
TrustedCI: The NSF Cybersecurity Center of Excellence
Open OnDemand Report

December 31, 2018
For Public Distribution after May 2019

Elisa Heymann , Joel Atkins , Barton P. Miller 1 2 3

1 Software Assurance Lead, elisa@cs.wisc.edu
2 Student Researcher, atkins@cs.wisc.edu
3 Co-PI bart@cs.wisc.edu

mailto:elisa@cs.wisc.edu
mailto:atkins@cs.wisc.edu
mailto:bart@cs.wisc.edu

About Trusted CI

Trusted CI is funded by NSF's Office of Advanced Cyberinfrastructure as the NSF Cybersecurity
Center of Excellence (CCoE). In this role, Trusted CI provides the NSF community a coherent
understanding of cybersecurity's role in producing trustworthy science and the information and
know-how required to achieve and maintain an effective cybersecurity program. Trusted CI
achieves this mission through a combination of one-on-one engagements with NSF projects,
training and best practices disseminated to the community through webinars, and the annual,
community-building NSF Cybersecurity Summit for Large Facilities and Cyberinfrastructure.

Acknowledgments

Trusted CI's engagements are inherently collaborative. The authors wish to thank the Open
OnDemand team, and specifically Trey Dockendorf , for the collaborative effort that made this 4

document possible. The Open OnDemand is supported by NSF awards PHY-1534949 and 5

PHY-1835725 . 6

This document is a product of Trusted CI. Trusted CI is supported by the National Science
Foundation under Grant Number ACI-1547272 . For more information about Trusted CI please 7

visit https://trustedci.org . Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Using & Citing this Work

This work is made available under the terms of the Creative Commons Attribution 3.0 Unported
License. Please visit the following URL for details:
http://creativecommons.org/licenses/by/3.0/deed.en_US

Cite this work using the following information:

Elisa Heymann, Joel Atkins, Barton P. Miller. "TrustedCI: The NSF Cybersecurity Center of

Excellence Open OnDemand Report". TrustedCI: The NSF Cybersecurity Center of Excellence.

December 2018.

4 OSC HPC Systems Engineer, tdockendorf@osc.edu
5 https://www.nsf.gov/awardsearch/showAward?AWD_ID=1534949
6 https://www.nsf.gov/awardsearch/showAward?AWD_ID=1835725
7 https://www.nsf.gov/awardsearch/showAward?AWD_ID=1547272

Open OnDemand Engagement Report | Trusted CI 2

https://trustedci.org/
http://creativecommons.org/licenses/by/3.0/deed.en_US
mailto:tdockendorf@osc.edu
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1534949
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1835725
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1547272

Table of Contents

About Trusted CI 2

Acknowledgments 2

Using & Citing this Work 2

Table of Contents 3

List of Figures 5

Executive Summary 6

1 Overview 7

1.1 Introduction 7

1.2 Background 7

1.3 Methodology 7

1.4 Logistical Issues 7

2 The First Principles Vulnerability Assessment Methodology 9

2.1 Architectural Analysis 10

2.2 Resource Identification 11

2.3 Trust and Privilege Analysis 12

2.4 Component Evaluation 12

This section describes bugs that need to be addressed, and areas that were evaluated
and which appeared to have no issues. 12

2.4.1 Security of Server Communication 12

2.4.2 Bug - Default Job Template Failure 13

2.4.3 Input Validation 14

2.4.3.1 Long Job Name in Composer Moves Elements from View 14

2.4.3.2 Invalid Characters in New Directory Command of File Explorer 15

2.4.4 Job Limiting 16

2.4.5 User Isolation 16

2.4.6 Authentication 17

2.4.7 Log Overflows 17

2.4.8 XSS and CSRF 17

2.4.9 Use of all available resources 17

Open OnDemand Engagement Report | Trusted CI 3

Action: Verify that the vulnerability is mitigated in the testbeds where Open OnDemand is
deployed, by using cgroups, for example. 17

