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Abstract 

 

 
Productivity in the Southern Ocean reflects both the spatial and temporal dynamics of 

the sea ice ecosystem, as well as the complex cycling of energy through the microbial 

community. Marine bacteria are thought to be integral to trophodynamics and the 

functioning of a microbial loop within the ice matrix, but there is no clear 

understanding of the distribution and diversity of bacteria or the importance of 

bacterial production. Understanding the bacterial response to environmental change in 

the sea ice ecosystem may provide an insight into the potential changes to the physical 

oceanography and ecology of the Southern Ocean. 

 

In this study, a multivariate statistical approach was used to compare the distribution 

and abundance of bacteria occurring in pack ice at the tongue of the Mertz Glacier 

(George V Coast, Antarctica) with bacteria from fast ice at Cape Hallett (Victoria 

Land coastline, Antarctica). Estimates of bacterial abundance were derived using both 

epifluorescence microscopy and flow cytometry and correlated with algal and 

chlorophyll a data. Significant differences in the vertical distribution of cells within 

the ice were observed between the Mertz Glacier and Cape Hallett, but no overall 

difference in cell abundance was found between the two locations with 7.6 ± 1.2 x 10
9 

cells per m
2 
and 8.7 ± 1.6 x 10

9
 cells per m

2 
respectively. Bacteria and algae were 

positively correlated in pack ice of the Mertz Glacier indicating a functional microbial 

loop, but no discernable relationship was exhibited in multiyear ice at Cape Hallett. 

These findings support the general consensus that the generation of bacterial biomass 

from algal-derived dissolved organic matter is highly variable across seasons and 

habitats. 
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The tetrazolium salt 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to 

investigate the bacterial response to experimentally induced changes in light and 

salinity in fast ice at Cape Hallett. Two distinct assemblages were examined; the brine 

channel assemblage near the surface of the ice and the interstitial or bottom 

assemblage. This study presents preliminary evidence that the metabolic activity of 

brine bacteria is influenced by light stimulus, most likely as a response to increased 

levels of algal-derived dissolved organic matter. No cells were deemed to be 

metabolically active when incubated in the dark, while on average  thirty-eight 

percent of the cells incubated at 150 µmol photons m
-2
 s
-1 
were metabolically active. 

Additional results indicate that salt concentration is more significant than light 

irradiance in influencing the metabolic response of cells present in the interstitial 

region of the sea ice profile. When acclimated over a period of eight hours, cells 

exhibited a tolerance to changing saline concentrations, but after a further eight hours 

there is some evidence to suggest activity is reduced at either end of the saline regime. 

Bacterial metabolic activity in each assemblage is thus thought to reflect the 

fundamentally different light and saline environments within the sea ice. Metabolic 

probes such as CTC will prove useful in providing a mechanistic understanding of 

productivity and trophodynamics in the Antarctic coastal ecosystem, and may 

contribute to prognostic models for qualifying the resilience of the microbial 

community to climate change. 
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Chapter 1: General introduction 
 

 

Antarctica is a focal point for two of the most significant global environmental pressures: 

stratospheric ozone depletion and global warming (Waterhouse, 2001).   

 

While the causal mechanisms and implications for climate change remain controversial, it 

has become widely recognised that human generated emissions have altered the global 

climate system (Manning and Nobre, 2001). The global average surface temperature has 

increased by 0.6 ± 0.2°C since the late 19
th

 century and is projected to increase by 1.4 to 

5.8°C by 2100 (Joos et al., 2001). This increase in global temperature is due in part to 

dramatic changes in the concentration of naturally occurring greenhouses gases such as 

carbon dioxide, ozone, methane, and nitrous oxide that absorb long-wave (infrared) 

radiation in the atmosphere. Increases in the concentration of gases which re-emit the 

radiation absorbed from the Earth’s surface: carbon dioxide, methane, and nitrous oxide, 

have reduced the efficiency with which the Earth’s surface radiates to space, thus 

warming the lower atmosphere and the surface of the planet (Waterhouse, 2001).  

 

The most important anthropogenic emission leading to an increase in global temperature 

both today, and in the foreseeable future, is carbon dioxide (CO2) (Sariento and Le Quere, 

1996). While the concentration of carbon dioxide in the atmosphere and oceans fluctuates 

naturally in a vast cycle involving transfer between the land surface, oceans, atmosphere 

and lithosphere (Bigg et al., 2003), the current atmospheric concentration of carbon 

dioxide has not been exceeded during the past 420,000 years and likely not during
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the past 20 million years. The burning of fossil fuel accounts for much of the observed 

increase in CO2 levels, and the rest (10 – 30%) is due predominantly to land-use change, 

especially deforestation (Joos et al., 2001).  

 

Covering approximately 10% of the world’s oceans, the Southern Ocean is a significant 

component of the global marine ecosystem (Constable and Nicol, 2003) and, along with 

the North Atlantic, is a major oceanographic sink for CO2. The exchange of CO2 between 

the atmosphere and oceans has both a physical and biological component. The physical 

exchange of CO2 is governed by seawater temperature; CO2 is more soluble in seawater 

at lower temperatures and ocean circulation carries this cold CO2-enriched water into the 

deep ocean (Bigg et al., 2003). In addition to the physical atmosphere/ocean exchange, 

CO2 is utilised by phytoplankton in the surface of the oceans and converted into plant 

biomass. Although most of the CO2 returns to the water and atmosphere through 

respiration and through decomposition when these primary producers are eaten or die, a 

proportion is lost to the deep sea and sediments as sinking particles where it can remain 

for substantial periods of time (Nybakken, 1997).  

 

The Southern Ocean is thus an active component of the climate system regulating the flux 

of CO2 between the atmosphere and ocean. As CO2 emissions increase however, both the 

physical and biological drawdown mechanisms may become self-limited in their ability 

to sequester anthropogenic C02. Any increase in sea surface temperature will limit the 

physical exchange as Arrigo et al (1999) have recently shown in the Ross Sea. The 

capacity of phytoplankton to remove C02 is determined by community structure within 
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the water column, which is in turn influenced by surface ocean stratification and 

ultimately precipitation in the Southern Ocean. As a result, microbial community 

structure and productivity can vary depending on the physico-chemical characteristics of 

the water column in different areas of the Southern Ocean (Vaqué et al., 2002). If climate 

change is sustained there are likely to be long-term changes in the physical oceanography 

and ecology of the Southern Ocean (Manning and Nobre, 2001). 

 

1.1 Antarctica and Climate Change 

 

While climate change will affect key polar drivers, such as sea-level rise and greenhouse 

gas emissions, few data are currently available to quantatively assess both the direct and 

indirect impacts of climate change on the Antarctic biota (Manning and Nobre, 2001). Of 

all the responses to future global climatic warming from increasing concentrations of 

atmospheric trace gases however, changes to the distribution of Antarctic sea ice can be 

expected to be among the most notable (Budd, 1991). Regional warming has already 

instigated both the retreat and collapse of ice shelves around the Antarctic Peninsula with 

implications for terrestrial ecosystems, such as the colonisation of exotic plants and 

animals on the peninsula (Manning and Nobre, 2001). Reid and Croxall (2001) suggest 

that reduced sea ice cover has instigated changes in the population structure of Antarctic 

krill (Euphausia superba) and the subsequent reduction in krill biomass may now be 

insufficient to support predator demand in some years. While satellite observations over 

the period 1973-1996 show no significant change in Antarctic sea ice extent, whaling 

records and modelling analyses indicate a southward retreat by 2.8 degrees of latitude 
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between the mid 1950’s and early 1970’s (Manning and Nobre, 2001). Substantial 

warming and changes in precipitation are projected for polar regions over the 21
st
 century 

by almost all climate models. Current models project that by 2100 atmospheric carbon 

concentrations will be in the order of 540 to 970 ppm (90 to 250% above the 

concentration of 280 ppm in 1750) (Joos et al., 2001). Gordon and O’Farrell (1997) 

suggest that a doubling of current carbon dioxide levels will lead to a reduction in the 

volume of Antarctic sea ice of about 25-45%. This CSIRO climate model assumes a 1% 

per year compounding increase of CO2, corresponding to a warming of the globe by 

2.1°C.  Wu et al. (1997) used a model with higher albedo feedback (warming of 2.8°C) 

and predict a reduction in mean sea ice extent of nearly two degrees of latitude, which 

corresponds to 45% of the current sea ice volume. It is likely that sea ice will provide a 

sensitive indicator of climatic change in coming decades, declining in response to warmer 

atmospheric and oceanic temperatures (Wolff, 2003). 

 

While the effect of climate change on sea ice dynamics and primary production within 

the Antarctic coastal ecosystem is not well understood there are thought to be significant 

ecological consequences to changes in the magnitude and timing of seasonal sea ice 

advance and retreat (Smith et al., 1998; Thomas and Dieckmann, 2002). Surface waters 

of the Southern Ocean have already warmed and become less saline suggesting that 

future changes to the extent and volume of sea ice may have profound impacts on the 

physical oceanography and ecology of the Southern Ocean. Such changes are likely to 

have profound impacts at all levels of the food chain, from algae to krill to the great 

whales (Manning and Nobre, 2001). 
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1.2 Sea ice characteristics and the Marginal Ice Zone 

 

Although a transient phenomenon, sea ice is a predominant feature of polar oceans and 

exerts a unique influence on Antarctic marine ecosystems. Sea ice expands and contracts 

annually in a concentric zone around the Antarctic continent; during the winter as much 

as 20 million km² of sea ice forms in the Southern Ocean, of which all but 4 million km² 

melts during the austral summer. This ice regime strongly affects the physical and 

biological processes associated with marine ecosystems, particularly in modulating the 

exchange of heat and moisture between the atmosphere and ocean and restricting the 

penetration of solar radiation (Delille, 1992; Manning and Nobre, 2001).  

 

Productivity in the Southern Ocean is thus characterised by large-scale spatial and 

temporal variability as the sea ice influences not only the pelagic systems under the ice 

but also determines the ecology of the biota within the ice (Legendre et al., 1992; Ackley 

and Sullivan, 1994). Interest in the degree of productivity has arisen due to the status of 

the Southern Ocean in influencing global carbon fluxes, its capacity to support large 

populations of vertebrates, and the ecological consequences of harvesting marine 

resources (Constable and Nicol, 2003).  

 

Early productivity estimates from the Southern Ocean were puzzlingly low however, 

given the accounts from early explorers and whaling expeditions of prolific krill, seal, 

whale and bird numbers (Garrison et al., 1986). This inconsistency between predicted and 

observed production rates has only recently been explained and the ‘missing production’ 
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attributed to what is thought to be the most dynamic microbial habitat in the Southern 

Ocean; the marginal ice zone (Vincent, 1988). 

 

When the sea ice melts each year, conditions at the edge of the receding pack ice include 

strong vertical gradients in temperature and salinity and also upwelling of nutrients, all of 

which support periods of intense microbial productivity. The development of 

phytoplankton and bacterial blooms stimulates the activity of other microbial groups and 

trophic levels (Vincent, 1988), a process that essentially forms the energy base for the 

Southern Ocean. Bacteria are thought to support a significant biomass of 

microheterotrophs that are involved in a microbial loop associated with the ice and may 

in turn support higher trophic levels (Garrison et al., 1986; Kottmeier et al., 1987), while 

sea ice algae are the primary source for krill which are consumed by squid, penguins, 

seals and baleen whales (Thomas and Dieckmann, 2002). 

 

The projected reductions in the extent of annual sea ice may limit the development and 

physical characteristics of sea ice at the marginal zone. Such changes are likely to 

influence the dynamics and interactions of the whole marine ecosystem. It is not currently 

known whether a reduction in ice cover would lead to an increase or decrease in 

productivity within the water column and/or the sea floor, or how the timing and 

magnitude of bloom events would be altered. 

 

As sea ice forms, dissolved salts are excluded from the freshwater matrix and become 

concentrated in microscopic brine pockets or inclusions (Garrison, 1991).  Along with the 



Chapter 1: General introduction 

 

 7 

influence of gravity and seasonal melting, this process results in a network of brine 

channels as secondary structural features occupying between 1-30% of the ice volume. 

The differential between the polar atmosphere and warmer underlying water causes a 

vertical temperature and salinity gradient within the ice (Garrison, 1991; Staley et al., 

2002; Arrigo and Sullivan, 1992), which strongly influences the distribution of microbial 

species. 

 

Sea ice can be defined according to several basic structural types: frazil ice, platelet ice, 

congelation ice and snow ice. Initial formation occurs at or near the surface of the water 

with small platelets and crystalline needles termed frazil ice (Knox, 1994). Crystals 

typically develop in open water where turbulent mixing leads to the supercooling of near- 

shore waters (Palmisano and Garrison, 1993). These crystals accumulate at the seawater 

surface first as a slushy layer known as grease ice, and then coalesce to form nilas or 

sheet ice under calm conditions, or pancake ice if there is any wave action (Garrison, 

1991). Frazil ice often contains a high concentration of biological material as particulates 

from the water column become concentrated during ice formation (Palmisano and 

Garrison, 1993). Congelation or columnar ice forms at the ice-water interface under pre-

established ice cover. This ice type is composed of columnar crystals that are orientated 

vertically with respect to the ice and have defined brine inclusions between adjacent 

crystals. Late in the season, depression of ice flows may lead to the formation of snow ice 

as seawater floods the floes and forms a layer of infiltration ice along the snow-ice 

interface (Staley et al., 2002). In most regions of Antarctica ice-cover is an annual 

phenomenon that can be divided into a zone of fast ice that remains attached to the 
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shoreline, and free-floating pack ice which extends into deep-water regions (Garrison, 

1991; Vincent, 1988). 

 

The formation of sea ice is accompanied by large changes not only in temperature and 

salinity, but also light and carbon supply, which results in very different types of 

microenvironment for the development of microbial communities (Knox, 1994). A 

schematic representation of these habitats is shown in Figure 1.1. Three broad community 

categories have been recognised (Palmisano and Sullivan, 1983). The bottom ice 

community is comprised of microbes that inhabit the interstices of a platelet layer if it is 

present, and also those species that live at the base of the congelation ice in brine pockets 

and drainage channels. This community is made up of mat, chain, and column-forming 

algal species that anchor to the ice-water interface and hang down into the seawater 

below (Garrison, 1991). The second microbial community, found close to the ice profile 

surface, occupies a similarly diverse range of microenvironments including melt pools, 

snow infiltrated with seawater, and the snow-ice-seawater mixture that accumulates in 

tide cracks (Vincent, 1988; Garrison and Buck, 1991; Fritsen et al., 2001). A third 

community is made up of those species occurring at mid-depth within the ice profile as 

either band assemblages or brine channel assemblages (Knox, 1994; Garrison, 1991).  
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Figure 1.1 Schematic representation of the different microbial assemblages associated    

with sea ice (Knox 1994). 
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1.3 Sea ice microbial assemblages – Distribution and composition  

 

The sea ice supports a complex microbial biota often termed the ‘sea ice microbial 

community’ (SIMCO). The primary producers in this community are mostly pennate 

diatoms and efforts to investigate the biology of sea ice have focused on the composition, 

physiology, and ecology of the algae that dominate fast ice assemblages (e.g. Garrison, 

1991; Arrigo et al., 1998; McMinn et al., 2000; Thomas et al., 2001; Ryan et al., 2002; 

Trenerry et al., 2002). In addition, protozoa, bacteria, fungi, and invertebrates are also 

present within the ice (Garrison et al., 1986; Vincent, 1988; Garrison, 1991; Staley and 

Gosink, 1999; Staley et al., 2002).  

 

As recently as 1968 however, microbiologists had suggested that bacterial numbers were 

extremely low or even nonexistent in polar seas (Sorokin, 1971 cited in Sullivan, 1985). 

Although it is now known that diverse assemblages of bacteria are present in the polar 

environment, the literature on bacteria and their role in the sea ice community is 

somewhat limited. Much of the current knowledge comes from studies by Sullivan and 

Palmisano (1981; 1984) and their co-workers (Grossi et al., 1984; Sullivan, 1985; 

Sullivan et al., 1984; Kottmeier, et al., 1987; Kottmeier and Sullivan, 1988) in the 

McMurdo Sound region. Little work has been done in the last ten years. 

 

Early studies using scanning electron microscopy revealed a variety of morphologically 

distinct bacterial cell types including coccoid, rod, fusiform, filamentous, and prosthecate 

forms within the ice. Fast ice cores from McMurdo Sound showed that 47% of the 
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bacterial numbers and 93% of the bacterial biomass was located in the bottom 20cm of 

the ice column. Free-living bacteria comprised 70% of the total numbers, while the 

remaining 30% were found either attached to living algal cells or detritus (Sullivan and 

Palmisano, 1984). In contrast to bacterioplankton within the water column, ice bacteria 

were found to be 5-10 fold larger, often occurring as paired or dividing cells. This 

suggested that cells might be active at sub-zero conditions within the ice. 

Microautoradiographic uptake of radiolabeled compounds such as 
14 

C-L-serine, 
3
H-

serine, 
3
H-glucose and 

3
H-thymidine by bacteria incubated under in situ conditions 

provided additional evidence of metabolic activity in the form of DNA synthesis 

(Sullivan and Palmisano, 1984; Sullivan et al., 1985).  

 

This seminal research led Sullivan (1985) to suggest that bacteria may play an important 

role in the following processes:  

 

1. Secondary microbial production mediated through the microbial loop. 

2. Remineralisation and recycling of ice-associated organic matter. 

3. Maintenance of a balance in the ice microenvironment with regard to 

detoxification and oxygen consumption. 

