DISTRIBUTION OF MARINE PALYNOMORPHS IN SURFACE SEDIMENTS, PRYDZ BAY, ANTARCTICA

Claire Andrea Storkey

A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree Masters of Science in geology

> School of Earth Sciences Victoria University of Wellington

> > April 2006

ABSTRACT

Prydz Bay Antarctica is an embayment situated at the ocean-ward end of the Lambert Glacier/Amery Ice Shelf complex East Antarctica. This study aims to document the palynological assemblages of 58 surface sediment samples from Prydz Bay, and to compare these assemblages with ancient palynomorph assemblages recovered from strata sampled by drilling projects in and around the bay.

Since the early Oligocene, terrestrial and marine sediments from the Lambert Graben and the inner shelf areas in Prydz Bay have been the target of significant glacial erosion. Repeated ice shelf advances towards the edge of the continental shelf redistributed these sediments, reworking them into the outer shelf and Prydz Channel Fan. These areas consist mostly of reworked sediments, and grain size analysis shows that finer sediments are found in the deeper parts of the inner shelf and the deepest areas on the Prydz Channel Fan. Circulation within Prydz Bay is dominated by a clockwise rotating gyre which, together with coastal currents and ice berg ploughing modifies the sediments of the bay, resulting in the winnowing out of the finer component of the sediment.

Glacial erosion and reworking of sediments has created four differing environments (Prydz Channel Fan, North Shelf, Mid Shelf and Coastal areas) in Prydz Bay which is reflected in the palynomorph distribution. Assemblages consist of Holocene palynomorphs recovered mostly from the Mid Shelf and Coastal areas and reworked palynomorphs recovered mostly from the North Shelf and Prydz Channel Fan. The percentage of gravel to marine palynomorph and pollen counts show a relationship which may reflect a similar source from glacially derived debris but the percentage of mud to marine palynomorph and pollen counts has no relationship.

Reworked palynomorphs consist of Permian to Eocene spores and pollen and Eocene dinocysts which are part of the Transantarctic Flora. Holocene components are a varied assemblage of acritarchs, dinoflagellate cysts (dinocysts), prasinophyte algae, red algae and large numbers of *Zooplankton* sp. and foraminifera linings. *In situ* dinocysts are dominated by the heterotroph form *Selenopemphix antarctica* and none

of the Holocene dinocyst species found in Prydz Bay have been recorded in the Arctic. In contrast acritarchs, prasinophytes and red algae are all found in the Arctic and reflect a low salinity and glacial meltwater environment. Comparison with modern surface samples from the Arctic and Southern Ocean show there is a strong correlation to reduction in the autotroph:heterotroph dinocyst ratio with increasing latitude.

Todays assemblage of marine palynomorphs are more complex than those recorded in ancient assemblages and there is a lower level of reworked material. Acritarchs (*Leiosphaeridia* spp. *Sigmopollis* sp.) and prasinophytes (*Cymatiosphaera* spp. *Pterospermella* spp. *Tasmanites* spp.) are recorded in the ancient record in Antarctica as well as surface sediments in Prydz Bay, but there are very low numbers of *Leiosphaeridia* spp. and *Sigmopollis* spp. present today in comparison to the ancient record. Dinocysts *in situ* and recovered in Prydz Bay are endemic to the Antarctic but have not been recorded in the ancient record.

CONTENTS

Abstract	i
Contents	iii
List of figures	vii
List of tables	viii
Acknowledgments	ix

1.0 Introduction 1.1 Aim of this study

1

1

1.2	Evolution of Prydz Bay		2
1.3	Location and setting		3
1.4	Previo	Previous work	
	1.4.1	Prydz Bay	7
	1.4.2	Southern Ocean studies	7
	1.4.3	Arctic studies	8

2.0	Prydz Bay Marine Environment	11
2.1	Circulation in Prydz Bay	11
2.2	Water masses in Prydz Bay	11
2.3	Circulation beneath the Amery Ice Shelf	14
2.4	Sea Ice inhabitants	15

3.0	Met	Methods and Results – Palynology	
3.1	Introduction		20
3.2	Palynological processing		21
	3.2.1	Microscope and camera technique	22
	3.2.2	Counting method	22
	3.2.3	Grains per gram (g/g)	23
	3.2.4	Contamination	23
	3.2.5	Oxidation	23

3.3	Results – Palynology	24
	3.3.1 Introduction	24
3.4	Acritarchs	24
	3.4.1 Acanthomorphitae	25
	3.4.2 Leiosphaerida	25
	3.4.3 Sigmopollis	25
	3.4.4 Sphaeoromorphs	25
3.5	Dinoflagellate cysts	25
	3.5.1 Selenopemphix antarctica	26
	3.5.2 Protoperidinium sp. 2	26
	3.5.3 <i>Cryodinium</i> sp	27
	3.5.4 Other dinocysts	27
3.6	Prasinophycean algae	27
	3.6.1 <i>Cymatiosphaera</i> sp. 1 and sp. 2	28
	3.6.2 Tasmanites and Pterospermella	28
3.7	Red algae	28
3.8	Unknowns	29
3.9	Zooplankton	29
	3.9.1 Tintinnids	29
	3.9.2 Zooplankton sp.	29
3.10	Foraminiferan linings 2	
3.11	Insect parts	30
3.12	Egg cases	30
3.13	Reworked palynomorphs	30
	3.13.1 Reworked dinoflagellate cysts	30
	3.13.2 Pollen	31
3.14	Results for oxidised samples	31
3.15	Palynomorph distribution	31
3.16	Total abundance for Holocene palynomorphs	32
3.17	Other palynomorph distributions	35
3.18	Reworked v Holocene dinoflagellate cysts	38
3.19	Terrestrial material (reworked)	42
3.20	Total Holocene and reworked palynomorphs	42

6.0	Conclusions	90	
	5.3.2 Reworked surficial sediments in the Ross Sea	89	
	5.3.1 Prydz Bay Ocean Drilling Program	85	
5.3	Ancient and modern assemblages	83	
5.2	Comparison with other modern assemblages		
5.1	Palynomorph assemblages in Prydz Bay	77	
5.0	Introduction	76	
5.0	Discussion	76	
4.8	Mud distribution and palynomorph abundance	74	
	4.7.2 Svenner Channel	74	
	4.7.1 Lambert and Nanok Deeps	73	
4.7	Coastal	73	
	4.6.2 The Amery Depression	72	
	4.6.1 Prydz Channel	72	
4.6	Mid shelf	72	
	4.5.2 Northern Prydz Channel	72	
	4.5.1 Four Ladies and Fram Banks	71	
4.5	North Shelf	71	
4.4	Prydz Channel Fan	65	
4.3	Interpretation	65	
4.2	Results	59	
4.1	Method	58	
4.0	Introduction	58	
4.0	Method and Results – Grain Size	58	
3.21	Illustrative plates and plate descriptions		

Refer	ences	cited

92

APPENDICES

Appendix A	Master spreadsheet	
	Individual output data 58 sheets on 28 pages	109
	Tables for palynomorphs geographic distribution	137
Appendix B	Sediment description from raw samples	143
	Grain size analysis output data includes depths	146
Appendix C	List of Species	164
Appendix D	Maps displaying positions for:	173
	Prasinophytes, Acritarchs,	173
	Egg cases, Sphaeromorphs,	174
	Unknowns and Leiospheres	175

List of Figures

1.1	Map showing the relative positions of India/Antarctica	3
1.2	Map showing the Prydz Channel and Prydz Channel Fan	5
1.3	Map displaying the Coastal, Mid Shelf, North Shelf and Fan	6
2.1	Oceanography of Prydz Bay surface currents	12
2.2	Circulation beneath the Amery Ice Shelf	15
2.3	Microbial habitats within pack ice and land fast ice communities	18
2.4	Past environmental conditions triggering palaeoproductivity	19
3.1	Graph and map for total Holocene g/g	33
3.2	Graph and map for Holocene assemblages g/g	34
3.3	Map displaying positions of Zooplankton sp. g/g	36
3.4	Map displaying positions of foraminiferan linings g/g	36
3.5	Map displaying positions of Red Algae g/g	37
3.6	Map displaying positions of Cymatiosphaera sp. 2	37
3.7	Map displaying contours for salinity grid	39
3.8	Graph and map for Holocene dinocysts g/g	40
3.9	Graph and map for reworked dinocysts g/g	41
3.10	Graph and map for terrestrial palynomorphs g/g	44
3.11	Graph and map for absolute abundance g/g	45
4.1a	Map for contours of mud percent Harris et al (1998)	63
4.1b	Map for contours of gravel proportions from this study	63
4.2	Examples of histograms from grain size this study	64
4.3	Map displaying possible lithology from grain size analysis	66
4.4	Map displaying depth of each sample	67
4.5a	Map displaying mud proportions for each sample	68
4.5b	Map displaying sand proportions for each sample	69
4.5c	Map displaying gravel proportions for each sample	70
4.6	Graphs displaying % mud, % gravel vs pollen and dinocysts	75
5.1	Dinocyst diversity comparing ancient and modern	84
5.2	Map showing ODP sites on Prydz Bay shelf, Fan and Wild Drift	86

List of Tables

4.1	Table displaying raw count in location areas for palynomorphs	60
5.1	Table displaying Antarctic and Arctic palynomorphs	82
5.2	Table displaying Trans Antarctic Flora	88

List of Plates

1	Acritarchs	46
2	Acritarchs	47
3	Dinocysts	48
4	Dinocysts	49
5	Dinocysts and Prasinophycean algae	50
6	Prasinophycean algae	51
7	Prasinopycean algae, red algae and foram linings	52
8	Foram linings and <i>zooplankton</i> sp.	53
9	Zooplankton sp. and reworked dinocysts	54
10	Reworked dinocysts and unknowns	55
11	Unknowns, egg cases and insect parts	56
12	Egg cases and unknowns	57

ACKNOWLEDGMENTS

I would like to thank my supervisor Mike Hannah who has encouraged and supported me throughout. We needed a lot of patience to get this study underway and finally succeeded thanks Mike.

Special thanks to Peter Barrett for his helpful suggestions, input and interest in my grain size analysis chapter.

Thanks to Phil O'Brien and Geoscience Australia for the sediment samples they supplied. They made me feel welcome in Canberra.

Thanks to Chris Clowes for his encouragement and help with identification and to the overseas experts that answered my emails with helpful suggestions for identification: Anne de Vernal, Amy Leventer, Andrew McMinn, Karin Beaumont, John Gibson, Catherine Stickley and locally Helen Neil, and Hugh Grenfell.

Thanks to VUW technical staff for their support in the labs Stephen Edgar and John Carter

Thanks to Chris Brookes and his GIS team in encouraging and supporting me with arcview mapping (includes students who gave great input).

Finally many thanks to my family for their support and patience with me, in particular thanks Ian for your support with my excel program and proof reading, thanks Corin for reading and trying to make sense of chapter 3, and thanks Angela and Gavin for your support and encouragement over the past 2 years, and telling me yes I can do it!

CHAPTER 1 INTRODUCTION

Antarctic marine and terrestrial palynomorphs are commonly used in studies aimed at increasing our understanding of past climate. Published studies include Deep Sea Drilling Project (DSDP) (Kemp, 1975), MSSTS-1 drill hole McMurdo Sound (Truswell, 1986), CIROS-1 Drillhole (Hannah, 1997), and the Cape Roberts Project (Hannah *et al.* 1998, Wrenn *et al.* 1998, Hannah *et al.* 2000, Hannah *et al.* 2001a). Studies of the ancient record in Prydz Bay include ODP sites 1165 (Hannah, 2005, McPhail & Truswell, 2004a), 1167 and 1166 (McPhail & Truswell, 2004b).

A combined program involving the Australian Geological Survey Organisation (now Geoscience Australia), Australian Antarctic Co-operative Research Centre (CRC) and Australian National Antarctic Research Expeditions (ANARE) resulted in three cruises (1993, 1995 & 1997) investigating several key areas along the Antarctic east coast. The cruises included a marine geophysical survey and sediment sampling programmes. This was done to promote a better understanding of global climate change through the studies of modern sediment transport and the organisms contained in them, and relate this understanding to the ancient sedimentary record (O'Brien *et al.* 1995). The surface sediment samples used in this study are from these cruises.

1.1 Aims of this study

This study documents the palynology of Prydz Bay surface sediments. It aims to:

- 1. Document the palynomorph assemblages contained in the samples.
- 2. Understand the distribution of palynomorphs, both *in situ* and reworked in terms of physical characteristics of the bay which include:
 - a. Water depth and currents
 - b. Sediment supply
- 3. Compare the modern assemblages with those recovered from the ancient records (e.g. Hannah *et al.* 2000, Hannah, 2005, Wrenn *et al.* 1998) and assess the possibility of any modern analogues with those of the past.


In the ancient record, the number and type of terrestrial palynomorphs found and comparison of changes to marine palynomorph assemblages within sedimentary cycles allow inferences to changes to the environment occurring during that time. ODP investigations on Wild Drift site 1165 Prydz Bay (Hannah, 2005) show that palynomorph numbers have changed in accordance with the types of conditions encountered in the past. Expansion of the Amery Ice Shelf under cooler conditions may have caused marine palynomorphs to be fewer in numbers. As conditions warmed and the ice shelf retreated the palynomorphs increased in numbers (Hannah, 2005). Today the full retreat of the Amery Ice Shelf from the embayment has altered the environment of the bay significantly. The question to be asked is has it also changed the palynomorph assemblages found there today from assemblages found in similar conditions of ice shelf retreat in the past?

1.2 Evolution of Prydz Bay

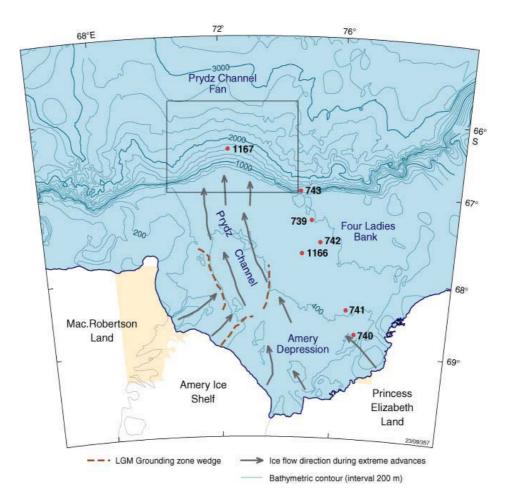
The origin of Prydz Bay in East Antarctica is associated with the Mesozoic break up of Gondwana. Figure 1.1 shows a reconstruction that juxtaposes Prydz Bay with the east coast of India (Cooper *et al.* 1991, Davey, 1985, Hambrey *et al.* 1991). Stagg, (1983) places the Lambert Graben/Amery area adjacent to Mahanadi Graben, one of two grabens at right angles to the coast beneath the Indian basins. He describes these grabens as a failed rift arm of a triple junction that may have been created in the Late Palaeozoic to Early Mesozoic during the separation of the continents (Davey, 1985, Anderson, 1999). Substantial sediment thicknesses within the Lambert Graben may date back to the Permian, and exposed sediments similar to those in Mahanadi Graben can be found in the Beaver Lake area of the Prince Charles Mountains (Cooper *et al.* 1991, Hambrey, 1991, Hambrey *et al.* 1991).

The Lambert Glacier/Amery ice shelf drainage basin is estimated to cover \sim 1,090,000 km² (Allison, 1979, Hambrey *et al.* 2000). The Lambert Graben is formed largely in Precambrian metamorphic basement and the subglacial floor lies below sea level and extends south for almost 700 km. The Lambert Glacier/Amery Ice Shelf now occupies the area but it was once a fjord with a depth reaching 3000 m and a width of ~50 km (Hambery, 1991). The Lambert Glacier is bordered in the

west by the partially exposed Prince Charles Mountain complex with Mt Menzies reaching a height of 3,355 m above sea level (Stagg, 1983, Hambery, 1991). To the East of the Lambert Graben the Mawson Escarpment protrudes and a deep basement depression beneath the Escarpment is part of the main Graben.

Fig. 1.1: The relative positions of India and Antarctica showing the respective position of Gondwana rift valleys during the early Jurassic. Black dot indicates the probably position of the Kerguelen hotspot. Dot dash lines indicate the master faults of the rift basins of the two continents. Lambert and Mahanadi basins are conjugate structures and show similar crustal structures. Insert shows Gondwana ~200 Ma (Mishra *et al.* 1999).

1.3 Location and setting


Prydz Bay is an embayment situated at 76°E, 68°S and lies at the ocean ward end of the Lambert Graben/Amery Ice Shelf. The inner shelf is underlain by a sedimentfilled rift basin containing more than 5 km of Early Cretaceous and older continental rift strata, and Cooper *et al.* (1991) consider it to be separate from the major Lambert Rift Graben. Data from gravity, magnetic and seismic refraction indicate maximum sediment of the inner shelf thicknesses are 5-12 km (Cooper *et al.* 1991). Sediment transport in the present Antarctic ice sheet occurs from the interior in a basal layer that contains 5-8% sediment; however in the past, erosion by grounded ice overdeepened the inner shelf and progradation and aggradation occurred fairly evenly across the bay. During the late Neogene cooler conditions developed the Prydz Channel Ice Stream (fig 1.2) which carried debris to the shelf edge and built out the Prydz Channel Fan (Cooper *et al.* 2004). These past glacial processes have created differing environments within the embayment which is reflected in the palynomorph distribution. The geographical areas of Coastal, Mid Shelf, North Shelf and Prydz Channel Fan are colour highlighted in figure 1.3 which reflect the differing environments of these past glacial processes.

Coastal geographic areas includes depressions in the south western corner of the bay of up to 1000 m, these are the Lambert and Nanok Deeps. On the eastern side of Prydz Bay off the Ingrid Christensen Coast is the elongated trough of the Svenner Channel which is also part of the Coastal area and is up to 1,000 m deep but with several shallower saddles along its length (O'Brien *et al.* 1999, 2003, Passchier *et al.* 2003).

Mid Shelf area contains the broad topographic basin of the Amery Depression, 600-800 m, which deepens shoreward. Along the western edge of the Amery Depression the elongate deep of the Prydz Channel is also Mid Shelf and is 150 km wide and 500-600 m deep and extends to the edge of the continental shelf (O'Brien *et al.* 1999, 2003, Passchier *et al.* 2003).

North Shelf area includes the shallower part of the Prydz Channel near the continental shelf edge. Northeast of the Amery Depression along the shelf edge the shelf shallows to 200-300 m, and the Four Ladies Bank to the east of Prydz Channel and Fram Bank to the West, are also included in the North Shelf area (O'Brien *et al.* 1999, 2003; Passchier *et al.* 2003).

Prydz Channel Fan is included as its own geographic area and is 166 km across and extends 90 km seaward from the shelf break where the surface slopes at 2.0° and is a major sediment depocentre (Harris *et al.* 1998).

Fig. 1.2: Map of Prydz Bay showing the location of the Prydz Channel Trough Mouth Fan, Prydz Channel, and locations of Leg 119 739-743 and Leg 188 1166-1167. Last Glacial Maximum grounding zone wedges are shown after Domack *et al.* (1998). Arrows indicate ice flow directions during post-late Miocene extreme advances of the Lambert Glacier/Amery Ice Shelf system (modified from O'Brien and Harris, 1996 by O'Brien, 2004).

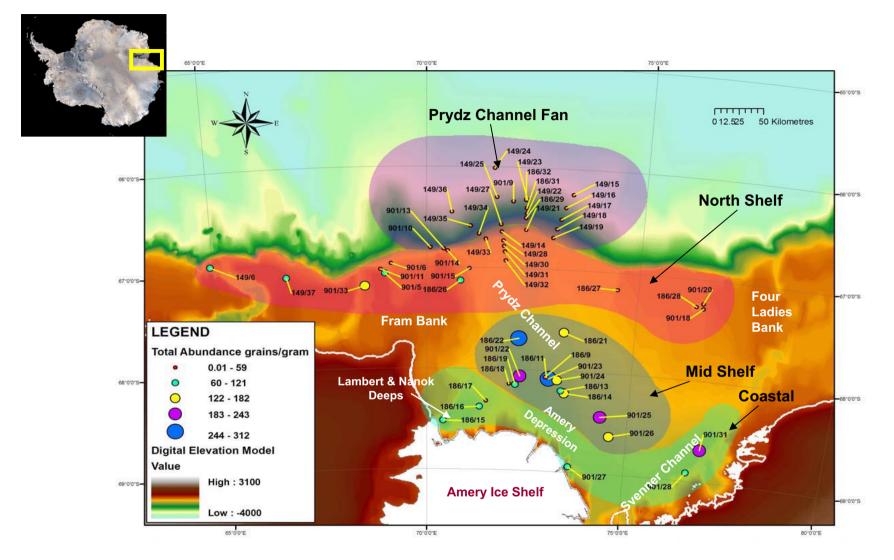


Fig 1.3: Geographical areas have been named as Prydz Channel Fan, North Shelf (includes Fram and Four Ladies Banks and the North Prydz Channel), Mid Shelf (includes Prydz Channel and Amery Depression), and Coastal (includes Lambert and Nanok Deeps and the Svenner Channel). Sample numbers have a yellow leader attached to each coloured circle and are included to show the distribution pattern of palynomorphs in each geographical area.

1.4 Previous Work

1.4.1 Prydz Bay

Diatoms and foraminifera are the only micro-organisms previously studied from the surface sediments of Prydz Bay. Initially, Quilty (1985) investigated foraminifera in surface sediments within Prydz Bay but the first systematic sampling programme was completed by Franklin (1991), who reported on the foraminiferan and diatom content of the surface sediments. Today surface sediments are dominated by large diatom populations in the north west Fram Bank area within Prydz Bay. Further work by Taylor, McMinn and Franklin (1997), Quilty (1985), Franklin (1991), Franklin *et al.* (1995), Taylor & Leventer (2003), Taylor *et al.* (1997), studied the distribution of diatoms in surface sediments of Prydz Bay and recognised four diatom assemblages. They concluded that the environmental variables associated with latitude which includes sea-ice, horizontal water circulation and the Prydz Bay gyre play a major role in the types of diatom assemblages found within the bay.

1.4.2 Southern Ocean studies

Harland et al. (1998), in a transect of the Southern Ocean from the Falkland Trough to the Weddell Sea, found that abundances for dinoflagellate cysts (dinocysts) did not exceed 364 grains per gram of sediment between latitudes 50° S to 60° S. From 60° S to higher latitudes the cysts per gram of sediment declined to <23 grains per gram and diversity was lower (maximum of six species) than the Antarctic Circumpolar Current. Marret & de Vernal (1997), transected the Southern Indian Ocean from the Subtropical domain to the Continental Antarctic domain between latitudes 30° S to 68° S. Their results show more than 20 taxa present in assemblages from the Subtropical domain and less than 10 taxa (minimum of 3) recorded in the Sub-Antarctic and Antarctic domains. In addition to dinocysts, other palynomorphs present included Acritarchs, tintinnid cysts and loricae, Halodinium, and Prasinophyceae (Cymatiosphaera-type spp, Tasmanites spp). Esper & Zonneveld (2002) concluded that gonyaulacoid cysts tended to dominate the Subtropical Zone with their highest abundance at ~45° S at 500 grains per gram and were present till approximately 50° S. The protoperidinioid cysts dominated from 40° S in the Sub-Antarctic and Polar Front Zones with a high of 2,000 grains per gram noticeably

falling to <250 grains per gram at 60° S. Those results were clearly a higher abundance than Harland *et al.* (1998) had recorded four years earlier.

Harland & Pudsey (1999) studied results from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas and compared them with surface sediments recovered nearby. There was a very low dinocyst assemblage recovered from coretop samples (<10-300 g/g) compared to the sediment traps (500-3,000 g/g) which varied according to their position within the transect. The sediment traps were set above and within the nepheloid layer and within and to the north of the maximum sea ice limit and the core top samples were recovered from within 3 km of the corresponding sediment traps. Allochthonous elements may be responsible for part of the material captured by sediment traps. These findings may also reflect the uncertainty of core top sample ages and current winnowing of the sediment and factors relating to oxidation and dilution due to the length of time cysts may have lying at the sediment water interface.

Dinocysts may be heterotrophic, that is without photosynthetic pigments, autotrophic with photosynthetic pigments, or mixotrophic which enables them to supplement their photosynthetic capability by taking up organic substances (McMinn & Scott 2005). Gonyaulacoid dinoflagellates inhabit warmer and deeper waters and protoperidinioid dinoflagellates prefer cooler temperatures in high latitudes (Mudie and Harland 1996). Harland & Pudsey (1999) noted that within the sea ice limit the dinocyst assemblages were dominated by the heterotrophic form of protoperidiniod dinoflagellates prevalent outside the sea ice limit. There was a low dinocyst assemblage within the sea ice limit the sea ice limit in comparison to assemblages in core-tops and traps outside the maximum sea ice limit (Harland & Pudsey, 1999).

1.4.3 Arctic studies

Mudie (1992) studied dinocysts along transects across the Beaufort Sea estuarine environment, the Nansen Basin north of Barents Shelf, and ice shelf and pack ice environments on the Canadian polar margin and in the Canada Basin. Examples of areas studied by Mudie (1992) include Baffin Bay, Beaufort Sea and Barents Sea and they are discussed below.

Mudie (1992) found results for Baffin Bay included 9 dinocyst to 1 Acritarch *Leiosphaeridia scrobiculata*, and a strong positive correlation between Acritarch per cent abundance and sea ice cover which included an increase of *Pterospermella* and Acritarchs towards glacier meltwater. The gonyaulacoid to protoperidinioid (G:P) ratio in Baffin Bay decreased with lower summer temperatures and increasing latitude.

The results from Mudie (1992) for the Beaufort Sea sediments contained an average of 7 dinocyst species and Mudie found low numbers of Acritarchs (*Halodiniuim majus, Leiosphaerida, Beringiella*) and Chlorophytes. *Brigantedinium* and *Leiosphareida scrobiculata* dominate samples within the low salinity sedimentary plume off McKenzie River and *Sigmopollis* are common. Mudie (1992) suggested that gonyaulacoid dominate the pack ice margin in deeper waters with the G:P ratio increasing from 0.5 to 1.5 and overall in the Beaufort Sea there is a low diversity of Acritarchs and Dinoflagellates.

Mudie (1992) found that results for Barents Sea showed the sediments contained one sample with up to 25% of protroperidiniods. Marginal ice zones had G:P ratios ranging from 0.8-1.8 (mean 1.4) and pack ice G:P ratios were 0.3-1.0 (mean 0.6). Mudie (1992) found a correlation for small acritarchs found in abundance and highly stratified water column overlain by a low salinity layer. Other areas of the Canadian Polar Margin and Central Artic Ocean show a G:P ratio 0-1.0 (mean 0.5) with gonyaulacoid cysts rare or absent.

Rochon, Turon, Matthiessen and Head (1999) studied the distribution of recent dinoflagellate cysts in surface sediments throughout the North Atlantic Ocean and adjacent seas. The dinocyst distributions have a low to moderately high species diversity that varies from between 2-18 taxa. Results from continental margins of the North Atlantic Oceans and adjacent seas have high abundances in surface sediments of 100 to 1,000 cysts/cm² yr. The results from the Central North Atlantic and Baffin Bay have moderately low surface sediment cyst concentrations in the

order of 0.1-1 cysts/cm²·yr. Taxa with morphological similarities were grouped together and the four most abundant (50-100%) of the total were *Operculodinium centrocarpum, Nematosphaeropsis labyrinthus, Pentapharsodinium dalei* and *Brigantedinium spp*. A further 10 taxa were common (10-50%) and 13 taxa were considered rare (0-10%) (Rochon *et al.* 1999).

CHAPTER 2 PRYDZ BAY MARINE ENVIRONMENT

2.1 Circulation in Prydz Bay

Circulation in Prydz Bay appears to be dominated by a clockwise rotating gyre (fig 2.1) which is situated approximately between 66.5° S - 68° S (Wong *et al.* 1998). Within Prydz Bay a cold, less saline coastal current enters the bay from the east flowing westward along the shelf break. In the centre of the bay near the Amery Ice Shelf this water partly joins the gyre. The rest of the coastal current continues to flow westward beneath the eastern side of the Amery Ice Shelf, flowing out the west side as colder Ice Shelf Water. Part of this current joins the northward flowing arm of the gyre to either recirculate back into the bay or join the flow westward with the Antarctic Coastal Current (O'Brien *et al.* 1991; Wong *et al.* 1998).

The Antarctic Divergence acts as a barrier between the eastward flowing Antarctic Circumpolar Current and the westward flowing coastal current and is inferred to be south of 63° S by Smith *et al.* (1994) and Nunes Vasz and Lennon (1996), which would place this area of upwelling within the ocean edge of the Prydz Bay Gyre. Nunes Vas and Lennon (1996) suggest that the gyre results in a deeper inflow of warmer upwelled Circumpolar Deep Water crossing the shelf break at about longitude 74° E resulting in the transport of nutrient rich water into Prydz Bay.

2.2 Water masses in Prydz Bay

Within Prydz Bay, Summer Surface Water occurs only in summer at the top of the water column and has temperatures between -1.8° C to 2.1° C and a lowered salinity of 30.6-34.2. The Summer Surface Water column extends from the surface to 80 m off the continental shelf thinning to 40-50 m within Prydz Bay (Nunes Vas and Lennon, 1996; Wong *et al.* 1998). The freshness of the Summer Surface Water is due to the melting of sea ice during the summer. Higher Summer Surface Water temperatures are found in the south western half of Prydz Bay just north of the Amery Ice Shelf. Wong *et al.* (1998) suggest that this is due to thinner sea ice cover in that area which melts earlier in the season allowing the Summer Surface Water to

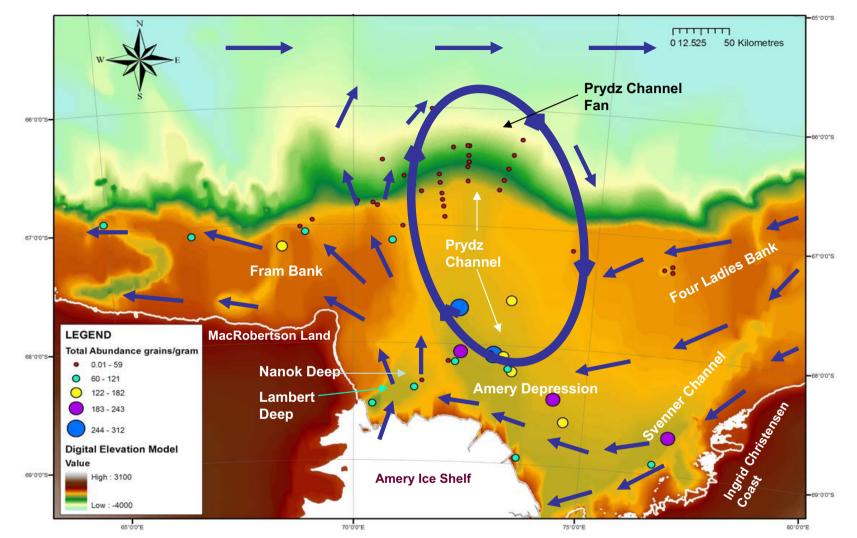
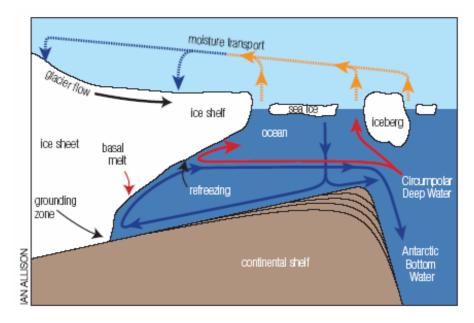
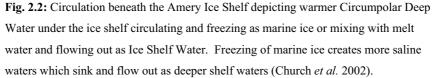


Fig. 2.1: The Prdyz Bay gyre represented by the blue circle, circulates clockwise and dominates the water currents represented by the blue arrows. The coastal current enters the bay from the east flowing westward along the shelf break till it joins the gyre in the centre of the bay. The rest of the current follows the coast line and flows beneath the Amery Ice Shelf in the east and exits from the western side before continuing westward along the coast or heads north west to join the gyre and recirculate back into the bay. Also shown are the sample points for palynomorphs with highest abundances as larger circles as per legend. Adapted from Wong *et al.* 1998.

be heated from solar radiation sooner than elsewhere in the embayment (Smith *et al.* 1984, Smith & Treguer, 1994, Wong *et al.* 1998).

Below the Summer Surface Water is a layer of so called Winter Water, a remnant of surface water formed in winter. Winter Water temperatures are colder between -1.9° C to -1.5° C and Winter Waters have a higher salinity (34.2-34.5) than Summer Surface Water. Below the Summer Surface Water in the ocean domain, the thickness of the layer of Winter Water is 30 m, increasing to 200-300 m on the continental shelf (Nunes Vas and Lennon, 1996, Wong *et al.* 1998). The main depressions within Prydz Bay all contain highly saline water below the Winter Water layer and are called Low Salinity Shelf Water (34.5) which lies above the highly saline Antarctic Bottom Water (34.7). Low Salinity Shelf Water is formed by salt rejected from winter sea ice which sinks to become trapped and accumulate in deeper areas such as the Amery Depression. Low Salinity Shelf Water is also formed by the on shelf mixing of Circumpolar Deep Water that has cooled during the winter (Wong *et al.* 1998).


Surface water masses over the shelf in Prydz Bay have been reported to exhibit anomalously high temperatures (Smith *et al.* 1984, Smith & Treguer, 1994; Wong *et al.* 1998), but also contain a separate water mass of dense Ice Shelf Water found at intermediate depths near the western side of the Amery Ice Shelf caused by the outflow of the current from beneath the Amery Ice shelf (Fricker *et al.* 2001). There is a differing of opinion as to whether Antarctic Bottom Water formation occurs within the bay and Smith and Treguer (1994) suggest that there is no evidence to support Prydz Bay continental shelf water being directly involved with bottom water formation. Wong *et al.* (1998) on the other hand think that there is every possibility that high salinity bottom water could have been formed locally in the Prydz Bay region. O'Brien *et al.* (2001) suggest that in contrast to the Ross and Weddell Sea basins, Prydz Bay produces only a small volume of high salinity deep water due to its geography and bathymetry, in a limited contribution to current activity beyond the shelf.

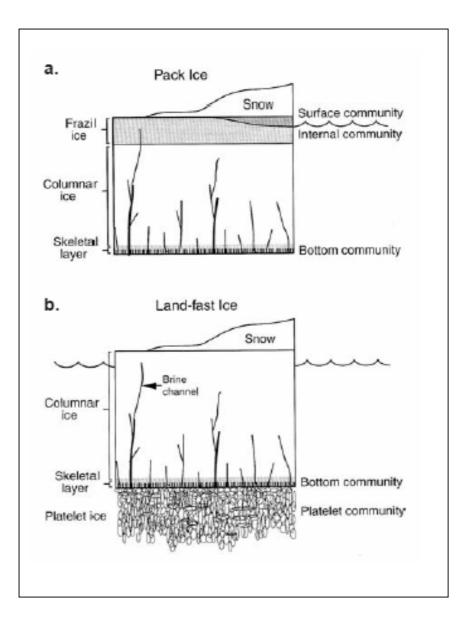

2.3 Circulation beneath the Amery Ice Shelf

The recognition of marine sediments in cores from beneath the Amery Ice Shelf provides evidence for landward transport due to current activity (Hemer & Harris, 2004). Marine sediments from beneath the ice shelf do have a slower rate of deposition than sediment from open water immediately in front of the ice shelf. This calls into question past researchers defining open water conditions as soon as marine sediments are recognised in the sedimentary record. It is likely that a floating ice sheet may have marine sediments transported beneath the ice sheet but it would clearly not represent open water conditions (Hemer & Harris, 2004).

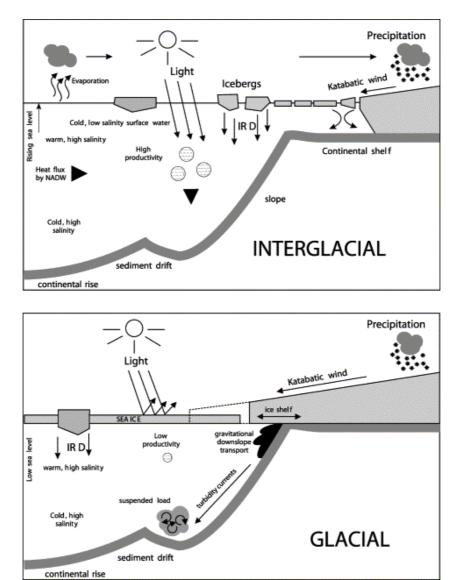
Circulation beneath the Amery Ice Shelf is predominantly horizontal and driven by the density gradient in the cavity beneath the ice shelf. Circulation is formed by melting and freezing processes combined with the horizontal exchange of heat and salt across the open ocean boundary at the ice front (Williams, 2001). At the Lambert Glacier grounding point ~2,500 m below sea level at 73.2° S (Allison, 2003), high pressure lowers the freezing point of the surrounding sea water to as low as -3.4° C which is considered to be supercooled (Holland et al. 2001). Warmer incoming seawater from the westward flowing coastal current with a surface freezing point of about -1.9° C melts the ice, some of which refreezes as marine ice (fig 2.2). This seawater mixes with melt water along the grounding line and in doing so decreases the density and salinity of the melt water. The mixed water mass is referred to as Ice Shelf Water which rises along the base of the ice shelf. As the Ice Shelf Water rises it will eventually reach a point where its temperature becomes lower than the local freezing point and will adhere to the underside of the ice shelf as marine ice. The Ice Shelf Water then flows in a seaward direction on the west side of the Amery Ice Shelf (Fricker et al. 2001, Allison, 2003, Williams et al. 2001, Church et al. 2002, Holland et al. 2001).

The landward and seaward flows at the Amery Ice Shelf are laterally separated due to deflection to the left by the Coriolis force combined with the westward flowing Coastal Current (Harris, 2000). This flow pattern should result in sediments on the eastern shelf being higher in marine deposits and those on the western shelf higher in

terriginous deposits. Harris (2000) found this to be the case with sediments deposited in front of the Vanderford Glacier, Antarctica.


2.4 Sea Ice inhabitants

Sea ice habitats are characterized by steep gradients in temperature, salinity, light and nutrient concentration (Arrigo, 2003, Arrigo *et al.* 2004). Blooms that occur over the spring and summer leave microbial populations surviving in the surface waters at the beginning of ice formation in the autumn. As the newly formed ice spreads over the surface, micro algae, bacteria and heterotrophic protists which include flagellates, ciliates and amoebae, may be scavenged from the water column. Columnar ice extends down into the water column as more ice is formed, and brine filled channels may form brine pockets in the ice where diatoms and algal communities may flourish, provided they have access to nutrients (Arrigo, 2003, Arrigo *et al.* 2004, Lizotte, 2003). Among the sea ice communities, photosynthetic protists are the dominant autotrophs and these include diatoms, dinoflagellates, prymnesiophytes, prasinophytes, chryosphytes, cryptophytes, chlorophytes, euglenophytes and a photosynthetic ciliate (Lizotte, 2003). Upper sea ice communities survive at or near the sea ice surface (fig 2.3) and are dominated by small photosynthetic dinoflagellates, chrysophytes and prasinophytes. Due to lower temperatures and hypersaline conditions, growth of diatoms and other plankton may be limited in the upper sea ice in the winter and early spring. Although the upper sea ice community often has adequate light available for growth, it may be restricted in available nutrients (Arrigo, 2003). It is regions with ice floes that are linked with the underlying sea water where the sea ice algae will flourish due to accessible nutrients (Arrigo *et al.* 2004).


Temperatures of surface ice in McMurdo Sound, Antarctica are often lower than -20° C, but at the base, the ice is close to seawater temperature. Internal sea ice communities (fig 2.3) are found at levels where sea water can infiltrate the ice floe and this may be due to snowfall loading which pushes the ice further into the sea (Arrigo, 2003, Arrigo *et al.* 2004). Ice rafting caused by wind and tide movement resulting in the flooding of the ice surface with sea water can also occur. Microbial communities within the ice rely on nutrients seeded by particles scavenged during ice formation. Bottom ice communities form in the skeletal layer, a highly porous layer that forms at the lower margin of growing columnar ice (fig 2.3), and they extend upwards as far as 0.2 m where conditions are environmentally stable (Arrigo, 2003, Arrigo *et al.* 2004). Platelet ice is found beneath landfast ice adjacent to floating ice shelves where it becomes super cooled and is the most porous of sea ice. It has five times more surface area for algal attachment and because of its high surface area and high porosity it contains a high accumulation of sea ice algae (Arrigo *et al.* 2004).

The seasonal ice coverage in the Southern Ocean produces a different timing and distribution of sea ice algae to that of phytoplankton in the water column (Lizotte, 2001). Cyst formation is an overwintering adaptation in the upper sea ice used for survival in the harsh conditions. Some species are able to overwinter as statocysts and begin growth early for dispersal in the water column in summer and fall. The exchange of organisms between the sea ice and water column in this way provides an important environment for natural selection of microalgae for seeding phytoplankton blooms in marginal ice zones (Lizotte, 2001; Stoecker *et al.* 1998). They provide a source of food for higher organisms when nutrients within the water column may be low (Lizotte, 2001).

Summer sea ice melting in the Southern Ocean has an effect on the physical, chemical and biological oceanographic processes (Leventer, 2003). Polar productivity for interglacial periods (fig 2.4) in the form of phytoplankton blooms makes up \sim 50% of the annual primary production in the Southern Ocean. The release from the sea ice and subsequent blooms seeds ice edge communities and supports the pelagic community by ensuring a source food in the form of sea ice algae both in the winter and during the late spring through to summer.

Fig. 2.3: Pack ice and land fast ice showing the major physical features and locations of microbial habitats of surface, internal bottom and platelet communities (Arrigo & Thomas, 2004).

Fig 2.4. Model for the environmental conditions triggering palaeoproductivity during glacial and interglacial intervals, in the continental margin of the Antarctic Peninsula (Villa, *et al.* 2003)

CHAPTER 3 METHODS AND RESULTS – PALYNOLOGY

3.1 Introduction

Fifty eight samples of surface sediments were collected by the Australian Geological Survey Organization from gravity cores (GC) taken in Prydz Bay during three cruises at intervals of 2 years from 1993. The gravity cores are held by Geoscience Australia in Canberra where they are kept in cool storage. Gravity coring requires a weighted corer to be dropped into the ocean where it sinks into the sediments with the assistance of its weight (O'Brien *et al.* 1993). The surface sediments are usually disturbed as the corer hits the sea floor. Therefore the sediments used in this study are actually from just below the sediment/water interface. Each core was cut into lengths of approximately one metre and wrapped in sheets of plastic to keep in the moisture. The sediments were collected from depths of approximately 0-2 cm below sea floor (cbsf) of each core. In some cases where sediment had previously been removed, samples were from as deep as 5 cbsf. All samples were placed in air tight jars and labelled. The samples were transported to Victoria University, Wellington, for palynological processing and grain size analysis.

For each cruise the sample numbers and drill positions were as follows:

1993: GC901 -19 samples (15 on the shelf, 4 on the fan) 1995: GC149 -22 samples (6 on the shelf, 16 on the fan) 1997: GC186 -17 samples (14 on the shelf, 3 on the fan)

Information on the latitude, longitude and the water depth for each sample are included in Appendix A. Each sample was given a preliminary sediment description and approximate grain size determined (Appendix B), and then placed in a beaker and put in an oven overnight to dry out. The dry weight was recorded (Appendix B) and approximately 5 grams per sample was separated out to be used for palynology processing while the remaining sediment was used for grain size analysis. Four samples from the Mid Shelf area did not contain sufficient sediment after the drying

process for completion of grain size analysis, (GC901-24, GC901-25, GC901-26, GC186-13) and this was due to their content being of very fine silt, which had a very light dry weight.

3.2 Palynological processing

Processing procedure followed standard palynology techniques but without any oxidation and sieving in order to retrieve as many marine palynomorphs as possible. Hydrochloride acid (HCl) was added to each beaker to dissolve carbonates, stirred, and left to settle and any reaction was noted (Appendix B). The process was repeated until all reaction had ceased which in some cases was 1 or 2 days. The beakers were topped up with filtered water, stirred thoroughly and left for about an hour to settle, then decanted. In order to dissolve silicates Hydrofluoric Acid (HF) was poured into each beaker covering the sediments. The samples were then stirred and left for approximately 36 hours with intermittent stirring during that time. Filtered water was added and each sample was left to settle before decanting into a mixture of bicarbonate of soda and filtered water in order to neutralize the HF. Care was taken during decanting because of the reaction (fizzing) that took place in the neutralising tank. After each beaker was decanted into the soda and water mixture, it was topped up with filtered water, stirred and left to settle for about an hour. This process was repeated until all reaction in the neutralising tank had ceased; in most cases this meant about 3 to 4 washes.

The samples were then transferred into test tubes, agitated and topped up with filtered water, then centrifuged at 2,600 rpm for 5 minutes. This process was repeated, and then a small amount of HCl was added to the samples to help with disaggregation and to remove soluble fluorides. The samples were washed with filtered water a further 3 times. After the final wash, about 30 ml of Sodium Polytungstate with an sg of 1.8 was added, the sample centrifuged at 1,800 rpm for 15 minutes, and left for a few hours. A pipette was used to extract the floating residue (float A) which was put into a test tube with a little HCl added to stop its organic matter clumping, topped with water, agitated then centrifuged at 3,000 rpm for 3 minutes. This washing process was repeated 6 times.

Slides were preheated and a small drop of residue from each sample was placed in the centre and mixed with glycerine jelly, then a cover slip was placed on top of the slide, labelled and left overnight to dry. This process was repeated by agitating and then centrifuging the Sodium Polytungstate leaving it to settle again and obtaining a second float (float B). This second float provided an assurance that maximum numbers of palynomorphs had been recovered. Six slides from each sample were prepared, three from each float.