Appendices 18

Appendix A: Architectural Diagrams 18

A.1 List of Architecture Diagrams for Open OnDemand 18

A.2 Architecture Diagrams 19

Appendix B: Resource Diagrams 24

B.1: List of Resource Diagrams for Open OnDemand 24

B.2: Resource Diagrams 25

Appendix C: Vulnerability report OpenOnDemand-2018-0001 28

Open OnDemand Engagement Report | Trusted CI 4

List of Figures

Figure 1: Open OnDemand Startup Phase Process Creation 10

Figure 2: Resource Diagram for Open OnDemand HTTPD Installation 11

Figure 3: Unencrypted Communications between Servers 13

Figure 4: Default Sequential Job Template 14

Figure 5: Permissions Error 14

Figure 6: Elements Moved from View 15

Figure 7: Intended Element View 15

Figure 8: Invalid Directory Name 16

Figure 9: Inaccessible Directory Structure 16

Figure 10: Architectural Diagram, Startup of Open OnDemand 19

Figure 11: Architectural Diagram, Processes created on Dashboard Host 20

Figure 12: Architectural Diagram for Shell Application 21

Figure 13: Architectural Diagram for User Isolation through PUNs 22

Figure 14: Architectural Diagram demonstrating Unencrypted Traffic between

Dashboard and HPC Login Node.

23

Figure 15: Resource Diagram for Open OnDemand HTTPD Installation 25

Figure 16: Resource Diagram for Open OnDemand NGINX Installation 26

Figure 17: Resource Diagram for Open OnDemand Phusion Passenger Installation 27

Figure 18: Resource Diagram for Open OnDemand 28

Open OnDemand Engagement Report | Trusted CI 5

Executive Summary

The Open Supercomputing Center (OSC) and Trusted CI collaborated to assess the security of

Open OnDemand (OOD). Open OnDemand is an HPC portal based on OSC’s original OnDemand

portal. The goal of Open OnDemand is to provide an easy way for system administrators to

provide web access to their HPC resources, including, but not limited to:

● Plugin-free web experience.

● Easy file management.

● Command-line shell access.

● Job management and monitoring across different batch servers and resource managers.

● Graphical desktop environments and desktop applications.

As wider communities are evaluating the Open OnDemand software and collaborating with

OSC, a security assessment becomes an important aspect of the software.

This assessment was based on a First Principles Vulnerability Assessment (FPVA) analysis of 8

Open OnDemand. This assessment started by mapping out the architecture and resources of

the system, paying attention to trust and privilege used across the system, and identifying the

high value assets in the system. From here, a detailed study of the high-risk portions of the

code was made. As areas of high risk were studied in detail, we have increased confidence in

the security of the code. Results at each step of the process were shared with the Open

OnDemand development team.

Major findings include:

● Discovered several implementation issues (bugs) that could affect the proper operation

of Open OnDemand.

● No major issues were found in a comprehensive evaluation of the architecture and

critical resources in Open OnDemand, and analysis of potential code weaknesses in

critical components.

● Found a potential vulnerability, dormant based on current configuration and launch

settings.

8 James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, “First Principles Vulnerability Assessment”,
2010 ACM Cloud Computing Security Workshop (CCSW), Chicago, IL, October 2010.

Open OnDemand Engagement Report | Trusted CI 6

1 Overview

1.1 Introduction

This document describes the Trusted CI - Open OnDemand engagement, which occurred July
2018 to December 2018. The goals of the engagement were to evaluate the technology and
architecture of the Open OnDemand middleware, perform a code-level security review of the
Open OnDemand software, and provide comprehensive reports for any vulnerabilities
identified.

This document is organized by tasks as they occurred chronologically, beginning with
determining the scope of the engagement and ending with appendices of the results of the
various test/analyses of the code and the resulting recommendations for remediation of issues.

1.2 Background

Open OnDemand is open source software, developed by the Ohio Supercomputing Center, 9

which provides a web-based graphical interface access to HPC (High Performance Computing)
resources. The software allows the user to login to using their HPC credentials and access
resources entirely within their web browser. The core installation includes applications for
Shell Access, Job Editing and Creation, File Management and Job Tracking. In total, the
components of Open OnDemand are composed of approximately 50,000 lines of code.

