat-conductivity of sea-ice.

Figure 2.5: Geometry for Malmgren’s hot wire method for measuring thermal
conductivity. Figure from original paper [Malmgren, 1927]. Hot wire is AB.
Galvanometer E is connected to thermocouple, see text.

2.4.3 Nazintsev, 1950-60s

Before the cold war era, the sea ice research community in the Soviet Union
was more active than that in the west [Dieckmann and Hellmer, 2003]. Unfor-
tunately, work from that time, including that on the thermal properties of sea
ice is still difficult to obtain either in translation, or in the original Russian.
Nazintsev made laboratory and field measurements on the thermal properties
of porous ice and sea ice in the late 1950s and 1960s (references in Doronin
and Kheisin [1977]). He reported calorimetric measurements of the heat capac-
ity and thermal diffusivity (‘thermometric conductivity’) made on the drifting
station Noth Pole-4 in 1957 [Nazintsev, 1959]. The specific heat of ‘young’,
first-year and second year sea ice with salinity 1.5 — 6%y, was measured over
the range —2 to — 19°C. The thermal diffusivity was determined from the
temperature change in ice samples immersed in a well-stirred isothermal alco-
hol bath. The diffusivity was determined from the rate of change of the ice
temperature, and by ‘normalising’ with the results of pure ice samples.

For the two samples for which both the specific heat ¢ and diffusivity D were
measured, we have calculated the thermal conductivity as £k = pcD. Table
(2.3) shows the resulting conductivity using either the theoretical heat capac-
ity, or by interpolating Nazintsev’s heat capacity measurements, which were
generally made at different temperatures than the diffusivity measurements.
Nazintsev does not present density values, we here use p = 0.91g/cm?. Full
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data and analysis of the diffusivity measurements are not presented, and Naz-
intsev himself notes that the diffusivity results ‘must be regarded as somewhat
approximate’ [Nazintsev, 1959].

T D Chteas” | Codel | F(Cmeas) | K(Cmoder)
[°C] | 107%[em?/s] | [J/g°C] | [J/g°C] | [W/m°C] | [W/m°C]
“Young ice’, 10 cm depth, S=3.59% g, small air pores

-5 5.2 4.2 4.67 2.0 2.21
-10 8.7 2.2 2.69 1.7 2.13
-15 11.3 2.1 2.29 2.2 2.35
FY ice, 170 cm depth, S=3.86%

-5 4.6 4.6 4.67 1.9 1.95
-10 8.4 2.3 2.69 1.8 2.05
-15 10.6 2.1 2.29 2.1 2.21

Table 2.3: Thermal conductivity calculated from the thermal diffusivity mea-
surements of Nazintsev [1959]. * Interpolation from Nazintsev’s specific heat
measurements.® Model of Schwerdtfeger [1963]. A density p = 0.91 g/cm? was
assumed in the conductivity calculations.

Figure (2.6) shows other results of Nazintsev reported in Doronin and Kheisin
[1977] from which the figures have been slightly reformatted. Subplot (a) shows
k(T) from ‘laboratory specimens of ice’ with salinity 4.7%go. Subplot (b)
shows k as a function of relative depth (z/zg) for field results. Regrettably no
absolute values of the depth are presented in Doronin and Kheisin [1977], and
neither are experimental details. The reduction near the surface is attributed
to increased porosity (lower density) and that at depth to the increasing brine
component [Doronin and Kheisin, 1977].

2.4.4 Omno, 1960s

Ono [1965] developed a method for extracting the thermal diffusivity from tem-
perature measurements in sea ice which is also outlined in Yen [1981]. Due
to the mild climate at his field site in Mombetsu Harbour (Sea of Okhotsk)
Ono used artificial heat sinks to drive the surface temperatures and produce
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Figure 2.6: Russian kg; results. Both figures from Nazintsev, reproduced and
modified slightly from Doronin and Kheisin [1977]. (a) ky(T) for S = 4.7% 0
laboratory specimens; (b) ks;(2/2) for field results from floating ice stations:1
- one-year ice (SP-4, 1957); 2 - two-year ice (SP-4, 1957); 3 - one-year ice
(SP-5, 1956); 4 - two-year ice (SP-5, 1956); 2 - multi-year ice (SP-5, 1956).

temperature variations large enough for his analysis. From temperatures mea-
sured at 2, 4, 7 cm, the conductivity calculated from the measured diffusivity
at these depths was estimated to be in the range 1.84 - 1.97 W/m°C [Ono,
1965]. The temperature range was -1 to -8 °C.

2.4.5 Schwerdtfeger, 1960s

To compliment his theoretical formulation of the thermal properties of sea
ice Schwerdtfeger [1963] measured the thermal conductivity of sea ice with
two methods. The first was a comparison of the temperature gradients in sea
ice and a 1.5 x 1.5 x 0.3m? reference block of fresh ice embedded in the sea
ice. The conductivity of the reference block was calculated with Schwerdt-
feger’s model using measured salinity and density and k; o = 2.09 W/m°C.
Over two months, the conductivity of sea ice between 10 — 30 cm with mean
temperature —7°C, density 0.91g/cm®and salinity S=6, was determined to be
k = 2.00 £ 0.30 W/m°C. Schwerdtfeger’s model gives a theoretical value of
k =2.0W/m°C.

In the second method the average thermal conductivity of the entire sheet was
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determined via a modified form of Stefan’s simple ice growth model in which
the growth rate was related to the surface temperature history and the time lag
for heat flow between the surface and interface accommodated. For the cover
as a whole with mean temperature —5°C, density 0.915 g/cm?® and S=6 the
experimental conductivity was k = 2.05 £+ 0.20 W/m °C. For these parameters
Schwerdtfeger’s theory gives 1.97 W/m°C. Within quite large experimental
uncertainties there is good agreement between Schwertdfeger’s experimental
and theoretical results.

2.4.6 Lewis, 1966

Lewis [1967] reported temperature measurements in winter sea ice in Cam-
bridge Bay, North Western Territories, Canada (69°04’' N, 105° 00’ W). He
deployed 5 vertical thermistor chains in a linear array with 10 m lateral spac-
ings. Each chain consisted of 13 thermistors separated vertically by 15 cm, but
no other details of the array construction are presented. An automated data
logging system read the chain every hour for 800 hours ( 33 days, 8 hours) to
a reported accuracy of £0.01°C.

Lewis calculated the ice thermal conductivity at the ice/water interface form
the ice growth rate and its depth profile through the ice using heat flow analysis
based on the heat balance shown schematically in figure (2.7). Lewis’s heat
flow analysis is quite complicated and ultimately relies on an assumption of
‘monochromatic’ heat flow. For completeness, we include a full description of
this method. 3 Analytically the heat balance in figure (2.7) is given by

F(z,t) = Fi(z,t) + Fo(z,t) + Fy(z,t) (2.24)

where z is depth beneath the surface, Fp(z,t) is heat flow associated with
Latent heat released, Fp(z,t) is heat flow associated with sensible oceanic
heat flux, and Fy(z,t) is heat flow associated with changes in internal energy
in the ice sheet, ie. via the temperature and heat capacity.

Both analysis methods, presented in more detail below, required a value for the
oceanic heat flux at the interface, F5. Assuming no advective ocean currents at
this site (one of the reasons for choosing it) and correlating the heat loss from
the water column, calculated from 70 m deep water temperature profiles, with
ice formation over a 23 day period, Lewis estimated Fp = 0.2cal/cm?/hr =
2.3W/m?.

3Note that Lewis used ‘Q’ for heat fluxes [W/m?]. In keeping with current sea ice usage,
we use ‘F’.
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Atmosphere )
Frow ~ 50 W/m

Sea ice 2
ﬁ Fy~ 18 W/m
FL: gg[glsﬁ;] (From T, V T, z=f(t). )
ﬂ Fo~2 W/m’
Ocean ( From change in water

column temperature. )

Figure 2.7: Heat flux balance through sea ice, after Lewis [1967]. Values are
particular to his experimental site, see text.

Both methods are computationally intensive, requiring accurate estimation of
several quantities from the temperature record, and in the second case, an
assumption regarding the heat flow which is really accurate only in the first
order.

Lewis Method I: Ice interface conductivity

At the water /ice interface z=H the net heat balance is associated with a change
of phase, not a change of temperature, and the heat balance given by,

dH
= pLE + Fo(H,t) (2.25)

oT
kznta_‘

z z=H
where k;,; is the thermal conductivity at the interface. The rate of growth of
the interface can be estimated from the temperature derivatives at the inter-
face,

di [8T/8tL:H (2.26)

dt 9T /9=

Lewis calculated 2L

50 |o from the rate of temperature change as the interface
grew past successive sensors, and %—f| u from a quadratic fit to temperatures of
the four bottom-most thermistors in the ice. The interface depth H was cal-
culated as the intercept of this quadratic with 7" = —1.56 °C (the temperature

of sensors in the water column just below the interface), and %—Z| u evaluated
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from the quadratic fit at this depth. Table (2.4) gives the thermal conductivity
calculated using this method for the four functional thermistor strings, as the
interface advanced past z = 165 cm.

Chain | OT/z|s | OT/otly | dH/dt | Fo(H,t)| Fo | F(S,6)| ke
No. °C/m [ 107%°C/s | 107%m/s | W/m? | W/m? | W/m? | W/m°C
10 14.2 144 | 0102 | 262 | 23 | 285 | 201
30 16.3 194 | 0119 | 308 | 23 | 331 | 203
40 12.1 -0.92 0.076 19.7 2.3 22.0 1.82
50 11.4 -0.75 0.066 17.0 2.3 19.3 1.69

Table 2.4: Calculated values of kg at ice/water interface from Lewis [1967].
Values here converted to SI units.

Lewis estimates an uncertainty, derived mainly from estimating %—:ﬂ 1, of £0.04
W/m°C, except for string ‘10" which due to temperature ‘instabilities’, was
considered less reliable. A weighted average of strings 30, 40, 50 gives k;,; =
1.85+£0.02W/m°C. Without a measured density theoretical comparison can-
not be made. Derived from a heat flow perspective, this in situ measurement
potentially captures any convective contribution to the heat flow in the mushy
layer at the base of the ice [Worster and Wettlaufer, 1997]. However the
method is sensitive to the value of Fy, and it is unclear how sensitive it is to
the temperature extrapolations involved.

Lewis Method II: conductivity profile in ice

The second approach used by Lewis was to analysis the propagation of heat
through the ice sheet, by following peaks or troughs in the measured temper-
ature field T'(z,t). Identifying peaks in the temperature field with extrema in
VT and therefore the heat flow, Lewis makes the ‘monochromatic’ assumption
that all heat flow is associated with the peaks, whose paths can be tracked
in the (z,t) plane through the temperature record. In this monochromatic
assumption, all heat flow associated with a temperature feature at the surface
at time t; occurs along this path for which F}, and Fp are considered constant.
By combining equations (2.24, 2.25) the heat flow along this path z(¢) from
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21, t1 to H, ty, is given by

F(Zl,tl) = F(H, tz) +FU<Zl,t1) s (227)
F F
sky = oF = (25,95 . (2.28)
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Figure 2.8: Thermal conductivity profile from thermal array measurements of
Lewis [1967], using monochromatic heat flow analysis. Conductivity values
have been recalculated in SI units by the present author, see text.

Equation (2.28) follows for Fj, and Fp constant along the heat flow path z(t).
Combining equations (2.25, 2.26, 2.27, 2.28) gives,

F
(a—Faz + a—ét) : (2.29)

F(Zlytl) = F(H7t2) +/ Oz ot

2=f(1)
oT o [T

= FL(H, tQ) + FD(H, tg) +/ (p05(52’ + kﬁa |:£:| (St) s

aT /ot oT o [oT
= —pL [aT—W} o + Fo(H, tQ) —|—/ <p0552’ + ka |i£:| (5t> .

The path z(t) is determined as the locus of points (z;,¢;) which mark a prop-
agating temperature peak, so the last integral is evaluated as a sum over the
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intervals Az;, At; between these points. Equation (2.29) becoming;:

(2,t

(2:t) )
T ot T o [oT
kENVT = —pL Fo(H,t T)—Az; k— | —| At,.
vi==r {aT/azLj ol ’2)+(;)pc( ) Zz*(z) 875{82] ’

(2.30)

z1,t1

The derivatives in equation (2.30) were estimated from finite difference esti-
mates from the temperature record. As k appears in the last term on the RHS,
equation (2.30) is really an iterative scheme for finding k. For this RHS term,
Lewis used Schwerdtfeger’s modelled k,;(T"), using the average temperature of
each 6z, 6t interval, ranging from 2.01 W/m°C at the ice/water interface to
2.51W/m°C at the top surface. Lewis measured the salinity profile and used
the heat capacity of Schwerdtfeger [1963], and L; = 67.5 cal/g (282 kJ/kg)
and p = 0.915g/cm?3. Figure (2.8) shows k(z) from one thermistor chain.
These values are the highest reported anywhere. Aside from the error intro-
duced in the monochromatic assumption in deriving equation (2.30) errors in
the terms in equation (2.30) are compounded in the sums along the path z(t).
We note that these values have been recalculated by the present author using
equation (2.30) iteratively. The values differ from Lewis’s original values by
only ~ 1-2 %.

2.4.7 Weller, 1965-68

The 1960’s represented a busy era for members of the Australian Antarctic
Division, who made glaciological and meteorological measurements on plateau
and sea ice in the Mawson Base area of Antarctica. From temperature borehole
measurements Weller [1967] determined the apparent diffusivity in plateau ice
and sea ice. His analysis, and particularly that of Budd [1967], illustrated that
ignoring the effect of absorbed solar radiation, leads to systematic errors when
the thermal diffusivity is calculated using Fourier methods. This effect can
lead to erroneous diffusivity values as deep as 6 m (~ 2 penetration depths
for the annual cycle) in plateau ice, due to absorption of the annual annual
insolation cycle.

In the case of sea ice, Weller [1967] measured daily (midnight) temperatures
between May and November with thermocouples at depths of (0, 15, 30, 45,
60, 80, 100) cm, and obtained heat flow measurements with a heat flux plate
at 30 cm. Hourly measurements were made at least for October.

Weller calculated the diffusivity using the daily heat flux and temperature
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amplitudes at 30 cm using the semi-infinite analysis of Lettau [1954]. This
first required a correction for the effect of the daily radiation cycle on these
measurements. This was done with a trial and error method, in which the
amplitude of the total daily radiative perturbation was varied (its phase fixed
by solar noon). The phase and amplitude of the unperturbed daily temperature
and heat flux cycles were then varied so that once combined with the effect of
the radiation, observed variations were reproduced. The unperturbed cycles
were found to be 7/4 out of phase as expected. This analysis required a heat
capacity value for which the model of Schwerdtfeger [1963] was used with the
average measured October values of 0.9 g/cm?, S=6, T = —12°C, giving (in
ST units) ¢ = 2.80.J/g°C). The calculated conductivity and diffusivity were
k=180W/m°C, and D = 0.72 x 107 m?/s. Schwerdtfeger’s model predicted
k=196W/m°C, and D = 0.78 x 107°m?/s.

Considering this as a good agreement, Weller [1967] remarks that ”Radiation
effects seem therefore to have been successfully eliminated”. This conclusion
surely reflects the low accuracy of conductivity measurements available at that
time; we consider a value of k = 1.80 W/m °C to be unexpectedly low.

Weller [1967] also calculated the diffusivity profile D(z) from the propagation
through the ice of an approximately sinusoidal ‘50-day period warm wave’.
This wave was centered in mid August, when solar radiation levels were very
low. Ignoring radiation, Weller graphically fit the amplitude decay and phase
lag of the wave to the solution for the harmonic surface-driving of a finite
slab [Carslaw and Jaeger, 1959], and compared them with the predictions of
Schwerdtfeger [1963]. This analysis yielded diffusivity values very sensitive to
uncertainties in the measured temperatures, with uncertainties in the experi-
mental values larger than 50 %. For these temperatures, the predicted values
are highly sensitive to salinity and temperature.

Weller’s results illustrate two points. Firstly, daily radiation effects do perturb
the heat flow near the surface, rendering even sophisticated harmonic analysis
complicated and of limited accuracy. Secondly, even in the absence of the daily
cycle, both experimental values obtained from harmonic analysis, and theoret-
ical predictions of the thermal diffusivity are highly sensitive to measurement
errors.

A noteworthy aspect of this work was the automated, mechanical thickness
measurements made with a Schwerdtfeger-designed hot-wire device. These
were used to investigate the time-lag between heat flux variations (at 30 cm)
and the rate of growth at the base. Schwerdtfeger [1966] introduced a ‘lag
coefficient” between surface temperatures and basal growth rate, expected to
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be inversely proportional to the diffusivity. It seems that the intended use of
this as a simple ice-growth forecasting parameter was not adopted.

2.4.8 Trodahl and co-workers, 1996-

In the 1990’s Trodahl and co-workers from Victoria University of Wellington
established an experimental programme to measure the thermal properties of
sea ice. This thesis represents the completion of that program. Full details
of the measurement methods and analysis as used in the present work, are
presented in chapters 3 and 4 respectively. We here provide a brief overview
of the earlier measurements and results of this program.

Johnson and co-workers first measured the heat capacity of artificial and nat-
ural sea ice and demonstrated excellent agreement with Ono’s theoretical ex-
pression evaluated as equation (2.18) [Johnson, 1989]. See figure 2.9(a) (over
page). This was followed by the first thermal array measurements in which
the vertical temperature profile in the top 2 m was measured at 10 cm inter-
vals over several months. The thermal conductivity was determined from a
conservation of energy analysis analysis according to which the rate of change
of the internal energy density was related to the temperature curvature by

ou 0*T

Here p[g/cm?] is density, and U [J/g] is internal energy density. We fully
describe this analysis in Chapter 4. On the basis of the excellent agreement
between theoretical and experimental results in figure 2.9(a), and elsewhere,
U was calculated by integrating equation (2.18) [Trodahl et al., 2000]. The
thermal conductivity was determined as the best-fit slope to scatter-plots of
finite difference estimates of the partial derivatives in equation (2.31). Figure
2.9(c) shows a vertical conductivity profile, k(z) calculated from scatter plots at
successive depths in the ice. The temperature-dependence of the conductivity
kE(T) was obtained from data at all depths, although cold temperature data
naturally originate exclusively from near the ice surface, and warm temperature
data from near the ice/water interface. See figure 2.9(d).

The depth profiles k(z) showed variations other than those predicted by the
models. From several years’ of array experiments, a 25-50% reduction in
the conductivity over the top ~ 50 cm was resolved, as was an apparent in-
crease with depth [Collins, 1998; McGuinness et al., 1998; Trodahl et al., 2000,
2001]. It was proposed that the reduction in near-surface conductivity might
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be caused by to enhanced phonon scattering, due to very small crystal size,
in the frazil ice at these shallow depths [Trodahl et al., 2001]. The increase in
conductivity with depth was associated with the possibility of heat flow arising
from convection within brine tubes [McGuinness et al., 1998; Collins, 1998|.
It is clear from figures 2.9(c,d) that the depth-dependence is dominating the
expected temperature-dependence.

The present work was in part motivated by the desire to understand the large
apparent near-surface reduction observed by Trodahl and co-workers. We note
that a strong near-surface reduction was resolved by Malmgren (methods I, II
above) and Nazintsev (figure 2.6(b)), and Weller’s value at 30 cm is low. On
the other hand Lewis derived a higher conductivity near the surface.
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Figure 2.9: Figures from Victoria University sea ice programme.

(a)Measured sea ice heat capacity from Johnson [1989]. Artificial (NaCl) ice:
S =46 (0), S =376 (A ). Natural sea ice, S = 6.2 (A), S = 8.4 (W),
S = 13.2 (e), from respective depths 570-620 mm, 339-380 mm, 0-50 mm in
a 1700 mm ice cover, McMurdo Sound. Uncertainty bars, omitted for clarity,
are 5% at most. Solid line, Ono’s prediction, equation (2.18).

(b)Example of finite difference graph, the best fit slope is k. Inset shows a
counter-clockwise loop in the data [Trodahl et al., 2000].
(c)Depth-dependence of £ in FY McMurdo sea ice (1999). Solid line is
Yen/Schwertdfeger model for depth-dependent average temperature but re-
duced by 10% [Trodahl et al., 2001].

(d) Temperature-dependence of k in FY McMurdo sea ice (1999). Data from all
depths, but cold temperatures exclusively from surface ice and warm tempera-
tures from near ice/water interface. Dashed line is Yen/Schwertdfeger model,
and and solid line the same reduced by 10% [Trodahl et al., 2001].
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Chapter 3

Array Measurements

Using thermistor arrays and automated data loggers, we have recorded the
temperature profile in sea ice for up to 6 months, and in permafrost contin-
uously for 2 years. In this chapter we present all aspects of the equipment
involved in these measurements, and their installation. Following an overview,
we present details of the individual array components, including thermistors,
measurement circuitry and data loggers. We then describe the site assembly
and installation. This chapter enlarges on, and goes beyond, such aspects
of these experiments previously published by the Victoria University group,
[McGuinness et al., 1998; Collins, 1998; Trodahl et al., 2000, 2001; Pringle
et al., 2003].

3.1 Overview of Experiment

In these experiments we measure the sea ice temperature profile as a func-
tion of time. Similar ground temperature measurements have been used for
many years to estimate ground thermal diffusivities [DeVries, 1963]. These
latter measurements are most readily processed by applying Fourier analysis
schemes, and solving for an apparent thermal diffusivity. It is usually as-
sumed that the diffusivity is constant and uniform. We discuss such analysis
schemes in the context of our permafrost measurements in Chapter 6. They
are problematic in sea ice because the thermal diffusivity is a strong function
of temperature over the range of measured temperatures, and because of the
finite-thickness, constant-temperature lower boundary condition of the ice. In-
stead, we recast the analysis in terms of energy conservation and exploit the

43
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Figure 3.1: The author with a thermal array installed in MY ice, in McMurdo
Sound, 2003.

known temperature-dependence of the internal energy of sea ice, to solve di-
rectly for the thermal conductivity [Trodahl et al., 2000]. This analysis is fully
presented and discussed in Chapter 4.

Temperature measurements were made with thermistors positioned at 10 cm
intervals inside a 2 m long vertically oriented ‘thermistor string’ or ‘array’
embedded vertically in the ice by coring a 5 cm diameter hole and freezing it in.
A data logger and multi-plexor were used to sequentially measure the electrical
resistance of the thermistors using a bridge circuit. The whole array was read
in this way with a measurement interval of either 30 minutes or 1 hour, and the
results saved to memory. Data analysis involved first converting the resistance
values to temperature, and then calculating the thermal conductivity from the
coupled time- and depth- variations in the temperature.

Figure (3.1) shows an assembled site at McMurdo Sound, Antarctica. The
thermistor string is frozen into the ice and only its red connector is visible
at the ice surface, joining the cable leading to the data logger housed inside
the polycarbonate box, attached to the frame. The multiplexor and batteries
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are also inside this box. The frame is about 2 m long and 0.8 m tall, and is
anchored to the ice with thin steel cables and ice screws. By elevating the
instrumentation box onto a frame, we eliminate the thermal disturbance that
would result from the box sitting on the ice surface, due both to the insulating
effect of the box itself and also the accumulation of wind-blown snow. The
snow cover is generally very thin in open sections of wind-swept McMurdo
Sound.

Our thermal arrays have been designed with the aim that the measured tem-
perature profile is as close as possible to the temperature profile that would
exist in the ice if the array were not there. Not only must the individual
temperature measurements be accurate, but the perturbation to the local heat
flow, both laterally and vertically, must be minimised. This has resulted in
several departures from industry-standard design.

3.1.1 Array Construction

Figure (3.2) shows the inner thermistor string, thin-walled stainless steel tube
and connector that comprised the body of the thermal array. Twenty thermis-
tors were positioned in small notches 10 cm apart down a 3 mm diameter teflon
‘spaghetti’. Enameled high-resistance constantan wire was used for all connec-
tions inside the array. This minimised the thermal conductance between the
thermistors and surface. The measurement circuitry is shown in figure (3.4)
and discussed fully below; for now we concentrate on the construction and
physical properties of the array. A full wiring diagram is shown in Appendix

A.

Physical protection for the wiring and connections was provided by heat shrink
around the teflon spine. Small notches were cut in the heat shrink around the
thermistors to enable good thermal contact between the thermistors, standing
proud from the teflon spine, and the stainless steel tube. The constantan wires
were soldered into a military-specification waterproof connector, and the heat
shrink-stiffened thermistor string was slid into the tube. The fit was snug.

The small volume left inside the tube was in-filled with sunflower oil, which
pours readily at room temperature but freezes to a viscous gel at our mea-
surement temperatures. This maximises the thermal contact of the thermis-
tors with the tube by eliminating air space, and eliminates air-cell convection
within the tube. With the tube held in a vertical position ,and the top con-
nector not attached, an O-ring sealed set screw at the bottom of the tube was
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Figure 3.2: Detail of a thermal array later installed in FY sea ice Antarc-
tica, 2002. This array has clear heat shrink tubing through which the green,
enamelled constantan, wiring can be seen, wound around the white teflon rod.
Arrows point out two thermistor beads.

opened and sunflower oil gravity-fed into the tube from the bottom up over
approximately 12 hours. This prevented air bubbles being trapped in the tube.
When the tube was completely filled, the bottom screw was replaced and the
O-ring sealed top connector attached. This displaced a small amount of oil,
ensuring that no air was trapped in the top of the tube.

Using a stainless steel tube has allowed us to make a considerably narrower ar-
ray than standard arrays which are typically durable plastics, eg. polycarbonate-
polyethylene [ eg. Frey et al., 2001]. Our cross sectional area is ~ 0.4 cm?
compared with ~ 4cm? for other designs. To minimise the perturbation to
local heat flow, the thermal conductance of the array must be well-matched
to the thermal conductance of the ice that it displaces. Although the thermal
conductivity of stainless steel is higher than ice, the figure of merit is the ther-
mal conductance per unit length of the enitre array. For parallel heat flow up
the tube, teflon spine, wiring and grease, this is calculated by summing the
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conductivity-area products kA for each component. Stainless steel is an alloy
with a thermal conductivity lower than pure metals. For 316 stainless steel
k(—10°C) ~ 14.8+£0.1 W/m °C [Atlas, 2003], only about factor of 6 more than
ice. Table (3.1) summarises the areas, and conductivities in the calculation of
the thermal conductance per unit length of the array.

Material k [W/m°C] | A[mm?] | kA [pWm/ °C]
Teflon + heat-shrink?® 0.2 12.6 2.51
Sunflower Oil gel® 0.18 16.2 2.91
Constantan Wiring® 22 0.38 8.81
(1)SS Tube measured? 30.8 £ 1.6
(i1)316 Stainless steel® | 14.8 £0.1 2.53 374408
(1)kAarray (kss meas) 46 + 3 uWm/ °C

deg, ice 5.1 £ 0.3mm
(1i)k A} ey (Kss specs) 53 £ 3 uWm/°C

eq, ice 5.5+ 0.2mm

Table 3.1: Conductivity and areas of components in thermal array tube.” Heat
shrink given same value as Teflon (PTFE). ® Value for Vaseline [ Weast, 1971].
¢ Area is for 26 wires, 0.15mm diameter. ¢ Measured, see text. ¢ Manufacturers
specifications, [Atlas, 2003].

Values for the thermal conductivity of heated heat-shrink and sunflower oil
could not be found. As the values of most plastics vary by less than a fac-
tor of 2, we have used the teflon value also for the heat shrink. Similarly,
electrically insulating gels show only a week variation in thermal conductivity,
so for the congealed sunflower oil, we have used the value for the similarly
viscous Vaseline. As justification of these choices, we note that the total con-
tribution to the kAg,qy is at the level of the uncertainty, see table (3.1). We
give two values for the thermal conductance per unit length of the stainless
steel tube in table (3.1). The first derives form an indirect measurement of
the thermal conductance of identical stainless steel tubes. In metals the ther-
mal conductivity £ and electrical resistivity p are related by the Weidemann-
Franz Law, according to which k = LoT/p where Ly = 2.45 x 1073WQ/K?
is the Lorenz number [Ashcroft and Mermin, 1976]. We measured the aver-
age electrical resistance of two 2 m lengths to be R = 0.48 4+ 0.01€2, giving
kAss = LyTL/R = 30.8+£1.6 uWm/ °C. From the two estimates of kA, 4y in
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table (3.1), and using kg; = 2.2 W/m °C, the 6.35 mm diameter array therefore
has the thermal conductance per unit length of an ice cylinder with diame-
ter deg,ice = 5.1 £ 0.3mm, and d;,, ;.. = 5.5 & 0.2 mm respectively. This results
may seem surprising; despite the stainless steel outer, the array as a whole has

a thermal conductance per unit length about 30% less than the ice it replaces.

Estimating the thermal perturbation in the heat flow near the array due to
this slight mismatch is difficult to determine. Trodahl et al. [2000] provides one
estimate by assuming unperturbed temperature variations at a radius which
is intermediate between the radius of the probe and the depth of the ice.
For the ice-equivalent thermal diameter of the array calculated above, and
for thermal driving of period ~ 1 week, the perturbation to the amplitude
of temperature variations at the probe radius is of the order of 10~*. This
asymptotic solution does not apply very close to the top of the array though.
The relevant boundary conditions are harmonic driving in the z = 0 plane,
and a conductance mismatch between ice and array in the radial direction.
For such a cylindrical geometry, we have been unable to find an analytical
solution in the heat conduction literature, and were unsuccessful in finding an
analytical solution ourself. A separation of variables approach is stymied as the
boundary conditions cannot be separated. A numerical approach is considered
necessary (Mark McGuinness, personal communication, 2004 1!).