3.2.1 Microscope and camera technique

A light microscope Leica DML was mounted with a Leica DFC camera for image acquisition. Slides were analysed at x20, x40 or x100 magnification. The colour photographs were later printed out and stored in a catalogue for quick reference. Problems encountered with photography were the position of some of the palynomorphs on the slides, for example if they were half hidden by amorphous material or charcoal, or if they were breaking up or dissolving.

3.2.2 Counting method

All slides were scanned for content before counting and a qualitative record of species was made. The three slides from each sample that were chosen for the count did not always involve both A and B floats due to some samples having very low palynomorph content which was mostly recovered in the first three slides from the initial float A. Slides were scanned from left to right and all palynomorphs were counted, photographed and coordinated using an England finder. Some slides contained a lot of pollen which was often broken and obscured by charcoal pieces. Individual pollen and spores were only counted if more than half of the pollen grain was recognisable.

All data were entered on a separate Excel worksheet for each sample number. Data collected show the type and count of each palynomorph and the latitude and longitude, bathymetry, lithology and total count for the sample. Data from excel worksheets were transferred on to the master spreadsheet (Appendix A) and colour coded with red signifying any count <20, black \geq 20, green \geq 100 and blue \geq 1,000.

Each category in each sample was subtotalled and each sample totalled, then a final palynomorph subtotal and total was given.

3.2.3 Grains per gram

Grains per gram were calculated using the amount of dry weight of sediment used in the palynomorph processing (Appendix B) which was divided by the total number of palynomorphs counted in each sample and multiplied by a factor of 1.5 (grains/ palynomorph x1.5). Based on an initial count, the slides with the highest number of palynomorphs were selected from the 6 slides made up as mentioned above. It was estimated from the initial count that approximately two thirds of the palynomorphs had been captured in those 3 slides, therefore to determine the total number of palynomorphs required multiplying by 1.5.

3.2.4 Contamination

Three or four slides contained modern bisaccate pollen. These were easily identified as a contaminant due to their fresh appearance and excellent preservation. Another source of contamination were plastic filings found in some samples which were believed to have come from the PVC inner linings of the drill cores that were cut into meter long lengths for storage purposes.

3.2.5 Oxidation

Oxidation was carried out on 4 samples that had been processed as above (901/23, 901/25, 901/33 and 186/16) and the results were compared with non processed samples. The process removes unwanted material and concentrates the palynomorphs. The method used 30 ml of Nitric Acid (HNO3) combined with 15 ml of saturated Potassium Chloride (KCl) which was poured over the sample residues and left for 10 minutes. The samples were then topped up with filtered water, centrifuged and rinsed twice and a small amount of Ammonia (NH₃) was added followed by further rinsing. Slides were prepared from the residue and checked for content.

3.3 RESULTS – PALYNOLOGY

3.3.1 Introduction

The 58 samples processed yielded a total of 12,727 palynomorphs. All counts are listed on the master spreadsheet (Appendix A).

8 samples	0 to 20 palynomorphs (includes 1 nil sample)	
14 samples	21 to 99	"
35 samples	100 to 999	"
1 sample	over 1,000	٠٠

The assemblages of palynomorphs recognised in Prydz Bay have been grouped into two broad categories: Holocene and reworked palynomorphs (Appendix A). The Holocene palynomorph groups were further subdivided and their assemblages are described below, followed by reworked palynomorphs assemblages.

3.4 Acritarchs

Acritarchs are a polyphyletic group which may include ancestors from both chromophytes and chlorophytes (Strother, 1996). Acritarchs can be found in large numbers and have high taxonomic diversity. They may represent a variety of life stages for eggs, cysts and mature tests, which in turn may represent a higher organism of plant or animal. They are best defined as representing the encystment phase of an unknown algal life cycle (Strother, 1996) and may be regarded as a form of phytoplankton that is either extinct or still living in the water column today (Tappan, 1980). The wall composition of acritarchs is composed of a fatty acid similar to plants, called sporopollenin, which enables the cyst to survive diagenesis (Brasier, 1980, Tappan, 1980, Strother, 1996). This also will enable them to survive adverse environmental conditions over time, for example in the colder Polar Regions. They may contain a wall structured with single or multiple layers surrounding a central cavity which may be closed or open to the exterior by varied means. The shape, structure, and ornamentation may vary; for example a homomorphic cyst will have similar processes and a heteromorphic cyst will have a significant variation of process size and/or shape (Strother, 1996). The types of acritarchs identified during

this study are Acanthomorphitae, *Leiosphaerida, Sigmopollis* and *Sphaeoromorphs* and these are described below.

3.4.1 Acanthomorphitae

Acanthomorphs are spherical or ellipsoidal with no inner body or surficial crests. Their topography may be elaborate with processes that have a regular or arbitrary distribution and some may have excystment structures (Strother, 1996). They are represented by Acritarch spp. 1 - 4 (Plate 1) and show variation in morphology with species 2 and 4 being heteromorphic while species 1 and 3 are homomorphic. Species 4 has an excystment opening consisting of a median split (Plate 2 nos. 1-2).

3.4.2 Leiosphaeridia

Leiosphaeridia are spherical to ovoid, may have slight ornamentation and are without processes but may exhibit a pylome. They have a thin cell wall and may be light brown to pale yellow or colourless (Plate 2 no. 5). They are difficult to classify due to the lack of taxonomically significant features (Lindgren, 1981).

3.4.3 Sigmopollis

Sigmopollis are subspherical to ovoid in shape and the excystment structure is a sigmoidal suture around the periphery. They may have a prominent tab with matching notch on opposite margins of the aperture. The wall is smooth and unornamented, hyaline and colourless (Strother, 1996).

3.4.4 Sphaeoromorphs

Sphaeoromorphs are morphologically simple palynomorphs with a basic spherical shape and cover a wide range of sizes (Plate 2 nos. 6-12).

3.5 Dinoflagellate cysts

Dinoflagellates are a diverse group of unicellular algae and an important part of phytoplankton. Thick walled resting cysts are often produced during a stage in the life cycle of a dinoflagellate and may or may not resemble the living motile cell. In adverse environmental conditions dinoflagellates can also produce temporary cysts (Brasier, 1980, Fensome *et al.* 1996). Identification of dinocysts may rely on thecal

plates found on armoured motile cells or in the case of athecate or unarmoured cysts other features may be used for identification. The cell walls are made up of dinosporin, a complex organic compound that is very resistant to dissolution (Brasier, 1980, Tappan, 1980, Fensome, *et al.* 1996, Armand & Leventer, 2003).

In Antarctic waters dinoflagellate assemblages are of low abundance which is in contrast to temperate and warmer tropical seas (McMinn & Scott, 2005). Most Quaternary dinoflagellates belong to the Orders Gymnodiniales and Peridiniales. The largest group of living dinoflagellates from the Peridiniales are the Family Protoperidiniaceae (Mudie & Harland, 1996) from which *Protoperidinium* is the most diverse dinoflagellate genus in Antarctic waters and many species are endemic to the Southern Ocean and Antarctica (McMinn & Scott 2005). Nearly all the *Protoperidinium* spp. are heterotrophic and produce resting cysts which have brown walls, intercalary archeopyles and a simple morphology with little ornamentation. *Protoperidinium* spp. can exist in conditions of reduced light and mixed salinity, and are usually abundant in areas of upwelling (Mudie & Harland, 1996). The major Holocene dinoflagellate species.

3.5.1 Selenopemphix antarctica

Selenopemphix antarctica is spherical with two antapical horns and is apically to antapically compressed (Plate 5 nos. 1-4). Cysts are slightly pinkish in colour with granulations on the surface but no other ornamentation is present. This species has been exclusively recorded in the Southern Hemisphere and is endemic to the Southern Ocean and Antarctica. *Selenopemphix antarctica* dominates assemblages south of the Antarctic Polar Front close to the Antarctic continent especially in areas seasonally covered with sea ice (Marret & de Vernal, 1997).

3.5.2 Protoperidinium sp. 2

Protoperidinium sp. 2 are dark brown in colour with a granular surface with no tabulation or processes present. They are sub-spheroidal to ovoid in shape with a prominent cingulum and sulcus (Plate 4 nos. 10-12). This species was first recorded

as a Quaternary Protoperidinioid *in situ* dinocyst from the Cape Roberts Project-1 core unit 3.1 at 32.77 m below the sea floor in the Ross Sea (Wrenn *et al.* 1998).

3.5.3 Cryodinium sp.

Cryodinium sp. is a spherical protoperidinioid cyst with a smooth to granular surface and dark brown in colour. The cyst shows paratabulation and an intercalary archeopyle (Plate 3 nos. 4-12). It is a new endemic form recorded between the Antarctic Polar Front and the ACC-Weddell Gyre Boundary by Esper & Zonneveld (2002) and is a new record to the Antarctic Coastal Current and Prydz Bay environment.

3.5.4 Other dinocysts

The dinocyst *Alisocysta* sp. is ovoid with penitabular septa with an apical archeopyle and pale brown in colour (Plate 3 nos. 1-3). *Impagidinium* sp. (Plate 4 nos. 6-9) is a subspherical light brown dinocyst with a smooth wall and paratabulation. *Impagidinium* dinocysts are usually found in deeper oceanic environments (Dale, 1996). *Hystrichosphaeridium* sp. (Plate 4 nos. 4-5) is spherical with chorate processes that vary in length. *Protoperidinium* sp. 1 (Plate 5 nos 5-9) is spherical to ovoid in shape with suessioid tabulation type, pale yellow and no processes. Dinocyst sp (Plate 4 nos. 1-3) is ovoid with an apical archeopyle and chorate processes and cannot be referred to any existing genera.

3.6 Prasinophycean algae

The Prasinophyte group can be defined as noncellulosic green algae with scaly flagella arising from within an apical pit (Tappan, 1980). The diagnostic characters of this group are a two phase life history and the presence of scales on the motile cell body that differ to those on the flagella. In Arctic waters they are reported to be associated with water-column features of low temperature, enhanced productivity and stratified water columns with low salinity surface water overlying low oxygen bottom waters (Mudie, 1992, Mudie & Harland, 1996). The prasinophytes types recovered in this study are two species of *Cymatiosphaera, Tasmanites* sp. and *Pterospermella* sp. The *Tasmanites* sp. were fresh looking and light grey unlike similar species found in ancient sediments which are usually brown.

3.6.1 Cymatiosphaera sp. 1 and sp. 2

The Cymatiosphaera characteristically have surface crests making it hard to discern any openings and are most abundant in Arctic waters in upwelling or nutrient rich waters containing normal to low salinity (Mudie & Harland, 1996). They have a spherical central body which may be colourless to pale yellow or light brown and have no processes but surface ornamentation consists of a fine crest which anastomoses over the surface. The difference between these species is their size with species 1 being 15-20 μ m in diameter (Plate 5 nos. 10-12) and species 2 much larger, with a diameter of 75-115 μ m (Plate 6 nos. 1-10). Specimens similar to *Cymatiosphaera* sp. 2 have been recovered from the lower Miocene with two occurrences in the Quaternary section of the Cape Roberts Project-1 (CRP-1) 20.04 m below sea floor, McMurdo Sound (Hannah *et al.* 1998).

3.6.2 Tasmanites and Pterospermella

Species assignable to *Tasmanites* (Plate 7 nos. 1-3) change morphology throughout their life cycle. In their early life history the wall is single layered and develops with growth to a double layered wall. They have perforations of radially arranged pores of two distinct sizes. *Pterospermella* (Plate 6 nos. 11-12) are compressed and have no surface crests but are bordered by a wide floatation membrane and though mostly found in oceanic regions are also found in lowered salinity Polar Regions (Mudie & Harland, 1996). *Tasmanites* along with *Pterospermella* are regarded as the two fossil genera that are indisputably prasinophytes (Guy-Ohlson, 1996).

3.7 Red algae

One species of red algae (*Beringiella* sp.) has been identified in this study. This species has not been documented in the Southern Ocean before, but is known to occur in the deltaic and tidewater glacier environment of the Beaufort Sea and Baffin Island in the North Atlantic and at ice margins and arctic estuaries where there is a lowered salinity of <32% in the northern hemisphere (Mudie & Harland, 1996). Individuals are similar to the red alga *Beringiella fritilla* which is found only in upper Pleistocene sediments of the eastern Bering Sea in the Arctic (Mudie, 1992). They have an ovoid central body with smooth walls with the edge $~1 \mu$ m, and are brown with an apical archeopyle with serrated edges (Plate 7 nos. 4-11).

3.8 Unknowns

The unknowns consist of marine palynomorphs that cannot be referred to any existing genera. Some are shown on Plate 10 nos. 10-12, Plate 11 nos. 1-3, 6, 9-11 and Plate 12 nos. 11-12. For descriptions see Appendix C.

3.9 Zooplankton

Zooplankton recovered in Prydz Bay consist of Tintinnid loricae and their flask shaped cysts and a species that has not yet been identified.

3.9.1 Tintinnids

The Tintinnid loricae are known to inhabit the Antarctic waters in numbers which are exceeded only by the diatoms that they feed on (Brazier, 1980). Loricae size may be from 20-1,000 μ m in length but most are 120-200 μ m with a variety of shapes from globular to conical and bell shape. They have an aperture at the oral end and most are closed at the aboral end with either a rounded or pointed form (Plate 8 nos. 5-6). The tintinned ciliate cell, which doesn't survive processing, is attached to the loricae by a pedical (Brasier, 1980). Tintinnid cysts recovered in this study are ovoid, brown and thin walled which can be easily folded and they have an aperture that extends out from the central body (Plate 8 nos. 3-4). The taxonomic subdivision of Tintinnids is uncertain due to many of their species generations showing infraspecific variability (Petz, 2005).

3.9.2 Zooplankton sp.

This species is spherical and two layered with an encysted inner body which is thick walled and brown in colour with no ornamentation but does contain a round aperture. The outer layer is thin and hyaline with a single "tail" attached, this layer folds easily (Plate 8 nos. 7-12 and Plate 9 nos. 1-9). The size can vary but averages between 125-175 µm. This *Zooplankton* sp. is not yet identified.

3.10 Foraminiferan linings

Foraminiferan linings are the acid resistant inner linings of microforaminifera tests, and these organic remains can be up to 40% smaller than the host test. The linings

can be found in numbers at shallow depths in most oceans and are usually found in greater numbers near upwelling, coarser sediment and higher salinity conditions but tend to decrease in numbers as water depth increases. Their morphology (Plate 7 no. 12 and Plate 8 nos. 1-2) may be uniserial, biserial or spiral and within the latter, linings may also be planispiral or trochospiral (Stancliffe, 1996).

3.11 Insect parts

Insect parts consist mainly of Scolecodonts, a combination of jaw and tooth fragments (Plate 11 no. 12). They are scattered throughout the samples and include other body casings that have been resistant to palynology processing.

3.12 Egg cases

There are a wide variety of egg cases within Prydz Bay surface sediments. The egg cases range in size from \sim 75-300+ μ m and can be a variety of shapes from ovoid, spherical to acentric and with or without ornamentation that may be elaborate and homomorphic or heteromorphic. Some examples are shown on Plate 11 nos. 4-5, 7-8 and Plate 12 nos. 1-10.

3.13 Reworked palynomorphs

3.13.1 Reworked dinoflagellate cysts

All reworked dinocysts in this study are part of the Transantarctic Flora that has been identified from previous work carried out on the dinoflagellate distribution of the Deep Sea Drilling Project (DSDP) (Kemp, 1975), MSSTS-1 drill hole McMurdo Sound (Truswell, 1986) and the CIROS-1 Drillhole (Hannah, 1997). Also included are Transantarctic Flora from CRP-1, (Hannah *et al.* 1998, Wrenn *et al.* 1998), the marine palynomorphs found in CRP-2/2A (Hannah *et al.* 2000), palynomorphs from CRP-3 (Hannah *et al.* 2001a) and Ocean Drilling Project sites in Prydz Bay 1165 (Hannah, 2005, McPhail & Truswell, 2004a), 1167 and 1166 (McPhail & Truswell, 2004b). The reworked dinocysts are Eocene in age and consist of *Alterbidinium asymmetrica*, *Deflandrea* spp. *Enneadocysta partridgei*, *Spinidinium* spp. *Spinidinium macmurdoense*, *Turbiosphaera filosa*, *Vozzhennikovia* spp. and operculae (see Appendix C for descriptions). Identification was hindered by the

effects of reworking which often left most cysts in poor condition and not easily identifiable. Examples are provided on Plate 9 nos. 10-12 and Plate 10 nos. 1-9.

3.13.2 Pollen

The terrestrial material recovered in this study contains species of pollen and spores that range in age from the Permian to the Eocene (Raine pers. comm., 2005). They have been previously reported in MSSTS-1 drillhole McMurdo Sound (Truswell, 1986), in the CRP Ross Sea, Antarctica (Askin & Raine, 2000) and from ODP cores in Prdyz Bay (Hannah, 2005, McPhail & Truswell, 2004).

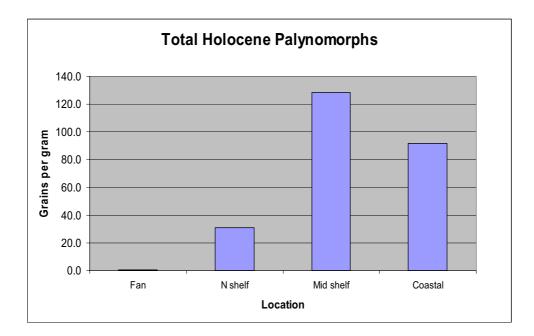
3.14 Results for oxidised samples

Samples that had previously produced large numbers of palynomorphs (901/23, 901/25, 901/33 and 186/16) were oxidised to try and concentrate the palynomorphs, remove unwanted debris and compare to fossil assemblages. The results show that the abundance of some species such as *Zooplankton* sp. *Cymatiosphaera* sp. 2, *Beringiella* sp. and two egg cases (Plate 10 nos. 10-12 and Plate 12 no. 1) were not generally altered in nearly all the samples oxidised. The only other palynomorphs sighted were two species of the dinocyst *Selenopemphix antarctica* but they had been affected by the oxidation and were very faded.

3.15 Palynomorph distribution

Counts of palynomorphs within each of the four geographical areas outlined in chapter one (fig 1.3) are presented in tables of total abundances, relative abundances and grains per gram of samples. Unless specifically mentioned each datum/value is given in grains per gram. Separate counts of Holocene and reworked palynomorphs, and counts of Holocene and reworked dinocysts are on the master spread sheet (Appendix A).

The count data are also represented in graphical form with absolute abundance for total Holocene palynomorphs shown in figure 3.1. Figure 3.2 shows the detailed components of the Holocene palynomorphs assemblage and figure 3.8 shows the Holocene dinocysts. Data for reworked assemblages are separated into reworked dinocysts in figure 3.9 and terrestrial palynomorphs in figure 3.10. The absolute


abundance for total Holocene and total reworked palynomorphs is shown in figure 3.11.

Maps of Prydz Bay have been compiled using Arcview and the position of the 58 sample sites plotted. Superimposed on this basic map are data for total Holocene assemblages (fig 3.1), a breakdown of the Holocene palynomorph assemblages (fig 3.2), Holocene dinocysts (fig 3.8), reworked dinocysts (fig 3.9), terrestrial palynomorphs (fig 3.10) and a further map showing absolute abundance for total Holocene and total reworked palynomorphs (fig 3.11). Four separate maps were compiled to show *Zooplankton* sp. (fig 3.3), foraminiferan linings (fig 3.4), red algae (fig 3.5) and *Cymatiosphaera* sp. 2 (fig 3.6). Maps for positions of all other palynomorphs were placed in Appendix D. A contour map showing salinity contours was also compiled (fig 3.7).

3.16 Total Abundance for Holocene Palynomorphs

Total abundances for Holocene palynomorphs (fig 3.1) show significant differences between the geographic areas. Within the embayment, the Holocene palynomorphs have the highest total counts in the Mid Shelf area followed closely by the Coastal areas. Abundance in the North Shelf for total Holocene is lower and palynomorphs become rare on the Fan.

Figure 3.2 indicates that although there seem to be no relative differences between the make up of the assemblages in each geographical area, notably there are higher counts of zooplankton and foraminifera linings and also higher counts of all other species in the Mid Shelf area. In the Coastal area there is a slight drop in numbers for zooplankton whereas the foraminiferan linings do not reduce in numbers significantly. On the North Shelf palynomorph numbers are reduced further, but foraminiferan linings now have a higher abundance than zooplankton which are now the second most common component. There is a very small proportion of Holocene species on the Fan. Comparison of total zooplankton and foraminiferan linings show that they are both represented in nearly all continental shelf samples and only concentrations within the geographic areas differ slightly. Approximately two thirds

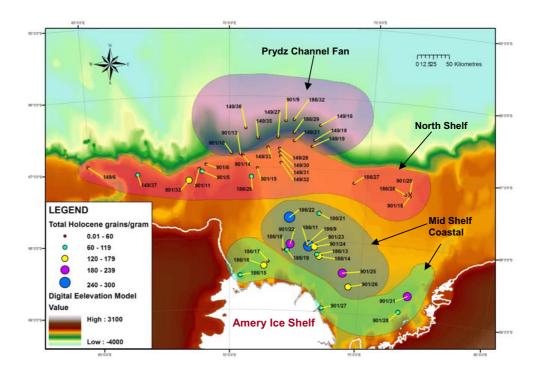
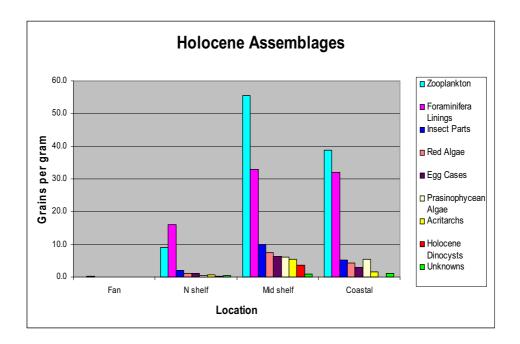



Fig. 3.1: Total Holocene palynomorphs grains per gram. Graph displays the geographical locations for total Holocene palynomorphs. The map is labelled showing the positions of the Fan, North Shelf, Mid Shelf and Coastal areas. The total Holocene palynomorph abundance shows higher abundance displayed with the larger coloured circles, and follows through to lowest abundance displayed with smallest coloured circles as per legend.

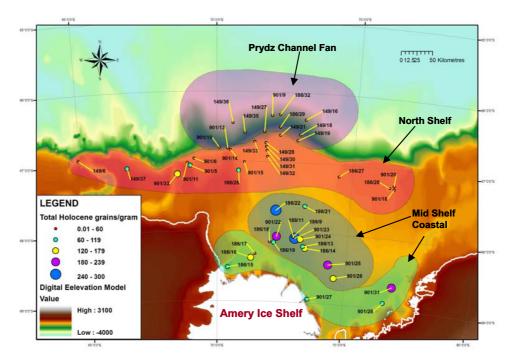


Fig. 3.2: Total Holocene Palynomorphs grains per gram. Graph displays the geographical locations with the individual assemblages. The map is labelled showing the positions of the Fan, North Shelf, Mid Shelf and Coastal areas. The total Holocene palynomorph abundance shows higher abundance displayed with the larger coloured circles and lowest abundance displayed with smallest coloured circles as per legend.

of all Holocene palynomorphs are either zooplankton (39%) or foraminiferan linings (33.93%) (Appendix A).

Zooplankton is dominated by *Zooplankton* sp. (Plate 8 nos. 7-12 and Plate 9 nos. 1-9) which makes up to 93% of this category (Appendix A). *Zooplankton* sp. highest abundances are from the Mid Shelf (51.33 g/g), but they also have a strong presence in the Coastal area (36.65 g/g) (fig 3.3). There is very little representation of this component in the North Shelf area and they are rare on the Fan with only one sample containing specimens of *Zooplankton* sp. that were damaged and looked reworked due to a darker colouring. *Zooplankton* sp. must be living in the water column today as many of their cysts are found well preserved and in good condition. The foraminifera (fig 3.4) showed similar distribution to *Zooplankton* sp. This may mean that they have a similar ecology or it could mean that they are dominating their own ecological niches and not competing for the same types of food and are therefore able to produce large populations.

3.17 Other palynomorph distributions

There are some exceptions to Holocene palynomorph concentration dominating the Mid Shelf area. *Beringiella* sp. (fig 3.5) is the only red alga found in this study and is found in most samples within the embayment and a few samples on the fan. It may be that the *Beringiella* sp. was more affected by currents within the bay than other palynomorphs. *Beringiella* sp. rarely appeared folded or flattened in the sediment and its shape (Plate 7 Nos. 4-11) could be described as oval or egg shaped, good for buoyancy and ease of dispersal. As mentioned earlier this species has been found in the Arctic, which has similar environments to Prydz Bay with regard to its ice margins and the tidewater glacier of the Amery Ice Shelf.

Cymatiosphaera sp. 2 (fig 3.6) was also found in abundance in the areas immediately in front of the Amery Ice Shelf and in the Lambert Deep on the western side of the Amery Ice Shelf. The Lambert Deep area was formed by erosion due to glacial advance of the ice shelf but today this area is where the coastal current enters from the eastern side and circulates underneath the ice shelf before exiting from the west where the Lambert Deep is situated. Mudie and Harland (1996) suggest that

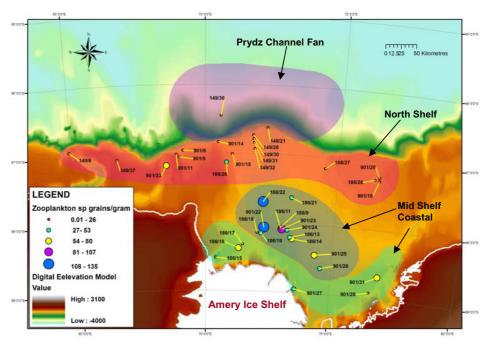


Fig. 3.3: *Zooplankton* sp. has a higher abundance (larger coloured circles) on the Mid Shelf and Coastal geographic areas, and is sparse on most of the North Shelf and spread over most of the samples there. There is only one sample with a low abundance of *Zooplankton* species on the Fan.

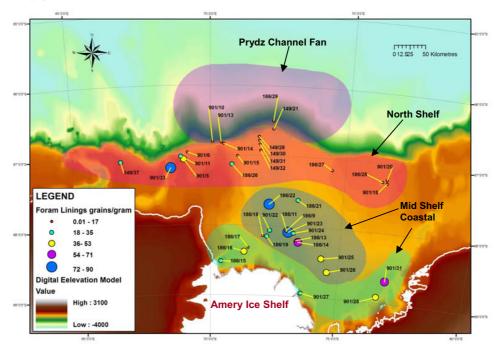


Fig. 3.4: Foraminiferan linings have a higher abundance (larger coloured circles) on the Mid Shelf and Coastal geographic areas but are fewer in number than *Zooplankton* sp. They have a high abundance on the western North Shelf but are less abundant on other parts of the North Shelf and have a small presence on the Fan.

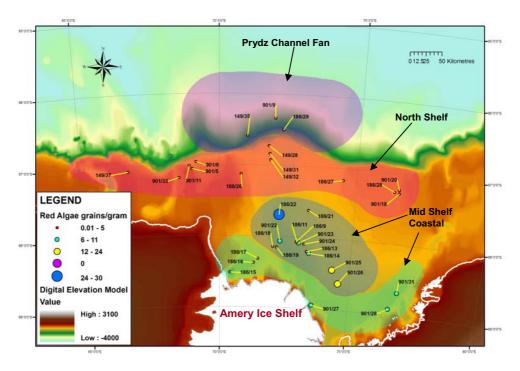


Fig. 3.5: The red algae *Beringiella* sp. show a higher abundance Mid Shelf (larger coloured circles) with less abundance in the Coastal geographic area. They are also present though sparse on the North Shelf and are rare inin three samples on the Fan.

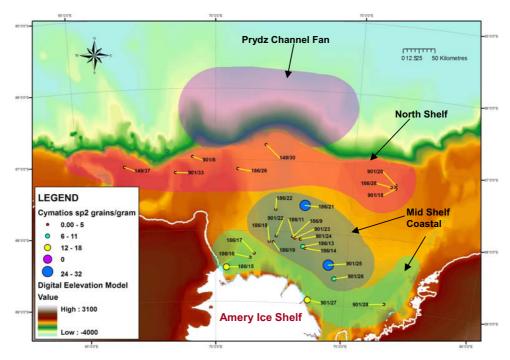


Fig. 3.6: *Cymatiosphaera* sp. 2 unlike the red algae is not present on the Fan and is sparse on the North shelf. They have a high abundance (larger coloured circles) on the Mid Shelf and in the Coastal areas especially in front of the Amery Ice Shelf.

Cymatiosphaera spp. are most common in upwelling areas in the Arctic but in Prydz Bay this species appears in the surface sediments close to the ice shelf. This may indicate a preference for lower salinity (fig 3.7) and/or colder currents circulating under the ice shelf, rather than the more saline oceanic waters imported by the circulation of the Prydz Bay Gyre. This species is not as common in the more shallow areas of the bay where the surface currents are stronger and the salinity is higher.

The unknowns (Appendix D) have a total count of 95 palynomorphs. All the unknowns were located in the continental shelf and the highest concentration was in the coastal area, which makes this category an exception to the dominance of palynomorphs found in the Mid Shelf. The most abundant species of unknowns is species 6 at 41.90% and its location is similar to the prasinophyte and red algae locations which suggest that this species may be algal in origin.

The highest counts (Appendix A) for insect parts and egg cases confined them mostly to the continental shelf area, with their highest concentration in the Mid Shelf at 9.85 grains per gram.

3.18 Reworked v Holocene dinoflagellate cysts

The surface sediment samples obtained for this project are considered to be modern and in some areas of Prydz Bay, for example the Prydz Bay Channel, they have produced extant dinocysts. Figure 3.8 shows the distribution in the bay for Holocene dinocysts. They are abundant in the Mid Shelf but are rare in other locations. According to Dale (1996) a glaciomarine signal is provided by the dominance of a single species. This is consistent with the Holocene dinocyst *Selenopemphix antarctica*, which is present within the bay at more than three times the number of any other dinocyst. *Cryodinium* sp. and *Protoperidinioid* sp. 2 are the next most abundant types. The appearance of two cosmopolitan gonyaulacoid dinocysts, the *Impagidinium* sp. and *Alisocysta* sp. which are normally restricted to open waters, suggest that oceanic waters are entering the embayment (Dale, 1996). 25% of all dinocyst counted are reworked (fig 3.9), and all these are recognised as part of the

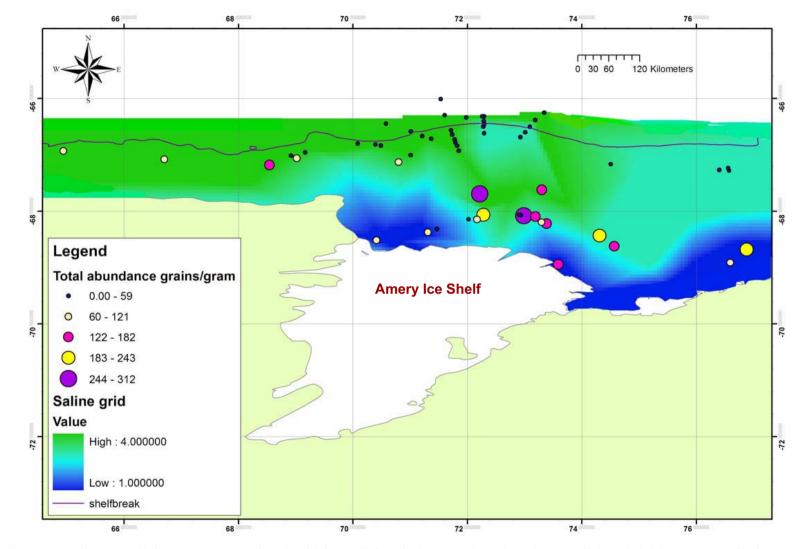
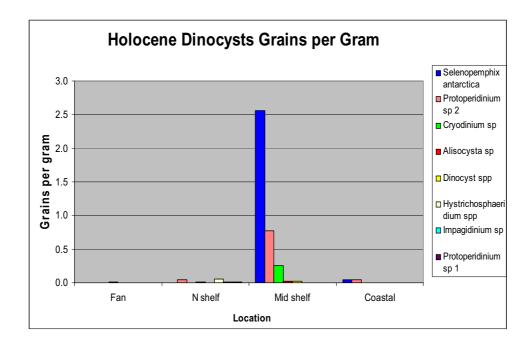



Fig 3.7: Prydz Bay salinity contour map showing higher salinity, dark green through to lower salinity, dark blue. A compilation was selected by Taylor, McMinn & Franklin (1997) table 1, from data collected on separate cruises by ANARE, FIBEX, SIBEX II and

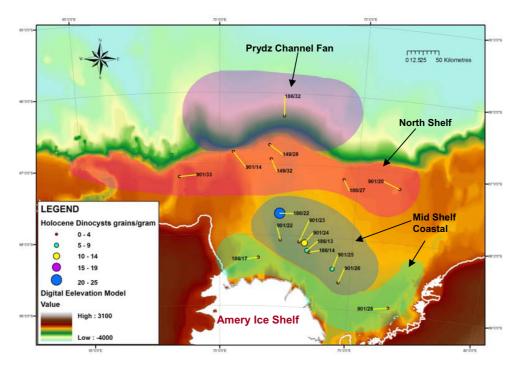
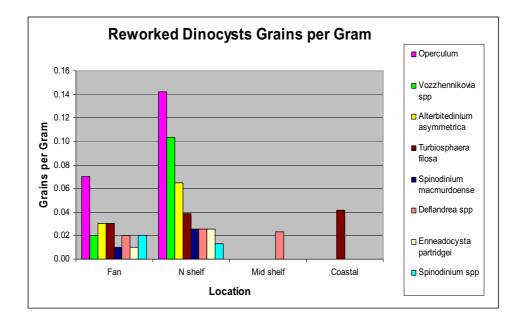



Fig. 3.8: Holocene dinocysts grains per gram. Graph displays the geographical locations with the individual assemblages. The map is labelled showing the positions of the Fan, North Shelf, Mid Shelf and Coastal areas. The Holocene dinocyst abundance shows higher abundance displayed with the larger coloured circles and lowest abundance displayed with smallest coloured circles as per legend.

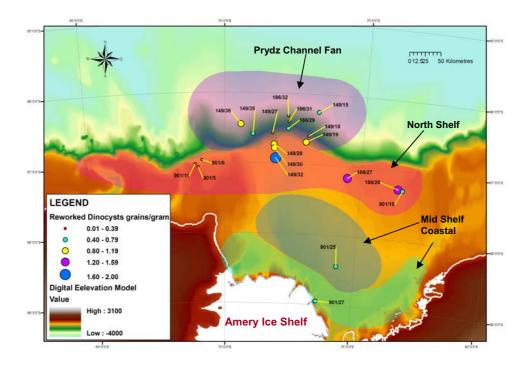
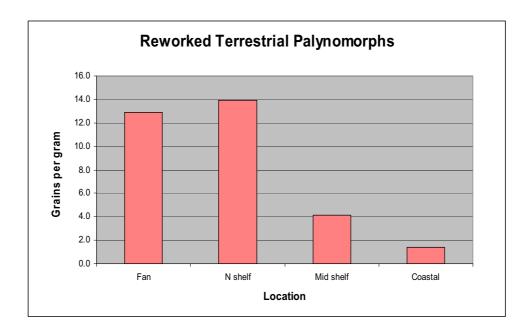


Fig. 3.9: Reworked dinocysts grains per gram. Graph displays the geographical locations with the individual assemblages. The map is labelled showing the positions of the Fan, North Shelf, Mid Shelf and Coastal areas. The reworked dinocyst abundance shows higher abundance displayed with the larger coloured circles and lowest abundance displayed with smallest coloured circles as per legend.

Transantarctic Flora initially reported in the McMurdo Erratics (Levy & Harwood, 2000b) and Eocene in age, with their highest counts recorded in the North Shelf and Fan areas. *Turbiosphaera filosa* is the only reworked dinocyst recorded in the Coastal area and *Deflandrea* sp. the only reworked dinocyst recorded in the Mid Shelf.


3.19 Terrestrial material (reworked)

The reworked dinocysts mentioned above make up approximately 2% of the total reworked palynomorph count, the other 98% being terrestrial material (Appendix A) consisting of fragments of charcoal, pollen grains and spores. Figure 3.10 shows that pollen grains and spores have high abundances on the Fan and North Shelf, with decreasing amounts from Mid Shelf and Coastal areas.

There is a mix of terrestrial material found among the modern marine palynomorphs in the Mid Shelf and Coastal areas which may be explained by the Prydz Bay Gyre distributing this material. Other factors may include iceberg ploughing and strong currents in shallow areas that have disturbed sediment where the terrestrial material is most abundant. The material may also be carried into the bay by the coastal currents from the east which have been discussed by Truswell (1983) with regard to the composition, distribution and origin of recycled material on the East Antarctic continental shelf. Truswell (1983) suggested that recycled palynomorph concentrations may be from the erosion of sedimentary sequences on the eastern continental shelf which would be carried to Prydz Bay by the coastal current.

3.20 Total Holocene and reworked palynomorphs

A notable difference between total Holocene and total reworked palynomorphs is in the total counts. Total count for Holocene palynomorphs (10,097) are approximately four times greater than the total count for reworked palynomorphs (2,630) (Appendix A). Graphical results for absolute abundance of total Holocene and reworked grains per gram shows the uneven distribution that is occurring between the Holocene and reworked palynomorphs (fig 3.11). The graph emphasises the dominance of Holocene palynomorphs on the Mid Shelf and Coastal geographic areas which confines them to the deeper parts of the continental shelf. The North Shelf shows that Holocene palynomorphs are lower in abundance here but still slightly higher than all reworked palynomorphs. In contrast the much lower counts for total reworked palynomorphs show a more even distribution on the Fan and North Shelf geographic areas, but are sparse in the deeper Mid Shelf and Coastal geographic areas. The map displays the overall abundance for palynomorphs and confirms that highest abundances are in the Mid Shelf and Coastal areas and that abundance is lower on the North Shelf and even lower on the Fan.

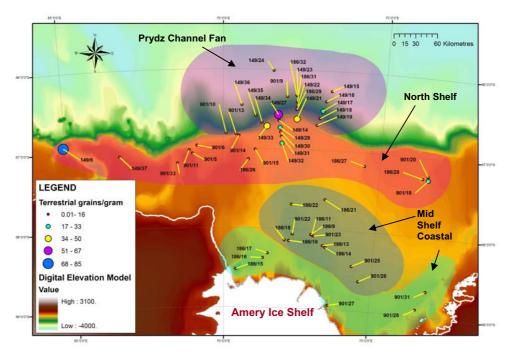
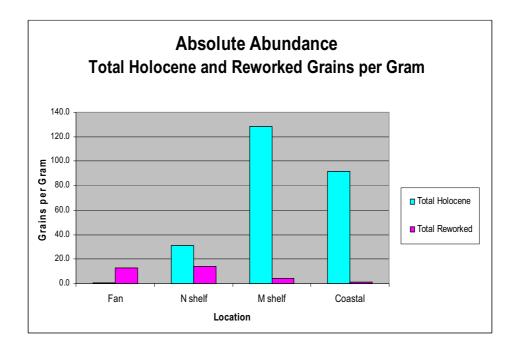
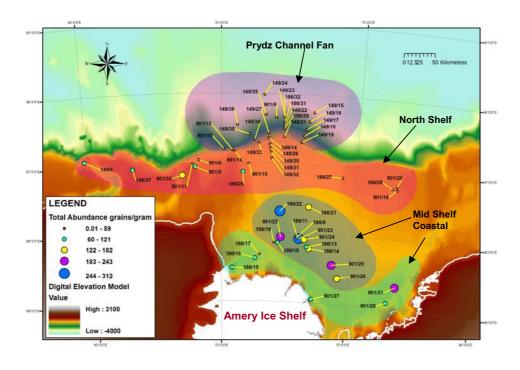
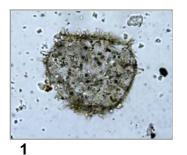
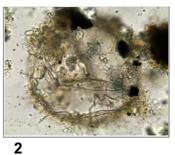



Fig. 3.10: Terrestrial palynomorphs consist of pollen grains and spores. The large coloured circles are the higher abundances and are mostly on the Northern Shelf. There is a scattering of terrestrial material on the inner shelf which must have been transported there by the coastal currents or the gyre. The graph displays the terrestrial material with the highest abundance on the North Shelf followed by the Fan and small counts Mid Shelf and Coastal.






Fig. 3.11: Absolute abundance of grains per gram. Graph displays the geographical locations of total Holocene and total reworked assemblages. The map is labelled showing the geographic locations of the Fan, North Shelf, Mid Shelf and Coastal areas. The absolute abundance shows higher abundance displayed with the larger coloured circles and lowest abundance displayed with smallest coloured circles as per legend.

Illustrative Plates

Plate 1 - Fig. 1-3 Acritarch sp 1, longest dimensions in μ m = 125 μ m, slide number = 901-25-3B, England finder co-ordinates = O28/1; Fig. 4-7 Acritarch sp 2, 75 μ m, 901-26-1B, C32/3; Fig. 8 Acritarch sp 3, 125 μ m 186-22-2A, V38/2; Fig 9-10 Acritarch sp 3, 125 μ m 186-22-3B J53/1; Fig. 11-12 Acritarch sp 4,125 μ m 186/18-3A Q49/3.

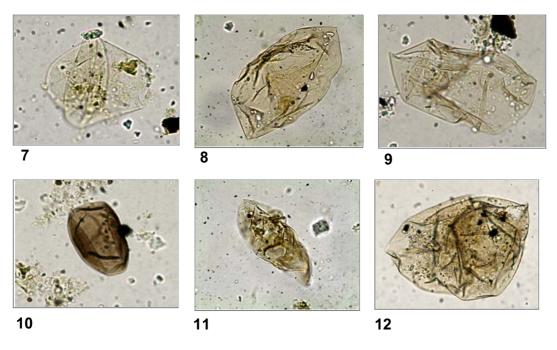
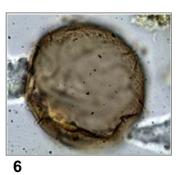
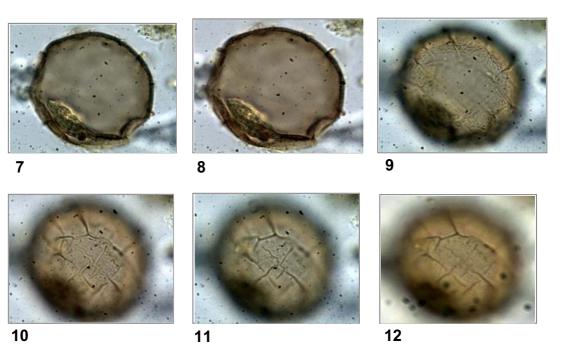
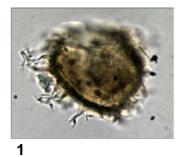


Plate 2 - Fig. 1 Acritarch sp 4 125 μm, 186-9-3A, C28; Fig. 2-3 Acritarch sp 4, 125 μm, 901-23-2A, B43; Fig. 4, Acritarch sp 150 μm, 901-25-3A, X47; Fig 5 *Leiospherida* sp, 35 μm, 901-33-3A, J49.2; Fig. 6 *Sphaeoromorph*, 30 μm 186-13-2A, Y39; Fig 7, *Sphaeoromorph*, 60 μm, 901/33-3A, P45; Fig. 8, *Sphaeoromorph* 145 μm, 186-13-2A, X45; Fig. 9, *Sphaeoromorph* 85 μm, 901-23-3A, S49/4; Fig. 10, *Sphaeoromorph*, 50 μm, 186-13-1B X32/3; Fig. 11, *Sphaeoromorph* 100 μm, 186-22-2A, K37/3; Fig. 12, *Sphaeoromorph* 150 μm, 901-23-3A, R33/1.