1.3 Methodology

This engagement focused on performing a First Principles Vulnerability Assessment (FPVA) on 10

Open OnDemand. FPVA is a methodology for vulnerability assessments developed at the
University of Wisconsin-Madison.

Dave Hudak applied for a Trusted CI engagement for the Open OnDemand project in early 11

2018. He stated that the application was intended to strengthen software assurance for current
users, as well as to increase Open OnDemand’s “adoption rate in the security conscious HPC
community.”

1.4 Logistical Issues

9 http://openondemand.org/
10 http://research.cs.wisc.edu/mist/VA.pdf
11 OSC Executive Director, dhudak@osc.edu

Open OnDemand Engagement Report | Trusted CI 7

http://openondemand.org/
http://research.cs.wisc.edu/mist/VA.pdf
mailto:dhudak@osc.edu

The in-depth software engagement differs in several ways from most previous engagements
performed by TrustedCI. Open OnDemand was only the second in-depth software engagement
done by TrustedCI. There were a few initial issues that slowed this task, primary these were
delays in establishing a fully-functional software testbed.

The engagement began by working with the Open OnDemand team to establish Virtual
Machines which simulated a typical installation of the software. Several issues arose during this
process, such as VM software version compatibilities and VM file system configurations.
Iterative updates to the VM configurations and installation process lead to a functional testbed,
only to run into issues with the system not functioning after a restart. This was followed by
another round of collaboration with the OOD Development team resulting in a final update to
the VM configuration and a reliable testbed installation on 1 August 2018.

In early September 2018, conversations between the assessment team and the OOD team
focused on the shortcomings of the VM testbed, specifically features of a typical installation of
the Open OnDemand software that were not present in the testbed. In response, the
assessment team was given credentials for two OSC-maintained instances of the OOD software.
The first being their production deployment and the second an internal testbed. In addition,
work began on an additional testbed on which the assessment team would have an account
with elevated privileges in order to more thoroughly test the software. This additional testbed
was made available to the assessment team on 28 November.

Open OnDemand Engagement Report | Trusted CI 8

2 The First Principles Vulnerability Assessment Methodology

First Principles Vulnerability Assessment (FPVA) is an analyst-centric (manual) methodology that
aims to focus the analyst’s attention on the parts of the software system and its resources that
are most likely to contain vulnerabilities that would provide access to high-value assets. FPVA
finds new threats to a system and is not dependent on a list of known threats. The FPVA
methodology consists of five steps for evaluating a given piece of software.

1. Architectural Analysis: determine the major structural components of the system and
then how they interact. At this point architectural diagrams are produced which
illustrate the structure of the system.

2. Resource Identification: identify key resources accessed by each component. Examples
of these resources are files, databases, logs and devices. Resource diagrams are
produced that illustrate these resources and their connection to system components.

3. Trust and Privilege Analysis: identify the trust assumptions about each component,
answering such questions as how are they protected and who can access them?
Associated with trust is describing the privilege level at which each executable
component runs. The artifact produced at this stage is a further labeling of the basic
diagrams with trust levels and labeling of interactions with delegation information.

4. Component Evaluation: examine relevant components in depth. A key aspect of the
FPVA process is that this step is guided by information obtained in the first three steps,
helping to prioritize the work so that high value targets are evaluated first. Any
vulnerabilities identified result in the production of a comprehensive vulnerability
report that is disseminated to the requesting parties. All work done during this step is
logged for inclusion in the final report.

5. Dissemination of Results: a final document, this report, is then prepared and includes
the deliverables mentioned above as well as an outline of the work completed.
Identified vulnerabilities are included as well as areas that have been investigated but
no vulnerabilities found. This report is then disseminated to the requesting parties (i.e.,
the lead of the development team).

These steps were adhered to in the Open OnDemand engagement.

We note that Open OnDemand is a large and complex software system, so no assessment
activity will be able to find all possible sources of insecurity. Regular assessments of the
software will help maintain its security. In addition, Open OnDemand uses a variety of software
technologies resulting in a complex software stack. As such, there needs to be ongoing
attention to security of the external software on which Open OnDemand depends.