Ideally the temperature of each thermistor is the same as the ice at that depth.
This assumes not only no thermal disturbance due to the array but also neg-
ligible thermal resistance between the thermistor and adjacent ice. The spac-
ing between a thermistor and the inner stainless steel wall is not precisely
known on account of the string being slid into the tube. However the fit is
tight, indicating probable contact between the protruding thermistors and the
inside wall. A conservative (over-) estimate of the thermistor to tube dis-
tance, or the thickness of sunflower grease between them is 6z ~ 0.5 mm. For
Egrease = 0.2 W/m°C this corresponds to a maximum thermal conductance of
K~ 0.2mW/°C. The thermal resistance of the 0.1 mm thick stainless steel
tube in series with the grease can be neglected here. The conductance of the
wires connected to the thermistor up the array can be estimated from the
Weidemann-Franz law, according to which K = LoT/R, where T [K] is ab-
solute temperature and Ly = 2.45 x 107¥W/K? is the ‘Lorenz number’. 2

L After finding an explanation for the near surface conductivity reduction resolved by the
present and previous array measurements, in the finite difference analysis, this question was
not pursued any further.

2The Weidemann-Franz law is usually expressed in terms of the electrical conductivity,
oe as k/o.T = Ly. A quantum mechanical treatment of electron transport predicts Ly =
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For two 1 m lengths of constantan wire, of resistance R = 17Q at —10°C,
the thermal conductance is K’ = 0.4 uW /m °C, approximately three orders of
magnitude smaller than the lateral conductance to the ice. The temperature
difference to a depth of 1m down the array is about 5 — 10 °C. From the ratio of
vertical to lateral conductance, K/K’~ 1000 the maximum estimated temper-
ature difference between the thermistor and adjacent ice is ~ 5 — 10 x 1073 °C
, comparable to the noise level of our measurements.

3.1.2 Thermistors

We used high-resistance, negative temperature coefficient YSI 55031 thermis-
tors. Thermistors are preferable in our measurement because their large tem-
perature coefficient allows better temperature resolution than thermocouples
would. Their higher electrical resistance also makes lead resistance less prob-
lematic, which is particularly important as we used high-resistance wiring to
minimise thermal conduction from the surface to the thermistors. The 2 mm
diameter glass-enclosed thermistors have a fast thermal response, and low self-
heating so there is little dissipation of heat to interfere with the measurement.

The temperature rise of the thermistor due to the measurement current is
called self heating. The dissipated power given by P = V;*/R,where V, is
the voltage drop over the thermistor and R its resistance. Typical values of
Vi = %Vb = 0.125V, and R = 50k give P = 0.3 uW. Taking the thermistor
to be a 2.4 mm diameter glass bead, the heat capacity is approximately mc =
0.01J/°C. If all of the dissipated power goes into heating the thermistor,
the maximum temperature rise is AT = Pdot/mc ~ 4, °C0t, where 0t is the
time in seconds for which this power is dissipated. In each measurement,
current flows through each thermistor current for only 10 ms in each of the 20
reverse polarity measurements, so neglecting cooling between measurements,
the maximum temperature increase is of the order of 107° °C. Self heating is
entirely negligible.

Conversion from resistance to temperature was performed by fitting a calibra-
tion curve to resistance/temperature data supplied by the thermistor manu-
facturer. We used a Steinhart-Hart fit of the form [Steinhart and Hart, 1968;
Sapoff, 1999]:

1/T = A+ Bin(R) + C(In(R))* . (3.1)

72k?/3e? = 2.45 x 1078W/K?2, where e is the electronic charge. For most metals this is
accurate to within £10% between 0 - 100 °C [Kittel, 1976].
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This functional form is empirical. The quadratic In(R) term has been dropped
only because including it was originally not found to improve the accuracy of
the fit [Sapoff, 1999]. We found that including the quadratic term compounded
computational errors resulting in a less accurate temperature inversion. The
manufacturers’ data and our calibration curve are shown in figure (3.3) over
the temperature range —50°C — +5°C. This exceeds our range of interest to
eliminate end-effects in the fitting. Converting to degrees Celsius, T'[°C]| this
fit is:

T =1 x 10°/(0.15714(in(R))* + 238.93 In(R) + 1030.72) — 273.15 . (3.2)

This was used for all of our measurements with YSI 55031 thermistors. Over
the range —40°C — 0°C, the standard deviation between the data and curve
is 0.002°C Furthermore, as we are interested in evaluated small differences
in temperatures, or temperature-dependent properties, it is the even smaller
variation in the fit over small temperature intervals that is important.

For small temperature ranges, the thermistor response is well described by the
simpler expression

nenenn(2) o

where T is absolute temperature [K], and Ry and [ are fitted parameters. We
stress that equation (3.1) has always been used for resistance-to-temperature
conversions. Equation (3.3) simplifies the mathematics when assessing ther-
mistor characteristics below.

Thermistor manufacturers typically quote a ‘tolerance’ in the expected frac-
tional variation in resistance between individual thermistors in a batch. For
YSI 55031 thermistors it is 0.75 — 0.5% from -20 to 0°C. When converted di-
rectly to temperature, this equates to an ‘interchangeability’ of approximately
40.1°C. The usual approach is to perform a ‘one-point calibration’ by mea-
suring the resistance at a common temperature and then apply a constant
temperature offset to each thermistor. This is justified only if the temperature
offset between individual thermistors remains constant. The difference between
individual thermistors is listed by the manufacturers as a multiplicative factor
in R. With respect to equation (3.3) it is most likely that fractional variations
in resistance originate in the shape factor Ry, rather than in 4 which represents
an intrinsic property of the thermistor bead material. Writing Ry = Ro(1 +¢)
where € < 1% and solving equation (3.3) for T to first order in e gives:

__ b ¢
T = - (g) (1 + - (Rﬂ)> . (3.4)
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Figure 3.3: Calibration curve for YSI 55031 thermistors. Points from product
specifications, and line from Steinhart-Hart fit listed.

Between —5°C and —25°C and for € = 0.75% this gives temperature offsets
vary between 0.16 °C and 0.14 °C. This shows that the approximation of a con-
stant temperature offset, and therefore the accuracy of a one-point calibration,
is good to about +0.01°C over this temperature range.

We have not performed such one-point calibrations for our arrays. Because we
examine temperature differences, our analysis naturally accommodates con-
stant temperature offsets between individual thermistors, so performing such
a ‘one point calibration’” would not alter our analysis or results [Trodahl et al.,
2000; Pringle et al., 2003]. An accurate full temperature range calibration
of individual thermistors is cost prohibitive for the number of thermistors in-
volved in this study. In some of our sea ice measurements, we have performed a
one-point calibration of the thermistors initially below the ice/water interface
by assuming an isothermal water column. These thermistors were not used in
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conductivity calculations, and these calibrations used only in our discussion of
water temperature variations, see Chapter 5.

3.1.3 Measurement Circuitry

Figure (3.4) shows a simplified representation of the bridge circuit for each
thermistor, and a schematic diagram of the array wiring when connected to
a Campbell Scientific CR10X data logger, and AM16/32 multiplexor (timing
wiring not shown). As well as the 20 thermistors, we also measured two low-
temperature coefficient, precision ‘standard resistors’, in order to monitor the
logger performance. These standard resistors were chosen to approximately
span the range of resistance values the thermistors take, 33k ~ —2°C and
67kS2 ~ —17°C. These resistors were positioned approximately 2 cm from the
end of the array, as this provides the quietest temperature environment. The
intrinsic measurement noise and temperature resolution/discretisation were
established from the variations in the equivalent temperature of these resistors.

The entire array was read by sequentially selecting each thermistor, and ex-
citing the voltage divider circuit shown schematically in figure 3.4(a). Further
details for the CR10X and custom built loggers are discussed below.

Accounting for the lead resistance, Ry, the resistance of each thermistor using
the CR10X circuit in figure 3.4(b) is

R = (Ryes +Ry) (VV—D - 1) ~ R, . (3.5)

m

This measurement will have an uncertainty arising from noise in the excitation
voltage V() and measurement uncertainty in V/,,.

We have optimised R,.; to minimise the final uncertainty in 0T averaged over
the measured temperature range, due to the uncertainty in measuring R. De-
tails are presented in Appendix A. The result is

2 p2\1/2
Rref*: My = By ) (3.6)
2[71(R2/R1)

For Ry = 30kQ and Ry = 80k, R, ;" = 52kQ. We used high-precision,

low-temperature coefficient resistors with nominal values R, f* = 52.3k€). For
all such resistors in our arrays we made direct measurements of the resistance.



3.2. DATA LOGGERS 23

) V() =12.5V

' MULTIPLEXOR | DATA LOGGER
| | +V,

; Ry ~70Q2 :‘\j‘ ) XX, ’; ¥ i ° ¥ //:
O : i
t

Vi
e

; R~ 52 kO

to
= R ~70Q Rs,
Rsy
: ; - Rref
THERMISTOR STRING |
(Q) )

Figure 3.4: Schematic diagram of measurement circuit for thermal arrays: (a)
bridge circuit for each measurement; (b) schematic diagram of wiring inside
tube, and connections with multiplexor and data-logger. The same length of
wire was used in each thermistor circuit from multiplexor back to data logger.
The large dashed box in (b) shows the components inside the array tubes: the
reference and standard resistors R,.f, Rs1, Rs1, and thermsitors t1 ... t20.
Thin dotted line below R,.; in both figures is the separate signal ground, used
with our custom built loggers.

3.2 Data Loggers

In our experiments we used two different measurement systems. (i) commer-
cial Campbell Scientific Instruments CR10X data logger and CSI AM16/32
multiplexor; (ii) custom-built units including logger and relay-switching mul-
tiplexor.
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3.2.1 Campbell CR10X Loggers

Campbell CR10X data loggers are industry standard devices for remote logging
applications. In the experiments in Alaska (2000/01, 2003), and in MY ice
in Antarctica (2003) we used an CR10X with 2 Mb of internal memory and
extended temperature testing (rated to -55 °C). Data was stored on board and
also output to a SM4M (4Mb) storage module for easy on-site data retrieval.
Our CR10X program and pin-out/connections for the array, logger and multi-
plexor are included in Appendix A.

The RC' time constant of our thermistor measurement circuit was measured
to be 7 &~ 0.15 ms. To allow for capacitive delays in establishing the excitation
voltage, measurements were made with an ‘excite, delay, measure’ procedure
with a delay time of 10 ms. To eliminate the effect of thermo-electric voltages
reverse polarity measurements were made using Vy = £2.5 V. The average
absolute value of 10 forward and 10 reverse measurements for each sensor,
V., was output to final storage in the data logger.

The CR10X manual gives the resolution of single ended voltage measurements
as 0V, /Vo = 1/3750 [Campbell Scientific, Inc., 2001] . For Vi = 2.5V this
gives 0V, =~ 0.66 mV, and a temperature resolution of §7" ~ 0.02°C. By
averaging over 20 reverse polarity measurements we have reduced the temper-
ature discretisation to 67 = 0.001°C, and the random measurement noise to
or =~ 0.005°C. See Chapter 5.

3.2.2 Custom Built Loggers

To exceed the resolution of the CR10X loggers, custom built data loggers
were designed and built by electronics technician Rod Brown of the School of
Chemical and Physical Science at Victoria University of Wellington. We refer
to these loggers hereafter as ‘RB’ loggers. These loggers were superior to the
CR10X loggers both in terms of lower measurement noise, and, by virtue of a
17-bit ADC, better resolution.

The RB loggers performed a bridge measurement similar to the CR10X loggers.
Reverse polarity measurements were made with an excitation voltage Vj =
+512mV which, in contrast to the CR10X loggers, was measured for each
excitation. The logger averaged 20 measurements (10 of each polarity) of the
fractional voltage drop over the reference resistor, V,,, and wrote the average
value of n = (V;,,/Vh) to on-board flash memory. These loggers could be
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downloaded to a laptop running custom software via a serial port interface.

The voltage drop over the reference resistor was measured with a separate ‘mea-
surement ground’ line so neither measurement lead was current-carrying and
the measurement not at all sensitive to lead resistance. Data were processed
accordingly. The separate measurement ground is shown in figures 3.4(a,b) as
an unconnected dashed line. All thermal arrays were built with this line so
they could be used interchangeably with the two logging systems, and it was
left unconnected in the CR10X configuration.

In our sea ice arrays read by RB loggers, we measured a temperature dis-
cretisation of 67 ~ 3 x 107°°C, and the random measurement noise to op ~
0.0012°C. The RB loggers have achieved a factor of 30 improvement in reso-
lution and factor of 4 improvement in noise. This has improved the accuracy
of our thermal conductivity analysis and extended the depth into the ice that
we can calculate the conductivity before the analysis becomes noise-limited.

3.3 Site Assembly and Installation

The array sites were installed in Alaska by the author and colleagues from
University of Alaska Fairbanks, and in Antarctica by scientific support staff
from New Zealand’s Scott Base. In the latter case they could only be installed
once FY ice had grown to thickness considered safe for ice travel, usually
greater 1 m.

For FY ice, the smallest available augur (5 cm diameter), was used to drill
through the ice thickness to the sea below. The thermistor string was con-
nected to the quite rigid cable leading to the data logger box, and in this
way held in a vertical position while the water which had reflooded the hole
refroze. One or two days after installation, the freeboard (~ 10cm) was filled
with water to create a level ice surface. The ice which refreezes in the hole
encasing the thermistor string freezes faster than the ice that was removed so
will have a higher salinity than the surrounding ice [eg. Weeks and Ackley,
1986; Eicken, 2003]. In our one Antarctic MY site, a 2 m hole was drilled into
the 4 m thick ice, and the array positioned vertically as above. The hole was
then refrozen with low salinity water so that the resulting ice around the array
would more closely resemble the surrounding low salinity ice.
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3.4 Experimental Uncertainty in Az, At

The experimental uncertainty in the measurement interval At is established
by the accuracy of the data logger clocks, and we neglect it entirely. Both
the exact positioning of the thermistors, and any overall tilt of the array,
introduce an uncertainty in the vertical spacing Az. From the finite thickness
of the thermistor bead and the array construction, we estimate the uncertainty
in individual thermistors to be +0.25mm, and a separation uncertainty of
+0.5mm. For an array tilt of € degrees, the error in the vertical separation
between thermistor pairs is (1 —cosf)Az; a 2.5° tilt giving an error of —0.1 mm.
The conductivity (or diffusivity) will be underestimated if adjacent spacings
are both too large, and underestimated if they are both too small. If the errors
are of the opposite sense then the curvature estimate varies, being too small
or too large, depending on the value of the curvature. Numerical propagation
of these uncertainties through the full analysis show that for the worst case
scenario of adjacent errors with opposite sign, £0.5mm and F0.5 mm, the
final uncertainty in the geometric mean slope is £3% . We consider a +1% to
be a reasonable estimate of this effect.



Chapter 4

Analysis of Temperature Array
Data

In this chapter we present details of the finite difference time-series analysis
used to extract the thermal conductivity from measured sea ice temperatures,
and the thermal diffusivity from measured permafrost temperatures. We start
the chapter with an overview of thermal properties and conductive heat flow.
This establishes the basis and conditions for applying this method. Implemen-
tation details are discussed, and we then assess the expected performance of
this method using an analytical approach, and by processing simulated tem-
perature fields.

4.1 Conductive Heat Flow in Sea Ice

The three fundamental thermal parameters are the thermal conductivity k,
specific heat ¢, and density p. The thermal diffusivity (sometimes referred to
as thermometric conductivity) is defined in terms of the previous parameters as
D = k/pc. The thermal conductivity & [W/m °C] is defined by Fourier’s equa-
tion as the proportionality constant between a conductive heat flux, Jq [W/m?|
and the temperature gradient driving that heat flow:

Jq=—kVT . (4.1)

Any heat flow for which the heat flux is proportional to the temperature gra-
dient, is termed ‘linear’. In addition to conduction there is the possibility of a
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convective contribution to the linear heat flow in sea ice. What our measure-
ments resolve is the effective linear heat flow coefficient. In the bulk of the
ice we expect this to equal the conductivity, but near the ice/water interface
Collins [1998] and McGuinness et al. [1998] claim to have identified signa-
tures of convective transport the ice/water interface where the brine volume is
large. Thermal conductance, K [W/°C] is the extensive variable relating (in
the scalar case) heat flow @ [W] along a temperature difference AT
Q

K= 3 (4.2)

The specific heat ¢ [J/g°C] is defined as the heat 0Q) required to induce a
temperature change 07 per unit mass of a material,

_ Q@
CT ST

Equivalently, it parameterises the storage of internal energy per unit temper-
ature increase,

(4.3)

_dlUy
=ar
where Uy [J/m?] is the internal energy density of the material, and p is the
density. The product pc [J/m3°C] is the volumetric heat capacity.

(4.4)

The rate of change of internal energy density, is given by the negative di-
vergence of the heat flux, —V - Jq, plus any contribution from heat sinks or

sources, Qg [W/m3],
dUy

L SN (45

Putting equations (4.1, 4.4) into equation (4.5) gives the general heat equation
oT ) :

pc—— =Vk -VT +EkVT+ Qs . (4.6)

ot

For a medium with constant and uniform conductivity (VA = 0) with no heat
generation (Qg = 0), the heat equation takes the simplified form,

aT

— =DV?T 4.7
T (4.7)
where D = k/pc [m?/s] is the thermal diffusivity. The thermal diffusivity is
therefore associated with the propagation of temperature variations through
a medium whereas the thermal conductivity is associated with the conductive
heat flux.
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Analytical solutions to equation (4.7) that allow D to be resolved from temper-
ature records exist only for certain boundary conditions. Because we make use
of it in simulations below, we briefly discuss the solution for a uniform semi-
infinite half-space (z > 0), where D is constant and uniform. For harmonic
surface temperature T'(0,t) = Tye™", the solution is

T(z,t) = Tye */diG/d= (4.8)

Here d = (2D /w)"/? is the penetration depth for a harmonic wave of frequency
w. Complex notation is mathematical convenient here, but it is understood
that the temperature is given by the real part of this expression,

T(z,t) = Toe */cos(z/d — wt) . (4.9)

As equation (4.7) is linear a general surface temperature can be represented as
a Fourier integral over frequency components, which propagating according to
equation (4.8). The diffusivity D can then be determined from the amplitude
decay and/or phase shift of a given frequency component with depth. The
assumption of constant and uniform thermal properties cannot be made in our
case because the thermal diffusivity of sea ice is a strongly varying function of
temperature in our measurement range, so such Fourier methods are inappro-
priate. To accommodate this we recast equation (4.6) in terms of conservation
of energy [Trodahl et al., 2000,

ou

rar = ~V-Jq=kV?T . (4.10)

Here U [J/g] is the temperature-dependent internal energy per unit mass of
sea ice. The left hand side of this equation accommodates a temperature-
dependent heat capacity ¢(7) = 0U/OT but the right hand side still assumes
VEk = 0. As the vertical thermal gradients far exceed the lateral ones, we
assume one-dimensional heat flow, giving

oU o*T

Within an additive constant, which is unimportant as we are interested only
in variations, U is given by integrating Ono’s result for the heat capacity for
sea ice ( equation (2.18)) giving

U = (2.113 — 0.033S)T + (0.00375 + 0.0004S)T?* — 18.045/T* .  (4.12)

Here S is salinity [%go] and T is Celcius temperature [°C].
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4.2 Overview of Graphical Finite Difference
Analysis

We have determined the thermal conductivity from our sea ice temperature
measurements by estimating the derivatives in equation (4.11) and calculating
k as the gradient of a scatter plot of pdU /0t vs. 9*T/9z*. Without an internal
energy relation for the permafrost, we instead calculate the diffusivity from
plots of 9T/t vs. 9°T/dz*. We now present full details of this method.
In Chapter 7 we also discuss some other time series methods which have been
applied to ground temperature measurements and apply them to our Antarctic
permafrost temperature data.

We approximate the derivatives in equation (4.11) by centered finite differences
between measurements at adjacent depths and times,

oU(z,t) Uz, t + At) = U(z,t — At)

= 4.1
ot 2At (4.13)
T (z,t)  T(z+4 Az t)—2T(2,t) + T(z — Az,t) (4.14)
022 B Az? ' '
For the permafrost we calculate 0dT' /0t as:
T T At) —T(z,t — A
OT(z,t) _ T(zt+ At) (z,t t) ‘ (4.15)

ot 2At

By determining the conductivity (or diffusivity) as the best-fit slope of scatter
plots of pdU/dt (or OT /Ot ) vs. 0?°T/Dz*, we avoid known short-comings of
previous finite difference methods, in which the diffusivity has been calculated
as a time average of point-by-point values of the ratio 9T/t to 9*T/02? [eg.
Zhang and Osterkamp, 1995; Westin and Zuwidhoff, 2001]. Our approach is
insensitive to thermistor-to-thermistor calibration offsets which, among other
problems, render such methods unreliable [Hinkel, 1997; Fuhrer, 2000; Pringle
et al., 2003].

Our method assumes only that the thermal conductivity (diffusivity) varies
little over the vertical separation between the three thermistors used to esti-
mate the temperature curvature. It provides a robust resolution of the average
apparent conductivity (diffusivity) in each three-thermistor interval (2Az) and
for the time interval for which data are included in the analysis. By repeating
this procedure for each thermistor, a depth-dependent apparent conductivity
profile k(z) (or diffusivity profile D(z)) can be constructed [Trodahl et al.,
2000; Pringle et al., 2003]. Figure (4.1) shows an example scatter-graph and
best-fit line from sea ice data recorded at McMurdo Sound, Antarctica 2002.
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Figure 4.1: Example of a finite difference scatter plot. Data from FY, Mc-
Murdo Sound sea ice Antarctica, 2002, at a depth of 40 cm. The dashed
line is the geometric-mean least squares fit, see section (4.3), and the slope is
1.99 £ 0.01 W/m~°C.

We now present a detailed analysis of two aspects of our finite difference analy-
sis. These effects establish the limitations of the method and under what con-
ditions extra care must be exercised in applying it. They also explain two
signatures seen in the experimental conductivity profiles. These are both re-
lated to the finite difference estimates of the plotted variables. first aspect
is the effect of measurement noise, and the second is the effect of the finite
sampling intervals At and Az.

4.3 Effect of Measurement Noise

Linear regression in the presence of random errors in the variable treated as
independent leads to a slope which is underestimated by the factor that de-
pends on the ‘relative error’ in that variable [Fuller, 1987]. In our case we
have errors associated with both plotting variables deriving from the temper-



62 CHAPTER 4. ANALYSIS OF TEMPERATURE ARRAY DATA

ature measurements. Considering our sea ice measurements, the least squares
slope m; from a regression of pdU /Ot against 0*°T'/0z* will underestimate the
value of the thermal conductivity k. Similarly, the slope ms determined from
a regression of §°T/0z* against pOU /0t will underestimate the value of k1.

We show in Appendix B that the geometric mean of these two k estimates,
Mgm = (mymy*)/2 is biased by the difference in the relative errors in the two
variables. We show this is true for the two cases in which the plotted variables
are distributed as (i) a gaussian distribution with superimposed, normally
distributed noise, and (ii) a uniform distribution. In both cases the geometric
mean least-squares estimate of the gradient is

146y \ V2
Mgm = B (1 n 5X) , (4.16)
~ 61 (1 + % ((Sy — (5)()) 3 (417)

to first order in 0. Here dy and dx measure the ‘relative error’ in the variables
plotted on the Y and X axes. They measure the noise in the measured value
compared with the range of measured values, and are defined for the two cases
below.

A correlation coefficient 0 < r < 1 can also be be determined from the two
least squares gradients as © = (m; /my )"/,

o= (14 6x)(1+6y)) 2 (4.18)

For perfect correlation, m; = mo and r = 1. For r =~ 1 the sum dy + dx
is small and therefore so is the difference dy — dx, implying little difference
between the two gradient estimates, and an accurate geometric-mean gradient
estimate. However low r-value fits imply a large value of dy + dx in which case
dy — 0x may now be large, admitting the possibility of a large error in the
slope estimate and these estimates must be treated with caution.

4.3.1 Gaussian Noise and Data Distribution

In this section we consider both plotted variables to be normally distributed,
each with a normally distributed measurement noise. A full derivation of the
results above, equations (4.16) and (4.18) are included in Appendix B. Take
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the measured values of 9°T/9z? to be normally distributed with a mean 0
and variance o2,. Here 02, characterises the distribution, or range of 9?T'/9z>
values - it is in no way associated with any error or uncertainty. When 927'/92>
values from this distribution are measured they are corrupted with a normally
distributed measurement noise with mean 0 and variance ¢2,. We define the

relative error dx as,

0.2

Ox = (4.20)

e
Similarly for the Y axis variable we have,

0.2

oy = —=— 4.21
YT B2, (4.21)

where o2, is the noise associated with the measurement of the Y variable, and
2 2

{02, is the variance of the distribution of Y- values.
The plotted variables are calculated from the same temperature measurements.
We now show how their relative errors (due to measurement noise) are related
to the relative size of the sampling intervals At and Az and the underlying
measurement noise.

For the sea ice measurements we associate Y « pdU/0t, X « 9*°T /02, and
(1 < k, the thermal conductivity. If the errors in the temperature measure-
ments have a gaussian distribution, mean 0, variance ¢4, then the propagation
of measurement error leads to a variance in 9*T'/9z? values given by

o2, = (@) (02 + (~200)2 +02) (4.29)
2 _ 6‘7%
oy = Aoy (4.23)

This analysis assumes no correlation between the errors in T'(z1,t) and T'(23, ),
or between 7T'(z,t;) and T'(z,t3). In order to similarly calculate the errors in
poU/dt (but not in the conductivity calculations) we make the assumption
that the heat capacity varies little between successive measurements and write

ou Uz, t+ At) — Uz, t — At)
— = 4.24
oo — P 2At (4.24)
T T(z,t +At) —T(z,t — At)

= pc(T) N

(4.25)
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In this case we get,

oty = <2_At>2 (67 + (=07)%) | (4.26)

The terms JEU and o2, correspond to o2, and o2, respectively so that the ratio

of relative errors dy /0y = o2 /(B202, is given by,
S (A2 (Ao

Sy 12K2(At)? 12 D2(At)? (4.28)

From equation (4.16), the geometric-mean slope is unbiased when dy = Jy,
which is satisfied for A

& =1 . (4.29)

12 D?2(At)?
Note that this result only applies when the sole source of scatter in the plot-
ted variables derives from a constant measurement noise opr. The value of
(A2)1/12 D?*(At)? for our four experimental cases using appropriate average
diffusivity values are shown in Table (4.1).

Experiment Atlhr] | Az[m] | D [107° m?/s] %
Sea Ice I ¢ 1 0.1 1.15 0.5
Sea Ice IT° 0.5 0.1 1.15 1.9
Table Mtn. I 4 0.135 1.5 0.1
2001-02 3.0 0.02
Table Mtn. II 1 0.135 1.5 1.0
2003 3.0 0.2

Table 4.1: Finite intervals for our different experiments. Ideally the last column
should equal 1 (see text). The two D values for the Table Mountain cases span
the range of experimentally resolved values. * Measurements in 1996, 1997,
1999 reported by McGuinness et al. [1998]; Collins [1998]; Trodahl et al. [2000,
2001]. ® Measurements reported here.

All of these experiments were completed prior to the above analysis. The
time intervals for the earliest sea ice measurements were chosen to give ap-
proximately the same resolution in depth and time [McGuinness et al., 1998;
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Trodahl et al., 2000]. The 1 hour interval was reduced to 30 minutes in the
design of our custom built loggers. A 30 minute interval was also used for
our Arctic sea ice measurements. The time interval of 4 hours for the 2001-02
Table Mountain measurements was dictated by limited data storage capacity
over the Antarctic winter, during which no site servicing could be made. With
increased storage capacity this interval was reduced to 1 hour for November
2002 - December 2003, see Chapter 7.

4.3.2 Uniform Measurement Noise and Data Spread

In Appendix B we also consider the case of a uniformly distributed scatter
plot. In this case, the relative error is defined by dx = 02/A2 where o2
is the width of the §°T/9z? distribution, and A2 the range of the 9?T/0z?
values; and similarly for dy. Figure (4.2) illustrates how these parameters
are defined for the X axis variable: We show in Appendix B that with these

Y E o S
---Y=0;x+ P

/7

(X0, Yo0) °

X

Figure 4.2: Definition of uniform distribution parameters for analysis of the
effect of relative errors on least squares gradient fitting. There are errors only
in the X values here.

definitions the geometric mean gradient has the same form as the gaussian
case, equation (4.16). Whilst we don’t expect our experimental noise to obey
one of these specific distributions, this common result suggests that, to a good
approximation, the geometric mean gradient of our experimental scatter plots
will be biased by one half the difference in the relative errors.
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4.4 Effect of Finite Sampling Intervals

As well as intrinsic measurement noise, scatter in these plots can also derive
from systematic effects in the calculation of the finite difference estimates,

The accuracy of the finite difference estimates of the temperature derivatives,
equations (4.13, 4.14, 4.15) depends on the sampling intervals Az and At.
Qualitatively, these estimates will be most accurate when Az is small compared
with the penetration depth d, and when At is small compared to 1/w. In this
section we present analytical results for the error in these finite difference
estimates due to finite sampling intervals, for harmonic surface driving of a
semi-infinite homogeneous medium. Our analytical results and output from
simulations clearly demonstrate that the near-surface conductivity shows an
apparent reduction in the presence of components for which wAt is large.

Using complex notation, harmonic surface driving is T'(0,t) = Tpe™?, and the
solution to the infinite half space problem given by equation (4.8). Analytical
expressions for 9T /0t and 9*T/02? are,

or . ,

Frl iwTpe” W=/ det — (2 t) | (4.30)
T 2 i 20
@ = ﬁT{)G (1+9) /de b= ET(Z, t) . (431)

The real parts of these expressions, giving the observable temperature and
derivatives are,

T(z,t) = Toe */cos(wt — z/d) (4.32)
T
%_t = —wlye sin(wt — z/d) | (4.33)
0T =2 4
57 ﬁToe lsin(wt — z/d) . (4.34)

A parametric plot of 9T/t vs. 9*T/02* as a function of time therefore traces
up and down a straight line of slope D and intercept zero.