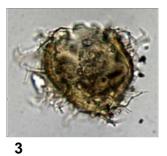
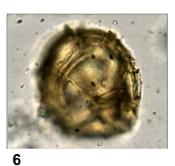
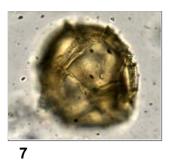
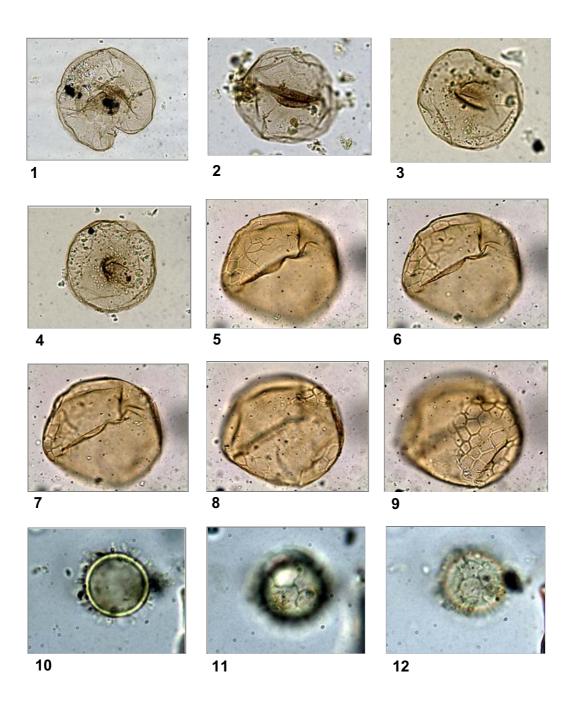


Plate 3 – Fig. 1-3 Alisocysta sp, 75 μ m, 186-32-2A, L33; Fig. 4-12 Cryodinium sp, 35 μ m, 186-22-2B, O33/1







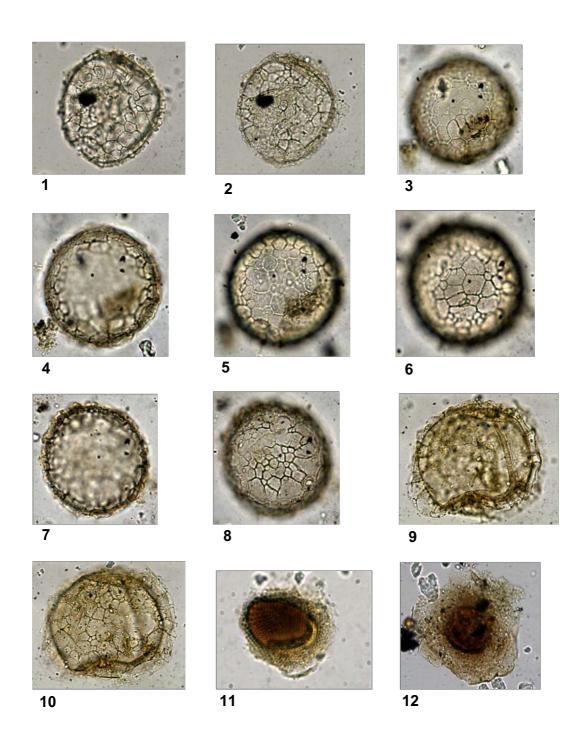
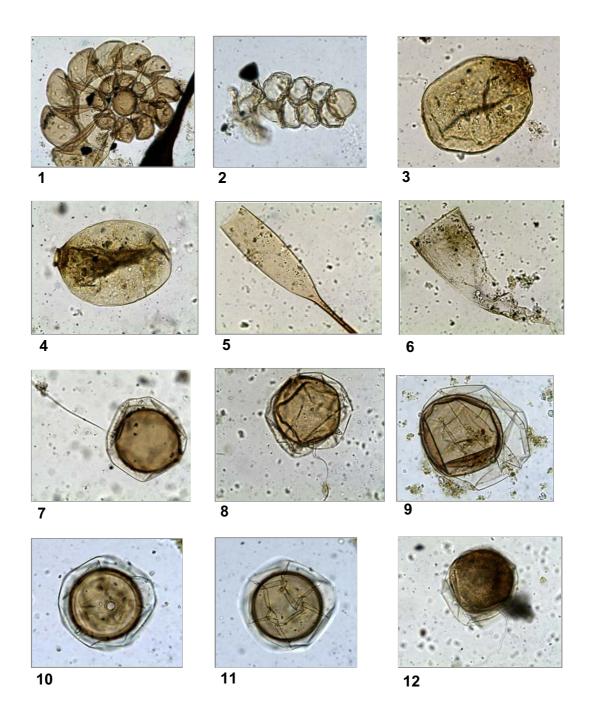


Plate 4 – Fig. 1-3 Dinocyst sp, 60 μ m, 186-29-2A, X34/2; Fig. 4-5 *Hystrichosphaeridium* sp, 75 μ m, 149-28-3A N35; Fig. 6-9 *Impagidinium* sp, 60 μ m, 901-20-3A V38/3; Fig. 10-12 *Protoperidinium* sp 2, 75 μ m, 186-22-3A U53/3

Plate 5 – **Fig. 1** Selenopemphix antarctica 75 μ m, 186-22-1A B52/3; **Fig. 2** Selenopemphix antarctica 75 μ m, 186-22-3B H47/1; **Fig. 3** Selenopemphix antarctica 75 μ m, 901-24-2B G52/1; **Fig. 4** Selenopemphix antarctica 75 μ m, 901-24-2A T29; **Fig. 5-9** Protoperidinium sp 115 μ m 901-14-2A B60/1; **Fig. 10-12** Cymatiosphaera sp 1 18 μ m 149-6-1B T49

Plate 6 – Fig. 1-2 *Cymatiosphaera* sp 2 75 μ m, 901-23-3A V30; Fig. 3-5 *Cymatiosphaera* sp 2, 80 μ m, 901-26-2B C39; Fig. 6-8 *Cymatiosphaera* sp 2, 85 μ m, 901-20-2B G30/3; Fig. 9-10 *Cymatiosphaera* sp 2, 115 μ m, 149-37-3A, F46; Fig. 11-12, *Pterospermella* sp, 40 μ m, 901-33-3A, L47/3; Fig. 12, 75 μ m, 901-23-1A, R44/2



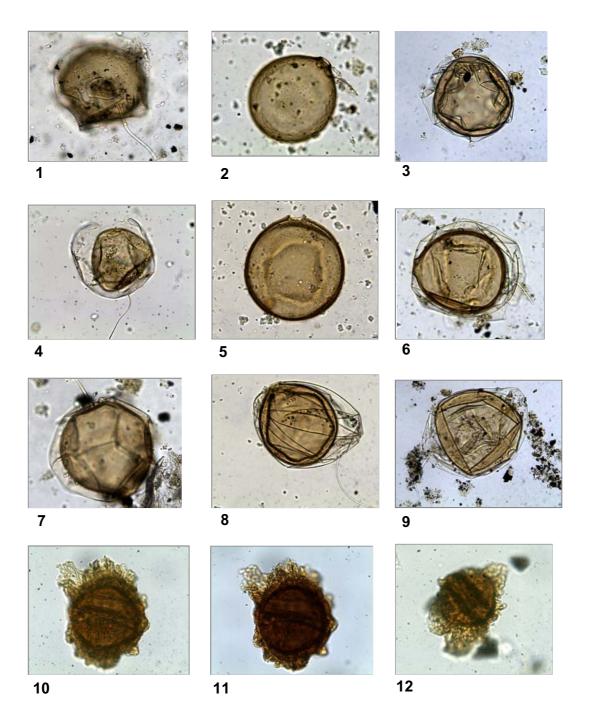


Plate 7 – Fig. 1, *Tasmanites* 105 μm, 149-31-2A, K56/4; Fig. 2-3, *Tasmanites* 125 μm, 186-13-2A, V34/1; Fig 4 *Beringiella* sp, 40 μm, 186-14-3A, K52/4; Fig. 5, *Beringiella* sp, 50 μm, 901-28-1A, N55; Fig. 6-7, *Beringiella* sp, 55 μm, 186-22-3B, U46/2; Fig. 8, *Beringiella* sp, 55 μm, 901-27-3B, J49/3; Fig. 9, *Beringiella* sp, 55 μm, 901-22-2B, O43/3; Fig. 10-11, *Beringiella* sp, 50 μm, 901-5-2B, H45/2; Fig. 12, Foraminifera Lining, 100 μm, 186/21-3B X41/1

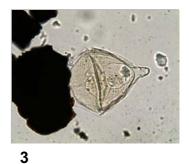
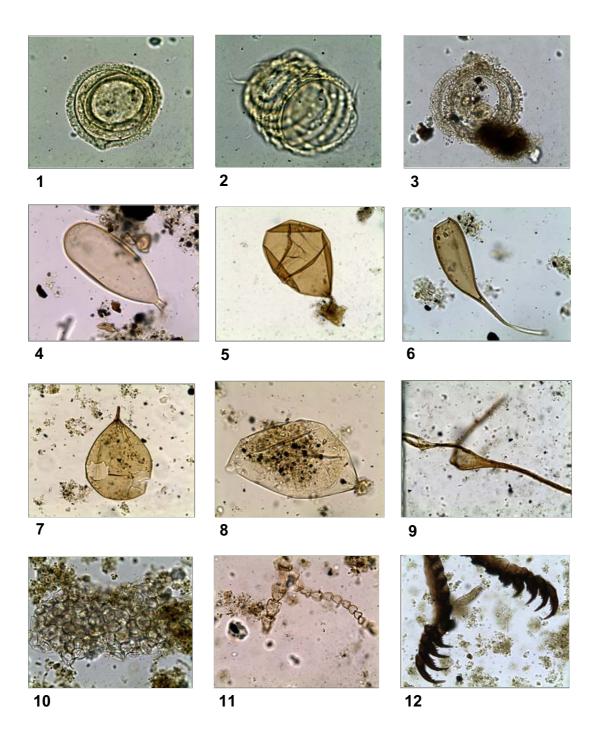

Plate 8 – **Fig. 1**, Foraminifera linings, 300+ μm, 901-52B, Z40/2; **Fig. 2**, Foraminifera linings, 75 μm, 186-21-3B, W40/3; **Fig. 3**, Tintinnid cysts 100 μm, 901-26-3B, Q30/1; **Fig. 4**, Tintinnid cysts 100 μm, 186-16-2A W42; **Fig. 5**, Tintinnid loricae, 250+ μm, 901-34-3A, W33; **Fig. 6**, Tintinnid loricae, 300+ μm, 186-17-3A, C48/1; **Fig. 7**, *Zooplankton* sp, (size not including "tail" for this species) 160 μm, 186-18-3A F43/4; **Fig. 8**, *Zooplankton* sp, 150 μm, 149-31-2A, G56/2; **Fig. 9**, *Zooplankton* sp, 175 μm, 186-22-2B, E47/2; **Fig. 10-11**, *Zooplankton* sp, 155 μm, 186-18-1A, P44/1; **Fig. 12**, *Zooplankton* sp, 150 μm, 901-28-1A, P52

Plate 9 – **Fig. 1**, *Zooplankton* sp, (size not including "tail" for this species) 175 μm, 186-18-1,3A, Y29/2; **Fig. 2**, *Zooplankton* sp, 125 μm, 186-14-1A, U45/1; **Fig. 3**, *Zooplankton* sp, 150 μm, 901-22-2 T43; **Fig. 4**, *Zooplankton* sp, 175 μm, 186-26-3A Q38; **Fig. 5**, *Zooplankton* sp, 150 μm, 186-17-1A, Y44; **Fig. 6**, *Zooplankton* sp, 175 μm, 901-22-2 X31; **Fig. 7**, *Zooplankton* sp, 160 μm, 901-23-3A R49/4; **Fig. 8**, *Zooplankton* sp, 200 μm, 186-14-1B, V41/2; **Fig. 9**, *Zooplankton* sp, 160 μm, 901-27-4A, W47/1; **Fig. 10-11**, *Turbiosphaera filosa*, 50 μm, 901-27-2B, P42; **Fig. 12**, *Turbiosphaera filosa*, 35 μm, 186-28-2A Q50





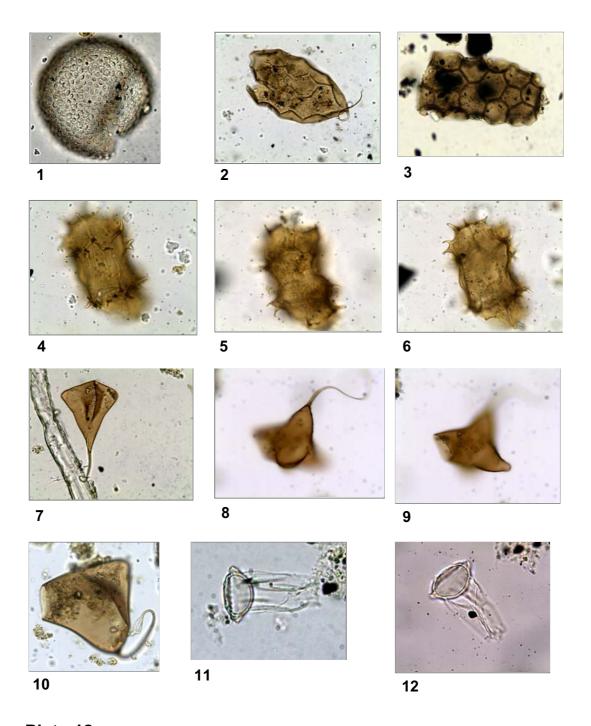


Plate 10 – Fig. 1-2, Deflandrea sp, 90 μ m, 149-35-2A, Y47; Fig. 3, Alterbidinium asymmetricum 100 μ m, 149-35-2A, O32. Fig. 4-6, Spinodinium sp, 75 μ m, 149-36-2B, Q39/4; Fig. 7-9, Alterbidinium asymmetricum 80 μ m, 186-27-1B, N50; Fig. 10, Egg case, 115 μ m, 901-27-4A, S39/4; Fig. 11, Egg case, 125 μ m, 901-23-2A, N34; Fig. 12, Egg case, 125 μ m, 901-23-2A, D33/3

Plate 11 – Fig. 1, Unknown, 35 μm, 901-33-2A, L47; Fig. 2, Unknown, 45 μm, 901-33-1A S47/4; Fig. 3, Unknown 75 μm, 901-23-1A S50; Fig. 4, Egg Case, 250 μm, 186-21-3B, U34/3; Fig. 5, Egg Case, 165 μm, 186-9-3B, E44; Fig. 6, Unknown, 75 μm, 901-22-4A, Q48/4; Fig. 7, Egg Case, 175 μm, 901-22-2B, Q31/4; Fig. 8, Egg Case 150 μm, 901-22-2, C31; Fig. 9, Unknown, 65 μm, 186-18-1A, D28/2; Fig. 10, Algal Group, 186-22-3B, L48/3; Fig. 11, Algal Chain, 901-11-1B C39/1; Fig. 12, Insect Parts, 300+ μm, 186-22-1B, F28/3

Plate 12 – Fig. 1, Egg Case, 100 μ m, 901-28-3A, B40/2; Fig. 2, Egg Case, 200 μ m, 186-16-2A, X49/3; Fig. 3, Egg Case 160 μ m, 901-11-3A, W41/1; Fig. 4-6, Egg Case 125 μ m, 901-33-3A, R50/3; Fig. 7, Egg Case, 150 μ m, 901-24-2B, D36; Fig. 8-9, Egg Case, 145 μ m, 186-22-3B, Y55/2; Fig. 10, Egg Case, 125 μ m, 186-22-1B, S32; Fig. 11, Unknown, 40 μ m, 186-21-2B, W39/2; Fig. 12, Unknown, 35 μ m, 186-21-3B, Y38/4

CHAPTER 4 METHOD AND RESULTS – GRAIN SIZE

4.0 Introduction

Sediment on the floor of Prydz Bay has been either transported by ice or currents from the Antarctic continent onto the continental shelf and slope or in the case of biogenic sediment produced from the surface waters of the bay and settled to the sea floor. Some sediment has also been reworked by strong currents or redeposited by sediment gravity flows. Grain size analysis was carried out on splits of samples also processed for palynology to help understand how the sediment and the included palynomorphs reached the various sample sites.

4.1 Method

Each sample was dried, weighed and placed in a beaker with 0.1% calgon solution and disaggregated in an ultrasonic tank for half an hour. It was then split into sand and mud fractions by wet sieving through a 62 μ m nylon mesh. The fine fraction was washed into a centrifuge bucket, and then centrifuged, decanted, and transferred into a labeled beaker. The coarse fraction was washed off the nylon mesh into another labeled beaker and placed with the fine fraction beaker in an oven for drying at 40°C.

The coarse fraction was dry sieved at $\frac{1}{2} \emptyset$ intervals from -4.0 to 5.0 \emptyset .

Contamination of the sieve screens was avoided by cleaning each screen with a brush and compressed air before each sample was sieved. The sieves were nested with the coarsest at the top and the pan at the bottom and the lid fastened tightly. A timer was set for 18 minutes on a shaker to commence the sieving which alternated between intermittent and micro mode. After sieving each size fraction was weighed and recorded.

Two grams of the dried fine fraction were split off, weighed and analysed by a Sedigraph 5100 particle size analyser to determine the grain size distribution of the fine fraction. The results were then merged with the coarse fraction results and entered into the VUWSIZE program to produce statistics and histograms for each sample. The weight of sample sizes was variable with 33 out of 58 samples weighing <10 g and only one sample >20 g. As mentioned in Chapter 3, four samples could not be included in the grain size analysis from the mid shelf area (GC901-24, GC901-25, GC901-26, GC186-13) because they did not contain sufficient sediment for analysis after the drying process.

4.2 Results

Best results are obtained from the method described here for samples of more than 10 g (Barrett & Anderson, 2000). Just over half of the samples were below this amount, but results obtained here compare well to other grain size analysis carried out within Prydz Bay, as can be seen by comparison with the data provided by Harris *et al.* (1998) (fig 4.1a).

The VUWSIZE program collates the output data, providing one table of frequency percent data and another of basic statistics (key percentiles, moment measures, graphic measures) and percent gravel, sand, silt and clay (Appendix B). The program also depicts histograms (phi v frequency) for each sample and examples are shown in fig 4.2. Silt and clay proportions were combined to obtain mud percent and contour maps were compiled on GIS Arcview as described in Chapter 3. The mud percent data were combined with data from Harris *et al.* (1998) to give a more complete picture of the distribution of mud in the bay. A contour map was also compiled for percent gravel using data from this study (fig 4.1b). Other Arcview maps show possible lithology (fig 4.3) and depth for each sample (fig 4.4) and individual maps for mud, sand and gravel proportions were compiled (fig 4.5a, b, c). A table was compiled showing sample numbers, depth and raw count for total palynomorphs and separated into the four main geographic areas (Table 4.1). Graphs were compiled (fig 4.6a, b, c, d) showing pollen count vs mud %, dinocyst vs mud %, pollen vs gravel % and dinocyst vs gravel %.

Tał	ble	4.1
-----	-----	-----

Prydz Channel Fan

Sample	Depth	Gravel	Sand	Mud	Acri-	Holocene	Egg	Prasino-	Foram-	Red	Zoo-	Insect	Un-	Reworked	Pollen	Total
Number	(m)	(%)	(%)	(%)	tarchs	dinocysts	cases	phytes	inifera	algae	plankton	parts	knowns	dinocysts		
149-14	849	3.5	58.0	38.5	0	0	0	0	0	0	0	0	0	0	54	54
149-15	2,250	6.7	39.8	53.5	0	0	0	0	0	0	0	0	0	2	31	33
149-16	1,960	0.5	7.3	92.3	0	0	0	0	0	0	0	1	0	0	4	5
149-17	1,540	0.7	10.7	88.6	0	0	0	0	0	0	0	0	0	0	86	86
149-18	1,170	12.6	37.3	50.1	1	0	0	0	0	0	0	0	0	1	29	31
149-19	765	10.3	71.6	18.1	1	0	0	0	0	0	0	0	0	5	31	37
149-21	1,060	2.9	57.9	39.2	0	0	0	0	1	0	2	0	0	0	208	211
149-22	1,450	0.5	46.3	53.1	0	0	0	0	0	0	0	0	0	0	33	33
149-23	1,884	2.3	30.4	67.2	0	0	0	0	0	0	0	0	0	0	24	24
149-24	2,535	0.0	4.6	95.4	0	0	0	0	0	0	0	0	0	0	3	3
149-25	2,010	0.0	10.2	89.8	0	0	0	0	0	0	0	0	0	0	0	0
149-27	1,200	1.8	60.2	38.0	1	0	0	0	0	0	0	0	0	1	397	399
149-33	834	9.6	25.1	65.2	1	0	0	0	0	0	0	0	0	0	183	184
149-34	1,215	8.5	81.8	9.7	0	0	0	0	0	0	0	0	0	0	45	45
149-35	1,566	0.5	49.8	49.6	0	0	0	0	0	3	0	0	0	3	49	55
149-36	2,105	1.4	12.6	86.0	0	0	0	0	0	0	1	0	0	4	15	20
186-29	1,230	6.9	40.4	52.8	3	0	1	0	8	2	0	0	0	3	41	58
186-31	1,625	0.0	3.1	96.9	0	0	0	0	0	0	0	0	0	1	17	18
186-32	1,830	0.9	9.2	89.9	0	1	0	0	0	0	0	0	0	1	13	15
901-09	1,879	12.8	82.5	4.7	2	0	0	2	0	1	0	0	0	0	16	21
901-10	1,257	31.5	63.6	4.9	0	0	0	0	1	0	0	0	0	0	5	6
901-13	880	0.8	11.3	87.9	1	0	2	0	3	0	0	1	1	0	2	10

Sample	Depth	Gravel	Sand	Mud	Acri-	Holocene	Egg	Prasino-	Foram-	Red	Zoo-	Insect	Un-	Reworked	Pollen	Total
Number	(m)	(%)	(%)	(%)	tarchs	dinocysts	cases	phytes	inifera	algae	plankton	parts	knowns	dinocysts		
Fram Ban	ık															
149-06	805	1.4	89.9	8.7	0	0	0	4	0	0	3	0	0	0	382	389
149-37	168	2.8	55.9	41.4	0	0	10	6	124	20	43	7	1	0	2	213
901-05	320	5.7	54.1	40.2	2	0	2	1	244	4	30	21	6	1	4	315
901-06	489	20.5	62.2	17.3	2	0	10	1	79	8	36	8	4	2	5	155
901-11	402	0.0	62.2	37.9	0	0	2	3	120	5	37	30	4	1	57	259
901-14	430	31.7	38.4	29.9	0	1	4	0	60	0	5	16	0	0	14	100
901-33	376	6.5	75.3	18.2	38	3	29	3	344	4	235	18	8	0	2	684
Northern	Prydz Cl	nannel														
149-28	527	16.0	54.4	29.6	2	3	1	0	8	1	9	3	1	5	107	140
149-30	515	5.6	62.5	32.0	2	0	2	1	19	0	12	15	3	4	40	98
149-31	512	0.8	61.2	38.0	0	0	1	2	19	7	21	3	1	0	10	64
149-32	502	3.0	57.9	39.1	4	1	3	1	29	4	37	13	0	7	96	195
186-26	390	12.5	64.7	22.8	1	0	10	1	115	6	150	3	0	0	4	290
186-27	436	0.0	36.4	63.6	1	1	1	0	11	3	9	4	0	5	63	98
901-15	480	8.4	61.2	30.4	0	0	2	0	35	0	16	5	2	0	78	138
Four Ladi	ies Bank															
186-28	338	15.7	36.5	47.8	0	0	1	1	4	6	25	9	0	7	55	108
901-18	320	2.9	47.0	50.1	1	0	5	5	17	12	11	6	1	2	88	148
901-20	318	30.5	42.2	27.4	1	1	2	1	9	4	24	1	0	0	70	113

North	Shelf

Mid She	elf															
Sample	Depth	Gravel	Sand	Mud	Acri-	Holocene	Egg	Prasino-	Foram-	Red	Zoo-	Insect	Un-	Reworked	Pollen	Total
Number	(m)	(%)	(%)	(%)	tarchs	dinocysts	cases	phytes	inifera	algae	plankton	parts	knowns	dinocysts		
186-09	698	11.5	47.9	40.6	7	0	9	14	56	15	93	21	2	0	18	235
186-11	655	n/a	n/a	n/a	6	0	9	1	50	15	62	6	2	0	69	220
186-13	678	8.6	19.2	72.2	40	20	17	39	47	11	193	26	4	0	2	399
186-14	690	0.4	52.3	47.3	5	1	14	9	196	26	265	28	3	0	1	548
186-18	608	10.5	23.8	65.7	1	0	3	11	60	3	65	4	0	0	3	150
186-19	775	0.0	4.3	95.7	0	0	7	8	78	11	133	25	1	0	10	273
186-21	570	0.0	11.8	88.2	12	0	11	45	39	9	62	13	2	0	14	207
186-22	660	1.4	42.8	55.8	17	77	48	8	296	91	378	66	6	0	27	1014
901-22	766	0.0	7.4	92.6	6	1	16	14	72	26	338	51	2	0	16	542
901-23	661	0.0	8.0	92.0	65	15	54	20	251	28	334	83	4	0	2	856
901-24	705	n/a	n/a	n/a	25	22	11	1	44	6	99	15	5	0	0	228
901-25	676	n/a	n/a	n/a	9	17	51	63	84	26	173	40	3	1	6	473
901-26	676	n/a	n/a	n/a	37	2	23	28	135	52	176	42	1	0	8	504
Coastal																
Sample	Depth	Gravel	Sand	Mud	Acri-	Holocene	Egg	Prasino-	Foram-	Red	Zoo-	Insect	Un-	Reworked	Pollen	Total
Number	(m)	(%)	(%)	(%)	tarchs	dinocysts	cases	phytes	inifera	algae	plankton	parts	knowns	dinocysts		
186-15	1,050	16.0	56.7	27.4	4	0	13	74	82	9	112	4	0	0	1	299
186-16	726	17.3	46.3	36.5	7	0	18	2	254	18	313	29	2	0	1	644
186-17	716	3.4	61.9	34.8	7	1	16	3	24	9	128	7	2	0	2	199
901-27	776	1.8	10.5	87.7	15	0	8	40	75	15	98	28	5	1	12	297
901-28	710	0.0	64.4	35.6	1	1	11	8	178	28	94	23	6	0	1	351
901-31	806	0.0	17.9	82.1	4	0	6	0	155	22	182	34	13	0	17	433

Table 4.1: Raw counts of total Prydz Bay palynomorphs and sample numbers, depths in meters and four main geographic areas of Prydz Channel Fan, North Shelf (split into Fram Bank, Northern Prydz Channel and Four Ladies Bank), Mid Shelf and Coastal.

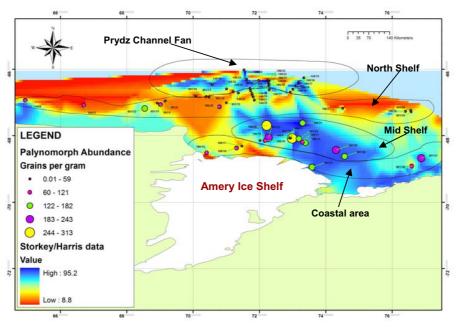
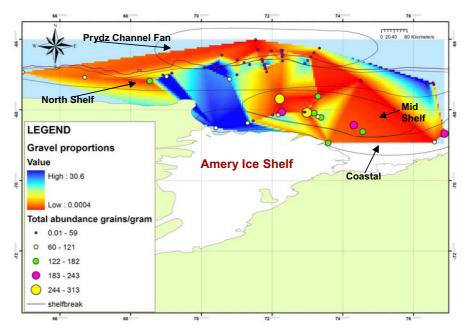
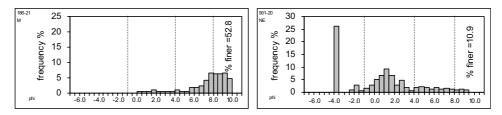
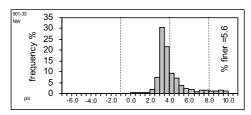
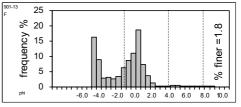
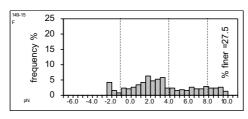
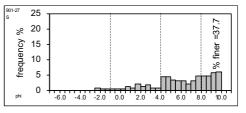


Fig. 4.1a: Combined mud % compiled from grain size of mud proportions from Storkey (this study) and from mud proportions compiled by Harris *et al* (1998). Highest proportion of mud is blue, lowest is red. Sample numbers are shown with highest abundance as per legend.


Fig. 4.1b: Contour map showing proportions for gravel, taken from Storkey grain size analysis (this study). Highest gravel proportions are blue as per legend. Geographic areas are shown with black lines encircling the different areas in both figures a & b. Sample numbers are shown with highest abundance as per legend.


186/21 mud and Ice Rafted Debris just to the east of the Prydz Channel


901/20 very sandy with pebbles and some mud on the Four Ladies Bank diamicton

901/33 current swept sand on the Fram Bank

901/13 Current swept pebbles and Ice Rafted Debris on the Fan

149/15 Sediment Gravity Flow on the Fan

901/27 Ice Rafted Debris and mud in front of the Amery Ice Shelf

Fig. 4.2: Examples of histograms taken from the grain size analysis for this study and showing typical types of sediment from the surface cores in Prydz Bay. They illustrate the range of textures from diamicton and current swept sediment to Ice Rafted Debris and Sediment Gravity Flows.

4.3 Interpretation

The overall grain size distribution shown in figures 4.5a, b and c, shows a clear link with the area and depth (fig 4.4) sampled within the embayment. In addition to the modern sediment flux the Prydz Bay area is greatly influenced by past glacial advances. Sediments within Prydz Bay have been eroded from the continent and deposited from glaciers as either directly from more extensive grounded ice, by meltout from the basal debris layer of a floating ice tongue, or carried offshore by bergs and sea ice (ice-rafted debris or IRD) (fig 4.3). The former two processes result in very poorly sorted sediment, ranging in size from clay to boulders, and termed diamicton (Hambrey et al. 1992). IRD is mainly medium to coarse sand with a little gravel, and is transported over the entire bay area and beyond into the Southern Ocean. The amount of such sediment is small though, being evident as the coarse fraction in mud deposited in quiet environments. Terrigenous mud is also derived from the continent through subglacial meltwater discharge or reworking of diamicton and settles in parts of the bay where current velocities are low e.g. less than 10 cm/sec. Diatomaceous mud is common in the bay also, the diatoms themselves being also largely of mud size. However, unlike mud, which circulates in suspension for days and weeks, they settle out within a day from surface waters as medium sand-sized pellets from grazing planktic crustacean organisms (Dunbar et al. 1989).

The sediments of Prydz Bay are in places locally winnowed and redeposited by currents where bottom velocities exceed around 20 cm/sec (Hujhlstrom, 1935), leaving sorted sand, or mixed and redeposited by sediment gravity flows in areas with slopes of more than a degree or so (Pickering *et al.* 1989). Seismic geometries suggest that the latter process dominates the formation of the Prydz Channel Fan (O'Brien, 1994).

4.4 Prydz Channel Fan

Surface samples (901-13, 149-14, 149-19) on the Fan but close to the shelf edge, at depths of between 750–1,000 m (fig 4.4) contain some gravel 10-31%, (fig 4.5c) and

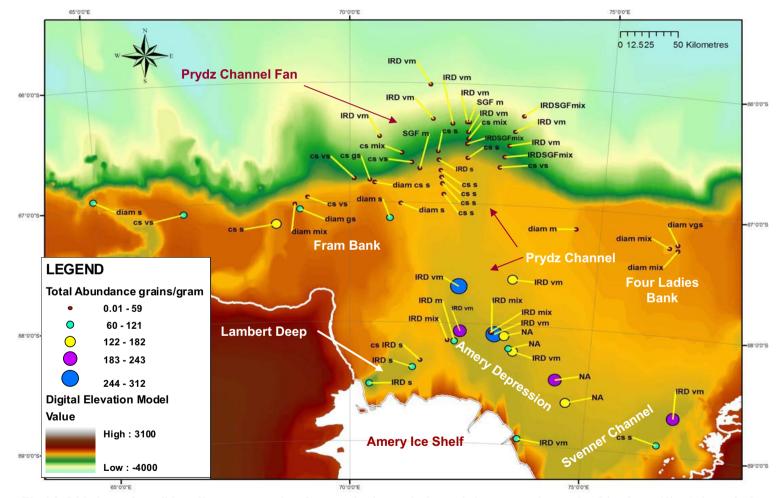


Fig 4.3: Lithology of possible sediment types taken from grain size analysis carried out on each sample. Diamicton (diam), ice rafted debris (IRD), current swept (cs), sediment gravity flow (SGF, gravel and sand (gs), sand (s), very sandy (vs), mud (m), very muddy (vm), an approximately equal amount of coarse gravel and sand, and fine mud = mixture (mix). Also displayed are the grains per gram for total abundance with highest abundance the larger coloured circles as per legend.

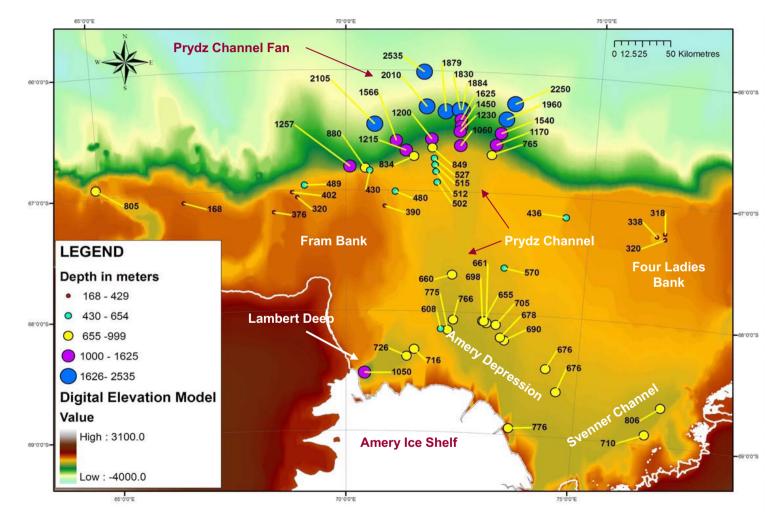


Fig 4.4: Bathymetry depth in meters for each sample shows larger circles with the greater depths. Areas on the continental shelf show that the inner shelf is deeper nearer the Coastal areas of the Lambert Deep and Svenner Channel. The Prydz Channel is deeper in the Mid Shelf area near the Amery Depression but is shallower in the North shelf closer to the Fan. The Four ladies and Fram Banks are shallow in comparison and the Prydz Channel Fan deepens seaward off the continental shelf.

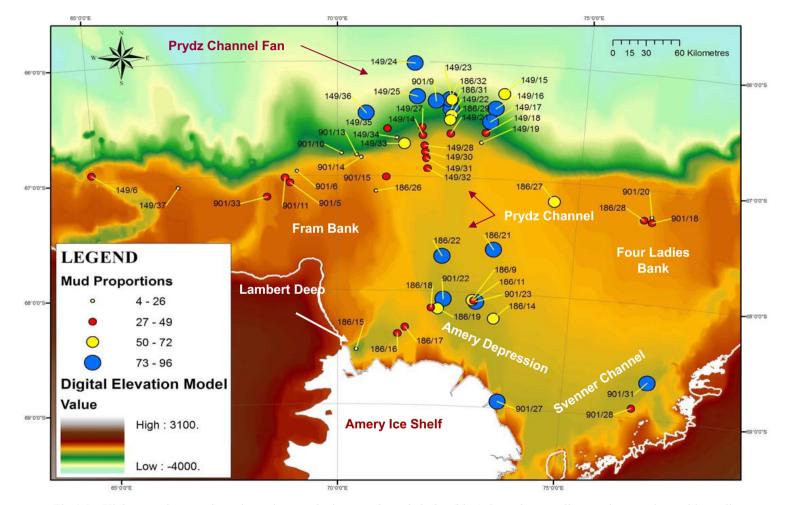


Fig 4.5a: Highest mud proportions shown here as the larger coloured circles (blue) through to smallest mud proportions with smallest circles as per legend. Sample numbers are attached to each circle with a yellow leader.

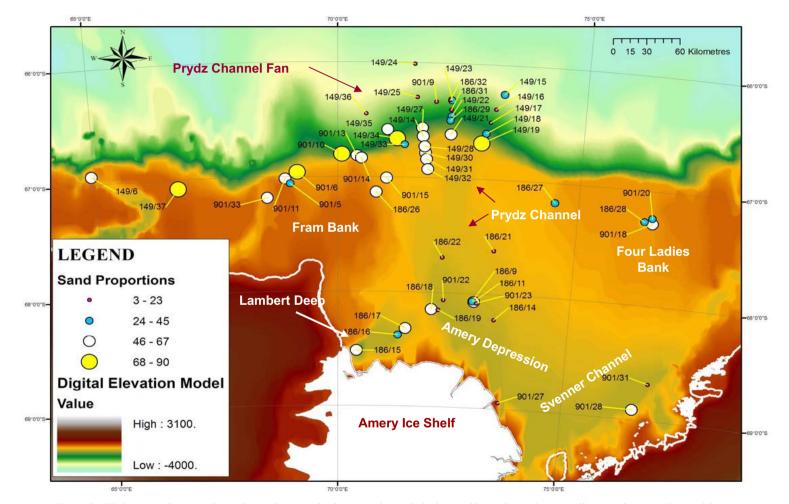


Fig 4.5b: Highest sand proportions shown here as the larger coloured circles (yellow) through to smallest mud proportions with smallest circles as per legend. Sample numbers are attached to each circle with a yellow leader.

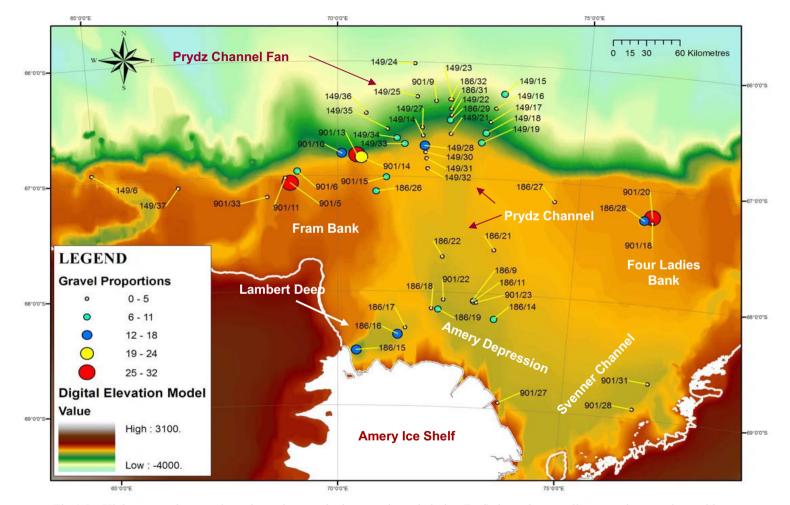


Fig 4.5c: Highest gravel proportions shown here as the larger coloured circles (Red) through to smallest gravel proportions with smallest circles as per legend. Sample numbers are attached to each circle with a yellow leader.

large proportions of sand 62-72% (fig 4.5b), consistent with glacial transport and redeposition. Only one sample contains more than 65% mud (149-33, Appendix B; fig 4.5a).

Further seaward of the shelf edge, at depths of 1,060–1,650 m, sediments are mixed, with gravel proportions 2-12% up to depths of 1,257 m. High sand proportions (58-82%) occurred in some samples (149-21, 149-27, 149-34, 901-10), but six samples (149-18, 186-29, 149-22, 149-17, 149-35, 186-31) contained a higher mud content (50-97%). Samples from these depths indicate sedimentation in some areas from glacial transport and redeposition but others with sediment largely from suspension.

At greater depths of 1,830-2,535 m the grain size consisted of very high mud proportions in most samples at 67-95% mud, with one sample (149-15) at 2,250 m, containing a more even distribution 7% gravel, 40% sand and 53% mud (Appendix B). The high mud content of these surface samples in deep water indicates a lack of current sorting, though the mud itself may well have come from currents winnowing mud from glacially deposited shelf edge sediments. At these depths grounding of the ice shelf could not occur, but gravel might still have been transported as ice rafted debris or sediment gravity flows. O'Brien (1994) suggested that sediment gravity flows were present at various depths, from results obtained from echo sounder records.

4.5 North Shelf

4.5.1 Four Ladies and Fram Banks

The Four Ladies and Fram Banks (Table 4.1) are the shallowest parts of the embayment. Between 168-805 m on the Fram Bank the sea floor is sandy (54-90%), and current sorted, apart from 901-5 which is a diamicton (gravel 32%, sand 38%, mud 30%). The Four Ladies Bank samples between 318-338 m also show the grain size was mixed and variable for all three samples typical of diamicton (fig 4.2, fig 4.5a, b, c). O'Brien & Leitchenkov (1997) have described these areas as shallow and disturbed by scouring from iceberg keels and the strong coastal currents. These conditions cause the removal of finer sediments which once disturbed remain in

suspension and are unable to settle on the Banks, but are carried by currents to settle in quieter waters.

4.5.2 Northern Prydz Channel

Surface sediment samples here are between the Four Ladies and Fram banks, but in relatively shallow depths between 390-527 m (fig 4.4, Table 4.1). Almost all samples are moderately sandy (54-65%), with a little gravel (1-16%), and are interpreted as current influenced with some ice-rafting. Only 186-27 has a higher mud proportion of 63% and no gravel, and plainly results from suspension sedimentation. The area deepens slightly more in the centre due to a fast-flowing ice stream that once eroded the Prydz Channel and transported debris from the Lambert Graben and the inner shelf areas, out to the shelf edge and depositing it on the upper slope of the fan during glacial advance of the Amery Ice Shelf (O'Brien *et al.* 2004).

4.6 Mid Shelf

4.6.1 Prydz Channel

In Prydz Channel textures are variable, with all nine samples in deep water (570-775 m, fig 4.4) ranging from somewhat to extremely muddy (41-95%, fig 4.5a). Four had no gravel, limited sand and more than 88% mud, and hence were largely from suspension. The other five ranged from 19 to 52% sand and from 0.4 to 11% gravel, indicating significant ice rafting, with possibly some patches of basal glacial debris.

4.6.2 The Amery Depression

Only one of the five samples from this area could be used for grain size analysis as explained in section 4.1. This sample was 186-14 and at a depth of 690 m (fig 4.4), its grain size consisted of gravel 9%, sand 19% and mud 72%. (fig 4.5a, b, c). The grain size histogram suggests this sample was deposited as ice-rafted debris (high mud content with coarse tail, as in sample 901/27, fig. 4.2). The samples not analysed contained high counts of palynomorphs and may have had a finer grain size, which would be consistent with other samples with high palynomorph counts. Previous work in the Amery Depression (Domack *et al.* 1991, Pushina *et al.* 1997) recorded ~1.2 m of thick diatomaceous ooze in this area, which overlay thin sandy to silty intervals, which in turn overlay dark grey diamicton and sandy pebbly clay.

O'Brien (1999) suggests that the mid shelf area contains grounding line wedges and moraines probably laid down by the Lambert Glacier. There is speculation that the eastern part was grounded while the western side was still floating (O'Brien & Leitchenkov, 1997). Several reasons for this could be a difference in mass balance conditions between the eastern and western sides of the ice sheet, or the different response to sea level rise from the east and west sides of the glacier. O'Brien (1994) suggests that the last deglaciation and sea level rise would have floated the western side which is 100 m deeper than the Four Ladies Banks area on the eastern side. Once floated the western side would have thinned rapidly with the grounding line retreating. The slower retreat on the eastern side left thick glaciomarine muds between the two sides which accounts for the findings in the area from this study.

4.7 Coastal

4.7.1 Lambert and Nanok Deeps

Three surface samples taken from the Lambert (186-15) and Nanok Deeps (186-16, 186-17), from the western edge of the Amery Ice Shelf at depths between 710-1,050 m., were predominantly sandy (46-62%) with some gravel (3-17%) (fig 4.5b, c). These samples are just seaward of the western edge of the Amery Ice Shelf, and likely influenced by westerly currents which probably resulted in the winnowing out the finer sediment and deposition of ice-rafted sediment in these unusually deep shelf basins.

Sample 901-27 has a similar depth 780 m as the three samples above but has much higher mud content (88%), and some gravel (2%). Its position is directly in front but towards the south eastern part of the Amery Ice Shelf which places it in a different environment from the Lambert and Nanok deeps, but similar to the deeper part of the Svenner Channel (fig 4.5a).

4.7.2 Svenner Channel

The Svenner Channel area is in the south east of Prydz Bay where two samples were analysed. Sample 901/31 was situated on the Svenner Channel floor and deeper at

806 m with a very muddy content (82%) (fig 4.5a). Sample 901-28 was shallower at 710 m (fig 4.4) and predominantly sandy (64%), and was positioned to the side of the Channel, an area close to a basement outcrop composed of steep sided hills and U shaped valleys, which O'Brien (1994) suggests may have been formed by the erosion of softer, finer sediments. Neither sample contained gravel, unlike the other coastal samples which all contained proportions of gravel mentioned above (fig 4.5b).

4.8 Mud distribution and palynomorph abundance

The mud contour map (fig 4.1a) is a combination of samples from past surveys (Harris *et al.* 1998) combined with mud proportions from this study and shows the possible mud distribution across the Prydz Bay continental shelf. The samples, represented by different sized coloured circles on the map, are the palynomorph total abundance grains per gram analysis from this study and show that areas with higher proportions of mud generally contain a higher abundance of palynomorphs, with one exception and this is in the Lambert and Nanok deeps. The gravel proportions (fig 4.1b) were analysed from the grain size taken from this study only. Comparison of both data reinforces analysis of grain size shown as proportions of mud and gravel in figures 4.5a and c.

Figure 4.6a, b, c, and d shows percent mud versus counts for pollen and marine palynomorphs have no relationship, but percent gravel does have a relationship to counts for marine palynomorphs and pollen. A possible interpretation could be that at least in significant part, both pollen and marine palynomorph assemblages are from a glacially derived debris source.

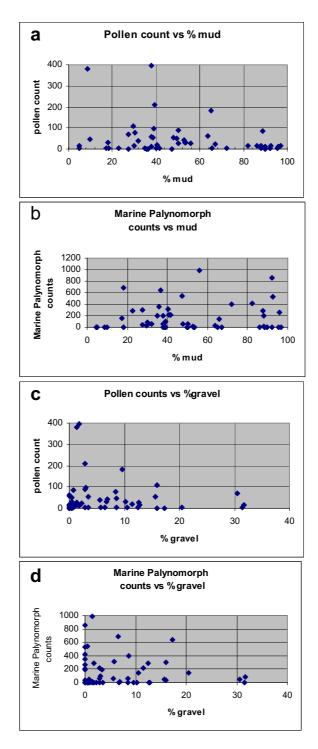


Fig. 4.6: Graphs displaying (a) pollen counts vs % mud, (b) marine palynomorph counts vs % mud, (c) pollen counts vs % gravel and (d) marine palynomorph counts vs % gravel. Results show no relationship between the % mud and pollen and marine palynomorph, but a relationship between % gravel and pollen and marine palynomorphs.