Open OnDemand Engagement Report | Trusted CI 9

2.1 Architectural Analysis

Open OnDemand documentation was analyzed followed by the establishment of an Open
OnDemand testbed setup upon which to perform the evaluation. Based upon our study of the
documentation and testbed we produced an architectural diagrams, to provide a graphic
overview of the structure of a standard Open OnDemand installation. Figure 1 shows an
overview of the architecture of a running dashboard host, with the more detailed diagrams
shown in Appendix A.

From further study of code and documentation, we produced a series of architectural diagrams
that provide detailed information regarding component interaction during various use cases of
the Open OnDemand code base.

Figure 1. Open OnDemand Startup Phase Process Creation.

From these architecture diagrams we identified the potential attack surface. This surface
consists of user inputs to a webpage view. We then identified the path (attack vector) any user
input must take to reach any potential impact surfaces. As the assessment was focused upon
Open OnDemand as a whole, we were able to identify its individual components and how they
interact with one another, as well as how they interact with the user and HPC resources. This

Open OnDemand Engagement Report | Trusted CI 10

information permits more focused investigation in later steps when evaluating code or
designing test inputs. The diagrams also illustrate the separation between various components
and show that individual users are isolated from one another.

2.2 Resource Identification

Following the production of the architectural diagrams, the evaluation team identified the key
resources accessed by the components identified above. This information was used to produce
system Resource Diagrams, such as the HTTPD diagram in Figure 2. The full collection of
resource diagrams produced are shown in Appendix B.

From these resource diagrams we are able to identify potential problems for further
investigation, such as log files which were evaluated in the Component Analysis step for
possible overflows.

Figure 2. Resource Diagram for Open OnDemand HTTPD Installation.

Open OnDemand Engagement Report | Trusted CI 11

2.3 Trust and Privilege Analysis

The architecture and resource diagrams, described above, were augmented to describe the
various levels of privilege at which Open OnDemand components run. From these diagrams, we
can see that Open OnDemand HTTPD and NGINX run with root privileges, but users do not have
direct interaction with these processes.

2.4 Component Evaluation

This section describes some of the areas of focus for the component analysis where
vulnerabilities are searched based on the previous steps in the analysis. At this step, we
evaluated the implementation details looking for weaknesses that might be exploited.

This section describes bugs that need to be addressed, and areas that were evaluated and
which appeared to have no issues.

2.4.1 Security of Server Communication

Action: Because of the current configuration this is not of immediate concern. If a future
configuration change moves one of the processes out of the same protection environment then
this connection will become vulnerable. Recommend encrypting this connection.

Communication between the user and the Open OnDemand dashboard host are encrypted with
the HTTPS protocol. Conversations with the OOD team highlighted the fact that
communication between the OOD host and login nodes serving interactive applications takes
place without encryption. This is a low level concern, as accessing the traffic would require
having compromised either end of the communication, but one which the OOD team has
identified as a target for future improvement.

Figure 3 shows intercepts of unencrypted traffic from the ood-test dashboard host to a login
node running a Jupyter server.

Open OnDemand Engagement Report | Trusted CI 12

Figure 3. Unencrypted Communications between Servers

2.4.2 Bug - Default Job Template Failure

Action: Bug that affects the correct operation of Open OnDemand and should be fixed.

The default “Simple Sequential Job”, as shown in Figure 4 fails as there are not execution
permissions on the job script. The result is shown in Figure 5.

Open OnDemand Engagement Report | Trusted CI 13

Figure 4. Default Sequential Job Template

Figure 5. Permissions Error

2.4.3 Input Validation
Action: Bugs that affect the correct operation of Open OnDemand and should be mitigated.

We identified multiple issues with unusual inputs causing unintended changes to webpage
display.

2.4.3.1 Long Job Name in Composer Moves Elements from View

Log job names move columns out of view in Job Composer. These items are then inaccessible.

Open OnDemand Engagement Report | Trusted CI 14

Figure 6. Elements Moved from View

As seen in Figure 6, multiple columns are removed from view. These are displayed in Figure 7 .

Figure 7. Intended Element View

2.4.3.2 Invalid Characters in New Directory Command of File Explorer

Entering invalid characters into the File Explorer’s prompt for creating a new directory results in
unintended directory structure changes.