Evaluating the finite difference estimate of 97'/0t, using the analytical temper-
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ature solution, equation (4.8), shows the effect of the finite sampling interval:

or _ T(z,t+46dt) —T(z,t —0t)
|y 20t ’
_ Temldgitet—2/d) (B! — emiwah) ’
2At
— T €_Z/d i(wt—z/d) Slnh(ZWAt)
At ’

Sin(wAt)) (4.35)

= wT(z,1) < A7
w

Equation (4.35) approaches the analytical result (4.30) as wAt — 0. Starting
from equation (4.14) and using a similar approach, the finite difference estimate
of 9?T /07 is

0T T(z+0z,t) —2T(2,t) + T(z — dz,1)
922 | pp (Az)? 7
—z/d jiwt—z/d
_ Toe /de / (67(1+1)Az/d _9o4 e(1+i)Az/d)
(Az)?

- Q(TA(?)?[ h<(1+ )Adz> —1} . (4.36)

Y

Equation (4.36) is compactly written as:

_ 2—2T(z,t) [smh ((1+ 1; )] 7 (4.37)

rp O (1+4)%

s
022

or it can be expanded to separate the real (in phase) and imaginary (out of
phase) contributions:

o
022

+1 T

(272 (4.38)

= @T(Z,t) [Sinh(ZAz) sin(4:)  cosh(2:)cos(2:) — 1}

When Az/d — 0 the term in square brackets in equation (4.38) reduces to 1 +
0i , and this finite difference estimate approaches the analytical result (4.31).

The real parts of equations (4.35) and (4.38) can be expressed in terms of
the driving frequency w by substituting the penetration depth d = (2D /w)'/?,
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giving
or sin(wAt —ad
N . = —w <%) Toe */sin (wt — z/d) (4.39)
0*T -2, 5 1/2 b
—— = —(a*+ )" The *4sin <wt — z/d+ tan™! <—>) (4.40)
622 D d2 ( ) a
inh(Az,/=%5 Az /=
) - HAe/hinasyE) "
. cosh(Az %)COQS(WAZ 55) — 1 ' (4.42)

For finite Az the phase shift in equation (4.40) means that in a plot of
OT/Ot|pp vs. 0*T/0z*|rp the locus of points will not describe a straight
line of slope D, but instead a Lissajous figure, ie. an ellipse. Such ellipses will
be traced out once per period in a counter-clockwise fashion. They are prob-
ably the origin of features previously observed in similar plots for sea ice, and
attributed to hysteretic effects [Collins [1998]; Trodahl et al. [2000]; Karoline
Frey, personal communication, 2002].

Figure (4.3) shows modelled examples of such Lissajous figures for diffusivity
D =1x10"%m?/s, Az = 0.1 m, At = 30 min and driving periods P= 4, 12, 24
hours and 1 week. These parameters are typical of our field measurements
enabling an examination of how significant these effects might be. The curves
show the Lissajous ellipses from parametric plots of (4.39) vs. (4.40), and
the circles are points sampled along these ellipses at the measurement interval
At. Measurements from successive periods overlay each other here as the
driving period is an integer multiple of the sampling time. As the driving
period decreases the ellipses become more open (smaller eccentricity) and the
departure from ideal behaviour is more pronounced. This broadening occurs
for increasing values of wAt and/or Az/d = Az/(w/2D). As well as this
broadening the ellipses also tilts towards the X-axis. This is mainly due to the
decrease in the pre-factor of sin(wAt)/wAt in 9T /0t|rp, see equation (4.39).

Towards identifying possible effects in our experimental results, we now con-
sider more than one frequency component. Figure (4.4) shows two examples
with the same driving but different measurement intervals. In both case the
surface driving is a 10°C amplitude daily cycle, and a 5°C cycle with 4 hour
period. In figure 4.4(a), At = 1 hr and Az = 0.1 m. The small, open ellipses
from the 4 hour cycle are positioned along the essentially flat ellipse from the
daily cycle. In figure 4.4(b), At = 4hr and Az = 0.135m the sampling inter-
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Figure 4.3: Analytical results for the effect of finite sampling intervals on
finite difference scatter plots. Values of 9T/0t and 9*T/9z* calculated with
equations (4.39) and (4.40) for D = 1 x 107%m?/s, At = 30 min, Az = 10
cm. Blue lines and points, z = 10 cm; green, z = 20 cm. Results for harmonic
forcing with periods shown, see text for discussion.

vals at Table Mountain 2000-02. In this extreme case the 4 hour component
is always sampled at the same point in its cycle. The blue line shows where
these points might lie along the two-frequency Lissajous figure depending on
when in the cycle measurements are made.

The two cases shown in figure (4.4) clearly show that the scatter plots can
be artificially broadened by high frequency components for which 7" << At.
When the points are irregularly distributed like this it is unclear how the
geometric-mean least squares estimate will perform, although we expect that
an increased spread, and therefore relative error, in the x-axis variable will lead
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Figure 4.4: Analytical results for the effect of finite sampling intervals on fi-
nite difference scatter plots with two frequency components. Values of 97'/0t
and 92T /0z* calculated with equations (4.39) and (4.40) for D = 1 x 107°
m? /s, for surface temperature components and sampling intervals shown on
figures. Surface temperature components shown on figures. Curves are ana-
lytical Lissajous figures, and symbols the points sampled along the curves at
time intervals At. Blue lines and symbols, z = 10 cm; green, z = 20 cm.

to an underestimation of the gradient using our least squares method. We now
examine this expectation.

4.5 Simulations of Many-Component Driving

We have applied our finite difference analysis to calculate the diffusivity profile
D(z) from artificial temperature sets. Temperature fields T'(z,t) were gener-
ated for a uniform half-space with constant diffusivity D = 1 x 107%m?/s.
The surface temperature 7'(0,t) was prescribed as a sum of up to seven differ-
ent frequency components. The sub-surface temperature is given by the sum
of these components which each propagate to depth according to equation
(4.32). Temperature ‘measurements’ were made by sampling this analytical
temperature field at measurement intervals At and Az. To further mimic
our experimental conditions a normally-distributed random noise, 0,,0;se, Was
added to individual temperature measurements. We also set a measurement
precision, 67", analogous to the digitization level of the data logger ADC: tem-
perature measurements were rounded to the nearest multiple of the precision,
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eg. 07T = 0.001°C. Finite difference derivatives were calculated from the sam-
pled temperatures using equations (4.14) and (4.15) from which scatter plots
were drawn for inspection, and the thermal diffusivity profile calculated as the
geometric-mean least squares gradient.

The simulations illustrate the following two effects, which we explain below:

e The diffusivity is underestimated near the surface due to scatter in
02T /Dz* values arising from components for which wAt is large.

e Correlation coefficients (r-values) are low at depths where the varia-
tions become comparable to the underlying precision, and the diffusivity
is either under- or over- estimated depending on whether the value of
(A2)*/12D?(At)? is less than or greater than 1.

4.5.1 Simulation Details

For Simulation 1 the temperature components were a 15°C amplitude yearly
cycle, and 10°C amplitude daily cycle and several 5°C amplitude low-period
components: T = (5,1.9,1.13,0.51) hours. Figure (4.5) shows the simulation
output for: At =1 hr, Az =0.1 m, 67 = 0.001°C, 0,,ise = 0.001°C.

Figure 4.5(d) shows the diffusivity profile (circles, left axis) and correlation
coefficient (diamonds, right axis) for the least squares fits. The first depth
at which D can be calculated is the second thermistor in the ice, here 15
cm. Two deviations in the diffusivity profile are evident. D is underestimated
near the surface, and also below about 1m. In both cases the correlation
coefficient is reduced, particularly below 1 m where it decreases dramatically.
The discretization of points in the scatter plots in figure 4.5(c) is due to the
sampling precision. From equations (4.15) and (4.14) the smallest increments
in T/0t and 92T /92* values are 6T /(Az)? = 0.1°C/m? and §T/2At = 1.4 x
1077°C/s, as seen.

Figure 4.5(e-h) shows the output for Simulation 2 which differs from Simula-
tion 1 only in that the daily cycle has been replaced by a weekly cycle of the
same amplitude (10 °C), and the phase of the yearly cycle has been shifted by 6
months. The surface is now colder than the ground below so that the temper-
ature trace for upper-most thermistor shown (T2, z = 15 ¢m ) is bottom-most
in figure 4.5(e). The weekly oscillation (d = 62 cm) clearly causes signifi-
cant disturbance over the top metre. The diffusivity profile in figure 4.5(h)
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is now accurately resolved over all thermistors below 1m but the near-surface
reduction is greater and extends deeper than in figure 4.5(d).
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Figure 4.5: Top: Simulation 1. See text for simulation details. (a) Sampled
temperatures. (b,c) Scatter plot of finite difference estimates. Lines are ana-
lytical results and points of each colour are the calculated values for individual
thermistors, largest amplitudes from top thermistors. (d) Left axis: Calculated
geometric-mean diffusivity profile; right axis: correlation coefficient (r-value).
Bottom: (e-h) Similarly for simulation 2.
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4.5.2 Interpretation of Simulation Results

Variations in the diffusivity profiles returned by these simulations are fully ex-
plained by the effects of finite sampling intervals, and the relative errors in the
plotted variables biasing the geometric-mean least squares gradient estimate.
This highlights that these factors must be carefully considered in the analysis
of our experimental data.

Equation (4.16) shows that when the relative error in the X variable, §%, is
greater than that in the Y variable, 62, then the geometric-mean gradient will
be an underestimate. This is precisely what occurs in the near-surface reduc-
tion in these simulations. The high-frequency components contribute a high
level of scatter to the 92T /9z? values but not to the 9T /dt values. This scatter
arises because the sampling interval Az exceeds the penetration depth of the
high frequency components. The high frequency variations measured in the
top thermistor, T1, do not propagate to the third thermistor T3, which creates
scatter in the 9?T/0z? values. Such scatter does not arise in the correspond-
ing 0T'/0t values because they are calculated at just one depth, and because
high frequency components are largely damped over the one thermistor spac-
ing Az > d between the top and middle thermistor. As the high-frequency
components responsible for this conductivity reduction attenuate over the top
few 10’s of cm, so does the magnitude of the effect.

It is the relative errors which are important here. In the two simulations above
the high-frequency components are the same, so the difference lies in the size
of the §°T/dz? variations. From equation (4.34) the amplitude of 9*T'/9z>
at depth z is (2/d?)e™*/? = we=#/¢. Although the penetration depth of the
yearly cycle is a factor of v/52 ~ 7 greater than that of the weekly cycle the
amplitude of 9*T'/9z? disturbances it produces is much smaller at a depth of
1-2 m on account of its factor-of-52 lower frequency. The frequency giving rise
to the largest amplitude §°T/9z? variations is w, = 8D/z. For z = 0.5 m, 1
m and 2 m, and D = 1.15 x 107m?/s, w. = 4, 8, and 16 days.

In Simulation 2 the weekly cycle is in fact quite close to w. for 1 m, and
contributes a larger amplitude 0*T'/9z? variation. As the scatter in both cases
is the same the weekly driving produces lower relative errors and the diffusivity
is better-predicted by the geometric mean in simulation 2. In Chapter 7 we
show how this effect is manifest in our permafrost measurements. In that case
spread or noise in 927T"/9z? values is roughly constant throughout the year, but
larger 92T /02* values occur in the winter, making the relative error smaller,
and the method more accurate, than in the summer.
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That the diffusivity is underestimated below 1 m in simulation 1, but not in
simulation 2, is due to the relative size of the sampling intervals. At these
depths the high-frequency component responsible for the near-surface reduc-
tion have been damped right out and it is the measurement noise and precision
which cause the scatter. In this case the ratio of relative errors in 97'/0t and
0?T/0z% is given by equation (4.29). For the parameters here (At = 1 hr,
Az=01m, D=1x10"%m?/s), we find 6 ~ 0.6 6%. As this is less than 1,
the geometric mean will underestimate the scatter plot gradient according to
equation (4.16). Simulations with all parameters identical except At = 0.5 hr,
gives 02 =~ 2.6 0% gave an overestimate below 1 m as expected on this basis.
Figure (4.6), discussed below, illustrates this effect.
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Figure 4.6: Simulated effect on diffusivity profile of the measurement preci-
sion, 0T, (or ‘discretisation’) that temperature measurements are rounded to
by logging electronics, and 0,4 the amplitude of normally distributed tem-
perature measurement noise. Left hand axis (blue circles), D(z) profile; right
hand axis (black diamonds), correlation coefficient ( ‘r-value’).

Figure (4.6) shows the effect of increased measurement noise, 0,5, and mea-
surement precision, 07 , on the diffusivity profile from Simulation 2, but here
with At = 0.5 hr. For 0T = 0,,pisc = 0.001°C there is little error in the diffu-
sivity profile right down to 2 m. But for a factor of 10 worse signal to noise
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caused either by decreasing the precision or increasing the noise, the profile is
accurate only to about 1 m. With our sampling intervals, the accuracy of our
finite difference method below 1 m relies on temperature measurements with
noise and precision of the order of 0.001 °C.

4.5.3 Effect of Data Smoothing

We expected that the near-surface diffusivity reduction returned by our analy-
sis routine could be removed by low-pass filtering the simulated temperature
data. We tested this expectation by time-domain filtering the sampled temper-
atures before the calculation of the finite difference derivative estimates. The
results for identical parameters as in figure (4.5) are shown below in figure
(4.7). The smoothing was performed by numerically convoluting the temper-
ature time-series T'(z;,t) of each thermistor with a gaussian window with a
width of 7 hours (7 measurements) and standard deviation 1.4 hours, effec-
tively removing components with 7" < 5 hours.

Compared with figure (4.5), figure (4.7) shows that filtering has removed the
discretisation in the scatter plots for the deeper thermistors, resulting in a
slight improvement in the accuracy of the diffusivity profile at these depths.
The depth-extent of the near-surface diffusivity reduction has also been re-
duced, although somewhat surprisingly, a diffusivity reduction was still ob-
served at z = 15 cm despite the filtering. Similar behaviour is seen in figure
(4.7). The depth-extent of the near-surface reduction has been decreased but
the reduction at 15 cm is actually larger. This is not fully understood, but
it is an important result for interpreting our experimental results. It shows
that despite appropriate filtering the geometric-mean least squares gradient
can still be biased downwards near the surface.

These simulations have shown that combined effects of measurement noise,
high-frequency noise and the size of the sampling intervals must be carefully
considered. We have demonstrated that these effects can cause a near-surface
reduction in the geometric-mean least squares gradient. In Chapters 5 and 7
we refer back to the results of this chapter in order to distinguish analytical
artifacts from physical effects when we discuss the variations resolved in our
conductivity and diffusivity profiles.
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Figure 4.7: As for Figure (4.5) but after time-domain filtering. Temperatures
at each depth were convoluted with a discrete gaussian window of width 7TA¢
and standard deviation 1.4At, effectively removing components with periods
less than 5 hours. Otherwise all parameters are identical to those in Figure
(4.5).
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Chapter 5

Sea ice Thermal Array
Measurements

In this chapter we report sea ice thermal array measurements made in Antarc-
tica and Alaska using the equipment described in Chapter 3. The measured
temperatures have been analysed with the finite difference method described
in Chapter 3. We present and discuss results for the depth-and temperature-
dependence of kg; from the different sites. We first present measurements in
FY and MY ice in McMurdo Sound, Antarctica. We then describe similar
measurements in FY ice in both the Chukchi sea and Elson Lagoon near Point
Barrow, Alaska. In all cases the ice was land-fast. In both MY Antarctic and
FY Arctic measurements, our temperature record continued far enough into
the melt season to identify daily solar heating events, the phase of which is
different to expected. We observe semi-diurnal variations in the water temper-
ature in the shallow Elson lagoon and correlate them with flushing from the
tidal cycle.

5.1 McMurdo Sound, Antarctica 2002

Two thermal arrays were installed in FY land-fast ice in McMurdo Sound,
Antarctica by Scott Base science technician Tim Kerr, on 10 July 2002. The
sites were positioned south of the Delbridge islands, and West of the Erebus
Glacier tongue, and separated by 100 m. The site location is marked as FY02
in figure (5.1). The two sites were MCM1, S 77° 43" 926”; E 166° 26’ 491" and
MCM2, S 77° 43/ 938"; E 166° 26’ 426”. The arrays were read with the custom-

79
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S177 15"

S177 30"

S 17745

E 163° E 165" E 167

Figure 5.1: Location of thermal array sites, McMurdo Sound, Antarctica 2002,
2003. Two arrays in FY ice 2002 (FY02); one array in FY ice, 2003 (FY03);
one array MY ice, 2003 (MY03). Faint dotted line near the bottom marks the
edge of the Ross Ice Shelf.

built RB loggers every 30 minutes. See Chapter 3 for details of the logger
operation. The thermistor spacing was 10 cm, and two reference resistors
were included in each array to assess logger performance. A thermal array
of different design, and an electrical permittivity array from the University of
Alaska, Fairbanks were installed very near by. This site was approximately 1
km beyond the edge of the MY ice that had survived the previous summer.
At the time of installation the ice was 142 c¢m thick at site MCM2. The whole
area was flat with only a thin (1 ¢cm) layer of snow on the surface.

When the arrays were removed, 11 November 2002, the ice thickness at a core
site between the two arrays was 240 cm. There was a level fairly even snow
cover of 20 cm. The salinity profile, determined from the electrical conductivity
of melted core samples from this time, is shown in figure (5.2), which also core
photos from this time.

Temperatures recorded at site MCM2 are shown in figure (5.3). Each curve
shows the temperature-time trace for a given thermistor. The bottom trace
in this figure shows the coldest temperatures recorded at the top thermistor
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Figure 5.2: Three-photo collage 0-49 cm, and single photo 0-92 cm from two
cores at site F'Y02. Salinity profile from halfway between the two array sites.
Dashed lines is salinity profile used in conductivity analysis.
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Figure 5.3: Temperature record from site FY02 (array MCM2), FY ice, Mc-
Murdo Sound, Antarctica. Lines show T'(t) for thermistors separated by 10
cm. The coldest temperature trace is the uppermost thermistor at a depth of
4 cm. See text for discussion.
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Figure 5.4: Noise in temperature measurements as shown by equivalent tem-
perature of two low temperature-coefficient standard resistors, FY02 (ar-
ray MCM2). Excluding outliers, the standard deviation of the variations is

or = 0.0012 °C. Inset shows discretisation level, 67 ~ 3 x 10~°°C.

(T1, z = 4 cm). Initially the bottom 5 thermistors were below the ice/water
interface, recording the water temperature T,, =~ —1.9 °C. As the interface
grows past these thermistors their temperature curves successively drop below
the water temperature. In mid winter (mid July - mid August) surface tem-
peratures are the most stable, and the average temperature gradient largest,
|0T'/0z| ~ 20°C/m. Pronounced warming events are superimposed on the
gradual surface warming in September and October. Signs of the daily inso-
lation cycle are identified first on September 21. By the start of November,
the temperature gradient has reduced to about 5 °C/m. The melt season was
not recorded due to the need to dismantle the sites in early November. The
temperature record from site MCM1 (not shown) is virtually identical.

The temperature resolution of our measurements is indiacted in figure (5.4)
where we plot the equivalent temperature of the two standard, low-temperature
coefficient resistors, positioned near the bottom of the array. Excluding oc-
casional outliers the standard deviation in these values is o = 0.0012 °C for
the temperature range -2 to -17 °C. A gradual increase of about 0.002 °C is
observed at both sites over the duration of the experiment. The inset shows
the very low discretisation level of the data, 67 ~ 3 x 107°°C.

Thermal conductivity profiles have been calculated using the finite difference
analysis described in Chapter 4. Temperature data were first smoothed in
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the time domain by numerical convolution with a gaussian filter. The full
width of the filter was one day, and the half width half maximum of the
filter’s power spectrum was 12 hours, effectively removing components, with
periods smaller than this. The internal energy density was calculated from the
measured temperatures using the salinity profile shown in figure (5.2). Finite
difference estimates of the derivatives pdU/dt and 9T*/9z* were calculated
using equations (4.12, 4.13) and (4.14), using a value of p = 0.92g/cm3. The
conductivity was then calculated as the geometric mean of the two best fit
slopes to these (pdU/0t, dT?/02*) data obtained by treating each derivative
as the independent variable (see Chapter 4). Statistical outliers were removed
first by rejecting data pairs if either derivative exceeded a cut-off value, and by
processing the data twice. In the first pass we calculated the best fit line, and
the standard deviation (o7) in the vertical separation between each point and
the best fit line. Points were excluded from the second pass if their vertical
separation was greater than 20,. From the second pass we calculated three
variables for each thermistor depth: the geometric mean conductivity, the
standard deviation in this value , and the correlation coefficient.

Temperature data were processed in blocks of 10-20 days in order to monitor
the evolution of k(z) through the season. Time-dependent factors include the
ice thickness, temperature profile and variations in the dominant frequencies of
the surface driving. Figure (5.5) shows two k(z) profiles from each site, and the
corresponding scatter plots. The r-coefficient profiles (black diamonds, right
axis) are also shown with the conductivity profiles (blue circles, left axis).
The first and last thermistors at which §?T/92% could be calculated were the
second thermistor into the ice, and second thermistor above the ice/water
interface. This boundary changes as the ice grows so we included a warm
temperature cut-off; the temperature derivatives were not calculated if the
next thermistor down was above —5°C. Estimating changes in the highly
salinity-dependent internal energy is very sensitive to the input salinity profile
at these temperatures.

In general, the conductivity profiles in figure (5.5), and similar plots not shown,
display several features similar to results previously reported by Collins [1998];
McGuinness et al. [1998]; Trodahl et al. [2000], and Trodahl et al. [2001].
Firstly, a near surface conductivity reduction is observed in which k(14 c¢m) is
much lower than the expected value. Secondly, the conductivity is relatively
constant over the central depths of the ice. Thirdly, close to the ice/water
interface the conductivity profiles show an upturn. As demonstrated below,
our interpretation is that analytical artifacts have caused the first and third
effects, and that the most reliable best conductivity values are returned in the
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Figure 5.5: Scatter plots and thermal conductivity profiles k(z), FY ice, Mc-
Murdo Sound 2002, (a,b) MCM1, and (c¢,d) MCM2. In the scatter plots each
cluster of coloured points is from one thermistor. The scatter plots do not pass
through the origin because of the small temperature offsets between thermis-
tors but this does not affect the conductivity value, determined as the best-fit
slope. In the profiles, blue circles are conductivity values (left axis), and black
diamonds are r-coefficients (right axis).

central depths.

The near-surface reduction was the most puzzling feature in the previous work.
One proposed explanation was that the crystal size of the surface frazil ice was
comparable with the phonon mean free path, causing enhanced scattering [ Tro-
dahl et al., 2001]. We now believe that this effect is an analytical artifact. The
conductivity profiles in subplots (a,b) show a reduction only at one thermis-
tor (14 cm). The reduction extends deeper in subplot (c), and even more so
in subplot (d) when the surface temperature undergoes abrupt warming and
cooling.

Two results form Chapter 4 are relevant to these results. Firstly, in Chapter 3
we identified two scenarios, with recognizable signatures in the scatter plots,
that lead to the geometric-mean conductivity being underestimated. These



5.1. MCMURDO SOUND, ANTARCTICA 2002 85

were (i) high frequency driving causing loops in the scatter plots !, (ii) and
a relative error in §°T/92% greater than that in pdU/0t. Both loops and a
wide lateral spread in the data are apparent in the scatter plots for the top
thermistor (T1(4 cm), blue symbols) in plots (a-c). They are present in the
next two thermistors too, but less visible in this figure. In subplot (d) these
effects are clearly visible in the top four thermistors (blue, red, green, cyan
symbols), which all show a decreased conductivity compared with (c).

Secondly, the conductivity reduction near the surface is similar to that seen in
both the previously reported array measurements of Collins [1998]; McGuin-
ness et al. [1998]; Trodahl et al. [2000, 2001], and in the simulations reported
in Chapter 4. In the present analysis and in those simulations, temperatures
were filtered to remove high frequency components (7' < 5 hours). We do not
fully understand this reduction in the simulations, but it clearly shows that
in the presence of high-frequency components, our analysis routine returns an
underestimated conductivity very close to the surface despite appropriate fil-
tering. In the experimental case there is the additional possibility that the
array caused a perturbation to the local heat flow. Such an effect will be
largest near the surface. As the temperature recorded at the very top thermis-
tor (T1(14 cm)) is used to calculate the temperature curvature at T2, making
the conductivity calculated at this depth the most prone to such an effect.

At depths near the ice/water interface the temperature derivatives have small
values, the scatter plots are quite clustered, and our analysis method becomes
noise limited. For At = 30 minutes and Az = 0.1m, the figure of merit
(Az)*/(12D*(At)?) = 1.9 and a conductivity overestimate is expected if the
dominant source of scatter is intrinsic measurement noise (see section 4.3).
Such an increase is observed. We note that by increasing the width of the
gaussian filter used to ‘smooth’ the data, this upturn can be reduced. This
apparent increase is associated with proximity to the ice/water interface, and
as the ice thickens through the growth season it moves deeper. McGuinness and
co-workers observed this effect too, and identified it with possible enhancement
of the heat transport due to convection within the brine volume. They also
examined the correlation coefficient profile, and interpreted r-values decreasing
with depth as a possible signature of non-linear heat flow. We believe now
that the largest factor influencing the r-values is the measurement signal-to-
noise. Decreasing r-values are entirely expected as the temperature variations
attenuate closer to the isothermal ice/water interface.

We believe that the best estimates of the conductivity are found in the fairly

1‘High frequency’ here means wAt >> 1.
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flat central third of the k(z) profiles where neither of the above two effects
occur. In this region the subplots in figure (5.5) do show some small variations
from thermistor to thermistor. By moving the 10 day data period forward by
one day and therefore changing the distribution of scatter plot points, can,
in some cases, change the conductivity values below about 125 cm by up
to £0.1 W/m°C. The average conductivity between 50-125 cm for the four
subplots shown are (a) 2.36+0.06 W/m°C, (b) 2.28£0.05 W/m°C, (c) 2.22+
0.05W/m°C, (d) 2.07 £ 0.05W/m°C. For the reasons discussed above the
value for (d) is thought to be an underestimate. In this depth range the mean
(and standard deviation) conductivity value for the FY columnar ice at these
sites is k = 2.29+0.07 W/m °C.The temperature range for these measurements
is approximately —25 to —10°C.

In the depth-dependence, k(z), we expect contributions from both the intrin-
sic temperature dependence, and any (micro-) structural variations. The tem-
perature dependence predicts a conductivity that decreases with depth. Our
results show the opposite effect. To examine the temperature-dependence we
have binned the temperatures measured at each thermistor by temperature,
and calculated k(T') for each temperature bin. Figure (5.6) shows results from
both arrays for the period July 20 - July 30, 2002. Except for the upper few
thermistors, the temperature range measured by one thermistor is typically
less than 5 °C so many thermistors are required to span a wide temperature
range. The small diamonds are the conductivity for each temperature bin for
individual thermistors, and the larger blue circles are the average of these val-
ues. The dashed line is the overall average listed in each figure. The variation
from thermistor to thermistor is larger than any temperature variation.

By increasing the time period considered, the temperature range of each ther-
mistor may be extended. However in this case the temperature dependence is
dominated by time-dependent effects, for example, a reduction is measured for
the temperatures measured during the pronounced warming and cooling events
in the spring. This approach is limited because of the small range of tempera-
tures measured by each thermistor, but also in a more fundamentally aspect.
We have observed loops and other non-ideal features in the scatter plots. Lines
fitted to subsets of these data, binned by temperature, will be more sensitive
to the spread in data than fitting all of the data together. For these reasons
we believe that this approach is ultimately unable to resolve the temperature
dependence of the conductivity for the small range of temperatures spanned.

From —25 to —15 °C the conductivity of fresh ice is expected to decrease by
approximately 0.1 W/m°C. This is comparable to the uncertainty in the av-
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Figure 5.6: Temperature dependence of k from McMurdo Sound arrays, 2002.
(a) MCM1, and (b) MCM2, both for data from July 20 - July 30. Coloured
diamonds from individual depths, and larger blue circles are averages of these
results, for each temperature bin. Dashed line is overall average value, as
listed.

erage value over this range (see figure 5.6). Unstersteiner’s parameterisation
gives an increase of less than 0.02W/m°C. We conclude that we have been
unable to resolve the temperature dependence of kg (7") with this analysis of
these measurements. We are experimentally limited by the small temperature
range that each thermistor spans, and by thermistor-to-thermistor variations
in the conductivity that are greater than the expected temperature variation.
Given the loops and spread observed in these scatter plots, it is perhaps unrea-
sonable to expect systematic variations in the slope of subsets of these scatter
plots binned by temperature.

5.2 MY ice McMurdo Sound, Antarctica 2003

Thermal arrays were installed at one F'Y and one MY site in McMurdo Sound,
July 2003. One array was new, and the other reconditined from 2002, but oth-
erwise the equipment was identical to 2002. Unfortunately a data logger fault
just before installation has meant that we have not been able to recover the
data from either site. However, measurements were made between 7 November
2003 - 10 January 2004 with a swapped-in CR10X logger.

The MY site was about 1km west of Arrival Heights, near McMurdo Station.
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Figure 5.7: Photograph and salinity profiles of MY ice, McMurdo Sound, 2003
(site MY03). The photo shows the transition between highly light scattering,
low-salinity surface ice above, to less scattering higher salinity ice below. Red
salinity profile, 24 June 2003; blue profile 10 January 2004. Dashed line,
salinity profile used in conductivity analysis.

The location of this site, labelled MYO03 in figure (5.1), was S 77° 50’ 19", E
166° 36" 78”. When the CR10X logging system was installed on 7 November
2003, the site was free of snow, and the slippery and undulating surface seen
in figure (3.1) suggested surface ablation. The surface ice was sampled for the
experiment reported in the next chapter, and over the top 10 cm found to have
salinity 0.2%gpand density 0.82 4 0.02 g/cm?. The image in figure (6.4) shows
the high bubble content. This is likely to be refrozen snow melt.