CHAPTER 5 DISCUSSION

5.0 Introduction

Most of the samples collected for this project have been affected by modern environmental factors such as current winnowing which removed a lot of the finer material in the shallow areas of the embayment, or iceberg ploughing. Icebergs on the eastern side of the bay are swept along by the coastal currents traveling west and are either carried across the shelf edge or along the coast towards the Amery Ice Shelf (O'Brien, 1994). Areas on the Four Ladies Bank that are compacted till with a smooth sea floor (O'Brien & Leitchenkov, 1997) are protected because of the shoaling that is created by kick points made by icebergs when they ground into the banks. Many icebergs with keels that are >300 m deep kick into and gouge out the shallow banks, and may wallow there disturbing and suspending sediment which may later be reworked back into the sediment. The icebergs may then break up and pass over the area without disturbing sediment protected by shoaling (O'Brien & Leitchenkov, 1997). Three samples had a high mud content on the Four Ladies Bank (901/18, 186/27, 186/28), which may mean that they remained undisturbed by iceberg ploughing. Reworked pollen distribution in Prydz Bay could be current affected and sea floor samples from the 1911-14 Australasian Antarctic Expedition contained large amounts of recycled pollen on the east coast between $91^{\circ} \text{ E} - 146^{\circ} \text{ E}$ (Truswell, 1982). Some of this pollen if disturbed may remain in suspension long enough to be transported by the coastal currents into the embayment and become entrapped within the Prydz Bay Gyre to eventually settle in the Mid Shelf or Coastal areas.

Figure 3.7 shows water is more saline in the north and north west of Prydz Bay and the gyre may account for the high salinity waters entering the embayment. The inflow from the east by the coastal current is less saline and an area of low salinity can be seen stretching across the Coastal areas of the Svenner Channel and in front of the Amery Ice Shelf. Salinity affect the prasinophycean algae *Cymatiosphaera* sp. 2 (fig 3.6) which are found in abundance in two samples (186/15, 901/27) from the

lowest salinity areas in front of the ice shelf. This is consistent with studies in the Arctic where *Cymatiosphaera* species are found in areas of low salinity and meltwater (Mudie, 1992).

The grain size distribution in Prydz Bay combined with the total abundance for palynomorphs in figure 3.11 shows that the higher abundances were found in higher mud content of sediments within the Mid Shelf and Coastal areas, however, in some samples individual species with high counts were dominant regardless of high mud content e.g. Zooplankton sp. (901/33, 186/16) and Cymatiosphaera sp. 2 (186/15). Figure 4.6 shows that there is a relationship to percent gravel and counts for marine palynomorphs and pollen which may be due in part to sources from glacially derived debris, but there is no relationship for percent mud and counts for marine palynomorphs and pollen. Currents also controlled the distribution of palynomorphs occurring in the North West Fram Bank and in the distribution of most Holocene palynomorphs e.g. Beringiella was more widely distributed on the shelf areas. These factors indicate that processes such as the water currents dominated by the gyre and Coastal Current, combined with the influence of water depth and salinity, the sediment deposition created by glacial erosion in the past and the open marine conditions today, are all influences controlling the distribution of palynomorphs within the embayment.

5.1 Palynomorph assemblages in Prydz Bay

Samples from the Prydz Bay Fan and the North Shelf contain mostly reworked palynomorphs (figs 3.9, 3.10). The disturbance of the sediments on the Fan by sediment gravity flows and contour currents and on the North Shelf by water currents and iceberg ploughing has brought to the surface the reworked terrestrial and marine palynomorphs contained in these sediments. Figure 3.1 shows Holocene palynomorphs are rare on the Fan due to contour currents and sediment gravity flows disturbing the sediment and winnowing out the finer grain size in shallower depths on the Fan. Holocene palynomorphs cannot settle in this environment. The reworked palynomorphs present within the sediment consist of terrestrial pollen grains and spores which date from the Permian and Jurassic. Reworked dinocysts are poorly preserved and have been dated as Eocene/early Oligocene and are part of the Transantarctic Flora. The Miocene marks the beginning of ice sheet advances in Prydz Bay and must be the reason why the reworked dinocysts come from that epoch.

Figure 3.1 shows the Holocene palynomorph assemblage on the Fram Bank contained few reworked palynomorphs. This differs from the Four Ladies Bank and North Prydz Channel. The gyre and Coastal Current as shown in figure 2.1 must be recirculating the Holocene palynomorphs which are found mostly in Mid Shelf and Coastal areas. The high proportions of sand found on the Fram Bank samples combined with the shallow water depths (168-527 m) also indicate currents have winnowed out the fines. For example, 901/33 has a high sand grain size (62%) and a high Holocene marine palynomorph count (174 g/g) with very little reworked palynomorphs (0.51 g/g). Such a high Holocene marine palynomorph count in coarse sediments in a shallow area would only occur if carried there recently by the coastal current or the northward flowing arm of the gyre. Other samples on Fram Bank have high counts for foraminiferan test linings (fig 3.4) and to a lesser degree Zooplankton sp. (fig 3.3), Sphaeromorphs (Appendix D) and lower abundances of Beringiella sp. (fig 3.5) and Cymatiosphaera sp. 2 (fig 3.6). 149/6 is the exception and contains high counts of pollen and a few Zooplankton sp. and notably a number of Cymatiosphaera sp. 1. 149/6 is far enough west to be considered almost part of the MacRobertson Shelf and is deeper (805 m) and out of range of the gyre, and these facts combined give 149/6 a different environment from other samples on the Fram Bank.

Figure 3.1 shows that the North Prydz Channel and the Four Ladies Bank have very low counts of Holocene palynomorphs. Figure 3.9 shows high counts for reworked dinocysts and figure 3.10 shows very high counts for terrestial palynomorphs in the same areas. There may be more reworking occurring in these areas than the Fram Bank, or incoming material from the coastal current may contain more reworked palynomorphs. This suggests little transport of marine palynomorphs in the southward flowing arm of the gyre (fig 2.1). The Four Ladies Bank has higher mud proportions in three samples (fig 4.5a) but figure 4.5c shows one sample 901/20 very high in gravel, whereas the North Prydz Channel shows a higher sand proportion. The grain size in these areas differs from sample to sample and contrasts with the

palynomorph assemblages present which show a similarity in all of these samples. Overall the North Shelf and Fan areas are still lower in abundance than Mid Shelf and Coastal areas.

Prydz Bay deepens (fig 4.4) from the North shelf to the Mid shelf region, an area where a fast flowing ice stream once carried debris out to the shelf edge which now creates a different environment for cyst settlement. The sediment in the Mid Shelf is deposited at greater water depths (570-775 m) and not disturbed by surface currents or iceberg ploughing, resulting in high mud content (fig 4.5c). The Mid Shelf is where the highest abundances of Holocene marine palynomorphs are located and there is a notable increase in acritarchs and Holocene dinocysts. Pollen counts are high in one or two samples and may have been transported into this area by the coastal currents and the south flowing arm of the gyre. Figure 3.1 shows that all samples from the Mid Shelf have a high total Holocene abundance of marine palynomorphs. Figure 4.1a is the mud contour map and clearly shows this area and parts of the Coastal region have a high mud percent.

The Coastal region is the deepest part of the embayment caused by the expanding Amery ice sheet which eroded sediment and moved it towards the North Shelf. Grain size is variable and mud, sand, or gravel predominates in different samples. Gravel and sand predominate in the Lambert Deep which may be due to disturbance by currents exiting beneath the Amery Ice Shelf. The Prasinophyte Cymatiosphaera sp. 2 (fig 3.6) has a high abundance in the sample closest to the exit area in the Lambert Deep (186/15) along with a reasonable Acritarch count. The Nanok Deep samples (186/17, 186/18) have a high abundance of foram linings, and overall this western part of the Coastal area has very high counts for Zooplankton sp, with low numbers of most other marine palynomorphs. Notably the sample taken on the eastern part of the Amery Ice shelf (901/27) shows a very high count for the Cymatiosphaera sp. 2. In the Svenner Channel area to the east, there are two samples (901/28, 901/31) that vary in their counts according to the type of grainsize and depth within the Channel (fig 4.4; Table 4.1). The deeper sample contains a finer grain size and a higher palynomorph count. There is notably a very small pollen content in all the Coastal samples and overall this geographic area has the second highest palynomorph abundance within Prydz Bay.

5.2 Comparison with other modern assemblages

In the Southern Ocean, Harland *et al.* (1998) found the number of cysts declined from the Antarctic Polar Front (~50° S) towards the higher latitudes. This clearly distinguishable distribution pattern is in agreement with the Arctic studies of Mudie (1992) and Rochon *et al.* (1999). Harland *et al.* (1998) found that this decreasing diversity with increasing latitude corresponded with an increase in heterotrophic dinocysts and decrease in autotrophic dinocysts. Harland *et al.* (1998) related the increasing number of heterotrophs as due to upwellings north of the maximum sea ice limit of ~60° S. In contrast Mudie (1992) relates the A:H ratio to autotrophic dinocysts dominating summer open waters with higher salinity values (>27%) and heterotrophic dinocysts increasing with ice thickness and reduced salinity (17-27%). The A:H ratios of <0.2 marked permanent pack ice, tidewater glacier and glaciofluvial environments in the Arctic. This study has recorded more heterotroph than autotroph dinocysts within Prydz Bay.

Other studies in the Southern Ocean by Marret & de Vernal (1997) showed a reduction in taxa from the Subtropical (20 taxa) to Sub-Antarctic and Antarctic domains (less than 10 taxa, minimum of 3). Esper & Zonneveld (2002) also found a clearly distinguishable pattern in distribution of dinocysts as the A:H ratio decreased towards the higher latitudes. High rates of heterotrophic dinocysts dominated from south of 45° – 55° S and the endemic Selenopemphix antarctica increased in numbers, dominating the sea ice zone from 60° S to coastal areas. This study has recorded Selenopemphix antarctica as the dominant dinocyst in Prydz Bay. All Southern Ocean studies were in agreement with Arctic studies of changes in biota and distribution with increasing latitude.

Mudie (1992) showed that dinocyst assemblages from surface sediments in the Arctic Ocean usually contain at least 32 dinocyst species and 4 acritarch species. In general, Mudie (1992) found a strong correlation between modern palynomorph cyst distribution and surface water masses with species changing between cool temperate, Sub-Arctic and colder Arctic surface water masses. There was a strong correlation to increase in latitude and reduction of A:H dinocyst ratio, and the presence of acritarchs and prasinophytes indicated deposition in stratified glaciofluvial and

seasonal meltwater environments. In the Barents Sea north of 84° N, sediments contained fewer dinocysts (63-165 g/g) and sediments from lower salinity surface meltwater areas frequently contained pransinophytes or *Sphaeromorph* acritarchs and *Leiosphaeridia* spp.

A further study in the Arctic (Rochon *et al.* 1999) examined the distribution of recent dinoflagellate cysts in surface sediments throughout the North Atlantic Ocean and adjacent seas and found a higher concentration of taxa on continental shelves and slopes where the primary productivity is highest. Dinocyst species diversity was between 2-18 taxa and North Atlantic samples contained 100-1,000 cysts/cm²yr and Artic seas had moderately low cyst concentrations in the order of 0.1-1 cysts/cm²yr.

Table 5.1 highlights the 7 species that are represented in both the Arctic and Antarctic Holocene surface sediment studies. Arctic and North Atlantic species that are most abundant include *Operculodinium centrocarpum, Nematosphaeropsis labyrinthus, Spiniferites frigidus, Multispinula minuta, Brigantedinium* spp, *Pheopolykrikos hartmanii, Pentapharsodinium dalei,* and *Impagidinium pallidum* (Mudie, 1992; Rochon *et al.* 1999). Of 53 dinocyst taxa identified from the analysis of studies on surface sediments of the Southern Indian Ocean, 49 are also reported to occur in modern surface sediments in the Northern Hemisphere (Marret & de Vernal, 1997). Dinocyst assemblages from the Southern Ocean and Antarctica (Table 5.1) are largely dominated by *Selenopemphix antarctica, Brigantedinium* spp, *Impagidinium pallidum, Nematosphaeropsis labyrinthus, Operculodinium centrocarpum, Impagidinium sphaericum, Protoperidinium* spp. *and Cryodinium meridianum*.

This study has found that the low dinocyst numbers and continuous reduction in diversity southward and the decreasing A:H ratio with increasing high latitude, has meant results for numbers of dinocysts in Prydz Bay have been low. This is indicated by the low dinocyst counts (3.85 grains per gram) and dominance of heterotrophic dinocysts recovered in Prydz Bay. *Selenopemphix antarctica, Protoperidinium* sp. and *Cryodinium* sp. were the most abundant dinocyst species in Prydz Bay but none of the Holocene dinocysts from Prydz Bay have been recorded

Holocene Surface Sediments		
Arctic Mudie, 1992 Rochon et al, 1999	Antarctica Marret & de Vernal, 1997 Harland <i>et al</i> , 1998 Harland & Pudsey, 1999 Esper & Zonneveld, 2002	Antarctica Prydz Bay This study
Algidasphaeridium minutum Brigantedinium spp. Impagidinium pallidum Impagidinium sphaericum Lejeunecysta Multispinula minuta Nematosphaeropsis Iabyrinthus Operculodinium centrocarpum Pentapharsodinium dalei, Polykrikos schwartzii Spiniferites elongates S.ramosus S.mirabilis, S. belerius Selenopemphix quanta	Algidasphaeridium minutum Brigantedinium spp. Cryodinium meridianum Dalella chathamense Impagidinium pallidum Impagidinium variaseptum Impagidinium sphaericum Nematosphaeropsis Iabyrinthus Operculodinium centrocarpum Operculodinium israelianum, Protoperidinium spp. Protoceratium reticulatum Selenopemphix antarctica Spiniferites elongates	Selenopemphix antarctica Protoperidinium spp. Cryodinium sp. Alisocysta sp. Dinocyst sp. Hystrichosphaerikium sp. Impagidinium sp. Protoperidinium sp. 1
Acritarchs Hallodinium spp. Leiosphaeridia sp. Sigmopollis Sphaeromorphs Prasinophytes Cymatiosphaera Pterospermella sp. Red Algae Beringiella sp. Others Lingulodinium sp.	Pollen grains, spores, Foraminiferan linings, Tintinnid cysts and loricae Acritarchs <i>Hallodinium</i> spp. Prasinophytes <i>Cymatiosphaera</i> <i>Tasmanites</i>	Pollen grains, spores, Foraminiferan linings, Tintinnid cysts, loricae, Acritarchs <i>Leiosphaeridia</i> sp. <i>Sigmopollis</i> <i>Sphaeromorphs</i> Prasinophytes <i>Cymatiosphaera,</i> <i>Tasmanites</i> <i>Pterospermella</i> Red algae <i>Beringiella</i>

Table 5.1: Palynomorphs that were in abundance in surface sediments from Arctic and North Atlantic from studies by Mudie (1992) and Rochon *et al.* (1999). Antarctic and Southern Ocean palynomorphs from studies by Marret & de Vernal (1997), Harland *et al.* (1998), Harland & Pudsey (1999) and Esper & Zonneverld (2002). Palynomorphs found in both the Arctic and Antarctic are in blue and palynomorphs found in both the Southern Ocean and Prydz Bay are in Green.

in Northern Hemisphere studies. *Selenopemphix antarctica*, together with *Cryodinium meridianum*, *Dalella chathamense* and *Impagidinium variaseptum* (Harland *et al.* 1998; Harland & Pudsey, 1999; Esper & Zonneveld, 2002) appear to be endemic to Antarctica. Table 5.1 highlights 3 of the species that are represented in Prydz Bay and also found in studies carried out in the Southern Ocean. Most marine palynology studies discuss dinocyst concentrations, however this study has results which include counts for other palynomorphs present in equal and sometimes greater numbers than the Holocene dinocysts. They are the acritarchs, prasinophytes, red algae, tintinnids and foraminifera linings recorded either in the Southern Ocean studies or in the Arctic studies (Table 5.1) and the *Zooplankton* sp. recorded in very high numbers in this study but not been recorded elsewhere.

5.3 Ancient and modern assemblages

The number of living dinoflagellates today is approximately 1,772 marine and 230 freshwater species, many of which are yet to be adequately described. The number of dinoflagellates that produce preservable resting cysts may only be about 10% of this total (Dale, 1996, Head, 1996). In Antarctica, extant dinoflagellates have been reported in greater numbers than fossil dinocysts. Out of nearly 80 motile species of Holocene dinoflagellates discovered in the Antarctic only five were known to produce cysts (Wrenn *et al.* 1998). A comparison of the fossil record for Antarctic dinocyst diversity with the record for world wide fossil dinocyst diversity is shown in figure 5.1 from Wrenn *et al.* (1998). This shows that the limited number of drill holes and the few productive outcrops of marine sediments that do exist, have compared well with the distribution curves for world wide fossil dinocyst diversity, although their abundance is lower (Wrenn *et al.* 1998).

Most reworked palynomorphs in this project have also been identified from previous work carried out on the palynology of Seymour Island, Antarctica (Wrenn & Hart, 1988), Deep Sea Drilling Project (DSDP) drill hole (Kemp, 1975), MSSTS-1 drill hole McMurdo Sound (Truswell, 1986) the CIROS-1 Drillhole (Wilson, 1989; Hannah, 1997) and McMurdo Sound Erratics, (Levy & Harwood, 2000b). Our understanding of Oligocene-Miocene marine palynology of high latitude sites, increased significantly through the Cape Roberts Project (Hannah *et al.* 1998, Wrenn

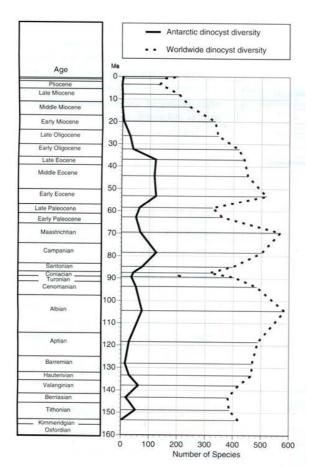


Fig. 5.1: Dinocyst curve in the Antarctic fossil record (solid black line) compared to that of the world-wide dinocyst record. The Antarctic pilot is based on a PALYNODATA search that retrieved data from 91 Antarctic dinocyst papers in its database. The world-wide dinocysts curve is adapted from MacRae et al.1996 (J.H. Wrenn *et al.* 1998)

et al. 1998, Hannah *et al.* 2000, Hannah *et al.* 2001a) and Ocean Drilling Project sites in Prydz Bay (Hannah, 2005, McPhail & Truswell, 2004a, b).

The Transantarctic Flora were first recovered from the McMurdo Erratics by Cranwell *et al.* (1960). The Erratics are fossiliferous and found in coastal moraines around McMurdo Sound, East Antarctica. They provide a record of both ice-free coastal and glacial-marine depositional environments (Levy & Harwood, 2000). Wrenn & Hart (1988) further documented the flora from Seymour Island near the Antarctic Peninsular, and since then the flora have been found *in situ* and dated as mid Eocene to early Oligocene, or as reworked dinocysts in most other projects within the Antarctic. Other palynomorphs that were present in the ancient assemblages in previous work mentioned above and are also present in the surface sediments from this project are acritarchs (*Leiosphaeridia* spp, *Sigmopollis*,) and prasinophytes (*Cymatiosphaera* spp, *Pterospermella*, *Tasmanites*).

5.3.1 Prydz Bay Ocean Drilling Program

The Ocean Drilling Program (ODP) Leg 119 sites 739 to 743 along with Leg 188 sites 1165, 1166 and 1167 (fig 5.2) were drilled in Prydz Bay with the purpose of investigating glacial/preglacial conditions during the Miocene. ODP site 1165 sampled the Wild Drift on the continental rise; site 1166 was drilled on the eastern part of the continental shelf; site 1167 was drilled on the Prydz Channel Fan.

Hannah (2005) extensively studied ODP site 1165 on the Wild Drift and found both *in situ* and reworked palynomorphs recognized as a Miocene record of glacial advance and retreat. As the ice sheet expanded a long colder period occurred and high numbers of reworked palynomorphs were evident. Full retreat of the ice shelf reduced the numbers of reworked palynomorphs but brought a generally large increase in numbers of *Leiospheres* and during warmer periods an increase in other flora was evident (Hannah, 2005). Reworked palynomorphs consisted of terrestrial spores and pollen from the Devonian to Early Eocene, and Transantarctic flora which were reworked into Miocene sediments. *In situ* palynomorphs consisted of acritarchs, prasinophyte algae and *in situ* dinocysts that were dominated by

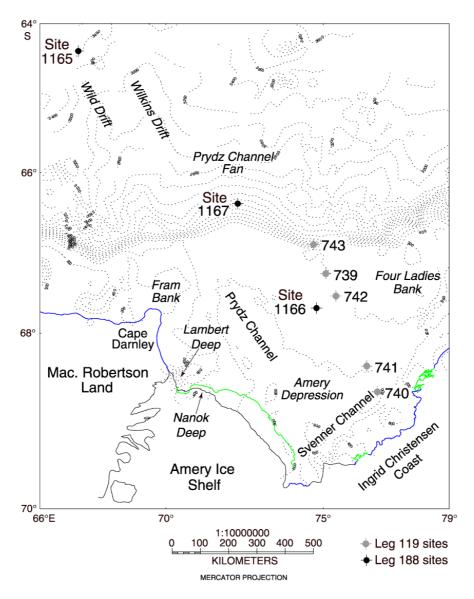


Fig. 5.2: Previous work has been completed by ODP leg 119 where drilling on the shelf (site 166), fan (site 1167) and rise (site 1165) were completed. ODP leg 188 sites were drilled on the continental shelf from site 739 to 743 (O'Brien *et al* 2001).

Lejeunecysta. The acritarch *Leiosphaeridia* was the dominant palynomorph in most samples from the base of the drill hole up to depths of 325 m below sea floor.

The palynology of ODP sites 1165 and 1167 was initially investigated by MacPhail and Truswell (2004a). Site 1165 contained Neogene dinocysts taxa including *Batiacasphaera* sp. and also included the Prasinophyte *Cymatiosphaera* as well as fossil pollen and spores. Site 1167 contained recycled plant microfossils that are Permian and early Jurassic to late Eocene and Oligocene. Neither site contained dinocysts from the Transantarctic Flora. McPhail and Truswell (2004b) studied site 1166 more extensively to recover late Cretaceous and Eocene pollen and spores and *in situ* dinocysts from the Transantarctic Flora.

A further study by Truswell *et al.* (1999) reported pollen grains and spores from Mesozoic in the Nielsen basin on the MacRobertson shelf (west of Prydz Bay) and dinocysts have been identified further west on the MacRobertson Shelf which are also present in Prydz Bay surface sediments as Reworked dinocysts from the Trans Antarctic Flora.

There is a higher diversity within the embayment today and a significantly lower level of reworked material than in ancient assemblages recorded throughout Antarctica which reflects warmer conditions today compared to the Ice Shelf advance and retreats of the past. This study contains elements from previous work on the ODP drill holes for Transantarctic Flora, pollen and spores, acritarchs (Leiosphaeridia spp, Sigmopollis) and Prasinophytes (Cymatiosphaera spp, Pterospermella spp). Table 5.2 shows a comparison of ODP drill holes in Prydz Bay and this study. Notably the red algae Beringiella sp. and Tasmanites spp. have not been recorded in the ODP sites and Holocene dinocysts in this study also differ from ODP in situ dinocysts. Other differences are the very low counts found in this study for Leiosphaeridia spp. in reworked or Holocene sediments compared to the high counts from Hannah (2005) that occurred in ODP 1165 during ice shelf retreats in the past. Wild Drift site 1165 is situated on the continental rise to the north west of Prydz Bay, which may mean the lack of similarity of species between Wild Drift and the Prydz Bay embayment may reflect the different environments. It could also reflect a different climate today which has not produced Leiosphaeridia spp. in

This study Reworked Dinocysts	Hannah, (2005) Reworked Dinocysts	McPhail & Truswell (2004a,b) Transantarctic Flora Dinocysts
Alterbidinium asymmetrica Deflandrea spp. Enneadocysta partridge, Spinidinium sp. Spinidinium macmurdoense Turbiosphaera filosa Vozzhennikovia spp.	Alisocysta sp. Alterbidinium asymmetricum Arachnodinium antarcticum Deflandrea antarctica Enneadocysta partridgei Vozzhennikovia aperture	Deflandrea sp. cf. Deflandrea antarctica Enneadocysta partridgei Spinidinium sp. Spinidinium macmurdoense Turbiosphaera sp. cf. Turbiosphaera filosa Vozzhennikovia aperture
Other Palynomorphs	Other Palynomorphs	Other Palynomorphs
Pollen grains, spores, Foraminiferan linings, Tintinnid cysts, loricae, Acritarchs Leiosphaeridia sp. Sigmopollis Sphaeromorphs Prasinophytes Cymatiosphaera spp. Tasmanites sp. Pterospermella spp. Red Algae Beringiella sp.	Pollen grains, spores Acritarchs Leiosphaeridia spp. Micrhyistridium spp. Sigmopollis Prasinophytes Cymatiosphaera sp. 1 Cymatiosphaera spp. Pterospermella spp.	Pollen grains, spores, Foraminiferan linings, Prasinophytes Pterosperma spp. Cymatiosphaera invaginata

Table 5.2: Transantarctic Flora recovered from this project in comparison with Hannah (2005) and McPhail and Truswell (2004a, b). Other palynomorphs shown are pollen grains, spores, acritarchs, and prasinophytes which are also compared.

numbers but has produced a variety of palynomorphs that were not present in the ancient records. This study records terrestrial palynomorphs from the Permian to the Eocene in contrast to Hannah (2005) who recorded terrestrial palynomorphs from the Devonian to Early Eocene.

5.3.2 Reworked surficial sediments in the Ross Sea

Truswell and Drewrey (1984) noted that reworked palynomorphs were evident in surficial sediments in the Ross Sea. The highest densities were immediately north of the Ross Ice Shelf and were dominated by Late Cretaceous to Eocene microfossils. In contrast, this study of Prydz Bay has found that the area immediately north of the Amery Ice Shelf is dominated by modern marine palynomorphs and the highest densities for Prydz Bay reworked palynomorphs were on the North Shelf and Prydz Channel Fan. Also noted by Truswell and Drewrey (1984) were rare Paleozoic spores and Eocene dinoflagellates some of which are also present in Prydz Bay surface sediments namely: *Alterbidinium asymmetrica*, *Deflandrea* spp. *Turbiosphaera filosa*, *Vozzhennikovia spp*. that are all part of the Transantarctic Flora.

The Ross Sea Ice drainage basin only reflects the Amery Ice Shelf drainage basin in that it has been responsible for the transport of palynomorphs from an expanded ice shelf or from discharge from ice streams. Marine bottom currents do not seem to have significantly affected distribution of the recycled microfossils in the Ross Sea sediments in areas where transport of sediment occurs from a floating ice shelf or discharge from ice streams. Deposition below the ice mass of near grounded or grounded ice leaves only a very short water column with little opportunity to be affected by current transport (Truswell & Drewrey, 1984). In contrast the Prydz Bay Gyre and the Coastal Current from the east combined with iceberg grounding in the shallower areas of the bay have influenced what is found in the sediments there today.

CHAPTER 6

CONCLUSIONS

This study has demonstrated that:

- 1. Prydz Bay surface sediment samples contain Holocene palynomorphs, reworked Eocene dinocysts and reworked Permian to Eocene terrestrial palynomorph assemblages. Past glacial processes have created four differing environments (Prydz Channel Fan, North Shelf, Mid Shelf and Coastal areas) in the embayment which is reflected in the palynomorph distribution. In addition, conditions for cyst settlement today are partly controlled by a clockwise rotating gyre which enters the embayment from the north. The southward flowing arm of the gyre combines with the westward flowing coastal current and circulates beneath the Amery Ice Shelf before exiting on the western side and joins the outgoing arm of the gyre north or follows the coastal current west. Processes such as the water currents dominated by the gyre and coastal current, combined with the influence of water depth and salinity, the sediment deposition created by glacial erosion in the past and the open marine conditions today, are all influences controlling the distribution of palynomorphs within the embayment.
- 2. Most Holocene palynomorphs were contained in the Mid Shelf and Coastal areas with very few located on the North Shelf and very sparse counts on the Prydz Channel Fan. The highest counts were obtained for *Zooplankton* sp. and foraminifera linings. *In situ* dinocysts were dominated by the heterotroph form *Selenopemphix antarctica*, with other palynomorphs identified including acritarchs, prasinophytes and a red algae *Beringiella* sp. The percentage of gravel to marine palynomorph and pollen counts show a relationship which may reflect a similar source from glacially derived debris but the percentage of mud to marine palynomorph and pollen counts has no relationship.
- 3. During the early Oligocene, glacial erosion moved terrestrial sediments from the Lambert Graben, deepened the embayment from the Coastal and Mid

Shelf areas and redeposited and mixed them with marine sediments. Repeated ice shelf advances towards the shelf edge reworked the sediments into the North Shelf and Fan where elements of the Transantarctic Flora and reworked terrestrial palynomorphs are recorded in low numbers today.

- 4. In comparison with modern assemblages none of the Holocene dinocysts from Prydz Bay have been recorded in Northern Hemisphere studies. In contrast, all of the Prydz Bay acritarchs, prasinophytes, red algae, pollen grain and spores, foraminiferan linings and tintinnids have been recorded either in the Southern Ocean studies or in the Arctic studies as shown in Table 1.5. In the Arctic, sediments from lower salinity and glacial meltwaters frequently contained pransinophytes or *Sphaeromorph* and *Leiosphaeridia* acritarchs.
- 5. Autotroph:heterotroph ratios decrease with increasing latitude. In the Northern Atlantic high abundances of 100 to 1,000 cysts/cm²·yr were recorded, however in the Arctic north of 84° N sediments contained fewer dinocysts (63-165 g/g). In the Sub-Antarctic and Polar Front Zones a high of 2,000 grains per gram noticeably fell to <250 grains per gram at 60° S and from 60° S to higher latitudes the cysts per gram of sediment declined to <23 grains per gram and diversity was lower (maximum of six species). In Prydz Bay the Holocene dinocyst count is 3.85 grains per gram with eight species recovered, but two are considered oceanic and carried into the embayment via the Prydz Bay gyre.</p>
- 6. Most reworked palynomorphs in this project have also been identified from previous work carried out in Prydz Bay ODP drill holes and the McMurdo Sound, Ross Sea area which includes projects such as CIROS-1 and the Cape Roberts Project. They contain elements of the Transantarctic Flora, pollen and spores, acritarchs (*Leiosphaeridia* spp. *Sigmopollis* sp.), and prasinophytes (*Cymatiosphaera* spp. *Pterospermella* spp. *Tasmanites* spp.).

Bibliography

- Allison, I. 1979: The Mass Budget of the Lambert Glacier Drainage Basin, Antarctica. *Journal of Glaciology 22*: 223-235.
- Allison, I. 2003: The AMISOR project: ice shelf dynamics and ice-ocean interaction of the Amery Ice Shelf. *FRISP Report 14* 1-9.
- Anderson, J.B. 1999: Antarcticas's Glacial History. *Antarctic Marine Geology*. New York Cambridge University Press. 207-240
- Armand L.K.; Leventer, A. 2003: Palaeo Sea Ice Distribution Reconstruction and Palaeoclimatic Significance. In (eds Thomas, D.N.; Dieckmann, G.S.) Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell, UK. 333-372
- Arrigo, K.R. 2003: Primary Production in Sea Ice. In (eds Thomas, D.N.; Dieckmann, G.S.) Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell, UK. 333-372
- Arrigo, K.R.; Thomas, D.N. 2004: Large scale importance of sea ice biology in the Southern Ocean. *Antarctic Science 16 (4)* : 471-486
- Askin R.A.; Raine, J.I. 2000 : Oligocene and Early Miocene Terrestrial Palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica. *Terra Antartica 7 (4)* : 493-501.
- Barrett, P.J.; Anderson, J. 2000: Grain Size Analysis of Samples from CRP-2/2A, Victoria Land Basin, Antarctica. *Terra Antartica* 7 (3) : 373-378.
- Batten D.J. 1996: Palynofacies. In (eds, Jansonius, J; McGregor, D.C) *Palynology:* principles and applications; American Association of Stratigraphic
 Palynologists Foundation, Vol. 3. 1011-1064

Boggs, S. 1995: Principles of Sedimentology and Stratigraphy. Second ed.

- Brasier, M.D. 1980 : Microfossils. George Allen & Unwin, London
- Church, J.; Bindoff, N.; Hunter, J.; Rosenberg, M. 2002 : Why are we so interested in the Amery Ice Shelf? *Australian Antarctic Magazine*. 3 : 27-28.
- Comiso, J.C. 2003: Large-scale Characteristics and Variability of the Global Sea
 Ice Cover. In (eds Thomas, D.N.; Dieckmann, G.S.) Sea Ice: An
 Introduction to its Physics, Chemistry, Biology and Geology. Blackwell, UK.
 333-372

- Cooper, A.K; Barrett, P.J.; Hinz, K.; Traube, V.; Leitchenkov, G.; Stagg, H.M.J.
 1991 : Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events. *Marine Geology 102* : 175-213.
- Cooper, A.K.; O'Brien P. E. 2004 : Leg 188 Synthesis: Transitions in the Glacial History of the Prydz Bay Region, East Antarctica, from ODP Drilling. *In Proceedings of the Ocean Drilling Program, Scientific Results*. (Eds: Cooper, A.K.; O'Brien, P.E.;Richter, C.) Volume 188
- Cooper, A.; Stagg, H.; Geist, E. 1991: Seismic Stratigraphy and Structure of Prydz Bay, Antarctica: Implications from Leg 119 Drilling. *In* Barron, J.;Larsen, B. *et al Proc. ODP, Sci. Results*, 119: College Station, TX (Ocean Drilling Programme) 5-25
- Cranwell, L.M.; Harrington, H.J.; Speden, I.G. 1960 : Lower Tertiary microfossils from McMurdo Sound, Antarctica. *Nature* Vol 184(4701) : 1782-1785
- Dale, B. : 1996 Dinoflagellate Cyst Ecology: Modeling and Geological Applications. In (eds Jansonius, J.; McGregor, D.C.) *Palynology: principles and applications;* American Association of Stratigraphic Palynologists Foundation, Vol. 3 1249-1275
- Davey, F.J. 1985 : The Antarctic Margin and its possible Hydrocarbon potential. *Tectonophysics 114* : 443-470
- Dieckmann, G.S.; Hellmer, H.H. 2003: The Importance of Sea Ice: An Overview In (eds Thomas, D.N.; Dieckmann, G.S.) Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell, UK. 333-372
- Devillers, R.; de Vernal, A. 2000 : Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in relation to nutrient content and productivity in surface waters. *Marine Geology 166* : 103-124
- Domack, E.W.; Jull, A.J.T.; Donahue, D.J. 1991 : Holocene Chronology for the Unconsolidated Sediments at Hole 740A: Prydz Bay, East Antarctica. *In* Barron, J.;Larsen, B. *et al Proc. ODP, Sci. Results*, 119: College Station, TX (Ocean Drilling Programme) 747-750.
- Dunbar, R.B. and Leventer, A.R. 1989. Biogenic sedimentation in McMurdo Sound, Antarctica. *Marine Geology* 85, 155-179.
- Eicken, H. 2003: From the Microscopic, to the Macroscopic, to the Regional Scale: Growth, Microstructure and Properties of Sea Ice. In (eds Thomas, D.N.;

Dieckmann, G.S.) Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell, UK. 333-372

- Esper, O.; Zonneveld, K.A.F. 2002. Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre. *Marine Micropaleontology*. 46 : 177-208
- Fensome, R.A.; Riding, J.B.; Taylor, F.J.R. 1996 : Dinoflagellates. In (eds, Jansonius, J; McGregor, D.C) *Palynology: principles and applications;*American Association of Stratigraphic Palynologists Foundation, Vol. 1. 107-169
- Franklin, D. 1991: The Marine environment of Prydz Bay, Antarctica: Microbiota and Facies Distribution. Honours Thesis submitted. The Department of Geology. The Australian National University, Canberra, Australia
- Franklin, D.C.; Marchant, H.J. 1995 : Parmales in sediments of Prydz Bay, East Antarctica: a new biofacies and paleoenvironmental indicator of cold water deposition? *Micropaleontology* 41 (1) : 89-94
- Fricker, H.A.; Popov, S.; Allison, I.; Young, N. 2001 : Distribution of marine ice beneath the Amery Ice Shelf. *Geophysical Research Letters* 28 : 2241-2244.
- Fricker, H.A.; Warner, R.C.; Allison, I. 2000 : Mass balance of the Lambert Glacier-Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes. *Journal of Glaciology*, 46 : 561-570.
- Guy-Ohlson, D. 1996 : Green and blue-green algae. 7B Prasinophycean Algae In (eds, Jansonius, J; McGregor, D.C) *Palynology: principles and applications;* American Association of Stratigraphic Palynologists Foundation, Vol. 1 : 181-189
- Hambrey, M.J. 1991 : Structure and Dynamics of the Lambert Glacier-Amery Ice Shelf System: Implications for the Origin of Prydz Bay Sediments. *In* Barron, J.;Larsen, B. *et al Proc. ODP, Sci. Results*, 119: College Station, TX (Ocean Drilling Programme) 61-75.
- Hambrey, M. J., Barrett, P. J., Ehrmann, E. H. & Larsen, B. 1992. Cenozoic sedimentary processes on the Antarctic continental shelf: the record from deep drilling. *Zeitschrift für Geomorphologie*, Suppl. Vol. 86, 73-99.
- Hambrey, M.J.; Ehrmann, W.U.; Larsen, B. 1991 : Cenozoic Glacial Record of the Prydz Bay Continental Shelf, East Antarctica. *In* Barron, J.;Larsen, B. *et al*

Proc. ODP, Sci. Results, 119: College Station, TX (Ocean Drilling Programme) 77-128

- Hambrey, M.J.; Ehrmann, W.U.; Larsen, B. 1994 : The Cenozoic SedimentaryRecord of the Prydz Bay Continental Shelf, East Antarctica. *Terra Antartica*.*1* : 399-402
- Hambrey, M.J.; McKelvey, B. 2000 : Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica. *Sedimentology*. 47 : 577-607.
- Hannah, M.J. 1994 : Eocene Dinoflagellates from CIROS-1 Drill Hole, McMurdo Sound, Antarctica *Terra Antartica* (special issue) 1 (2), 371
- Hannah, M.J. 1997 : Climate Controlled Dinoflagellate Distribution in Late
 Eocene-Earliest Oligocene Strata from CIROS-1 Drillhole, McMurdo Sound
 Antarctica. *Terra Antartica* 4 (2) : 73-78
- Hannah, M.J. 2005 : The palynology of ODP site 1165, Prydz Bay, EastAntarctica: A record of Miocene glacial advance and retreat.*Palaeogeography, Palaeoclimatology, Palaeoecology* 14 pages.
- Hannah, M.J.; Cita, M.B.; Coccioni, R.; Monechi, S. 1997 : The Eocene/Oligocene Boundary at 70° South, McMurdo Sound, Antarctica *Terra Antartica* 4 (2) 79-87
- Hannah, M.J.; Wrenn, J.H.; Wilson, G.J.; 1998 : Early Miocene and Quaternary Marine Palynomorphs from Cape Roberts Project CRP-1, McMurdo Sound, Antarctica. *Terra Antartica* 5 (3) : 527-538
- Hannah, M.J.; Wilson, G.J.; Wrenn, J.H. 2000 : Oligocene and Miocene Marine Palynomorphs from CRP-2/2A, Victoria Land Basin, Antarctica *Terra Antartica* 7 (4) : 503-511
- Hannah, M.J.; Wrenn, J.H.; Wilson, G.J. 2001 : Preliminary Report on Early
 Oligocene and ?Latest Eocene Marine Palynomorphs from CRP-3 Drillhole,
 Victoria Land Basin, Antarctica *Terra Antartica* 8 (4) : 383-388
- Harland, R.; Pudsey, C.J. 1999 : Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. *Marine Micropaleontology.* 37 : 77-99
- Harland, R.; Pudsey, C.J.; Howe, J,A.; Fitzpatrick M.E.J. 1998 : RecentDinoflagellate Cysts in a Transect from the Falkland Trough to the WeddellSea, Antarctica. *Palaeontology.* 41 (6) : 1093-1131

- Harris, P.T. 2000 : Sedimentological Signatures of Sub-Ice-Shelf Circulation: An example from Vincennes Bay, East Antarctica. *Papers and Proceedings of the Royal Society of Tasmania.* 133 : 57-62.
- Harris, P.T.; O'Brien, P.E.; Quilty, P.G.; Taylor, F.; Domack, E.; DeSantis, L.;
 Raker, B. 1997 : Prydz Bay. Post Cruise Report Vincennes Bay, Prydz
 Bay and Mac.Robertson Shelf. AGSO Cruise 186 : 34-63
- Harris, P.T.; O'Brien, P.E. 1998 : Bottom currents, sedimentation and ice-sheet retreat facies successions on the MacRobertson shelf, East Antarctica. *Marine Geology.* 151 : 47-72.
- Harris, P.T.; Taylor, F.; Pushina, Z.; Leitchenkov, G.; O'Brien, P.E.; Smirnov, V.
 1998 : Lithofacies distribution in relation to the geomorphic provinces of Prydz Bay, East Antarctica. *Antarctic Science 10* : 227-235.
- Harwood, D.M.; Levy, R.H. 2000a : The McMurdo Erratics: Introduction and Overview. In (eds Stilwell, J.D.; Feldmann, R.M.) *Paleobiology and Paleoenvironments of Eocene Rocks*; Antarctic Research Series, Vol 76: 1-18
- Head, M.J. 1996 : Modern Dinoflagellate Cysts and their Biological Affinities. In (eds, Jansonius, J; McGregor, D.C) *Palynology: principles and applications;* American Association of Stratigraphic Palynologists Foundation, Vol. 3. 1197-1248.
- Hemer, M.; Harris, P.T. 2004: Sediments collected from beneath the Amery Ice Shelf, East Antarctica, document sub-ice-shelf circulation of water and sediments throughout the Holocene. *FRISP Report No. 15* : 61-66.
- Holland, D.M.; Jenkins, A. 2001 : Adaptation of an Isopycnic Coordinate Ocean Model for the Study of Circulation beneath Ice Shelves. *American Meteorolological Society.* 129 : 1905-1927.
- Jansonius, J.; McGregor D.C. 1996 Introduction *Palynology: Principles and applications* American Association of Stratigraphic Palynologists Foundation Vol : 1 1-10
- Kemp, E.M. 1972 : Reworked Palynomorphs from the West Ice Shelf Area, East Antarctica, and their possible Geological and Palaeoclimatological Significance. *Marine Geology* 13: 145-157
- Kemp, E.M. 1975 : Palynology of Leg 28 drill Sites, Deep Sea Drilling project. In (eds Hayes, D.E.; Frakes, L.A. *et al*) Initial Reports of the Deep Sea Drilling project, Vol. 28 : 599-608.

- Leventer, A. 2003: Particulate Flux from Sea Ice in Polar Waters. In (eds Thomas, D.N.; Dieckmann, G.S.) Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell, UK. 333-372
- Levy, R.H.; Harwood, D.M. 2000b : Tertiary Marine Palynomorphs from the McMurdo Sound Erratics, Antarctica. In (eds Stilwell, J.D.; Feldmann, R.M.) *Paleobiology and Paleoenvironments of Eocene Rocks*; Antarctic Research Series, Vol 76: 183-242
- Lindgren, S. 1981 : Remarks on the taxonomy, botanical affinities and distribution of leiospheres. *Stockh. Contr. Geol.* 38 (1) : 10-20
- Lizotte, M.P. 2001: The contributions of sea ice algae to Antarctic marine primary production. *American Zoologist 41 (1)* : 57-73.
- Lizotte M.P. 2003: The Microbiology of Sea Ice. In (eds Thomas, D.N.; Dieckmann, G.S.) Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell, UK.
- McMinn, A.; Scott, F.J. 2005 : Dinoflagellates. In (eds Scott F.J.; Marchant, H.J.) *Antarctic Marine Protists* ABRS, Canberra, AAD, Hobart
- MacPhail, M.K.; Truswell, E.M. 2004 : Palynology of Site 1166, Prydz Bay, East Antarctica. In (eds Cooper, A.K.; O'Brien, P.E.; Richter, C.) Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 188
- MacPhail, M.K.; Truswell, E.M. 2004 : Palynology of Neogene Slope and Rise
 Deposits from ODP Sites 1165 and 1167, East Antarctica. In (eds Cooper,
 A.K.; O'Brien, P.E.; Richter, C.) *Proceedings of the Ocean Drilling Program, Scientific Results.* Vol. 188
- Marret, F.; de Vernal, A. 1997 : Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean. *Marine Micropaleontology.* 29 : 367-392
- Mishra, D.C.; Chandra Sekhar D.V.; Venkata Raju, D.Ch.; Vijaya Kumar, V. 1999: Crustal structure based on gravity–magnetic modelling constrained from seismic studies under Lambert Rift, Antarctica and Godavari and Mahanadi rifts, India and their interrelationship. *Earth and planetary science letters 172 (3 & 4)* : 287-300
- Mudie, P.J. 1992 : Circum-Arctic Quaternary and Neogene Marine Palynofloras: Paleoecology and Statistical Analysis. In (eds Head, M.J.; Wrenn, J.H.)

Neogene and Quaternary Dinoflagellate Cysts and Acritarchs: American Association of Stratigraphic Palynologists Foundation. Dallas : 347-390.