4. Trace gas production. 

5. Ice nucleation and early stages of sea ice formation. 

 

An active microbial loop and the remineralisation of dissolved organic material imply 

bacteria are integral to the functioning of the sea ice ecosystem. Several authors have 
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found a positive relationship between bacterial and algal biomass/production in sea ice 

during spring/summer (Grossi et al., 1984; Kottmeier et al., 1987; Kottmeier and 

Sullivan, 1990; Delille et al., 1995; Stewart and Fritsen, 2004). This relationship develops 

when bacteria assimilate dissolved organic matter (DOM) that is generated through 

processes such as the release of dissolved photosynthate by algae or the rupture and 

degradation of algal cells during grazing. In return, bacteria are thought to facilitate algal-

based primary production occurring within sea ice by providing algae with the 

remineralised nutrients necessary for continued growth (Kottmeier et al., 1987; Kottmeier 

and Sullivan, 1990; Archer et al., 1996). The assimilation by bacteria of algal-derived 

DOM is a core process in the microbial loop hypothesis, but remains equivocal with 

respect to the spatial and temporal dynamics of the sea ice ecosystem (Ducklow et al., 

1999; Stewart and Fritsen, 2004). For example, Kottmeier and Sullivan (1987) and 

Stewart and Fristen (2004) found no significant relationship between algae and bacteria 

in late winter sea ice west of the Antarctic Peninsula.  

 

The links between bacterial secondary production and higher trophic levels is equally 

equivocal. The microscopic fraction of the sea ice community is known to be an 

important food source for crustaceous zooplankton such as the Antarctic krill Euphausia 

superba Dana (Daly, 1990; Kottmeier and Sullivan, 1990; Stewart and Fritsen, 2004), but 

little is known about the exact trophic relationships between these organisms or rates of 

carbon transfer (Cota et al., 1990). As much as 20-30% of the ice-bound primary 

production may be cycled through to higher trophic levels via the consumption of 

bacteria by nanoplankton and microzooplankton such as flagellates and ciliates (Staley et 
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al., 2002). However, this is a complex relationship between sea ice dynamics such as ice 

type, distribution of organic and inorganic nutrients and photosynthetically active 

radiation (PAR), and the structure of the sea ice biota which modifies energy cycling 

through the community (Vaqué et al., 2002; Stewart and Fritsen, 2004). As such, the 

quantitative importance of bacterial production is difficult to assess (Kottmeier and 

Sullivan, 1990), but it is likely that bacteria released from melting ice contribute to 

microbial blooms at the marginal ice zone and participate in a microbial loop within the 

ice matrix which may in turn support higher trophic levels (Kottmeier et al., 1987).  

 

With recent developments in molecular procedures and culture-based analysis, a 

taxonomic assessment of the bacterial species is considered vital for the further 

understanding of sea ice microbial processes (Brown, 2000). Assessing microbial 

diversity however is considered to be a daunting task (Staley and Gosink, 1999). Recent 

efforts based on 16S rDNA sequences of pure cultures indicates that sea ice bacteria fall 

into five major phylogenetic groups: the Proteobacteria, the Cytophaga-Flavobacterium-

Bacteroides (CFB) group, the verrucomicrobia and the high and low mol percent gram-

positive bacteria (Staley and Gosink, 1999; Brown, 2000)(Figure 1.2). 

 

Representatives from the Archaea have been described from the water column, including 

the Crenarchaeota and Euryarchaeota, which may also be present in the sea ice (Staley et 

al., 2002). Bacteria thus far isolated from the sea ice have been heterotrophic organisms 

utilising the organic substances produced by diatoms and other algae. It is not yet known 

whether any might be photosynthetic or chemosynthetic (Staley et al., 2002).  
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Figure 1.2. The Universal Tree of Life showing the major phyla of Bacteria, Archaea and 

Eucarya based on small subunit rRNA sequences (Staley, 2002). 

 

1.4 Cape Hallett and the Latitudinal Gradient Project 

 

The Victoria Land mountain chain and coastline within the Ross Sea region contains the 

most extensive coastal gradient in Antarctica: Cape Adare (68°S) to the southern end of 

the Ross Ice Shelf (86°S), and includes a variety of marine, terrestrial and freshwater 

habitats. Important environmental factors including solar radiation (annual radiation, UV 

radiation), temperature, day length and sea ice cover vary predictably along this gradient 

and are likely to exert a significant influence on ecological processes (Howard-Williams 

and Peterson, 1998). The Latitudinal Gradient Project (LGP) which commenced in the 
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2003/2004 Antarctic field season aims to develop an understanding of the ecosystems 

that exist along the Victoria Land coastline and to describe the potential environmental 

variability that may occur in the future (Gordon, 2003). Although various other studies 

have attempted or are currently working to describe ecosystem/environmental variation, 

(e.g. the Long Term Ecological Research project (LTER) in the McMurdo Dry Valleys) a 

latitudinal coastal, marine and terrestrial survey of physical and biological parameters 

will be a unique initiative. The Latitudinal Gradient Project will visit five sites along the 

Victoria Land coast: Cape Hallett, Terra Nova Bay, Granite Harbour, Darwin Glacier and 

the Beardmore Glacier (Figure 1.3). The project is expected to span 15 years from 

2003/2004 with the information gained from the different sites along the coast helping to 

predict future effects of environmental change in Antarctica (Gordon, 2003). 
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Figure 1.1 Map of the Ross Sea showing Latitudinal Gradient and LGP research sites                    

(Gordon, 2003). 
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1.5 Research Aims 

 

Understanding the spatial and temporal dynamics of Antarctic sea ice and the associated 

biotic communities is fundamental to quantifying Southern Ocean productivity and the 

trophodynamics of the Antarctic coastal ecosystem. However, bacterial production has 

generally been overlooked in estimates of Southern Ocean productivity and the literature 

on bacteria associated with sea ice is somewhat limited. If current climate trends are 

sustained, changes in the volume and extent of sea ice, ocean circulation, mixing regimes, 

cloud cover and nutrient input will influence the microbial communities that characterise 

the sea ice environment. An appreciation of the response of bacterial assemblages to 

environmental change is likely to provide an insight into the potentially long-term 

changes to productivity in the sea ice ecosystem. 

 

The aim of this thesis is to develop an understanding of the techniques utilised in the field 

of microbial ecology and to incorporate these techniques in examining the bacteria found 

within Antarctic sea ice. Chapter 2 provides a description of the field sites and provides 

an introduction to epifluorescence microscopy and flow cytometry. Included also is a 

summary of the development and calibration of the methods described in subsequent 

chapters and a short pilot study on bacteria in Wellington Harbour.  

 

In Chapter 3 two methods for assessing bacterial cell abundance are compared: 

epifluorescence microscopy and flow cytometry. This chapter also compares the 

distribution and abundance of bacteria within annual sea ice at two locations in 



Chapter 1: General introduction 

 

 18 

Antarctica; the Mertz Glacier (pack ice) and Cape Hallett (fast ice). In addition, the 

microbial loop hypothesis is evaluated by comparing bacterial data with algal counts and 

measurements of Chl a from concurrent samples. 

 

A novel application of the vital tetrazolium stain CTC to determine cell metabolic activity 

is the focus of Chapter 4. This study assesses the bacterial response to changing light and 

salinity levels as a proxy for climate-induced change in the sea ice environment. Chapter 

5 summarises the findings of the thesis, provides general conclusions and considers future 

research directions. Chapter 3 and Chapter 4 have been written as self-contained research 

papers for publication. As a consequence there is some repetition in the introductions and 

discussions. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Site descriptions, introduction to techniques for 

enumerating bacterial cells, and development of methods 
 
 

 

This chapter describes the locations where bacterial samples were collected in 2002 

and 2003 and also provides an introduction to epifluorescence microscopy and flow 

cytometry. The rationale behind the methods adopted in subsequent experiments are 

briefly described, along with a short pilot study on bacteria in Wellington Harbour. 

 

2.1 Cape Hallett site description 

 

Cape Hallett (72º19´S 170º16´E) is located at the southern end of Moubray Bay, 

Northern Victoria Land, in the Western Ross Sea (Gordon, 2003)(Figure 2.1). The 

cape forms the northern point of the north-south aligned Hallett Peninsula that is 32 

km long and approximately 8 km wide (Harrington et al., 1967). The peninsula joins 

the mainland by way of a narrow ridge between Tucker Glacier and Edisto Inlet. 

Seabee Hook is a recurved spit composed of coarse low-lying volcanic material that 

projects about 1200m west from the high rocky ridge forming Cape Hallett.  

 

The LGP campsite was situated on the edge of Willett Cove, a small bay enclosed on 

the south side of Seabee Hook (Gordon, 2003). All but a few protruding scoria ridges 

on Hallett Peninsula are covered by a mantle of undulating ice. This ice mostly drains 

into Edisto Inlet where glaciers drape the cliffs on the east side of the bay (Harrington 

et al., 1967). Satellite data collected from 1979 to 2000 suggests that sea ice remains 

at Cape Hallett after the rest of the coast from Cape Adare to Coulman Island is clear 

of ice. The average time until ice- free water eventually appears (27th Jan) has a 
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standard deviation of two weeks and while on average this ice-free period extends 

until 2nd March, in some years the ice does not completely clear at all (Falconer and 

Pyne, 2000). 

 

Seabee Hook is the site of an Adelie penguin colony with an estimated population of 

40,000 breeding pairs. Although not permanent residents at Cape Hallett, other birds 

have been observed in the area besides the Adelie penguins including snow petrel, 

southern Giant Petrel, Wilson’s storm petrel, Chinstrap penguin, Emperor penguin, 

and the Southern Black-backed gull. Observed marine fauna include Crabeater seal, 

Weddell seal, Elephant seal, Leopard seal, Minke whale and Fin whale (Gordon, 

2003). 

 

2.2 Mertz Glacier site description 

 

The Mertz Glacier and its associated coastal polynya are located off eastern 

Antarctica in the vicinity of George V Land (66
o
S, 147

o
E). The Mertz Glacier tongue 

projects seaward about 160km from the Antarctic coast at approximately 145ºE, 

which causes ice build-up upwind of the glacier, while preventing ice advection into 

the region from the east to west/southwest where polynyas of dual origin coalesce to 

form the Mertz Glacier Polynya (Massom et al., 2003). Coastal polynyas are typically 

regions of enhanced oceanic primary and secondary production and the growth and 

accumulation of phytoplankton in particular is greater within polynyas than in 

adjacent waters (Arrigo and van Dijken, 2003). Dr. Ken Ryan collected the pack ice 

samples used in this thesis in 2002 during a voyage on the Australian research vessel 

Aurora Australis in conjunction with Dr. Andrew McMinn and the Australian 

Antarctic Division.  
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Figure 2.1 Detail of Hallett Peninsula (Gordon, 2003) 
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2.3 Epifluorescence microscopy 

 

An accurate and efficient assessment of bacterial abundance in natural environments 

has been a long-standing endeavour for aquatic microbial ecologists (Sherr et al., 

2001). Determining both the abundance and biomass of microscopic cells are key 

parameters in aquatic ecosystems, and in virtually all studies of planktonic systems 

they are seen as the most essential measurements (Gasol and DelGiorgio, 2000). Early 

approaches to the enumeration of bacterial cells were based on the ability of cells to 

form colonies on marine agar plates (Sherr et al., 2001). This necessitated incubation 

periods of several days, but more importantly the plate count method detects only 

those bacteria capable of forming colonies on specific culturing medium (Bunthof and 

Abee, 2002); even the least specific media are selective with respect to total cell 

numbers in a sample (Monfort and Baleux, 1992, Porter et al., 1995). Referred to as 

the ‘plate count anomaly’ this approach resulted in a loss of observable species 

diversity and yielded significantly low estimates of bacterial abundance. Inaccuracies 

were in the order of 102 to 104 cells per ml. Although there has since been significant 

improvement in cell culture technique (Staley et al., 2001), the development of direct 

count methods using fluorescence microscopy and fluorescent stains was a 

revolutionary development in marine microbiology (Cole, 1999; Sherr et al., 2001).  

 

A fluorescence microscope is essentially a compound microscope and the optical 

paths for image formation are similar to those of a standard bright field microscope 

(Taylor and Salmon, 1989). The observation of fluorescence is based on the ability to 

separate the light used to excite a specimen from the fluorescent light subsequently 

emitted. This can be achieved via two methods: (1) transmitted-light fluorescence 
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microscopy, or (2) incident-light or epi-illumination fluorescence microscopy. Key 

components of the epi-illumination method are shown in Figure 2.2. In this system 

only one lens, the objective, is used to both focus the excitation light and to collect the 

fluorescent light emitted from the specimen (Ploem, 1989). As the objective also acts 

as the condenser, only one optical path to the detector is needed (Li et al., 2004a). The 

methods are further distinguished by the use of a dichroic mirror that is designed with 

an interference coating that is highly reflective when aligned at 45º; short wavelength 

excitation light is reflected, but the longer wavelength fluorescent light is transmitted. 

The development of the dichroic mirror was a major advantage of epifluorescent 

microscopy over transmitted-light fluorescence microscopy as it allows fluorescence 

to be combined with traditional transillumination methods such as phase contrast, 

polarisation, and differential interference contrast (Taylor and Salmon, 1989).  

 

 

Figure 2.2. Schematic diagram of microscope for epi-illumination (Taylor and 

Salmon, 1989) 
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The use of fluorescence to accentuate objects is based on the property of some atoms 

and molecules to absorb light and subsequently emit light that differs in wavelength 

from that initially absorbed (Ploem, 1989). When exposed to light of a particular 

wavelength, each fluorescent molecule will absorb a photon of energy. This energy 

excites an electron to adopt a higher orbital or vibrational state. During the return of 

the electron to its ground state, a photon is lost to the environment as fluorescence. 

Because this process involves the loss of energy, the emitted light is always of a 

longer wavelength and of a lower intensity than that initially absorbed (Li et al., 

2004a).  

 

Fluorochromes can be classified into two groups according to their functional 

characteristics. The first group targets specific cell components such as nucleic acids, 

lipids, or the cell membrane (Li et al.2004a). Commonly used dyes in the first group 

that stain DNA or RNA include acridine orange (AO), ethidium bromide, propidium 

iodide (PI) and 4´,6 – Diamidino-2-phenylindole dihydrochloride (DAPI), while 

fluorescein isothiocyanate (FITC) is often used in conjugated forms for protein 

analysis. The second group of fluorochromes is used to assess the physiological state 

of individual cells and forms two broad categories: Those that indicate the state of cell 

membrane integrity or energisation, and those such as 5-Cyano-2,3-ditolyl tetrazolium 

chloride  (CTC) and carboxyflourescein diacetate (CFDA) that are taken up by viable 

cells and then modified intracellularly to yield fluorescent products (Gasol and del 

Giorgio, 2000).  
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2.4 Flow cytometry 

 

The enumeration of bacteria entered a new phase with the application of flow 

cytometry. Although the basic elements of flow cytometry were developed three 

decades ago (Shapiro, 1995), the use of this technology in aquatic microbial ecology 

has been slow relative to other fields (Gasol and Del Giorgio, 2000). Flow cytometry 

can be broadly defined as a system for measuring, and then analysing, the signals that 

result as particles flow in a liquid stream through a beam of light (Givan, 2001).  The 

technique is unique in that it allows quantitative measurements of individual cells in 

large numbers to be performed in a short time. Because the traditional microscopic 

techniques do not lend themselves to large-scale studies such as oceanographic 

cruises, analysis and enumeration of natural planktonic bacteria by flow cytometry is 

becoming an essential technique in aquatic microbial studies (Gasol and Del Giorgio, 

2000).  

 

There are three components to flow cytometers: a fluidics system to introduce and 

present cells for analysis; an optical system to collect light signals generated as cells 

pass through the laser; and an electronics system to convert the light signals to 

proportional electronic signals that are then digitised for computer analysis (Becton 

Dickinson). 

 

2.4.1 Fluidics system 

 

In order to obtain accurate measurements it is important that all particles of interest 

pass through a point of uniform sensitivity within the cytometer (Pinkel and Stovel, 
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1985). This is accomplished by hydrodynamic focusing or sheath flow, a technique in 

which the sample fluid containing the cells of interest is injected into the central 

portion of a flowing stream of cell-free sheath fluid (Shapiro, 1988). The sheath fluid 

reservoir is pressurised by a built-in air pump in order to drive the sheath fluid 

through a filter to remove extraneous particles, and then through plastic tubing to the 

lower part of the flow cell (Givan, 2001).                                                        

 

 Sheath flow is created by the conical shape of the lower flow cell chamber and when 

a sample is applied to the sample injection port (SIP), it is drawn up and injected into 

the lower chamber of the flow cell by a slight differential overpressure relative to the 

sheath fluid. The use of sheath flow confines cells to the central region of the stream 

which both increases the precision with which the cell sample can be positioned 

within the flow cell, and limits the likelihood of obstructions within the flow system 

(Shapiro, 1988).  Sheath flow is further advantageous in that there is little mixing of 

sample with sheath fluid as the cells to be measured are carried in single file through 

the centre of the flow cell (Figure 2.3). 

 

 

Figure 2.3. Schematic diagram of cytometer fluidics design (BD FACSCalibur 

model, Becton Dickinson). 
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2.4.2 Optical system 

 

Flow cytometric analysis is based on the generation of signals by illumination of 

particles passing a defined point within the flow cell. The source of illumination is 

either an arc lamp or a laser (Givan, 2001). The most popular lasers are argon ion 

lasers, typically air-cooled and run at a wavelength of 488nm (Shapiro, 1988). This 

means of illumination offers extremely high radiance, stability, and is a light source 

that can be focused on areas equal to the dimensions of cells (Wheeless and Kay, 

1985).  

 

The generated laser beam diverges little and provides an intensely bright, narrow 

beam allowing particles flowing past the laser to be illuminated strongly for a very 

short time. Signals from one particle can then be generated and subsequently 

separated by darkness from signals generated by the following particle (Givan, 2001). 

The laser beam is first passed through a prismatic beam expander that alters it from a 

circular profile to an elliptical distribution. A single element lens is then used to focus 

the expanded beam on the sample stream within the flow cell; dimensions of the laser 

profile at the focus point are typically 22µm vertically, and 66µm horizontally. Before 

the laser light enters the flow cell a final filter or beam-steering plate is used to align 

the light with the sample stream. When the laser beam strikes the plate the light is 

shifted a finite distance, parallel to its original path. Optimal laser alignment within 

the flow cell is achieved by rotation of the steering plate in either direction (Becton 

Dickinson), which ensures that the core of the sheath stream is uniformly illuminated 

by the light (Givan, 2001).  
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2.4.3 Detection optics 

 

The point at which the sheath stream and laser beam intersect is referred to either as 

the analysis point, observation point, or interrogation point. Surrounding this focal 

point within the flow cell are lenses that collect the photons of light scattered as cells 

pass through the laser beam (Givan, 2001). The photodetectors that collect the light 

signals and convert them into electrical impulses are either photodiodes or 

photomultiplier tubes.  