Salinity profiles were measured when the site was installed and dismantled.
The profile from a core extracted on 24 June 2003, when the ice was 3.79
m thick is shown in red in figure (5.7). This profile was measured by Scott
Base winter-over staff and scientists, Margaret Auger, Johno Leitch, and Greg
Leonard. The blue line is the profile from a site 15 m away when the array
was dismantled on 10 January 2004. At this time the ice at the array site was
4.16 m thick, with an uneven snow cover of about 10 cm snow cover and 37
cm free board. For floating ice, these depths indicate an average density of
0.91 g/cm?3. This profile was measured by Hajo Eicken, and Lars Backstrom
from the University of Alaska, Fairbanks (UAF). The salinity peaks at approx-
imately 2.5 and 3.5 m indicate periods of fast ice growth in the coldest part of
successive growth seasons/winters. It is likely that this ice is at the end of its
third growth season.
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Figure 5.8: Temperatures measured with CR10X data logger in MY ice 1km off
shore of Arrival Heights, McMurdo Sound, Antarctica. High snow fall between
December 1-3 attenuated the daily temperature variations as well preventing
direct solar heating of the ice after this time. Inset shows solar heating peaks
in the deep thermistors before the snow fall.

Figure (5.8) shows the ice temperatures measured at this site with the CR10X
logger during November and December. Initially there was no snow cover
and the top thermistor was above the local ice surface due to melting around
the array, making it very sensitive to the daily insolation cycle. The inset
in figure (5.8) shows 24-hr peaks in thermistors T8 -T20 (74-194 c¢m). These
variations are not due be conductive heating because they are well below the
penetration depth of the daily cycle. Although the changing temperature
baseline does make comparison difficult, these peaks are found to be in-phase
with maxima at about 3-4 pm local time, and show no clear attenuation with
depth. We find similar peaks in our data from the Chukchi Sea, near Pt.
Barrow in Alaska, and in previous data from a nearby site (Karoline Frey,
unpublished, 2002). We identify these peaks with direct solar heating of the
ice, and discuss this more after we have presented the Chukchi data. A strong
blizzard in the Hutt Point area between December 1-3, resulting in about 20
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cm of fresh snow fall and large snow accumulation in the area (Alex Pyne,
personal communication, 2004). The main graph in figure (5.8) clearly shows
both the insulating effect and high albedo of this snow cover. The daily cycle
is greatly attenuated after the snow fall, and the 24 hr oscillations disappear
respectively. The gradual increase in the amplitude of the daily cycle through
December suggests a reduction in the snow cover over this time.

Both the strong solar heating and the very strong daily temperature cycle
mean our conductivity analysis cannot be used before the snow fall. Even
after the snow fall, the insulating effect of the snow, and relatively stable
surface temperatures mean that the temperature variations are large enough
for our analysis only over the top 50 cm. We used the salinity profile shown
with the dashed line in figure (5.9). The density profile is constrained only by
the small sample surface measurement ( 0.82 4 0.01 g/cm?), the average value
of 0.91g/cm? implied by the thickness and freeboard measurements, and the
expectation that a depth of 2 m it takes a value of approximately 0.92¢g/cm?.
In his review of sea ice density, Timco and Frederking [1996] note that the
density profile of MY ice in particular is difficult to predict. For MY ice he
tabulates previous measurements between 0.8 - 0.94 g/cm?, with lower values
above the freeboard, and an average value at depth of 0.91 g/cm?®. We have
used a density profile scaled between these limits by the salinity profile.

Conductivity profiles for four 6-day periods between December 4-27 are shown
in figure (5.9). As the uppermost thermistor was very close to the surface,
02T /dz* could not be accurately estimated at the second thermistor, (11 cm),
so these profiles start at 21 cm.

All of the temperatures analysed at MY03 are above —7°C where the heat
capacity varies strongly with salinity. Using the average density and salin-
ity, rather than the measured profile, gives a conductivity at 21 c¢cm up to
0.4 W /m°C higher. Although the two salinity profiles are in good agreement
near the surface, the steep salinity gradient makes the conductivity calcula-
tion here quite sensitive to the input salinity. Our calculated conductivity is
proportional to the input density, so the error bars in figure (5.9) include a
1% contribution for the uncertainty in density. For lower depths the tempera-
ture derivatives are small due to the insulating effect of the snow. Due to the
small temperature variations these conductivity profiles do now show a clear
plateau region between the near-surface reduction and the depths at which the
goodness of fit deteriorates. These variations were large enough for a reliable
estimate of k(51 cm) only in the last 6 day period. The average conductivity
for depths 31-41 c¢m, over the four profiles, is kpry = 2.034+0.04 W/m °C. This
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range is shown by the dashed lines in figure (5.9).

This value is lower than the average value in FY ice found above. Physically
a decreased conductivity is expected for low salinity, low density and high
temperatures, all of which apply here. However, as calculations were only
possible for a short period at one site, and because of the sensitivities described
above, we consider this estimate less reliable than the FY values.

From the equivalent temperature of the low temperature-coefficient standard
resistors, the noise in these measurements is or =~ 0.005°C, and the temper-
ature resolution, or discretization level, 67 =~ 0.001°C. As this is below the
level expected for one-off single-ended measurements using the CR10X, con-
firming that the averaging of 20 repeated measurements in the data logging
program has improved the ultimate resolution.
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Figure 5.9: Conductivity profiles in MY ice, 1km off shore of Arrival Heights,
McMurdo Sound, Antarctica 2003 (site MY03). (a) Dec 4-9, (b) Dec 10-15,
(a) Dec 16-21, (b) Dec 22-27. Dashed lines show limits of average conductivity
for 31-41cm, kpy = 2.02 £ 0.07W/m°C.

5.3 Chukchi Sea, Alaska 2002/03

Through a collaboration the Geophysical Institute, University of Alaska, Fair-
banks (UAF), we also made array measurements near Point Barrow, Alaska.
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Figure 5.10: Location of thermal array sites in Chukchi Sea 2003 (CS03),
and Elson Lagoon 2001/02 (EL0102, near Point Barrow, Alaska. (Maps with
permission from Stierle and Eicken [2002])

Similar array measurements were made in the shallow tidal Elson Lagoon, No-
vember 2001 - May 2002, and in the Chukchi Sea, February - June 2003. We
first present results from the more successful Chukchi experiment.

Array MCM1 used in McMurdo Sound FY ice 2002 was reconditioned and
retested in New Zealand. It was then deployed with a CR10X data logging
system in FY ice in the Chukchi Sea, near Barrow, by Andy Mahoney and Lars
Backstrom from UAF. The location of the site, labeled CH03 in figure (5.10),
was N 71° 20'; W 156° 41’. Temperature measurements were made between 4
February and 10 May, 2003, by which time the temperature was above —2°C
through the entire thickness of the ice. Ice grew to a maximum depth of about
135 cm, freezing only 13 thermistors into the ice.

Figure (5.11) shows the recorded temperatures. The temperature time series
for thermistors T5 and T6 (44, 54 c¢m) are missing in subplot (a) because
these thermistors and T20 (194 c¢m) short-circuited when the array was first
installed. There had been no short circuit in testing the previous day. This
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Figure 5.11: Temperatures measured at site CHO3 in FY ice, Chukchi Sea,
Point Barrow, 2003. (a) Temperature-time traces for thermistors 10 cm apart;
traces at 44 and 54 cm are missing due to short circuit. (b) Colour reconstruc-
tion of temperature field. Isotherm increments are 2°C except the —1.9°C
isotherm which gives the approximate position of the ice/water interface until
about day 145, see text.

array suffered a kink near the connector during shipping, which we suspect
led to sea water leakage. The sun was above the horizon for all of this period,
having risen on 21 January. The upper thermistors do not show strong 24 hour
periodicities until mid-March, presumably due to a decrease in the thickness
of the initial snow cover of 11 cm. Responding to a 10 °C surface temperature
increase on April 12, the ice warms very quickly, and is above —5°C at all
depths after April 27 (day 118).

The thermistors between 84-194 cm were all below the ice interface when the
array was installed. A half day period of relatively stable water temperatures
enabled calculation of the relative temperature offsets of these thermistors. For
this time the average water temperature over these thermistors was —1.79 °C.
We assumed an isothermal water column over these depths, and applied a
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constant temperature shift to calibrate these thermistors to this temperature.

From the equivalent temperature of the low temperature-coefficient standard
resistors, the noise in these measurements is o = 0.005°C, and the tem-
perature resolution, or discretization level, 67 ~ 3 x 107*°C, again below
the expected logger resolution, and showing the benefit of averaging multiple
measurements.

5.3.1 Conductivity Analysis

The missing data at 44 and 54 cm meant that 92T/9z? could not be calculated
as above for thermistors T4 - T7 (34 - 64 cm). However, using a finite dif-
ference estimate for uneven separations we were able to calculate the average
conductivity in the middle of this range. For separations Az; and Azy between
thermistors labelled i-1, i, i+1, the curvature, to order O(Azy — Az), is given
by [Zhang, 1993],

PT At 27,

= — : 1
022 (Az +Az) (AzAz) (5.1)

For thermistors as 34 and 64 c¢m, the adjacent spacings Azy, Az, are (10, 30)
cm and (30, 10) cm respectively. Compared with nearby values, we found
a conductivity systematically about 10%higher at 34 cm and systematically
lower by about 10% at 64 cm using equation (5.1). This asymmetry is expected
as equation (5.1) is only first order in (Azy — Az;), and its magnitude is not
surprising given the factor of three asymmetry in spacings. A non-biased
estimate can be made for the intermediate depth of 49 cm by averaging these
values at 34 and 64 cm ( assuming no other depth dependent effects). We have
no salinity profile at this site. However previous measurements in the area, for
the time of year analysed, have shown a ‘C’ shape profile with a bulk salinity
of about 5 %y, and an increase to about 7%yover the top and bottom ~10
cm of the ice [Andy Mahoney, unpublished data; Ficken, 2002]. We have used
a constant salinity, S=5.

Figure (5.12) shows the resulting conductivity profile for four 10 day pe-
riods between Feb 16 - April 17. Not shown are the profiles for periods
with pronounced surface warming or cooling, which, as in figure 5.5(d) have
high scatter and reduced conductivities. Subplots (b-d) show a reduction in
k(14 em) similar to that seen in FY McMurdo Sound ice. Between 49 - 84
cm, the average conductivity (and standard deviation) over these plots is
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Figure 5.12: Conductivity profiles for site CHO3, FY ice Chukchi Sea, Point
Barrow, 2003. Blue circles, conductivity (far left axis); black diamonds, r-
values (far right axis). 7-17. All subplots have the same left and right axes
scales. (a) Feb 16-25, (b) March 18-27, (c) March 28 - April 7, (d) April 8 -
17.

kcg = 2.26 £ 0.09W/m°C. Sensitivity to the input salinity value increase
with temperature and therefore depth. By increasing the constant salinity by
+1 to 6 or 4, the conductivity at 49 cm changes by about +0.1 W/m °C, and
at 84 m by +0.15 W/m °C. This sensitivity is greater again higher than at site
FY02 in McMurdo Sound, due to warmer temperatures.

Comparing figure (5.12) with the FY02 conductivity profiles in figure (5.5),
both profiles show lower values near the surface and higher values at depths
when the analysis becomes noise-limited. A region of approximately constant
conductivity is clear at FY02, but less so at CHO03, at least partly due to
the much smaller depth range. For this reason, we are less confident in the
conductivity values returned at CHO3, than in those at FY02.

5.3.2 Other Temperature Features

Figure (5.13) shows three interesting features in the Chukchi 2003 temperature
record. Subplot (a) shows a pronounced warming event recorded in the ther-
mistors below the ice/water interface, and in the two thermistors closest to the
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Figure 5.13: Features in the Chukchi temperature record. (a) Basal warming
and ablation event. (b) Onset of in-phase 24 hr periodic features. Arrow marks
cooling events in lower thermistors. (c) Amplitude increase in 24 hr peaks later
in the season. Traces for 4, 14 and 84 cm have been removed for clarity. Top
subplot shows the equivalent temperature of standard resistor RS1.

interface. The ice interface melts up past T8, as seen by this temperature trace
re-joining those in the water, and not cooling below them again for another 4
days. From the approximate alignment of the pre- and post-warming trajec-
tories of T8 and T7, we estimate a basal ablation of ~ 10 cm. The dashed line
shows that the temperature minimum at T8 is later than the water column
warming, but earlier than the minimum of T7 (due to conduction from the
surface), so we conclude warming from below the ice. This may be due to
heating of the surface water layer, although no other surface warming events
in this record are accompanied by such a large water temperature increase.

Late in the season we observe 24-hour period features similar to those seen
at the McMurdo MY site MY03. Such peaks have been observed before in
similar Chukchi sea thermal array measurements [Karoline Frey, unpublished
data, 2002]. The arrays in those measurements were larger polycarbonate-
polyethylene conduits with thermistors mounted at the end of 5 cm long pro-
truding ‘fingers’ [Frey et al., 2001]. It is therefore unlikely that these temper-
ature features are due to aspects of array design.

Figure 5.13(b) shows the first onset of such features. The disturbances at
T9 and T11 (84, 104 cm) are in phase and show no amplitude attenuation,
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indicating an origin other than conductive heat transport. At this time the
temperature at 4 cm has increased above —6 °C for the first time, and between
84 - 104 cm it has just exceeded —5°C. Larger temperature disturbances
recorded at T12, T14 (114, 134 cm) are reminiscent of features identified by
McGuinness et al. [1998] as possible over-turning of brine channels in which
cold brine is ejected and replaced by warmer brine. In our case there are two
cooling events, and in between them a slower warming. After this time, ther-
mistors T4 - T13 (34 - 124 c¢m) show in-phase 24-hour oscillations with an
amplitude of about ~ 0.02°C, although they are sometimes not clear over the
changing temperature background. The temperatures at 4 and 14 cm show 24
hour period features too, but with an amplitude attenuation and phase char-
acteristic indicating conduction of daily solar heating. Figure 5.13(c) shows
the increase in peak amplitude, to about 0.03 — 0.04°C, after day 147 (May
27). At this time the surface temperature (not shown) had just risen above the
water temperature. The water column temperature increases gradually over
about a week to —1.6 °C, suggesting that ice is melting, freshening the water
beneath it.

The equivalent temperature of standard resistor RS1 shows weaker and less
coherent variations with magnitude < 0.01°C, barely above the noise level.
This suggests that data logger performance may explain similarly weak varia-
tions in the submerged thermistors, but cannot explain the 3-4 times stronger,
in phase peaks in the thermistors embedded in the ice.

The tides at Pt. Barrow are semi-diurnal so this behaviour must be driven by
the daily insolation cycle. Following the observation of similar variations in
FY ice at McMurdo Sound, Trodahl et al. [2000] discuss the possibility of solar
heating of the ice vs. radiative heating of the probe (of the same construction
as the VUW ones used here). They estimate that the radiative heating of
the probe should impose an order of magnitude smaller temperature rise than
direct heating of the ice. Furthermore the two effects should be identifiable
by the phase; the former in phase with the insolation cycle, and the latter ap-
proximately /2 out of phase. Trodahl et al. [2000] report measurements with
a phase shift similar to 7/2, or 6 hours. In the Chukchi Sea measurements,
both the present measurements and those of Karoline Frey [unpublished data,
2002] show maxima at between 3-4pm local time, corresponding to a phase
shift of approximately 7/4. From the analysis of Trodahl et al. [2000], this
would imply a much larger in-phase absorption in the ice. Materials poten-
tially contributing to enhanced absorption at Barrow include the large amount
of sediment entrained in the ice [Stierle and Eicken, 2002], and algae. The dif-
ference between predicted and observed phase shift warrants some attention, in
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terms of both data collection and mathematical treatment. The mathematical
problem is presently (2005) being addressed by Mark McGuinness, at Victoria
University of Wellington.

5.4 Elson Lagoon, Alaska 2001/02

In the season prior to the Chukchi experiment, temperature measurements
were made in the shallow Elson Lagoon, in the lee of Point Barrow. The
location of the site, labelled EL0102 in figure (5.10), was N 71° 21’; W 156°
31.5’. Apart from a different array, the equipment was the same as that used at
the Chukchi site. The stainless steel tube suffered some kind of corrosion during
shipping, resulting in many small pin holes. These were patched by coating
with ‘JB Weld’, a general purpose epoxy suitable for marine applications, and
available at short notice in Barrow. When the site was installed on 5 November
2001 the ice was approximately 30 cm thick with a fairly uniform snow cover
of 6 £ 1cm. The depth of the lagoon at the site was just over 2 m.

Recorded temperatures spanning a large fraction of the growth season are
shown in figure (5.14). A one-point temperature calibration was made for the
thermistors initially below the ice level in a manner similar to that described
above for the Chukchi site. It is clear in figure 5.14(a) that the ice/water
interface temperature is not stable, particularly just after deployment. This
instability is also evident in figure (5.15), in which very large variations are
seen in the standard resistors, positioned next to each other near the bottom
of the array. Variations in the excitation voltage may be responsible for the
similar variations in the equivalent temperatures of the two resistors over the
first 40 days, but not the later uncorrelated variations. Late in the season,
both resistors showed variations consistent with the noise level observed at
the Chukchi site using the same logger the following year, o7 ~ 0.005°C. We
don’t have an explanation for the erratic behaviour seen in figure (5.15), but
suspect that it may have arisen due to complications from the array repair. In
light of this variability we have not conducted a conductivity analysis of these
data.

Figure (5.16) shows semi-diurnal, in-phase temperature variations measured by
the thermistors below the ice/water interface. In subplot (a) for 28 November
- 4 December 2001, their magnitude increases with depth for thermistors T17
- T20 (164 - 194 cm), and occasional peaks are seen in T15 and T16 (144,
154 cm). In subplot (b) for 27 March - 2 April 2002, the variations have a
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Figure 5.14: Recoded temperatures in FY ice, Elson Lagoon, Barrow, 2001/02.
(a) Temperature time series, for thermistors 10 cm apart. (b) Colour re-
construction of temperature field. Isotherm increments are 2°C. The —3°C
isotherm is slightly above the the ice/water interface, see text.

nearly constant magnitude over all 8 submerged thermistors, T13 - T20 (124
- 194 c¢m). Over the experiment duration the behaviour varied between these
two kinds shown, but the latter was common for the last two months, with
peak-to-peak magnitudes of up to 0.35°C.

The period clearly ties these variations with the semi-diurnal tidal cycle. From
tidal predictions for those dates at Pt. Barrow, these temperature maxima
occur just after water level maxima 2. A possible explanation is that the
lagoon is being flushed with the high tides, causing a cycle in the salinity, and
therefore freezing point. This agrees qualitatively with the relatively warm, less
saline water of the Chukchi Sea flushing the Lagoon. Figure (5.16) shows the
water temperature base-level in the lagoon to be between —2.1°C and —2.4°C,
which is colder than the nearby sea water temperature in the Chukchi Sea, at

2Tide predictions from http://www.fishingworks.com/tide_prediction_interval.cfm, using
(US) National Oceanic and Atmospheric Administration prediction data.
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Figure 5.16: Diurnal temperature variations in the submerged thermistors,

Elson Lagoon, 2001/02. (a) 28 November - 4 December 2001; (b) 27 March -
9 April 2002.

—1.79 °C. We note that a change in freezing temperature of ATy = 0.3°C
would imply a salinity change in the lagoon of about AS = 5.5. Accurate



5.5. DISCUSSION 101

information about the tidal patterns and salinity variations in Elson Lagoon
are required to purse these observations further.

5.5 Discussion

We have reported on four thermal array measurements, and calculated the
conductivity profile for three of these. Based on a a more thorough under-
standing of the performance of our finite difference conductivity analysis, our
implementation and interpretation differs slightly from the previous work of
Trodahl and co-workers. As with their results, we resolve a near-surface re-
duction in the conductivity at all sites, and an apparent increase near the
ice/water interface. Based on the analysis in Chapter 4, we can explain these
effects. However, because we cannot predict the magnitude of them, we are
unable to distinguish any physical effects which might also exist. The conduc-
tivity calculated in these regions is not considered reliable. We have calculated
an average conductivity for the intermediate region between them, which in
the case of FY ice is columnar ice, and the region of least structural variability.

Location Ice | kg(meas) | Depth | Temp. range
Type | [W/m°C] | [m] [°C]

McMurdo Sd. FY |229+0.07|0.5-1.2 | =25 to —10°C

Chukchi Sea FY [226+£0.09 | 0.5-0.8 | —15to —5°C

McMurdo Sd. MY [203£0.04 | 0.3-04| —6to —5°C

McMurdo Sd. ¢ | FY |2.17+0.12 | 0.5-1.5| =19 to — 8°C
McMurdo Sd. ® | FY 20+0.1 - —21 to — 8°C
McMurdo Sd. ¢ | FY |1.95+005| >0.2 | —28 to —8°C

Table 5.1: Thermal conductivity values from the thermal array experiments
presented here, top, and from previous work. ¢ Collins [1998]; * Trodahl et al.
[2000], unknown depth range; ¢ Trodahl et al. [2001]. NB: the average values
for (b,c) have been read from graphs of k(7).

Table (5.1) shows the conductivity values determined above, together with
values from previous array measurements. Of these, the value for FY ice in
McMurdo Sound (site F'Y02) is considered the most reliable. Results from two
arrays separated by 100 m are in good agreement, and, importantly, the thick
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ice and cold temperatures allowed the clear identification of a plateau in the
conductivity profile between 50-125 cm. Although in excellent agreement with
this value, the conductivity from the Chuckchi Sea site is the average over a
smaller depth range, and it is less clear that the conductivity profile flattens
out.

We believe our values to be more accurate than the lower values from similar
experiments listed in table (5.1), and that due to differences in analysis, the
previous values were underestimates. The best agreement is with the value
reported by Collins [1998], for depths below 50 cm. We believe that the much
lower conductivity found in Trodahl et al. [2001] is related to a not accounting
for now better-understood analytical artefacts.

The uncertainties in the MY conductivity reflect a small variance in the data.
However, the small depth range over which these values were determined means
it is not clear that the conductivity profile shows a plateau, as clearly seen in
the FY McMurdo Sound profiles.

In the next Chapter we present results from a direct measurement of the con-
ductivity of small FY and MY cores. We then discuss the results of both
methods, and compare then with each other and theoretical predictions.



Chapter 6

Direct Measurement of Sea Ice
Thermal Conductivity

In this chapter we report on a direct measurement of the thermal conductivity
of small sea ice samples, performed at Scott Base, Antarctica, in November
2003. The experiment was designed as a ground-truth experiment to inves-
tigate the 25-50% reduction in conductivity over the top 50 cm of first year
(FY) ice suggested by our thermal array measurements. We measured the
conductivity of several samples of three ice types: FY surface (0-10 cm), FY
sub-surface (45-55 cm) and MY surface (0-10 cm).

There are two key results of this experiment. Firstly, we did not measure any
reduction in the conductivity over the top 50 cm in FY ice. We did measure a
10% reduction in the MY surface ice compared with the FY surface ice, consis-
tent with the lower density of this desalinated, bubbly MY ice. The second key
result is that the average conductivity values of the three ice types we exam-
ined are, within +6% uncertainties, all consistent with values predicted by our
adaption of the Yen/Schwerdtfeger conductivity model discussed in Chapter
2.

After an overview of the parallel conductance method (PCM), we present full
details of our experimental apparatus. This is followed by a heat flow analysis
in which we discuss the conductive heat flow that we measure, and in par-
ticular how our analysis accommodates radiative heat losses. The samples
are characterised and the measurement procedure and results presented and
discussed.

103



104 CHAPTER 6. DIRECT CONDUCTIVITY MEASUREMENT

6.1 Overview of Parallel Conductance Method

The thermal conductivity is most directly determined in a 1-D experiment
from Fourier’s law, Jo = —k0T'/0z, by measuring the temperature gradient
0T /0z in the direction of a known conductive heat flux Jo. This is most simply
realised in a 1-D experiment by placing a heater at one end of a sample, while
the other end is held at a constant temperature, and measuring the resulting
temperature profile along the sample. Such an approach requires that the
conductive heat flow along the sample is precisely known, so care must be
taken to eliminate or accommodate any heat flow other than conduction along
the sample.

By performing the measurement with the sample and heater in a high vacuum
chamber, conductive and convective losses from the sample can be eliminated,
however this approach is not straight forward for high vapour pressure mate-
rials such as ice. The vapour pressure of fresh ice at —10°C is approximately
57 [Weast, 1971] . However, because the thermal conductivity of gases is
independent of pressure until the gas mean free path is comparable with the
vacuum chamber dimensions, very low pressures are required to reduce conduc-
tive losses through the chamber. Ice samples exposed to such pressures would
sublimate. This problem is overcome by placing high vapour pressure samples
in a vacuum-tight sample holder. This eliminates conductive and convective
losses from the holder but the heat flow is now along the sample and holder in
parallel, and the conductance of the holder must be accounted for.

In our case the holder is a thin-walled stainless steel tube, along which with 5
thermistors are attached to measure the temperature profile. When a sample
is loaded, the temperature gradient along the tube gives the total thermal
conductance K of the tube plus ice sample, which in the assumption of parallel
heat flow add together:

Pc

AT (6.1)

Kice—l—holder - (Kice + Kholder)
where Po = Jo A is the conducted power. From a separate tube-only measure-
ment with no sample loaded gives the conductance of the tube is

Fe

Khotder = W (6.2)

The difference between these two measurements is the conductance of the ice,

'Pressures are here expressed in torr [r], 17 = 1.3 mbar.
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from which the ice conductivity is calculated as:

L
kice = T(Kice+holder - Kholder)' (63)

For no extraneous heat loss the conducted power P is equal to the power
dissipated by the heater, and the measurements described above would deter-
mine the conductance of both the sample and the holder. This is the idealised
parallel conductance method.

Using a high vacuum eliminates conductive and convective loss but at our
operating temperatures of approximately —10°C, radiative transfer between
the holder and vacuum chamber wallscannot be neglected. We show rigorously
in Appendix C, and discuss in section 6.3.1 below, how our analysis does this.
To a very good approximation the effect of radiative losses is that equations
(6.1, 6.2) overestimate Kjcetnorder and Kpoiger by the same amount, so that
despite this error, equation (6.3) still gives the ice conductivity to +1%.

6.2 Experimental Equipment

Our measurements were performed in an insulated shipping container, con-
verted into a field laboratory, at Scott Base. There are five components of our
experimental equipment: (i) a sample holder tube with a heater at its base, and
five attached thermistors for measuring the temperature profile along the tube;
(ii) a vacuum chamber in which the sample holder and heater were housed; (iii)
a turbo-molecular pump, backed with a rotary pump, for maintaining cham-
ber pressures down to P ~ pur; (iv) a circulating cold bath for pumping a
temperature-controlled fluid through copper fittings surrounding the vacuum
chamber to keep it isothermal; (v) electronics for measuring the thermistors’
resistance, and for heater power supply.

The experimental arrangement is shown in figure (6.1). The circulating bath is
under the bench, the rotary pump behind it (obscured), and the turbo pump
mounted on the frame in the foreground. The vacuum bellows and cooling
fluid hoses were fed through a small porthole, obscured by the turbo pump,
to the chamber outside. The current supply for the heater and multimeter
for reading the thermistor resistance are on the top shelf, and their electric
cabling feed through another porthole. Figures 6.1(b,c) show the chamber
housing mounted on the outside of the container, the copper top flange of the
chamber and circulating cold bath hoses. Schematic diagrams of the vacuum
chamber, measurement circuits and vacuum system are shown in figure (6.2).
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e
-

Figure 6.1: (a) Experimental arrangement inside container lab. See section
6.2 for discussion of apparatus. (b) Housing of chamber mounted on outside
of container, showing vacuum bellows and circulating bath hoses coming from
inside the container. (c) Chamber and electrical cabling inside plywood en-
closure. During operation the space in the enclosure around and above the
chamber was fully packed with insulating foam.

Figure 6.3(a) shows inside the chamber, with the sample holder tube protrud-
ing through the upside-down top flange. The sample holder tube was a 25.4
mm outside diameter, 0.3 mm thick 304 stainless steel tube. The tube was
sealed at its base with a raised centre, housing an O-ring-sealed air release
screw. A copper blank was placed on top of this to create a bobbin for wind-
ing the heater wire, and to provide uniform heating over the base of the tube.
The heater was approximately 10 metres of constantan wire, with a total re-
sistance of 340.9 + 0.1€), wound in a loop to prevent inductive heating. The
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Figure 6.2: Schematic diagrams of experiment. (a) Vacuum chamber showing

thermistor positions, chamber dimensions and other features.

(b) Thermis-

tor measurement circuit including manual 2-way rotary switch for selecting
thermistors. (c) Pumping system. The rotary pump served as roughing and
backing pump for the turbo-molecular pump.
venting of chamber. Tonization gauge is G2 and themistor gauge G1. Dotted
box indicates frame for turbo pump and controller.

Needle-valve V3 allowed air-
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Figure 6.3: Photographs of experimental vacuum chamber. (a) Inside of cham-
ber and sample holder tube. Air-release screw, copper heating plate, and
heater wire can be seen on top of the narrow, upright, sample holder tube.
Thermistor beads are attached with Torr Seal. The electric feed-through is
on the flange to the left of tube. (b) Copper fittings through which cold bath
fluid was pumped.

heater current was supplied by a calibrated Yokogawa 7651 precision power
supply.

The YSI 55031 thermistors are visible in figure (6.3) as small green beads
attached to the sample tube with Torr Seal, a white-coloured vacuum epoxy.
Care was taken to ensure a direct tube-to-thermistor contact at the centre
of the thermistor beads. Thermistor resistance was measured with a 4-point
measurement using a calibrated HP3478A multimeter. The circuit is shown
in schematically in figure (6.2). The excitation current is 10 uA producing
negligible thermistor self-heating. After calibration (see section 6.5 below)
the resistances were converted to temperatures using the Steinhart-Hart fit
described in Chapter 3. These thermistors are from the same batch as those
used in the thermal arrays.

Specifications of the constantan wires in the thermistor circuit and copper
heater current wires were carefully selected according to two criteria so as to
minimise the uncertainty in the power delivered to the tube: (i) less than
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1% of the I?R power dissipated in the heater circuit is dissipated other than
in the heater itself (ie. the electrical resistance of the current leads < 1%
electrical resistance of the heater coil); (ii) the thermal conductance of all
wiring connecting the sample holder and the chamber top is less than 1% of
the thermal conductance of the tube. According to the Weidemann-Franz law
(see section 3.1.1), the thermal conductance is inversely proportional to the
electrical resistance, so these criteria above impose upper and lower limits on
the electrical resistance of the heater supply wires.