Open OnDemand Engagement Report | Trusted CI 15

Figure 8. Invalid Directory Name

Entering the code in Figure 8 results in the creation of multiple subdirectories, some of which
are inaccessible, as shown in Figure 9.

Figure 9. Inaccessible Directory Structure

2.4.4 Job Limiting

Action: A detailed evaluation was performed and no apparent issues found.

As the resources are shared, the ability of a single user to consume all available resources were
tested. This is generally handled by the workload manager. The VM testbed did not account
for this and an individual user could continuously spawn processes until all resources were
consumed. Conversations with the development team identified this as a shortcoming of the
VM testbed and ultimately lead to the use of the testbeds described in Section 1.4, which were
located at the Ohio Supercomputing Center. In a production environment Unix Control Groups
(Cgroups) are used to prevent this.

2.4.5 User Isolation
Action: A detailed evaluation was performed and no apparent issues found.

Open OnDemand Engagement Report | Trusted CI 16

The ability of one validated user to affect the operations or data of another user was
investigated. The OOD architecture is intended to prevent these sorts of attacks through the
use of Per-User NGINX (PUN) instances. The use of PUNs isolates users from one another. The
OOD file explorer, as currently deployed, allows users to view directories of other users, which
could leak information, but permissions prevent them from modifying the contents of those
directories.

2.4.6 Authentication
Action: A detailed evaluation was performed and no apparent issues found.

Open OnDemand various authentication mechanisms. These are third-party mechanisms
developed to extend the functionality of the widely used Apache web server software.
Authentication done through Apache is also mapped onto HPC resources through the
ood_auth_map package developed by OOD. This process was investigated for security and
possible information leakage with no vulnerabilities found.

2.4.7 Log Overflows
Action: A detailed evaluation was performed and no apparent issues found.

The possibility of overflowing log files was investigate. Open OnDemand utilizes the logging
functions native to Apache and NGINX (with Passenger logging its activity to the NGINX logs).
These functions have protections against log overflows and include the creation of compressed
log backups when logs reach a certain size, thus preventing log overflows.

2.4.8 XSS and CSRF
Action: A detailed evaluation was performed and no apparent issues found.

As Open OnDemand is a web based interactive portal, the common web vulnerabilities of Cross
Site Scripting (XSS) and Cross Site Request Forgeries (CSRF) were evaluated. Open OnDemand
properly validates user inputs to prevent XSS attacks and CSRF attacks are prevented by
properly implemented user authentication and tokens.

2.4.9 Use of all available resources

Action: Verify that the vulnerability is mitigated in the testbeds where Open OnDemand is
deployed, by using cgroups, for example.

When submitting a job, the user can craft a tasks that continuously spawns new processes and
consumes all available resources on the executing node. This can result in a Denial of Service
(DoS) on the executing node.

Open OnDemand Engagement Report | Trusted CI 17

The details of this vulnerability are described in the OpenOnDemand-2018-0001 document,
attached to this report.

Appendices

Appendix A: Architectural Diagrams

A.1 List of Architecture Diagrams for Open OnDemand

Architectural diagrams were created for a representative Open OnDemand installation. This
consisted of an Open OnDemand web portal and HPC login/compute nodes. The diagrams
represent the states and communication between services during various phases of job
submission and execution.

Diagrams have been created for:

1. Startup of Open OnDemand.
2. Processes on Dashboard Host.
3. Shell Program Processes and HPC Communication.
4. User Isolation through PUNs
5. Unencrypted Traffic Between Dashboard Host and Login Node.

Open OnDemand Engagement Report | Trusted CI 18

A.2 Architecture Diagrams

Figure 10. Architectural Diagram, Startup of Open OnDemand.

Open OnDemand Engagement Report | Trusted CI 19

Figure 11. Architectural Diagram, Processes created on Dashboard Host.

Open OnDemand Engagement Report | Trusted CI 20

Figure 12. Architectural Diagram for Shell Application.

Open OnDemand Engagement Report | Trusted CI 21

Figure 13. Architectural Diagram for User Isolation through PUNs.

Open OnDemand Engagement Report | Trusted CI 22

Figure 14. Architectural Diagram demonstrating Unencrypted Traffic between Dashboard and HPC Login Node.