 

The first element of the detection system is a silicon photodiode for the collection of 

forward scatter (FSC or FALS) laser light; light of the same colour as the illuminating 

beam that has been bent at a small angle, typically 1-10º, relative to the laser light 

(Givan, 2001). A laser-blocking bar positioned in the plane of the laser beam is 

necessary to separate the light scattered or diffracted by the cells from the unscattered 

light (Becton Dickinson). Forward scatter is proportional to cell surface area, volume, 

relative cell size, and refractive index (Givan, 2001; Jochem, 2000; Gasol and del 

Giorgio, 2000).  

 

In addition to the collection of forward scatter light, three, four, or more 

photomultiplier tubes are positioned at right angles to the illuminating beam. A 

photomultiplier is a very sensitive detector of radiant energy in the ultraviolet, visible, 

and near infrared regions of the electromagnetic spectrum (Hiebert and Sweet, 1985) 

and therefore advantageous in detecting the weaker signals emitted at 90º relative to 

the laser. Fluorescence emission and wide-angle scatter are initially collected by an 

objective lens that is optically coupled to the flow cell by a static surface of silicon 
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gel. These signals will be a mixture of light of the same colour as the laser beam, and 

various other colours depending on the fluorescent stains or endogenous molecules 

associated with the cell (Givan, 2001). Because the various photomultipliers are 

insensitive to the wavelength of light they are exposed to, filters are required to enable 

the recording of colour specific responses.  

 

 Following the objective lens is a series of dichroic mirrors that separates the emitted 

light in discrete wavelength bands to the FL2 and FL3 detectors (Figure 2.4). Directly 

after the first dichroic mirror is a Brewster-angle beam splitter which is used to 

transmit unpolarised green fluorescent light to the FL1 detector, while reflecting the 

vertically polarised laser light to the side scatter detector (Becton Dickinson). Further 

spectral sensitivity is achieved by placing both a slit filter and a band-pass filter in 

front of each photomultiplier tube. The band-pass filter transmits only a narrow 

wavelength, while the slit filter prevents background light from reaching the detector 

(Becton Dickinson).   

 

The intensity of side scatter light (SSC or WALS) is related to cell surface texture and 

internal structure, as well as size and shape (Givan, 2001; Jochem, 2000; Gasol and 

del Giorgio, 2000). This is light of the same colour as the illuminating beam that is 

scattered by a particle to an angle of 90º relative to the illuminating beam (Givan, 

2001). The remaining photomultipliers (the number of which depends on 

configuration) are used to collect either the fluorescence emission of any 

fluorochromes associated with the cell, or the naturally occurring fluorescence of 

endogenous molecules within the cell, if they are of interest (Figure 2.4). 

 



Chapter 2: Development of Methods 

 
     

 30 

 

 

Figure 2.4 Schematic diagram of cytometer optical 

design (BD FACSCalibur model, Becton Dickinson). 

 

 

2.4.4 Electronics system 

 

The small electrical impulses (analog signal pulses) generated by the response of 

photodetectors to the detection of photons of light are then digitised. Further influence 

over the response to light is achieved by changing the amplification of the electrical 

current after it leaves the photodetector. This amplification can be either linear or 

logarithmic to cater for the expected range of signals and can operate at varying gains. 

Logarithmic transformation of cell signals is useful if cells exhibit a range of 

fluorescence intensities and compression increases the dynamic range of the system 

(Hiebert and Sweet, 1985). If there is less than a 10-fold difference between the 

smallest and largest signal, as is typical in DNA content studies (Givan, 2001), then 

linear amplification is sufficient.  
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Once the electrical signal from a photodetector has been amplified, an analog-to-

digital converter (ADC) is used to group the continuous distribution of signals into 

discrete ranges (Givan, 2001). Finally, this digital information is transferred from the 

flow cytometer to a computer where the classification of results can be processed and 

displayed with the appropriate software. 

 

2.5 Filtration 

 

Two filtration systems were briefly compared to determine bacterial cell abundance. 

Initially, samples were pressure filtered using a disposable syringe and Millipore 

Swinnex filter holders. In this configuration liquids were dispensed by syringe to the 

top of the plastic Swinnex unit and the cells were collected on internally mounted 

25mm membranes as the sample was gently forced through the filter. This method 

proved useful for filtering small volumes, but was less efficient for larger sample 

sizes. The distribution of cells observed on the filter membranes appeared to be 

uniform, but the pressure system may have resulted in a greater concentration of cells 

in the middle of the membrane and biased cell counts. 

 

The method subsequently adopted for all sample filtration was to collect cells using a 

vacuum operated filter apparatus (Millipore). This method is consistent with the 

current literature on microbial analysis. The sample was placed in a glass funnel and 

filtered through a membrane placed between the funnel and underlying vacuum flask. 

When combined with a 0.8µm backing filter, this system was highly effective in 

establishing a uniform distribution of cells on the target membrane. 
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2.6 Filtration Membranes 

 

Membranes suitable for filtration are constructed from a range of materials and cater 

for a variety of applications. The majority of recent studies involving the enumeration 

of bacterial cells with epifluorescent microscopy utilise 0.22µm black-stained 

polycarbonate membrane filters (e.g. Nucleopore, Poretics). It has been suggested that 

a black background significantly enhances the degree to which fluorescently labelled 

cells can be visualised and that the polycarbonate construction captures more cells 

(Cole, 1999). During the course of this research both black polycarbonate filters 

(Poretics) and white mixed cellulose ester membranes (Millipore) were trialled. 

Although differences in colour and construction were not empirically determined, the 

use of white cellulose-based membranes did not significantly impede cell counts and 

were easier to handle in field conditions. 

 

Despite careful use of the vacuum pump, the formation of holes in the central region 

of both filter types was occasionally observed.  The prevalence of holes, and therefore 

loss of cells, was notably greater in the polycarbonate construction, and for this reason 

0.22µm white cellulose membranes were used for all experiments. 

 

Three different vacuum pumps were used at various stages of the research, only one 

of which was capable of airflow calibration. In order to minimise the need to repeat 

sample filtrations due to holes being formed in the membranes, the vacuum created by 

each pump was carefully controlled by manually restricting air- flow to the vacuum 

flask.  

 



Chapter 2: Development of Methods 

 
     

 33 

2.7 Antifade 

 

The prevention of photobleaching was found to be a requirement for all sample slides 

in order to maintain fluorescence during cell counts. This was despite accounts that 

the fluorochrome DAPI does not fade while a field of view is being examined (Sherr 

et al., 2001). Two antifade products were used. Initially, a mounting medium using 

1,4 – Diazabicyclo [2.2.2] octane or DABCO™ (Sigma) was used which acts by 

scavenging the free radicals produced by fluorochrome excitation. This was made up 

as follows: 

 

0.2g DABCO in 9ml glycerol heated to 50°C. 

Add to this 1ml of the following solution: 

10ml 1m TRIS, pH 7.4 

40ml DDH20 

10mg sodium azide. 

 

This antifade medium was observed to have a variable influence on the degree of 

photobleaching but was adequate provided cells were counted as quickly as possible 

once exposed to UV excitation light. In the latter experiments the commercial product 

VECTASHIELD (Vector Laboratories) was used. Although designed for a specific 

range of fluorochromes such as Texas Red and Cy3, this medium was much better 

than the earlier method in preserving DAPI fluorescence.  
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2.8 Treatment of ethanol preserved samples 

 

The samples collected from the Mertz Glacier in 2002 were preserved in ethanol at a 

final concentration of 10%. This proved to be highly problematic in sample filtration 

as sodium chloride crystals developed in the samples and this prevented even small 

volumes (0.5ml) passing through a filter membrane. Several options were considered 

to remedy this problem including dialysis and DAPI-staining of small volumes of 

sample directly onto glass slides. The simplest method, and that finally adopted, was 

to add sterile, double distilled water to each sample. Although this significantly 

increased the time needed to filter each sample, it was an effective means of 

redissolving the sodium chloride crystals.  

 

Several steps were taken to ensure the added water was cell-free. This entailed firstly 

autoclaving small quantities of water before filtering them through a 0.22 µm 

Millipore filter. This filtrate was then autoclaved a second time to kill any remaining 

bacterial spores. On occasion however, live cells were viewed on the membrane 

surface of some slides and while such cells were not counted, a degree of error in 

overall cell counts using this method must be assumed. 

 

 

 

 

 

 

 



Chapter 2: Development of Methods 

 
     

 35 

2.9 Bacterial cell stains 

 

2.9.1   4′,6 – Diamidino – 2 – phenyindole hydrochloride (DAPI) 

 

DAPI is a general fluorescent stain that complexes to A-T rich sequences in the major 

grove of DNA in bacterial cells (Howard-Jones et al., 2001). This stain has been used 

at final concentrations ranging from 0.01µg ml1 to over 10µg ml1 (See Sherr et al., 

2001). In order to determine an appropriate staining regime, seawater samples from 

Wellington Harbour were stained at 0.01µg ml1 final concentration at the following 

volumes: 25ml, 50ml, 100ml, 200ml, 300ml. Each sample was filtered through a 

membrane until 10ml remained in the glass funnel before DAPI was added. After an 

incubation period in the dark the remaining fluid was filtered. Samples were examined 

under an epifluorescence microscope to determine whether increases in the volume of 

seawater filtered (and therefore bacterial cells) correlated with increases in the number 

of stained bacterial cells. Staining at the lower concentration of 0.01µg ml1 did not 

appear to limit the number of cells stained across the range of volumes trialled and 

produced low background fluorescence.   

 

2.9.2   5-cyano-2,3-ditolyl tetrazolium chloride (CTC) 

 

CTC is a monotetrazolium redox dye that produces a fluorescent formazan (CTF) 

when chemically or biologically reduced. CTC has become a popular stain for 

determining metabolic activity in bacteria and coupled with DAPI staining indicates 

the presence of both active and total cells.  
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In preparation for use in Antarctic field conditions, samples of seawater from 

Wellington Harbour were stained with CTC and subsequently counterstained with 

DAPI. Prior to counterstaining, a fixative is required to suspend all cell activity. Both 

glutaraldehyde and formalin were investigated for this purpose. The staining affinity 

of DAPI proved to be ineffective in the presence of glutaraldehyde, but was found to 

be successful if cells were fixed in formalin.  

 

2.9.3   6-Carboxyfluorescein diacetate (CFDA) 

 

A second metabolic stain 6-Carboxyfluorescein diacetate (CFDA) was also 

considered for use at the Cape Hallett field camp. Some success was achieved in trials 

with this stain, but the protocols described in the literature required use of a 

microcentrifuge, which was not subsequently available at the remote Antarctic field 

site. 

 

2.10 Flow cytometry calibration 

 

Preliminary investigations were conducted using a Becton Dickinson FACScan Flow 

Cytometer at Victoria University, Wellington. In order to produce accurate cell counts 

it is necessary to determine the volume processed by the cytometer for each sample. 

The calibration method chosen was to use Becton Dickinson TruCount tubes (cat# 

340335) in conjunction with 1.0µm microspheres (Polysciences cat# 18860). 

Calibrations were run in triplicate, as described in Crain (2003). 
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Two fluorochromes were compared in analysing the Mertz Glacier samples: 

 

a) Propidium iodide (PI) passively diffuses into cells that have lost membrane 

integrity and binds to both RNA and DNA. PI is commonly used for identifying dead 

cells in a population, provided they have been permeabilised. 

 

b) SYBR Green I (Molecular Probes) is a nucleic acid stain with a high binding 

affinity for RNA or double-stranded DNA. The staining protocol used was that 

described in Crain (2003). 

 

Both fluorochromes produced spurious data. Efforts made to validate the technique 

included stain dilution, examination of E.coli cells, consideration of sheath fluids, and 

trials to determine the influence of ethanol as a preservative. The Becton Dickinson 

FACSCalibur cytometer operated by the Malaghan Institute, Wellington, provided a 

comparison of machines and similar results were obtained with this machine. Success 

in analysing both the Mertz Glacier and Cape Hallett samples was achieved using the 

NIWA FACSCalibur cytometer in Hamilton and the nucleic acid stain SYBR Green II 

(Molecular Probes). Flow calibration was acquired using BD TruCount tubes (cat# 

340334 ). 
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2.11 Wellington Harbour pilot study  

 

Introduction 

 

Estimating the abundance of aquatic bacteria is an important parameter in microbial 

ecology. A short pilot study was conducted in Wellington Harbour to gain familiarity 

with sample filtration, slide preparation and the estimation of cell abundance using 

epifluorescence microscopy. Three sampling sites within Wellington Harbour were 

chosen to compare possible differences in bacterial cell abundance. Moa Point and 

Island Bay were selected on the south coast to contrast the possible influence of the 

nearby (2km) sewage outlet at Moa Point, while the Hutt River estuary was chosen to 

compare cell counts in an area of the harbour with fluctuating saline concentrations 

and high sediment input. It was expected that Moa Point will support a greater number 

of bacteria compared to the estuarine conditions at the mouth of the Hutt River.  

 

Methods 

 

Seawater samples of approximately 1 litre were collected from Wellington Harbour in 

March 2003 from Moa Point, Island Bay and the Hutt River Estuary. Samples were 

collected from the shoreline in plastic bottles irrespective of local tide levels. 

 

A Millipore filtering apparatus was used to carefully vacuum-filter three 100ml sub-

samples from each site onto internally mounted 0.22µm white Millipore cellulose 

membranes, 25mm in diameter and with a pore size of 0.22µm. 90ml of each sub-

sample was passed through the membrane before DAPI was added to the remaining 
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10ml in the filter tower at a final concentration of 0.01µg ml‾1.  The filtering 

apparatus was placed in the dark and left for twenty minutes.   

 

After this time, the remaining 10ml was filtered and the membrane carefully removed 

with tweezers and placed on a glass slide. A drop of DABCO-based mounting 

medium was placed on the membrane before a cover slip was overlain and sealed with 

nail polish. 

 

Cells were counted on an Olympus microscope under 1000x magnification using oil 

immersion. Slides were visualised using a digital camera mounted to the microscope 

with images relayed to a monitor. For each slide 3 fields of view were randomly 

selected and counts were made either of a complete field of view, or the number of 

cells occurring in one quarter of the field of view. The number of cells present for 

each sub-sample was calculated by determining the area of the filter paper, number of 

possible fields of view at 1000x magnification as seen through a monitor and 

multiplying this by the number of cells counted. This result was appropriately scaled 

to provide an estimate of the number of cells per ml in each sub-sample. Differences 

between sampling locations were determined using a two-sample t significance test. 

 

Results 

 

Differences between cell abundance at each site within Wellington Harbour are shown 

in Figure 2.5. The number of bacterial cells at Moa Point and the Hutt River were 

similar at 48x104 and 50x104 cells per ml respectively (t = 0.12, df = 2, p > 0.25). The 

data suggest far fewer bacteria are present in the water at Island Bay, with on average 
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17x104 cells per ml. This is significantly less than either Moa Point (t = 11.90, df = 2, 

p <0.005), or the Hutt River (t = 1.97, df = 2, p <0.1). In relation to sampling site, the 

counts obtained for each replicate show good similarity with the exception of one Hutt 

River replicate. Relatively small standard errors suggest an even distribution of cells 

on the filter membranes using the vacuum method for filtration. For the Hutt River 

replicates the error bars represent, on average, a 4.33% departure from the mean, 

while for Island Bay and Moa Point the figures are 4.67% and 4.00% respectively.  
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Figure 2.5 Comparison of the abundance of bacterial cells from three locations within                

Wellington Harbour. Error bars are ± 1 SE. 
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Discussion 

 

While the scale of this pilot study was not intended to provide meaningful conclusions 

in comparing sampling sites, the abundance of bacterial cells around the Wellington 

coastline does not appear to be uniform. While the abundance of cells at Moa Point 

proved to be significantly greater than Island Bay, the Moa Point count average is 

comparable with the Hutt River sampling site which was initially postulated to be the 

least favourable environment for bacterial growth. The Hutt River average is heavily 

influenced by one replicate however, which has not been excluded as an outlier. The 

lower cell abundance observed at Island Bay may simply reflect error in sample 

collection, although the data suggest there are significant differences in bacterial 

abundance within Wellington Harbour that could be explored further. 



Chapter 3:  Distribution and abundance of sea ice bacteria 

from two locations in coastal Antarctica and evidence for the 

microbial loop 

 

 

 

Abstract 

    
Diverse microbial communities are present in the brine inclusions and interstices of 

Antarctic sea ice that are integral to the energy base of the Southern Ocean. 

Productivity in Antarctica reflects both the spatial and temporal dynamics of annual 

sea ice, as well as the complex cycling of energy through the sea ice microbial 

community. Marine bacteria are thought to be integral to trophodynamics and 

functioning of a microbial loop within the ice matrix, but there is currently no clear 

understanding of the distribution and diversity of sea ice bacteria. In this study, a 

multivariate statistical approach was used to compare the distribution and abundance 

of bacteria occurring in pack ice at the tongue of the Mertz Glacier (George V Coast, 

Antarctica) with bacteria from fast ice at Cape Hallett (Victoria Land coastline, 

Antarctica).  Epifluorescence microscopy was compared with flow cytometry as 

methods for assessing bacterial cell numbers, while regression analysis was used to 

examine how bacteria covaried with algae and Chl a at each location. Flow cytometry 

proved to be a more robust method for providing cell estimates and was used for all 

analyses. There was no difference in the abundance of bacterial cells with respect to 

sampling location, but a significant difference in the vertical distribution of cells 

within the ice was observed. Cell numbers for bacteria and algae were positively 

correlated in pack ice of the Mertz Glacier indicating a functional microbial loop, but 

exhibited no discernable relationship in fast ice at Cape Hallett. These findings 
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support the general consensus that the generation of bacterial biomass from algal-

derived dissolved organic matter is highly variable across seasons and habitats. 