We used 0.08 mm diameter enamelled copper wire for the heater supply wires,
giving R = 0.74€) for both wires in series. This is 0.2% of the total resistance
in the heater circuit satisfying the first condition. The two heater input wires
give a total parallel thermal conductance of approximately 40 uQ2/K. High
resistance 33 2/m constantan wires were used in the thermistor circuit giving
10 uf2/K for the parallel conductance of the 8 wires. The thermal conductance
of the tube was measured to be approximately 7 mQ/K. Therefore the total
thermal ‘leak’ to the chamber top along all of the wiring is 0.7% of the tube
conductance, and 0.2% when an ice sample is loaded, satisfying the second
condition in both cases.

We desire an isothermal chamber for two reasons. Disturbances in the chamber
top temperature will be conducted down the tube and interfere with the mea-
surement of the equilibrium temperature gradient. Furthermore, an isothermal
chamber provides a well-characterised radiative environment, and consistent
radiative losses, which are assumed in our analysis below. To achieve this we
used a Techne 12-B re-circulating bath continuously pumping a 40/40/20 mix-
ture of ethylene glycol/water/isopropyl alcohol through the chamber’s copper
fittings shown in figure (6.3). The annular, copper top flange was bolted to
the top of the chamber allowing ice samples to be loaded through its hole.
The lower jacket was made with a radius of curvature slightly smaller than the
outside of the chamber, and clamped tight against it. Silicon vacuum grease
was applied between the chamber and copper fittings to optimise thermal con-
tact. The fluid went through the top flange, down through the jacket and then
back to the bath. To provide insulation against variations in outside temper-
ature, the chamber was fully wrapped in 20 mm thick high density foam, and
housed inside an enclosure of 17 mm plywood, padded with additional foam.
See figure (6.1).

The chamber was evacuated with an Alcatel ATP-90 turbo pump backed by
a Pascal 2005 SD rotary pump. Backing line pressure was monitored with
a thermistor gauge and the chamber pressure with a cold-cathode ion gauge.
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Standard measurement pressures were 0.5 - 2 p7. The vacuum set-up is shown
schematically in figure 6.2(c). The chamber could be isolated with valve V2
and vented to air pressure with the needle valve V3.

The pumping system, circulating bath, and electronics could not be operated
at outside temperatures, so were housed inside the container. A temperature-
controlled cold-room, in which the chamber could have been housed, would
have been preferable but was not available. The insulated chamber enclosure
was shielded from direct sunlight and out of line of sight of the sun for 22
hours a day, but otherwise experienced the local weather at Scott Base. The
ambient temperature measured with a thermistor just above the enclosure was
mostly in the range -8 °C to -18 °C, and averaged -12°C.

6.3 Heat Flow Analysis

In equations (6.1-6.3) we assume that all of the heat input is conducted along
the tube, and ice if present. Here we first estimate the conductive and radiative
losses from the sample tube in our vacuum chamber, then, in the sections
below, show that how analysis accommodates the non-negligible radiative loss.
A full treatment of the heat flow is presented in Appendix C.

The kinetic theory result for the thermal conductivity of an ideal gas is inde-

pendent of pressure,

1
k= gv/\cv : (6.4)

where v is the average molecular speed, A the mean free path, and ¢, the
volumetric heat capacity of the gas. Although the mean free path is inversely
proportional to density (hence pressure), this pressure-dependence is cancelled
by the volumetric heat capacity, which is proportional to density. Equation
(6.4) holds until the pressure is so low that the mean free path of gas molecules
exceeds the container dimensions. For air at -10°C in a chamber with typical
dimension L ~ 3 cm, this occurs at Fy ~ 7 m7. In the molecular regime,
P < P, collisions with a wall are more probable than with other molecules,
and the assumptions of kinetic theory no longer hold. The transport of heat can
no longer be considered in terms of inter-molecular collisions, but by molecular
flow instead. The effective thermal conductivity is given by [Gombosi, 1994]:

(6.5)

1/2
k= aPL( 2k ) ,

mmT
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where P [Pa] is pressure, L [m] the heat transfer length scale , m [kg] the mass
of a single gas molecule and kg = 1.38 x 10723 J/K is Boltzman’s constant.
The dimensionless pre-factor « is of order unity, and depends on the gas and
contact surfaces [Dushman, 1949; Gombosi, 1994].

At our highest operating pressures of 5 u7 the conductivity of the rarefied air
in our chamber (L = 3 cm) is approximately 1500 times smaller than the STP
conductivity of air: kq;-(STP) = 0.025 W/m°C [Di Nello, 1995]. The overall
thermal conductance of the vacuum surrounding the tube can be estimated
as Ky = kyAwuwpe/Ar, where Ar is the difference between the chamber and
tube radii, giving Ky ~ 5uW/°C. This is three orders of magnitude smaller
than the measured conductance of the ice; the high vacuum has effectively
eliminated all conductive heat loss from the sample holder. Convective losses
are also eliminated at such pressures. In the molecular regime a gas is not
characterised by a temperature-dependent density, so buoyancy or convective
effects do not apply.

An order of magnitude estimate of the radiative heat loss can be obtained by
considering the tube to be radiating at its average temperature, T(%), into
a radiation field at the chamber temperature, assumed to be the bath fluid
temperature T},. The radiative heat flux for this idealisation, which ignores
the finite size of the chamber, is:

Qrat = e (T(5)* = T,) (6.6)

where the Stefan-Boltzman constant o = 5.67 x 1078 W/m?K*, A is the tube
area, and ey is the 300 K, or ‘longwave’, emissivity of stainless steel, which
depends on the surface condition. Values lie in the range 0.05 - 0.25, for
polished to rough surfaces respectively. Modelling the temperature profiles
for tube-only and ice sample measurements in this experiment, we found a
good fit with €5, = 0.2, so we use that value for the estimate here. With
T, = —15°C and the heater delivering 50 mW, we measured T(%) ~ —13.5°C,
giving Q,qq ~10 mW. As this constitutes a 20% heat loss, radiative effects
cannot be disregarded.

6.3.1 Parallel Conductance Method with Radiative Losses

In the analysis presented in Appendix C we assume that only radiative losses
occur, and solve the problem of conduction along a bar of length L and cir-
cumference s with radiative losses from its surface. The boundary conditions
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are: (i) the end of the bar is at the chamber temperature set by the circulating
bath, T'(L) = Ty, and (ii) the heat flux into the bar at the heater (z=0) is
(1 —B)P/A where P is the applied power, A the surface area perpendicular to
the heat flow, and 3 is the fraction radiated away from the copper base of the
heater. Expressed in terms of the excess temperature, 0(z) = T'(z) — T}, the
solution is

where oL parameterises the relative strength of radiative loss to conductive
flow. For circumference s, length L and thermal conductance K, al =
(gsL/K)Y?. Here q is a radiative heat loss coefficient, which we evaluate
in Appendix C, assuming an isothermal chamber at Tj, to be ¢ &~ 3.5¢,,0T}>.
The finite chamber size has reduced the pre-factor here from 4 to 3.5. For
no radiative loss ¢ = o, = 0 and an expansion of the hyperbolic functions
in equation (6.7) gives a linear profile. For no radiative loss from the heater
B =0, and the ideal result is recovered, 6(z) = (P/K)(1 — z/L).

We measure the temperature gradient at the centre of the tube, where bound-
ary effects are least pronounced, and heat flow expected to be most uniform.
However radiative losses cause a reduction in the conductive heat flow and
therefore in the magnitude of the gradient here, | %—Z |./2. Therefore equation
(6.2) overestimates the thermal conductance. In light of this we define the
‘apparent conductance’ as:

P

Kupp = ————
LS e

(6.8)

In Appendix C we derive an analytical expression for K,,, by differentiating
equation (6.7), expanding to order («L)?, and substituting (aL)? = (¢gsL/K).
The apparent conductance of the tube plus ice, and tube are respectively
(equations C.20, C.21):

1 3
Kapp = T A4 (Ktube + Kice + - Q(Tb)SL> 5 (69)
1-p 8
1 3
K = =5 <Ktube + §Q(Tb')8L> : (6.10)
Here § and (' are the fraction of heat radiated from the copper heater base,
and Tj, and 7} the chamber temperature for the two cases. Expanding to order

(aL)? here introduces an error of less than 0.5%.

Following the ideal parallel conductance method we can calculate the apparent
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conductance of the ice by subtracting (6.10) from (6.9):

1 1 1 19 [ T,3 T,’3
Kapp,ice = mKice‘i‘ (1 _6 - 1 _6/) Ktube"‘% (1 _6 o 1_5/) ’

(6.11)
Here K. is the physical conductance of the ice that we would like to de-
termine, and K, ;.. the value calculated from the ideal parallel conductance
method. For our chamber we calculate # =~ 0.01, 8’ ~ 0.02. With these values
and experimental values for K,,, and K, , the second term on the RHS is
approximately -0.5% of the first term. As discussed below we have treated
together results with 7, in the range -14 to -7 °C. Using the extreme values

for T, and 7,’ the third term on the RHS is at most +1% of the first term.

We conclude that although radiative losses cause equations (6.9, 6.10) to over-
estimate the thermal conductance, the thermal conductance of the ice sample
can be calculated as the difference in these apparent conductance values to
an accuracy of approximately +1%. It is convenient to retain the term ‘ap-
parent conductance’ when discussing this calculation, and particularly when
discussing the raw data below, but we stress that it does not represent a phys-
ically meaningful thermal conductance, in our case overestimating the actual
conductance by approximately 20%. Hereafter we drop the subscript ‘app’
and K and K’ represent the apparent conductance values from the ice and
tube-only runs respectively.

6.3.2 Calculating Ice Conductivity and Uncertainties

Values of K and K’ were calculated with equation (6.8) using a finite difference
estimate of the average temperature gradient in the central third of the tube,
1981, 2= (T — Ty)/(22 — 24) |, and L = 100mm. The apparent conductance
values discussed below are therefore ‘the apparent conductance for a 100 mm
length’. The ice conductivity is ultimately calculated using equation (6.3) in
which L cancels out with no associated uncertainty. We calculated a thermal
conductivity value in this way for each ice sample measurement, and then
made a weighted average of the individual runs for the three ice types: FY
surface, FY sub-surface, and MY surface. As it is only appropriate to here use
weights that derive from random uncertainties, we have distinguished random
and systematic uncertainties.

Random uncertainties are those that increase the variance in the conductivity
values, and include the run-to-run measured variations in AT = (Ty — Ty),
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the underlying temperature resolution, and the uncertainty in the ice cross
section, 0Ajce/Ajce & 1% for each run. The individual terms on the RHS of
equation (6.11) can vary by approxiamtely +1% from run to run, so we have
included a 1% random uncertainty in applying equation (6.3).

The uncertainties in input power and thermistor spacing are the same for all
measurements and contribute systematic uncertainties that do not change from
run to run. The finite contact area of the roughly spherical beads limits the pre-
cision of the thermistor spacing to Az = (23 — z4) = 40.25 £ 0.50 mm, a 1.25%
uncertainty. From the analysis of the heater and measurement wire properties
above (section 6.2) we use an uncertainty in the heater power 6 P/P = 0.5%,
giving a total systematic uncertainty of 1.75%.

6.4 Sample Characterisation

Blocks of ice approximately 450 mm on a side were cut with a chainsaw from
sites at which thermal arrays had been installed over the 2003 Austral winter.
Two surface blocks (0-450 mm) and one sub-surface block (450-900 mm) were
cut from FY sea ice NW of the Delbridge Islands in McMurdo Sound, at array
site FY03 (S 77 40.710, E 166 07.817). One surface block was cut from MY
ice 1 km off Arrival Heights at site MY02 (S 77 50.189, E 166 36.779). See
figure (5.1) for locations.

Small ice samples approximately 110 mm x 24 mm diameter were cored from
these blocks with a custom-built coring unit shown in figure (6.4). The corer
used three carbide cutters and flute angle of approximately 45°, and was pow-
ered by a speed-regulated mains-powered hand drill. Vertical alignment was
maintained with a tripod-mounted brass collar. Best results were obtained by
rinsing the corer with isopropyl alcohol prior to use. This prevented binding
of the ice shavings which otherwise caused the drill to stall, and by lubricat-
ing the collar with mineral oil, which reduced vibrations that would otherwise
snap the core. Coring created small free-standing ice pillars that were snapped
off at their base and extracted with a length of tube identical to the sample
holder, see figure (6.4). This tube was pre-cooled to prevent core melting. The
cores were stored in zip-lock bags in a chest freezer at —18°C. Figure (6.4)
also shows the drilling set-up and photos of representative samples of the three
ice types.

The density of the cores was determined from measurement of sample dimen-
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Figure 6.4: Coring equipment and ice cores. (a) Drill set-up, including tripod
and drill. (b) Corer and stainless steel tube for core extraction. (c¢) FY surface
core with 40 mm of highly light-scattering frazil ice at the top (left), and
more uniform looking FY sub-surface core (right). Some helical striations
were created by the drill bits. (d) MY surface core showing high air-bubble
fraction. This is the bottom end of a 0-100 mm core which also shows some
melting along the edges due to handling; measurements were not made on this
core.
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sions and mass. Results are shown in table (6.1). Salinity was determined from
the electrical conductivity of melted cores measured with a Palintest conduc-
tivity probe with automatic temperature compensation. Individual ice cores
were placed inside sealed plastic containers and left to melt and equilibrate at
room temperature. The ~ 40 ml solutions were individually poured into clean
1 cm diameter test tubes so the conductivity probe could be fully immersed.
The probe was flushed with double-purified Scott Base water until the reading
in a test tube of this water was 0.01 + 0.01 mS (milli Siemens) on the scale
used for measurements. Measurements were made on two melted cores from
each of the three ice types, in a cyclic fashion, to establish the reproducibility
of the measurements. The difference in repeated runs was less than the sample
to sample variation for the different ice types.

Two conversions were required to determine salinity S from the measured
electrical conductivity o.. First, the ionic concentration M was calculated
from the conductivity using a calibration curve obtained by measuring the
salinity of four prepared NaCl solutions. Secondly, salinity, as mass of salts
per unit mass of melted core, was determined from the ionic concentration
by assuming standard sea-water composition of the cores. Strictly speaking,
Oceanographers define the salinity of sea water by the ratio of its electrical
conductivity to that of a standard KCI solution [Eicken, 2003]. We did not
use this approach. We had no standard KCI solution, and the conductivity
meter was calibrated only to a level for testing Scott Base water. Rather,
we calculated the mass of salts per unit mass of ice, using a standard sea
water composition, and by calibrating the meter. Only NaCl was available
to prepare solutions for this calibration. Results are shown with the density
values in table (6.1).

Ice Type Location Position Density | Salinity
/Depth [g/cm?® | [%00]

FY 0-100mm NW of Tent Is. S 7740.710 | 0.90+0.01 | 5.3+0.2
FY 450-550mm | McMurdo Sound | E 166 07.817 | 0.92 £0.01 | 4.5+0.2
MY 0-100mm | 1km off Arrival | S 77 50.189 | 0.82+0.01 | 0.2+ 0.2
Hts, McM Sd. E 166 36.779

Table 6.1: Location, density and salinity of the three ice types examined. The
FY sub-surface block was taken from directly below the FY surface block.

These salinity and density values agree entirely with the profiles of Trodahl
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and Buckley [1990] obtained at a nearby site. The slightly higher salinity
at the surface is characteristic of the ‘C shaped’ commonly observed in FY
ice [Weeks and Ackley, 1986]. The MY ice has undergone brine drainage, as
shown by a lower density and salinity than the FY ice. The very high bubble
content suggests rapid re-freezing of surface water. This is likely to have been
snow melt. The slightly lower density of the FY surface ice is attributed to
the presence of frazil ice during the formation of which more air is trapped
than in the congelation composing the sub-surface cores. About 40 mm of
frazil ice is seen in the FY surface core in figure 6.4. The top 10 mm is
particularly granular in appearance. We use these salinity and density values
to characterise the ice types and as input for conductivity models to compare
with our measured conductivities, not in the calculation of our experimental
conductivity values.

6.5 Thermistor Calibration

We calibrated the five thermistors along the sample tube under experimental
conditions to get a relative accuracy of 0.005°C. With the circulating bath on,
and the chamber in the insulated enclosure, a tight-fitting copper rod was in-
serted into the sample holder, and the thermistors read with the heater turned
off. The high thermal conductivity of copper (kc., ~ 200 W/m°C) optimises
the uniformity of the tube temperature. Also, the thermal response time to any
disturbances in the temperature at the top of the chamber is small due to the
high thermal diffusivity of copper. For a length scale of 100 mm and thermal
diffusivity of copper at these tempreatures (D¢, ~ 1.2 x 10~*m?/s), the ap-
proximate thermal response time of the system is ¢t ~ 22/D = 8s. Thermistor
readings were stable to JR = £5Q (£0.003°C) for up to 15 minutes.

The resistive offsets with respect to the bottom thermistor ¢; were measured at
—9.5°C and —15°C to the nearest 10 €2, twice the resistance resolution, giving
an uncertainty in the temperature offsets of approximately 4+0.006°C. The
measured resistive offsets, and corresponding calculated temperature offsets
are shown in table (6.2). The temperature offsets are the values that must be
added in the calibration. The —9.5°C offsets were reproduced with two trials
separated by 4 days with air temperatures —16 °C and —12°C. The calibration
at —15°C was reproduced in two runs 10 days apart with air temperatures
—11°C and —13°C.

As discussed in Chapter 3 a ‘one point’ calibration is often made with such
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Thatn[°C] | Offset |ty to t ty t
—9.5°C SRKQ] | 0 | —0.21 | -0.23 | -0.07 | 0.01
ST[°C]| 0 | -0.09 | -0.10 | -0.03 | 0.00

—15°C SRKQ] | 0 | -0.21 | -0.22 | -0.01 | 0.08
ST[°C]| 0 | -0.07 | -0.07 | 0.00 | 0.03

Applied Offsets | §T[°C] | 0 | -0.08 |-0.085 | -0.015 | -0.015

Table 6.2: Measured resistive offsets in the thermistors (t; - t5) at —9.5°C and
—15°C and corresponding temperature offsets. Bottom line shows temperture
offsets applied to all measurements, see text.

thermistors. As seen in table (6.2) we have two such ‘one point’ calibrations,
with slightly different offsets. These differences are as likely to reflect experi-
mental uncertainty as a physical effect, so we have chosen to make the simplest
calibration by averaging the two temperature offsets for each thermistor. Over
the range —6.5°C to —15°C these offsets were added to the temperatures cal-
culated from the measured resistance using equation (3.2). The conductivity
calculations involve only the difference AT = (T, —T}). The relative difference
between the t, and t4 offsets at the two calibration temperatures is 0.01°C,
establishing the ultimate accuracy of AT.

6.6 Measurement Procedure

For the tube-only runs, the air-release screw was removed and with the top
O-ring sealed cap in place, the chamber and tube were evacuated. For mea-
surements on ice samples the air-release screw was replaced. Samples were
removed from the storage freezer and carefully inserted into the tube after
silicon vacuum grease had been smeared inside the tube to optimise thermal
contact. Aside from these differences the measurement procedure is the same
for the tube only- and ice- runs.

When removed from the storage freezer, the ice samples had a uniform temper-
ature or about —18°C. To reduce the time to reach the equilibrium tempera-
ture, profile the heater power was increased above the measurement value for
a short time. It was then reduced to the measurement value and the tempera-
ture profile monitored over time. When the temperature gradient levelled out



6.7. RESULTS AND ANALYSIS 119

as a function of time, thermal equilibrium was considered to have occurred. A
small rate of change in the entire profile was allowed, so long as the temper-
ature difference between successive thermistors remained constant to within
+0.01°C. Uncertainty in determining when equilibrium was reached arose
because temperature perturbations propagating down the tube could super-
impose a small temperature gradient, disrupting the temperature profile, and
potentially causing the [ZL(t)|curve to level out even though equilibrium had
not been reached. In practise this effect could never be fully excluded, but we
sought to minimise it by keeping the chamber as isothermal as possible.

For the ice and no-ice cases, we selected heater powers P and P’ respectively,
to produce similar temperature gradients. This was done to minimise the
influence of any unexpected systematic effects on the heat flow, specifically
the radiative losses. From a scientific perspective it would be preferable to
make the measurements with the temperature gradient comparable to that
which occurs naturally in the ice sheet, |25~ 10°C/m, giving AT = 0.4°C
for an inter-thermistor spacing of 40 mm. To reduce the fractional uncertainty
in measuring |2 |, , we induced gradients of ~ 35°C/m. No part of any
measured sample was warmed above —5°C. This is the temperature at which
the proposed ‘percolation threshold’” of brine volume fraction 5% is reached
for ice with salinity 5% ; the rule of fives of Golden et al. [1998].

6.7 Results and Analysis

We measured the total and tube-only apparent conductance, K and K’, at
T, = —9.5°C and T, = —15°C, and with heater powers in the range 17 to
68 mW. The results showed no trend in heater power. No such dependence is
expected, so we conclude that there are no systematic effects associated with
the heat input. In figure (6.5) the apparent conductance of ice and tube-only
runs are plotted as a function of T(%), the temperature at which the con-
ductance was measured. Note that the vertical axis tick-interval is 1mW/°C
on both axes. Tube conductance measurements were made at —9.5°C with
chamber pressures 0.5 — 5 u7, and in two cases at —15°C with the chamber
evacuated but the sample space containing air at 1 atm. After accounting
for the conductivity of air in the tube, these measurements were consistent.
Any convective contribution was therefore negligible. The different ice cate-
gories are shown separately: FY surface, blue triangles; FY sub-surface, open
red diamonds; and MY surface black squares. Within each class the scatter
is larger than in the tube data, even accounting for the two-fold difference
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in magnitude. We return to the possible causes of this scatter later in this
section.
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Figure 6.5: Apparent conductance results. Left axis: K, apparent conductance
of runs with ice samples loaded: Blue triangles, FY surface; red diamonds, FY
sub-surface; black squares, MY surface. Right axis: K’, apparent conductance
of tube-only runs, grey squares. Note the vertical axis tick-interval is 1 mW /°C
for both the left and right axes.

Across the temperature range —14 °C to —7 °C the thermal conductivity of 304
stainless steel increases by approximately 1% [Atlas, 2003], which is smaller
than the uncertainty in our individual measurements. As we are unable to
resolve this variation we have used a weighted average for the apparent con-
ductance of the tube over this temperature range: K’ = 8.70 + 0.23mW/°C.
Over this temperature range where the brine fraction is low, the predicted
temperature dependence of sea ice thermal conductivity is established by the
temperature dependence of the fresh ice component, k;(7T"). Combining the ex-
pected temperature dependence of k;(T') and stainless steel, the area-weighted
conductance of the tube and ice in parallel is predicted to show a 0.5% decrease
from —14°C to —7°C, again below our scatter.

An ice conductivity value for each ice run was calculated using equation (6.3)



6.7. RESULTS AND ANALYSIS 121

N
N Ul
U TT T

[l
| bl
| Ll
| 1
| |
I |
| |
| |
| |
| |
|
| |
| |
| |
| |
| |
| |
|
| |
| |
| |

I |
H:#
I
CIJ
I
%}—4
|
—<o—

1

|

|
1 1

=
2]
T
I

Thermal conductivity [W/mOC]
|_\
+

0.5 i

0 1 1 1 1 1 1 1
-14  -13 -12 -11 -10 -9 -8 -7 -6

Temperature z=L/2 [° C]

Figure 6.6: Plot of all thermal conductivity values for the three classes: FY
surface, blue triangles; FY sub-surface, open red diamonds; black squares,
MY surface ice. Lines are predictions of our slight modification to the
Yen /Schwerdtfeger conductivity model, for the range of measured density and
salinity for each class; same colouring as symbols.

with K’ = 8.7+ 0.23mW/°C, L = 100mm, and A;.. = 5d}, as measured
for each core. The individual conductivity values, along with the weighted ice
type averages, are collated in table (6.4) at the end of this section. The final
uncertainty in the conductivity of each ice type is the sum of the 1.75% system-
atic uncertainty discussed above, and a weighting of the random uncertainty

for the different runs in each category.

Figure (6.6) shows all of the measured conductivity values and output from
our model for kg; (see Chapter 2). As in figure (6.5), blue triangles represent
FY surface ice, open red diamonds FY sub-surface ice, and black squares MY
surface ice. The two lines for the model output for each ice type give the con-
ductivity limits due to he uncertainty in density and salinity. There is good
agreement between the measured conductivity and the predicted values in fig-
ure (6.6). Furthermore, this figure clearly shows that difference in conductivity
between the FY surface and FY sub-surface ice is less than the scatter in each
class.
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Ice Type/ Density | Salinity | T %) Measured | Modelled
Depth[cm] | plg/em?®] | S[%] | [°C] | k[W/m°C] | k[W/m°C]
FY 0—-10 0.90+0.01 |53+£0.2| -94 | 2144+0.11 | 2.18 = 0.02
FY 45—-55 |09240.01 |4.54+0.2 | -11.0 | 2.09+£0.12 | 2.22 +0.02
MY 0 —10 0.824+0.01 | 0.2+0.2 | -13.0 | 1.884+0.13 | 2.054+0.05

Table 6.3: Comparison of experimental thermal conductivity of the three ice
types with predictions of our conductivity model using the measured average
density and salinity, and temperature. T(%) is the average temperature for
runs in each ice type.

Table (6.3) shows a comparison between the ice-type averages and the range of
values predicted by our model described in Chapter 2, evaluated at the average
temperature for each ice type, T(%), using the range in measured density and
salinity values. Within uncertainties, the average conductivity is consistent
with the prediction of this model for all three ice types. The overlap is small
in each case though, at the upper range of the measured values, and lower end
of the modelled values.

Notably, no reduction in conductivity is seen between the FY surface and
sub-surface ice. Although the average surface value is slightly higher, this
difference is not significant compared with the uncertainties. In fact, omitting
the lower, and seemingly outlying value 1.90 W/m °C from the FY sub-surface
ice, gives an average of 2.16 + 0.13 W/m °C. However, despite it improving
the comparison, we have no sound basis for discarding this value, so have not
done so. Within an overall uncertainty of ~ 6%, we resolve no difference in the
conductivity of FY ice from depths of 5 cm and 50 cm. The lower conductivity
of the MY surface ice is expected on the basis of its high air volume, hence
low density.

Our model predicts a lower range of conductivities for the FY surface ice
compared with the FY sub-surface ice because of the approximately 2% lower
average density in the surface cores. However, due to 40 mm of frazil ice at
the top of the FY surface cores, it is likely that the density in the central third
of the FY surface cores - where the conductivity was measured - is slightly
higher than the average value of 0.9g/cm3. For this reason we expect that
the measured conductivity of the FY surface cores to lie near the top of the
range of values predicted with 7. Using the average salinity S as input for the
Yen model introduces no similar problems because the salinity at the centre
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of the core is well estimated by S. Furthermore the conductivity model is
only weakly dependent on salinity. For salinities and temperatures relevant to
these measurements, a salinity variation of 4%/ is needed to produce the same
predicted change in conductivity as a density variation of 0.01g/cm?.

The scatter in the ice conductivity values in figure (6.6), and table (6.4) de-
rives largely from scatter in the ice conductance values, which is due to the
difficulty in accurately measuring the equilibrium temperature gradient. This
scatter is larger than the tube-only runs, cf. figure (6.5), for two main rea-
sons. The first is that when an ice sample is loaded the thermal time constant
7 ~ 2%/D.;s increases by a factor ~ 10 due to the decrease in effective ther-
mal diffusivity of the ice and tube system. The volumetric heat capacity c, s
increases approximately in proportion with the area, a factor of ~ 20, but the
conductance increases only by a factor of ~ 2, giving a factor of 10 decrease
in Deff = keps/coefs. This means that not only is thermal equilibrium ap-
proached more slowly with ice samples loaded, but any perturbations to the
temperature profile caused by disturbances in the chamber top temperature
also propagate more slowly than for tube only runs. Such disturbances dis-
rupt the temperature profile over a longer time and are harder to identify. The
temperature profiles were never completely static. For most measurements the
temperature difference between adjacent thermistors was constant to within
0.01°C over 10 minutes. For |2L|~ 35°C/m and thermistor spacings of 40 mm,
this equates to a less than 1% uncertainty in |[4L].

The second source of enhanced scatter in the ice measurements is the quality
of thermal contact between the tube and the ice. It is not quite true that our
analysis assumes no thermal resistance between the ice and the tube because a
thermal resistance which is constant down the length of the tube will give the
same temperature gradient on the outside of the tube as along the ice inside.
Despite smearing silicon grease inside the tube there will be unavoidable run-
to-run variations not only in the thermal contact but therefore also in how
uniform the heat flow is along the ice cores, even in the central third.

Furthermore, there is natural variability in the samples themselves. Variations
in density of 1% are not improbable, resulting in conductivity variations of
+0.02 W/m°C. As the observed variability is several times larger than this,
this is not the main cause of scatter.
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Date | Core | P[mW] | Ty, [°C] | Tair [°C] | k[W/mK] | 6Krana | 0Ksys
5-Nov | 01-A 66.8 -9.5 -6 2.31 0.18 | 0.04
6-Nov | 01-C 66.8 -9.5 -10 2.21 0.19 | 0.04
6-Nov | 01-C 34.1 -9.5 -11 2.18 0.19 | 0.04
8-Nov | 01-D 66.8 -9.5 -12 2.04 0.15 | 0.04
8-Nov | 01-D 34.1 -9.5 -7 2.12 0.14 | 0.04
12-Nov | 02-A 34.1 -15 -9 2.07 0.16 | 0.04
12-Nov | 02-A 66.8 -15 -9 2.16 0.18 | 0.04
0.06 | 0.04
FY surface 2.14 0.11
4-Nov | 03-B 66.8 -15 -18 2.23 0.30 | 0.04
10-Nov | 03-C 66.8 -9.5 -6 2.08 0.18 | 0.04
11-Nov | 03-C 34.1 -9.5 -4 2.24 0.17 | 0.04
12-Nov | 03-D 34.1 -15 -12 1.90 0.15 | 0.03
12-Nov | 03-D 66.8 -15 -13 2.13 0.15 | 0.04
0.07 | 0.04
FY sub-surface 2.09 0.12
13-Nov | MY-b 66.8 -15 -11 1.78 0.17 | 0.03
13-Nov | MY-b 49.1 -15 -20 1.73 0.14 | 0.03
14-Nov | MY-a 49.1 -15 -18 2.10 0.15 | 0.04
0.09 | 0.03
MY surface 1.88 0.13

Table 6.4: Measured conductivity values for the three ice types. P [mW]
is heater power. T, is temperature of the recirculating bath fluid, and by
assumption, the chamber. 7T,;. is air temperature at time of measurement.
The last line for each ice type gives the average conductivity (weighted with
random uncertainties 0k,qnq) and the total uncertainty - the weighted random
uncertainty plus the systematic uncertainty 0ksys.
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6.8 Discussion of Conductivity Results

In this section we discuss the results from both our thermal array and parallel
conductance measurements. We first summarise the results and then compare
them, first with each other and previous measurements, and then with the
values predicted by our theoretical model and the parameterisation of Maykut
and Untersteiner [1971].