- Mudie, P.J.; Harland, R. 1996 : Aquatic Quaternary. In (eds Jansonius, J.;
 McGregor, D.C.) *Palynology: principles and applications;* American
 Association of Stratigraphic Palynologists Foundation, Vol. 2. 843-877
- Mudie, P.J.; Rochon, A. 2001 : Distribution of dinoflagellate cysts in the Canadian Arctic marine region. *Journal of Quaternary Science 16 (7)* : 603-620.
- Nunes Vas, R.A.; Lennon, G.W. 1996: Physical oceanography of the Prydz Bay region of Antarctic waters. *Deep-Sea Research 1, 43 (5)* : 603-641
- O'Brien, P.E. 1994 : Morphology and Late Glacial History of Prydz Bay, Antarctica, Based on Echo Sounder Data. *Terra Antartica.* 1 : 403-405
- O'Brien, P.E.; Borisova, I.; Quilty, P.G.; Bardsley, T.M.; Constable, A.; Harris. P.T.
 2003 : History of the Southern Ocean and Antarctic continental shelf the ANARE contribution. In *Australian Antarctic Science first 50 years of ANARE*. (Eds Marchant, H.J.; Lugg, D.J.; Quilty, P.G.) Australian Antarctic Division 139-163
- O'Brien, PE.; Cooper, A.K.; Florindo, F.; Handwerger D.A. Lavelle, M., Passchier, S., Pospichal, J.J., Quilty, P.G., Richter, C., Theissen, K.M., and Whitehead, J.M.*et al.* 2004 : Prydz Channel Fan and the History of Extreme Ice Advances in Prydz Bay. *In Proceedings of the Ocean Drilling Program, Scientific Results.* (Eds: Cooper, A.K.; O'Brien, P.E., and Richter, C.) Volume 188
- O'Brien, PE.; Cooper, A.K.; Florindo, F.; Handwerger D.A. Lavelle, M., Passchier, S., Pospichal, J.J., Quilty, P.G., Richter, C., Theissen, K.M., and Whitehead, J.M. *et al.* 2001 : Legg 188 Summary: Prydz Bay-Cooperation Sea, Antarctica. In *Proceedings of the Ocean Drilling Program, Scientific Results.* (Eds: Cooper, A.K.; O'Brien, P.E., and Richter, C.) Volume 188
- O'Brien, P.E.; De Santis, L.; Harris, P.T.; Domack, E.; Quilty, P.G. 1999 : Ice shelf grounding zone features of western Prydz Bay, Antarctica: sedimentary processes from seismic and sidescan images. In *Antarctic Science* (eds Walton, D.W.H.; Thomson, M.R.A.; Mobbs S.D.) Blackwell Scientific Publications 11 : 78-91.

- O'Brien, P.E.; Franklin, D.; O'Loughlin, M. 1993 Procedure to Deploy and Recover Gravity Corer. Post Cruise Report – Prydz Bay & Mac.Robertson Shelf, Antarctica, January-March, 1993 : AGSO cruise 901 page 38
- O'Brien, P.E.; Harris, P.T.; Quilty, P.G.; Taylor, F.; Wells, P. 1995 : Prydz Channel Fan Post Cruise Report - Prydz Bay, Mac.Robertson Shelf and Kergueleun Plateau AGSO Cruise 149 : 25-32
- O'Brien, P.E.; Harris, P.T. 1996 : Patterns of Glacial Erosion and Deposition in Prydz Bay and the Past Behaviour of the Lambert Glacier. *Papers and Proceedings of the Royal Society of Tasmania 130* : 79-85.
- O'Brien, P.E.; Leitchenkov, G., 1997 : Deglaciation of Prydz Bay, East Antarctica, based on echo sounder and topographic features. In *Geology and Seismic Stratigraphy of the Antarctic Margin* (Pt.2) (eds. Barker, P.F.; Cooper, A.K.) Am. Geophys. Union Antarct. Res. Ser., 71 : 109-125
- Passchier, S.; O'Brien, P.E.; Damuth, J.E.; Januszczak, N.; Handwerger, D.A.;
 Whitehead, J.M. 2003 : Pliocene-Pleistocene glaciomarine sedimentation in eastern Prydz Bay and development of the Prydz trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica. *Marine Geology. 199* : 279-305.
 Proceedings of the Ocean Drilling Program, Scientific Results Volume 188 (Eds) Cooper, A.K., O'Brien, P.E., and Richter, C. Web Publication: 30 July 2004
- Pickering, K.T.;Hiscott, R.N.;HeinF.J. 1989 : Deep marine environments: Clastic sedimentation and techtonics. Unwin Hyman, London p 416
- Pushina, Z.V.; Kolobov, D.D.; Druzhinina, N.I. 1997 : Biostratigraphy and Paleoecology of the Bottom Sediments in Pryz Bay. In (ed Ricci, C.A) *The Antarctic Region: Geological Evolution and Processes* Proceedings of the VII International Symposium on Antarctic Earth Sciences, Siena, 1995. Terra Antartica 869-874
- Quilty P.G., 1985. Distribution of foraminiferids in sediments of Prydz Bay, Antarctica. Spec. Publ. S. Aust. Dep. Mines Energy 5, 329-340
- Raine, J.I.; Askin, R.A.; Crouch, E.M.; Hannah, M.J.; Levy, R.H.; Wrenn, J.H.
 1997: Palynomorphs. In (eds Hannah, M.J.; Raine, J.I.) Southern Ocean late
 Creataceous/Early Cenozoic biostratigraphic datums. *Institute of Geological*& Nuclear Sciences science report 97/4 25-33

- Rochon, A.; de Vernal, A.; Turon, J-L.; Matthiessen, J.; Head, M.J. 1999 : Distribution of Recent Dinoflagellate Cysts in surface Sediments from the North Atlantic Ocean and Adjacent Seas in Relation to Sea-surface
 Parameters. *American Association of Stratigraphic Palynologists Foundation Contributions Series.* Number 35
- Smith, N.;Dong, Z.; Kerry, K.;Wright, S. 1984 : Water masses and circulation in the region of Prydz Bay, Antarctica. *Deep-Sea Research*, 31 : 1121-1147
- Smith, N.; Treguer, P. 1994 : Physical and chemical oceanography in the vicinity of Prydz Bay, Antarctica. In Southern Ocean Ecology: The BIOMASS Perspective (Eds El-Sayed, S.Z.) Cambridge University Press 25-43.
- Stagg, H.M.J. 1983 : The Structure and Origin of Prydz Bay and MacRobertson Shelf, East Antarctica. *Tectonophysics*. 114 : 315-340.
- Stancliffe, R.P.W. 1996 : Miscellaneous. 13D Microforaminiferal Linings. In (eds, Jansonius, J; McGregor, D.C) *Palynology: principles and applications;* American Association of Stratigraphic Palynologists Foundation, Vol. 1. 373-379.
- Stoecker, D.K.; Gustafson, D.E.; Black, M.M.D.; Baier, C.T. 1998: Population Dynamics of Microalgae in the Upper Land-fast Sea Ice at a Snow-free Location. *Journal of Phycology* 34 : 60-69.
- Stover, L.E.; Brinkhuis, H.; Damassa, S.P.; de Verteuil, L.; Helby, R.J.; Monteil, E.;
 Partridge, A.D.; Powell, A.J.; Riding, J.B.; Smelror, M.; Williams, G.L. 1996
 Mexozoic-Tertiary Dinoflagellates, Acritarchs and Prasinophytes. In (eds, Jansonius, J; McGregor, D.C) *Palynology: principles and applications;*American Association of Stratigraphic Palynologists Foundation, Vol. 2. 641-750.
- Strother, P. K. 1996 : Acritarchs. In (eds, Jansonius, J; McGregor, D.C) Palynology: principles and applications; American Association of Stratigraphic Palynologists Foundation, Vol. 1. 81-106.

Tappan, H. 1980 : The Paleobiology of Plant Protists. Freeman and Co. USA

Taylor, F.; Leventer, A. 2003 : Late Quaternary palaeoenvironments in Prydz Bay,
East Antarctica: interpretations from marine diatoms. *Antarctic Science 15*(4) : 512-513

- Taylor, F.; McMinn, A.; Franklin, D. 1997 : Distribution of diatoms in surface sediments of Prydz Bay, Antarctica. *Marine Micropaleontology 32* : 209-229
- Truswell, E.M. 1982 : Palynology of seafloor samples collected by the 1911-14 Australasian Antarctic Expedition: implications for the geology of coastal East Antarctica. *Journal of the Geological Society of Australia* 29: 343-356
- Truswell, E.M. 1982: Geological Implications of Recycled Palynomorphs in Continental Shelf Sediments Around Antarctica. In *Antarctic Earth Sciences* (Eds Oliver R.L.; James, P.R.; Jago, J.B.) Cambridge University Press 394-399.
- Truswell, E.M. 1983 : Recycled Cretaceous and Tertiary Pollen and Spores in Antarctic Marine Sediments: A Catalogue. *Palaeontographica Abt. B* 186 : 121-174
- Truswell, E.M. 1986 Palynology In: Barrett, P.J. (ed) Antarctic Cenozoic history from the MSSTS-1 drillhole, McMurdo Sound, DSIR Bulletin 237 : 131-134.
- Truswell, E.M.; Drewry, D.J. 1984 Distribution and Provenance of Recycled Palynomorphs in Surficial Sediments of the Ross Sea, Antarctica. *Marine Geology*, 59 : 187-214
- Truswell, E.M.; Dettmann, M.E.; O'Brien, P.E. 1999 : Mesozoic palynofloras from the MacRobertson shelf, East Antarctica: geological and phytogeographic implications. *Antarctic Science* 11 (2) : 239-255
- Villa, G.; Perasico, D.; Bonci, M.C.; Lucchi, R.G.; Morigi, C.; Rebesco, M. 2003: Biostratigraphic characterization and Quaternary microfossil palaeoecology in sediment drifts west of the Antarctic Peninsula – implications for cyclic glacial-interglacial deposition. *Palaeogeography, Palaeoclimatology, Palaeoecology 198*: 237-263.
- Wellman, P.; Tingey, R.J. 1981 : Glaciation, erosion and uplift over part of East Antarctica. *Nature 291* : 142-144.
- Williams, M.J.M.; Grosfeld, K.; Warner, R.C.; Gerdes, R.; Determann, J. 2001 :
 Ocean circulation and ice-ocean interaction beneath the Amery Ice Shelf,
 Antarctica. *Journal of Geophysical Research 106* : 22,383-22,399.
- Wilson, G.J. 1989 : Marine palynology. In (ed Barrett, P.J.) Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound. DSIR Bulletin 245: 129-133

- Wong, A.P.S.; Bindoff, N.L.; Forbes, A. 1998 : Ocean-Ice Shelf Interaction and Possible Bottom Water Formation in Prydz Bay, Antarctica. In Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin (Eds Jacobs, S.J.& Weiss, R.F.) Antarctic Research Series 75 : 173-187.
- Wrenn, J.H.; Hannah, M.J.; Raine, J.I. 1998 : Diversity and Palaeoenvironmental Significance of Late Cainozoic Marine Palynomorphs from the CRP-1 Core, Ross Sea, Antarctica. *Terra Antartica 5 (3)* : 553-570.
- Wrenn, J.H.;Hart, G.F. 1988. Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica. In (eds Feldmann, R.M.; Woodburne, M.O) Geology and Paleontology of Seymour Island, Antarctic Peninsula. *Geological Society of America Memoir* 169 : 321-448

			nw	nw	f	f	nw	f	nw	n	ne	ne	m	m	m	m	m	с	с	с	nw	nw	f	f	f
	Palynomorphs	Count	<u>901-5</u>	<u>901-6</u>	<u>901-9</u>	<u>901-10</u>	<u>901-11</u>	<u>901-13</u>	<u>901-14</u>	<u>901-15</u>	<u>901-18</u>	<u>901-20</u>	<u>901-22</u>	<u>901-23</u>	<u>901-24</u>	<u>901-25</u>	<u>901-26</u>	<u>901-27</u>	<u>901-28</u>	<u>901-31</u>	<u>901-33</u>	<u>149-6</u>	<u>149-14</u>	<u>149-15</u>	<u>149-16</u>
Acritarchs	Acritarch spp 1	5			1																				
	Acritarch spp 2	2															2								
	Acritarch spp 3	3																							
	Acritarch spp 4	9												1	2	3									
	Leiospherida sp	25										1	2	5	6		1				1				
	Leiospherida sigmopolis	3						1																	
	Sphaeoromorphs	285	2	2	1						1		4	59	17	6	34	15	1	4	37				
	Total Acritarchs	332	2	2	2	0	0	1	0	0	1	1	6	65	25	9	37	15	1	4	38	0	0	0	0
Holocene Dinocysts	Alisocysta sp	3													1										
	Cryodinium sp	11												2											
	Dinocyst spp	1											1												
	Hystrichosphaeridium spp	4																							
	Impagidinium sp	1										1													
	Protoperidinium sp 1	1							1																
	Protoperidinium sp 2	37												6		1			1		3				
	Selenopemphix antarctica	110												7	21	16	2								
	Total Holocene Dinocysts	168	0	0	0	0	0	0	1	0	0	1	1	15	22	17	2	0	1	0	3	0	0	0	0
Egg Cases	Egg cases	433	2	10			2	2	4	2	5	2	16	54	11	51	23	8	11	6	29				
	Total Egg Cases	433	2	10	0	0	2	2	4	2	5	2	16	54	11	51	23	8	11	6	29	0	0	0	0
Prasinophycean Algae	Cymatiosphaera spp 1	6	1		1																	3			
	Cymatiosphaera spp 2	396		1							2	1	14	17	1	63	28	40	8		2				
	Pterospermella	16			1		3				3			3							1	1			
	Tasmanites	2																							
	Total Prasinophycean Algae	420	1	1	2	0	3	0	0	0	5	1	14	20	1	63	28	40	8	0	3	4	0	0	0
Foraminifera Linings	Foraminifera linings	3426	244	79		1	120	3	60	35	17	9	72	251	44	84	135	75	178	155	344				
	Total Foraminifera Linings	3426	244	79	0	1	120	3	60	35	17	9	72	251	44	84	135	75	178	155	344	0	0	0	0
Red Algae	Beringiella sp	510	4	8	1		5				12	4	26	28	6	26	52	15	28	22	4				
	Total Red Algae	510	4	8	1	0	5	0	0	0	12	4	26	28	6	26	52	15	28	22	4	0	0	0	0
Zooplankton	Tintinnid cyst	46											3	3	3	3	12	6		3					
	Tintinnid loricae	233	5	4			4			1	3	4	9	31	11	14	24	3	2	6	3	1			
	Zooplankton spp	3725	25	32			33		5	15	8	20	326	300	85	156	140	89	92	173	232	2			
	Total Zooplankton	4004	30	36	0	0	37	0	5	16	11	24	338	334	99	173	176	98	94	182	235	3	0	0	0

		f	f	f	f	f	f	f	f	f	n	n	n	n	f	f	f	f	nw	m	m	m	m
	Palynomorphs	<u>149-17</u>	<u>149-18</u>	<u>149-19</u>	149-21	<u>149-22</u>	<u>149-23</u>	<u>149-24</u>	<u>149-25</u>	<u>149-27</u>	<u>149-28</u>	<u>149-30</u>	<u>149-31</u>	<u>149-32</u>	<u>149-33</u>	<u>149-34</u>	<u>149-35</u>	<u>149-36</u>	<u>149-37</u>	<u>186-9</u>	<u>186-11</u>	<u>186-13</u>	<u>186-14</u>
Acritarchs	Acritarch spp 1		1																				
	Acritarch spp 2																						
	Acritarch spp 3																						
	Acritarch spp 4																			1		1	
	Leiospherida sp									1												8	
	Leiospherida sigmopolis			1											1								
	Sphaeoromorphs										2	2		4						6	6	31	5
	Total Acritarchs	0	1	1	0	0	0	0	0	1	2	2	0	4	1	0	0	0	0	7	6	40	5
Holocene Dinocysts	Alisocysta sp																						
	Cryodinium sp																					4	
	Dinocyst spp																						
	Hystrichosphaeridium spp										3			1									
	Impagidinium sp																						
	Protoperidinium sp 1																						
	Protoperidinium sp 2																					1	1
	Selenopemphix antarctica																					15	
	Total Holocene Dinocysts	0	0	0	0	0	0	0	0	0	3	0	0	1	0	0	0	0	0	0	0	20	1
Egg Cases	Egg cases										1	2	1	3					10	9	9	17	14
	Total Egg Cases	0	0	0	0	0	0	0	0	0	1	2	1	3	0	0	0	0	10	9	9	17	14
Prasinophycean Algae	Cymatiosphaera spp 1													1									\square
	Cymatiosphaera spp 2											1							6	14		38	7
	Pterospermella												1								1		2
	Tasmanites												1									1	
	Total Prasinophycean Algae	0	0	0	0	0	0	0	0	0	0	1	2	1	0	0	0	0	6	14	1	39	9
Foraminifera Linings	Foraminifera linings				1						8	19	19	29					124	56	50	47	196
	Total Foraminifera Linings	0	0	0	1	0	0	0	0	0	8	19	19	29	0	0	0	0	124	56	50	47	196
Red Algae	Beringiella sp										1		7	4			3		20	15	15	11	26
	Total Red Algae	0	0	0	0	0	0	0	0	0	1	0	7	4	0	0	3	0	20	15	15	11	26
Zooplankton	Tintinnid cyst																				1	6	1
	Tintinnid Ioricae										1	3	1	3					4	11	3	11	16
	Zooplankton spp				2						8	9	20	34				1	39	82	58	176	248
	Total Zooplankton	0	0	0	2	0	0	0	0	0	9	12	21	37	0	0	0	1	43	93	62	193	265

		с	с	с	m	m	m	m	n	n	ne	f	f	f
	Palynomorphs	<u>186-15</u>	<u>186-16</u>	<u>186-17</u>	<u>186-18</u>	<u>186-19</u>	<u>186-21</u>	<u>186-22</u>	<u>186-26</u>	<u>186-27</u>	186-28	186-29	<u>186-31</u>	186-32
Acritarchs	Acritarch spp 1											3		
	Acritarch spp 2													
	Acritarch spp 3							3						
	Acritarch spp 4				1									
	Leiospherida sp													
	Leiospherida sigmopolis													
	Sphaeoromorphs	4	7	7			12	14	1	1				
	Total Acritarchs	4	7	7	1	0	12	17	1	1	0	3	0	0
Holocene Dinocysts	Alisocysta sp									1				1
	Cryodinium sp							5						
	Dinocyst spp													
	Hystrichosphaeridium spp													
	Impagidinium sp													
	Protoperidinium sp 1													
	Protoperidinium sp 2							24						
	Selenopemphix antarctica			1				48						
	Total Holocene Dinocysts	0	0	1	0	0	0	77	0	1	0	0	0	1
Egg Cases	Egg cases	13	18	16	3	7	11	48	10	1	1	1		
	Total Egg Cases	13	18	16	3	7	11	48	10	1	1	1	0	0
Prasinophycean Algae	Cymatiosphaera spp 1													
	Cymatiosphaera spp 2	74	2	3	11	8	45	8	1		1			
	Pterospermella													
	Tasmanites													
	Total Prasinophycean Algae	74	2	3	11	8	45	8	1	0	1	0	0	0
Foraminifera Linings	Foraminifera linings	82	254	24	60	78	39	296	115	11	4	8		
-	Total Foraminifera Linings	82	254	24	60	78	39	296	115	11	4	8	0	0
Red Algae	Beringiella sp	9	18	9	3	11	9	91	6	3	6	2		
-	Total Red Algae	9	18	9	3	11	9	91	6	3	6	2	0	0
Zooplankton	Tintinnid cyst	1	1	2			1							
	Tintinnid loricae	5	10	12		3	8	8	9					(
	Zooplankton spp	106	302	114	65	130	53	370	141	9	25			(
	Total Zooplankton	112	313	128	65	133	62	378	150	9	25	0	0	0

			nw	nw	f	f	nw	f	nw	n	ne	ne	m	m	m	m	m	с	с	с	nw	nw	f	f	f
	Palynomorphs	Count	<u>901-5</u>	<u>901-6</u>	<u>901-9</u>	<u>901-10</u>	<u>901-11</u>	<u>901-13</u>	<u>901-14</u>	<u>901-15</u>	<u>901-18</u>	<u>901-20</u>	<u>901-22</u>	<u>901-23</u>	<u>901-24</u>	<u>901-25</u>	<u>901-26</u>	<u>901-27</u>	<u>901-28</u>	<u>901-31</u>	<u>901-33</u>	<u>149-6</u>	<u>149-14</u>	<u>149-15</u>	<u>149-16</u>
Insect Parts	Insect parts	709	21	8			30	1	16	5	6	1	51	83	15	40	42	28	23	34	18				1
	Total Insect Parts	709	21	8	0	0	30	1	16	5	6	1	51	83	15	40	42	28	23	34	18	0	0	0	1
Unknowns	Unknown sp 1	6																1			2				
	Unknown sp 2	7													1		1								
	Unknown sp 3	13	1											2	1	3					2				
	Unknown sp 4	6													3					2	1				í
	Unknown sp 5	2																							
	Unknown sp 6	44	2	3			1	1		1			2	2				4	2	10	2				
	Unknown sp 7	9					3			1									2	1	1				
	Unknown sp 8	3	2																1						
	Unknown sp 9	5	1	1							1								1						
	Total Unknowns	95	6	4	0	0	4	1	0	2	1	0	2	4	5	3	1	5	6	13	8	0	0	0	0
Reworked Dinocysts	Alterbitedinium asymmetrica	8																							
	Deflandrea spp	5		1												1									
	Enneadocysta partridgei	3																							
	Operculum	18	1	1			1				1														
	Spinidinium macmurdoense	3									1														
	Spinidinium spp	3																							
	Turbiosphaera filosa	7																1						2	
	Vozzhennikovia spp	10																							
	Total Reworked Dinocysts	57	1	2	0	0	1	0	0	0	2	0	0	0	0	1	0	1	0	0	0	0	0	2	0
Pollen	Pollen	2573	4	5	16	5	57	2	14	78	88	70	16	2		6	8	12	1	17	2	382	54	31	4
	Total Pollen	2573	4	5	16	5	57	2	14	78	88	70	16	2	0	6	8	12	1	17	2	382	54	31	4
	Total Holocene	10097	310	148	5	1	201	8	86	60	58	43	526	854	228	466	496	284	350	416	682	7	0	0	1
	Total Reworked	2630	5	7	16	5	58	2	14	78	90	70	16	2	0	7	8	13	1	17	2	382	54	33	4
	Total Count	12727	315	155	21	6	259	10	100	138	148	113	542	856	228	473	504	297	351	433	684	389	54	33	5
	Dry weight (grams)	365.33	7.67	7.78	5.41	7.91	8.47	6.55	6.86	8.47	7.07	6.36	3.65	4.85	2.53	2.96	5.15	3.66	6.5	3.28	5.89	6.99	5.85	7.01	5.86
	Total abundance grains per gram	1.5	61.6	29.9	5.8	1.1	45.9	2.3	21.9	24.4	31.4	26.7	222.7	264.7	135.2	239.7	146.8	121.7	81.0	198.0	174.2	83.5	13.8	7.1	1.3
	Latitude		-67.0592	-66.9588	-66.3360	-66.8025	-67.0165	-66.8158	-66.8355	-67.0083	-67.2833	-67.2358	-68.0650	-68.0818	-68.0938	-68.4365	-68.6238	-68.9465	-68.9153	-68.6818	-67.1813	-66.9317	-66.6400	-66.2533	-66.3850
	Longitude		69.0163	69.1635	71.9765	70.0827	68.9148	70.3920	70.4840	71.0040	76.5703	76.5552	72.2760	72.9840	73.1893	74.3078	74.5642	73.5857	76.5893	76.8765	68.5383	64.9383	71.7333	73.3400	73.1850
	Depth		320	489	1879	1257	402	880	430	480	320	318	766	661	705	676	676	776	710	806	376	805	849	2250	1960
			•				•			•				•								•			
	Lithology		<u>901-5</u>	<u>901-6</u>	<u>901-9</u>	901-10	<u>901-11</u>	<u>901-13</u>	<u>901-14</u>	<u>901-15</u>	<u>901-18</u>	<u>901-20</u>	<u>901-22</u>	<u>901-23</u>	<u>901-24</u>	<u>901-25</u>	<u>901-26</u>	<u>901-27</u>	<u>901-28</u>	<u>901-31</u>	<u>901-33</u>	<u>149-6</u>	149-14	<u>149-15</u>	<u>149-16</u>
	gravel		31.73	6.53	0.79	12.75	5.71	31.46	20.5	8.4	2.9	30.46	0	0	n/a	n/a	n/a	1.75	0	0	0	2.77	3.5	6.71	0.5
	sand	1	38.39	75.26	11.29	82.51	54.09	63.63	62.23	61.23	46.97	42.18	7.39	7.96	n/a	n/a	n/a	10.53	64.44	17.88	62.15	55.86	57.97	39.76	7.25
	silt		16.26	9.47	20.21	2	18.31	2.45	6.95	15.04	26.91	13.4	23.15	25.66	n/a	n/a	n/a	28.51	18.13	38.41	27.57	19.97	14.58	17.15	45.25
	clav	1	13.61	8.74	67.72	2.73	21.89	2.45	10.31	15.33	23.22	13.96	69.46	66.37	n/a	n/a	n/a	59.21	17.43	43.71	10.28	21.4	23.96	36.38	47

		f	f	f	f	f	f	f	f	f	n	n	n	n	f	f	f	f	nw	m	m	m	m
	Palynomorphs	<u>149-17</u>	<u>149-18</u>	<u>149-19</u>	<u>149-21</u>	<u>149-22</u>	<u>149-23</u>	<u>149-24</u>	<u>149-25</u>	<u>149-27</u>	<u>149-28</u>	<u>149-30</u>	<u>149-31</u>	<u>149-32</u>	<u>149-33</u>	<u>149-34</u>	<u>149-35</u>	<u>149-36</u>	<u>149-37</u>	<u>186-9</u>	<u>186-11</u>	<u>186-13</u>	<u>186-14</u>
Insect Parts	Insect parts										3	15	3	13					7	21	6	26	28
	Total Insect Parts	0	0	0	0	0	0	0	0	0	3	15	3	13	0	0	0	0	7	21	6	26	28
Unknowns	Unknown sp 1																		1		1		
	Unknown sp 2																					3	
	Unknown sp 3																					1	1
	Unknown sp 4																						
	Unknown sp 5																			2			
	Unknown sp 6										1	2	1										2
	Unknown sp 7											1											
	Unknown sp 8																						
	Unknown sp 9																				1		
	Total Unknowns	0	0	0	0	0	0	0	0	0	1	3	1	0	0	0	0	0	1	2	2	4	3
Reworked Dinocysts	Alterbitedinium asymmetrica			1						1		1					1						
	Deflandrea spp																1						
	Enneadocysta partridgei													1									
	Operculum		1	3							1	2		1				3					
	Spinidinium macmurdoense																	1					
	Spinidinium spp										1												
	Turbiosphaera filosa													1									
	Vozzhennikovia spp			1							3	1		4			1						
	Total Reworked Dinocysts	0	1	5	0	0	0	0	0	1	5	4	0	7	0	0	3	4	0	0	0	0	0
Pollen	Pollen	86	29	31	208	33	24	3		397	107	40	10	96	183	45	49	15	2	18	69	2	1
	Total Pollen	86	29	31	208	33	24	3	0	397	107	40	10	96	183	45	49	15	2	18	69	2	1
	Total Holocene	0	1	1	3	0	0	0	0	1	28	54	54	92	1	0	3	1	211	217	151	397	547
	Total Reworked	86	30	36	208	33	24	3	0	398	112	44	10	103	183	45	52	19	2	18	69	2	1
	Total Count	86	31	37	211	33	24	3	0	399	140	98	64	195	184	45	55	20	213	235	220	399	548
	Dry weight (grams)	5	6.88	7.24	6.74	6.99	6.95	5.23	6.65	10.92	7.02	7.13	6.01	5.4	6.33	9.62	6.99	6.54	5.18	7.62	6.53	5.56	5.06
	Total abundance grains per gram	25.8	6.8	7.7	47.0	7.1	5.2	0.9	0.0	54.8	29.9	20.6	16.0	54.2	43.6	7.0	11.8	4.6	61.7	46.3	50.5	107.6	162.5
	Latitude	-66.5033	-66.6000	-66.6867	-66.6183	-66.4567	-66.3200	-66.0117	-66.3000	-66.5683	-66.7283	-66.7833	-66.8383	-66.9267	-66.7150	-66.6650	-66.5867	-66.4500	-67.0800	-68.0667	-68.0700	-68.1983	-68.2200
	Longitude	73.0917	73.0083	72.9250	72.2933	72.2967	72.2933	71.5350	71.6017	71.7133	71.7750	71.7917	71.8167	71.8467	71.3650	71.2067	71.0100	70.5750	66.7017	72.9000	72.9300	73.2950	73.3833
	Depth	1540	1170	765	1060	1450	1884	2535	2010	1200	527	515	512	502	834	1215	1566	2105	168	698	655	678	690
		•	•									•	•						•				
	Lithology	149-17	149-18	149-19	149-21	149-22	149-23	149-24	149-25	149-27	149-28	149-30	149-31	149-32	149-33	149-34	149-35	149-36	149-37	186-9	186-11	186-13	186-14
	gravel	0.67	12.61	10.3	2.86	0.53	2.34	0	0	1.79	15.98	5.57	0.8	3	9.64	8.47	0.54	1.44	1.4	1.43	11.51	n/a	8.61
	sand	10.72	37.31	71.57	57.92	46.34	30.43	4.58	10.22	60.18	54.43	62.46	61.23	57.92	25.12	81.8	49.82	12.61	89.94	42.75	47.9	n/a	19.21
	silt	26.01	17.69	9.42	17.05	23.32	20.48	17.81	29.28	14.77	13.2	17.01	15.51	19.69	31.2	5.99	29.86	7.39	5.87	13.34	8.71	n/a	17.88
	clav	62.6	32.39	8.71	22.16	29.82	46.74	77.61	60.5	23.27	16.39	14.96	22.46	19.4	34.04	3.74	19.78	78.56	2.79	42.47	31.88	n/a	54.3

Total Insect Parts 4 29 7 4 25 13 66 3 4 9 0 0 0 uhnown sp 1 Image: Specific Sp			с	с	с	m	m	m	m	n	n	ne	f	f	f
Total Insect Parts 4 29 7 4 25 13 66 3 4 9 0 0 0 Liknown sp 1 - - - - - 1 -		Palynomorphs	<u>186-15</u>	<u>186-16</u>	<u>186-17</u>	<u>186-18</u>	<u>186-19</u>	<u>186-21</u>	<u>186-22</u>	<u>186-26</u>	<u>186-27</u>	<u>186-28</u>	<u>186-29</u>	<u>186-31</u>	<u>186-32</u>
Mnowns Unknown sp 1 Image	Insect Parts	Insect parts	4	29	7	4	25	13	66	3	4	9			
Unknown sp 2 I I Z I <t< td=""><td></td><td>Total Insect Parts</td><td>4</td><td>29</td><td>7</td><td>4</td><td>25</td><td>13</td><td>66</td><td>3</td><td>4</td><td>9</td><td>0</td><td>0</td><td>0</td></t<>		Total Insect Parts	4	29	7	4	25	13	66	3	4	9	0	0	0
Unknown sp 3 1 <t< td=""><td>Unknowns</td><td>Unknown sp 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Unknowns	Unknown sp 1							1						
Unknown sp 4 Image: Section of the sectin of the section of the section of the section of the s		Unknown sp 2						2							
Unknown sp 5 I <thi< th=""> I <thi< th=""> <thi< td=""><td></td><td>Unknown sp 3</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thi<></thi<>		Unknown sp 3		1					1						
Unknown sp 6 I 2 I 4 I A I I A I <t< td=""><td></td><td>Unknown sp 4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Unknown sp 4													
Unknown sp 7 Image: Constraint of the synamic of the syn		Unknown sp 5													
Unknown sp 8 Image: Second		Unknown sp 6		1	2		1		4						
Unknown sp 9 Image: Market of the state of		Unknown sp 7													
Total Unknowns 0 2 2 0 1 2 6 0		Unknown sp 8													
Alterbitedinium asymmetrica Image: Spectrom of the spe		Unknown sp 9													
Deflandrea spp Image: Construint of the second		Total Unknowns	0	2	2	0	1	2	6	0	0	0	0	0	0
Enneadocysta partridgei Image: Construint of the state o	Reworked Dinocysts	Alterbitedinium asymmetrica									3	1			
Operculum Image: Spinidinium macmurdoense		Deflandrea spp									1		1		
Spinidinium macmurdoense Image: Spinidinium ma		Enneadocysta partridgei										1		1	
Spinidinium spp Image: Spinidinium spinidinium spp Image: Spinidinium spinidim spinidinium spinidiniu		Operculum										3			
Turbiosphare filosa Image: Second secon		Spinidinium macmurdoense									1				
Vozzhennikovia spp v		Spinidinium spp											2		
Total Reworked Dinocysts 0 0 0 0 0 0 0 0 0 0 0 0 5 7 3 1 1 Dilen Pollen 1 1 2 3 10 14 27 4 63 55 41 17 13 Total Pollen 1 1 2 3 10 14 27 4 63 55 41 17 13 Total Pollen 1 1 2 3 10 14 27 4 63 55 41 17 13 Total Pollen 1 1 2 3 10 14 27 4 68 62 44 18 14 Total Reworked 1 1 2 3 10 14 29 98 108 58 18 15 Dry weight (grams) 6.78 8.03 7.6 7.36		Turbiosphaera filosa										2			1
Pollen 1 1 2 3 10 14 27 4 63 55 41 17 13 Total Pollen 1 1 2 3 10 14 27 4 63 55 41 17 13 Total Pollen 1 1 2 3 10 14 27 4 63 55 41 17 13 Total Pollen 298 643 197 147 263 193 987 286 30 46 14 0 1 Total Reworked 1 1 2 3 10 14 27 4 68 62 44 18 14 Total Count 299 644 199 150 273 207 1014 290 98 108 58 18 15 Dry weight (grams) 6.78 8.03 7.6 7.36 5.28 2.42 5		Vozzhennikovia spp													
Total Pollen 1 1 2 3 10 14 27 4 63 55 41 17 13 Total Holocene 298 643 197 147 263 193 987 286 30 46 14 0 1 Total Reworked 1 1 2 3 10 144 27 4 68 62 44 18 14 Total Count 299 644 199 150 273 207 1014 290 98 108 58 18 15 Dry weight (grams) 6.78 8.03 7.6 7.36 5.28 2.42 5 6.88 6.16 6.83 6.43 6.2 6.04 Total abundance grains per gram 66.2 120.3 39.3 30.6 77.6 128.3 304.2 63.2 23.9 23.7 13.5 4.4 3.7 Latitude -88.167 -88.3167 -88.3167<		Total Reworked Dinocysts	0	0	0	0	0	0	0	0	5	7	3	1	1
Total Holocene 298 643 197 147 263 193 987 286 30 46 14 0 1 Total Holocene 298 643 197 147 263 193 987 286 30 46 14 0 1 Total Reworked 1 1 2 3 10 14 27 4 68 62 44 18 14 Total Count 299 644 199 150 273 207 1014 290 98 108 58 18 15 Dry weight (grams) 6.78 8.03 7.6 7.36 5.28 2.42 5 6.88 6.16 6.83 6.43 6.2 6.04 Total abundance grains per gram 66.2 120.3 39.3 30.6 77.6 128.3 304.2 63.2 23.7 13.5 4.4 3.7 Latitude -46.5167 -68.3167 -68.3167	Pollen	Pollen	1	1	2	3	10	14	27	4	63	55	41	17	13
Total Reworked 1 1 2 3 10 14 27 4 68 62 44 18 14 Total Count 299 644 199 150 273 207 1014 290 98 108 58 18 15 Dry weight (grams) 6.78 8.03 7.6 7.36 5.28 2.42 5 6.88 6.16 6.83 6.43 6.2 6.04 Total abundance grains per gram 66.2 120.3 39.3 30.6 77.6 128.3 304.2 63.2 23.9 23.7 13.5 4.4 3.7 Latitude -85.167 -68.3167 -68.1450 -67.163 47.917 -67.1307 -67.2683 -66.200 -66.007 -66.3163 Longitude 70.4083 71.3067 71.4860 72.0200 72.167 73.300 72.2167 70.7960 74.503 76.3083 72.2750 72.2860 72.2860 72.2861 78.275 72.2860 <td></td> <td>Total Pollen</td> <td>1</td> <td>1</td> <td>2</td> <td>3</td> <td>10</td> <td>14</td> <td>27</td> <td>4</td> <td>63</td> <td>55</td> <td>41</td> <td>17</td> <td>13</td>		Total Pollen	1	1	2	3	10	14	27	4	63	55	41	17	13
Total Reworked 1 1 2 3 10 14 27 4 68 62 44 18 14 Total Count 299 644 199 150 273 207 1014 290 98 108 58 18 15 Dry weight (grams) 6.78 8.03 7.6 7.36 5.28 2.42 5 6.88 6.16 6.83 6.43 6.2 6.04 Total abundance grains per gram 66.2 120.3 39.3 30.6 77.6 128.3 304.2 63.2 23.9 23.7 13.5 4.4 3.7 Latitude -85.167 -68.3167 -68.1450 -67.163 47.917 -67.1307 -67.2683 -66.200 -66.007 -66.3163 Longitude 70.4083 71.3067 71.4860 72.0200 72.167 73.300 72.2167 70.7960 74.503 76.3083 72.2750 72.2860 72.2860 72.2861 78.275 72.2860 <td></td>															
Total Count 299 644 199 150 273 207 1014 290 98 108 58 18 15 Dry weight (grams) 6.78 8.03 7.6 7.36 5.28 2.42 5 6.88 6.16 6.83 6.43 6.2 6.04 Total abundance grains per gram 66.2 120.3 39.3 30.6 77.6 128.3 304.2 63.2 23.9 23.7 13.5 4.4 3.7 Latitude -86.5167 -68.3160 -68.1450 468.1500 47.6183 47.6913 47.6913 47.6913 47.6933 76.3983 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 72.276 72.2883 <td< td=""><td></td><td>Total Holocene</td><td>298</td><td>643</td><td>197</td><td>147</td><td>263</td><td>193</td><td>987</td><td>286</td><td>30</td><td>46</td><td>14</td><td>0</td><td>1</td></td<>		Total Holocene	298	643	197	147	263	193	987	286	30	46	14	0	1
Dry weight (grams) 6.78 8.03 7.6 7.36 5.28 2.42 5 6.88 6.16 6.83 6.43 6.2 6.04 Total abundance grains per gram 66.2 120.3 39.3 30.6 77.6 128.3 304.2 63.2 23.9 23.7 13.5 4.4 3.7 Latitude -88.5167 -88.3750 -88.3167 -78.812 -67.813 -67.6917 -67.1317 -67.182 -68.5000 -66.4017 -66.3183 Longitude 70.4083 71.3067 71.4650 72.000 72.1677 73.300 72.2167 70.950 74.5033 76.3983 72.2760 72.2869 72.2869 72.2869 72.2869 72.2869 72.2869 72.2869 72.2869 72.583 186.22 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 186.52 1		Total Reworked	1	1	2	3	10	14	27	4	68	62	44	18	14
Total abundance grains per gram 66.2 120.3 39.3 30.6 77.6 128.3 304.2 63.2 23.9 23.7 13.5 4.4 3.7 Latitude -68.5167 -68.3167 -68.3167 -68.167 -68.167 -67.6183 -67.6183 -67.6197 -67.1317 -67.1687 -67.2083 -66.500 -66.4107 -63.183 Longitude 70.4083 71.3067 71.4650 72.0200 72.1667 73.3000 72.2167 70.7950 74.5033 76.3983 72.2250 72.2850 <td></td> <td>Total Count</td> <td>299</td> <td>644</td> <td>199</td> <td>150</td> <td>273</td> <td>207</td> <td>1014</td> <td>290</td> <td>98</td> <td>108</td> <td>58</td> <td>18</td> <td>15</td>		Total Count	299	644	199	150	273	207	1014	290	98	108	58	18	15
Latitude -88.5167 -68.3167 -68.1450 -67.6163 -67.6163 -67.117 -67.1667 -67.2683 -66.5000 -66.4017 -63.163 Longitude 70.4083 71.3067 71.4660 72.2020 72.1667 73.300 72.2167 70.7960 74.503 76.3983 72.2750 72.2860 72.2683 1200 112.5 180.0 Depth 1050 72 71 60.0 390 436 338 1230 112.5 180.0 Lithology 186-15 186-16 186-17 186-18 186-21 186-21 186-22 186-26 186-27 186-28 186-32 186-31 186-32 gravel 15.96 17.27 3.35 0.44 10.48 0 0 12.54 0 15.65 6.85 0 0.9 sand 56.67 46.28 61.87 52.27 23.79 4.29 11.8 64.68 36.36 3.08 9.19 30.88 20.63 21.0		Dry weight (grams)	6.78	8.03	7.6	7.36	5.28	2.42	5	6.88	6.16	6.83	6.43	6.2	6.04
Longitude 70.4083 71.3067 71.4650 72.020 72.167 73.300 72.2167 70.7950 74.503 76.3983 72.276 72.2867 72.2863 72.2583 72.2573 72.2583 7		Total abundance grains per gram	66.2	120.3	39.3	30.6	77.6	128.3	304.2	63.2	23.9	23.7	13.5	4.4	3.7
Longitude 70.4083 71.3067 71.4650 72.020 72.167 73.300 72.2167 70.7950 74.503 76.3983 72.276 72.2867 72.2863 72.2583 72.2573 72.2583 7		•													
Depth 1050 726 716 600 775 570 660 380 436 338 1230 1625 186.15 Lithology 186-15 186-16 186-17 186-18 186-19 186-21 186-22 186-26 186-27 186-28 186-29 186-32		Latitude	-68.5167	-68.3750	-68.3167	-68.1450	-68.1500	-67.6183	-67.6917	-67.1317	-67.1687	-67.2683	-66.5000	-66.4017	-66.3183
Lithology 186-15 186-16 186-17 186-18 186-19 186-21 186-22 186-26 186-27 186-28 186-29 186-21 186-20 186-27 186-28 186-29 186-21 186-		Longitude	70.4083	71.3067	71.4650	72.0200	72.1667	73.3000	72.2167	70.7950	74.5033	76.3983	72.2750	72.2850	72.2583
gravel 15.96 17.27 3.35 0.44 10.48 0 0 12.54 0 15.65 6.85 0 0.9 sand 56.67 46.28 61.87 52.27 23.79 4.29 11.8 64.68 36.36 36.52 40.36 3.08 9.19 silt 7.31 19.33 18.46 15.82 30.45 19.05 29.81 13.45 30.98 20.63 21.08 25.59 28.92		Depth	1050	726	716	608	775	570	660	390	436	338	1230	1625	1830
gravel 15.96 17.27 3.35 0.44 10.48 0 0 12.54 0 15.65 6.85 0 0.9 sand 56.67 46.28 61.87 52.27 23.79 4.29 11.8 64.68 36.36 36.52 40.36 3.08 9.19 silt 7.31 19.33 18.46 15.82 30.45 19.05 29.81 13.45 30.98 20.63 21.08 25.59 28.92															
sand 56.67 46.28 61.87 52.27 23.79 4.29 11.8 64.68 36.36 36.52 40.36 3.08 9.19 silt 7.31 19.33 18.46 15.82 30.45 19.05 29.81 13.45 30.98 20.63 21.08 25.59 28.92		Lithology	<u>186-15</u>	<u>186-16</u>	<u>186-17</u>	<u>186-18</u>	<u>186-19</u>	<u>186-21</u>	<u>186-22</u>	<u>186-26</u>	<u>186-27</u>	<u>186-28</u>	<u>186-29</u>	<u>186-31</u>	<u>186-32</u>
silt 7.31 19.33 18.46 15.82 30.45 19.05 29.81 13.45 30.98 20.63 21.08 25.59 28.92		gravel	15.96	17.27	3.35	0.44	10.48	0	0	12.54	0	15.65	6.85	0	0.9
		sand	56.67	46.28	61.87	52.27	23.79	4.29	11.8	64.68	36.36	36.52	40.36	3.08	9.19
clay 20.06 17.12 16.33 31.47 35.27 76.67 58.39 9.32 32.65 27.21 31.71 71.33 60.99		silt	7.31	19.33	18.46	15.82	30.45	19.05	29.81	13.45	30.98	20.63	21.08	25.59	28.92
		clay	20.06	17.12	16.33	31.47	35.27	76.67	58.39	9.32	32.65	27.21	31.71	71.33	60.99

Sample	901-5				
Lithology	gravel	31.73	Bathymetry	320 m	
05	sand	38.39	Latitude	-67.05916	
	silt	16.26	Longitude	69.01633	
	clay	13.61	-		
Paly	nomorph	IS	Count		
Unknowns			Unknown sp. 3	1	
			Unknown sp. 6	2	
			Unknown sp. 8	2	
			Unknown sp. 9	1	
Acritarchs			Sphaeoromorphs	2	
Dinoflagella	tes		Operculum	1	
Egg Cases			Egg cases	2	
Pollen			Pollen	4	
Prasinophyte	e algae		Cymatiosphaera sp. 1	1	
Red Algae			Beringiella sp.	4	
Zooplanktor	1		Tintinnid loricae	5	
_			Zooplankton spp.	25	
Foraminifera	an linings			244	
Insect parts	C			21	
looked at 90	1/5 - 901/	/5-2 - 9	01/5-2b Total Count	315	

Sample	901-6	•		
Lithology	gravel	6.53	Bathymetry	489 m
0.	sand	75.26	Latitude	-66.95883
	silt	9.47	Longitude	69.1635
	clay	8.74	C C	
<u>Palyı</u>	iomorph	15	Count	
Unknowns			Unknown sp. 6	3
			Unknown sp. 9	1
Acritarchs			Sphaeoromorphs	2
Dinoflagellat	tes		Deflandrea spp.	1
			Operculum	1
Prasinophyte	algae		Cymatiosphaera sp. 2	1
Egg Cases	-		Egg cases	10
Pollen			pollen	5
Red Algae			Beringiella sp.	8
Zooplankton			Tintinnid loricae	4
-			Zooplankton spp.	32
Others			Foraminiferan linings	79
			Insect parts	8
			Total Count	155