 

3.1 Introduction 
 
 

Productivity in the Southern Ocean is characterised by large-scale spatial and 

temporal variability. This is largely due to the annual expansion and contraction of sea 

ice around the Antarctic continent that influences not only the pelagic systems under 

the ice, but enhances ecological variability and productivity of the ice-bound biota 

(Legendre et al., 1992; Ackley and Sullivan, 1994). Although sea ice represents a 

harsh physicochemical environment with steep gradients in temperature, light, 

salinity, and nutrient concentrations (Arrigo and Sullivan, 1992), diverse microbial 

communities are present in the brine inclusions and interstices of sea ice that are 

integral to the energy base of the Southern Ocean (Garrison, 1991). Marine bacteria 

are an important component of the sea ice community but there is no clear 

understanding of the distribution and diversity of bacteria, or how this relates to 

community processes, particularly Southern Ocean carbon cycling (Ducklow et al., 

1999).  

 

Current climate models predict a 25-45% reduction in the volume and extent of 

annual sea ice over the coming decades and forecast long-term changes to the physical 

oceanography and ecology of the Southern Ocean (Wu et al., 1997; Gordon and 

O’Farrell, 1997). While the effect of climate change on sea ice dynamics and 

productivity within the Antarctic sea ice ecosystem is not well understood, there are 

thought to be significant ecological consequences to changes in the magnitude and 
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timing of seasonal sea ice advance and retreat (Smith et al., 1998). This has renewed 

interest in understanding the constraints on microbial abundance, activity, and 

survival in polar regions.  

 

In most regions of Antarctica, ice-cover is an annual phenomenon that can be divided 

into a zone of fast ice that remains attached to the shoreline, and free-floating pack ice 

which extends into deep-water regions (Vincent, 1988; Garrison, 1991; Ackley and 

Sullivan, 1994). Both ice environments support numerous algal, bacterial and 

protistan species (Arrigo and Sullivan, 1992). While the presence of ice dictates the 

spatial and temporal variability of microbial communities, productivity reflects a 

complex of physicochemical characteristics including temperature, presence of snow, 

distribution of organic and inorganic nutrients and photosynthetically active radiation 

(PAR) (e.g. Palmisano et al., 1987; Priscu et al., 1989; Sullivan et al., 1990; Cota et 

al., 1990; Garrison and Buck, 1991).  

 

Descriptions of the distribution and abundance of bacteria with respect to ice structure 

however, remain fragmentary (Delille, 1992). The majority of studies examining sea 

ice have focused on fast ice that constitutes only 1-5% of the seasonal ice cover. The 

highest biomass and production of microbes occurs in microhabitats at the base of fast 

ice (Archer et al., 1996), and metabolic coupling between bacterial growth and 

microalgal photosynthetic metabolism has been well documented (e.g. Sullivan and 

Palmisano, 1984; Grossi et al., 1984; Kottmeier et al., 1987; Stewart and Fritsen, 

2004). The vast majority of Antarctic sea ice is pack ice, which supports a microbial 

biomass concentrated in interstitial and surface layers (Archer et al., 1996; Garrison et 

al., 1986). Pack ice communities are thought to contribute the majority of the sea ice 
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carbon production in ice-covered regions of the Southern Ocean. However, due to 

limited accessibility there is much less known about the diversity, distribution or 

abundance of pack ice microbial communities (Kottmeier and Sullivan, 1990; 

Legendre et al., 1996).  

 

Observed bacterial abundance and level of in situ activity has led several authors to 

propose an active microbial loop operating within sea ice, similar to that of temperate 

systems (Sullivan and Palmisano, 1984; Azam et al., 1991). The links between 

bacterial processes and higher trophic levels within the microbial loop are not well 

defined. The microscopic fraction of the sea ice community is known to be an 

important food source for crustaceous zooplankton such as the Antarctic krill 

Euphausia superba Dana (Daly, 1990; Stewart and Fritsen, 2004; Kottmeier and 

Sullivan, 1990), but little is known about the exact trophic relationships between these 

organisms or rates of carbon transfer (Cota et al., 1990; Stewart and Fritsen, 2004). 

Additionally, bacteria are thought to facilitate algal-based primary production within 

sea ice by providing microalgae with the remineralised nutrients necessary for 

continued growth (Kottmeier and Sullivan, 1990; Kottmeier et al., 1987; Archer et al., 

1996). In return, bacteria make use of exuded algal photosynthate and are 

subsequently consumed by nanoplankton and microzooplankton such as flagellates 

and ciliates. This process may cycle as much as a 20-30% of the ice-bound primary 

production to higher trophic levels (Staley et al., 2002). The assimilation by bacteria 

of algal-derived dissolved organic matter (DOM) is a core process in the microbial 

loop hypothesis, but remains equivocal with respect to the spatial and temporal 

dynamics of the sea ice ecosystem (Ducklow et al., 1999; Stewart and Fritsen, 2004). 
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The abundance and biomass of microscopic cells are key parameters in aquatic 

ecosystems, and in virtually all studies of planktonic systems these are the most 

essential measurements (Gasol and DelGiorgio, 2000). A long-standing endeavour of 

aquatic microbial ecology has been to achieve an accurate and efficient assessment of 

bacterial abundances in natural environments. Early approaches to the enumeration of 

bacteria were based on the ability of cells to form colonies on marine agar plates. 

However this method detects only those bacteria capable of forming colonies on 

specific culturing medium (Bunthof and Abee, 2002); even the least specific media 

are selective with respect to total cell numbers in a sample (Monfort and Baleux, 

1992, Porter et al., 1995).  

 

Although the implementation of direct count methods using fluorescence microscopy 

was an important development in microbiology (Cole, 1999; Sherr et al., 2001), the 

enumeration of bacteria has been revolutionised with the application of flow 

cytometry. The application of this technology in aquatic microbial ecology has been 

slow relative to other fields (Gasol and Del Giorgio, 2000), even though the 

traditional microscopic techniques do not lend themselves to large-scale studies such 

as oceanographic cruises. Flow cytometry confers significant advantages over 

fluorescence microscopy, including quantitative measurements of individual cells, 

simultaneous multiparameter analysis, adequate sensitivity of small organisms 

(<0.1µm3) and robust statistics due to analysis rates in the order of 104 cells per 

minute (Robertson et al., 1998). Because of these advantages, analysis and 

enumeration of natural planktonic bacteria by flow cytometry is now becoming an 

essential technique in aquatic microbial studies (Gasol and Del Giorgio, 2000).  
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The Victoria Land mountain chain and coastline within the Ross Sea region contains 

the most extensive latitudinal gradient in Antarctica, ranging from Cape Adare (68°S) 

in the north to the southern end of the Ross Ice Shelf (86°S), and includes a variety of 

marine, terrestrial and freshwater habitats. Important environmental factors including 

solar radiation (annual PAR, UV radiation), temperature, day length and sea ice cover 

vary predictably along this gradient and are likely to exert a significant influence on 

ecological processes (Howard-Williams and Peterson, 1998). The Latitudinal 

Gradient Project (LGP), which is a cooperative research programme that commenced 

in the 2003/2004 Antarctic field season, aims to develop an understanding of the 

ecosystems that exist along the Victoria Land coastline and to describe the potential 

environmental variability that may occur in the future (Gordon, 2003).   

 

This paper examines sea ice bacteria from two distinct sites off the coast of 

Antarctica.  The distribution and abundance of microbes occurring in pack ice at the 

tongue of the Mertz Glacier off the George V Coast (66ºS) is compared with the 

microbial community from fast ice at Cape Hallett (the first LGP site) on the Victoria 

Land coastline (72ºS). In addition to comparing methods for assessing bacterial cell 

numbers, a multivariate approach is used to examine the bacteria/algae associations at 

each location. Specifically, three questions are addressed: 

 

(1) How does the use of flow cytometry compare with epifluorescence microscopy for   

determining bacterial cell abundance? 

(2) Does the distribution and abundance of sea ice bacteria differ between the Mertz 

Glacier (pack ice) and Cape Hallett (land-fast ice)? 

(3) Does the bacteria/algal relationship at both locations indicate an active microbial 

loop? 
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3.2 Methods  
 
 
3.2.1 Sample collection 

 
 

Mertz Glacier 

 

 
Sea ice microbial assemblages were collected from pack ice at the edge of the Mertz 

Polyna (66
o
S, 147

o
E) in spring 2002. Twenty ice core profiles (130mm diameter) 

were extracted using a SIPRE corer (Kovaks, U.S.A.) from eight sites visited by the 

Australian research vessel Aurora Australis between 29th October and 8th November. 

To prevent exposure to ambient surface radiation, extracted cores were immediately 

placed in black polythene bags when removed from the ice. Each core profile was cut 

into 100mm increments as soon as possible following collection, and each section was 

melted in 50ml of filtered seawater chilled to -1.8°C  (Whatman GF/F glass fibre 

filters, 0.45µm). Subsamples from each melted section were used to determine total 

carbon, chlorophyll a (chl a) concentration and algal abundance. For bacterial 

analyses, 10ml from each section were fixed with ethanol (10% final concentration) 

and stored at 4ºC. 

 

Cape Hallett 

 
At Cape Hallett, microbial assemblages were collected from fast ice approximately 

1.5m thick between 22nd November and 12th December 2003. Five sampling sites 

were established within a radius of 2km of Seabee Hook. Each site was surveyed once 

in late November and then revisited in early December. During the first survey, three 

shallow holes were drilled at each site with a powered ice auger (Jiffey) prior to using 

a SIPRE corer to extract the bottom 400-500mm of sea ice. In addition, a SIPRE corer 
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was used to extract one complete core profile at each site. During the December 

survey, four 400-500mm cores were extracted at each site. An opaque sheet was 

employed during all core removal to prevent cell exposure to ambient surface 

radiation. 

 

Once clear of the ice, each core was transferred to a black polythene bag. Under low 

light conditions (<1µmol photons m-2 s-1), the bottom 100mm of ice was cut from 

each core and then reshaped to form a block 40x40x100mm. For bacterial analysis 

either 2g or 5g of ice was carefully scraped off each block with a scalpel and melted 

in either 6g or 15g of filtered seawater (0.22µm, 36ppt) respectively. Samples were 

then fixed in paraformaldehyde (1% final concentration) and glutaraldehyde (0.05% 

final concentration). This process was repeated for the four complete profiles as 

described for the Mertz Glacier samples. All Hallett samples were kept as cold as 

possible (approx. 0ºC) and stored at -80ºC upon return to Wellington, New Zealand. 

 

3.2.2 Epifluorescence microscopy 

 

Mertz glacier samples 

 

Prior to filtration, 30ml of sterile 0.22µm- filtered double-distilled water (DDH2O) 

was added to 1ml of each Mertz glacier sample to dissolve the ethanol-induced 

precipitation of sodium chloride. A Millipore filter apparatus was used to vacuum-

filter each sample onto a white 25mm diameter cellulose membrane filter (Millipore, 

0.22µm). Backing filters (Millipore, 0.8µm) were used to ensure an even distribution 

of cells. Twenty ml was initially passed through the membrane before 4′,6 – 
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Diamidino – 2 – phenyindole hydrochloride (DAPI) stain was added to the remaining 

10ml in the filter tower at a final concentration of 0.01µg ml‾1.  The filtering 

apparatus was placed in the dark for 15 minutes. After this time, the remaining 10ml 

was filtered, and the membrane removed and placed on a glass slide. A drop of 

VECTASHIELD (Vector Laboratories) mounting medium was placed on the 

membrane before a cover slip was overlaid and sealed with nail polish. 

 

Cells were visualised on an Olympus Provis AX70 microscope using a UV filter set 

and 1000x magnification with oil immersion. For each slide, approximately 200 

bacterial cells were counted, either as a series of randomly selected fields of view, or 

as one complete pass of the filter paper from edge to edge. The number of cells per ml 

was calculated by determining the area of the filter paper, number of fields of 

view/passes at 1000x magnification and multiplying this by the average/number of 

cells counted. This result was appropriately scaled to provide an estimate of the 

number of cells per ml and per m2 for each sample.  

 

A recount of five of the samples was made several months after the initial count to 

determine the effects of storage and use of ethanol as a preservative. 

 

 

Cape Hallett samples 

 

Epifluorescence microscopy was used to estimate bacterial abundance for ten of the 

Cape Hallett samples (two samples from each site), as described above. As these 

samples were preserved with paraformaldehyde/glutaraldehyde it was not necessary to 
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add DDH2O. Cells were stained with DAPI at a final concentration of 5.0µg ml‾1 and 

incubated for ten minutes.  

 

3.2.3 Flow cytometry 

 

Prior to analysis, each Mertz Glacier and Cape Hallett sample was pressure-filtered 

using Swinnex filter holders (Millipore) with internally mounted 3.0µm filter papers 

to remove the majority of algal cells. Each sample was prepared by pipetting 500µl of 

each sample into a flow tube followed by 25µl of SYBR Green II (Molecular Probes) 

working solution (4ml DMSO added to 50µl vial of SYBR Green II). Samples were 

vortexed briefly, and left in the dark for approximately five minutes. 50µl of 

TruCount solution (500µl DDH20 added to a Becton Dickinson TruCount tube) was 

added prior to running each sample.  

 

All Mertz Glacier and Cape Hallett samples were analysed on a Becton Dickinson 

FACSCalibur flow cytometer equipped with a 15mW, 488nm, air-cooled argon ion 

laser and standard filter setup. Initial instrument calibration was performed using 

FACScomp software in conjunction with Becton Dickinson CaliBRITE reference 

beads. The sheath fluid was DDH20. To avoid coincidence, samples were run on a 

medium flow rate with less than 1300 events per second. The sample flow was 

calibrated using Becton Dickinson TruCount beads. The event threshold was set at 

340 on FL1.  

 

Becton Dickinson CellQuest software was used for all sample and data analyses. 

Bacterial cell populations and TruCount beads were visualised on density plots of 
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SSC Vs. FL1. Each sample was run twice using an acquisition template set to acquire 

300 TruCount beads per run. CellQuest was subsequently used to perform a batch 

analysis on both the Mertz and Hallett data. 

 

3.2.4 Image analysis 

 

A Nikon Coolpix 995 digital camera mounted to an Olympus Provis AX70 

microscope was used to take a series of digital images of DAPI-stained cells. For the 

Mertz Glacier samples, photos were taken of the cells present at each 100mm section 

of one ice core profile in order to estimate bacterial carbon biomass and determine 

whether cell biovolume fluctuated with depth within the ice profile. Images were 

taken of cells present within the bottom 100mm of each site at Cape Hallett to 

estimate carbon biomass and to provide a comparison of cell biovolume between sites.  

 

Measurements of the cells present in the digital photos were carried out using 

SigmaScan Pro (SPSS) image analysis software. Each digital photo was initially 

converted to an 8 bits-per-pixel mono image and then an intensity threshold overlay 

was applied and calibrated to determine the best fit in relation to cell border.  

Measurements of cell length (major axis) and width (minor axis) were performed on 

approximately 150 cells from the Mertz glacier profile and 100 cells from the Cape 

Hallett sampling sites.  
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3.2.5 Calculation of biovolume (cell size) 

 

The majority of cells present in the Mertz samples had a rod-shaped morphology. 

Thus, cell biovolumes were calculated using the following equation (Fry and Davies, 

1985): 

 

V = (d2 π / 4) (l - d) + π d3 / 6 

where l = cell length and d = cell width. 

 

This calculation makes the assumption that cell shape approximates a cylinder with 

hemispherical ends and that cell depth is equal to cell width. As the coccoid 

morphology was the predominant cell type at Cape Hallett, the formula for a prolate 

spheroid was used to calculate biovolume (Sherr et al., 2001): 

   

V = (π / 4) d2 (l – d / 3) 

 

 

To obtain an estimate of bacterial carbon biomass, the biovolume-specific formula of 

Simon and Azam (1989) was used: 

 

CC = 88.6 x vol0.59 x 1.042 

where CC = average carbon content per cell (fg) and vol = average cell volume. 
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3.2.6 Statistical analyses 

 

To compare counts made by flow cytometry and epifluorescence microscopy, data 

were initially log transformed (base 10) to obtain a normal distribution and then 

plotted to determine Pearson’s correlation coefficient (r). For both the Mertz and 

Hallett datasets the significance of r was tested to provide an appropriate p-value. 

Flow cytometry was found to be a more robust and accurate method of assessment 

and counts obtained using this method were used for all subsequent analyses.  For the 

Mertz Glacier data this entailed scaling all counts up by 81% to account for 

degradation of the samples over time. This scaling factor was derived by recounting 

five of the samples. Initial epifluorescence counts were compared with recounts of the 

same samples three months later and subsequent flow cytometric estimates. 

 

The bacterial biomass for each core section was estimated using image analysis. In 

addition, one-way ANOVA was used to compare the biovolume of cells present in 

each section of one Mertz core to determine whether biovolume fluctuated with 

respect to ice depth. A one-way ANOVA was also used to compare the biovolume of 

cells present in the bottom 100mm of sea ice at each Cape Hallett sampling site. Data 

were log transformed prior to analysis on Systat (version 7.0). 

 

Estimates of bacterial abundance and bacterial carbon were combined with algal 

counts and measurements of Chl a from concurrent samples and analysed using 

multivariate statistics to allow for correlation between response variables. All data 

were normalised to m2 and log transformed prior to analysis. MANOVAs were 

performed using the SAS (version 6.12) statistical package. An initial general linear 
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model (GLM) was used to test for significant differences between sampling location, 

site (nested in location), core (nested in both site and location), and core section on a 

combined Mertz/Hallett dataset. To account for the repeat- sampling regime employed 

at Cape Hallett a second GLM was run on the appropriate subset of data with time 

added as an additional variable. Wilks’ Lambda tests were conducted to protect 

against Type I errors prior to conducting ANOVAs on each independent variable 

using the statistical package R (version 2.0.1). Systat (version 8.2) was used to 

analyse the Cape Hallett data to test for possible differences in cell abundances 

between sampling sites and dates, and any interaction between site and time, using 

multi-way ANOVA. 