The conductivity profiles from the analysis of our array measurements show a
roughly constant conductivity between a near surface reduction and an increase
close to the ice/water interface. This behaviour is opposite to that predicted
from the expected temperature-dependence. Models of k(7)) predict a re-
duced conductivity near the ice/water interface due to the lower conductivity
of the increasingly large brine volume, and an increase towards the colder sur-
face due to the temperature-dependence of the conductivity of the fresh ice
component. We believe that this discrepancy is due to artifacts in our finite
difference analysis method.

We firmly believe that the apparent reduction in the near-surface conductiv-
ity of FY sea ice, also observed by Collins [1998]; McGuinness et al. [1998];
Trodahl et al. 2000, 2001], is an artifact of the analysis method. The finite
difference estimates of OU/dt vs. 0*T/dz* become unreliable when their are
temperature components for which wA¢, and/or Azy/(w/2D) is large. These
estimates suffer a time lag, resulting in loops in the scatter plots of OU/dt vs.
0?T/0z%, as previously observed and associated with possible hysteric effects
within the ice [Collins [1998]; McGuinness et al. [1998]; Trodahl et al. [2000,
2001]; Karoline Frey, personal communication, 2002]. This effect causes larger
relative errors in 9*T'/9z* than in OU/0t, so the geometric-mean least squares
gradient underestimates the conductivity. Simulations show that filtering, via
numerical convolution with a gaussian window, does not remove this effect
very near the surface. The effect is shallow because the high-frequency com-
ponents responsible for it have a small penetration depth. Temperatures near
the surface are also the most prone to measurement error, due to heat flow
perturbation caused by the mismatch between the thermal conductance of the
probe and the ice.

We also believe that the observed increase in conductivity near the ice/water
interface is an artifact of the analysis, arising because the temperature varia-
tions are weak near the isothermal interface and the method becomes noise-
limited. Collins [1998] and McGuinness et al. [1998] have previously associated
a reduction in the correlation coefficient (r-value) of the least squares fitting,
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with depth, as a signature of increasing non-linearity in the heat flow, and
therefore a possible signature of convective heat flow. We consider this an
unreliable association because such a reduction naturally occurs with depth as
the signal to noise worsens.

The conductivity profiles are approximately level over the depths between
about 50 cm and the depth at which the analysis becomes noise-limited. This
is clear in the k(z) profiles from two arrays in FY ice in McMurdo Sound
(site FY02). Signal to noise was good at this site due to the high precision of
our custom built logger and thick ice (deeper isothermal boundary), allowing
the conductivity to be determined accurately to greater depth. Between 50
- 125 cm, spanning temperatures between —25°C - —10°C, we found k£ =
2.294£0.07W/m°C. At our FY ice site in the Chukchi Sea near Point Barrow,
the ice only grew to 130 cm and a plateau in the conductivity profile was
less clear. Between 0.49 - 84 cm, and a temperatures range —15°C - —5°C
we found k£ = 2.26 + 0.11 W/m°C. At our MY McMurdo site, instrument
failure meant that only a short period of data were available, and these were
at temperatures close to the maximum allowed in our analysis. We found
k =2.03+£0.04 W/m °C over the small depth range 30 - 40 m and temperature
range —6°C - —5°C. As this MY ice has a lower density than the FY ice,
this lower conductivity value should not be interpreted as clearly identifying a
temperature-dependence.

With our parallel conductance method (PCM) we measured the thermal con-
ductivity of small samples of FY surface (0-10 cm), FY sub-surface (45-55 cm)
and MY surface (0-10 cm) sea ice. From several different ice cores for each
class, our results for FY surface, and sub-surface ice are 2.14 £ 0.11 W/m°C
and 2.09£0.12 W/m °C respectively. For very bubbly, low density MY surface
ice we did resolved a 10% reduction, finding k = 1.884+0.13 W/m °C. These re-
sults are all within the prediction of our modification of the Yen/Schwertdfeger
conductivity model described in section (2.2). More importantly, we resolve
no significant difference, and certainly no large reduction, in the conductivity
of FY surface (0-10 cm) and sub-surface (45-55 cm) ice. These measurements
provide direct evidence that contradicts the near-surface reduction resolved by
the array measurements. We believe that the PCM results are most robust,
and the array-derived near surface reduction to be erroneous.

Figure (6.7) shows a comparison of the results of both of our methods with
historical measurements, our theoretical prediction, and the Untersteiner’s pa-
rameterisation. Boxes and coloured symbols show results from our thermal
array and parallel conductance methods, lines are theoretical results, and grey
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Figure 6.7: Comparison of measured and predicted k; values. Parallel conduc-
tance method results: FY surface ice, blue squares; F'Y sub-surface ice red di-
amonds; small symbols individual measurements (~ £0.15 W /m °C error bars
omitted), and large symbols averages. Thermal array results: black boxes cen-
tered on averaged conductivity value, with width and height giving measured
temperature range and conductivity uncertainty. Previous measurements, grey
points: solid circle, Schwerdtfeger [1963] comparative gradient method (S=6);
open circle, Lewis [1967] ice interface value; diamonds, values calculated from
Nazintsev [1959] diffusivity measurements (S=3.6, 3.9); solid triangles, Naz-
intsev laboratory measurements (S=4.7) Doronin and Kheisin [1977]. Lines:
solid black, our predicted bounds of k,; for S =4 — 6, p = 0.9 — 0.92g/cm?;
dashed grey, parameterisation of Maykut and Untersteiner [1971] for S=6;
black dotted, parameterisation suggested in text.

points are previous measurements. Individual measurements with the parallel
conductance method are shown as small blue squares (FY surface) and red
diamonds (FY sub-surface), where error bars of ~ £0.15 W/m°C have been
omitted) and the larger symbols with error bars are the ice-type averages. The
black boxes depict the array results. They are centered on the conductivity
values listed above, and their width and height indicate the temperature range,
and uncertainty. Results are shown for McMurdo sites FY02 and MY03, and
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FY Chukchi site CHO3. The dashed box shows results from Collins [1998]
for FY ice in McMurdo Sound, from 1997 temperatures and depths 0.5 - 1.5
m. The previous results shown with small grey symbols are: the ice/water
interface value of Lewis [1967] (open circle with error bars), the comparative
gradient value of Schwerdtfeger [1963] (solid circle with error bars), the values
calculated from the diffusivity measurements of Nazintsev [1959] (diamonds),
and Nazintsev’s results from artificial sea ice with S=4.7 (solid triangles). See
section (2.4) for details of these measurements.

Given the difference in ice, particularly density, the MY wvalues should be
considered separate from the FY values. The temperature-dependence of kg;
is then not well identified by these results. The coldest temperature values
are set by our most reliable array measurements at FY02. Measuring the
conductivity at low temperatures is hampered by the inapplicability of our
analysis near the surface. Similarly, we are unable to measure any decrease
as the ice warms above —5°C near the ice/water interface where temperature
variations are weak, our analysis noise limited, and the internal energy too
highly dependent on salinity. Excluding one outlier, our parallel conductance
method measurements agree well with our array results. The average values
are consistent with our theoretical prediction. The historical data show a
similar scatter to our parallel conductance methods measurements, and within
this scatter, do overlap quite well.

Overall, our results show a good agreement with the the range predicted by
our conductivity model for typical FY parameters, S =4 — 6 and p = 0.9 —
0.92 g/cm? (solid black lines). So do the historical data, particularly in the tem-
perature dependence above —5 °C which we cannot resolve. The deviation from
the combined results and the predicted range is about 5%, similar to the uncer-
tainty in the conductivity of pure ice. The value of k;(0°C) = 2.14 W/m°C in
our model has an uncertainty of about £0.05 W/m °C. Nevertheless, the over-
all agreement between our experimental methods, the previous measurements,
and our theoretical prediction is encouraging.

Both our data and the previous results show a conductivity about 10% higher
than that predicted by Untersteiner’s parameterisation. We attribute this
difference to Untersteiner’s low, and temperature-independent value for the
conductivity of pure ice, 2.03 W/m°C. In our model we have used k;(T) =
2.14 — 0.011 T, where T is temperature [°C], interpolated from the data com-
piled more recently by Slack [1980]. Untersteiner [1964] references only the
experimental work of Malmgren [1927], who measured quite low conductivity
values (section 2.4.2), and the theoretical model of Schwerdtfeger [1963] who
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used a constant pure ice conductivity, k; = 2.09 W/m°C. Based on the sub-
sequent experimental results discussed here, and underwritten by the good fit
of our modified theoretical result (also based on subsequent k;(7") values ), we
considered that this parameterisation of kg needs revisiting, and tentatively
propose an alternative. The black dotted line in figure (6.7) shows the equation

ky = 2.09 —0.011T +0.117S/T  [W/m°C] | (6.12)

where T is temperature [°C| and S salinity [%go]. This form was found by
retaining the S/T term from Maykut and Untersteiner [1971], and the tem-
perature coefficient from our linear fit to the pure ice data of Slack [1980],
and adjusting the constant term to lie between the bounds predicted by our
model, which fits the experimental results quite well. Equation (6.12) does
not represent an analytical result.In the same sense as Untersteiner’s original
parameterisation, which pre-dated the availability of all of the data in figure
(6.7), it is an empirical fit to the presently available data. The data in figure
(6.7) suggest that it is important to retain both the linear and inverse tem-
perature terms. We imagine that implementing this result in sea ice models,
rather than the two-term result used since Maykut and Untersteiner [1971],
would not add significant computational burden. If a single constant value
is required, it should represent an average over the depth of the ice, and we
suggest that a value is chosen according to the expected range of local ice tem-
peratures. For Antarctic temperatures, indicated by the range of our array
measurements, we propose 2.2 W/m°C. A value as low as 2.05 W/m °C may
be appropriate for expected temperatures above —10°C. The constant value
2.03W/m°C, which is sometimes used, is considered too low for all but the
warmest temperatures.

We finally note that the parallel conductance method results for the MY sur-
face ice have been omitted from this comparison. This is only because the very
low density of that ice, 0.82 £ 0.01 g/cm? is much lower than the typical densi-
ties found in either bulk FY or MY ice. This value does overlap our predicted
values (see previous section) but is inappropriate in the present discussion.
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Chapter 7

Thermal Properties of Antarctic
Permafrost

In this chapter we report on thermal array measurements made in the ice-
cemented permafrost at Table Mountain in the McMurdo Dry Valleys of Antarc-
tica. This work was initiated by members of Victoria University’s Antarctic
Research Centre as part of ongoing geological and geophysical research in the
extended Dry Valleys area. They installed thermal arrays similar in design
to the sea ice arrays in November 2000. The present author made revisions
to the data logging program, serviced the instrumentation site in November
2002, and completed all data analysis. An initial report on this project based
on the analysis of temperature data from November 2000 - January 2002 has
already been published [Pringle et al., 2003]. In this chapter we call on dis-
cussion from that paper and summarise its main results. Between November
2002 - December 2003 the sampling interval was reduced from At = 4 hours
to 1 hour, and data averaging in the logger program improved. Together with
a better understanding of the analysis scheme, these factors have enabled a
more accurate analysis of the new data. This has led to some modification of
our initial results and conclusions.

7.1 Dry Valleys Introduction

The extreme climate of the Dry Valleys is characterised by very low precipita-
tion ( < 10 cm/year in the form of fine ‘diamond dust’ snow), low annual mean
temperatures (< —20 °C), large annual temperature amplitude (~ 15 °C) and
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strong, katabatic winds [eg. Thomson et al., 1971; McKay et al., 1998]. The
valleys are not ice covered primarily because the Trans-Antarctic Mountains
block ice from the polar plateau flowing into and through the valleys [McKay
et al., 1998]. The ground surface is typically an ice-free, rock debris mineral
soil, up to 1 m deep, overlying a perennially frozen ice/mineral soil matrix,
which us referred to here as ‘ice-cement’.

The very cold, very dry Dry Valley permafrost represents a little-studied end
member of terrestrial permafrost environments [Putkonen et al., 2003]. Re-
cently there have been two main drivers for increased scientific interest in the
region. The region has been identified as the best terrestrial analogue of the
Martian polar regions, in which patterned ground is observed and ground ice
is likely to exist [eg. Mellon, 1997; Malin and Edgett, 1998]. There has been a
debate surrounding the age and stability of Beacon Valley ground ice which has
been indirectly dated as 8.1 My making it the oldest ice on earth [eg. Sugden
et al., 1995; Hindmarsh et al., 1998; Marchant et al., 2002]. Attention has also
focussed on polygonal patterned ground features, which are found extensively
throughout the greater Dry Valley region, ranging in diameter from 1 —20m
[Péwé, 1959; Marchant et al., 2002; Putkonen et al., 2003; Sletten et al., 2003].
This widespread occurrence of sand-wedge polygons reflects contraction crack
networks within the underlying ice-cement (buried ice in the case of Beacon

Valley).

Our focus is the thermal regime and properties of two sites, separated by
100 m, at Table Mountain in the Dry Valleys, see figure (7.1). These two
sites show different scale surface patterning, and furthermore, one of the sites
lies in a debris flow of unknown age or flow mechanism, discussed below. In
this chapter we characterise the ground temperatures and the depth-dependent
thermal properties at the two sites which we correlate with lithographic and ice-
content profiles of the top 2 metres at the sites. In particular we are interested
in any differences in thermal properties that might contribute to the factor-
of-three difference in polygon diameters between these nearby sites. Previous
temperature measurements have been made in near-surface layers in Antarctic
permafrost [Matsuoka et al., 1990; McKay et al., 1998], but we believe this is
the first in-depth study of the thermal properties of the sub-surface.

Although there is the potential for low-level vapour transport in most soils,
with a resulting transfer of latent heat, such transport is expected to be ex-
ceedingly small in the ice-rich ground, and due to the very low year round
temperatures, there is no expectation of latent heat effects or heat flow other
than by conduction. We proceed by this assumption, and from the temper-
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ature record examine the depth- and seasonal- dependence of the apparent
thermal diffusivity (ATD). One site shows a weakly- and smoothly- varying
ATD profile, whereas the other shows an abrupt two-fold increase over a sharp
compositional boundary. We present the results of several time series methods
for computing the mean ATD profile. In particular, we are interested in the
performance of these methods at this abrupt boundary. From heat capacity
profiles determined from the composition of cores recovered from each site, and
the ATD profiles, we calculate apparent thermal conductivity profiles, which
we correlate with core composition.

7.2 Site Detalils

The experimental sites TM1 (S 77° 57 36”; E 161° 57’ 15”, 1840 m above mean
sea level) and TM2 (S 77° 57" 39”; E 161° 57" 25”, 1852 m asl.) are on the
northwest flank of Table Mountain, which is on the south side of the Ferrar
Glacier near the eastern margin of the Dry Valleys, see figure (7.1). Table
Mountain is made up of sandstones of the Beacon Supergroup which have
been intruded by Ferrar Dolerite (Jurassic). These formations are mantled by
a linear band (2 x 5 km) of Sirius Group, a glacial till [Passchier et al., 1998]
with a probable, but controversial, mid-Miocene age [Miller and Mabin, 1998].
Sirius Group sediments crop out in a series of low (< 3m) ridges and have a
hardness of dried mud, but below depths of 0.5 m are generally ice-cemented.

The north-western flank of Table Mountain also has several debris flows that
appear to originate from weathered dolerite dikes. Although the age and mech-
anism by which these debris flows formed are unknown, they are clearly defined
by large-scale polygonal ground, see figure (7.1). The debris flow in our study
area truncates the Sirius Group which is marked by small scale polygons in fig-
ure (7.1). Regardless of the sediment composition and soil horizonation, loose,
dry, ice-free permafrost in the vicinity of these sites is 0.10-0.5 m thick and lies
on top of the ice-cemented permafrost. The contact between the dry and ice-
cemented permafrost is not flat, but undulates depending on the aspect of the
ground surface and overlying materials. The depths quoted here are referenced
to the level surface at each installation site. Note that the dry permafrost over-
lying the ice-cemented permafrost is not an ‘active layer’. Aside from direct
solar heating of surface rocks during the summer, this layer is below freezing
year round but is simply ice-free. The sublimation and evaporation rates of
the sub-surface ice through such layers is currently under investigation [eg.
Sugden et al., 1995; Hindmarsh et al., 1998; Marchant et al., 2002; Putkonen



134 CHAPTER 7. TABLE MOUNTAIN

et al., 2003]. A desert pavement of ventifacted dolerite pebbles and cobbles
covers the surface at both sites.
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Figure 7.1: Locations, surface features, and core log of Table Mountain sites.
Aerial photo (top right) shows different scale polygons, demarcated by snow,
and debris flow (left). Middle figure shows the contact between the intrusive
Dolerite flow and Sirius. Core stratigraphy and photos from central sections of
the cores show the very different composition at the two sites. (Colour version
of Figure 1 in Pringle et al. [2003].)
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At site TM1 the polygons on the surface have an average diameter of 16 m
and are demarcated by snow accumulation in the peripheral trenches, which
are about 0.5 m below the polygon centres. Sediment at this site originates as
a debris flow which contains mostly dolerite as both clasts and matrix. At the
installation hole, the dry permafrost is loose to a depth of 0.45 m and consists
of very poorly-sorted sediment with about 20% gravel, and 70% sand, silt and
clay. The ice cement from 0.45-0.66 m consists of essentially the same material
as in the dry permafrost zone but the dolerite clasts are more weathered. Below
0.66 m the sediment comprises about 30% ice, 20% clasts ( scattered pebbles
and cobbles 3-10 cm diameter) and 50% sand, silt and clay. Clasts in this
lower zone are mostly un-weathered and fresh looking.

Polygons at site TM2 have an average diameter of 5 m, but otherwise have
a similar morphology to those at site TM1. The dry surface permafrost is
light-tan in color and loose to a depth of 0.14 m. It consists of about 40%
small dolerite pebbles and 60% sand, silt and clay, which derive mostly from
Sirius group facies. Between 0.14-0.92 m the sediment is a moderately sorted,
medium to coarse quartz-rich sand with several zones of weathered dolerite
clasts (~ 5 cm diameter) and segregation ice. The overall composition in this
unit is about 23% ice, 10% dolerite clasts, and 67% quartz-rich, medium grain
sand. Several ~ 0.01 m thick ice lenses occur between 0.7-0.9 m. From 0.92 to
1.86 m is a massive, well-sorted, medium to coarse grained, quartoze sandstone
of the Sirius group, cemented by pore ice and fine clays [Dickinson and Grapes,
1997], see photo in figure (7.1). The sandstone contains about 15% ice, mostly
in pore space. Below this, and extending to the bottom of the thermistor array,
is a zone of about 30% dolerite clasts (10 - 15 cm diameter) 50% quartz-rich
sand and 20% ice, both in pore-spaces and as ice lenses.

The ice fraction profiles for both sites, are shown in figure 7.2). These were
determined from approximately 5 cm long, 6 cm diameter sections from the
frozen, and dehydrated weights by Warren Dickinson [Pringle et al., 2003].
Within the ice cement, ice is present as both lenses and pore ice. The length
scale of features in the ice-cement, for example ice lenses and pebbles, is com-
parable with the core section dimensions (~ 50 mm), so the £10% variability
in ice content over these length scales is not surprising.
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Figure 7.2: Ice content of recovered cores: TM1 (closed black circles) and TM2
(open blue circles); lines, running three point averages (end points not shown).
Left hand axis is measured mass fraction, and right hand axis volume fraction
calculated using p(ice) = 0.91g/cm?, p(mineral phase) = 2.65 g/cm?.

7.3 Instrumentation

The thermistor arrays are virtually identical in design to the sea ice units de-
scribed in Chapter 3. Using an older muliplexor, only 15 thermistors and 1
standard resistor were used (rather than 22 and 2 in the ice arrays). The ther-
mistor spacing was Az = 13.5cm. YSI 44031 thermistors and Campbell CR10
data loggers were used. The thermistors have an accuracy (interchangeability)
of 0.1°C at —20°C but a precision better than 0.01°C. We stress that for all
of the analytical methods we use, it is the precision that is important, not the
absolute accuracy, so although not made, a one-point calibration would not
have changed our results. These are a different line of thermistors to those
used in the sea ice measurements, but apart from a different Steinhart-Hart
temperature-resistance calibration, data processing was the same.

Sites TM1 and TM2 were core-drilled using compressed air and diamond bits
[Dickinson et al., 1997]. Because core recovery was only possible from the
ice-cemented sediments, the dry permafrost was excavated from around the
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Figure 7.3: Installation of thermal array at site TM2. (a) Surface debris
removed, revealing undulating ice-horizon. Black pipe lagging protruding from
hole, and array just visible. (b) Cutting pipe lagging to accommodate array
connector (image lightened for clarity, not true colour.)

hole before drilling. The cores were described, photographed, and analysed
for particle size and ice chemistry in New Zealand. A small v-shaped notch
was cut into two-meter long, 75 mm diameter polyurethane pipe insulation.
The thermistor probe was placed in the notch and both were gently pushed
into the 63 mm diameter hole so the pipe insulation held the probe against
the side of the hole to optimise thermal contact. See figure (7.3). To min-
imise the disturbance to the natural heat flow caused by the array, there must
be either a matching of thermal properties across the interface, or no heat
flow across the boundary. With the pipe-lagging in the bore hole we approx-
imate the latter case. This contrasts with our sea ice measurements where
there is intimate contact between the array and refrozen sea water, and the
thermal conductance of the array approximately matches the displaced ice,
approximating the former case. Once the array was installed, the excavated
area above the ice cement was re-filled and restored, as near as possible, to its
original condition.

A possible variation would have been to pour water into the drill hole after
installing the array and lagging. Filling the borehole, this would eliminate air
voids, and improve the thermal contact. This may complicate array extraction
however.

Temperatures measured at sites TM1 and TM2 are shown in figure (7.4). Be-
tween November 2000 and November 2002 the temperature profile was recorded
every 4 hours, and between November 2002 and December 2003 every 1 hour.
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Subplots (a,e) show the temperature traces for each thermistor, which are dom-
inated by the yearly cycle. The blue trace with the largest amplitude is the
upper-most thermistor, and for clarity only every second trace is shown. The
depth to ice horizon was 0.44 m at site TM1 and 0.12 m at TM2. Therefore
the top 3 thermistors at TM1 were surrounded by back-filled ice free debris, as
was the top thermistor at TM2. Also, in the array at site TM1 the uppermost
thermistor was positioned slightly closer to the top of the tube. These two ef-
fects explain why the upper temperature traces at TM1 show larger amplitude
swings than at TM2. This difference is readily identified by comparing the
figure (7.3) subplots (b,c) with (f,g), which show characteristic summer and
winter temperature features from the same times at the two sites. Dominant
components in the summer are the daily and annual cycles. There is no daily
solar cycle in the winter and the temperature record is dominated by synoptic
scale events, with time scales of the order of 1-2 weeks. With a lower char-
acteristic frequency these weekly events cause deeper-penetrating temperature
disturbances than the daily cycle.

7.4 Analysis Methods

A variety of general approaches have previously been used to calculate ther-
mal properties from ground temperature measurements, from direct time se-
ries analysis through to more sophisticated inverse problem methods. Several
authors have compared subsets of these approaches, including Persaud and
Chang [1985]; Hinkel [1997]; Fuhrer [2000]. When the thermal diffusivity is
calculated from real data, assuming 1-D conductive heat flow, it is commonly
termed the apparent thermal diffusivity (ATD) to acknowledge that it may
include contributions from mechanisms other than 1-D conduction. We an-
ticipate a system that is well described by 1-D conductive heat flow with no
latent heat effects and seek to resolve the apparent thermal diffusivity depth
profile at both sites with direct time series analysis methods.

The heat equation for conductive, linear heat flow with no latent heat effects,
or other heat generation, is

T
cvw = Vk-VT +kV2T | (7.1)

where ¢y is the volumetric heat capacity and k£ the thermal conductivity. As
the vertical temperature gradient of approximately 1 — 10 °C/m exceeds the
lateral gradient between the two sites by more than 2 orders of magnitude we
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reduce equation (7.1) to 1-D;

OT(z1) _ OkOT _ &*T

_ oL 2
Vo 02 02 "o (7:2)

Equation (7.2) is in general much more readily solved when the first term on
the right can be neglected, by assuming, at least locally, constant thermal
properties. This gives

0T (z,t) o°T
=D 7.3
ot 022 (7.3)
where D = k/cy is the thermal diffusivity. We discuss our use of this assump-

tion below.

Most Fourier methods based on the attenuation and phase lag of tempera-
ture waves derive from equation (7.3) and rely on this assumption of globally
constant thermal properties, [eg. DeVries, 1963; Carson, 1963; Nassar and
Horton, 1990]. In real situations, thermal properties invariably do vary with
depth. A common way to account for this is to calculate a mean, local ATD by
assuming constant thermal properties between the depths of the temperature
sensors used in the calculation. However, ‘perturbed Fourier’ methods have
been developed to accommodate non-constant thermal properties [eg. Lettau,
1954, 1962; Stearns, 1969; Hurley and Wiltshire, 1993]. We consider three
analysis methods that require only measurements of the temperature field,
and not also the heat flux, which is required in the methods of Lettau [1954,
1962]; Stearns [1969].

As we address a simple thermal regime, we limit ourselves to time-series analy-
sis, and do not consider more sophisticated inverse problem schemes; we seek
a simple but accurate method for resolving variations in the ATD. We first
describe two time-series methods previously used in this context. We then
show the ATD profile resolved with these methods as well as our graphical
finite difference method described in Chapter 4.

Simple Fourier Method 1

When the first term on the RHS is omitted, equation (7.2) admits a Fourier
decomposition solution,

T(z,t) =T(2) + Yy _ Aye */neilont=s/dnoon) (7.4)

Here T(z) is the annual mean temperature at depth z, and n indexes the
frequency components, of magnitude A,,, frequency w,,, penetration depth d,, =
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(2D /w,)"/? and the phase is ¢(z) = ¢o,, — 2/d,. In this case the mean local
ATD can be estimated from both the amplitude attenuation and the phase lag
of a given frequency component between two depths [Carson, 1963]:

w (72— 2)?
2 (A, JAy)

w (21 — 22)?

Dphase = §m

Damp (75)

(7.6)

Perturbed Fourier Method I1

Hurley and Wiltshire [1993] applied a perturbation approach to enable a Fourier
decomposition approach whilst still retaining the % term in equation (7.2).
We adopt their approach and slightly modify the mathematics, and expand

the temperature in a generalised form similar to equation (7.4),

T(z,t) =T(z) + Z e gilwntton(z) (7.7)

where A, (z) = ) and ¢,(z) are now unknown functions of z. Inserting
equation (7.7) into equation (7.2), and solving for the real and imaginary
parts, gives the following expression for D:

/ 17 -1
D, (2) = w, [r'gb’ + ((ﬁ')Q% +¢" — ’I"//%:| , (7.8)

where the primes denote depth derivatives, and the index n has been dropped
from all terms in the square brackets. The relevant derivatives are determined
by calculating A, and ¢, at the depth of each thermistor, and fitting polyno-
mials to plots of in(A,) vs. z and ¢, vs. z. For example, see figure 7.8(a),
discussed in section 7.5. (This procedure requires that T'(z) is constant. In
our case this is a very good approximation as depth variations in T(z) are less
than the absolute accuracy of the thermistors. Furthermore, when processing
the data we subtracted off both T(z) and any linear trend over the period of
data examined before calculating the Fourier components.)

Finite Difference Method II1

Several different finite difference methods for calculating the ATD have been
presented and critiqued [eg. McGaw et al., 1978; Persaud and Chang, 1985;
Zhang and Osterkamp, 1995; Hinkel, 1997]. The most direct approach is to use
finite difference estimates of the derivatives in equation (7.3) and to calculate
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the mean ATD by their ratio on a point-by-point basis [McGaw et al., 1978;
Persaud and Chang, 1985; Zhang and Osterkamp, 1995; Hinkel, 1997; Westin
and Zuidhoff , 2001]. The mean ATD is then taken as the time average of these
ratio values. This method suffers systematic difficulties when the temperature
curvature, 0*T/0z%, passes through zero [Zhang and Osterkamp, 1995], and
furthermore, it requires temperature measurements with both high accuracy
and high precision. Hinkel [1997] provides a method for calculating the ATD
using equation (7.5) specifically for diurnal forcing whereby the temperature
amplitudes A; and A, are calculated from a finite difference estimate of the
average time rate of change of temperatures. We use our graphical finite
difference scheme described in Chapter 4. This does not require harmonic
forcing, and is insensitive to inter-thermistor calibration offsets. As in the
other finite difference methods discussed above, we make the assumption of
locally constant thermal properties for the space between adjacent thermistors.

7.5 Results from 2001 Temperature Data

Based on our analysis of the 2001 data, we drew three main conclusions in
Pringle et al. [2003]. Firstly, of the methods discussed above we considered
that the graphical finite difference scheme provided the best resolution of depth
variation in the ATD profile. Secondly, the depth-dependence of the ATD pro-
files at both sites correlates very well with the core stratigraphy and ice content
profiles. And thirdly, a seasonal variation in the ATD profile was resolved at
both sites which, within uncertainties, was consistent with the expected tem-
perature dependence of the heat capacity and thermal conductivity. Based on
both a re-assessment of our earlier analysis, and an improved analysis of the
higher time-resolution 2003 temperatures,we reassess these conclusions below.
We first present key results from the initial analysis.