Sample	901-9		
Lithology	gravel 0.79	Bathymetr	y 1879 m
	sand 11.29	Latitude	-66.336
	silt 20.21	Longitude	71.9765
	clay 67.72		
	Palynomorp	hs Count	
Acritarchs		Acritarch spp. 1	1
		Sphaeoromorphs	1
Red Algae		Beringiella sp.	1
Pollen		Pollen	16
Prasinophyce	ean Algae	Cymatiosphaera sp. 1	1
1 2	e	Pterospermella	1
		Total Cour	nt 21

Sample	901-10		
Lithology	gravel 12.75 sand 82.51 silt 2 clay 2.73	Bathymetry Latitude Longitude	1257 m -66.8025 70.08266
	Palynomorphs	Count	
Pollen Foraminifera	Pollen an linings	Total Count	5 1 6

Sample	901-11		
Lithology	gravel 5.71	Bathym	•
	sand 54.09		
	silt 18.3	8	de 68.91483
	clay 21.89)	
Paly	nomorphs	Count	
Unknowns	-	Unknown sp. 6	1
		Unknown sp. 7	3
Dinoflagella	tes	Operculum	1
Egg Cases		Egg cases	2
Prasinophyc	ean Algae	Pterospermella	3
Pollen	-	Pollen	57
Red Algae		Beringiella sp	5
Zooplanktor	l	Tintinnid loricae	4
		Zooplankton spp.	33
Foraminifera	an linings		120
Insect parts	2		30
I		Total Co	ount 259

Sample	901-13			
Lithology	gravel 31.46 sand 63.63 silt 2.45 clay 2.45		Bathymetry Latitude Longitude	880 m -66.81583 70.392
<u>Paly</u>	nomorphs	Count		
Unknowns		Unknown sp.	6	1
Egg Cases		Egg cases		2
Pollen		Pollen		2
Acritarch		Sigmopollis		1
Foraminifera	an linings			3
	-			1
Insect parts				

Lithology	gravel sand	Bathymetry Latitude	430 m -66.8355
	silt clay	Longitude	70.484

Palynomorphs	Count	
Dinoflagellates	Protoperidinium sp. 1	1
Egg Cases	Egg cases	4
Pollen	Pollen	14
Zooplankton	Zooplankton sp.	5
Foraminiferan linings		60
Insect parts		16
	Total Count	100

Sample	901-15	
Lithology	gravel 8.4 sand 61.23 silt 15.04 clay 15.33	Bathymetry 480 m Latitude -67.0083 Longitude 71.004

Palynomorphs	Count	
Unknowns	Unknown sp. 6	1
	Unknown sp. 7	1
Pollen	Pollen	78
Egg Cases	Egg Cases	2
Zooplankton	Tintinnid loricae	1
	Zooplankton sp.	15
Foraminiferan linings		35
Insect parts		5
	Total Count	138

Lithology	gravel	2.9	Bathymetry	320 m
	sand	46.97	Latitude	-67.28333
	silt	26.91	Longitude	76.57033
	clay	23.22	-	

Palynomorphs	Count	
Unknowns	Unknown sp. 9	1
Acritarchs	Sphaeoromorphs	1
Dinoflagellates	Spinodinium macmurdoense	1
	Operculum	1
Egg Cases	Egg cases	5
Pollen	Pollen	88
Prasinophycean Algae	Pterospermella	3
	Cymatiosphaera sp. 2	2
Red Algae	Beringiella sp.	12
Zooplankton	Tintinnid loricae	3
-	Zooplankton sp.	8
Foraminiferan linings		17
Insect parts		6
-	Total Count	148

Sample	901-20		
Lithology	gravel 30.46 sand 42.18 silt 13.4 clay 13.96	Bathymetr Latitude Longitude	-67.23583
	Total Count	113	
Paly	nomorphs	Count	
Acritarchs		Leiospherida sp.	1
Dinoflagella	tes	Impagidinium sp.	1
Egg Cases		Egg cases	2
Pollen		Pollen	70
Prasinophyte	e Algae	Cymatiosphaera sp. 2	1
Red Algae	C	Beringiella sp.	4
Zooplankton	1	Tintinnid loricae	4
1		Zooplankton sp.	20
Foraminifera	an linings	1	9
Insect parts	0		1
1		Total Cour	nt 113

Lithology	gravel	0	Bathymetry	766 m
	sand	7.39	Latitude	-68.065
	silt	23.15	Longitude	72.276
	clay	69.46		

Palynomorphs	Count	
Unknowns	Unknown sp. 6	2
Acritarchs	Leiospherida spp.	2
	Sphaeoromorphs	4
Dinoflagellates	Dinocyst sp.	1
Egg Cases	Egg cases	16
Pollen	Pollen	16
Prasinophycean Algae	Cymatiosphaera sp. 2	14
Red Algae	Beringiella sp.	26
Zooplankton	Tintinnid loricae	9
	Zooplankton spp.	326
	Tintinnid cyst	3
Foraminiferan linings		72
Insect parts		51
	Total Count	542

Lithology	gravel 0 sand 7.96 silt 25.66	Bathymetry (Latitude - Longitude 7	-68.08183
	clay 66.37 Total Count 856	8	

Palynomorphs	Count	
Unknowns	Unknown sp. 3	2
	Unknown sp. 6	2
Acritarchs	Leiospherida sp.	5
	Acritarch sp. 4	1
	Sphaeoromorphs	59
Dinoflagellates	Selenopemphix antarctica	7
	Cryodinium sp.	2
	Protoperidinium sp. 2	6
Egg Cases	Egg cases	54
Pollen	Pollen	2
Prasinophycean Algae	Cymatiosphaera sp. 2	17
	Pterospermella	3
Red Algae	Beringiella sp.	28
Zooplankton	Tintinnid loricae	31
	Tintinnid cyst	3
	Zooplankton spp.	300
Foraminiferan linings		251
Insect parts		83
	Total Count	856

Sample	901-24		
Lithology	gravel n/	Bathymetry	705 m
	sand n/	Longitude	73.18933
	silt n/	-	
	clay n/		
<u>Paly</u>	nomorphs	Count	
Unknowns	_	Unknown sp. 2	1
		Unknown sp. 3	1
		Unknown sp. 4	3
Acritarchs		Acritarch sp. 4	2
		Leiospherida sp.	6
		Sphaeoromorphs	17
Dinoflagella	ites	Selenopemphix antarctica	21
		Alisocysta sp.	1
Prasinophyt	e algae	Cymatiosphaera sp. 2	1
Egg Cases		Egg cases	11
Red Algae		Beringiella sp.	6
Zooplanktor	ı	Tintinnid loricae	11
		Tintinnid cyst	3
		Zooplankton spp.	85
Foraminifer	an linings		44
Insect parts			15
-		Total Count	228

Sample	901-25		
Lithology	gravel n/a	Bathymetry	676 m
	sand n/a	Latitude	-68.4365
:	silt n/a	Longitude	74.3078
	clay n/a	C C	
]	Palynomor	ohs Count	
Unknowns		Unknown sp. 3	3
Acritarchs		Acritarch sp. 4	3
		Sphaeoromorphs	6
Dinoflagellates		Protoperidinium sp. 2	1
		Selenopemphix antarctica	16
		Deflandrea spp.	1
Prasinophyte al	lgae	Cymatiosphaera sp. 2	63
Egg Cases		Egg cases	51
Pollen		Pollen	6
Red Algae		Beringiella sp.	26
Zooplankton		Tintinnid loricae	14
		Tintinnid cyst	3
		Zooplankton spp.	156
Foraminiferan	linings		84
Insect parts	-		40
-		Total Count	473

Lithology	gravel	n/a	Bathymetry	676 m
	sand	n/a	Latitude	-68.6238
	silt	n/a	Longitude	74.56416
	clay	n/a		
	Palyn	omorp	hs Count	
Unknowns		_	Unknown sp. 2	1
Acritarchs			Acritarch sp. 2	2
			Sphaeoromorphs	34
			Leiospherida sp.	1
Dinoflagella	tes		Selenopemphix antarctica	2
Egg Cases			Egg cases	23
Pollen			Pollen	8
Prasinophyte	algae		Cymatiosphaera sp. 2	28
Red Algae	C		Beringiella sp.	52
Zooplankton			Tintinnid loricae	24
-			Tintinnid cyst	12
			Zooplankton sp.	140
Foraminifera	n linings	5		135
Insec	t parts			42
			Total Coun	t 504

Sample	901-2	27		
Lithology	gravel 1.75		Bathymetry	776 m
	sand	10.53	Latitude	-68.9465
	silt	28.51	Longitude	73.58566
	clay	59.21	-	
Paly	nomorpl	ns	Count	
Unknowns			Unknown sp. 1	1
			Unknown sp. 6	4
Acritarchs			Sphaeoromorphs	15
Dinoflagella	tes		Turbiosphaera filosa	1
Prasinophyte	e algae		Cymatiosphaera sp. 2	40
Egg Cases	C C		Egg cases	8
Pollen			Pollen	12
Red Algae			Beringiella sp.	15
Zooplankton	L		Tintinnid loricae	3
•			Tintinnid cyst	6
			Zooplankton sp.	89
Foraminifera	n linings	5	1	75
Insect parts	0			28
Ĩ			Total Count	297

Lithology	gravel sand silt	64.44 18.13	Lati	hymetry tude gitude	710 m -68.91533 76.58933
	clay	17.43			
Paly	nomorpl	15	Count		
Unknowns			Unknown sp. 6		2
			Unknown sp. 7		2
			Unknown sp. 8		1
			Unknown sp. 9		1
Acritarchs			Sphaeoromorphs		1
Dinoflagella	tes		Protoperidinium sp	o. 2	1
Prasinophyte	e algae		Cymatiosphaera sp	. 2	8
Egg Cases			Egg cases		11
Pollen			Pollen		1
Red Algae			Beringiella sp.		28
Zooplankton			Tintinnid loricae		2
			Zooplankton sp.		92
Foraminifera	n linings	5			178
Insect parts					23
			Tota	al Count	351

Sample	901-3	1		
Lithology	gravel	0	Bathymetry	806 m
	sand	17.88	Latitude	-68.68183
	silt	38.41	Longitude	76.8765
	clay	43.71		
Palyn	omorph	S	Count	
Unknowns			Unknown sp. 4	2
			Unknown sp. 6	10
			Unknown sp. 7	1
Acritarchs			Sphaeoromorphs	4
Egg Cases			Egg cases	6
Pollen			Pollen	17
Red Algae			Beringiella sp.	22
Zooplankton			Tintinnid loricae	6
•			Tintinnid cyst	3
			Zooplankton sp.	173
Foraminiferar	n linings		1 1	155
Insect parts	U			34
1			Total Count	433
Sample	901-3	3		
Lithology	gravel	0	Bathymetry	376
	sand	62.15	Latitude	-67.18133
	silt clay	27.57 10.28	Longitude	68.53833
Palvn	omorph		Count	
Unknowns	omorph	3	Unknown sp. 1	2
			Unknown sp. 3	2
			Unknown sp. 6	2
			Unknown sp. 4	1
			UTIVITAN 20. 4	1
				1
Acritarobs			Unknown sp. 7	1
Acritarchs			Unknown sp. 7 Leiospherida sp.	1
	20		Unknown sp. 7 Leiospherida sp. Sphaeoromorphs	1 37
Dinoflagellate	es		Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2	1 37 3
Dinoflagellate Egg Cases	es		Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases	1 37 3 29
Dinoflagellate Egg Cases Pollen			Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen	1 37 3 29 2
Dinoflagellate Egg Cases		•	Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen Pterospermella	1 37 3 29 2 1
Dinoflagellate Egg Cases Pollen Prasinophycea		2	Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen Pterospermella Cymatiosphaera sp. 2	1 37 3 29 2 1 2
Dinoflagellate Egg Cases Pollen Prasinophyces Red Algae		2	Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen Pterospermella Cymatiosphaera sp. 2 Beringiella sp.	1 37 3 29 2 1 2 4
Dinoflagellate Egg Cases Pollen Prasinophycea		2	Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen Pterospermella Cymatiosphaera sp. 2 Beringiella sp. Tintinnid loricae	1 37 3 29 2 1 2 4 3
Dinoflagellate Egg Cases Pollen Prasinophycea Red Algae Zooplankton	an Algae		Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen Pterospermella Cymatiosphaera sp. 2 Beringiella sp.	1 37 3 29 2 1 2 4 3 232
Dinoflagellate Egg Cases Pollen Prasinophycea Red Algae Zooplankton Foraminiferar	an Algae		Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen Pterospermella Cymatiosphaera sp. 2 Beringiella sp. Tintinnid loricae	1 37 3 29 2 1 2 4 3 232 344
Dinoflagellate Egg Cases Pollen Prasinophycea Red Algae Zooplankton	an Algae		Unknown sp. 7 Leiospherida sp. Sphaeoromorphs Protoperidinium sp. 2 Egg cases Pollen Pterospermella Cymatiosphaera sp. 2 Beringiella sp. Tintinnid loricae	1 37 3 29 2 1 2 4 3 232

Sample	901-34 K	ergulen Plat	eau not Prydz	z Bay error	
Lithology	gravel 0 sand 15.9 silt 72.3		Bathymetry	1676	
Palyn	omorphs	Count			
Unknowns	-	Unknown s	sp. 5	2	
Pollen		Pollen		2	
Red Algae		Beringiella		6	
Zooplankton Insect parts		Tintinnid lo	oricae	1 9	
insect parts			Total Count	20	
Sample	149-6				
Lithology	gravel 2.77	7	Bathymetry	805 m	
	sand 55.8		Latitude	-66.931667	
	silt 19.9		Longitude	64.938333	
	clay 21.4	ŀ			
	Palynomo	phs Cou	<u>int</u>		
Pollen		Pollen		382	
Prasinophyce	an Algae	Cymatiospl		3	
7 1 1		Pterosperm		1	
Zooplankton		Tintinnid lo		1	
		Zooplankto	Total Count	2 389	
				389	
Sample	149-14				
Lithology	gravel 3.5	5	Bathymetry	849 m	
	sand 57.9	97	Latitude	-66.64	
	silt 14.5		Longitude	71.7333333	
	clay 23.9	96			
<u>Palyn</u>	omorphs	Count			
Pollen		Pollen		54	
		I UIIUI	Total Count	54	
			i our coulit		

Sample	149-15	
Lithology	gravel 6.71 sand 39.76 silt 17.15 clay 36.38	Bathymetry 2250 m Latitude -66.253333 Longitude 73.34

Palynomorphs	Count	
Dinoflagellates	Turbiosphaera filosa	2
Pollen	Pollen	31
	Total Count	33

Sample	149-16			
Lithology	gravel 0.5 sand 7.25 silt 45.25 clay 47		Bathymetry Latitude Longitude	1960 m -66.385 73.185
Pollen Insect parts	nomorphs	<u>Count</u> Pollen	Total Count	4 1 5
Sample	149-17			
Lithology	gravel 0.67 sand 10.72 silt 26.01 clay 62.6		Bathymetry Latitude Longitude	1540 m -66.503333 73.091667
Paly Pollen	nomorphs	<u>Count</u> Pollen	Total Count	86 86

Sample	149-1	8			
Lithology	gravel sand silt clay	12.61 37.31 17.69 32.39		Bathymetry Latitude Longitude	1174 -66.6 73.008333
	nomorph	IS	Count		
Acritarchs			Acritarch sp.	1	1
Dinoflagella	tes		Operculum		1
Pollen			Pollen	Tatal Caunt	29
				Total Count	31
Sample	149-1	9			
Lithology	gravel	10.3		Bathymetry	765
	sand	71.57		Latitude	-66.686667
	silt	9.42		Longitude	72.925
	clay	8.71			
	nomorph	15	Count		
Pollen			Pollen		31
Dinoflagella	tes		Alterbidinium	asymmetrica	1
			Operculum		3
Acritarch			Vozzhennikov	/ia sp.	1
Acmarch			Sigmopollis	Total Count	1 37
					57
Sample	149-2	1			
Lithology	gravel	2.86		Bathymetry	1060
	sand	57.92		Latitude	-66.618333
	silt	17.05		Longitude	72.293333
	clay	22.16			
			Total (Count 211	
	nomorph	15	Count		
Pollen			Pollen		208
Zooplankton			Zooplankton s	sp.	2
-	Foraminiferan linings				
-	n linings			Total Count	1 211

Sample	149-22	
Lithology	gravel 0.53 sand 46.34 silt 23.32 clay 29.82	Bathymetry 1450 m Latitude -66.456667 Longitude 72.29667
Pollen Pollen	nomorphs Count Pollen	
Sample	149-23	
Lithology	gravel 2.34 sand 30.43 silt 20.48 clay 46.74	Bathymetry 1884 m Latitude -66.32 Longitude 72.293333
Pollen Pollen	nomorphs Count Pollen	
Sample	149-24	
Lithology	gravel 0 sand 4.58 silt 17.81 clay 77.61	Bathymetry 2535 m Latitude -66.011667 Longitude 71.535
	nomorphs Count	
Pollen	Pollen	Total Count 3
Sample	149-25	
Lithology	gravel 0 sand 10.22 silt 29.28 clay 60.5	Bathymetry 2010 m Latitude -66.3 Longitude 71.601666
Paly	nomorphs Count	Total Count 0

Sample	149-27		
Lithology	gravel 1.79 sand 60.18 silt 14.77 clay 23.27	Bathymetry Latitude Longitude	1200 m -66.568333 71.713333
	Total Count	399	
Paly	nomorphs	Count	
Dinoflagella	tes	Alterbidinium asymmetrica	1
Pollen		Pollen	397
Acritarach		Leiospherida sp. Total Count	<u>1</u> 399

Sample	149-2	8		
Lithology	gravel Sand silt clay		Bathymetry Latitude Longitude	527 m -66.728333 71.775

Palynomorphs	Count	
Unknowns	Unknown sp. 6	1
Acritarchs	Sphaeoromorphs	2
Dinoflagellates	Operculum	1
-	Hystrichosphaeridium spp.	3
	Spinodinium spp.	1
	Vozzhennikovia spp.	3
Egg Cases	Egg cases	1
Pollen	Pollen	107
Red Algae	Beringiella sp.	1
Zooplankton	Tintinnid loricae	1
-	Zooplankton sp.	8
Foraminiferan linings		8
Insect parts		3
-	Total Count	140

Sample	149-3	0		
Lithology	gravel	5.57	Bathymetry	515 m
	sand	62.46	Latitude	-66.783333
	silt	17.01	Longitude	71.791667
	clay	14.96	-	
Paly	nomorph	15	Count	
Unknowns	_		Unknown sp. 6	2
			Unknown sp. 7	1
Dinoflagella	tes		Alterbidinium asymmetrica	1
			Operculum	2
			Vozzhennikovia spp	1
Egg Cases			Egg cases	2
Prasinophyte	e algae		Cymatiosphaera sp. 2	1
Acritarchs	-		Sphaeoromorphs	2
Pollen			Pollen	40
Zooplankton			Tintinnid loricae	3
-			Zooplankton sp.	9
Foraminifera	an linings	5		19
Insect parts	e			15
•			Total Count	98

Sample 149-31

clay 22.46	Lithology	silt	61.23 15.51	Bathymetry Latitude Longitude	-66.838333
------------	-----------	------	----------------	-------------------------------------	------------

Palynomorphs	Count	
Unknowns	Unknown sp. 6	1
Egg Cases	Egg cases	1
Pollen	Pollen	10
Prasinophycean Algae	Pterospermella	1
	Tasmanites	1
Red Algae	Beringiella sp.	7
Zooplankton	Tintinnid loricae	1
	Zooplankton sp.	20
Foraminiferan linings		19
Insect parts		3
	Total Count	64

Sample	149-3	32		
Lithology	gravel sand silt clay	57.92 19.69	Bathymetr Latitude Longitude	-66.926667
Paly	nomorpl	15	Count	
Acritarchs			Sphaeoromorphs	4
Dinoflagella	ites		Turbiosphaera filosa	1
			Enneadocysta partridgei	1
			Operculum	1
			Hystrichosphaeridium sp	. 1
			Vozzhennikovia sp.	4
Egg Cases			Egg cases	3
Pollen			Pollen	96
Prasinophyc	ean Alga	e	Cymatiosphaera sp. 1	1
Red Algae			Beringiella sp.	4
Zooplanktor	1		Tintinnid loricae	3
			Zooplankton sp.	34
Foraminifera	an linings	3		29
Insect parts				13
			Total Cou	nt 195
Sample	149-3	3		
Lithology	gravel	9.64	Bathymetr	y 834 m
	sand	25.12	Latitude	-66.715
	silt	31.2	Longitude	71.365
	clay	34.04		

<u>Palynomorphs</u>	<u>Count</u>		
Pollen	Pollen		183
Acritarch	Sigmopollis		1
		Total Count	184

Sample	149-34			
Lithology	gravel 8.47 sand 81.8 silt 5.99		Bathymetry Latitude Longitude	1215 m -66.665 71.206667
Palv	clay 3.74	Count	20181000	
Pollen <u>I aly</u>		Pollen	Total Count	45 45

Sample 149-35

Lithology	gravel sand	0.54 49.82	Bathymetry Latitude	1566 m -66.586666
		29.86		71.01
	clay	19.78		

Palynomorphs	Count	
Dinoflagellates	Deflandrea sp.	1
	Alterbidinium asymmetrica	1
	Vozzhennikovia sp.	1
Pollen	Pollen	49
Red Algae	Beringiella sp.	3
	Total Count	55

Sample	149-36		
Lithology	gravel 1.44 sand 12.61 silt 7.39 clay 78.56	Bathymetry2105 mLatitude-66.45Longitude70.575	

Palynomorphs	Count	
Dinoflagellates	Operculum	3
	Spinodinium macmurdoense	1
Pollen	Pollen	15
Zooplankton	Zooplankton sp.	1
	Total Count	20

Sample	149-37		
Lithology	gravel 1.4 sand 89.94 silt 5.87 clay 2.79 Total Count	Bathymetry Latitude Longitude 213	-67.08
Palv	nomorphs	Count	
Unknowns		Unknown sp. 1	1
Prasinophyte algae		Cymatiosphaera sp. 2	6
Egg Cases	C	Egg cases	10
Pollen		Pollen	2
Red Algae		Beringiella sp.	20
Zooplankton	1	Tintinnid loricae	4
1		Zooplankton sp.	39
Foraminifera	an linings	1 1	124
Insect parts	0		7
1		Total Coun	it 213

Sample	186-9		
Lithology	gravel 1.43 sand 42.75 silt 13.34 clay 42.47	Bathymetry Latitude Longitude	698 m -68.066667 72.9

Palynomorphs	Count	
Unknowns	Unknown sp. 5	2
Acritarchs	Acritarch sp. 4	1
	Sphaeoromorphs	6
Prasinophyte algae	Cymatiosphaera sp. 2	14
Egg Cases	Egg cases	9
Pollen	Pollen	18
Red Algae	Beringiella sp.	15
Zooplankton	Tintinnid loricae	11
	Zooplankton sp.	82
Foraminiferan linings		56
Insect parts		21
	Total Count	235

Sample	186-11		
Lithology	gravel 11.51	Bathymetry	655 m
	sand 47.9	Latitude	-68.07
	silt 8.71	Longitude	72.93
	clay 31.88	C	
Paly	nomorphs	Count	
Unknowns		Unknown sp. 1	1
		Unknown sp. 9	1
Acritarchs		Sphaeoromorphs	6
Egg Cases		Egg cases	9
Pollen		Pollen	69
Prasinophyc	ean Algae	Pterospermella	1
Red Algae		Beringiella sp.	15
Zooplankton	l	Tintinnid loricae	3
_		Tintinnid cyst	1
		Zooplankton sp.	58
Foraminifera	an linings	- •	50
Insect parts	-		6
		Total Count	220
Sample	186-13		
Lithology	gravel n/a	Bathymetry	678 m
07	sand n/a	Latitude	-68.198333
	silt n/a	Longitude	73.295
	clay n/a	e	
Paly	nomorphs	Count	
Unknowns		Unknown sp. 2	3
		Unknown sp. 3	1
Acritarchs		Acritarch spp. 4	1
		Leiospherida sp.	8
		Sphaeoromorphs	31
Dinoflagella	tes	Protoperidinium sp. 2	1
C		Cryodinium sp.	4
		Selenopemphix antarctica	15
Egg Cases		Egg cases	17
Pollen		Pollen	2
Prasinophyc	ean Algae	Cymatiosphaera sp. 2	38
-r J	0	Tasmanites	1
Red Algae		Beringiella sp.	11
Zooplankton	l	Tintinnid loricae	11
production		Tintinnid cyst	6
		Zooplankton sp.	176
Foraminifera	an linings	Leoplainton op.	47
Insect parts			6
mover parts		Total Count	399
		Total Count	377

Sample	186-14		
Lithology	gravel 8.61	Bathymetry	690 m
01	sand 19.2	1 Latitude	-68.22
	silt 17.8	8 Longitude	73.383333
	clay 54.3	C C	
	Palynomor	phs Count	
Unknowns		Unknown sp. 3	1
		Unknown sp. 6	2
Acritarchs		Sphaeoromorphs	5
Dinoflagella	tes	Protoperidinium sp. 2	1
Egg Cases		Egg cases	14
Pollen		Pollen	1
Prasinophyc	ean Algae	Cymatiosphaera sp. 2	7
Pterosperme	lla		2
Red Algae		Beringiella sp.	26
Zooplankton		Tintinnid loricae	16
		Tintinnid cyst	1
		Zooplankton sp.	248
Foraminifera	in linings	- •	196
Insect parts	2		28
-		Total Coun	t 548

Sample	186-15
Sampic	100 15

Lithology	gravel sand silt	Bathymetry Latitude Longitude	1050 m -68.516667 70.408333
	clay	 Longnude	/0.408555

<u>Palynomorph</u>	<u>1s Count</u>	
Acritarchs	Sphaeoromorphs	4
Prasinophyte Algae	Cymatiosphaera sp. 2	74
Egg Cases	Egg cases	13
Pollen	Pollen	1
Red Algae	Beringiella sp.	9
Zooplankton	Tintinnid loricae	5
	Tintinnid cyst	1
	Zooplankton spp.	106
Foraminiferan linings		82
Insect parts		4
	Total Count	299

Sample	186-1	6		
Lithology	gravel	17.27	Bathymetry	726 m
	sand	46.28	Latitude	-68.375
	silt	19.33	Longitude	71.306667
	clay	17.12	C C	
Paly	nomorpł	15	<u>Count</u>	
Unknowns			Unknown sp. 3	1
			Unknown sp. 6	1
Acritarchs			Sphaeoromorphs	7
Prasinophyte	e algae		Cymatiosphaera sp. 2	2
Egg Cases	-		Egg cases	18
Pollen			Pollen	1
Red Algae			Beringiella sp.	18
Zooplankton	1		Tintinnid loricae	10
			Tintinnid cyst	1
			Zooplankton spp.	302
Foraminifera	an linings	5		254
Insect parts	e			29
1			Total Count	644
Sample	186-1	.7		
Lithology	gravel	3.35	Bathymetry	716 m
	sand	61.87	Latitude	-68.316667
	silt	18.46	Longitude	71.465
	clay	16.33	-	
	Total (Count	199	
	nomorpł	15	Count	
Unknowns			Unknown sp. 6	2
Acritarchs			Sphaeoromorphs	7

Count	
Unknown sp. 6	2
Sphaeoromorphs	7
Cymatiosphaera sp. 2	3
Egg cases	16
Pollen	2
Selenopemphix antarctica	1
Beringiella sp.	9
Tintinnid loricae	12
Tintinnid cyst	2
Zooplankton spp.	114
	24
	7
Total Count	199
	Unknown sp. 6 Sphaeoromorphs Cymatiosphaera sp. 2 Egg cases Pollen Selenopemphix antarctica Beringiella sp. Tintinnid loricae Tintinnid cyst Zooplankton spp.

Sample 186-18

<u>Palynomor</u>	<u>phs Count</u>	
Acritarchs	Acritarch spp. 4	1
Prasinophyte algae	Cymatiosphaera sp. 2	11
Egg Cases	Egg cases	3
Pollen	Pollen	3
Red Algae	Beringiella sp.	3
Zooplankton	Zooplankton sp.	65
Foraminiferan linings		60
Insect parts		4
	Total Count	150

Sample	186-19		
Lithology	gravel 10.48 sand 23.79 silt 30.45 clay 35.27	Bathymetry Latitude Longitude	775m -68.15 72.166667

Palynomorphs	Count	
Unknowns	Unknown sp. 6	1
Prasinophyte algae	Cymatiosphaera spp. 2	8
Egg Cases	Egg cases	7
Pollen	Pollen	10
Red Algae	Beringiella sp.	11
Zooplankton	Tintinnid loricae	3
	Zooplankton spp.	130
Foraminiferan linings		78
Insect parts		25
	Total Count	273

Sample	186-2	1		
Lithology	gravel	0	Bathymetry	570m
Litilology	sand	4.29	Latitude	-67.618333
	silt	19.05	Longitude	73.3
	clay	76.67	Longitude	15.5
	oluj	/ 0.0 /		
	Palyn	omorpl		•
Unknowns			Unknown sp. 2	2
Acritarchs			Sphaeoromorphs	12
Prasinophyte a	algae		Cymatiosphaera sp. 2	45
Egg Cases			Egg cases	11
Pollen			Pollen	14
Red Algae			Beringiella sp.	9
Zooplankton			Tintinnid loricae	8
•			Tintinnid cyst	1
			Zooplankton sp.	53
Foraminiferan	linings			39
Insect parts				13
mseet parts			Total Count	207
			Total Coulit	207
Sample	186-2	2		
Lithology	gravel	0	Bathymetry	660m
	sand	11.8	Latitude	-67.691667
	silt	29.81	Longitude	72.216667
		58.39	8	
	clay	56.59		
Palvno	•		Count	
	clay omorph		<u>Count</u> Unknown sp. 1	1
	•		Unknown sp. 1	1
	•		Unknown sp. 1 Unknown sp. 3	1
Unknowns	•		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6	1 4
Unknowns	•		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3	1 4 3
Unknowns Acritarchs	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs	1 4 3 14
Unknowns Acritarchs Prasinophyte a	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2	1 4 3 14 8
Unknowns Acritarchs	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica	1 4 3 14 8 48
Unknowns Acritarchs Prasinophyte a	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2	1 4 3 14 8
Unknowns Acritarchs Prasinophyte a	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica	1 4 3 14 8 48
Unknowns Acritarchs Prasinophyte a Dinoflagellate	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp. Protoperidinium sp. 2	1 4 3 14 8 48 5
Unknowns Acritarchs Prasinophyte a	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp.	1 4 3 14 8 48 5 24 48
Unknowns Acritarchs Prasinophyte a Dinoflagellate Egg Cases Pollen	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp. Protoperidinium sp. 2 Egg cases Pollen	1 4 3 14 8 48 5 24 48 27
Unknowns Acritarchs Prasinophyte a Dinoflagellate Egg Cases Pollen Red Algae	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp. Protoperidinium sp. 2 Egg cases Pollen Beringiella sp.	1 4 3 14 8 48 5 24 48 27 91
Unknowns Acritarchs Prasinophyte a Dinoflagellate Egg Cases	omorph		Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp. Protoperidinium sp. 2 Egg cases Pollen Beringiella sp. Tintinnid loricae	1 4 3 14 8 48 5 24 48 27 91 8
Unknowns Acritarchs Prasinophyte a Dinoflagellate Egg Cases Pollen Red Algae Zooplankton	omorph algae	15	Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp. Protoperidinium sp. 2 Egg cases Pollen Beringiella sp.	1 4 3 14 8 48 5 24 48 27 91 8 370
Unknowns Acritarchs Prasinophyte a Dinoflagellate Egg Cases Pollen Red Algae Zooplankton Foraminiferan	omorph algae	15	Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp. Protoperidinium sp. 2 Egg cases Pollen Beringiella sp. Tintinnid loricae	1 4 3 14 8 48 5 24 48 27 91 8 370 296
Unknowns Acritarchs Prasinophyte a Dinoflagellate Egg Cases Pollen Red Algae Zooplankton	omorph algae	15	Unknown sp. 1 Unknown sp. 3 Unknown sp. 6 Acritarch sp. 3 Sphaeoromorphs Cymatiosphaera sp. 2 Selenopemphix antarctica Cryodinium sp. Protoperidinium sp. 2 Egg cases Pollen Beringiella sp. Tintinnid loricae	1 4 3 14 8 48 5 24 48 27 91 8 370

Sample	186-2	6		
Lithology	gravel 12.54 sand 64.68 silt 13.45 clay 9.32		Bathymetry Latitude Longitude	390 m -67.131666 70.795
	nomorpł	15	Count	
Acritarchs			Sphaeoromorphs	1
Prasinophyte	e algae		Cymatiosphaera sp. 2	1
Egg Cases			Egg cases	10
Pollen			Pollen	4
Red Algae			Beringiella sp.	6
Zooplankton			Tintinnid loricae	9
1			Zooplankton sp.	141
Foraminifera	n linings		i F	115
Insect parts	8-			3
p u			Total Count	290

Sample	186-2	27			
Lithology	gravel sand silt clay	0 36.36 30.98 32.65	Bathymetry Latitude Longitude	436 m -67.168667 74.503333	

Palynomorphs	Count	
Acritarchs	Sphaeoromorphs	1
Dinoflagellates	Alterbidinium asymmetrica	3
	Alisocysta sp.	1
	Deflandrea sp.	1
	Spinodinium macmurdoense	1
Egg Cases	Egg cases	1
Pollen	Pollen	63
Red Algae	Beringiella sp.	3
Zooplankton	Zooplankton sp.	9
Foraminiferan linings		11
Insect parts		4
	Total Count	98

Sample 186-28

Lithology	gravel	15.65	Bathymetry	338 m
	sand	36.52	Latitude	-67.268333
	silt	20.63	Longitude	76.398333
	clay	27.21		

Palynomorphs Count					
Prasinophyte algae	Cymatiosphaera sp. 2	1			
Dinoflagellates	Operculum	3			
	Turbiosphaera filosa	2			
	Alterbidinium asymmetrica	1			
	Enneadocysta partridgei	1			
Egg Cases	Egg cases	1			
Pollen	Pollen	55			
Red Algae	Beringiella sp.	6			
Zooplankton	Zooplankton sp.	25			
Foraminiferan linings		4			
Insect parts		9			
	Total Count	108			

Sample	186-29			
Lithology	gravel 6.85 sand 40.36 silt 21.08 clay 31.71	Bathymetry Latitude Longitude	1230 m -66.5 72.275	

Palynomorphs	Count	
Acritarchs	Acritarch spp. 1	3
Dinoflagellates	Spinodinium spp.	2
	Deflandrea spp.	1
Egg Cases	Egg cases	1
Pollen	Pollen	41
Red Algae	Beringiella sp.	2
Foraminiferan linings	C	8
C	Total Count	58

Sample	186-31		
Lithology	gravel 0 sand 3.08 silt 25.59 clay 71.33	Bathymetry Latitude Longitude	1625 m -66.401667 72.285

	Palynomorph	s Count		
Dinoflagellate	s	Enneadocysta	partridgei	1
Pollen		Pollen		17
			Total Count	18

Sample	186-32			
Lithology	gravel 0.9 sand 9.19 silt 28.92 clay 60.99	Bathymetry Latitude Longitude	565 m -66.318333 72.258333	

Palynomorphs	Count	
Pollen	Pollen	13
Dinoflagellates	Alisocysta sp	1
	Turbiosphaera filosa	1
	Total Count	15

PALYNOMORPH DISTRIBUTION TABLES 3.2a

Raw Count					
Total Holocene	Fan	N shelf	M shelf	Coastal	Total
Acritarchs	10	54	230	38	332
Holocene Dinocysts	1	10	155	2	168
Prasinophycean Algae	2	30	261	127	420
Red Algae	6	84	319	101	510
Egg Cases	3	85	273	72	433
Zooplankton	3	703	2,371	927	4,004
Foraminifera Linings	13	1,237	1,408	768	3,426
Insect Parts	2	162	420	125	709
Unknowns	1	31	35	28	95
Total Holocene	41	2,396	5,472	2,188	10,097
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.41	30.94	128.31	91.55	41.46

Raw Count

Total Reworked	Fan	N shelf	M shelf	Coastal	Total
Reworked Dinocysts	21	34	1	1	57
Pollen	1,286	1,077	176	34	2,573
Total Reworked	1,307	1,111	177	35	2,630
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	13.13	14.35	4.15	1.46	10.80

Raw Count

Marine Palynomorphs		Fan	N shelf	Mid shelf	Coastal	Total
Acritarchs		10	54	230	38	332
Holocene Dinocysts		1	10	155	2	168
Prasinophycean Algae		2	30	261	127	420
Red Algae		6	84	319	101	510
-	Total	19	178	965	268	1,430
Dry Weight		149.34	116.17	63.97	35.85	365.33
Grains per Gram		0.19	2.30	22.63	11.21	5.87

Raw Count

Holocene Dinocysts		Fan	N shelf	Mid shelf	Coastal	Totals
Alisocysta sp		1	1	1	0	3
Cryodinium sp		0	0	11	0	11
Dinocyst spp		0	0	1	0	1
Hystrichosphaeridium spp		0	4	0	0	4
Impagidinium sp		0	1	0	0	1
Protoperidinium sp 1		0	1	0	0	1
Protoperidinium sp 2		0	3	33	1	37
Selenopemphix antarctica		0	0	109	1	110
	Total	1	10	155	2	168
Dry Weight		149.34	116.17	63.97	35.85	365.33
Grains per Gram		0.01	0.13	3.63	0.08	0.69

Raw Count

Reworked Dinocysts	Fan	N shelf	Mid shelf	Coastal	Totals
Alterbitedinium asymmetrica	3	5	0	0	8
Deflandrea spp	2	2	1	0	5
Enneadocysta partridgei	1	2	0	0	3
Operculum	7	11	0	0	18
Spinidinium macmurdoense	1	2	0	0	3
Spinidinium spp	2	1	0	0	3
Turbiosphaera filosa	3	3	0	1	7
Vozzhennikovia spp	2	8	0	0	10
Total	21	34	1	1	57
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.21	0.44	0.02	0.04	0.23

Raw Count Continued

Acritarchs		Fan	N shelf	Mid shelf	Coastal	Totals
Acritarch spp 1		5	0	0	0	5
Acritarch spp 2		0	0	2	0	2
Acritarch spp 3		0	0	3	0	3
Acritarch spp 4		0	0	9	0	9
Leiospherida sp		1	2	22	0	25
Leiospherida sigmopolis		3	0	0	0	3
Sphaeoromorphs		1	52	194	38	285
٦	Total	10	54	230	38	332
Dry Weight		149.34	116.17	63.97	35.85	365.33
Grains per Gram		0.10	0.70	5.39	1.59	1.36

Raw Count

Prasinophycean Algae	Fan	N shelf	Mid shelf	Coastal	Totals
Cymatiosphaera spp 1	1	5	0	0	6
Cymatiosphaera spp 2	0	15	254	127	396
Pterospermella	1	9	6	0	16
Tasmanites	0	1	1	0	2
Total	2	30	261	127	420
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.02	0.39	6.12	5.31	1.72

Raw Count

Red Algae	Fan	N shelf	Mid shelf	Coastal	Totals
Beringiella sp	6	84	319	101	510
Total	6	84	319	101	510
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.06	1.08	7.48	4.23	2.09

Raw Count

Zooplankton	Fan	N shelf	Mid shelf	Coastal	Totals
Tintinnid cyst	0	0	33	13	46
Tintinnid loricae	0	46	149	38	233
Zooplankton spp	3	657	2,189	876	3,725
Total	3	703	2,371	927	4,004
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.03	9.08	55.60	38.79	16.44

Raw Count

Insect parts	Fan	N shelf	Mid shelf	Coastal	Totals
Insect parts	2	162	420	125	709
Total	2	162	420	125	709
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.02	2.09	9.85	5.23	2.91

Foraminifera linings		Fan	N shelf	Mid shelf	Coastal	Totals
Foraminifera linings		13	1,237	1,408	768	3,426
	Total	13	1,237	1,408	768	3,426
Dry Weight		149.34	116.17	63.97	35.85	365.33
Grains per Gram		0.13	15.97	33.02	32.13	14.07

Raw Count

Egg cases	Fan	N shelf	Mid shelf	Coastal	Totals
Egg cases	3	85	273	72	433
Total	3	85	273	72	433
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.03	1.10	6.40	3.01	1.78

Raw Count Continued

Unknowns	Fan	N shelf	Mid shelf	Coastal	Totals
Unknown sp 1	0	3	2	1	6
Unknown sp 2	0	0	7	0	7
Unknown sp 3	0	3	9	1	13
Unknown sp 4	0	1	3	2	6
Unknown sp 5	0	0	2	0	2
Unknown sp 6	1	13	11	19	44
Unknown sp 7	0	6	0	3	9
Unknown sp 8	0	2	0	1	3
Unknown sp 9	0	3	1	1	5
Tota	al 1	31	35	28	95
Dry Weight	149.34	116.17	63.97	35.85	365.33
Grains per Gram	0.01	0.40	0.82	1.17	0.39

Raw Count

Total Holocene N Shelf	NE shelf	N shelf	NW shelf	Total
Acritarchs	2	10	42	54
Holocene Dinocysts	1	5	4	10
Prasinophycean Algae	7	5	18	30
Red Algae	22	21	41	84
Egg Cases	8	20	57	85
Zooplankton	60	254	389	703
Foraminifera Linings	30	236	971	1,237
Insect Parts	16	46	100	162
Unknowns	1	7	23	31
Total	147	604	1,645	2,396
Dry Weight	20.26	47.07	48.84	116.17
Grains per Gram	10.88	19.25	50.52	30.94

Raw Count

Dinocysts N Shelf	NE shelf	N shelf	NW shelf	Total
Alisocysta sp	0	1	0	1
Cryodinium sp	0	0	0	0
Dinocyst spp	0	0	0	0
Hystrichosphaeridium spp	0	4	0	4
Impagidinium sp	1	0	0	1
Protoperidinium sp 1	0	0	1	1
Protoperidinium sp 2	0	0	3	3
Selenopemphix antarctica	0	0	0	0
Alterbitedinium asymmetrica	1	4	0	5
Deflandrea spp	0	1	1	2
Enneadocysta partridgei	1	1	0	2
Operculum	4	4	3	11
Spinidinium macmurdoense	1	1	0	2
Spinidinium spp	0	1	0	1
Turbiosphaera filosa	2	1	0	3
Vozzhennikovia spp	0	8	0	8
Total	10	26	8	44
Dry Weight	20.26	47.07	48.84	116.17
Grains per Gram	0.74	0.83	0.25	0.57

Raw Count

Dinocysts		Fan	N shelf	Mid shelf	Coastal	Total
Holocene		1	10	155	2	168
Reworked		21	34	1	1	57
	Total	22	44	156	3	225
Dry Weight		149.34	116.17	63.97	35.85	365.33
		0.22	0.57	3.66	0.13	0.92

PALYNOMORPH DISTRIBUTION TABLES 3.2b

Percentages					
Total Holocene	Fan	N shelf	Mid shelf	Coastal	Total
Acritarchs	24.39%	2.25%	4.20%	1.74%	3.29%
Holocene Dinocysts	2.44%	0.42%	2.83%	0.09%	1.66%
Prasinophycean Algae	4.88%	1.25%	4.77%	5.80%	4.16%
Red Algae	14.63%	3.51%	5.83%	4.62%	5.05%
Egg Cases	7.32%	3.55%	4.99%	3.29%	4.29%
Zooplankton	7.32%	29.34%	43.33%	42.37%	39.66%
Foraminifera Linings	31.71%	51.63%	25.73%	35.10%	33.93%
Insect Parts	4.88%	6.76%	7.68%	5.71%	7.02%
Unknowns	2.44%	1.29%	0.64%	1.28%	0.94%

Percentages

Total Reworked	Fan	N shelf	M shelf	Coastal	Total
Reworked Dinocysts	1.61%	3.06%	0.56%	2.86%	2.17%
Pollen	98.39%	96.94%	99.44%	97.14%	97.83%

Percentages

Marine Palynomorphs	Fan	N shelf	Mid shelf	Coastal	Total
Acritarchs	52.63%	30.34%	23.83%	14.18%	23.22%
Holocene Dinocysts	5.26%	5.62%	16.06%	0.75%	11.75%
Prasinophycean Algae	10.53%	16.85%	27.05%	47.39%	29.37%
Red Algae	31.58%	47.19%	33.06%	37.69%	35.66%

Percentages

Holocene Dinocysts	Fan	N shelf	Mid shelf	Coastal	Total
Alisocysta sp	0.00%	10.00%	0.65%	0.00%	1.79%
Cryodinium sp	0.00%	0.00%	7.10%	0.00%	6.55%
Dinocyst spp	0.00%	0.00%	0.65%	0.00%	0.60%
Hystrichosphaeridium spp	0.00%	40.00%	0.00%	0.00%	2.38%
Impagidinium sp	0.00%	10.00%	0.00%	0.00%	0.60%
Protoperidinium sp 1	0.00%	10.00%	0.00%	0.00%	0.60%
Protoperidinium sp 2	0.00%	30.00%	21.29%	50.00%	22.02%
Selenopemphix antarctica	0.00%	0.00%	70.32%	50.00%	65.48%