 

Empirical curve fitting was used to detect for curvature in the distribution of cells 

within each sea ice profile. Both linear and quadratic models were fitted to the Mertz 

Glacier (20 core profiles) and Cape Hallett (4 core profiles) datasets with 

corresponding p values to determine best fit. 

 

Correlations between the response variables: Bacterial abundance, bacterial carbon, 

algal abundance, and Chl a were examined using simple linear regression. R (version 

2.0.1) was used to calculate the residuals for each variable to allow for the effects of 

sampling site and core section on analysis. A test for zero slope was performed on all 

variable combinations.  The Mertz and Hallett datasets were analysed separately. 
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3.3 Results 

 

3.3.1 Image Analysis 

 

There were no significant differences between the average cell biovolume (cell size) 

of bacteria from the Mertz Glacier or Cape Hallett sampling locations (F = 0.0026, df 

= 1, p = 0.956, Table 3.1). The estimate of mean cell carbon content, derived using 

biovolume, is also given in Table 3.1. Cell biovolume did not change in relation to 

depth within the ice profile of the 550mm core examined from the Mertz Glacier (F = 

1.828, df = 5, p = 0.121), and there was no significant difference in cell biovolume 

between the five sampling sites at Cape Hallett (F = 1.508, df = 9, p = 0.168). 

 

The majority of bacteria visualised using epifluorescence microscopy from the Mertz 

Glacier were either single or dividing free-living cells with a rod-shaped morphology.  

The predominant cell type at Cape Hallett was of the coccoid morphology, typically 

occurring as single cells. 

 

 

Table 3.1 Mean cell biovolume and carbon content estimated from digital images of 
DAPI-stained bacterial cells from the Mertz Glacier (pack ice) and Cape Hallett (fast 
ice). 
 

Location Mean Cell Biovolume Mean Cell Carbon Content 

  ±1SE (µm
3
) (fg) 

   

Mertz Glacier 0.35 ± 0.032 49.71 

   

Cape Hallett 0.42 ± 0.031 55.49 
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3.3.2 Bacterial enumeration: comparison of flow cytometry and epifluorescence 

microscopy 

 

The two methods of estimating bacterial abundance produced significantly different 

results for samples collected from the Mertz Glacier. The trend in abundance 

estimates indicates a weakly positive, but insignificant, correlation between flow 

cytometry and epifluorescence microscopy (r = 0.121, z = 1.263, df = 110, p = 0.103; 

Figure 3.2: A). By comparison, the samples examined from Cape Hallett exhibit a 

greater level of congruence with a significant positive correlation between samples 

processed using both methods of assessment (r = 0.597, z = 1.821, df = 8, p = 0.034; 

Figure 3.2: B).  

 

3.3.3 Abundance and distribution 

 

The overall abundance or density of bacterial cells integrated over the whole ice 

thickness was not significantly different between fast ice at Cape Hallett, with an 

average estimate of 8.7 ± 1.6 x 109 cells per m2, and pack ice of the Mertz Glacier, 

with an estimate of 7.6 ± 1.2 x 109 cells per m2 (F = 0.677, df = 1, p = 0.412).   

 

The differences in bacterial abundance between the top and bottom of each core 

profile are summarised in Table 3.2. 
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Figure 3.2 Relationship between epifluorescence and flow cytometric (FCM) 
enumeration of bacterial cells. Epifluorescence estimates have been obtained using 
DAPI staining, FCM estimates using SYBR Green II. A = Mertz Glacier, B = Cape 
Hallett. 
 



Chapter 3: Distribution and abundance 

  

 

 59 

Table 3.2 Comparison of cell abundance (m2) from the top and bottom (ice/water 
interface) sections of cores extracted from the Mertz Glacier (n = 20) and Cape Hallett 
(n = 3). 
 

Location Top of profile  Bottom of profile 

  Mean no. cells/m
2
 ± 1SE   Mean no. cells/m

2
 ± 1SE

 

    

Mertz Glacier 1.10 ± 0.61 x 109  1.3 ± 0.3 x 1010 

    

Cape Hallett 4.1 ± 1.7 x 109   2.60 ± 9.3 x 107 

 

 

MANOVA results and subsequent univariate analyses are displayed in Table 3.3.  

Estimates of bacterial abundance from cores extracted at the same time from each 

sampling site were not significantly different (Core: Site: Location, Wilk’s λ = 0.285, 

df = 144, 369, p = 0.636). Congruence between sites indicates the accuracy in cell 

estimates obtained using flow cytometry. Bacterial abundance varied significantly 

with depth in the sea ice at both locations (Core Section, F = 7.069, df = 1, p = 0.009). 

This result is described in more detail in section 3.3.4.  

 

 In the second multivariate analysis, the repeat sampling at each site established at 

Cape Hallett provided a significant effect. An initial univariate model to test for an 

interaction between cell abundance and sampling site was not significant (F = 0.057, 

df = 1, p = 0.814) and there were no significant differences between sites (F = 0.264, 

df = 1, p = 0.612). When the change in cell abundance between the first and second 

survey was tested independently however (main effect), a significant increase was 

detected (Time F = 15.572, df = 2, p = 0.0001). This increase is illustrated in Figure 

3.3. 
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The MANOVA results in Table 3.3 also indicate variation between sampling sites 

when all sites from both locations are considered (Site: Location, F = 2.009, df = 11, p 

= 0.031). As there was no variation between sampling sites at Cape Hallett, this 

variation must stem from the Mertz Glacier component of the data. A univariate 

analysis was therefore conducted on bacterial abundance for the bottom of each Mertz 

Glacier core profile, which showed significant differences between sites (F = 3.470, 

df = 7, p = 0.0285), but no discernable pattern in time, latitude or ice thickness was 

apparent (Figure 3.4). 

 

 

Table 3.3 MANOVA and ANOVA results investigating the relationship between 
bacterial, algal, and Chl a data from the Mertz Glacier and Cape Hallett. BA = 
Bacterial abundance; BC = Bacterial carbon; ALG = Algal abundance; CHL = 
Chlorophyll  a; *** p <0.001; ** p <0.01; * p <0.05; ns = not significant; na = not 
applicable. 
 

 
 

 
 

Location Test     MANOVA      ANOVA     

    Wilks' λ   Fdf p   BA BC ALG  CHL 

Mertz and  Location 0.000018   1309045 4,92 ***  ns ns *** 
 

*** 
Hallett Core Section 0.77   7.01 4,92 ***  ** ** *** *** 
 Site: Location 0.31   3.5 36,346 ***  * * *** *** 

 Core: Site: Location 0.28   0.95 144,369 ns  ns ns ns *** 
           
Hallett only Site 0.41   2.96 16,138 ***      ns    
 Core Section 0.47  12.75 4,45 ***  na    

  Time 0.53    4.19 8,90 ***      ***       
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Figure 3.3 Changes in the relative abundance of bacterial cells present in the bottom 
10cm of fast ice from five sampling sites at Cape Hallett. Ice cores were extracted 
once in late November and again in early December (an additional, third sampling 
event, was conducted at site 2 in December). 
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Figure 3.4 Abundance of bacterial cells present in the bottom 10cm of pack ice from 
eight sampling sites from the Mertz Glacier. Plotted values are means ± 1 SE. 
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3.3.4 Distribution of bacterial cells within the ice profile 

 

Both linear and quadratic models provided a significant fit to modelling changes in 

the distribution of bacterial cells with respect to position within the ice column for the 

Mertz Glacier (Table 3.3). The data for the combined Mertz Glacier cores is displayed 

in Figure 3.5 and shows that cells are most abundant in the ice/water interface region 

of the profile and decline towards the surface of the ice. Although there is a slight 

inflection in the trend of the data close to the surface, a linear correlation (p = 0.0013) 

proved to be a marginally better fit than a quadratic curve (p = 0.0019). It is 

recognised that the cores are not all of equal length in this analysis, however the cores 

with higher numbers of cells close to the surface were all greater than 100cm in 

length. Four representative cores from the Mertz Glacier are also shown in Figure 3.7: 

A.  

 

The core profiles extracted from Cape Hallett showed no discernible trend in the 

distribution of cells from the ice/water interface to the profile surface (linear, p = 

0.850; quadratic, p = 0.136; Table 3.3; Figure 3.6). Three cores from Cape Hallett are 

shown in Figure 3.7: B.  

 

 

Table 3.3 Empirical curve fitting for changes in abundance of bacterial cells with 
respect to profile depth for the Mertz Glacier (20 core profiles) and Cape Hallett       
(4 core profiles). *** p <0.001; ** p <0.01; * p <0.05; ns = not significant. 

 

Location   Test t value p 

     
Mertz Glacier  Linear  -3.334       ** 

  Quadratic   3.210       ** 
     
     
Cape Hallett  Linear    0.190       ns 

    Quadratic  -1.514       ns 
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              Ice/water interface                                                                     Profile surface                                                        

 

 
 

Figure 3.5 Bacterial abundance (log residuals) plotted against core depth for 20 pack 
ice profiles from the Mertz Glacier. 0cm = sea/ice interface. Fitted linear and 
quadratic models both provide a significant fit to the data. 
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                Ice/water interface                                                                              Profile surface 
 
 

 

Figure 3.6 Bacterial abundance (log residuals) plotted against core depth for 4 fast ice 
profiles from Cape Hallett. 0cm = sea/ice interface Fitted linear and quadratic models 
do not provide a significant fit to the data. 
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Figure 3.7 Comparison of the distribution of bacteria within ice profiles extracted 
from the Mertz Glacier (four representative cores displayed) (A), and Cape Hallett 
(cores from three sites displayed) (B). 
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3.3.5 Correlation among response variables 

 

Results comparing the response variables for both locations are displayed in Table 

3.4. The relative abundances of bacteria and algae are positively correlated in core 

profiles from the Mertz Glacier (r = 0.55, p = < 0.001) with a bacteria: algae cell ratio 

of 100:1. Estimates of bacterial carbon correlated with algal abundance (algal carbon 

data was not available) (r = 0.286, p = 0.007), but there was no correlation between 

bacterial abundance and Chl a at the 5% level of significance (r = 0.192, p = 0.074) or 

bacterial carbon and Chl a (r = 0.192, p = 0.76). As expected, algal abundance is 

positively correlated with Chl a, and bacterial abundance with bacterial carbon.  

 

At Cape Hallett, there was no evidence of a correlation between bacterial and algal 

abundance (r = - 0.144, p = 0.289). On average, the ratio between bacteria and algae 

was 2.5:1.  Significant, but negative, correlations were observed between bacterial 

abundance and Chl a (r = - 0.310, p = 0.02), and likewise bacterial carbon and Chl a  

(r =  -0.310, p = 0.019). Algal abundance was positively correlated with Chl a.  
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Table 3.4 Correlation between measured variables for the Mertz Glacier and Cape 
Hallett sampling locations. CC = Correlation coefficient; BA = Bacterial abundance; 
BC = Bacterial carbon; ALG = Algal abundance; CHL = Chlorophyll a; *** p 
<0.001; ** p <0.01; * p <0.05; ns = not significant. 
 

Location   Test CC p 

     
Mertz Glacier  BA · ALG 0.286 ** 

  BA · CHL 0.192 ns 
  BC · CHL 0.192 ns 
  BC · ALG 0.286 ** 
  ALG · CHL 0.551 *** 

     
  BA · BC 1.000 *** 
     
     
Cape Hallett  BA · ALG -0.144 ns 

  BA · CHL -0.310 * 
  BC · CHL -0.310 * 
  BC · ALG -0.144 ns 
  ALG · CHL  0.561 *** 

     
    BA · BC 1.000 *** 

 

 

 

 

 

3.4 Discussion  

 
 
In this study bacterial samples from Antarctic sea ice were successfully analysed 

using both epifluorescence microscopy and flow cytometry. The discussion that 

follows focuses initially on the two methods for assessing cell numbers, then 

considers the differences in the distribution and abundance of bacteria at Cape Hallett 

and the Mertz Glacier. Coupling between bacterial growth and algal photosynthetic 

metabolism is then discussed as a key process in the microbial loop hypothesis. 
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3.4.1 Enumeration of bacterial cells 

 

Flow cytometry has become a valuable, if not essential tool, for microbial studies 

(Campbell, 2001; Gasol and del Giorgio, 2000; Sherr et al., 2001), and very good 

concordance between flow and epifluorescence estimates of bacterial concentrations 

has been reported (e.g. Gasol et al., 1999; del Giorgio et al., 1997; Troussellier et al., 

1993; Monfort and Baleux, 1992; Robertson and Button, 1989).  In this study there 

was very little congruence between the two methodologies in samples obtained from 

the Mertz Glacier (Figure 3.2 A). Possible explanations for this include non-linear 

loss of cells in the twelve-month storage period between the respective assessments, 

loss of cells in the 3µm filtration step prior to flow analysis, and possibly minor 

contamination of samples by the addition of sterile distilled water prior to performing 

epifluorescence counts.  

 

A significant correlation was observed in the ten samples from Cape Hallett, despite 

the three month interval between epifluorescence counts and flow cytometry (Figure 

3.2 B). It is recognised that ideally all Hallett samples would have been analysed 

using both methods of assessment, but it is the slow and tedious nature of filtration, 

slide preparation and visualisation time required for epifluorescence microscopy that 

has made flow cytometry such an attractive alternative (Troussellier et al., 1993). The 

data collected using flow cytometry were used for subsequent analyses due to both the 

accuracy of the method and possible contamination during epifluorescence counts.  
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Storage time and use of fixatives have had a significant effect on cell concentration 

estimates. Although the length of storage of preserved samples prior to cell 

enumeration is rarely referred to in the literature, degradation of cells over time can 

lead to underestimates of bacterial abundance and biovolume (Turley and Hughes, 

1992). Additionally, storage temperature is known to impede fluorescence-detectable 

cells and lead to rapid cell loss in samples stored at 4-5º C (Troussellier et al., 1995; 

Turley and Hughes, 1994). The ethanol-preserved samples from the Mertz Glacier 

used in this study were kept at 4º C for approximately six months before 

epifluorescence counts were performed and a subsequent period of twelve months 

passed before reliable flow cytometric analysis techniques were developed.  

 

Post-fixation cell loss and alteration of cell size has been reported with most fixatives 

(Gasol and del Giorgio, 2000; Lepesteur and Fleury, 1993), and some degree of cell 

loss due to the use of ethanol as a fixative can be assumed in samples collected from 

the Mertz Glacier. The loss of cells over time was modelled by Turley and Hughes 

(1994) to accurately calculate original cell numbers, and a similar approach was 

adopted in this study. While the samples collected at Cape Hallett were fixed in a 

manner consistent with the current literature, it was not possible to maintain samples 

at -80º C while in a remote field camp. Results are discussed with these issues in 

mind. 
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3.4.2 Distribution and abundance 

 

Bacteria and algae were distributed vertically throughout all cores examined from the 

Mertz Glacier and Cape Hallett regions. While marked differences exist between the 

sea ice communities that develop in physically distinct ice environments (Ackley and 

Sullivan, 1994; Garrison, 1991), both fast ice and pack ice were found to support a 

comparable total bacterial biomass in this study (Table 3.2; Table 3.3). While few 

authors have produced estimates of bacterial abundance in either fast ice or pack ice, 

the data presented in this study are comparable with the findings of Kottmeier and 

Sullivan (1990) who found approximately 8.9 x 1011 cells per m2 in pack ice of the 

Weddell Sea, Sullivan and Palmisano (1984) who reported 3.9 x 1011 cells per m2 in 

fast ice in McMurdo Sound, and the figure of 1399.5 x 109 cells per m2 recorded by 

Meiners et al. (2004) in pack ice of the Bellingshausen Sea. Given the spatial and 

temporal variability in the sea ice environment, the average cell estimates for the 

Mertz Glacier (7.59 x 109 cells per m2) and Cape Hallett (8.71 x 109), sampled 

relatively early in summer, appear to be ecologically relevant. 

 

Estimates of cell biovolume, or cell size, were found to be similar between regions 

(Table 3.1), which infer a degree of organismal adaptation to the different 

physicochemical features associated with sea ice structure. In general, bacteria found 

in sea ice are larger than those from the underlying seawater (Staley et al., 2002), 

which possibly reflects higher concentrations of dissolved organic matter in sea ice. In 

temperate systems, very small bacteria have been found to be dormant (inactive), 

while larger bacteria are more likely to be active (Gasol et al., 1995), which suggests 

that bacteria may readily adapt to the abiotic gradients that characterise sea ice. 
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However, the observed difference in the dominant morphology of cells between 

regions (rods in the Mertz Glacier and cocci at Cape Hallett) may indicate that 

bacterial taxonomic composition differs significantly with respect to ice type or 

geographic region. The observation here that relatively few bacterial cells were 

attached to microalgae supports the findings of Grossi et al. (1984) and Sullivan and 

Palmisano (1984), who suggested that the 70% of the bacteria that occur in sea ice are 

free-living. Sullivan and Palmisano (1984) reported fluctuations in cell size with 

profile depth in the McMurdo Sound, with significantly larger cells present in the 

interstitial regions of extracted cores. The estimates of biovolume in the current study 

(0.32-0.45µm3) are consistent with values reported in the literature (e.g. Archer et al., 

1996; Sullivan and Palmisano, 1984), and the profile examined from the Mertz 

Glacier revealed no significant differences in the biovolume of bacterial cells present 

at different depths in the profile. A similar result in comparing the biovolume of cells 

in the bottom region of each sampling site at Cape Hallett indicates a homogenous 

bacterial community and possibly a similar species composition for the area surveyed. 

 

The distribution of bacteria within the ice column was significantly different between 

locations (Table 3.3). While published descriptions of the distribution of bacteria in 

pack ice are limited, the trend illustrated in cores extracted from the Mertz Glacier 

(Figure 3.5; Figure 3.7: A) mirrors that found by a number of authors (Kottmeier and 

Sullivan, 1990; Miller et al., 1984; Meiners et al., 2004), but not the review of work 

conducted in McMurdo Sound by Garrison et al. (1986). The relatively higher 

concentration of cells in the lower 20cm of each core from the Mertz Glacier is most 

likely due to a layer of congelation ice, although this is more typical of fast ice 

habitats in sheltered coastal areas (Garrison, 1991). The presence of cells higher in 
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each core profile indicates internal communities, which are thought to result from the 

incorporation of organisms harvested from the water column by frazil ice during the 

initial formation of pack ice (Garrison et al., 1986). The quadratic model fitted to the 

data, although marginally less significant than the linear trend, provides some 

evidence for a community close to the profile surface. Assemblages close to the 

profile surface, thought to commonly occur in pack ice, develop in a layer of 

infiltration ice that forms if ice floes are at some stage flooded by the surrounding 

seawater (Fritsen, 2001; Garrison and Buck, 1991; Garrison, 1991; Vincent, 1988).  