The ATD profiles resolved with our graphical finite difference method are
shown in figure (7.5). They start from the second thermistor frozen into the
ice-cemented ground at each site, 0.63 m at TM1 and 0.36 m at TM2. These
data show a thermal diffusivity which is higher in winter (1 April-1 August,
blue lines) than in summer (20 November- 20 January, red lines). The range
of ATD values in figure (7.5) are consistent with the diffusivity of ice and
typical mineral components, D;..(—20°C) = 1.15 x 1075m? /s, D,,ns(0°C) =~
1.5 x 1075m?/s. These values are less than that of quartz, which displays the
highest diffusivity of soil minerals, Dyy4-(0°C) = 4.3 x 107°m?/s [Farouki,
1981].
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Before seeking to explain the resolved ATD variations we note that the ef-
fective thermal diffusivity of a composite material is the ratio of the effective
thermal conductivity to its volumetric heat capacity. The heat capacity is
a simple volume-fraction weighted average of the components heat capacities
but the effective thermal conductivity is also a function of their geometric

configuration,

ke (kla Ui)
Dyyp = ~L20 0 (7.9)

> vicv,i
We have discussed some of the models for k.sf(k;,v;) in Chapter 1. One
common feature is that they all contain only terms which are first order in the
thermal conductivities of the constituents, a feature to which we refer below.

7.6 Expected Temperature-Dependence and
Seasonal Variation in Thermal Diffusivity

In our earlier analysis of the 2001 data, the difference in winter- and summer-
time diffusivity was found to be 20 + 10% at site TM1, 15 + 5% at site TM2
(mistakenly transposed in Pringle et al. [2003]), and 18 &+ 9% overall. No sea-
sonal change was observed in the high-precision standard resistor, eliminating
data logger performance as the source of the variation. From summer to win-
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ter the average ground temperature in the top 2 metres decreases from —12°C
(261 K) to —27°C (246 K), a 6% relative change.

The thermal conductivity of electrically insulating crystals is expected to vary
approximately as k oc T~!, where T is the absolute temperature [Ashcroft and
Mermin, 1976; Roy et al., 1981], and this relationship has been recognized
for rocks , minerals and ice at moderate temperatures [Clauser and Huenges,
1995; Anderson and Suga, 2002]. Thus the numerator of equation (7.9) will
show a similar dependence, raising the thermal diffusivity by approximately
6% from mid-summer to mid-winter. Furthermore, the heat capacity of such
materials decreases with temperature, so the diffusivity increases even faster
than 7! with falling temperatures. Over our temperature range the heat
capacity of ice increases by 6.0% [Weast, 1971]. Data on the temperature de-
pendence of the heat capacity of materials suitable for comparison with the
minerals components of our cores in our temperature range are scarce. How-
ever, we note that the thermal diffusivity of Berea sandstones suggests an 11%
decrease from winter to summer temperatures [Roy et al., 1981], equivalent
to a 5% increase in the heat capacity. This value is the highest of materials
which might be appropriate for comparison. The numerator and denomina-
tor of equation (7.9) are first order in the thermal conductivities and heat
capacities of ice and minerals. Consequently they will show the same relative
variations as the material-specific parameters, and lead to a maximal thermal
diffusivity increase of approximately 11-12% from winter to summer. Account-
ing for the decreasing seasonal temperature variation with depth, this figure
becomes 11 + 3% which lies within the measured uncertainties at both sites.
Although the thermal conductivity of rocks and soils depend greatly on physi-
cal and diagenic factors [Jessop, 1990; Clauser and Huenges, 1995], the above
comparison suggests that it is not unreasonable that the observed seasonal
variation reflects the underlying temperature dependence.

7.7 Results from 2003 Temperature Data

From November 2002 - December 2003, thirteen-months of uninterrupted tem-
peratures were recorded at both sites with a measurement interval of 1 hr.
Careful analysis of these data from both sites has improved on the previous
analysis, which, due to the missing data focussed on site TM2. The depth-
dependence of the ATD profiles is largely unchanged, but we readdress the
seasonal variation.
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Figure 7.6: Finite difference analysis, TM1 and TM2, 2003 data. (a) TM1
winter, (b) TM1 summer. (c) TM2 winter, (d) TM2 summer. Upper plots
show scatter plots for all thermsitors. Lower plots show ATD profile (blue
circles, left axis), and correlation coefficients (black diamonds, right axis).

Figure (7.6) shows scatter plots and resulting diffusivity profiles for TM1 and
TM2 in both summer and winter conditions. Raw temperatures were smoothed
with a Gaussian filter with power spectrum half-width-half-maximum (HWHM)
24 hours, and then processed in 28 day blocks. In the four cases shown the bot-
tom sub-plot shows the diffusivity with blue circles (left axis), and correlation
coefficient with black diamonds (right axis). These results are for the periods
in the winter and summer at each site for which the correlation coefficients
are consistently highest and the diffusivity uncertainties smallest. They repre-
sent the data best enabling a seasonal comparison at each site. The results in
figure (7.6) for the two sites are quite different. At TM1 both the winter (a)
and summer (b) plots show high correlation coefficients at all depths. As this
implies low relative errors in the plotted variables, we have high confidence
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Figure 7.7: Seasonal variation in apparent thermal diffusivity profiles from
analysis of 2003 data. These are the ATD profiles shown separately in figure
(7.5). Top TMI; bottom TM2. Solid blue lines, winter; dashed red lines,
summer. Average temperatures for top and bottom thermistors shown.

in the geometric-mean diffusivity values for both seasons, permitting a direct
comparison of the seasonal ATD profiles (see below). Compared with their
TMI1 counterparts the TM2 scatter plots are noisier in both winter (c¢) and
summer (d). Even in the winter when the variations are largest, the correla-
tion coefficients are low below 1.3 m, and in the summer they are low below 0.8
m. In general, in these cases the geometric-mean ATD values are less reliable.
We argue below than in the present case the ATD will be underestimated.

At site TM1 there is little variability between the profiles for the other 28
day periods, not shown. The differences are mainly in lower r-values and
increased scatter in conductivity values below about 1.2 m. At site TM2,
these effects are larger. We have chosen the periods for which data are shown
in figure () by comparing the r-values and also the scatter plots. For some
periods at site TM2, these plots were very spread, indicating an apparently
large phase lag between 9T/t and 0*T/0z? values. These non-ideal features
are well correlated with periods of strong variations in surface temperature.
We associate this with worse thermal contact at TM2 and this is discussed
further below. The conductivity values from these periods are unreliable.
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Figure (7.7) shows a comparison of the seasonal ATD profiles for each site.
There is very good agreement between the summer and winter profiles at TM1
where we have high confidence in the ATD results. At TM2 there is good
agreement above about 0.8 m. For depths below this, where the correlation
coefficients are low, the summer ATD values are consistently lower than the
winter values. This behaviour is consistent with the relative spread in the
scatter plots at site TM2. The winter and summer scatter plots show a similar
scatter in 9*T' /022 values, but because of the smaller summertime temperature
disturbances, the relative error in 9*T'/02? is greater at that time. As discussed
in Chapter 4, the finite difference method will therefore underestimate the
diffusivity. We conclude that we are unable to accurately resolve the ATD
profile in the summer at TM2 below 0.8 m. The winter time profile represents
our best estimate of the ATD profile using the finite difference method.

At TM1 the average decrease in the ATD profiles from the winter to sum-
mer over all depths is 3 & 8%. For the top 4 thermistors (z > 0.8 m) at TM2
it is 5 + 6%. We consider these results more reliable than the much higher
variations reported earlier from the 2001 data [Pringle et al., 2003]. Neverthe-
less, the 2003 results are qualitatively consistent with the expected underlying
temperature dependence of diffusivity increasing in the winter. In fact larger
winter values are observed at all but 3 depths below 1 m at TM1. In hind-
sight, we attribute the larger apparent seasonal differences in the 2003 data to
underestimated summertime values.

At site TM2, the scatter plots show more scatter in 9*T/9z? values than TM1
even in the winter months. Upon closer inspection, the increased scatter in
adjacent thermistors is related and we attribute it to poor thermal contact
between the array and the surrounding ground, at least for some thermis-
tors. There will be conduction along the array between points of good thermal
contact above and below regions of poor thermal contact. For dynamic tem-
peratures the thermal profile in this region will be established by the effective
thermal diffusivity of the array. The measured temperature profile will in this
way be perturbed by small regions of poor contact. Although the precise ef-
fect is difficult to predict, the amplitude and phase of recorded temperature
variations will differ from the actual variations at the thermistor depth. If this
affects at least one of the thermistors in an adjacent triplet then the values of
OT /0t and O*T /022, calculated at the central thermistor will be out of phase.
As discussed in Chapter 4 (in the context of finite sampling intervals) this
leads to loops and other features in the scatter plots, as seen in figure (7.6).
Such an error will increase the relative error in §°7/9z? leading to a decrease
in the correlation coefficient and an underestimation of the diffusivity, both of
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Method I, 2003 data. (b) ATD profiles at TM1 and TM2 from 2003 data.
Black circles, graphical finite difference method; red solid line, Fourier Method
[ amplitude; red dashed line, Fourier Method I phase.

which are observed at site TM2, see figure (7.6).

From this analysis we propose that the thermal contact is generally better
at TM1 than TM2, and at TM2 it is worse below about 0.8 m. This depth
approximately coincides with the sharp compositional boundary at z = 0.9m
between ice-cemented diamict and a Sirius sandstone unit with lower ice con-
tent. We speculate that non-uniformity in the borehole surface has led to
variations in the quality of thermal contact.

7.8 Comparison of Methods

Whilst the missing data in at TM1 had restricted the application Fourier
Methods I and II to TM2 in the 2001 data, they could be applied at both
sites using the 2003 temperatures. Data at each depth were de-trended by
subtracting the yearly-averaged temperature at each depth 7'(z) and any small
temperature change over the one year period. The amplitude A(z) and phase
¢(z) of the 1 yr~! component were calculated at each depth from the resulting
zero-mean temperature time series.

Figure 7.8(a) shows the depth variation of r(z) = InA(z) and ¢(z) for each site.
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Figure 7.8(b) shows the corresponding ATD profiles calculated with Fourier
Method I from the amplitudes (solid line) and phases (dashed line) using equa-
tions (7.5, 7.6). Also shown are the winter-time diffusivity profiles from our
graphical finite difference analysis. Profiles from these methods agree quite
well at site TM1 where the assumption of a globally constant diffusivity in-
voked in the Fourier method, is most justified. At site TM2, Fourier Method
I resolves a region of enhanced diffusivity that agrees reasonably well with the
graphical finite difference profile, although somewhat larger between 0.6 - 1.4
m. This is the region where the assumption of a globally constant diffusivity
is least justified, so poor performance is not unexpected. Equations (7.5, 7.6)
are based on the solution (7.4) which considers the downward propagation of
surface disturbances, and is unable to accommodate thermal waves reflected
upwards from diffusivity variations. Our method makes no such assumption
and can accommodate these variations, and we expect it to outperform the
simple Fourier method when there are strong depth-variations in the diffusiv-

1ty.

Fourier Method II, which is mathematically robust in the presence of diffusivity
variations, could be applied only at site TM2 for the 2001 temperatures. We
have applied this method at both sites with the 2003 temperature data, and
found it to be very prone to numerical errors. The accuracy of this method
rests with the quality of the polynomial fits to r(z) = InA(z) and ¢(z). Using
equation (7.8), we obtained very different D(z) profiles for 4th, 5th and 6th
order polynomial fits to the data in figure (7.8). In some cases the denominator
passed through zero giving a divergence in D(z). As this calculation uses the
first and second derivatives of these fitted polynomials, it is very sensitive to
the quality of the fit. Given the difference in profiles returned for polynomial
fits of different order, we consider the method very unreliable. Note that in
Pringle et al. [2003] we consider this method reliable on the basis of a good
agreement between the diffusivity profiles from this method and our graphical
finite difference analysis. From our more thorough analysis of the 2003 data
we overturn that conclusion.

A direct comparison of Fourier Method I and our graphical finite difference
method is hindered by not knowing a priori the diffusivity structure [Persaud
and Chang, 1985]. We show below that the conductivity values calculated from
our graphical finite difference method are high, even for the high quart content
of the core, so the simple Fourier method is likely to have overestimated the
diffusivity between 0.6 - 1.4 m.
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7.9 Composition Dependence: Depth and Site
Variations

The depths of features in the ATD profiles in figure (7.8) correlate well with
the composition profiles of the cores. At site TM1 the core shows little stratifi-
cation consistent with the weak depth dependence shown of the ATD profiles.
Below 0.6 m, the core shows a mixture of Dolerite pebbles and fragments frozen
into an ice matrix. The ice content profile shows a low ice fraction nearer the ice
horizon, increasing to a roughly constant value of 30 +10% by mass (55 £ 10%
by volume) at lower depths. The highest diffusivity ( ~ 2.5 x 107°m?/s ) is
resolved where the ice content is lowest, ice lenses are less prevalent and the
soil phase most consolidated. In the bottom 1 metre the ATD is consistent
with the diffusivity of typical minerals and pure ice.

Site TM2 shows substantially more structure in both the core and the diffusiv-
ity profile. For 0.14m < z < 0.9m, the core is a Sirius till/ice matrix diamict
with prominent ice lenses. There is a sharp transition at z = 0.92m to the
quartose Sirius sandstone and little sign of segregation ice down to 1.45 m
except a few lenses near 1.2 m. Below 1.45 m ice lenses become increasingly
prevalent, followed by a return to a disordered regolith/ice matrix below 1.7
m. Each of these features is clearly represented in the diffusivity profile which
shows a sharp transition at approximately 0.9 m, a region of enhanced diffu-
sivity between 0.9-1.45 m and a smoother transition to lower diffusivity below
this. The high ATD values in the middle of the core can be consistent only with
a well-consolidated, high quartz-content mineral phase, as observed at these
depths. We question the accuracy of the highest and lowest values at adjacent
depth 0.9 m, 1.03 m. We have identified that the finite difference analysis can
over- and under-estimate adjacent gradient estimates when the relative errors
in 9*T/02* are not small. This can occur as follows: the temperature at three
thermistors is used to calculate 9*T/02* at a given depth. The temperature
at each thermistor is used to estimate §°T/dz? at three depths using equation
(4.14). For three successive depths, the temperature recorded at the central
thermistor enters this estimate with a weighting of (1, -2, 1 ). A systematic
error in this temperature will therefore enter the curvature of three adjacent
depths with a relative a weighting of (1, -2, 1), causing an alternating error
in the conductivity estimates at adjacent depths. This is particularly evident
in the summer TM1 profile in figure (7.7) which shows undulations not seen
in the more accurate winter profile. The value at 1.03 m is particularly high
even for a high quartz content material.
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We note that the stratigraphy of this site is representative of the local ground
composition. In particular, this quartose sandstone unit is not an isolated
sandstone boulder but rather an extended feature, with several down-slope
outcrops.

7.10 Heat Capacity and Thermal
Conductivity

The most uncertain thermal parameter in this study is the effective thermal
conductivity of the composite; we have a direct measure of the diffusivity and
can obtain a rigorously justified estimate of the heat capacity from a volume-
fraction-weighted average of the heat capacities of the constituent materials.
We have used the two known parameters to determine an implied depth profile
of the thermal conductivity. Using an independent quasi-static approach we
have also determined the conductivity profile up to a scale factor.

We start by estimating the volumetric heat capacity of the ice-mineral diamict.
The parameters required for the purpose are the densities {pice, Pminsoit} =
{0.91, 2.65 4 0.05} g/cm? and specific heats {cice(—20°C), Cmin soit(—20°C)}
={1790, 700 £+ 50} J/kg°C [Weast, 1971; Farouki, 1981; Roy et al., 1981].
The ice mass-fractions vary between approximately 10 - 35%, corresponding
to volume fractions 25 - 60 % ( see figure 7.2) and a volumetric heat capacity
in the range cyoy = 1.8 0.1 — 1.7 £ 0.1 MJ/ °Cm?3.

The points and solid lines in figure (7.9) show the thermal conductivity pro-
file k(z) = D(2)c(z) (left axis), and the dashed line the ice content (right
axis) for both sites. For each site ¢(z) has been calculated as described above,
and D(z) is the wintertime ATD profile from figure (7.7). For most of TM1,
and near the surface of TM2, the conductivity lies near the range expected
for ice kjee(—20°C) ~ 2.4 W /m°C and typical soil minerals, kpns(—20°C) ~
3.1W/m°C (temperature-adjusted assuming k oc T~ from Farouki [1981].
Disregarding the value at 1.03 m, the conductivity of the quartose sandstone
unit between 1.17 - 1.44 m is kg = 5.5+£0.1 W/m °C. This region includes ap-
proximately 10— 15% ice by mass ( 25—35% ice by volume) so the conductivity
of the mineral phase k,,;,, must be even higher. By numerical inversion of the
Maxwell model, described in Chapter 1, in the assumption of zero air content,
we estimate k,,;, = 6.8 0.5 W/m°C. A non-zero air content would increase
this value proportionally. Such a high value is physically reasonable only for
exceptionally quartz-rich materials [Clauser and Huenges, 1995]. We note that
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Figure 7.9: Apparent thermal conductivity profiles k(z) = D(z)c(z) ( blue
lines, left axis), and ice content by volume (grey dashed line, right axis) at (a)
TM1 and (b) TM2. D(z) is the wintertime ATD profiles in figure (7.7). See
text for ¢(z) calculation. Thin lines, conductivity of ice and typical minerals
at —20°C.

the quartz content is much lower in the non-Sirius units of this TM2 core, and

at the TMI1 site, which are characterised mainly by lower conductivity Dolerite
debris.

Figure (7.10) also shows the thermal conductivity, up to a scale factor, deter-
mined directly from the temperature data with another method. In steady-
state 1-D linear heat flow the temperature profile is by definition static: 07/0t =
0, and the heat flux Jg(z) = —k(2)0T/0z is constant, so k(z) o< |0T/0z|~"
Due to high frequency surface driving this situation does not apply near
the surface, but at greater depths, and in the summer, the annual variation
dominates and the temperatures does vary slowly over times scales of days.
Quasi-static conditions are best approximated in our data at site TM2 for
January 1 -9, 2003. Each thin curve in figure (7.10) is a profile of the inverse
of the daily-averaged gradient, |0T/0z|~! for this period (right hand axis).
Temperature data were filtered as above, effectively removing sub-daily com-
ponents. Because we cannot independently determine the magnitude of the
local seasonal heat flow at this time, these curves give the form of the con-
ductivity structure but not its magnitude. The agreement with the shape of
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Figure 7.10: Thermal conductivity at site TM2. Circles and dashed line:
k(z) = D(2)C(z) from figure 7.9; series of lines: |07 /0z|~! profiles for days
best satisfying quasi static conditions, January 1 - 9, 2003 (right hand axis).

the diffusivity-derived conductivity profile is good, providing independent and
direct evidence of the region of high conductivity. The increase at 0.9 m is less
abrupt than the finite difference profile, which, as discussed above, we believe
to have exaggerated the step between 0.9 - 1.03 m.

Our results are consistent with the only other conductivity measurement we
are aware of in the greater Dry Valley area. McKay et al. [1998] determined an
ice-cement thermal conductivity 2.5+0.5 W /m °C just below the ice horizon at
Linnaeus Terrace. However, our profiles show that due to the inhomogeneous
composition, the thermal properties can vary strongly over small distances.
For ice-cemented permafrost sites in the Dry Valleys with a low proportion of
Sirius facies, we predict a thermal conductivity in the range 2.5+ 0.5 W /m °C.
However, the conductivity could be as much as twice as large for quartose
facies of the Sirius group.
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7.11 Application of Results to Patterned
Ground

A detailed discussion of the factors in establishing the length scale in polygon
networks is outside the scope of this work. However, in order to relate our
results to the observed difference in polygon size, we provide a brief summary.
Cracking of ice-rich ground occurs to relieve thermal stresses originating from
large amplitude surface temperature variations, and the deeper the cracks the
larger the region over which stress is relieved [Lachenbruch, 1962]. Over time
individual cracks intersect to produce networks of crack polygons, commonly
called ‘polygonal patterned ground’ [Lachenbruch, 1962; Sletten et al., 2003].
Polygon size is therefore influenced by surface temperature variations, the
thermal properties of the ground, and rheology and mechanical strength of the
ice-rich ground itself. The build up of thermal stresses depends on the rate of
temperature change, 07'(z)/0t, which in turn depends on how the variations
in surface heat flux are propagated to depth. This is measured by the thermal
inertia, I = (kpc)'/?= D'2pc. Our results show that within the permafrost at
our sites, the conductivity can vary by as much as a factor of 2, but that the
heat capacity is roughly constant giving a factor of about /2 variation in the
thermal inertia. It is unlikely this maximal variation is a critical factor in the
observed 3-fold change in polygon diameter between sites.

We find little difference, and certainly no order of magnitude difference in the
distribution of 07'/0t values calculated at the nearest thermistors to the ice
horizon at the two sites (see scatter plots, figure (7.6)). Furthermore, the age
and origin of the debris flow, and the history of the depth to ice-horizon from
the time of initial crack formation until now, are all unknown at both sites.
We believe that the ice-rich, and heavily disordered debris flow was weaker
than the surrounding, well-consolidated ground during the development of the
polygon networks, which lead to deeper cracks and stress relief over larger
distances, resulting in a larger scale network [Lachenbruch, 1962].

7.12 Summary and Conclusions

We have applied time-series analysis to high-precision temperature measure-
ments made at two nearby sites at Table Mountain, between 2001-2003. The
system is physically simple, with only 1-D conductive heat flow expected. This
has enabled a comparison of the reliability of several analysis methods, and a
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resolution of depth- and seasonal- variations in the apparent thermal diffusivity
(ATD). From 13-months of uninterrupted temperatures recorded with a sam-
pling time reduced from 4 hours to 1 hour, we have reassessed the conclusions
of our previous analysis presented in Pringle et al. [2003].

We consider our graphical finite difference method to have performed better
than the simple Fourier method of Carson [1963], based on the phase lag and
attenuation of the 1 yr~! temperature components, and much better than the
more perturbed Fourier method of Hurley and Wiltshire [1993], which suffered
numerical instability, being very sensitive to the quality of polynomial curve
fitting required. Compared with these other time series methods, the graphical
finite difference scheme is simple to implement, has depth- and time- resolution,
does not require harmonic temperature variations, and can be applied to short
temperature records. In this case it gave a mean local ATD profile which
is consistent with an independent quasi-static analysis. Quantitatively, these
profiles correlate very well with the composition of recovered cores, including
a sharp two-fold increase in ATD across an abrupt compositional boundary at
one site.

The graphical finite difference method has the capability to determine the
time-dependence of the diffusivity profile. Compared to the summer, larger
diffusivity values are measured in the winter at both sites, in all but 3 depths,
with an average increase of 4 + 7%. This is consistent with the expected un-
derlying temperature dependence. In hindsight, we attribute the much larger
apparent seasonal differences in the 2001 data to a systematic effect in the
analysis causing an underestimation of the summertime diffusivity values.

The volumetric heat capacity calculated from the core composition depends
only weakly on ice fraction, falling in the range c,;(—20°C) = 1.7 £ 0.1
—1.840.1 MJ/°Cm3. The apparent thermal conductivity, calculated as k(z) =
D(z)c(z), correlates very well with the core composition. The conductivity
generally lies in the range 2.5 + 0.5W/°Cm, but can be as high as 5.5 £
0.1W/°Cm for the quartose Sirius sandstone unit at site TM2.

We do not believe that the variations in thermal properties have played a
critical role in the 3-fold difference in polygon size at these two sites. The
surface cover and material strength at the times of debris flow creation, and
polygon network development are considered to have been more critical factors.
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Chapter 8

Conclusions

8.1 Conclusions

We have measured the thermal conductivity of sea ice using two methods.
Using automated data loggers and thermistor strings, we measured sea ice
temperatures at intervals of Az = 0.1 m and At = 30 min. Measurements
were made in land fast sites in FY ice in McMurdo Sound, Antarctica 2002,
and in both Elson Lagoon (2001/02) and the Chukchi Sea (2003) near Point
Barrow, Alaska; and in MY ice in McMurdo sound, 2003. Conductivity pro-
files were calculated from these temperature records using a conservation of
energy analysis and a graphical finite difference scheme. Using the specific
heat result of Ono [1968], we calculated the internal energy U(S,T), and then
made finite difference estimates of pdU/dt and 0*T/92%. The thermal con-
ductivity was calculated as the best fit gradient to scatter plots of pdU/0t
vs. 0*T/0z*. For this we used the geometric-mean of linear least squares fits
treating each variable as independent. This returns an unbiased estimate of
the gradient if the relative errors in each variable are equal, but one which
is biased by half the difference in their relative uncertainties if they are not.
This method determines the average conductivity between the three adjacent
thermistors required to estimate 92T /9z2. From both an analytical approach
and simulations with conditions appropriate to our measurements, we have es-
tablished that this analysis method is unreliable near the ice surface and close
to the ice/water interface, but that accurate conductivity values are expected
for intermediate depths.

Our conductivity profiles show a roughly constant conductivity between a near
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surface reduction of up to about 25% over the top 20-50 cm, and an increase
near the ice/water interface. Due to an improved understanding of when the
analysis is, and is not, reliable, the current results are more robust the previ-
ous results reported using a very similar approach [Collins, 1998; McGuinness
et al., 1998; Trodahl et al., 2000, 2001]. Nevertheless, the overall conductivity
profiles from which we have selected the reliable values, are similar to those
previously reported, in that their departure from the expected temperature-
dependence. Models of kg (T') predict an increase towards the colder surface
due to the temperature-dependence of the conductivity of the fresh ice com-
ponent, and a conductivity decreasing towards the ice/water interface due to
the lower conductivity of the increasing brine fraction.

We firmly believe that the large apparent reduction in the near-surface con-
ductivity of FY sea ice, also observed by Collins [1998]; McGuinness et al.
[1998]; Trodahl et al. 2000, 2001], is an artifact of the analysis method. From
an analysis of the harmonic driving of a 1-D semi-infinite half space, we have
shown that the finite difference estimates of U /9t and 9?T/02* will become
unreliable when there are temperature components for which wAt, and/or
Az\/(w /2D) is large. In this case the derivative estimates suffer a time lag
(become out of phase), resulting in loops in the scatter plots of U/dt vs.
0?T /02, which we clearly identify in our data. Such features have been pre-
viously observed and associated with possible hysteric effects within the ice
[Collins [1998]; McGuinness et al. [1998]; Trodahl et al. 2000, 2001]; Karoline
Frey, personal communication, 2002]. For many-component driving, this effect
leads to larger relative errors in 9?7T'/92% than in OU /0t so the geometric-mean
least squares gradient underestimates the conductivity. Simulations show that
filtering, via numerical convolution with a gaussian window, may not remove
this effect very near the surface. Because the high-frequency components re-
sponsible for this effect have a short penetration depth, the effect is shallow.
Temperatures near the surface are also the most prone to measurement error,
due to any heat flow perturbation caused by the mismatch between the ther-
mal conductance of the probe and the surrounding ice. We calculate that our
array has a thermal conductance per unit length approximately 30% less than
the ice it replaces.

We resolve an increase in the conductivity near the ice/water interface which
is accompanied by a deterioration in the quality of the linear fit, as measured
by the correlation coefficient (r-value). Collins [1998] and McGuinness et al.
[1998] have previously associated this fall-off in r-value with depth as a signa-
ture of increasing non-linearity in the heat flow, and identified it as a possible
signature of convective heat flow. We consider this an unreliable association
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because the r-value naturally falls off as the signal to noise deteriorates with
depth, and the conductivity estimates become unreliable. Although it is possi-
ble, and even probable, that convective heat transport occurs in the lower ice,
where the brine volume is large, we have for the above reasons, been unable
to clearly identify signatures of this effect. Furthermore, because of the strong
salinity-dependence of the internal energy above —5°C, these temperatures
were excluded from our analysis.

The conductivity profiles are approximately flat over the depths between about
50 cm and the depth at which our analysis becomes noise-limited. This is clear
in the k(z) profiles from two arrays in FY ice in McMurdo Sound, 2002 (site
FY02). At this site, the signal to noise was good over a depth range of about
1 m due to the high precision of our custom built, 17-bit ADC, data loggers
and the thick ice resulting in a deeper isothermal boundary condition. This
enabled us to calculate k(z) accurately to greater depths than at our other
sites. We tried to determine the temperature dependence by binning these
data by temperature, but found that inter-thermistor variations dominated
the variation between temperature bins, and we ultimately considered this
approach unreliable. Between 0.5 - 1.25 m, spanning temperatures between
—25 and —10°C, we found k£ = 2.29 + 0.07W/m°C at FY02. At our FY ice
site in the Chukchi Sea near Point Barrow, the ice only grew to about 1.3 m
and the conductivity profile showed no clear plateau. For depths 0.49 - 0.84
m, and a temperatures range —15 to —5°C we found k£ = 2.26 £0.11 W/m °C.
In MY ice at McMurdo Sound (site MY03) we found k£ = 2.03 +0.04 W/m °C,
for depths 0.31 - 0.41 m in the narrow temperature window —6 to —5°C.