Percentages

Reworked Dinocysts	Fan	N shelf	Mid shelf	Coastal	Totals
Alterbitedinium asymmetrica	14.29%	14.71%	0.00%	0.00%	14.04%
Deflandrea spp	9.52%	5.88%	100.00%	0.00%	8.77%
Enneadocysta partridgei	4.76%	5.88%	0.00%	0.00%	5.26%
Operculum	33.33%	32.35%	0.00%	0.00%	31.58%
Spinidinium macmurdoense	4.76%	5.88%	0.00%	0.00%	5.26%
Spinidinium spp	9.52%	2.94%	0.00%	0.00%	5.26%
Turbiosphaera filosa	14.29%	8.82%	0.00%	100.00%	12.28%
Vozzhennikovia spp	9.52%	23.53%	0.00%	0.00%	17.54%

Percentages Continued

Acritarchs	Fan	N shelf	Mid shelf	Coastal	Totals
Acritarch spp 1	50.00%	0.00%	0.00%	0.00%	1.51%
Acritarch spp 2	0.00%	0.00%	0.87%	0.00%	0.60%
Acritarch spp 3	0.00%	0.00%	1.30%	0.00%	0.90%
Acritarch spp 4	0.00%	0.00%	3.91%	0.00%	2.71%
Leiospherida sp	10.00%	3.70%	9.57%	0.00%	7.53%
Leiospherida sigmopolis	30.00%	0.00%	0.00%	0.00%	0.90%
Sphaeoromorphs	10.00%	96.30%	84.35%	100.00%	85.84%

Percentages

Prasinophycean Algae	Fan	N shelf	Mid shelf	Coastal	Totals
Cymatiosphaera spp 1	50.00%	16.67%	0.00%	0.00%	1.43%
Cymatiosphaera spp 2	0.00%	50.00%	97.32%	100.00%	94.29%
Pterospermella	50.00%	30.00%	2.30%	0.00%	3.81%
Tasmanites	0.00%	3.33%	0.38%	0.00%	0.48%

Percentages					
Red Algae	Fan	N shelf	Mid shelf	Coastal	Totals
Beringiella sp	100.00%	100.00%	100.00%	100.00%	100.00%

Percentages

Zooplankton	Fan	N shelf	Mid shelf	Coastal	Totals
Tintinnid cyst	0.00%	0.00%	1.39%	1.40%	1.15%
Tintinnid loricae	0.00%	6.54%	6.28%	4.10%	5.82%
Zooplankton spp	100.00%	93.46%	92.32%	94.50%	93.03%

Percentages

Insect parts	Fan	N shelf	Mid shelf	Coastal	Totals
Insect parts	100.00%	100.00%	100.00%	100.00%	100.00%

Percentages

Foraminifera linings	Fan	N shelf	Mid shelf	Coastal	Totals
Foraminifera linings	100.00%	100.00%	100.00%	100.00%	100.00%

Egg cases Fan N shelf Mid shelf Coastal Totals Egg cases 100.00% 100.00% 100.00% 100.00% 100.00%

Percentages Continued

Unknowns	Fan	N shelf	Mid shelf	Coastal	Totals
Unknown sp 1	0.00%	9.68%	5.71%	3.57%	6.32%
Unknown sp 2	0.00%	0.00%	20.00%	0.00%	7.37%
Unknown sp 3	0.00%	9.68%	25.71%	3.57%	13.68%
Unknown sp 4	0.00%	3.23%	8.57%	7.14%	6.32%
Unknown sp 5	0.00%	0.00%	5.71%	0.00%	2.11%
Unknown sp 6	100.00%	41.94%	31.43%	67.86%	46.32%
Unknown sp 7	0.00%	19.35%	0.00%	10.71%	9.47%
Unknown sp 8	0.00%	6.45%	0.00%	3.57%	3.16%
Unknown sp 9	0.00%	9.68%	2.86%	3.57%	5.26%

Percentages

Total Holocene N Shelf	NE shelf	N shelf	NW shelf	Total
Acritarchs	1.36%	1.66%	2.55%	2.25%
Holocene Dinocysts	0.68%	0.83%	0.24%	0.42%
Prasinophycean Algae	4.76%	0.83%	1.09%	1.25%
Red Algae	14.97%	3.48%	2.49%	3.51%
Egg Cases	5.44%	3.31%	3.47%	3.55%
Zooplankton	40.82%	42.05%	23.65%	29.34%
Foraminifera Linings	20.41%	39.07%	59.03%	51.63%
Insect Parts	10.88%	7.62%	6.08%	6.76%
Unknowns	0.68%	1.16%	1.40%	1.29%

Percentages

Dinocysts N Shelf	NE shelf	N shelf	NW shelf	Total
Alisocysta sp	0.00%	3.85%	0.00%	2.27%
Cryodinium sp	0.00%	0.00%	0.00%	0.00%
Dinocyst spp	0.00%	0.00%	0.00%	0.00%
Hystrichosphaeridium spp	0.00%	15.38%	0.00%	9.09%
Impagidinium sp	10.00%	0.00%	0.00%	2.27%
Protoperidinium sp 1	0.00%	0.00%	12.50%	2.27%
Protoperidinium sp 2	0.00%	0.00%	37.50%	6.82%
Selenopemphix antarctica	0.00%	0.00%	0.00%	0.00%
Alterbitedinium asymmetrica	10.00%	15.38%	0.00%	11.36%
Deflandrea spp	0.00%	3.85%	12.50%	4.55%
Enneadocysta partridgei	10.00%	3.85%	0.00%	4.55%
Operculum	40.00%	15.38%	37.50%	25.00%
Spinidinium macmurdoense	10.00%	3.85%	0.00%	4.55%
Spinidinium spp	0.00%	3.85%	0.00%	2.27%
Turbiosphaera filosa	20.00%	3.85%	0.00%	6.82%
Vozzhennikovia spp	0.00%	30.77%	0.00%	18.18%

Percentages					
Dinocysts	Fan	N shelf	Mid shelf	Coastal	Totals
Holocene	4.55%	22.73%	99.36%	66.67%	74.67%
Reworked	95.45%	77.27%	0.64%	33.33%	25.33%

PALYNOMORPH DISTRIBUTION TABLES 3.2c Grains per Gram

Total Holocene	Fan	N shelf	Mid shelf	Coastal
Acritarchs	0.10	0.70	5.39	1.59
Holocene Dinocysts	0.01	0.13	3.63	0.08
Prasinophycean Algae	0.02	0.39	6.12	5.31
Red Algae	0.06	1.08	7.48	4.23
Egg Cases	0.03	1.10	6.40	3.01
Zooplankton	0.03	9.08	55.60	38.79
Foraminifera Linings	0.13	15.97	33.02	32.13
Insect Parts	0.02	2.09	9.85	5.23
Unknowns	0.01	0.40	0.82	1.17
Total Holocene	0.41	30.94	128.31	91.55

Grains per Gram

Total Reworked	Fan	N shelf	M shelf	Coastal
Reworked Dinocysts	0.21	0.44	0.02	0.04
Pollen	12.92	13.91	4.13	1.42
Total Reworked	13.13	14.35	4.15	1.46

Grains per Gram

Marine Palynomorphs	Fan	N shelf	Mid shelf	Coastal
Acritarchs	0.10	0.70	5.39	1.59
Holocene Dinocysts	0.01	0.13	3.63	0.08
Prasinophycean Algae	0.02	0.39	6.12	5.31
Red Algae	0.06	1.08	7.48	4.23
Total	0.19	2.30	22.63	11.21

Grains per Gram

Holocene Dinocysts	Fan	N shelf	Mid shelf	Coastal
Alisocysta sp	0.01	0.01	0.02	0.00
Cryodinium sp	0.00	0.00	0.26	0.00
Dinocyst spp	0.00	0.00	0.02	0.00
Hystrichosphaeridium spp	0.00	0.05	0.00	0.00
Impagidinium sp	0.00	0.01	0.00	0.00
Protoperidinium sp 1	0.00	0.01	0.00	0.00
Protoperidinium sp 2	0.00	0.04	0.77	0.04
Selenopemphix antarctica	0.00	0.00	2.56	0.04
Total	0.01	0.13	3.63	0.08

Grains per Gram

Reworked Dinocysts	Fan	N shelf	Mid shelf	Coastal
Alterbitedinium asymmetrica	0.03	0.06	0.00	0.00
Deflandrea spp	0.02	0.03	0.02	0.00
Enneadocysta partridgei	0.01	0.03	0.00	0.00
Operculum	0.07	0.14	0.00	0.00
Spinidinium macmurdoense	0.01	0.03	0.00	0.00
Spinidinium spp	0.02	0.01	0.00	0.00
Turbiosphaera filosa	0.03	0.04	0.00	0.04
Vozzhennikovia spp	0.02	0.10	0.00	0.00
Total	0.21	0.44	0.02	0.04

Grains per Gram Continued

Fan	N shelf	Mid shelf	Coastal
0.05	0.00	0.00	0.00
0.00	0.00	0.05	0.00
0.00	0.00	0.07	0.00
0.00	0.00	0.21	0.00
0.01	0.03	0.52	0.00
0.03	0.00	0.00	0.00
0.01	0.67	4.55	1.59
0.10	0.70	5.39	1.59
	0.05 0.00 0.00 0.01 0.03 0.01	0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.03 0.00 0.01 0.67	0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.07 0.00 0.00 0.21 0.01 0.03 0.52 0.03 0.00 0.00 0.01 0.67 4.55

Grains per Gram

Prasinophycean Algae	Fan	N shelf	Mid shelf	Coastal
Cymatiosphaera spp 1	0.01	0.06	0.00	0.00
Cymatiosphaera spp 2	0.00	0.19	5.96	5.31
Pterospermella	0.01	0.12	0.14	0.00
Tasmanites	0.00	0.01	0.02	0.00
Total	0.02	0.39	6.12	5.31

Grains per Gram				
Red Algae	Fan	N shelf	Mid shelf	Coastal
Beringiella sp	0.06	1.08	7.48	4.23

Grains per Gram

Zooplankton	Fan	N shelf	Mid shelf	Coastal
Tintinnid cyst	0.00	0.00	0.77	0.54
Tintinnid loricae	0.00	0.59	3.49	1.59
Zooplankton spp	0.03	8.48	51.33	36.65
Total	0.03	9.08	55.60	38.79

Grains per Gram

Insect parts 0.02 2.09 9.85 5.2	Insect parts	Fan	N shelf	Mid shelf	Coastal
	Insect parts	0.02	2.09	9.85	5.23

Grains per Gram Foraminifera linings Fan N shelf Mid shelf Coastal Foraminifera linings 0.13 15.97 33.02 32.13

Grains	ner (Gram

Egg cases	Fan	N shelf	Mid shelf	Coastal
Egg cases	0.03	1.10	6.40	3.01

Grains per Gram Continued

Unknowns	Fan	N shelf	Mid shelf	Coastal
Unknown sp 1	0.00	0.04	0.05	0.04
Unknown sp 2	0.00	0.00	0.16	0.00
Unknown sp 3	0.00	0.04	0.21	0.04
Unknown sp 4	0.00	0.01	0.07	0.08
Unknown sp 5	0.00	0.00	0.05	0.00
Unknown sp 6	0.01	0.17	0.26	0.79
Unknown sp 7	0.00	0.08	0.00	0.13
Unknown sp 8	0.00	0.03	0.00	0.04
Unknown sp 9	0.00	0.04	0.02	0.04
Total	0.01	0.40	0.82	1.17

Grains per Gram

Total Holocene N Shelf	NE shelf	N shelf	NW shelf
Acritarchs	0.15	0.32	1.29
Holocene Dinocysts	0.07	0.16	0.12
Prasinophycean Algae	0.52	0.16	0.55
Red Algae	1.63	0.67	1.26
Egg Cases	0.59	0.64	1.75
Zooplankton	4.44	8.09	11.95
Foraminifera Linings	2.22	7.52	29.82
Insect Parts	1.18	1.47	3.07
Unknowns	0.07	0.22	0.71
Total	10.88	19.25	50.52

Grains per Gram

Dinocysts N Shelf	NE shelf	N shelf	NW shelf
Alisocysta sp	0.00	0.03	0.00
Cryodinium sp	0.00	0.00	0.00
Dinocyst spp	0.00	0.00	0.00
Hystrichosphaeridium spp	0.00	0.13	0.00
Impagidinium sp	0.07	0.00	0.00
Protoperidinium sp 1	0.00	0.00	0.03
Protoperidinium sp 2	0.00	0.00	0.09
Selenopemphix antarctica	0.00	0.00	0.00
Alterbitedinium asymmetrica	0.07	0.13	0.00
Deflandrea spp	0.00	0.03	0.03
Enneadocysta partridgei	0.07	0.03	0.00
Operculum	0.30	0.13	0.09
Spinidinium macmurdoense	0.07	0.03	0.00
Spinidinium spp	0.00	0.03	0.00
Turbiosphaera filosa	0.15	0.03	0.00
Vozzhennikovia spp	0.00	0.25	0.00
Total	0.74	0.83	0.25

Grains per Gram

Dinocysts	Fan	N shelf	Mid shelf	Coastal
Holocene	0.01	0.13	3.63	0.08
Reworked	0.21	0.44	0.02	0.04
Total	0.22	0.57	3.66	0.13

APPENDIX B

Sediment description taken from raw samples before processing

Samples Ga/gc	Dry wgt g Process.	Bathy metry	Colour	Sedi- ment	Sediment Discription	Carbon-ate fizz
901/5 NW	17.88 7.67	320	yellow brown	silty sand	some grains visible gritty in fingers, pebbles and shell frag.	fizz
901/6 NW	17.81 7.78	489	greyish olive	sandy	grains visible sandy looking	none
901/9 F	9.22	1879	greyish olive	silt	no grains visible, slightly gritty to taste medium	none
901/10 F	20.86 7.91	1257	greyish olive	sandy	grains visible, coarse looking, shell frag, small pebbles	fizz
901/11 NW	20.84 8.47	402	greyish	sandy	grains visible, vegetation fibres? may be shell frags	fizz
901/13 F	18.17 6.55	880	greyish olive	sandy	shell frag, sandy, grains visible, coarse	fizz
901/14 F s edge	15.49 6.86	430	greyish olive	sandy	grains visible, shell frag. large pebbles, bryozoa	fizz
901/15 N	19.23 8.47	480	olive black	sandy silt	some grains visible, gritty between fingers,	none
901/18 NE	11.76 7.07	320	olive black	silt	no grains visible, gritty between fingers,	none
901/20 NE	23.43 6.36	318	greyish olive	sandy	grains visible whitish fragments but may not be shell frag	none
901/22 M	5.68 3.65	766	greyish olive	clay	no grains visible no grit to taste melted in mouth. shell frag.	fizz
901/23 M	6.44 4.85	661	greyish olive	silt	no grains visible, gritty between teeth	minimal
901/24 M	2.53 Nil g/s	705	greyish olive	silty clay	no grains visible, very very fine between teeth	minimal
901/25 S	2.96 Nil g/s	676	light grey	clay	no grit between teeth, very very fine	big fizz
901/26 S	5.15 Nil g/s	676	greyish olive	clay	no grains visible and no grit between teeth, shell frag.	fizz
901/27 S	5.91 3.66	776	greyish olive	silt	no grains visible gritty to taste. 1 or 2 small pebbles	minimal
901/28 SE	14.34 6.50	710	dark olive	silt	no grains visible, gritty between fingers, med. white frag ???	none
901/31 SE	6.30 3.28	806	greyish olive	silt	some grains visible, gritty on teeth small pebbles shell frag	minimal
901/33 NW	14.34 5.89	376	dark olive	silt	no grains visible fine grit between fingers	none
149/6 NW	26.65 6.99	805	brownish black	sandy silt	some grains visible grit between fingers, pebbles	none
149/14 F	19.28 5.85	849	greyish brown	silt	no grains visible gritty between fingers medium	none
149/15 F	26.1 7.01	2250	brownish grey	silt	no grains visible gritty between fingers few pebbles	none
149/16 F	10.69 5.86	1960	dark olive	sandy silt	grains visible, gritty between teeth	none
149/17 F	14.79 5.00	1540	greyish olive	silt	no grains visible, gritty between fingers	none
149/18 F	21.31 6.88	1170	grey	sandy silt	some grains visible gritty between fingers. medium	none
149/19 F	26.09 7.24	765	greyish olive	sandy silt	grains visible, gritty between fingers	none
149/21 F	30.83 6.74	1060	olive black	silt	no grains visible, gritty between fingers	none
149/22 F	26.06 6.99	1450	greyish olive	silt	no grains visible, gritty between fingers	none
149/23 F	20.24 6.95	1884	greyish olive	silt	no grains visible, gritty between fingers	none
149/24 F	9.16 5.23	2535	olive brown	silt	no grains visible, gritty to taste fine to medium	none
149/25 F	11.34 6.65	2010	greyish olive	silt	no grains visible, gritty between teeth	none

149/27	19.86	1200	brownish	sandy silt	grains visible gritty between fingers	none
F	10.92		grey		medium to coarse	
149/28	25.26	527	olive black	sandy silt	grains visible, gritty between fingers, shell	minimal
Ν	7.02				fragments	
149/30	10.93	515	greyish olive	sandy silt	gritty between fingers, a few grains visible	none
Ν	7.13					
149/31	15.3	512	greyish	silt	no grains visible, gritty between fingers.	none
N	6.01		olive		medium	
149/32	12.96	502	greyish olive	sandy silt	some grains visible, gritty between fingers	none
N	5.40					
149/33	19.10	834	dark brown	sandy silt	pebbles visible, gritty between fingers, still	minimal
F	6.33				fine	
149/34	28.02	1215	darkish grey	sandy	grains and pebbles visible, shell frag. sandy	none
F	9.62				looking	
149/35	13.29	1566	dark olive	sandy silt	gritty between fingers, a few grains visible	none
F	6.99	2105			· · · · · · · · · · · · · · · · · · ·	
149/36	12.35	2105	greyish	silt	no grains visible, gritty on teeth, fine	none
F 149/37	6.54	168	olive			
	8.82	168	greyish olive	sandy	sandy with grains visible	none
NW 186/9	5.18	698	greyish olive	aan der ailt	anne maine vieible anitte between fingens	fizz
180/9 M	7.62	098	greyish onve	sandy silt	some grains visible, gritty between fingers	IIZZ
186/11	13.41	655	darkish	sandy silt	some grains visible, gritty between fingers	none
M	6.53	055	grey+olive	sandy sin	some grams visible, gritty between migers	none
186/13	5.56	678	grayish olive	silt	no grains visible, gritty on teeth, shell frag	fizz
M	Nil g/s	078	grayish onve	SIIL	fine	IIZZ
186/14	7.00	690	greyish olive	sandy silt	shell frag some grains visible very fine	fizz
M	5.06	0,0	greyish onve	sandy sin	mixed in with it	IIZZ
186/15	22.95	1050	redbrown	sandy silt	some pebbles visible gritty between fingers	none
SW	6.78	1050	grey/olive	sundy sin	medium	none
186/16	21.29	726	darkbrown	sandy silt	some grains visible, gritty between fingers	none
SW	8.03		greyolive		····· g · ···· , g / · · · · · · · · · · · · · · · · ·	
186/17	17.93	716	greyish olive	sandy	pebbles and grains visible, gritty between	fizz
SW	7.60		8		fingers	
186/18	20.13	608	brown	sandy silt	some grains visible gritty between fingers	none
М	7.36			-		
186/19	11.67	775	greyish olive	sandy silt	gritty between fingers, some larger grains	minimal
М	5.28			-	visible	
186/21	4.45	570	greyish olive	silt	no grains visible, very fine gritty to taste	minimal
М	2.42					
186/22	7.24	660	olive	silt	no grains visible gritty between teeth shell	fizz
М	5.0				frag.	
186/26	22.14	390	greyish olive	silt	no grains visible gritty between fingers	none
Ν	6.88				medium some pebbles	
186/27	11.94	436	greyish olive	silt	no grains visible gritty between fingers	none
N	6.16				medium	
186/28	20.34	338	greyish olive	sandy silt	gritty between fingers, some large pebbles	none
NE	6.83					
186/29	12.47	1230	greyish olive	silt	no grains visible, gritty between fingers	none
F	6.43				medium	
186/31	11.45	1625	dark olive	silty clay	no grains visible fine grit between fingers	none
F	6.20					
186/32	10.28	1830	dark olive	sandy silt	gritty between teeth, no grains visible	none
F	6.04					

A	в с	D	Е	F	G	н	1	J	к	L	М	Ν	0	Р	Q	R	s	т	U	v	w	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
	(В	Οι	itpu	t da	ita f	or g	rain	size																									
2 Class midpts	Τ	-6.50	-5.75	-5.25	-4.75	-4.25	-3.75	-3.25	-2.75	-2.25	-1.75	-1.2	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75
3 Class limits	Т	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.0	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00
4 901-5																																		
5 Data		0.00								0.35	0.36		0.14		0.20		0.41					0.30		0.26	0.27	0.22			0.17		0.18			
6 Frequency %		0.00	0.00				17.92			3.43			5 1.37		1.96									2.55		2.15		1.47			1.76			1.27
7 Cumulative %		0.00	0.00	0.00	0.00	0.00	17.92	17.92	22.23	25.66	29.19	31.73	3 33.10	34.67	36.63	39.86	43.88	51.13	56.61	62.78	67.19	70.13	72.67	75.22	77.86	80.02	81.98	83.45	85.11	86.39	88.15	89.62	91.87	93.14
8 Bathymetry 320 m																			_													L/		
9		1%	5%	16%	25%	50%	75%	84%	95%		901-5	25 -																				L	ļ	
10 Percentiles		-3.75	-3.63	-3.51	-2.09	1.92	4.96	7.16	10.88		NW																					ļ!		
11											%	20 -																				L		
12		Mean									5	15 -	0.00					=6.86															'	
13 Moment measures		2.04		0.34		ļ	L	ļ			frequency							9					l						L	L	L	L	L	
14 Graphic (Folk)		1.86		0.11	0.84						nbe	10 -	arser		_			finer															'	
15 Inman			5.34	-0.02		ļ					fre	5 -	8			n L		%																
16												0	*	IIm	-dill	IIhin	nn-	nn h														L!	L	
17		Gravel		Silt	Clay						phi	0 +	-6.05.0.4				.06.07.08															'	'	
18 Proportions		31.73	38.39	16.26	13.61	ļ	ļ	ļ					0.00.04										ļ						ļ	ļ	ļ	ļ	ļ	
19						I	I								l																	ļ!		
20 901-6														ļ	ļ																	ļ	ļ	
21 Data		0.00									0.35				0.21						2.28						0.08		0.07		0.06			
22 Frequency %		0.00	0.00												2.21						24.00					0.95			0.74					0.53
23 Cumulative %	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.95	4.63	6.5	3 7.68	9.37	11.58	15.26	20.11	27.68	35.05	50.74	74.74	81.79	84.42	86.74	87.89	88.84	89.68	90.00	90.74	91.26	91.89	92.53	93.05	93.58
24 Bathymetry 489 m																																		
25		1%	5%	16%	25%	50%	75%	84%	95%		901-6	25 -																				ļ	ļ	
26 Percentiles		-1.98	-1.39	1.08	1.83	2.98	3.52	4.42	11.53		NW																					l		
27	_					ļ					%	20 -																				ļ	L	
28		Mean									S	15 -	0.0					42														ļ	ļ	
29 Moment measures		3.13	2.75	1.06	4.71	ļ	ļ	ļ			ler	10	- Le					- 10 10											ļ	ļ	ļ	ļ	ļ	
30 Graphic (Folk)	1	2.83	2.79	0.09	3.14						frequency	10 -	oars					finer											ļ	ļ		ļ		
31 Inman	_		1.67	-0.14		ļ	ļ				Ę,	5 -	° %	_				%														ļ	ļ	
32	+											0		db	-dll	IIIm	hna															<u>⊢−−−′</u>	'	
33		Gravel		Silt	Clay						phi	0 1	-6.05.04	03.0-2.01	.00.01.02		.06.07.08		·													ļ!		
34 Proportions	_	6.53	75.26	9.47	8.74	ļ	ļ						· · ·		ç	,	,													ļ		ļ	ļ	
35																																ļ!		
36 901-9 37 Data	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00		0.01	0.00	0.05	0.02	0.00		0.07	0.00		0.00	0.00	0.40	0.40	0.42	0.42	- 0.4-	- 0.75	0.45
	+	0.00	0.00								0.00				0.02			0.06	0.05			0.04		0.03		0.09			0.13		0.19			
38 Frequency %	4	0.00	0.00								0.00		0.26		0.52			1.57	1.31		2.36			0.79	1.84	2.36			3.41					3.94
39 Cumulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.79	1.05	1.57	2.10	3.15	4.20	5.77	7.09	8.66	11.02	12.07	13.91	14.70	16.54	18.90	21.26	24.67	28.08	32.28	31.27	41./3	45.67	49.61
40 Bathymetry 1879m		101	=0/	1001	0.50/	500/	750/	0.40/	0.50/																							ļ		
41	_	1%	5%	16%	25%	50%		84%	95%		901-9	25 -							I													µ/		
42 Percentiles	+	-0.59	1.77	5.36	7.05	10.05	13.46	15.08	18.37		r.																					þ	ŀ	
43 44	-		010	0	16	l	ļ				%	20 -						_														ļl	'	
44 45 Moment measures	+	Mean				+					CC	15 -	0.00					=50.39														j	'	
	_	8.37	2.96	-1.39		l	l				frequency	10 -	ī					=2(ļl	ļ'	
46 Graphic (Folk)	+	10.16		0.02	1.06	l					be		arse					finer														ļ ¹		
17 Inman	+	┞──┤	4.86	0.03	ļ	 	 	 			÷	5 -	8					n														ļ <i>l</i>	<u>↓</u> '	
48						l	ļ					0	*			- Chia	لللته		J													ļ	ļ'	
49		Gravel			Clay	ļ					phi	υT	-6.05.04	03.02.0-1	.00.01.0 2	.03.04.05	.06.07.08	.09.010.0	'													ŀ	ŀ'	
50 Proportions	-	0.79	11.29	20.21	67.72	ļ	ļ						-																			Ļ	ļ ¹	
51	1	L				<u> </u>	1						1	I	1	I .														I		L!		

								к	L	М	Ν	0	Р	Q	R	s	Т	U	V	W	х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
APPENDIX								size																									
Class midpts								-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75		6.75						
Class limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.0
901-10																																	·
Data	0.00		0.00	0.00			0.00	0.00		0.25							2.50														0.03		
Frequency %	0.00		0.00				0.00	0.00						5.83			22.77			3.10			0.36									0.09	
Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.74	8.01	12.75	15.76	20.22	26.05	33.88	42.90	65.66	83.06	91.35	94.44	95.26	95.54	95.90	96.27	96.36	96.54	96.63	96.99	97.27	97.36	97.63	97.72	98.0
Bathymetry 1257m																										ļ							
	1%	5%		25%		75%	84%	95%		901-10	25 -							,								ļ							İ
Percentiles	-2.17	-2.02	-0.47	0.42	1.65	2.25	2.55	3.83		F				i n	1											ļ							ļ
										%	20 -	-														ļ							ļ
		StDev	Skew							2	`15 - .10 - 5 -	0.0					=2.00																i
Moment measures	1.47	2.16	1.52							len		ii To											ļ			ļ							ļ
Graphic (Folk)	1.24	1.64	-0.33	1.31						adt	- 10 -	arse		- H			finer																I
Inman		1.51	-0.41							fre	5 -	8	Пп	-dill			%									ļ							ļ
											~	*	- HHh		Ու																		Ļ
		Sand	Silt	Clay						ph	0 +		05.04.03.0	22 01 00 0	1.02.03.04.	05.06.07.0	8 09 010 0																í
Proportions	12.75	82.51	2.00	2.73													0.00.010.0						L			ļ							L
																																	l
901-11																																	L
Data	0.00		0.00				0.00		0.43						0.47						0.38	0.25	0.32	0.37	0.35	0.17	0.26				0.20		
Frequency %	0.00		0.00	0.00			0.00	0.00	3.66	0.60							7.92						2.73									1.70	
Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.66	4.26	5.71	8.26	10.39	13.29	17.29	22.40	30.32	38.59	46.68	56.56	59.80	61.93	64.65	67.80	70.78	72.23	74.45	76.15	78.11	80.15	81.86	83.56	85
Bathymetry 402 m																																	I
	1%	5%		25%	50%		84%	95%		901-11	25 -																						1
Percentiles	-2.14	-1.23	0.85	1.67	3.17	7.16	9.61	13.55		NW																							l
										2	_e 20 -	00														I							i
		StDev									3 15 -	0					=14.48																1
Moment measures	4.21	3.72		2.11							5	rser					Ē																í
Graphic (Folk)	4.54	4.43		1.10							15 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	соа			പ		finer																1
Inman		4.38	0.47							3	5 -	%					%																l
													Π.	ъđП	IIIhi	ന്നം	n-n																í
	Grave	Sand	Silt	Clay						ph	0 -				1.02.03.04.																		1
Proportions	5.71	54.09	18.31	21.89						-		-0	.60.64.60.6	2.01.00.0	1.02.03.04.	0.00.07.0	6.09.010.0	5															í
																																	İ
901-13																T																	
Data	0.00		0.00				0.00		1.02						1.00						0.04		0.03					0.03					
Frequency %	0.00		0.00				0.00	16.39							8.76								0.26							0.26		0.18	
Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.39	25.33	28.22	31.46	34.18	37.69	44.00	52.76	63.89	82.47	89.75	93.51	94.74	95.09	95.27	95.53	95.97	96.41	96.76	96.93	97.20	97.55	97.81	97.98	98.16	98
Bathymetry 880 m																																	
	1%	5%	16%	25%	50%	75%	84%	95%		901-13	25 -																						1
Percentiles	-2.75	-2.62	-2.50	-2.02	0.84	1.78	2.09	3.87		F																							
								Î		4	20 -	-		_			_	1								1							ſ
	Mean	StDev	Skew							2	15	0.00	п				=1.84																ĺ
Moment measures	0.49	2.58	1.18	6.08							15 - 10 -	= -8					در =	[1
Graphic (Folk)	0.14	2.13	-0.26	0.70						Ē	<u>,</u> 10 -	arsi	lla -	Л			finer																(
Inman		2.30	-0.46							f, D	5 -	00 %		- di li	h		%									1							<u> </u>
											~]	85		-dill	In I											1							ſ
	Grave	Sand	Silt	Clay						ph	0 -			+++++	$\Pi \Pi \to r$	mne		-					1			1							(T
Proportions		63.63	2.45							pii		-6	.05.04.0-3.	92.01.00.0	1.02.03.04.	05.06.07.0	8.09.010.0	0								1							(
																																	·

									к	L	М	N	0	P	Q	R	s	т	U	v	W	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
APPENDIX									size																_									
Class midpts									-2.75						0.25	0.75	1.25	1.75	2.25	2.75		3.75	4.25	4.75										
Class limits	\square	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.0
0 901-14								<u> </u>																	L									İ
1 Data		0.00	0.00	0.00						0.26		0.40		0.54	0.48			0.99	0.54															
2 Frequency %		0.00	0.00	0.00							7.67		4.92			8.03		11.87											0.60					
3 Cumulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.92	8.03	15.71	20.50	25.42	31.89	37.65	45.68	54.32	66.19	72.66	78.30	81.06	82.73	83.69	84.77	85.85	86.81	87.41	88.13	88.73	89.69	90.65	91.61	92.57	93.2
4 Bathymetry 430 m																																		Í
)5	1	1%	5%	16%	25%	50%	75%	84%	95%		901-14	25																						
6 Percentiles		-2.66	-2.48	-1.47	-0.54	1.25	2.70	4.64	11.39		F sedge								1															
7	Π						1					20 چ	8														1	1						
8	Í	Mean	StDev	Skew	Kurt			1					0.0					5																<u> </u>
9 Moment measures	1	1.83	3.49	1.17	3.77							fuedneuch 10	er :					=6.71																
0 Graphic (Folk)	1	1.47	3.63		1.75		1	1	1			품 10	oars					finer			İ				1		1	1						Ì
1 Inman				0.11								₫ 5	ů v	П	പി	h. 1		. ij %																
2			0.00	0.11								- 5	Ű.	- NH	пШП	III L		•							h			<u> </u>						h
3	11	Gravel	Sand	Silt	Clav		-	1				0				111 114	mm	Ėπ.							\vdash	•								
4 Proportions		20.50			10.31						phi		-6	05.04.0-3.0	2.01.00.0	1.02.03.04	05.06.07.0	8.09.010.0)															
5	+	20.00	02.20	0.00	10.01			<u> </u>																				<u> </u>						h
6 901-15	+																																	
7 Data	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.31	0.00	0.36	0.10	0.30	0.32	0.44	0.66	0.74	0.98	0.78	0.78	0.70	0.51	0.26	0.24	0.29	0.20	0.10	0.11	0.10	0.14	0.10	0.12	0.08	0.0
8 Frequency %	+	0.00	0.00	0.00						0.00					4.30							4.98	0.20	3.32	2.83	1.95			0.10		1.56			
9 Cumulative %	+	0.00	0.00							3.03		1.00	2.93	3.12	4.30	0.45	1.23	9.57	1.02	7.02	1.42	4.90	2.54	3.32	78.32	1.95	0.90	1.07	0.90	1.37	1.00	1.27		
	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.03	3.03	0.54	0.40	11.33	14.45	10.75	25.20	32.42	41.99	49.61	57.23	04.05	69.63	12.11	75.49	10.32	00.27	01.23	02.32	03.30	04.07	00.23	07.50	00.20	00.5
0 Bathymetry 480 m		4.07	=0/	4004	0.50/	500/	350/	0.404	0.50/																									
21		1%	5%		25%	50%	75%	84%	95%		901-15 N	25 -							- h															ļ
2 Percentiles	\downarrow	-2.62	-1.68	0.19	0.99	2.53	4.92	1.75	15.92		. %	20																						
23	+							ļ																										L
24		Mean					ļ	ļ			lo lo	15 -	8					=11.04																ļ
25 Moment measures	1	3.30		0.70			Ļ	ļ	ļ		ne	10 -	0		_						ļ			Į	ļļ		ļ	Ļ						ļ
6 Graphic (Folk)	1	3.49		0.45	1.83		ļ	ļ			frequency	5 -	ser		-dil	m		liner																ļ
7 Inman			3.78	0.38							÷	° 1	oar	n ILa	-111	Մետ		%																
28											pl	, o 🕂	ğırı				5 06 07 8	m.																<u> </u>
29		Gravel		Silt	Clay			l						-6.6 5-6 .6	3.02.01.00	.0.02.03.04	.05.06.07.0	.09.010.0																ĺ
0 Proportions		8.40	61.23	15.04	15.33																													
31							I	I									1	Ĩ							Г Т			1						1
2 901-18																																		
3 Data	Π	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.05	0.09	0.06	0.13	0.20	0.22	0.34	0.26	0.28	0.18	0.12	0.12	0.21	0.17	0.13	0.10	0.12	0.07	0.10	0.08	0.06	0.08	0.0
4 Frequency %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.54	1.29	2.31	1.54	3.34	5.14	5.66	8.74	6.68	7.20	4.63	3.08	3.08	5.40	4.37	3.34	2.57	3.08	1.80	2.57	2.06	1.54	2.06	2.0
5 Cumulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.54	2.83	5.14	6.68	10.03	15.17	20.82	29.56	36.25	43.44	48.07	51.16	54.24	59.64	64.01	67.35	69.92	73.01	74.81	77.38	79.43	80.98	83.03	85.0
6 Bathymetry 320 m	1							1																										(
37		1%	5%	16%	25%	50%	75%	84%	95%		901-18																							
8 Percentiles		-1.55	-0.52	1.08	1.75		7.54	9.73	13.56		901-18 NE	²⁵ T							٦ H							•••••								
9		1.00	0.02	1.00	1.75	0.01	1.04	0.75	10.00			20 -									<u> </u>				<u>├</u>			+						
0	+	Mean	StDev	Skow	Kurt			1			%	20																+						h
1 Moment measures		4.59	3.60	0.36	1.94						50	15 - 10 - 5 -	ī.																					·
2 Graphic (Folk)	+	4.59	4.30	0.36	1.94			l			d	10	D Galles					a ei										l						
	+	4.07	4.30		1.00						Ue.		20 CC		Γ	ես		14 91								•								l
3 Inman	+		4.32	0.37		ļ	l	ļ			4	5 -	×Π			ՈՒՄ	h !	₿ ii																ļ
4	+	_					<u> </u>	ļ				0			ΗШ		ШПН	hm.						ļ				<u> </u>						
5		Gravel	Sand	Silt	Clay						phi		6.05.04.	03.02.01.	0.01.02	.03.04.05	.06.07.08	.09.010.0)															i
6 Proportions		2.83	48.33	26.22	22.62			ļ																										l
7								1	I T					Ι Τ			T	T						. –	I 7		-	-		_				i –

	А	віс	l D	ΙE	F	l G	н		JI	к	ьI	м	N	lo	Р	lq	R	s	тΙ	υI	νI	w	хI	Υİ	zΙ	aa I	AB	AC	AD	AE	AF	ag I	ан І	AL I	AJ
1	APPENDI			Οι	itpu	t da	ta fo	or gi	rain	size																									
2	Class midpts		-6.50							-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75
3	Class limits		-6.00				-4.00				-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00
148	901-20		1																İ																
149	Data	T	0.00	0.00	0.00	0.00	0.00	4.20	0.01	0.01	0.15	0.44	0.10	0.25	0.45	0.81	1.07	1.50	1.10	0.44	0.77	0.29	0.12	0.32	0.35	0.32	0.23	0.31	0.19	0.25	0.19	0.15	0.20	0.13	0.01
150	Frequency %		0.00	0.00	0.00	0.00	0.00	26.05	0.06	0.06	0.93	2.73	0.62	1.55	2.79	5.02	6.64			2.73	4.78	1.80	0.74					1.92	1.18	1.55	1.18	0.93	1.24	0.81	0.06
	Cumulative %		0.00	0.00	0.00	0.00	0.00	26.05	26.12	26.18	27.11	29.84	30.46	32.01			46.46	55.77											83.31	84.86	86.04	86.97	88.21	89.02	89.08
152	Bathymetry 318 m																																		
153			1%	5%	16%	25%	50%	75%	84%	95%		901-20	00										1		1	1				1	1			1	
154	Percentiles		-3.77	-3.66	-3.56	-3.51	1.19	4.58	7.22	72.53		NE	³⁰ T																						
155			1									%	25 -										Î		Î	1				Î	1			1	
156			Mean	StDev	Skew	Kurt							20 -												1						ĺ				
	Moment measures		1.69	4.60	0.54	2.29						frequency	15 -	.																					
158	Graphic (Folk)		1.62	14.24	0.50	3.86				1		- B		201					10 01				1	Î	1	1				1	Í				
	Inman			5.39	0.12							fre	5 -	=0 00					70 IIIIEE =10.92																
160														۶ ï			┺╘	 -					1	1	1					1	1				
161			Gravel	Sand	Silt	Clay						phi	0 +	-6.05.04.0		00.01.02			HI III																
162	Proportions			42.18	13.40	13.96								-0.00.04.0	13.02.01	.00.01.02.	03.04.03	.00.07.00	.09.010.0																
163																							i	1	i	i				i					
	901-22		1																																
165	Data		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.03	0.02	0.04	0.06	0.06	0.06	0.03	0.06	0.08	0.08	0.11	0.10	0.10	0.09
166	Frequency %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.49	0.49	0.49			0.99	0.49	1.48				2.96	2.96			3.94					
	Cumulative %		0.00	0.00					0.00	0.00	0.00	0.00	0.00							4.43		6.40												45.81	
168	Bathymetry 766 m	T	1											1																					
169			1%	5%	16%	25%	50%	75%	84%	95%		901-22																							
	Percentiles		0.02	3.03	5.63	7.30		13.00	14.44	17.36		M	²⁵ T																						
171			1									%	20 -																						
172			Mean	StDev	Skew	Kurt	i					01																							
173	Moment measures		8.57		-1.42							SC 20	15 -	5																					
	Graphic (Folk)		10.01	4.37	0.02	1.03						frequency	10 -	S Cellos					1911					1											
175	Inman			4.40	0.01							fre	5 -	200 8 G					=49 =																
176			1															Thum	iIIn																
177			Gravel	Sand	Silt	Clay						phi	0 +	-6.05.04.0	20201	1111		06.07.08																	
178	Proportions				23.15							P		-0.60.04.6	0.02.01.	00.01.02.	03.04.05	.00.07.08	.09.010.0																
179																			1				1		1	1				1					
180	901-23		1																																
	Data	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.04	0.04	0.01	0.04	0.06	0.07	0.08	0.06	0.08	0.09
182	Frequency %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	1.77	0.88	3.54	3.54	0.88	3.54	5.31	6.19	7.08	5.31	7.08	7.96
	Cumulative %		0.00	0.00				0.00	0.00	0.00	0.00	0.00	0.00							5.31														53.10	
	Bathymetry 661 m	T	Τ																												1				
185			1%	5%	16%	25%	50%	75%	84%	95%		901-23	25																						
186	Percentiles		0.08	2.33	5.77	7.28	9.28	10.97	11.76	13.36		M	²⁵ T																						
187												%	20 -										1	ĺ	1	1		-		1	Ĩ			1	
188			Mean	StDev	Skew	Kurt							15 -	-					12 7				İ		İ	İ				İ	1			1	
	Moment measures		8.37	2.61	-1.43							frequency		20					70 III101 =38 94												1				
190	Graphic (Folk)		8.94	3.17	-0.22	1.22						'nb	10 -	B00 (_																
	Inman			2.99	-0.17							fre	5 -	۶ G				-F	inni				İ		İ					İ					
192			1				1										-	nn dll					1		1	1				1				1	
193			Gravel	Sand	Silt	Clay						phi	0 +	-6.05.04.0	3 0 2 0 1	00.01.02	13 04 05	06.07.08	09.010.0	1											1				
194	Proportions				25.66									-0.60.04.6	0.02.01.	00.01.02.	00.04.00	.00.07.08	.03.010.0																
195			1																I																
		<u> </u>		·																		·							·						

I A	вс	D	E	F	G	н	1	J	к	L	М	N	0	Р	Q	R	s	тΙ	U	l v	w	x	Υ	z		AB	AC	AD	AE	AF	AG	AH	AI	AJ
									size																									
2 Class midpts	-	_				-4.25				-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75
3 Class limits	1					-4.00																			5.50								9.50	
196 901-27																																		
197 Data	T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.01	0.01	0.01	0.01	0.03	0.02	0.05	0.03	0.04	0.02	0.02	0.10	0.10	0.08	0.07	0.07	0.05	0.07	0.11	0.11	0.11	0.13	0.14
198 Frequency %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.44	0.44	0.44	0.44	0.44	1.32	0.88	2.19	1.32	1.75	0.88	0.88	4.39	4.39		3.07	3.07	2.19	3.07	4.82	4.82	4.82	5.70	6.14
199 Cumulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	1.32	1.75	2.19	2.63	3.07	4.39	5.26	7.46	8.77	10.53	11.40	12.28	16.67	21.05	24.56	27.63	30.70	32.89	35.96	40.79	45.61	50.44	56.14	62.28
200 Bathymetry 776 m																																		
201		1%	5%	16%	25%	50%	75%	84%	95%		901-27	25 -																						
202 Percentiles		-1.84	1.36	4.43	5.57	8.95	11.14	12.15	14.21		S	²⁹ T																						
203											%	20 -																						
204		Mean	StDev	Skew							5	15 -	=																					
205 Moment measures		7.76	3.18	-1.11							frequency		SIL SC					12																
206 Graphic (Folk)		8.51	3.88	-0.18	0.95						nbe	10 -	ED OD					=37 1																
207 Inman			3.86	-0.17							fre	5 -	×π			_																		
208														_		പി	hrm																	
209			Sand		Clay						phi	0 +	-6.05.04.0	3.02.01.	00.01.02.0	3.04.05	06.07.08.	09.010.0																
210 Proportions		1.75	10.53	28.51	59.21															ļ				L				L			L]
211																																		
212 901-28		ļ											ļ																					
213 Data		0.00					0.00	0.00	0.00	0.00	0.00					0.09		0.28			1.95		0.39	0.23			0.09		0.08		0.10		0.12	
214 Frequency %		0.00					0.00	0.00	0.00	0.00	0.00					1.26		3.91			27.20					1.67							1.67	
215 Cumulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.28	1.53	3.49	7.39	11.99	22.18	49.37	64.44	69.87	73.08	75.45	77.13	78.38	79.78	80.89	82.57	83.96	84.66	86.33	88.15
216 Bathymetry 710 m																																		
217		1%	5%	16%			75%	84%	95%		901-28 SE	35 +																						
218 Percentiles		0.86	1.73	2.72	3.06	3.52	5.40	8.53	12.66		SE	30 -																						
219											%	25 -				П																		
220			StDev								C N	20 -	to d																					
221 Moment measures		4.67	2.76	1.15							ner	15 -	00 00					70 III165 =11.85																
222 Graphic (Folk)		4.92	3.11	0.70	1.91						frequency	10 -	5 C					81																
223 Inman			2.90	0.72	ļ						ţ	5 -																						
224 225		0	Sand	Silt	Clav												06.07.08	- - - - - - - - - -																
225 226 Proportions		Grave		18.13							phi		-6.05.04.0	3.02.01.	00.01.02.	3.04.05	06.07.08	09.010.0	·															
226 Proportions	+		04.44	10.13	17.43								,				r																	
228 901-31																																		
229 Data		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.03	0.20	0.20	0.18	0.18	0.17	0.16	0.10	0.11	0.16	0.10	0.12	0.11	0.13	0.15
230 Frequency %		0.00					0.00	0.00	0.00	0.00	0.00					0.66		0.03															4.30	
231 Cumulative %		0.00						0.00	0.00							0.99									35.43									
232 Bathymetry 806 m		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.39	1.00	2.00	5.04	4.04	11.20	17.00	20.04	23.00	33.43	-10.13	-++.04	-1.00	02.00	30.29	30.20	33.31	00.21	13.10
232 Baulymeuy 800 m		1%	5%	16%	25%	50%	75%	84%	95%		004.01																							
234 Percentiles		1.01	3.04	3.87				11.30	13.55		901-31 SE	²⁵ T							ا r											•				
235	\vdash	1.01	0.04	5.07	4.00	1.44	10.19	11.50	10.00		. ^	20 -								+				<u> </u>							<u> </u>			
236	1	Mean	StDev	Skew	Kurt						۷ %									1														
237 Moment measures	\square	7.12	2.83	-0.21	-				+		juc,	15 - 10 - 5 -	ser					10 G																
238 Graphic (Folk)	\square	7.46	3.45	0.15	0.77						ant	10 -	00					29.6°=																
239 Inman	\square	1.40		0.10	0.77						frec	5 -	8 T			m-		5 11	' ├─											-				
240	H	1	0.71	0.10	1						-	-					Ոեսե	ЪП		1														
241	\vdash	Grave	Sand	Silt	Clav						nhi	0 +					06.07.08			1	<u> </u>													
242 Proportions		2.0.0		38.41							Pril.		-0.05.04.0	0.02.01.	00.01.02.0	J3.04.05.	06.07.08.	ບສ.ບາບ.0		1														
243		1		50.71	1.0.1								1																					
				L	1		· · · · ·				·····				·				L	I	·			·	·						·			I