 

The fast ice profiles collected from Cape Hallett are more difficult to interpret (Figure 

3.6; Figure 3.7: B). The presence of cells in the lower 20 cm of each core indicates a 

layer of congelation ice that typically supports microbial communities in fast ice. 

Cells present at the mid point of each profile are likely to reflect the trend seen in fast 

ice whereby cells, following an autumnal bloom event, become trapped in the bottom 

congelation layer by the additional ice that forms in winter (Garrison, 1991). The lack 

of any discernible trend in the Cape Hallett profiles is most likely due to the presence 

of multiyear ice in 2003. Satellite data collected from 1979 to 2000 suggest that sea 

ice remains at Cape Hallett after the rest of the coast from Cape Adare to Coulman 

Island is clear (Falconer and Pyne, 2000). These authors also determined that the 

average time until ice-free water eventually appears (27th Jan) has a standard deviation 

of two weeks, and while this ice-free period usually extends until early March, in 

some years the ice does not completely clear at all. 

 

Bacterial production has generally been overlooked in estimates of Southern Ocean 

productivity (Kottmeier and Sullivan, 1990), but bacteria are known to increase in 
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abundance and biomass in annual sea ice during the austral summer (e.g. Grossi et al., 

1984; Kottmeier et al., 1987; Sullivan et al., 1985; Sullivan, 1985; Palmisano et al., 

1986; Kottmeier and Sullivan, 1990; Kottmeier and Sullivan, 1987). Although the 

cores extracted from the Mertz Glacier exhibited significant site differences (Figure 

3.4), there was no apparent correlation with sampling date or latitude which may have 

influenced bacterial abundance.  A significant increase in cell abundance over time 

was observed at sampling sites established at Cape Hallett in 2003 indicating an active 

bacterial community (Figure 3.3). Although in situ bacterial production was not 

directly quantified during this survey, the increase in bacterial abundance clearly 

illustrates the ability of bacteria to grow and accumulate in the congelation layer of 

fast ice. This was true despite heavy ablation to the underside of the ice from a strong 

tidal current in Edisto Inlet and general ice degradation throughout the season. The 

stimulus for increased bacterial biomass is likely to be the spring diatom bloom and 

increased availability of algal-derived DOM, which in turn is stimulated by increased 

irradiance (Grossi et al., 1984). 

 

3.4.2 Evidence for the microbial loop 

 

In this study, coupling between bacteria and algae refers explicitly to a concurrent 

spatial relationship between bacterial and algal biomass that is likely to result, in part, 

from the assimilation by bacteria of algal-derived DOM. Positive relationships 

between bacteria and algae, or Chl a, have been found in sea ice at several locations in 

spring and summer from both the Ross Sea and Weddell Sea (Grossi et al., 1984; 

Kottmeier et al., 1987; Kottmeier and Sullivan, 1990; Grossmann et al., 1996; Gleitz 

et al., 1996) and also early winter (Stewart and Fritsen, 2004). Conversely, no 
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significant relationship was found between bacteria and algae in winter sea ice by 

Kottmeier and Sullivan (1987) or Stewart and Fritsen (2004), which suggests that the 

development of a functional microbial loop is variable across seasons and habitats in 

Antarctica, or must be considered over an annual timeframe to account for the 

extended periods of absolute darkness when algal photosynthesis cannot take place, 

yet microbial communities continue to thrive. 

 

In the current study, regression analysis indicates a significant positive correlation 

between bacterial and algal abundance for cores extracted from the Mertz Glacier 

(Table 3.4). This relationship provides indirect evidence that bacterial growth and 

microalgal photosynthetic metabolism were coupled in pack ice off the George V 

Coast in early summer 2002. Although it was not possible to model both the spatial 

and temporal dynamics of this relationship, it is likely that once coupled, bacteria 

continue to facilitate algal-based primary production by providing microalgae with the 

remineralised nutrients necessary for continued growth (Kottmeier and Sullivan, 

1990). As the assimilation by bacteria of algal-derived DOM is a core process in the 

microbial loop hypothesis, these data provide some evidence to suggest that bacterial 

production may have been sufficient to support higher trophic levels or contribute to 

bloom events at the marginal ice zone in this region (Figure 3.8). 

 

The lack of congruence between bacterial abundance and measurements of Chl a in 

the Mertz Glacier data is unexpected (Table 3.4), given the reliance by various authors 

on measurements of Chl a as an accurate surrogate for algae in modelling positive 

correlations with bacteria (e.g. Cota et al., 1990; Li et al., 2004b; Stewart and Fritsen, 

2004). This could possibly be explained by the fact that algal cells vary substantially 
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in both size and chlorophyll content, and small cells may exude proportionally more 

photosynthate. A greater emphasis is thus placed on direct algal counts in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Components of the Microbial Loop. 

 

 

A similar dynamic between bacteria and algae was not apparent within the fast ice 

microbial community at Cape Hallett in 2003. No correlation was observed between 

bacterial and algal abundance, which suggests that bacterial and algal production was 

uncoupled during the time the survey was undertaken.  Although a significant result 

was observed in comparing bacteria with Chl a, the trend was negative (Table 3.4). 

Negative relationships have been observed between algae and bacteria in sea ice west 

of the Antarctic Peninsula (Kottmeier and Sullivan, 1987) and also during open water 

surveys of the Southern Ocean (Vaqué et al., 2002; Stewart and Fritsen, 2004).  
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Stewart and Fritsen suggested that an inverse relationship might develop if bacterial 

production lags primary production, whereby bacterial biomass may accumulate 

quickly while phytoplankton biomass declines. The one-month lag between 

phytoplankton and bacterioplankton blooms in the central Ross Sea observed by 

Ducklow et al. (2001) was postulated to result either from the delayed production and 

utilisation of algal-derived exudates or grazing by bacteria on senescent algal cells.   

Given the observed increase in bacterial abundance at Cape Hallett (Figure 3.4) it 

seems unlikely that the availability of DOM was limiting bacterial activity, 

particularly in the congelation layer of the profile where most measurements were 

taken.  

 

An interactive effect between DOM limitation and in situ ice temperatures has been 

found to exert a strong control on bacterial growth and biomass (Pomeroy and Wiebe, 

2001; Kottmeier and Sullivan, 1988; Helmke and Weyland, 1995), but is thought to 

reflect the relative age of the ice (Stewart and Fritsen, 2004).  Bacterial assemblages 

in new ice can be dominated by species from the water column that are not adapted 

for growth within the ice matrix, but as the ice ages, the relative proportion of 

psychrophilic bacteria (capable of growth at or below 0ºC) increases as cold-adapted 

strains are selected (Grossmann and Gleitz, 1993; Helmke and Weyland, 1995).  

 

Due to the presence of multiyear ice at Cape Hallett in 2003, it is likely that bacteria 

present in the mid regions of the core profiles were well adapted to ambient 

temperatures and saline conditions. The apparent discrepancy between primary and 

secondary production in this region of the profile may reflect the characteristics of 

multiyear ice and an ‘old’ biota with respect to algal metabolism and supply of DOM. 
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Although significant increases in the abundance of bacterial cells present in 

essentially the newest (congelation) layer of ice at each site was observed, it seems 

bacterial production may have, at least temporarily, lagged behind algal production 

during early summer. This is indicated by the considerably reduced bacteria: algae 

ratio. While it was beyond the scope of this study to quantify the trophodynamics 

associated with the microbial loop hypothesis, metabolic uncoupling may limit the 

seasonal availability of both bacterial and algal productivity to consumers within the 

sea ice. The extent to which uncoupling of the microbial loop impacts coastal marine 

processes is unknown, but highlights the need to quantify the fate of bacterial 

productivity in Antarctic coastal ecosystems for both fast ice and pack ice 

environments. 

 

The findings of this study indicate that the spatial and temporal nature of Antarctic sea 

ice requires observation of the seasonal development of biomass and production to 

validate trophodynamics and Southern Ocean carbon cycling (e.g. Delille et al., 1995; 

Archer et al., 1996; Ducklow et al. 2004; Stewart and Fristen, 2004). 

 

It is recognised that the data presented in the current study provide a ‘snapshot’ of the 

microbial dynamics, particularly with respect to sampling at the Mertz Glacier. 

However, the sampling methodology has been sufficient to illustrate the variability in 

community structure and dynamics between fast ice and pack ice in two 

geographically related areas of Antarctica. This data contributes to the limited 

research conducted to date on sea ice bacteria, particularly with respect to the pack ice 

environment. Under the auspices of the Latitudinal Gradient Project, this study is the 

first to investigate sea ice bacteria in the Cape Hallett region and will contribute to an 

understanding of the ecosystems that exist along the Victoria Land coastline. 
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Abstract 
 

Sea ice is a predominant feature of polar oceans and exerts a unique influence on the 

Southern Ocean marine ecosystem. Productivity in the water column is significantly 

limited by the presence of sea ice and maintained primarily by those algae and 

bacteria that form distinct assemblages within the ice profile. Projected warming for 

polar regions over the 21
st
 century is likely to reduce the extent and volume of annual 

sea ice, which will alter both the light and saline regimes to which the microbial 

community is exposed. Understanding the bacterial response to environmental change 

in the sea ice ecosystem may provide an insight into the potential long-term changes 

to the physical oceanography and ecology of the Southern Ocean. The metabolic 

response of bacterial assemblages to experimentally induced changes in light and 

salinity was assessed using the tetrazolium salt 5-cyano-2,3-ditolyl tetrazolium 

chloride (CTC) in fast ice at Cape Hallett, Antarctica. Two distinct communities 

within the ice were investigated, the brine channel assemblage and the interstitial or 

bottom assemblage. This study presents preliminary evidence that the metabolic 

activity of brine bacteria is influenced by light stimulus. The near linear positive 

increase of cell activity with increasing incubation irradiance is likely to be an indirect 

response to the availability of dissolved organic matter, but may also indicate the 

presence of photosynthetic bacterial species. Additional results indicate that saline 

concentration is more significant than light irradiance in influencing the metabolic 

response of cells present in the interstitial region of the sea ice profile. As a vital 

metabolic stain, CTC appears to be applicable to Antarctic field conditions, and may 

prove to be useful in quantifying the role of bacteria in Antarctic sea ice.
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4.1 Introduction  
 

 

While the causal mechanisms and implications remain controversial, it has become 

widely recognised that human generated emissions have altered the global climate 

system (Joos et al., 2001). Atmospheric carbon concentrations are projected to reach 

between 540 and 970 ppm by 2100 and average global surface temperatures to 

increase by 1.4 to 5.8°C (Joos et al., 2001). Of all the responses to future climatic 

warming, changes to Antarctic sea ice are expected to be among the most notable 

(Budd, 1991). Although few data are currently available to asses the effects of climate 

change on sea ice dynamics and microbial production within the Antarctic coastal 

ecosystem, changes in the magnitude and timing of seasonal sea ice advance and 

retreat are likely to have significant ecological consequences (Smith et al., 1998). 

Climate models currently predict a reduction in the volume of Antarctic sea ice by 25-

45% in the next century (Gordon and O’Farrell, 1997), and a corresponding reduction 

in mean sea ice extent of nearly two degrees of latitude (Wu et al., 1997). If 

atmospheric warming is sustained, there are likely to be long-term changes to the 

physical oceanography and ecology of the Southern Ocean (White et al., 2001). 

  

Productivity in the Southern Ocean is characterised by large-scale spatial and 

temporal variability as sea ice influences not only the pelagic systems under the ice, 

but also determines the ecology of the biota within the ice (Ackley and Sullivan, 

1994; Legendre et al., 1992; Delille, 1992). Efforts to investigate the sea ice microbial 

community have focused primarily on understanding the composition and physiology 

of the photosynthetic algae that dominate fast ice assemblages (e.g. Garrison, 1986; 

Ryan and Beaglehole, 1994; Thomas et al., 2001; Trenerry et al., 2002; Ryan et al., 

2004; Kühl, 2001). When the ice melts each year this algal biomass can contribute up 
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to 30% of the total annual primary production of the ice-covered Southern Ocean 

(Arrigo et al., 1997).  

 

Bacteria, protozoa, fungi, and invertebrates have been described in sea ice, in addition 

to algae (Garrison, 1986; Vincent 1988; Garrison, 1991; Staley and Gosink, 1999; 

Staley et al., 2002). As recently as 1968, however, bacteria were considered to be 

extremely low in abundance or even nonexistent in polar seas (Sorokin, 1971 cited in 

Sullivan, 1985). A diverse bacterial community has now been described from annual 

fast ice that exhibits similar patterns of biomass, production and growth rates to that 

of phytoplankton (Cota et al., 1990). There is however, no consensus with respect to 

the importance of bacterial secondary production to overall trophodynamics (Ducklow 

et al., 1999; White et al., 1991). The proposed microbial loop has emphasised several 

important links to higher trophic levels, particularly through the utilisation of 

dissolved organic matter (DOM) (Sullivan and Palmisano, 1984; Azam et al., 1991), 

but direct evidence for the functioning of this microbial loop remains limited. Several 

authors have found a positive relationship between bacterial and algal 

biomass/production in sea ice during spring/summer (Grossi et al., 1984; Kottmeier et 

al., 1987; Kottmeier and Sullivan, 1990; Stewart and Fritsen, 2004); conversely 

Kottmeier and Sullivan (1987) found no significant relationship between algae and 

bacteria in late winter sea ice. Bacterial assimilation of DOM is a core process in the 

microbial loop hypothesis yet remains equivocal with respect to spatial and temporal 

sea ice dynamics (Stewart and Fritsen, 2004). 

 

 

 



Chapter 4: Metabolic assessment 

   

 

 81 

There is considerable evidence that a significant fraction of pelagic bacteria are either 

dead, or relatively inactive (Howard-Jones et al., 2001; Cole, 1999; Sherr et al., 

1999a,b). This realisation has led to the development of a number of techniques 

capable of assessing the activity of individual cells. These vital stains and probes 

target a number of properties associated with cellular physiology such as membrane 

integrity, specific enzyme activity, ribosomal RNA content, and cellular reducing 

potential (Howard-Jones et al., 2001).  

 

The probe that has been most widely used to asses single cell activity is 5-cyano-2,3-

ditolyl tetrazolium chloride (CTC) developed by Rodriguez et al. (1992). CTC is a 

colourless, membrane permeable compound that is readily reduced via the electron 

transport system (ETS) of bacterial cells to produce a red-fluorescing insoluble CTC-

formazan that accumulates within the cell (Smith and del Giorgio, 2003). This 

technique has gained wide application in recent years in environmental studies and 

has been reported by various authors to be a simple and effective method of counting 

active bacteria, without the need for sophisticated equipment (Créach et al., 2003).  

 

The use of CTC however, remains controversial. Cells that reduce sufficient CTC to 

be scored as ETS-active are considered to be alive and capable of growth (Choi et al., 

1999).  Ullrich et al. (1996) have claimed that the stain in fact inhibits metabolism in 

bacterial cells and underestimates the proportion of active cells in natural aquatic 

environments. Several other authors suggest that bacteria should be defined by a 

continuum of metabolic states rather than simply ‘active’ or ‘inactive’ (Gasol and del 

Giorgio, 2000; Sieracki et al., 1999). In addition, it is not certain whether all bacterial 

strains are capable of reducing this compound to its fluorescent form (Choi et al., 
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1999; Bernas and Dobrucki, 2000). Although some fraction of active cells may be 

misrepresented by the CTC assay, there is general agreement that this technique may 

be used to determine the most active cells in a natural population (Sieracki et al., 

2003; del Giorgio and Bouvier, 2002; Sherr et al., 2001; Sherr et al., 1999a; del 

Giorgio et al., 1997).    

 

This study describes the first application of CTC in Antarctic field conditions. In 

addition, the efficacy of the assay to provide ecologically meaningful results is 

determined and the response of bacterial cells to changes in light and salinity is 

examined. The gradients in light and salinity that characterise the sea ice environment 

are likely to change dramatically in coming decades if there is any reduction in the 

extent and volume of annual sea ice. Understanding the potential stress response of 

the various microbial assemblages to a changing climate has implications not only for 

sea ice trophodynamics but also Southern Ocean productivity. In this paper, two 

questions are addressed: 

 

(1) What is the metabolic response of bacteria present in the brine channel 

assemblage to light? 

(2) What is the metabolic response of bacteria from the interstitial or bottom 

assemblage to experimental changes in both light and salinity?  

 

The response of sea ice algae was also assessed in a parallel study (Ryan et al., in 

prep; Ralph et al., in prep.). 
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4.2 Methods 

 
 

4.2.1 Sample Collection  

 

 

Brine community  

 

 

Algae and bacteria were collected in November 2003 from fast ice approximately 

1.5m thick at Cape Hallett, Antarctica (Figure 4.1). A series of shallow holes (<0.5m) 

were drilled in close proximity with a powered ice auger (Jiffey) and immediately 

cleared of ice shavings. Each hole was covered with an opaque sheet and left for 

approximately 10 minutes to allow the brine and associated microbes to drain from 

the severed channels within the ice. The accumulated brine was then carefully 

removed from each hole (under the cover of an opaque sheet), passed through a coarse 

filter to remove any ice shavings and collected in an opaque jerry can. The algae and 

bacteria present in this filtrate were concentrated under low light (<1 µmol photons m
-

2
 s
-1
) using a 47mm Millipore filtering apparatus and a series of 0.22µm filter 

membranes. The cells collected on each membrane were carefully removed and 

returned to filtered brine (0.22µm) with a salinity of approximately 70ppt. This 

provided a 360ml solution of concentrated algae and bacteria that was kept dark in a 

cold box prior to incubation.  