We also developed a parallel conductance method to measure the conductivity
of small ice cores (approximately 10 x 2.4 cm diameter). The conductivity was
measured by heating one end of a sample holder, and with the other end held
at a fixed temperature, measuring the temperature gradient along it, with,
and without, an ice sample loaded. The measurement was performed under
high vacuum, eliminating convective and conductive heat losses. Radiative loss
from the sample holder could not be eliminated but was accommodated in the
analysis. We measured cores taken from (45 cm)? blocks removed from near the
FY02 and MY03 McMurdo Sound sites. Averaging results from several cores
from each depth, we resolved no significant difference, and certainly no large
reduction, in the conductivity of FY surface (0-10 cm) and sub-surface (45-55
cm) ice, being 2.14 £0.11 W/m°C and 2.09 £ 0.12 W /m °C respectively. (The
45-55 c¢m value is 2.16 + 0.13W/m °C if one low-valued outlier is discarded.)
This result provides direct evidence that the near-surface reduction in the
array measurements is not genuine. Although from only three measurements,
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the conductivity of surface MY ice, 1.88 + 0.13 W/m°C was just within our
prediction. This large reduction is consistent with the very low density of
this ice, 0.82 £ 0.01 g/cm?. The high number density of small round bubbles
suggests that this ice froze quickly, and it may be re-frozen surface melt. This
ice is not typical of the bulk ice at the MY site for which we determined k,; from
our array measurements, so a comparison of conductivities is not appropriate.

We compared the conductivity results from both of our methods with previous
experimental values and with our theoretical predictions and the modelers’
parameterisation, usually cited from Maykut and Untersteiner [1971]. Within
a roughly +£5% scatter we found good agreement between results from both our
measurements and our theoretical prediction of kg (7T) for typical FY salinity
4 — 6%y and density p = 0.90 — 0.92g/cm?®. Some historical results also
agreed quite well with our prediction, particularly in the region above —5°C,
where we are unable to resolve the strong predicted temperature dependence.
Taken together, these results suggest a conductivity about 10% higher than
that predicted by the modeling parameterisation, which was based on scant
experimental data for kg;, and also for k; used in the theoretical models of the
time. Notably, the near-surface values of Lewis [1967] are higher our prediction,
and those of Malmgren [1927] are much lower.

We tentatively proposed a new three-term parameterisation to capture both
the decrease near the melting point as the brine volume increases, and increase
with falling temperature due to the intrinsic temperature dependence of the
pure ice component. It is

ky =2.09—0011T+01175/T  [W/m°C] |, (8.1)

where S is salinity [%g] and T temperature [°C]. We have retained the S/T
term from Maykut and Untersteiner [1971], and the temperature coefficient
from the pure ice data of Slack [1980]. The constant term was chosen to fit
the curve between the bounds predicted by our model, which fit the experi-
mental data quite well. This is therefore an empirical fit, in the same sense as
the original parameterisation of Untersteiner [1961], which pre-dated the avail-
ability of all of the data available here except those of Malmgren [1927], which,
as noted, did show comparatively low conductivity values. If a single conduc-
tivity value is required, consideration should be taken of the expected density,
salinity and temperature. The often-used constant value, 2.03 W/m °C origi-
nating from Untersteiner [1961], is considered too low. For temperatures like
those measured at our FY Antarctic sites we suggest 2.2 W/m °C, but values
as low as 2.05W/m °C might be appropriate at warmer sites. We emphasise
that our parameterisation above should not be considered a robust result. As
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outlined in the following section, we expect a more reliable parameterisation,
based on additional thermal array data from both Antarctica and Alaska, to
be formulated in the near future.

Using measurement and analysis methods similar to the sea ice work, we have
also conducted a separate study of the thermal properties of the cold, dry
permafrost at two sites at Table Mountain, Antarctica. A full summary of
this work, and the conclusions are presented in section (7.12). Briefly, we
determined thermal diffusivity values from temperature measurements using
our graphical finite difference method, which proved more reliable than Fourier
analysis methods, although care was required in its application. Thermal
conductivity profiles were calculated as the product of profiles of the diffusivity,
and the heat capacity determined from the composition of recovered cores. The
conductivity generally lies in the range 2.5 + 0.5W/°Cm, but was as as high
as 5.5 £ 0.1W/°Cm for the quartose Sirius sandstone unit at one site. These
profiles were consistent with a quasi-static analysis. We resolved a consistent,
but weak, seasonal variation in the thermal diffusivity, that is consistent with
the expected underlying temperature dependence of the thermal properties.
Following a more thorough understanding of the analysis, this effect is now
considered to be smaller than what we published earlier in Pringle et al. [2003].
Finally, variations in the thermal properties were not considered to have been
critical in establishing the factor-of-three difference in the size of polygonal
ground patterning at these sites. We speculate that the difference instead
reflects a difference in mechanical properties at the sites for the times at which
the networks were established.

8.2 Future Directions and Related Work

We anticipate that by the end of 2005, two papers stemming form this work
will be in review. The first paper will settle the question of an apparent
conductivity reduction near the surface. We will discuss why the reduction
seen in the earlier thermal array determinations is now considered erroneous,
and present the bench top results, showing no reduction over the top 50 cm.
In the second paper, we will collate results from the many array measurements
made by UAF and VUW in both Alaska and Antarctica. Conductivity results
will be presented for the circumstances in which we have confidence in the
accuracy of the analysis. a study of the sensitivity of sea ice models to changes
in the ky; parameterisation, is to be undertaken in 2005 by members of the

VUW and UAF groups.
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Two observations in our temperature measurements invite further investiga-
tion. We observed 24 hour peaks at both our MY McMurdo Sound (2003),
and FY Chukchi Sea (2003) sites which are not due to conductive heat flow
and are believed to be to be associated with direct solar heating of the ice at
depth. The peaks occur at between 3-4 pm local time, whereas a theoreti-
cal treatment of this problem [Trodahl et al., 2000] suggests a 7/2 phase shift
from the local insolation maximum, and therefore peaks at about 6 pm. The
magnitude is also higher than expected. These two results suggest a larger
in-phase absorption than expected for sea ice. We speculate that this might
be caused by algae in McMurdo Sound, and/or debris at Barrow. The problem
of solar heating of sea ice is currently being revisited by Mark McGuinness and
a student at Victoria University, to whom our temperature data are available.

The observed diurnal variations in the water temperatures in the shallow El-
son Lagoon, appear to be tied to the tidal cycle. Temperature maxima corre-
sponded roughly with predicted high water times, suggesting the interpretation
that the tides are flushing the more saline lagoon with the colder, lower salin-
ity sea water. Coordinated measurements of tidal flow and water temperature
may answer this question. Results from a tide gauge being installed for other
reasons in the Chukchi Sea, in 2005, by UAF graduate student Andy Mahoney,
may be of interest here.

UAF graduate student Lars Backstrom is analysing dielectric array measure-
ments made in FY Chukchi Sea ice, 2003. These measurements are sensitive to
the seasonal evolution of the salinity and brine volume profiles. The measure-
ments show correlations in these parameters with the temperature anomalies
observed in our thermal array measurements at this site (section 5.3.2).

Thermal array measurements have been performed in Antarctica by Victoria
University since 1996. We don’t consider that further measurements are nec-
essary, except as auxiliary measurements for other studies, unless improved
analysis methods can be developed, for example to identify convective heat
transport near the ice/water interface. The question of the convective contri-
bution to the overall heat flow, and its possible inclusion in an ‘effective heat
flow coefficient” has not been resolved. It remains an experimental challenge to
measure any such contribution. Possible directions include tank experiments
in which sea ice growth rates can be used to determine heat flux through the
ice. Varying the underwater flow rate in such small scale experiments has il-
lustrated the flow rate control of the formation of brine channels in the ‘mushy
layer’ [eg. Worster and Wettlaufer, 1997]. Measuring a flow rate dependence
of the growth rate would in principle enable an estimation of the convective
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contribution to the heat flow.

Epilogue

After the acceptance of this thesis, and shortly before its final submission, an
error was discovered. Although this error does not significantly affect the final
conductivity results presented here, it provides an unequivocal partial expla-
nation of the apparent reduction in near-surface conductivity. The theoretical
expression of Ono [1967] for ¢(S,T) was misrepresented in the review articles
of Yen [1981]; Yen et al. [1991], in which the last term in equation (2.18) was
a factor of ten too large. The incorrect expression given by Yen [1981] was
referenced by McGuinness et al. [1998]; Trodahl et al. [2000, 2001] and used in
their analysis. It remained undetected, and was used in the analysis presented
in this thesis. The incorrect expression underestimates the specific heat by
an amount that increases with salinity and decreasing temperature - both of
which obtain towards the ice surface. This leads to underestimated values for
0U/0t, and hence also the conductivity, being the scatter plot best-fit gradi-
ent. The size of this reduction for S=6 at —25°C and —10°C is 5% and 1%
respectively (~ 0.11and0.02 W/m°C).

In the above analysis, we have limited the conductivity analysis to depths
which did not show a clear surface reduction. If the above correction were
made, it would increase these values by approximately 2 + 1%. It does how-
ever provide a larger correction, and explanation, for the previously-reported
surface reduction. This matter is addressed in two papers in preparation at
the present time (March 2005).
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Appendix A

CR10X Logger Details

A.1 CRI10X Data Logger Program

An annotated CR10X Data Logger program is listed below, and the measure-
ment circuit shown in figure (A.1). The program was written using Campbell’s
software PC 208 W Version 3.3, and based on the routine developed by Collins
[1998] for similar array measurements, but included changes in both detail and
structure. Most notably is the averaging over 20 reverse polarity measurements
(10 forward, 10 reverse), and the delay time used in the individual measure-
ments. Apart from this averaging, no data manipulation was performed, and
the output written to storage was the averaged fractional voltage drop over the
reference resistor, |V/Vy| where V) = £2500 mV is the excitation voltage, and
V' is the voltage drop measured over the reference resistor R,.s. The battery
voltage is output once a day.

The program has three ‘tables’. Table 1: performs a series of measurements
every 30 min by calling the single measurement sub-routine in Table 3. Table
2 executes every minute, and if a storage module is present automatically
transmits accumulated array data . If it is the second minute of the day,
the battery voltage is output to the storage module. There is also a loop
to click through all relays, so logger operation can be audibly verified when
retrieving data storage modules without having to wait 30 minutes. Table
3 is the measurement sub-routine using the CR10X ‘p4’ program - excite,
delay, measure. Reverse polarity measurements are made with 10 separate
measurements with each of 4+ 2500 mV and -2500 mV. A running total of the
absolute value of (V/V}) is kept and then averaged.
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The array/logger time constant for capacitive settling was measured to be
T =~ 150 us. The reverse polarity command ‘p7’ was not used as it has no
provision for a time delay greater than the default of 450 us ~ 37. The 10 ms
(=~ 60 7) delay used in command ‘p4’ is easily sufficient to overcome the effect
of lead capacitance. The entire measurement sequences takes approximately 5
seconds.

CR10X Program
This program was written in PC 208W Version 3.3

UAF30M.d1ld : UAF Experiment with 30 minute execution

;{CR10X} ; *Table 1 Program
01: 1800 Execution Interval (seconds)

1: Do (P86)
1: 41 Set Port 1 High

2: Beginning of Loop (P87)

1: 0 Delay
2: 22 Loop Count
3: Do (P86)
1: 72 Pulse Port 2
4: Do (P86)
1: 1 Call Subroutine 1

5: Z=X (P31)
1: 2 X Loc [ Tot$\_$B ]
2: 4 -— Z Loc [ Therms_B ]

6: End (P95)

7: Do (P86)
1: 51 Set Port 1 Low
8: Do (P86)

1: 51 Set Port 1 Low
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9: Do (P86)
1: 10 Set Output Flag High (Flag 0)

10: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 100 Array ID

11: Real Time (P77)
1: 1110 Year,Day,Hour/Minute (midnight = 0000)

12: Resolution (P78)
1: 1 High Resolution

13: Sample (P70)
1: 22 Reps
2: 4 Loc [ Therms_B ]

14: Serial Out (P96)
1: 71 Storage Module

*Table 2 Program
02: 60 Execution Interval (seconds)

1: Serial Out (P96)
1. 71 Storage Module

2: Time (P18)

1: 1 Minutes into current day (maximum 1440)
2: 0 Mod/By
3: 3 Loc [ Clck_mins ]

3: If (X<=>F) (P89)

1: 3 X Loc [ Clck_mins ]
2: 1 =

3: 2 F

4: 13 Set Flag 3 High

4: If Flag/Port (P91)
1: 13 Do if Flag 3 is High
2: 30 Then Do
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5: Batt Voltage (P10)

1: 21 Loc [ Batt_V ]
6: Do (P86)
1: 41 Set Port 1 High

7: Beginning of Loop (P87)

1: 0 Delay

2: 22 Loop Count
8: Do (P86)

1: 72 Pulse Port 2

9: Beginning of Loop (P87)
1: 0 Delay
2: 20 Loop Count

10: End (P95)
11: End (P95)

12: Do (P86)
1: 51 Set Port 1 Low

13: Do (P86)
1: 23 Set Flag 3 Low

14: Do (P86)
1: 10 Set Output Flag High (Flag 0)

15: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
: 120 Array ID

16: Sample (P70)
1: 1 Reps
2: 21 Loc [ Batt_V ]

17: Serial Out (P96)
1: 71 Storage Module
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18: End (P95)

*Table 3 Subroutines

1: Beginning of Subroutine (P85)
1: 1 Subroutine 1

2: Resolution (P78)

1: 1 High Resolution
3: Z=F (P30)

1: 0 F

2: 0 Exponent of 10

3: 2 Z Loc [ Tot_B ]

4: Beginning of Loop (P87)
1: 0 Delay
2: 10 Loop Count

5: Excite-Delay (SE) (P4)

1: 1 Reps

2: b 2500 mV Slow Range

3: 3 SE Channel

4: 1 Excite all reps w/Exchan 1
5: 1 Delay (units 0.01 sec)
6: 2500 mV Excitation

7: 1 Loc [ Therm_B 1]

8: 0.0004 Mult

9: 0 Offset
6: Z=X+Y (P33)

1: 2 X Loc [ Tot_B ]

2: 1 Y Loc [ Therm_B ]

3: 2 Z Loc [ Tot_B ]

7: Excite-Delay (SE) (P4)

1 Reps

: 5 2500 mV Slow Range
3 SE Channel

W N -
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4: 1 Excite all reps w/Exchan 1
5: 1 Delay (units 0.01 sec)

6: 2500 -- mV Excitation

7: 1 Loc [ Therm_B ]

8: -0.0004 Mult

9: 0 Offset
8: Z=X+Y (P33)

1: 2 X Loc [ Tot_B ]

2: 1 Y Loc [ Therm_B ]

3: 2 Z Loc [ Tot_B ]

9: End (P95)

10: Z=Xx*F (P37)

1: 2 X Loc [ Tot_B ]
2: 0.05 F
3: 2 Z Loc [ Tot_B ]
11: End (P95)

End Program
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A.2 Reference Resistor Optimisation

We here derive the result quoted in section (3.3) for optimisation of R,.r
,in order to minimise the average temperature uncertainty in the thermistor
measurements. The starting points are equations (3.3, 3.5),

R = Ryexp (é) , (A1)
R = (Res + Ry) (% - 1) ~Rp . (A.2)

For this analysis we ignore the lead resistance R; << R. Differentiating
Equation (A.2) with respect to Vy, with R, = 0 gives the sensitivity of the
thermistor resistance to the uncertainty in measured voltage:

-0V R 2
R = m 2R+ R,cr | . A3
- ( 2R f) (A3)

To convert this resistance resolution to a temperature resolution requires a
functional form for the thermistor characteristic, T'(R). For the present analy-
sis (but not the actual temperature conversion) the mathematics are simplified
with no significant loss in accuracy by using (equation A.1) so that

p
T—=—_=___ A4
In(R/Ry) (A.4)
Here for YSI 55031 thermistors between —50°C — 0°C, Ry =~ 0.16{) and
0 ~ 3300 K. The uncertainty in temperature §7" for voltage measurement

uncertainty §V,, is found by differentiating equation (A.4) and substituting
equation (A.3):

_ —V,, (R? 3
0T = — ( g TR+ Rr€f> TP (A.5)

The best choice of R, is that which minimises this sensitivity. Setting to zero
the derivative of equation (A.5) with respect to R,.; gives the condition R,.; =
Rr. For a single measurement it is best to match the reference resistor to the
resistance of the thermistor. In our measurements the thermistor resistance is
not constant but varies over the range 30 — 80 k(2. Over this range the average
temperature uncertainty can be written as:

1 Rz —6Vm< R Rmf> &

<(5T>:—/ dR + 24 , (A.6
Ry — Ry Jp, Vo Ryef R [ln(R/RO)]2 (46)

N —B(0Vin/ Vo) e R Rrey
" (Ro—R)) [m(Tz/ROﬂ?/Rl e (Rreﬁ“ R ) (A7)
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Here we have simplified the integration by noting that [In(R/Ry)]™ varies
slower over this range, and replacing it with its average value. The optimal
value of R,.; found by minimising equation (A.7) with respect to R,.s is,

* }%22 _ R12 2
Rref (QZH(RQ/Rl) ( 8)

For Ry = 30kQ and R, = 80k, R, ;" = 52kQ. We used high-precision,

low-temperature coefficient resistors with nominal values I, f* = 52.3kQ. In-
dividual resistance values were measured for all such resistors.
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Appendix B

Aspects of Finite Difference
Analysis

We here present the mathematical basis behind least squares fitting, and show
how errors in the variable treated as independent bias the least squares slope
by the relative error in that variable. For data and noise, with both Gaussian
and uniform distributions, we show that the geometric mean of the two slope
estimates obtained by treated each variable as independent, is biased by the
difference in the relative error of the variables.

B.1 Least Squares Fitting with Measurement
Errors

For a collection of data points (X;,Y;) the Least Squares method of linear
curve fitting finds the best fit gradient m and y-axis intercept ¢ by minimising
the average squared vertical difference between the measured Y; values and the
corresponding best fit values mX; + ¢. The method is formulated by finding
the ¢ and m that minimise this sum,

9 N
%Z(le—l—C—Y;)Q = 0 5

N
%Z(mxﬂrc—yf = 0 . (B.1)

i
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This dual minimisation is formulated most easily in matrix notation using
determinants | Young, 1962],

N > Vi

w2y | Ny — () () (B.2)
N Yz N xf— (2 w)? ’ '
DY DT

Xy Bat | (RS ed) - (S (Ca) B3)
Ny NS a7 = (Lw)? | |

In this procedure it is assumed that there is no uncertainty associated with the
independent variable, X;. When there is, the value of m is underestimated (and
the value of ¢ is also in error). The degree of underestimation is proportional
to the ‘relative error’ in the independent variable. We discuss two cases below
where the relative error is defined as the ratio of measurement noise to the
range of values measured.

Gaussian Distributions.

We here examine the case when the signal and noise both have gaussian dis-
tributions, largely following the treatment of Fuller [1987]. Consider measure-
ments (Y;, X;) made from the distributions:

Y;-=50+ﬁ1xi+ei 1= 1,2,....n > <B4)

Xi=x; +
Here ¢; ~ N(0,02) and w ~ N(0,02,) are the normally distributed random
measurement errors with mean p = 0 and variance 0. In this notation x;
is the actual physical value of x at the time of measurement but X; is the
measured value due to some measurement error u;. And similarly for Y; where
B and (3 are the true y-axis intercept and gradient. It is further assumed that

x; is also normally distributed, x; ~ N(j, 02,).

In this case the vector (Y, X) is said to be distributed as a bivariate normal
vector. It is described by a mean vector,

E(Y, X) = (py, px) = (Bo + Bipta, ) (B.5)
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and a covariance matrix,

012/Y G%’X _ %Uix + Uze 610-:?::)3 (B 6)
O-g(Y U?(X ﬁlo-gz Ugm + O-zu 7
where, eg.,
N
1 — —
Ty = 5 (K- X)(¥i-Y) (B.7)

The least squares gradient, equation (B.2), can be recast as:

> (Xi—X)?

In the present case the gives

2 2 -1
UXY O-uu
m O%(X 61( * U?cx) ’ ( )
I
= B.10
e 1+ 6z (B.10)

where dz = 02, /02,. Recalling that o2 is the distribution of z values sampled,
and o2, the variance in the noise of individual measurements, dz is the ratio
of x measurement noise over x measurement range: a measure of the relative
error in x. For small normally distributed errors, the least squares gradient
of regressing Y against X underestimates the gradient by a factor that is the
relative error in the independent variable.

Repeating this procedure for a regression of X against Y gives:

2

—1
o
my = B (1 + 2—%) : (B.11)

1Y zx

Comparing the two diagonal entries in the right hand side of equation (B.6)
and identifying o}, = 3{o2, + 07,, so that dy = o2, /07, represents the relative

error in Y measurements, equation (B.11) becomes

Bt

1) (B.12)

mo =
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1/2

To first order in 0 the geometric mean mg, = (my/ms)'/? is therefore

Mgm = 1 (1 + %(dy - 5;;;)) . (B.13)

If the relative errors dx and dy equal this gives an unbiased slope estimate.

Uniform Distributions
An interesting second case is when rather than a gaussian distribution of mea-
sured (Y;, X;) values, the distribution is uniform, see figure (B.1).

Y : o >
---Y=p1x+ By

/

(X0, Y0)

X

Figure B.1: Definition of Uniform Distribution parameters for effect of errors
on Least Squares gradient fitting. There are errors only in the X values.

A least squares regression can be formulated as above by replacing the sums
in equation (B.1) with double integrals over the shaded area in figure (B.1).
This leads to the least squares slope being determined as a function of oz’ =
(02 /A?), the relevant measure of relative error in the x values. For brevity, the
minimisation of the double integrals is not included, just the results below.

For the regression of Y on X, where the errors are specifically in the indepen-
dent variable, the least square results become,

, B
mpo= e (B.14)
g = Bt ﬁlw (B.15)

1+ 1/6a
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The regression of X on Y, for which there are no errors in the independent
variable, gives the ideal results as expected: m}, = 3y, ¢, = [o.

In analogy with equation (B.13), taking the geometric mean of the least squares
gradients for the case of uniform errors in both variables gives, to first order
in ¢,

My = 51 (1 + %(dy’ — 5:5’)) . (B.16)

The geometric mean estimates of the slope for both the gaussian and uniform
distributions admit a common interpretation: the bias in the geometric mean
depends on the difference in relative errors in the two plotted variables. When
these relative errors are the same, the geometric mean provides an unbiased
estimate of the gradient. If the relative error in both plotting variables can
be identified - either in terms of the appropriate variances if the distributions
can be considered gaussian, or as the widths in figure (B.1) for more uniformly
distributed data - then equation (B.13) or (B.16) can be corrected to give an
unbiased estimate of the gradient.
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Appendix C

Conduction with Radiative Heat
Loss

We here present an analytical treatment of the heat flow down a rod with
radiative losses. This analysis is applied to the experimental chamber used to
make the direct thermal conductivity measurements discussed in Chapter 6.
It is shown that despite radiative losses as high as high as 20%, the parallel
conductance method can still be used to determine the thermal conductance
of our sea ice samples with an accuracy of approximately +1%.

C.1 Analytical Temperature Profile

Consider conductive heat flow along a homogeneous, insulated bar of density
p [m3/kg], specific heat ¢[J/kg/°C], and cross sectional area A [m?]. The net
heat flow into a slice of thickness 0z increases the heat content of that slice,
and the change in temperature given by

o*T aT

0z kA@ = pAdz o (C.1)

For Newtonian heat loss from the surface of a rod of circumference s, at temper-
ature 7', to an isothermal surrounding T,, the rate of heat loss is proportional
to the temperature difference and the area of the rod,

dQ)

e nséz(T —1T,) . (C.2)
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The ‘Newtonian heat loss flux’ is therefore of magnitude
Jy = TL(T - Ta) ) (C3)

perpendicular to the rod. We call n[W/m?°C]| the ‘Newtonian heat loss co-
efficient’. Including equation (C.2) on the right hand side of equation (C.1)
gives the appropriate heat equation,

T  pCIT  ns

52~ ko + M(T -7, . (C.4)

Using excess temperature § = T — T,, thermal diffusivity D = pc/k, and
writing o = (ns/kA) this becomes
020 00

o _ pov 2
922 D(%—I—QQ ) (C.5)

The steady-state temperature profile for the general (o # 0) case is found by
solving equation (C.5) for df/dt = 0. The general solution is:

0(z) = Me** + Ne™* . (C.6)

The boundary conditions in our case are:

1. (z = L) = 0; the cold end is at the ambient temperature.

2. A small fraction, 3, of the heater input is radiated away from the base
of the heater. Therefore the heat flux into the tube is
Jin = —kOT )0z = (1 — B)P/A where P [W] is the I?R power dissipated
by the heater, and A the area perpendicular to the heat flow.

Applying these boundary conditions, the solution to equation (C.6) is

P(1 — ) sinh (aL(1 — z/L))
0(z) = . C.r
(2) alK cosh(al) (C.7)
Here K = kA/L is the thermal conductance [W/°C] and aL = (nsL/K)'/?
parameterises the relative strength of radiative loss to conduction down the
bar. That equation (C.7) gives the expected linear profile for no losses can be
seen by expanding it in terms of the parameter («L):

o) = 1-0p(1-3) [ (1 - <O‘2L>2) (1 p Ll §>2> ‘
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For al. = 0, the term in square brackets is 1. By also setting 3 = 0 the
no-loss linear profile is recovered. (This expansion was not used for any
computations, only to illustrate here that equation (C.8) reduces to the
no-loss profile for aL = 5 =0.)

The conducted heat flux Jo = —kdT/0z = —k00/0z is given by
differentiating equation (C.8);
P(1—p)cosh(aL(1—2z/L))

Jolz) = A cosh(aL

(C.9)

We now turn to evaluating aLL for our case, via the Newtonian heat loss
coefficient n. The high vacuum eliminates conductive and convective losses
(see section 6.3) so the only contribution to n is radiative.

The radiative heat flux emitted by a grey body ( emissivity € # 1) is eaT™
where o = 5.67 x 1078W/m?K* is the Stefan-Boltzman constant, and T is
absolute temperature [K]. A full solution to our geometry of one grey body
fully surrounded by another would involve integrating the difference

T(r1)* — T(rs)* for all positions ry on the sample holder and all ry on the
chamber wall, accounting for the geometrical view factor, Fi,, which gives
the fraction of radiation emitted at rq, impinging on ry [ Winterton, 1997).
The temperature distribution of the chamber, and spectral emissivity of the
materials involved are not known precisely enough to justify this calculation,
so we proceed by using the average temperature for each surface, and using
Fj5 =1 as the tube is fully enclosed by the chamber [Winterton, 1997]. We
show below this approximation does not affect our final conclusion.

The radiative heat flux for a generalised arrangement of grey body 1
(emissivity €1, area A;, the sample tube) fully surrounded by grey body 2
(the chamber) is [Winterton, 1997]:

4 4

J pu—
R (1—61)/61141+1/A1F12+(1—62>/62A2

(C.10)

Substituting Fio = 1, and €; = €5 = €g5 the emissivity of stainless steel, and
our values of A; and A, gives

Jr =~ 0.87TessAvo (T = T,") . (C.11)

The finite size of the chamber has caused a 13% reduction in the radiative
flux from the case of the tube radiating into a background at 75, for which
the pre-factor would be 1, not 0.87.
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The average temperature of the chamber is well controlled at the cold bath
temperature Ty = T,(z = L). The tube temperature is by definition the
chamber temperature plus the excess temperature: Ty =T, +60. As 0 < T,
equation (C.11) can be expanded using:

(T =T, = (T, +0)' = T,*) = 4T,%0 . (C.12)

This is accurate to 1% for experimental values T, = 260 K and 6§ = 2 K. By
combining equations (C.11, C.12) the radiative heat loss can be written in
terms of the local excess temperature;

Jr(2) = 3.5e550T, (T(2) = T,) . (C.13)

Recalling equation (C.3), equation (C.13) gives the Newtonian heat loss
coefficient, n = 3.5eg507T. a3, and we have evaluated the parameter:

sL 1/2
al = (?3.56550%3) : (C.14)

Equations (C.8) and (C.14) provide a full description of the temperature
profile along the sample holder. We now examine the calculation of the
conductance of an ice sample with this temperature profile.

C.2 Conductance Calculations with
Radiative Losses

In this section we estimate the uncertainty in applying the parallel
conductance method to the configuration described in Chapter 6. For no
radiative losses, the conductance of the tube and a sample is additive,

Kz‘ce — Djcettube — Ktube . (Cl5)

For no losses the conductance can be calculated from the measured

temperature gradient as

P
0z

The ice conductivity could therefore be determined as

1({ P P
kice = 7\ 57 — a1, R (Cl?)
A (l%—fv 8L )
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where the unprimed variables are for runs with ice loaded, and the primed
variables for tube-only measurements.

From the temperature gradient measured in the central third of the tube
where the heat flow is expected to be most uniform, we calculate an

‘apparent conductance’,
P

LIz (%)l

Due to radiative losses |2 (%)| is smaller than it would be if all of the applied
power were conducted along the tube, so K, overestimates the true
conductance. Furthermore, the small radiative flux from the bottom of the

heater, fP/A, increases this discrepancy. We now assess the size of this effect.

Kopp = (C.18)

Differentiating equation (C.8) and evaluating the apparent conductance with
equation (C.18) gives:

K cosh(aL)

Ky = .
PP (1 — f3) cosh(Lar)

(C.19)

The error in calculating the ice conductance with equation (C.15) can be
determined by expanding (C.19) in terms of (aL). To order (aL)?, we have:

1 3
Kapp == m (Ktube ‘I‘ gQSL) 5 (CQO)
/ 1 3,
Kapp = 1_—@ Ktube + Kice -+ gq sL . (C21)

Expanding to order (aL)? introduces an error of less than 0.5% here.
Subtracting (C.20) from (C.21) gives the apparent ice conductance,

. 1 1 1
Kapp(zce> = mKice + <1 — ﬁ - 1— ﬁ/) Ktube +
19 1 1 /
— L T3> — T, %). C.22

Experimental values give K,,,(ice) =~ 10mW/°C. As § < (', the second term
on the RHS is negative. From a calculation we estimate it is approximately
-0.5% of the first term. For a +5°C difference between 7, and 77, (the
maximum difference in operating temperatures for the ice and tube-only
runs), the third term on the RHS is only £0.1mW/°C, a £1% effect.
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We conclude that evaluating the ice conductance using the method of parallel
conductance, and in particular with equation (C.16), has an associated
methodical uncertainty of approximately £1%. This is less than the
experimental variations in the measurement of the equilibrium temperature

gradient.
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