Open OnDemand Engagement Report | Trusted CI 23

Appendix B: Resource Diagrams

B.1: List of Resource Diagrams for Open OnDemand

Resource diagrams were created for various processes in the Open OnDemand pipeline. 3rd
Party web servers (Apache and NGINX) handle communications, Open OnDemand
Infrastructure code configures the OOD instance, Open OnDemand Applications are the
interactive web pages served to the user.

Diagrams have been created for:

1. Open OnDemand HTTPD Resources.
2. Open OnDemand NGINX Resources.
3. Open OnDemand Phusion Passenger Resources.
4. Open OnDemand Infrastructure and Application Resources.

Open OnDemand Engagement Report | Trusted CI 24

B.2: Resource Diagrams

Figure 15. Resource Diagram for Open OnDemand HTTPD Installation.

Open OnDemand Engagement Report | Trusted CI 25

Figure 16. Resource Diagram for Open OnDemand NGINX Installation.

Open OnDemand Engagement Report | Trusted CI 26

Figure 17. Resource Diagram for Open OnDemand Phusion Passenger Installation.

Open OnDemand Engagement Report | Trusted CI 27

Figure 18. Resource Diagram for Open OnDemand.

Appendix C: Vulnerability report OpenOnDemand-2018-0001

Open OnDemand Engagement Report | Trusted CI 28

Not for public release. Do not distribute.

OpenOnDemand-2018-0001

Summary:

When submitting a job, the user can craft a task that continuously spawns
new processes and consumes all available resources on the executing node.
This can result in a Denial of Service (DoS) on the executing node.

Component Vulnerable
Versions

Platform Availability Fix Available

Open
OnDemand

All Non-
Windows

Not known to
be publicly
available

No

Status Access
Required

Host Type
Required

Effort
Required

Impact/Consequences

Verified on
virtual

machine
testbed

Local
ordinary
user with

Open
OnDemand
privileges

Internet
connected

submit
machine

Low Medium

Fixed Date Credit
n/a Elisa

Heymann
Joe Atkins

Access Required: Local ordinary user with Open OnDemand submission
privileges.

This vulnerability requires the user to be able to submit jobs to an Open
OnDemand portal.

Effort Required: Low

Exploiting this vulnerability requires the user to submit a job with a script
which calls a malicious program.

Impact/Consequences: Medium

If this vulnerability is exploited, the consequences include a denial of service
on the executing node.

Full Details:

This exploit is executed by submitting malicious code to be run on the
executing node. As Open OnDemand does not conduct input validation it can
be used to submit malicious code to be executed at the site.

To create a denial of service on the executing node, the attacker can entire
and compile the C code shown in Figure 1, which when called creates
continuous forking of new processes. The attacker can then submit the shell
script shown in Figure 2 which executes the C progam on the executing
node.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int i;
printf ("In C\n");
for (i=0; i<1000000; i++) {

if (fork() != 0)
printf ("*\n");

}
}

Fig1. - Malicious C program containing code resulting in
continuous forking of new processes.

#!/bin/bash

./mycode
echo "In Shell"

Fig2. - Bash script calling malicious program mycode from fig 1.

When the above code is processed by the executing node, the shell script
executes the program ./mycode. This execution starts a continuous forking of
the process. spawning a new copy of itself, eventually overloading the
system.

Fig2. - ps on executing node showing infinite recursion of
malicious program

The screenshot of the output of the ps command (Figure 2) demonstrates that
this attack can continuously fork child processes that will consume all
execute node system resources.

Cause: Lack of input validation files and scripts supplied by
user when submitting jobs.

As there is no input validation performed the user can insert maliciously
crafted code into submitted files and scripts resulting in attacks on the
executing host.

Proposed Fix:

The proposed fix is to implement input validation or resource limitations in
the configuration for the batch environment (e.g. SLURM, TORQUE).

Actual Fix:

n/a.

Acknowledgment:

This work is supported in part by the NSF Cybersecurity Center of
Excellence under National Science Foundation Cyber Infrastructure grant
ACI-1547272.

Not for public release. Do not distribute.