 

Bottom Community 

 

A SIPRE corer was used to extract 10 cores (130mm in diameter and 200mm in 

length) from sea ice at Cape Hallett in December 2003. An opaque sheet was 

employed to prevent cell exposure to ambient surface radiation during core removal. 

Once extracted, each core was transferred to a black polythene bag. Under low light 
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conditions (<1 µmol photons m
-2
 s
-1
), the bottom 5-10mm of ice was cut from each 

core, weighed and melted in three times the respective volume of filtered seawater 

(0.22µm, 36ppt) over a period of 12hrs. Samples were then combined and 

concentrated using the method described earlier.  Collected cells were retained in 

approximately 500ml of melted seawater with a saline concentration of 33.6ppt.   

 

To produce a range of saline treatments, brine (approx. 72ppt) was collected from a 

series of auger-drilled holes and filtered to 0.22µm to remove all cells.  

 

 

Figure 4.1. Map showing location of Cape Hallett, Antarctica (Gordon, 2003). 
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4.2.2 Experimental Protocol  

 

Effect of light on the brine community 

 

To determine the brine community response to incubation irradiance twenty-four 15 

ml samples of the concentrated solution were placed in centrifuge tubes and incubated 

in a water bath for 4 hours at -0.7°C. An ethanol: water (1:4) mixture with a 10m 

copper heat exchanger buried in ice was used to provide sub-zero temperatures and a 

heater stirrer was used to maintain the incubator temperature to within ±0.1°C.  

Samples were arranged randomly within the incubator and exposed to a level of 

overhead light of either: 4.6, 18.5, 37, 75, or 150 µmol photons m
-2
 s
-1
. An additional 

dark treatment was also included. Therefore there were five light treatments, one dark 

treatment and four replicates of each treatment (n = 24 samples). After four hours 

samples were removed and centrifuged at ca. 2000g for 5 minutes for the fast kinetic 

measurements of algal cells using a plant efficiency analyser (PEA) fluorometer. 

Samples were then resuspended and incubated for a further 20 minutes before 

removal for the generation of rapid light curves on algal cells using a pulse amplitude 

modulated (PAM) fluorometer (See Ryan et al. in prep). 

 

900µl of each sample was then transferred from each centrifuge tube and placed in 

separate 1ml Eppendorf tubes. 100µl of CTC (Polysciences) was added to each tube 

(5mM final concentration) before being returned to the same position within the water 

bath, and incubated for a further four hours under the same light conditions. Cells 

were then fixed by the addition of 0.22µm-filtered formalin (5% final concentration), 



Chapter 4: Metabolic assessment 

   

 

 86 

kept as cold as possible and stored in the dark. During the next 48 hours each sample 

was counterstained with DAPI (5µg ml
-1
) and incubated for 10 minutes in the dark 

before being vacuum filtered onto a white Millipore 0.22µm cellulose filter 

membrane.  

 

Tweezers were used to carefully mount each membrane onto a slide before a drop of 

Vectashield mounting medium (Vector Laboratories) was added. Cover slips were 

sealed with nail polish. Each slide was inspected immediately via epifluorescence 

microscopy using a Zeiss microscope under oil immersion at 1000x magnification. 

For each slide, 4-5 fields of view were randomly chosen to perform cell counts. 

Bacterial cells stained with DAPI were identified using a UV filter set to estimate the 

total number of bacterial cells, and then a blue light filter set was used to determine 

the number of cells that had accumulated reduced CTC in the same field of view. The 

percentage of metabolically active cells present on each slide was then calculated. 

 

 

Effect of light and salinity on the bottom community  

 

For the bottom community experiment the concentrated cell solution was divided into 

ten 50ml volumes.   In order to prevent osmotic shock, each culture was brought to 

the desired salinity over a period of eight hours with the timed addition of either brine 

or filtered seawater. The experiment was run in two parts: part A (n = 30) and part B 

(n = 30). The final salinity treatments after eight hours of acclimation (including 

minor differences between part A and B) are shown in Table 4.1.  
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Table 4.1 Final salinity readings of bottom community experiment after eight-hour 

period of acclimation. 

 

Salinity: Part A: Part B: 

     

S1 15.4 16.0 

S2 21.7 21.2 

S3 34.4 34.4 

S4 51.2 52.2 

S5 64.0 64.0 

   

 

 

Prior to incubation two 900µl sub-samples of each salinity treatment (1-5), both A and 

B (n = 20) were placed in separate Eppendorf tubes to provide an experimental 

control. The sample in each Eppendorf tube was stained with CTC (5mM final 

concentration), incubated in the dark for four hours and subsequently fixed with 

0.22µm-filtered formalin.  

 

Following an eight hour period of dark acclimation to the new salinity, two 15ml sub-

samples of each saline treatment for part A were placed in centrifuge tubes and 

incubated in a water bath at a temperature of -0.7°C. Samples were arranged 

randomly within the incubator and exposed to either 0, 37 or 150 µmol photons m
-2
 s
-1
 

for a period of four hours. There were five salinity treatments, three light treatments 

and two replicates of each treatment (n = 30 samples). Following this period, each 

sample was centrifuged and resuspended as per the protocol described in the first 

experiment. For bacterial assessment, 900µl was removed from each centrifuge tube, 

stained with CTC (5nM final concentration) and returned to the appropriate position 

in the incubator for a further four hours. At the end of this interval, cells were fixed 
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with 0.22µm-filtered formalin (5% final concentration) and stored in the dark. This 

process was then repeated for part B of the experiment (5 salinity levels, 3 light levels, 

two replicates = 30 samples), which was timed such that incubation followed an equal 

eight-hour period of acclimation. 

 

Prior to counterstaining, 200µl was removed from each sample and transferred to a 

separate Eppendorf tube containing 800µl of 0.22µm-filtered seawater. This was done 

to reduce the number of cells to be subsequently counted. Samples were prepared as 

slides and bacteria visualised using epifluorescence microscopy to determine total and 

CTC+ cells as previously described in the brine experiment.  

 

In addition to the pre-incubation controls, six centrifuge tubes were randomly selected 

from part A and B, and on return to Victoria University of Wellington inspected for 

the presence of autofluorescent cells using both blue light and UV filter sets. To 

determine the influence of incubating under a light regime, CTC was added to six 

900µl samples of 0.22µm-filtered double distilled water. Three samples were 

incubated in the dark and three samples were incubated under 150µmol photons m
-2
 s
-

1
 for four hours. Each sample was examined for the presence of reduced CTC.    

 

 

 

4.2.3 Statistical Analyses 

 

 

Data analysis was performed using SYSTAT 8.0. In the brine experiment a logit link 

regression model was used to determine the effect of light on cell metabolic activity. 

Following a log transformation of the data, a post hoc Tukey test was performed to 

determine all possible pairwise comparisons of light treatments.  
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The logit link regression technique was also used to determine the effects of light and 

salinity in the bottom community experiment. Grubb’s test was initially used to 

identify a spurious data point in the pre-incubation data set and this was subsequently 

removed before conducting a post hoc Tukey test to compare saline treatments. A 

series of regression models were fitted to the incubation data.  Parts A and B were 

initially combined for analysis, and then analysed separately as a batch effect was 

detected in the combined model. 

 

 

4.3 RESULTS 
 

 

 

4.3.1 Effect of light on the brine community 

 

 

The percentage of bacterial cells deemed metabolically active varied from 0 to 45%. 

This observed variation in the level of activity was strongly correlated with the level 

of light irradiance (χ
2
 = 3004, df = 1, p<0.0005). The increase in irradiance and 

corresponding level of cell activity follows a near linear positive correlation (Figure 

4.2). No metabolic activity was detected in those cells incubated in the dark. 

 

The results of the post hoc Tukey test comparing treatment means is displayed in 

Table 4.2. No significant difference in the number of active cells is detected in 

comparing the first four treatment means (0, 6.25, 18.5 and 37µmol photons m
-2
 s
-1
), 

as indicated by a common underline (α = 5%). The increase in incubation irradiance 

from 37 to 75µmol photons m
-2
 s
-1 
resulted in a statistically significant increase in the 

average number of active cells when compared with the lower levels of irradiance. 

The average number of active cells incubated at 150 µmol photons m
-2
 s
-1 
is 

significantly greater than all other light levels. 



Chapter 4: Metabolic assessment 

   

 

 90 

 
 

 

Figure 4.2 Influence of light irradiance on percentage of metabolically active 

bacterial cells from sea ice brine. Plotted values are means ± 1 SE. 

 

 

 

 

 

 

Table 4.2 Post hoc Tukey test of treatment means. Common underline indicates no 

significant difference between means (α = 5%) 

 

 

Light Level: 0 6.25  18.5  37  75           150 

Mean:  0 1.03  2.45  2.51  25.92           38.19 

  _________________________________ 
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4.3.2 Effect of light and salinity on the bottom community 

 

In the control group no reduced CTC was observed under blue light excitation in 

either the dark or light- incubated (150 µmol photons m
-2
 s
-1
) samples of filtered water 

following a four-hour incubation period. No autofluorescent cells or debris were 

observed under either UV or blue light excitation in the six randomly selected samples 

from part A and B. 

 

Pre-incubation  

 

Metabolically active cells were observed in all five saline treatments following the 

eight-hour period of acclimation (Figure 4.3).  With the removal of one treatment 

replicate from salinity 1 (15.7 ppt) (Grubb’s test for significant outliers), the 

percentage of metabolically active cells showed a significant response to salinity (χ
 2
 = 

15.27, df = 1, p = 0.0001). 

 
 

Figure 4.3 Percentage of metabolically active bacterial cells acclimated to a range of 

salinities. Plotted values are means ± 1 SE. Note: For salinity 1 (15.7ppt) n = 2, one 

missing value, one value removed; for salinities 2,3,4,5 n = 4. 
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Variation in metabolic activity of cells incubated at saline concentrations of 21.5, 

34.4, 51.7, and 64.0ppt is not statistically significant (α = 5%), however the post hoc 

Tukey test indicates reduction in bacterial metabolic activity in cells incubated at 

15.7ppt (Table 4.3). 

 

Table 4.3 Post hoc Tukey test of treatment means. Common underline indicates no 

significant difference between means (α = 5%) 

 

(1)  (2)  (3)  (4)  (5) 

Salinity: 15.7  21.5  34.4  51.7  64.0 

 Mean:  10.34  34.91  25.54  24.31  25.26 

 

    _______________________________________________ 

 

 

 

Incubation 

 

 

Bacterial metabolic activity was detected at each level of irradiance and in each saline 

regime following the eight-hour period of incubation. Estimates of metabolically 

active cells ranged from 0-65%. The initial logit regression model fitted to the 

combined data set (both part A and B) indicated significant effects of light (χ
 2 
= 

1279.47, df = 3, p = 0.0001) and the batch (χ
 2
 = 1279.47, df = 3, p <0.0001). The 

proportion of cells observed to be metabolically active was similar regardless of saline 

concentration (χ
 2 
= 1279.47, df = 3, p = 0.7400). 

 

A logit regression model fitted only to part A of the dataset indicates both light (x
2 = 

139.6013, df = 2, p<0.0005) and salinity (x
2 
= 139.6013, df = 2, p<0.0005) to be 

significant in influencing metabolic activity.  
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For cells maintained under zero light conditions, the number of cells deemed 

metabolically active following eight hours of incubation is significantly less than the 

pre-incubation control group (t = 4.0859, df = 16, p = 0.0009)(Figure 4.3:A; Figure 

4.4:A). No trend in the response to salinity is apparent under zero light for part A. 

Cells exposed to irradiances of 37 and 150µmol photons m
-2
 s
-1
 show a marked 

decline in metabolic activity with increasing salinity (Figure 4.3: B, and C). 

 

In contrast to part A, a regression analysis of the part B dataset indicates no effect of 

light (χ
 2
 = 36.89, df = 2, p = 0.1259), while salinity remains a significant influence on 

activity (χ
 2
 = 36.89, df = 2, p <0.0005). For incubations conducted under zero light 

and at 37µmol photons m
-2
 s
-1
 a very minor trend in the data is apparent with fewer 

active bacterial cells at either salinity extreme (16.0 and 64.0ppt respectively)(Figure 

4.4: A, and B). This pattern is not mirrored in cells incubated at 150µmol photons m
-2
 

s
-1
. 
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A 

B 

 
                  C 

 

 

Figure 4.4 Influence of light and salinity on metabolic activity of bottom ice bacterial 

cells for Part A data set. Plotted values are means ± 1 SE. Absence of error bars 

indicates missing data value. 
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  A 

 B 

 
                   C 
 

Figure 4.5 Influence of light and salinity on metabolic activity of bottom ice bacterial 

cells for Part B data set. Plotted values are means ± 1 SE. 
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4.4 Discussion 
 

 

This study represents the first attempt to quantify bacterial metabolic activity in 

Antarctic sea ice by way of cellular reducing potential. Conducting incubations under 

a light regime is a novel application of the CTC probe. Limitations in sample size for 

both experiments and a number of missing data points reflects the logistics involved 

in conducting experimental work in Antarctica.  

 

Evidence that bacteria actively grow in sea ice dates back as recently as the 1980’s. 

Sullivan and Palmisano (1984) observed large and morphologically distinct cells 

undergoing cell division, implying an active heterotrophic community.  

Microautoradiographic uptake of radiolabeled compounds such as 
14 
C-L-serine, 

3
H-

serine, 
3
H-glucose and 

3
H-thymidine by bacteria incubated under in situ conditions 

provided additional evidence of activity in the form of DNA synthesis (Sullivan and 

Palmisano, 1984; Sullivan et al., 1985). Results presented in this study provide further 

evidence that bacteria are able to maintain metabolic activity within sea ice, as 

indicated by cellular reducing potential. Although these experiments have not been 

conducted in situ, we have demonstrated that the degree of activity reflects abiotic 

factors associated with a dynamic sea ice environment that includes gradients in light, 

salinity, temperature and nutrient concentrations (Arrigo and Sullivan, 1992). This 

discussion will focus on the extent to which bacterial metabolic activity is influenced 

by light and salinity.  
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4.4.1 Response of the brine community to light 

 

The bacterial cells present in the brine assemblage of the sea ice profile showed a 

marked metabolic response to the level of irradiance, particularly at 75 and 150µmol 

photons m
-2
 s
-1 
(Figure 4.2). These levels of irradiance mirror those expected in situ 

for the brine community at midday and are thus ecologically relevant. The fact that no 

cells were deemed metabolically active when incubated in the dark suggests an 

absolute requirement for light stimulation; even at irradiances less than 37µmol 

photons m
-2 
s
-1
 metabolic activity appears to be limited. This result most likely reflects 

the light-driven interaction between algae and bacteria, which has been described by 

several authors (Grossi et al., 1984; Sullivan and Palmisano, 1984; Kottmeier et al., 

1987; Kottmeier and Sullivan, 1990; Stewart and Fritsen, 2004). In particular, 

Kottmeier et al. (1987) have demonstrated tight coupling between bacterial growth 

and microalgal photosynthetic metabolism in sea ice in McMurdo Sound, and suggest 

that microalgae provide bacteria with dissolved organic matter (DOM), either as 

extracellular polymeric substances and/or dissolved photosynthate. Grossi et al. 

(1984) propose that in return bacteria provide microalgae with vitamins and/or 

recycled inorganic nutrients. 

 

The reciprocal interaction between algae and bacteria has more recently been 

documented in pack ice and pelagic environments by Stewart and Fritsen (2004) and 

is consistent with observations from similar temperate water experiments (Wetz and 

Wheeler, 2004). The potential for coupling and uncoupling is also well documented in 

the literature, which has led to the suggestion that a stable matrix and nutrient source 

may be more important in determining bacterial distribution (Nichols et al., 1995). 
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This may explain why 50% of the observed abundance and 90% of the bacterial 

biomass occurs in the bottom 20cm of fast ice (Sullivan and Palmisano, 1984), where 

the supply of nutrients may become reduced within the ice profile, but is replaced in 

the interstitial regions by the underlying seawater. However, few studies have 

quantified the time required for bacteria to respond to algal metabolism. Using the 

CTC assay, we show that bacteria can switch from relative inactivity to a state of 

active metabolism within eight hours. Grossmann and Gleitz (1993) examined 

microbial responses to experimental sea ice formation and determined that the period 

of time required before algal photosynthesis influenced bacterial production was in 

excess of two weeks. Our results dramatically shorten this apparent response time and 

indicate that the microbial community can respond rapidly to environmental change. 

 

Another interpretation of the brine cell response is that limited metabolic activity with 

respect to low irradiance may imply the presence of photosynthetic or chemosynthetic 

bacterial species. Metabolically active cells were detected in the bottom community 

experiment when incubated in the dark, but no active cells were observed in the brine 

community under similar conditions. An absolute requirement for light may indicate 

metabolic functioning that does not require exuded algal products.  It is not yet known 

whether light harvesting bacterial species inhabit Antarctic sea ice (Staley et al., 

2001), but if such bacterial cells are present in the sea ice they are perhaps more likely 

to be present closer to the surface of the profile exposed to higher levels of irradiance. 

Alternatively, initial algal photosynthesis during the eight-hour period of incubation 

may have triggered a bacterial response, but activity may have ceased due to the 

diminishing availability of algal supplied DOM. These results indicate that the CTC 

assay may be useful in determining the presence of autotrophs in future experiments. 
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4.4.2 Response of the bottom community to light and salinity 

 

 

Few physiological experiments have been conducted on bacteria occurring in sea ice, 

despite indications of an important role in community dynamics. Understanding the 

physiological response of bacteria to the combined stress of temperature, salinity and 

pH is important, particularly during initial sea ice formation (Nichols et al., 1999). 

One of the few studies examining the effect of salinity on bacterial metabolism was 

that conducted by Kottmeier and Sullivan (1988) from samples of sea ice in McMurdo 

Sound. These authors determined bacterial incorporation of radiolabelled compounds 

(thymidine and uridine) and rates of carbon fixation from Hutt Point and Granite 

Harbour. For both radiolabelled substrates maximum incorporation occurred at 

salinities from 20ppt to 30ppt with secondary peaks from 50ppt to 70ppt. Much lower 

rates of incorporation were observed at saline concentrations outside these bounds. In 

addition, rates of carbon fixation of cells from Granite Harbour peaked at 20ppt to 

30ppt and declined markedly above 30ppt. Kottmeier and Sullivan (1988) also 

examined microalgae and concluded that sea ice heterotrophs exhibit less variation in 

response to salinity than autotrophs, indicating that bacteria are better adapted for 

survival and growth in the range of sea ice microhabitats. 

 

Results from the present study are interpreted with caution due to sample size and a 

possible batch effect of CTC. After the eight-hour period of acclimation similar levels 

of metabolic activity with respect to salinity were observed, with the exception of the 

15.7 ppt treatment (Figure 4.3). This suggests cells were able to acclimate to a range 

of salinities, but show a higher tolerance for saline concentrations above the 34ppt 

salinity of normal surface seawater. 
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After the period of incubation, reduced metabolic activity was observed for those cells 

maintained in the dark, implying a stress response to continued darkness (Figure 4.4: 

A; Figure 4.5: A). The influence of salinity on metabolic activity of dark-incubated 

cells is more difficult to interpret. The part B data show a very slight trend that is 

comparable with the findings of Kottmeier and Sullivan and (1988); cells are 

potentially less active at either saline extreme, but are able to tolerate saline 

concentrations ranging from 20ppt to 50ppt (Figure 4.5:A). The part A data do not 

support this conclusion. For cells incubated under an irradiance of 37µmol photons m
-

2
 s
-1
 the part B data show a similar trend in activity to those cells incubated in the dark 

with no apparent sensitivity to light exposure (Figure 4.5: B). A very different trend is 

evident in the part A data with metabolic activity declining rapidly in response to 

saline concentration (Figure 4.4: B). A similar response to salinity was observed 

under the maximum light treatment of 150µmol photons m
-2
 s
-1
 (Figure 4.4: C) but 

there are significantly fewer active cells at this irradiance. The corresponding data 

from the part B dataset indicate that cells are metabolically inhibited at salinities less 

than 34ppt. The ambiguity between the two datasets could stem from a number of 

factors including differences in the composition of algae and bacteria in the two parts 

of the experiment, variable supply of DOM, or different batches of the CTC stain.  

 

Of the two abiotic factors manipulated however, salinity is more important in 

influencing the metabolic activity of bacteria occurring in the interstitial region of the 

sea ice profile. When acclimated over a period of time, cells exhibit a tolerance to 

changing saline concentrations, but after a further eight hours there is some evidence 

to suggest activity is reduced at either end of the saline regime. Further study is 

required to elucidate the mechanistic basis for these current observations, particularly 
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in determining whether the in situ bacterial response simply mimics algal metabolism. 

Ice algae have been shown to exhibit a marked response to salinity with most species 

showing a severe inhibitory photosynthetic response at salinities greater than 60ppt 

(Palmisano et al., 1987; Vargo et al., 1986) and likewise at saline concentrations less 

than 32ppt (Ryan et al., 2004). It is thus difficult in this study to ascertain whether 

reduced metabolic activity reflects a stress response to saline conditions or a reduced 

supply of algal exudates. Limited experimental work with isolated sea ice cultures of 

Antarctic bacteria (Nichols et al., 1999) has demonstrated an upper and lower 

threshold in generation time with respect to saline concentration, implying that 

salinity may be one of the primary physicochemical parameters controlling the 

distribution and abundance of sea ice bacteria (Thomas and Dieckmann, 2002). 

 

Metabolic activity with respect to light produced variable results, however the part B 

dataset provides some evidence that activity may be independent of light irradiance 

for bacteria present in the interstitial region of the ice profile. This provides an 

interesting parallel to the brine community experiment and may indicate that bacteria 

present at the top of the profile are dependent on light, while the community present 

in the bottom region may be tolerant of low levels of irradiance. Alternatively, while 

the diminishing availability of algal supplied DOM may have limited bacterial activity 

in the brine experiment, there may have been significantly less DOM limitation in the 

bottom experiment due to the greater biomass in the interstitial region of the ice 

profile.   

 

Despite the limitation of sample size in this study, the CTC probe appears to be useful 

in quantifying abiotic effects on cellular activity and is applicable to the logistic 
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constraints of Antarctic field conditions. The method is simple, effective and avoids 

the use of radiolabelled compounds in a pristine environment. Understanding the 

bacterial response to environmental change in the sea ice ecosystem may provide an 

insight into the potential long-term changes to the physical oceanography and ecology 

of the Southern Ocean associated with climate change. The ability of microorganisms 

to cope with changes in ambient saline concentrations and irradiance levels associated 

with a reduction in extent and volume of sea ice may determine their capacity to act as 

‘seed populations’ that initiate ice edge blooms. 



Chapter 5: Summary 
 

 

 

While bacteria are now being recognised as a major biological force in the oceanic 

carbon cycle and ecosystem structure (Azam and Worden, 2004; Häder et al., 1998), 

our understanding of the diversity and functional capabilities of bacteria present 

within Antarctic sea ice remains fragmentary. This research provided the opportunity 

to compare the distribution and abundance of bacteria from two coastal Antarctic 

regions, and to initiate an understanding of the bacterial response to climate change. 

The general discussion that follows reviews the main findings of the preceding 

chapters and provides a broader context for results. The limitations of the study are 

considered, along with opportunities for future research. 

 

This thesis focused on three main objectives: 

 

1) Development of methods: to develop an understanding of some current 

techniques in the field of microbial ecology and apply these techniques to 

Antarctic field conditions (Chapter 2). 

2) Distribution and abundance: to compare the distribution and abundance of sea 

ice bacteria from fast ice and pack ice at two locations in Antarctica and to 

examine the correlation between bacterial and algal metabolism (Chapter 3). 

3) Cell metabolic activity: to determine the metabolic response of bacterial cells 

to experimental changes in light and salinity (Chapter 4). 
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5.1. Development of methods 

 

Flow cytometry is a valuable technique for counting natural bacterial assemblages, 

but is limited by instrument availability and methodology  (Sherr et al., 2001). During 

the course of this work a significant period of time was spent validating methods and 

comparing various flow cytometers prior to analysing the samples required for 

subsequent experiments (Chapter 2). The interpretation of flow cytograms (density 

plots of FL1 Vs. SSC) can require a subjective assessment by the user in 

distinguishing background instrument noise from bacterial cell populations of interest. 

In this study, sample storage and fixation were an additional confounding variable in 

interpreting cytograms. While validating the use of flow cytometry was time 

consuming, important collaborations were established with researchers from NIWA 

(New Zealand) and Oregon State University (USA).  

 

In addition, Chapter 2 outlined observations on filtration methods, filter paper 

membranes, antifade products, and fluorescent stains. This initial work was largely 

focused at gaining familiarity with epifluorescence microscopy, but also included a 

short pilot study on marine bacteria in Wellington Harbour.  There is some evidence 

to suggest that bacterial abundance differs with respect to sampling location within 

the harbour. Further examination was beyond the scope of this study. 

 

 

 

 

 



 Chapter 5: General discussion 

 

 105 

5.2. Distribution and abundance 

 

Descriptions of the distribution and abundance of bacteria with respect to fast ice, and 

in particular pack ice, remain fragmentary (Delille, 1992). Chapter 3 compared the 

bacterial communities from two coastal locations in Antarctica. Similarities in 

bacterial abundance and biovolume were observed between fast ice at Cape Hallett 

and pack ice from the Mertz Glacier region, but the distribution of cells within the ice 

was found to be significantly different between locations. Additionally, close 

metabolic coupling between bacteria and algae was observed in annual pack ice but 

not multiyear fast ice.  

 

Metabolic coupling between bacteria and algae is thought to indicate a functional 

microbial loop (Stewart and Fritsen, 2004; Pedrós-Alió et al., 2002), however the 

spatial and temporal nature of this relationship remains unclear. Uncoupling of 

primary and secondary production may be instigated by the synergistic effects of 

DOM and temperature limitation (Pomeroy and Wiebe, 2001; Helmke and Weyland, 

1995; Stewart and Fritsen, 2004), but it seems that the discrepancy between bacterial 

and algal biomass observed at Cape Hallett may reflect the presence of multiyear ice. 

These findings support the general consensus that bacterial biomass generated from 

algal-derived dissolved organic matter is highly variable across seasons and habitats.  

  

5.3 Cell metabolic activity 

 

It is now recognised that an understanding of the ecology of microbial communities 

requires information about the identity and metabolic activity of individual cells 
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(Sherr et al., 2000). This is largely due to the realisation that a significant fraction of 

bacterial cells visualised by direct microscopic enumeration are either dead or 

relatively inactive (Choi et al., 1999; Sherr et al., 1999; Sherr et al., 2000). Several 

techniques are now available, or under development, that provide an insight into the 

physiological activity of individual microbial cells in marine samples. There is 

however, no consensus regarding the absolute validity of these methods, or even 

which are the most reliable (Howard-Jones et al., 2001).  

 

The tetrazolium salt CTC developed by Rodriguez et al. (1992) is an approach to 

determine cell-specific activity that is becoming increasing recognised. Chapter 4 

described the first metabolic assessment of Antarctic sea ice bacteria using this assay. 

Although the results obtained with CTC are preliminary, due to the novel application 

of the stain and the limited sample size, this approach warrants further research. The 

technique is relatively simple and has the major advantage of not requiring the use of 

radiolabelled compounds in pristine environments such as Antarctica. 

 

The objective here was to determine the metabolic response to light stimulus by 

bacterial cells present in the brine community. The near linear, positive, trend between 

cell activity and incubation irradiance was an unexpected and intriguing result. 

Several explanations may explain the trend, but the most likely is a direct response to 

the increased availability of algal photosynthate. This study demonstrates for the first 

time the usefulness of the CTC assay in determining the spatial and temporal coupling 

of algal and bacterial metabolism. Alternatively, the response may indicate the 

presence of photosynthetic species. Although photosynthetic bacteria dominate many 

of the non-marine ecosystems of the Antarctic, such as ponds and lakes (Hawes and 
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Schwarz, 2001), they have yet to be described from sea ice. Light-harvesting 

Cyanobacteria such as Synechococcus spp. and Prochlorococcu spp. are typically 

absent from coastal and offshore waters in polar regions (Vincent et al., 1999), but at 

1.0 and 0.6µm in diameter respectively (Marie et al., 1997), they could be the cells 

observed in this study. The outcome of this experiment is extremely interesting, and if 

this explanation were validated, it would be a unique discovery.  

 

A second physiological experiment examined the response of bacterial cells present in 

the interstitial sea ice region to experimental changes in both light and also salinity 

which is thought to be the dominant factor in external chemistry influencing microbial 

assemblages (Thomas and Dieckmann, 2002). Of the two abiotic factors manipulated, 

salinity may be more important in influencing metabolic activity of bacteria present in 

bottom ice. When acclimated over a period of eight hours, cells tolerated changing 

saline concentrations with the exception of the lowest salinity treatment (15.7ppt). 

After a further eight hours of incubation there is some indication that activity was 

reduced at either end of the saline regime, irrespective of incubation irradiance. 

Unfortunately, results were confounded by a batch effect, possibly due to the CTC 

stain, and need to be treated with caution. 

 

5.4   Conclusion 

 

In contrast to studies on Antarctic terrestrial environments, evidence that climate 

change has influenced the marine biota is limited, and direct impacts on marine 

microorganisms have been ascertained for very few species (White et al., 2001; 

Marchant et al., 2001). If current climate trends are sustained, changes in the volume 
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and extent of sea ice, ocean circulation, mixing regimes, cloud cover and nutrient 

input will all influence the gradients in light and salinity that characterise the sea ice 

environment. Such changes are likely to be complex, wide-ranging and difficult to 

predict (Marchant et al., 2001). 

 

This work provides the first evidence that bacterial metabolic activity depends on 

their position within the sea ice profile. Light appears to have a greater influence on 

bacterial cell activity in the top region of fast ice than on cells present on the bottom. 

Conversely, bacteria present in the near surface region of the ice profile appear to be 

adapted to relatively high saline concentrations, while cells in the interstitial region 

may be less tolerant of saline fluctuations departing from that of ambient seawater 

(36ppt). Thus, any changes to the volume of annual sea ice and ambient ocean salinity 

are likely to have an effect on bacterial metabolism as well as community 

composition.  

 

Reduced ice thickness as a result of climate change would reduce the microbial 

biomass, thereby limiting the inocula for bloom events at the marginal ice zone and 

modifying the vertical carbon flux.  Exposure to increased solar irradiance may favour 

some species, especially those with greater UV tolerance (Hernández et al., 2004; 

Helbing et al., 1995), while warmer, less saline water may pose a physiological stress 

to others.  

 

While algae have been shown to acclimate to changes in both light and salinity (eg. 

Ryan et al., 2004) very little is known about possible mechanisms of adaptation in 

Antarctic bacteria. The extent to which the species distribution reflects abiotic factors 
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such as light, salinity and ice profile depth is equally ambiguous. Given the ephemeral 

nature of the sea ice ecosystem and gradients in abiotic factors, a degree of resilience 

can be assumed and any long-term climate-related changes may be difficult to predict.  

However, due to short generation times and their structural simplicity, changes in 

environmental conditions are often rapidly recognised by unicellular organisms 

(Jochem, 2000), as has been shown in this study with respect to light and salinity. 

Community level changes in either the composition of annual sea ice or the 

underlying water column may cause uncoupling of the microbial loop, which is likely 

to further reduce both primary and secondary productivity. Alternatively, productivity 

may be enhanced in the water column and biodiversity may increase if warmer water 

allows microbes to transit from temperate to polar oceans (Marchant et al., 2001).    

 

It is beyond the scope of this thesis to provide definitive indications as to the effects 

of sustained increases in global CO2 and temperature on the sea ice microbial 

community. However the use of physiological probes such as CTC provides useful 

insight into factors influencing bacterial activity. This will hopefully lead to an 

understanding of the role of bacteria in structuring healthy and stressed marine or sea 

ice ecosystems. Understanding the potential stress response of bacterial assemblages 

to a changing climate has implications not only for sea ice trophodynamics but also 

Southern Ocean productivity. 

 

5.5 Limitations of the study   

 

A significant limitation of this thesis is low sample size, both of survey and in 

particular experimental work. This reflects the time, weather, and other logistic 
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constraints associated with Antarctic fieldwork. It was not possible for sampling sites 

established in pack ice floes from the Mertz Glacier in 2002 to be periodically re-

sampled as was carried out at Cape Hallett in 2003 as they are continually moved by 

tides and wind. The sampling regime employed at Cape Hallett was useful in 

determining short-term increases in bacterial abundance. By comparison, the cores 

extracted from the Mertz region only provide a ‘snapshot’ of the pack ice microbial 

community. It is also recognised that identical sampling methodology be adopted in 

comparing locations, particularly with respect to an ecosystem that is as spatially and 

temporally dynamic as Antarctic sea ice, but this was not possible because of the 

dynamic nature of the pack ice at the Mertz Glacier. 

 

 

5.6 Future directions 
 

 

An understanding of the potential stress response of bacterial assemblages to 

environmental change may provide an insight into long-term changes to the sea ice 

ecosystem. The CTC assay appears to be an effective technique and shows 

considerable promise for future work in ice-covered regions. Given the lack of 

consensus with regards validity of results and reliability of the various techniques 

available, an assessment method that incorporates a range of stains and probes is 

recommended. 

 

The sea ice bacterial community composition is best assessed using molecular 

techniques such as PCR amplification of 16S rRNA gene fragments and denaturing 

gradient gel electrophoresis (DGGE). This approach could contribute significantly to 

understanding not only the biodiversity of Antarctic bacteria but also the factors 

which determine species distribution and the structure of healthy and stressed marine 
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ecosystems. Correlating the taxonomic composition with the spatial, and possibly 

even temporal, dynamics of sea ice would enable species-specific responses to climate 

change to be quantified. It may also provide a clearer indication of the importance of 

bacterial bloom events at the marginal ice zone. 

 

Photosystem inhibitors such as 2,4,6 trinitrophenyl or dichlorophenyl dimethyl urea 

(DCMU) could be used to separate the photosynthetic response of algae and bacterial 

metabolic activity. This would allow an assessment of whether metabolic activity 

reflects a direct or indirect response to abiotic factors. A combination of molecular 

identification techniques such as PCR in conjunction with photosystem inhibitors 

would be a useful approach in validating the presence of photosynthetic bacterial 

species. 

 

The majority of research efforts, including the present work, have relied on bulk 

analyses of melted ice samples or extracted brine (Jung et al., 2001). The extent to 

which investigations of this type reflect the in situ distribution of microbes with 

respect to the brine inclusions and interstices of the ice matrix is not known. It is also 

assumed that the experimental assessment of metabolic activity serves as a valid 

proxy for in situ processes, but brine extraction and melting of ice cores prior to 

incubation may significantly influence the physiological state of bacterial cells. This 

issue was not addressed in this study but could be quantified using in situ methods.  

 

A technique recently developed by Jung et al. (2001) has enabled in situ DAPI 

staining of bacteria localised within the three dimensional framework of brine 

inclusions. This approach allows microbial populations to be examined at a spatial 
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scale relevant to the microbial community. Adapting this technique to provide an in 

situ assessment of metabolic activity, possibly in conjunction with species- specific 

oligonucleotide probes, is an exciting prospect for future work. 

 

Understanding the spatial and temporal dynamics of Antarctic sea ice and the 

associated biotic communities is fundamental to quantifying Southern Ocean 

productivity and the trophodynamics of the Antarctic coastal ecosystem. This research 

has shown that cell-specific techniques with image analysis and flow cytometry can 

provide a valuable insight into the structure of bacterial assemblages. By integrating 

the techniques emerging in the field of microbial ecology, it may now be possible to 

elucidate the role of bacteria in Antarctic sea ice. As a result, a mechanistic 

understanding of productivity and trophodynamics in the Antarctic coastal ecosystem, 

and prognostic models for qualifying the resilience of the microbial community to 

climate change, may soon be realised. 
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