1	A I	вІс	l d l	Εĺ	Εİ	G	Ιн		JI	к	ы	м	N	0	Ρĺ	οI	R	s	тΙ	υI	νI	l w l	x I	γI	z	aa I	AB	I AC	I AD I	AE	AF	ag I	ah I	AI I	A.J
1	APPENDIX			Οι	itpu	t da	ta fo	or a	rain	size	- 1								- 1														I		
2 0	lass midpts	T	-6.50							-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75
3 C	lass limits	T	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00
244 9	01-33	T			-																														
245 D	ata	Т	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.08	0.32	1.30	0.92	0.40	0.30	0.16			0.03	0.06	0.06	0.05	0.05	0.06	0.04
246 F	requency %	T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.23	0.23	0.23	1.87	7.48	30.37	21.50	9.35	7.01	3.74	2.10	1.87	0.70	1.40	1.40	1.17	1.17	1.40	0.93
	umulative %	Τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.47	0.70	0.93	2.80	10.28	40.65	62.15	71.50	78.50	82.24	84.35	86.21	86.92	88.32	89.72	90.89	92.06	93.46	94.39
248 B	athymetry 376 m	T																																	
249		Τ	1%	5%	16%	25%	50%	75%	84%	95%		901-33	35 -																						
250 P	ercentiles		2.03	2.71	3.13	3.29	3.72	4.74	5.91	10.36		NW	30 -				_																		
251												%	25 -																						
252			Mean										20 -																						
	loment measures		4.48	2.10	1.73	5.17						frequency	15 -	n n					% IITHET ≡5.61																
	raphic (Folk)		4.25			2.16						ъ		50					2°																
255 lr	iman			1.39	0.58							fre	10 - 5 -	۶ G			dlh-	,																	
256 257																		b																	
			Gravel	Sand	Silt	Clay						phi	0 +	6 05 04 0	3.02.01	0 01 02		.06.07.08																	
	roportions			62.15	27.57	10.28																													
259																																			
260 1																																			
261 D			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.31	0.27	0.40	0.47	0.78	0.96	1.79	1.21	1.56	1.72			0.61					0.25	0.32	0.29	0.23	0.27	0.41
	requency %	1	0.00	0.00	0.00				0.00	0.00	0.00	1.05	1.71					5.31		6.69				3.15			2.77					1.60		1.49	
263 C	umulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.05	2.77	4.26	6.47	9.07	13.38	18.69	28.60	35.29	43.92	53.43	58.63	61.78	65.15	68.36	71.13	73.45	75.44	76.83	78.60	80.20	81.47	82.96	85.23
	athymetry 805 m	Т																																T	
265			1%	5%	16%	25%	50%	75%	84%	95%		149-6	25 -																						
	ercentiles		-1.51	-0.31	1.26	1.83	3.32	6.89	9.72	13.19		NW	²⁵ T																				T	T	
267		T										%	20 -																						
268			Mean	StDev	Skew	Kurt							15 -																						
269 N	loment measures	Т	4.41	3.51	0.54	2.14						enc	13	ser					je L													1			
270 G	raphic (Folk)		4.77	4.16	0.49	1.09						frequency	10 -	UU UU		П	-0		% TINET =14.77											1		1			
271 lr	iman			4.23	0.51							fre	5 -	¢ q		I			× 11																
272		1	1										Ŭ			ഫില	IIIh	Inne																	
273		T	Gravel	Sand	Silt	Clay						phi	0 +	6.05.04.0	3 0 2 0 1	00.01.0.2		5.06.07.08		1															
	roportions		2.77	55.86	19.97	21.40								0.00.04.0	0.02.01.	00.01.02	00.01.00																		
275																																1	1	T	
276 1																																			
277 D	ata	T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.29	0.40	0.42	0.52	0.84	0.79	1.22	0.67	0.80	0.60	0.54	0.20			0.22	0.17	0.21	0.14	0.18	0.22	0.14	0.19	0.21
	requency %	T	0.00	0.00	0.00				0.00	0.00	0.00	1.02	2.47		3.58			6.73		5.71	6.82					2.56	1.88								
	umulative %	Τ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.02	3.50	6.91	10.49	14.92	22.08	28.82	39.22	44.93	51.75	56.86	61.47	63.17	65.64	68.20	70.08	71.53	73.32	74.51	76.04	77.92	79.11	80.73	82.52
	athymetry 849 m																																		
281			1%	5%	16%	25%	50%	75%	84%	95%		149-14	25 -																						
	ercentiles		-1.50	-0.75	0.58	1.23	2.87	7.66	10.44	15.26		F	20 T																						
283		Τ										%	20 -															L		1		1		1	
284		T	Mean	StDev	Skew	Kurt							15 -																			1			
285 N	loment measures	T	4.17	3.85	0.54	1.92						frequency		line set					15 95												-		T		
286 G	raphic (Folk)	T	4.63	4.89	0.54	1.02						'nb	10 -	3 8					70 III101 = 17 48																
287 Ir	iman	1		4.93	0.54							fre	5 -	e G		H	fL.		×											1		İ			
288		1	1				1						-		'n.	111 III	IIIL-	lb-o-c										1							
289		1	Gravel	Sand	Silt	Clay	1					phi	0 +	6 05 04 0	30201	10.01.02	13 04 05	.06.07.08	09.010.0									<u> </u>			1				
290 P	roportions	1		57.97										0.00.04.0	0.02.01.	30.01.02.0	JJ.04.00	.00.07.08	.03.010.0																
291		1												1					1	_															
· •			· · · · · · · · · · · · · · · · · · ·				·	·									•		L									·	·						

1	A E	зIсI	D	Εļ	Εİ	G	н		J	к	ιI	м	N	0	Ρİ	Q	R	s	тΙ	υI	v I	w	x	Υ	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
1	APPENDIX									size																									
2 C	lass midpts			-5.75	-5.25	-4.75	-4.25	-3.75	-3.25	-2.75																5.25				7.25	7.75	8.25	8.75	9.25	9.75
	lass limits		-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00
292 14																																	L		
293 Di			0.00	0.00	0.00		0.00			0.00	0.76		0.15			0.48		0.75		0.85		1.02		0.43			0.27								
	requency %		0.00	0.00	0.00		0.00			0.00	4.29	1.58		2.37	2.20			4.23	6.43	4.79			2.43				1.52						2.43		
	umulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.29	5.87	6.71	9.08	11.28	13.99	17.48	21.71	28.14	32.94	38.30	44.05	46.47	48.90	50.42	52.34	53.86	56.57	58.66	60.86	63.62	66.10	68.53	71.24	72.48
	athymetry 2250m																																L		ļ'
297			1%	5%		25%	50%	75%	84%	95%		149-15	25 -																				I	I	<u> </u>
	ercentiles	Ц	-2.15	-1.76	0.80	1.76	4.86	11.05	15.40	24.25		F																					L		ļ
299												%	20 -																				L		L
300			Mean									S	15 -	5																			,		
	oment measures		5.30	4.26	-0.09	1.61						frequency	10	SIR C					12 22														<u> </u>		ļ
	raphic (Folk)		7.02	7.59	0.47	1.15						Ĕ	10 -						70 IITEL														ı	ļ	
303 In	man			7.30	0.44							Ę	5 -	e 11			nn-																µ	J	ļ
304		\downarrow											0		h	πШΙ	Шhiн	htt	որ														µ		ļ'
305		\downarrow	Gravel		Silt	Clay						phi		-6.05.04.0	3.02.01.	00.01.02.	03.04.05.	06.07.08.	0.010.0														L		
	roportions		6.71	39.76	17.15	36.38																											ļ		ļ
307																																	ı	ļ	
308 14																																	L		ļ
309 Da			0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.02		0.02		0.03	0.03	0.03	0.03		0.07		0.01			0.21				0.26		0.20		
	requency %		0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.50		0.50		0.75	0.75		0.75		1.75		0.25			5.25								
	umulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.75	1.25	1.50	2.25	3.00	3.75	4.50	5.25	7.00	7.75	8.00	13.00	19.00	24.25	32.25	38.25	46.50	53.00	58.00	63.00	66.25	72.50
	athymetry 1960m																																L		<u> </u>
313			1%	5%		25%	50%	75%	84%	95%		149-16	25 -																				L		
	ercentiles		-0.22	2.84	5.27	6.05	7.77	10.21	11.11	12.93		F																					L		<u> </u>
315												%	20 -																				i		i
316				StDev								S	15 -	_																			L		[
	oment measures		7.66	2.58		3.50						en		22					27.50														L		<u> </u>
	raphic (Folk)		8.05	2.99	0.08	0.99						frequency	10 -	38					۶ î														L		ļ
319 In	man			2.92	0.14							fre	5 -	<u>8</u>			Ы	чнь	пП														L		
320															_				н																
321			Gravel		Silt	Clay						phi	0 +	-6.05.04.0	3.02.01.	00.01.02.	03.04.05.	06.07.08.	0.010.0	י <u>ה</u>															ļ
	roportions		0.50	7.25	45.25	47.00																											<u>ا</u> ـــــا	ļļ	Ļ
323																																	ı		[
324 14		\downarrow																															h	ليبيب	ļ
325 Da		+	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.05		0.02		0.05	0.07		0.07			0.10			0.18	0.25			0.32			0.30		
	requency %		0.00	0.00	0.00					0.00	0.00	0.00	0.67		0.27		0.67	0.94	1.61	0.94	1.88						3.35								
	umulative %	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.67	0.94	1.21	1.61	2.28	3.22	4.83	5.76	7.64	10.05	11.39	13.40	17.02	19.44	22.79	25.74	28.95	33.24	37.40	41.55	45.58	50.27	53.49
	athymetry 1540m																																		ļ
329		ļ	1%	5%		25%	50%	75%	84%	95%		149-17	25 -							, [_]													µ]	I	ļ'
	ercentiles	Ļļ	-0.37	2.10	4.87	6.38	9.47	13.63	15.62	19.64		F																ļ					ا ـــــا		ļ
331		\downarrow										%					1																ļ		ļ!
332				StDev								5	15 - 10 - 5 -	10			1																µ		ļ
	oment measures		8.17	2.91	-1.14	3.37						len	10	Sinc C					70 III 101														ı ————————————————————————————————————	,	ļ
	raphic (Folk)	1	9.98		0.15	0.99						be	10 -	10 UU					2 ²														µ]	J	ļ'
335 In	man	Ļ		5.37	0.14							Ţ	5 -						-0														ļ	ļ	ļ
336		\downarrow															- CC-C		IIh														ļ	J	ļ'
337			Gravel	Sand	Silt	Clay						phi	v +	-6.05.04.	3.02.01.	00.01.02.	03.04.05.	06.07.08.	0.010.0	'													µ	J	ļ
338 Pr	roportions		0.67	10.72	26.01	62.60																											ļ		ļ
339																																		. 1	

A B	D	Е	F	G	н	I	J	к	L	м	N	0	Р	Q	R	s	т	U	V	w	х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
	В	Οι	utpu	t da	ta fo	or a	rain	size																									
2 Class midpts								-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75
3 Class limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50		7.50			9.00		
40 149-18																																	
41 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.52	0.58	0.31	0.36	0.28	0.43	0.46	0.52	0.83	0.50	0.62	0.70	0.30	0.26	0.22	0.38	0.32	0.28	0.30	0.31	0.30	0.31	0.25	0.25	0.12
42 Frequency %	0.00	0.00		0.00																												1.87	
43 Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00					15.30																				73.66	74.55
44 Bathymetry 1174m	-									1																							
45	1%	5%	16%	25%	50%	75%	84%	95%		149-18		·						·								1							(
46 Percentiles	-2.59	-2.09	-0.33					27.79		F	²⁵ T							¬ ا	1							1					[
47										%	20 -															1					[]		(
48	Mean	StDev	Skew	Kurt						, ^`												•											
49 Moment measures	4.74		0.00							frequency,	`15 -	120					ter G	s															
50 Graphic (Folk)	6.58	8.62	0.53							ne	. 10 -	<u>8</u> 8					70 IITHET									1							1
51 Inman	0.00	8.18	0.47	1.01						free	5 -	ê 🕯			!																		
52		0.10	0.11								5 1		ாட	Jun	hn L	An m	_														h4		<u> </u>
53	Gravel	Sand	Silt	Clay						nhi	0 +			╡┥┥┥┥┥	IIII I	╷╷╷╷╷	HTh.																
54 Proportions			17.69							pen		-6.05.04.	93.02.01	.00.01.02	.03.04.05	5.06.07.08	3.09.010.0	0															
55	12.01	01.01	11.00	02.00																													Ì
56 149-19							·																										l
57 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1 13	0.34	0.15	0.25	0.37	0.45	0.62	0.93	1 31	2 50	2 21	2 18	1.90	0.52	0.32	0.37	0.32	0.26	0.12	0.10	0.10	0.12	0.15	0.10	0.10	0.1
58 Frequency %	0.00	0.00							1.87			2.04								10.47				1.76							0.55		
59 Cumulative %	0.00								8.10			12.34																					
60 Bathymetry 765 m		0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.10		10.00	12.04	14.02	10.24	20.00	00.00	44.00	00.00	00.04	70.01	01.07	00.04	00.07	01.44	00.07	1 00.00	00.00		01.20	32.12	02.07		00.0-
61	1%	5%	16%	25%	50%	75%	84%	95%			i	L						-															l
62 Percentiles	-2.68	-2.52	0.18			3.30		10.83		149-19 F	25 T				-		-	¬ ا															
63	-2.00	-2.52	0.10	1.12	2.25	0.00	4.55	10.05			20 -																						
64	Moon	StDov	Skew	Kurt						%/																							
65 Moment measures	2.55	3.08	0.89							. î	15 -	13					Ξ.,																
66 Graphic (Folk)	2.33	3.13	0.09			<u> </u>				Inel	. 10 -	38			hn. I		10111 0/ -8.08	Ē	+							<u> </u>					<u> </u>		
67 Inman	2.00	2.20	0.10	2.52						frequency		8 G	-	п			51	"															
68	-	2.20	0.07				·····				5 -			-dl					·····												j/		
69	Gravel	Sand	Silt	Clav	·						0 +		,10-0	1111			άπ α.																<u> </u>
70 Proportions			9.42							phi		-6.05.04.	3.02.01	.00.01.02	.03.04.0	5.06.07.0	8.09.010.0	0															
71	10.30	11.57	9.42	0.71											r	1		rl	+												┟┦		
72 149-21										, ¹	l																						l
72 149-21 73 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.40	0.53	0.79	1 17	1 5/	1.58	2 46	1 3/	1.32	1.73	0.49	0.38	0.65	0.56	0.56	0.40	0.46	0.20	0.51	0.35	0.28	0.36	0.2
74 Frequency %	0.00	0.00							0.00			2.37				7.07				7.74				2.51							1.25		
74 Prequency % 75 Cumulative %	0.00								0.00			5.24																					
76 Bathymetry 1060m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.07	2.00	0.24	0.13	13.97	20.00	21.93	30.94	-+4.94	50.85	30.59	00.79	02.49	00.40	01.91	10.41	12.20	/4.20	10.00	11.04	19.41	00.00	02.21	00.2
76 Bathymetry 1060m	1%	5%	16%	25%	50%	75%	84%	95%			<u>ا</u> ـــــــ	I		1		1			+														
78 Percentiles	-1.51	-0.54	0.66			7.28	10.43	95% 19.27		149-21 F	25 T							ا ר															
79 Percentiles	1-1.51	-0.54	0.00	1.30	2.93	1.20	10.43	19.27			20 -								+												h		
79 B0	Mean	StDevi	Skew	Kurt						%									+												jl		
30 Bill Moment measures	4.16	3.76	0.57							frequency	15 -	5					50		+							<u> </u>					l	,ļ	
	4.16					l				ner	. 10 -	00			1		70 III101 =16.79		l							l							
82 Graphic (Folk)	4.07	5.44	0.59	1.36						be	ʻ° 1	5 C 8 T					81																
B3 Inman	4	4.89	0.54		ļ	ļ	 			- -	5 -			-dill	mi .	_	1		+							ļ					ļ	, 	
84	10	0	0.11	01							0 1			11111		Шин	hn.									ļ					jl		
	Gravel			Clay						phi	νT	-6.05.04.	3.02.01	.00.01.02	.03.04.05	5.06.07.08	3.09.010.0	5'													jl	,	
86 Proportions	2.86	57.92	17.05	22.16	ļ							·						<u> </u>								ļ					لـــــا		ļ
37	1		L		I	l	1			·	1				I	1		I		L						I						ل	i

	A B		Е	F	GΙ	нΙ	1	JJ	κI	L	м	N	0	Р	Q	R	s	тΙ	υI	v I	w	x	Υ	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
1	APPENDIX								size								·																	
2 0	Class midpts	-6.50	-5.75	-5.25	-4.75	-4.25	-3.75	-3.25	-2.75	-2.25											3.25							6.75		7.75	8.25	8.75	9.25	9.75
	Class limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00
	49-22																																	
389 C		0.00		0.00				0.00	0.00		0.05	0.04		0.05		0.27		1.14		1.45			0.60	0.71										
	requency %	0.00	0.00	0.00		0.00		0.00	0.00			0.23		0.29		1.58					11.25			4.16						2.69				
	Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.53	0.64	0.94	1.76	3.34	5.98	12.65	18.22	26.71	37.96	46.87	50.38	54.54	57.35	60.22	62.33	65.14	67.49	70.18	73.35	75.57	77.62	78.79
	Bathymetry 1450m	1																																ļ
393		1%	5%		25%	50%	75%	84%	95%		149-22 F	25 -							_															
	Percentiles	0.05	1.34	2.31	2.91	4.45	8.87	12.45	20.63		r																							
395		1									%	20 -																						
396				Skew							lo V	15 - 10 - 5 -	la la																					
	Moment measures	5.56	3.33		1.72						Jer	10	CIBO CI			п.		1.21																
	Graphic (Folk)	6.40	5.46	0.63	1.33						edi	10 1	=0.00		_	dh		8 î																l
	nman		5.07	0.58							4	5 -			- 11	1116		L								ļ								h
400 401		Gravel	0	Silt	Clav							0			-all		ΠΠ	lh.																
	Proportions			23.32							phi	• •	-6.05.04	3.02.01	00.01.02	03.04.0	5.06.07.08	.09.010.0). —															
402 P	roportions	0.55	40.34	23.32	29.02																													
	49-23																																	
404 L		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.04	0.10	0.12	0.20	0.25	0.43	0.64	0.46	0.53	0.52	0.28	0.10	0.12	0.29	0.44	0.35	0.31	0.36	0.39	0.38	0.39	0.39	0.04
	Frequency %	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	2.01	0.04		1.00		2.93		5.35		4.43		2.34	1.59						3.01					
	Cumulative %	0.00	0.00	0.00				0.00	0.00			2.34					12.37																	
	Bathymetry 1884m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.01	2.04	3.10	4.10	5.05	0.70	12.57	17.75	21.57	20.00	30.43	32.70	54.50	33.37	51.13	41.47	44.40	40.33	30.00	33.20	30.44	33.10	02.30	05.25
409	Jaulymeu y 100411	1%	5%	16%	25%	50%	75%	84%	95%																									
	Percentiles	-1.58	0.26	1.85	2.89			46.92	83.59		149-23 F	25 T						1	ריין ר															
411	ercentules	1-1.50	0.20	1.05	2.05	7.50	20.00	40.32	03.33			20 -																						
412		Mean	StDev	Skew	Kurt						%																							
	Moment measures	6.58	3.86		1.77						ů.	15 -	Ð																					l
	Graphic (Folk)		23.89	0.79	1.31						ant	15 - 10 - 5 -	5 G					% III161																
	nman	10.70	22.53		1.01						rec	5 -	5 Q =					8 îi																
416			22.00	0.70								5 -		_	ഫി	TL.	որը	m																
417		Gravel	Sand	Silt	Clav						phi	0 +					5 06 07 08								·									
	Proportions			20.48							pen		-0.05.04.	33.02.01	00.01.02	03.04.05	5.06.07.08	.09.010.0	·															
419																																		[
420 1	49-24																																	
421 C		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.02	0.04	0.01	0.03	0.03	0.04	0.05	0.10	0.08	0.16	0.21	0.25	0.21	0.19	0.14
	requency %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.51	0.25	0.51	0.25	0.25	0.51	0.51	0.51	1.02	0.25	0.76	0.76	1.02	1.27	2.54	2.04	4.07	5.34	6.36	5.34	4.83	3.56
	Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.51	0.76	1.27	1.53	1.78	2.29	2.80	3.31	4.33	4.58	5.34	6.11	7.12	8.40	10.94	12.98	17.05	22.39	28.75	34.10	38.93	42.49
424 E	Bathymetry 2535m																																	-
425		1%	5%	16%	25%	50%	75%	84%	95%		149-24	25 т																						
	Percentiles	0.26	4.28	7.38	8.21	11.03	14.70	16.45	19.99		F								1															
427											%	20 -										1			L									1
428		Mean	StDev		Kurt							15 -																						
	Noment measures	9.10	2.23		7.54						frequency		198					2 2																
	Graphic (Folk)	11.62	4.65	0.17	0.99						nbć	10 -	38					70 IIIIef				T												L
	nman		4.53	0.19							fre	5 -	8 F					ĺm' ′	'I															
432																	ഹി]]			ļ									ļ
433		Gravel		Silt	Clay						phi	0 +	-6.05.04	33.02.01	00.01.02	03.04.05		.09.010 0	,															
	Proportions		4.58	17.81	77.61																													L
435									_	_								_		_						-			_		_	_	_	

	A B		Е	F	G	н		J	к	L	м	Ν	0	Р	Q	R	s	тΙ	υI	v I	w	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
1 /	APPENDIX	В	Οι	Itpu	t da	ta fo	or gi	rain	size																									
2 0	Class midpts	-6.50	-5.75	-5.25	-4.75	-4.25	-3.75	-3.25	-2.75								1.25				3.25									7.75	8.25	8.75	9.25	9.75
	Class limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00
	149-25																																L	<u> </u>
437 C		0.00		0.00				0.00	0.00	0.00	0.00	0.00		0.01		0.04				0.03		0.02	0.04											
	requency %	0.00	0.00	0.00				0.00	0.00	0.00	0.00	0.00		0.28		1.10				0.83	0.83	0.55	1.10							5.25				
	Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	0.83	1.66	2.76	4.42	6.63	8.01	8.84	9.67	10.22	11.33	14.09	17.13	20.44	24.59	29.01	34.25	39.50	45.30	48.34	52.21	56.08
440 E	Bathymetry 2010m																									ļ	ļ					ليستسبع	ļ	ļ
441		1%	5%		25%	50%	75%	84%	95%		149-25 F	25 т							- h														jl	
	Percentiles	0.13	1.65	5.32	6.55	9.21	12.67	14.32	17.65			20																				,l	ļl	l
443 444											%	20 -																				,l		───
	4		StDev								frequency	15 -	19																			,I		I
	Moment measures Graphic (Folk)	8.13 9.62	2.88		3.51						ner	10 -	LO GOBILS					19111 of 1914	È														þ	ļ
	nman	9.62	4.67	0.09	1.07						ba		2 G					81	1															
447 11	nman		4.50	0.13							4	5 -				_	In.	ílm -														/		
440		Gravel	Cand	Silt	Clav							0			÷m	md	5.06.07.08															ł	┝───┤	<u> </u>
	Proportions	Giavei		29.28							phi		-6.05.04.	93.02.01	00.01.02	03.04.05	5.06.07.08	.09.010.0)															l
451	Тороплота		10.22	23.20	00.00												-					+										/	h	
	49-27	· · · · ·																																l
453 C		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.18	0.36	0.51	0.68	0.69	0.98	0.60	0.60	0.47	0.31	0.22	0.21	0.15	0.15	0.15	0.10	0.10	0.15	0.12	0.12	0.15	0.05
	Frequency %	0.00	0.00	0.00	0.00			0.00	0.00	0.00	0.00	1.79		4.03		7.61		10.96		6.71			2.46	2.35	1.68									
	Cumulative %	0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.00						28.86																	
	Bathymetry 1200m	+ 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.70	0.00	1.00	10.00	21.14	20.00	00.02	40.00	00.24	00.00	01.07	04.40	00.70	00.40	10.10	11.01	72.00	10.00	10.10	70.10	10.00	01.21	01.11
457	Jaulymeu y 1200m	1%	5%	16%	25%	50%	75%	84%	95%																									
	Percentiles	-1.07	-0.32	0.68	1.26	2.76		12.10	27.63		149-27 F	²⁵ T							ا ا ۲															
459	crocifico	-1.07	-0.02	0.00	1.20	2.10	1.45	12.10	21.00		%	20 -																·				, !		
460		Mean	StDev	Skew	Kurt							I																						
	Moment measures	4.18	3.79		1.94						anc.	15 -	D					5 5																
	Graphic (Folk)	5.18	7.09	0.71	1.84						frequency	10 -	30		П			70 III161 =18.23															h4	
	nman		5.71	0.64							free	5 -	§ ¶		-mil	n.		5 11																
464												5		_	ЛШЬ	IIh																,t		
465		Gravel	Sand	Silt	Clav						phi	0 +	6 05 04 /		00.01.02		5.06.07.08																	
	Proportions	1.79	60.18	14.77	23.27						P		-0.93.94.0	5.02.01.	00.01.02.	03.04.03	5.00.07.00	.09.010.0														1	[]	1
467	-																					1										, I		
468 1	49-28																																	
469 C	Data	0.00	0.00	0.00	0.00	0.00	0.00	0.85	1.22	0.12	0.33	0.24	0.37	0.65	0.85	1.12	1.13	1.53	0.98	1.00	1.11	0.66	0.39	0.45	0.38	0.26	0.27	0.13	0.18	0.22	0.21	0.22	0.18	0.22
	Frequency %	0.00	0.00	0.00	0.00	0.00	0.00	4.92		0.69	1.91	1.39			4.92	6.49		8.86	5.67	5.79			2.26		2.20									
471 C	Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	4.92	11.99	12.68	14.59	15.98	18.12	21.89	26.81	33.29	39.84	48.70	54.37	60.16	66.59	70.41	72.67	75.28	77.48	78.98	80.54	81.30	82.34	83.61	84.83	86.10	87.15	88.42
472 E	Bathymetry 527 m																															1		
473		1%	5%	16%	25%	50%	75%	84%	95%		149-28	25 T																				, 1		
474 F	Percentiles	-3.16	-2.99	-1.00	0.32	2.11	4.95	8.16	13.57		N																					1		(
475 476											%	20 -										1												1
		Mean	StDev	Skew	Kurt							15 -	ser									Ì												
	Moment measures	2.88	4.03		2.45						frequency	10	UU 204L					5 5																
	Graphic (Folk)	3.09	4.80		1.47						n br	10 -	% COBI					70 III 161																
	nman		4.58	0.32							fre	5 -		-1	-mil	n l		× #																
480														االم	1111h	IIIIIrr	n					T							T					<u> </u>
481		Gravel		Silt	Clay						phi	0 +	-6.05.04	3.02.01	00.01.02	03.04.05	5.06.07.08	.09.010 0																1
	Proportions	15.98	54.43	13.20	16.39																													
483		1				_				_	_	_			_			_													_	, –	. –	

A B	D	E	F	G	н		J	к	L	М	N	0	Р	Q	R	s	т	U	v	w	x	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
APPENDIX	В	Οι	Itput	t da	ta fo	or ai	rain	size																									
Class midpts	-6.50							-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.7
Class limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50					9.00		
4 149-30	1																																1
5 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.01	0.07	0.10	0.12	0.20	0.21	0.19	0.32	0.21	0.29	0.25	0.24	0.15	0.13	0.10	0.06	0.04	0.03	0.03	0.04	0.04	0.03	0.02	0.0
6 Frequency %	0.00	0.00	0.00	0.00	0.00	0.00				0.29						5.57									1.76								
7 Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.23	3.52	5.57	8.50	12.02	17.89	24.05	29.62	39.00	45.16	53.67	61.00	68.04	72.43			80.94	82.11	82.99	83.87	85.04	86.22	87.10	87.68	87.9
8 Bathymetry 515 m																																	
9	1%	5%	16%	25%	50%	75%	84%	95%		149-30	05										1												
0 Percentiles	-2.13	-1.12	0.35	1.09	2.78	4.83	7.55	26.23		N	²⁵ T							יייין ר															
1	1		Î	1	ĺ					*	20 -										1					1							1
2	Mean	StDev	Skew	Kurt							15 -	-																1					1
3 Moment measures	3.46	3.45	0.77	2.82						frequency '	13]	22					50																
4 Graphic (Folk)	3.56	5.94	0.52	2.99						, a	10 -	=0.00			-		70 III III =12 00	1	1		1			-									1
5 Inman		3.60	0.32							fre	5 -	8 T		m	d hri		× 11																
6											-			d IIII	IIIIn	ռ			1							1							1
17	Gravel	Sand	Silt	Clay						phi	0 +	6 05 04	2 0 2 0 1	00.01.02	02.04.06	5.06.07.0																	
8 Proportions	5.57	62.46	17.01	14.96								-0.63.64.	5.02.01	00.01.02	.03.04.00	5.00.07.01	.09.010.0																
9																					i												1
0 149-31																1																	1
1 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.04	0.03	0.18	0.31	0.67	0.76	1.05	0.61	0.71	0.72	0.33	0.20	0.31	0.29	0.13	0.12	0.09	0.08	0.14	0.13	0.13	0.10	0.0
2 Frequency %	0.00	0.00	0.00	0.00	0.00	0.00				0.34		0.34				8.67				8.21	3.76	2.28	3.53	3.31	1.48						1.48		
3 Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.80	1.14	3.19													74.00	75.03	75.94	77.54	79.02	80.50	81.64	82.3
4 Bathymetry 512 m																1					1												1
5	1%	5%	16%	25%	50%	75%	84%	95%		149-31																							1
6 Percentiles	-0.69	0.29	1.11	1.59	3.00	6.99	11.28	23.76		N	²⁵ T						1	ד ר															
17	1		1							%	20 -																						
8	Mean	StDev	Skew	Kurt																													1
9 Moment measures	4.30	3.57	0.72	2.11						oue	10	22		_	. !		191																
0 Graphic (Folk)	5.13	6.10	0.70	1.78						frequency	. 10 -	B 8					70 IIIIEI = 17.67	1															1
1 Inman		5.09	0.63							fre	5 -	ŝ														[1
2	1		1								5			-dH	llha	n.,	_																1
3	Gravel	Sand	Silt	Clay						phi	0 +	6 05 04	13 02 01	00.01.02	03.04.0	5.06.07.0		-															1
4 Proportions	0.80	61.23	15.51	22.46								0.00.04.	50.02.01			0.00.07.0	5.00.010.0				1												
5			ĺ																														1
6 149-32																																	
7 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10		0.24				0.46								0.23			0.11	0.11	0.13	0.13	0.08	0.12	0.10
8 Frequency %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.43	1.57	3.42	4.14	5.42	6.56	6.56	9.27	5.85	6.28	5.99	4.42	3.00	4.14	3.28	1.85	2.43	1.57	1.57	1.85	1.85	1.14	1.71	2.2
9 Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.43	3.00	6.42	10.56	15.98	22.54	29.10	38.37	44.22	50.50	56.49	60.91	63.91	68.05	71.33	73.18	75.61	77.18	78.74	80.60	82.45	83.59	85.31	87.5
0 Bathymetry 502 m																-																	
:1	1%	5%	16%	25%	50%	75%	84%	95%		149-32	25																						
2 Percentiles	-1.54	-0.67	0.50	1.20	2.96	6.37	9.12	12.33		Ν	²⁵ T										1												
3			1		1			ĺ		%	20 -						1				1							1					T
4	Mean		Skew									-					1																
5 Moment measures	3.95		0.60							frequency	17]	arse					70 IINBT =12 41																
6 Graphic (Folk)	4.19	4.12		1.03						ñ	. 10 -	D D D																					
7 Inman		4.31	0.43							fre	5 -	8 ¶		лd	hn						İ												
8			1								Ĭ				IIIIn	հտա					1					1							I
9	Gravel	Sand	Silt	Clay						phi	0 +	60504	13 02 01	00.01.02	03.04.0	5 06 07 0	3 09 010	-			1												1
0 Proportions	3.00	57.92	19.69	19.40								0.00.04	55.02.01			5.50.07.0	5.55.010.0																

A	в с	D							к	L	м	N	0	Р	Q	R	s	т	U	v	W	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
	(size																									
2 Class midpts									-2.75						0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75										
3 Class limits		-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.0
32 149-33																																I		1
33 Data		0.00	0.00	0.00						0.35		0.31		0.23					0.26		0.20													
34 Frequency %		0.00	0.00							2.84			2.11	1.86				4.46					0.57							3.32			2.51	
35 Cumulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.43	5.27	7.13	9.64	11.75	13.61	15.96	19.94	23.82	28.28	30.39	32.09	33.71	34.76	35.33	39.55	44.89	49.92	55.35	58.67	62.64	65.96	69.45	72.93	75.45	77.2
36 Bathymetry 834 m																																		
37		1%	5%	16%	25%	50%	75%	84%	95%		149-33	25 -																						
38 Percentiles		-2.60	-2.04	0.50	1.64	6.01	9.41	12.15	17.77		F	29 T							יייין ר														. 1	1
39	Π										%	20 -															1	1					1	1
10	1	Mean	StDev	Skew	Kurt						2	15	_																					
1 Moment measures		5.43	4.20	-0.36	1.88						oue Due	15 - 10 - 5 -	22					111er 2 77																
2 Graphic (Folk)		6.22	5.91	0.12	1.04						aue	. 10 -	PD 00 4					≫ III =22	1									1					1	1
3 Inman			5.82	0.05							Į	5 -	8 F																					
4												5			ഹ്നി	h	1066	m-										1						1
5	+	Gravel	Sand	Silt	Clav	İ					phi	0 +		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ΠΗΗ		.06.07.08	ЩП,																
6 Proportions				31.20							pm		-6.05.04	03.02.01.	00.01.02	.03.04.05	.06.07.08	.09.010.0																
7		0.01	20.12	01.20	01.01								1					T							*****									
8 149-34																																	/ł	
9 Data	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.62	0.71	0.62	0.72	0.98	1.48	1 50	2.83	1.06	2.04	1.26	0.72	0.20	0.20	0.17	0.11	0.07	0.06	0.07	0.09	0.03	0.06	0.05	0
Frequency %		0.00	0.00							0.14	3.57				5.65		9.16					4.15								0.08		0.00		
1 Cumulative %	+	0.00	0.00					0.00		0.81	4.38																					96.77		
2 Bathymetry 1215m	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	4.30	0.47	12.04	10.19	21.03	30.30	39.52	55.62	07.11	10.00	00.12	90.20	91.00	93.03	34.01	94.04	95.05	95.59	95.19	90.20	90.43	90.77	97.00	- 31
3		1%	5%	16%	25%	50%	75%	84%	95%																									
	+										149-34 E	25 -							, h															
4 Percentiles	+	-1.94	-1.40	-0.02	0.70	1.82	2.82	3.34	6.44		r	~																						
5 6											%																	ļ				,	اا	ļ
	+	Mean									Ś	15 -	Đ					ī a														ļ		ļ
7 Moment measures		1.98	2.34	1.44			ļ				Jer	10 -	00			- M		70 III 161						ļ			ļ	ļ				J	J	Ļ
8 Graphic (Folk)		1.71	2.03	0.04	1.51						frequency	10 1	2 C C		l In			× 11									ļ	ļ				J	J	ļ
9 Inman	\square		1.68	-0.10							-	5 -	C 11	_	лШ																		l	I
0												0				IIIb																	ļ	1
1		Gravel		Silt	Clay						phi	0 +	-6.05.04.	3.02.01.	00.01.02	03.04.05	.06.07.08	.09.010.0	٦ <u></u>									ļ						ļ
2 Proportions		8.47	81.80	5.99	3.74																						L	<u> </u>				L		1
3																																		İ
4 149-35																																		
5 Data		0.00	0.00						0.00	0.00		0.03				0.11		0.50		0.42		0.47			0.28							0.07		
6 Frequency %	T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.54	0.36	0.36	0.90	1.98		8.99		7.55			8.09							1.80				
7 Cumulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.54	0.90	1.26	2.16	4.14	8.45	17.45	24.46	32.01	41.91	50.36	58.45	65.29	70.32	72.84	75.54	77.16	78.42	80.22	82.01	83.27	84.53	84
Bathymetry 1566m																																		-
9		1%	5%	16%	25%	50%	75%	84%	95%		149-35																							
Percentiles		-0.34	1.13	1.93	2.54	3.98	6.40	9.29	30.12		F	²⁵ T							1															
											%	20 -												1				1						1
2	1	Mean	StDev	Skew	Kurt							I																1						1
3 Moment measures	+	4.80	3.08		2.41						frequency	15 -	E C					1 e									· · · · · ·	1					+	í
Graphic (Folk)		5.07	6.23	0.62	3.08	1					ant	10 -	10 O					% IINEE =15 11																
Inman	+	5.01		0.02	0.00						Lec		8 F			-d D-		× 11															,ł	1
inman	+		3.00	0.44		 					4	5 -			l I					<u> </u>								 					/l	¢
7	+	Crowel	Sand	Silt	Clav	l						0 +			÷a¶∏	IIIII	Hibr	http://														I	/	<u> </u>
	+	Gravel	Sand								phi		-6.05.04	3.02.01	00.01.02	03.04.05	.06.07.08	.09.010.0										l				,	/l	ļ
8 Proportions		0.54	49.82	29.86	19.78	ļ							:																			,	l	ļ
1					۱	I	I		L			L									L			1			I	1				I		1

A B	c	D	Εļ	F	G	н		J	K	L	м	N	0	P	Q	R	s	т	U	v	w	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
	E	3	Οι	itpu	t da	ta fo	or q	rain	size																									
2 Class midpts	Π	-6.50							-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.7
3 Class limits	Ш	-6.00					-3.50								0.50	1.00	1.50	2.00	2.50	3.00		4.00							7.50			9.00		
80 149-36	П																											1						
81 Data	П	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.03	0.03	0.05	0.06	0.09	0.11	0.09	0.08	0.11	0.05	0.05	0.01	0.01	0.03	0.03	0.03	0.11	0.14	0.20	0.18	0.22	0.1
82 Frequency %	Ħ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.72	0.72	0.54	0.54	0.90	1.08	1.62	1.98	1.62	1.44	1.98	0.90	0.90	0.18	0.18	0.54	0.54	0.54	1.98	2.52	3.60	3.24	3.96	2.1
83 Cumulative %	Ħ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.72	1.44	1.98	2.52	3.42	4.50	6.13	8.11	9.73	11.17	13.15	14.05	14.95	15.14	15.32	15.86	16.40	16.94	18.92	21.44	25.05	28.29	32.25	34.4
84 Bathymetry 2105m	Ħ																																	
85	ĺΤ	1%	5%	16%	25%	50%	75%	84%	95%		149-36																İ	1						1
86 Percentiles	Ħ	-1.27					19.04	21.73	27.20		F	²⁰ T							1									1						
87	Ħ											15 -																1						•
88	Ħ	Mean	StDev	Skew	Kurt																													<u> </u>
89 Moment measures					4.98						2	10 -	5																					
90 Graphic (Folk)		13.75			1.01						ant	10	200 C					70 LILIER	h									<u> </u>				-		
91 Inman	$^{+}$		7.80	0.07	1.01						frequency	5 -	2 C C					۶ °																
92	+	-		3.07					├ ────┤		-							пЪ			<u> </u>							<u> </u>						h
93	t li	Gravel	Sand	Silt	Clav						-	0 +			┉┉	TI hisa	-mdl	,,,, ,	↓ ├─-				•			•••••		t						<u> </u>
94 Proportions			12.61		78.56						phi		-6.05.04.	93.02.01.	00.01.02.	03.04.05	06.07.08	09.010.0																
95	+	1.44	12.01	1.55	10.50																											-		
96 149-3 7	\mathbb{H}																																	
97 Data	₩	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.01	0.05	0.08	0.16	0.22	0.68	0.65	0.68	0.45	0.14	0.05	0.03	0.04	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.0
	$\left \right $			0.00																												0.01		
98 Frequency % 99 Cumulative %	\mathbb{H}	0.00	0.00	0.00		0.00		0.00		0.00			0.28		2.23		8.94					3.91												
	⊢	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.40	1.68	3.07	5.31	9.78	18.72	37.71	55.87	74.86	87.43	91.34	92.74	93.58	94.69	95.25	96.09	96.65	96.93	97.21	97.49	97.77	98.04	98.6
00 Bathymetry 168 m		101	=0/	1001	0.50/	500/		0.404	0.50/																									ļ
01		1%	5%		25%	50%	75%	84%	95%		149-37 NW	25 -							,															
02 Percentiles	Ħ	-1.04	0.44	1.37	1.69	2.34	3.00	3.34	5.77												ļ						ļ	ļ						ļ
03	\downarrow										%	20 -	-		П	-0												ļ						Ļ
04		Mean									2	15 -	LSG															ļ						ļ
05 Moment measures		2.54			10.27		ļ				Je L	10	COBIL			lh i		en e	i		ļ						ļ	ļ						ļ
06 Graphic (Folk)	ļ	2.35		0.15	1.66						Bal	15 - 10 - 5 -	° 1		l			81	i									ļ						ļ
07 Inman	Ļ		0.99	0.02							f.	5 -				IIL																		
08												~		m.	лШh	IIIb		_																
09		Gravel		Silt	Clay						phi	0 +	-6.05.04.	3.02.01.	00.01.02	.03.04.05	.06.07.08	.09.010.0	7 L															
10 Proportions		1.40	89.94	5.87	2.79																													
11																																		
12 186-9																																		
13 Data	\Box	0.00	0.00			0.00			0.00	0.00			0.09			0.28		0.57				0.11			0.03			0.15						
14 Frequency %	Π	0.00	0.00	0.00		0.00				0.00								8.18					0.14						2.30			3.44		
15 Cumulative %	\Box	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.43	1.43	2.73	5.02	8.18	12.20	16.64	24.82	30.13	36.59	42.61	44.19	44.33	45.77	46.20	47.78	49.35	51.51	53.80	57.53	60.69	64.13	68.01	72.3
16 Bathymetry 698 m	TT																																	
17	T	1%	5%	16%	25%	50%	75%	84%	95%		186-9	25																						
18 Percentiles		-1.16	0.00	1.43	2.02	6.65	10.33	11.62	14.24		М	²⁵ T											•					1						
19	Ħ										%	20 -							1		1							1						
20	Ħ	Mean	StDev	Skew	Kurt	· · · · · · · · · · · · · · · · · · ·	1														1						1	1						1
21 Moment measures	Ì	5.89	4.01	-0.14	1.41		· · · · · ·				frequency	15 -	Ser					70 III 07										1						1
22 Graphic (Folk)		6.57	4.70	0.02	0.70						ane	10 -	00 UU					10°																
23 Inman	Ħ			-0.02							free	5 -	8 U U										•••••			•••••								<u> </u>
24	$^{+}$		5.00	0.02			İ					2 1			linn,			nn.						(İ	İ						•
25	††i	Gravel	Sand	Silt	Clav				 †		phi	0 +		uu di					-									†						<u>†</u>
											pni		-6.05.04.	3.02.01.	0.01.02.	03.04.05.	06.07.08	09.010.0										·						
26 Proportions	{ I	1.43	42 751	13.34	42 47																													

	A le	вІС	D	Εļ	F	G	н		J	к	L	М	N	0	Ρļ	Q	R	s	т	υ	v	w	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
1	PPENDIX		В	Οι	itpu	t da	ta fo	or gi	rain	size																									
	lass midpts									-2.75																5.25				7.25					
	lass limits	\downarrow	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00
628 18																																			
629 Da			0.00	0.00	0.00		0.00			0.39	0.08			0.20		0.24	0.33	0.40	0.65	0.37		0.25					0.08								
	requency %	+	0.00	0.00	0.00		0.00			6.07	1.24				2.18			6.22									1.24				1.40				
	umulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.07	7.31	9.49	11.51	14.62	16.80	20.53	25.66	31.88	41.99	47.74	54.59	58.48	59.41	60.03	60.81	61.28	62.52	63.92	65.32	66.72	68.12	70.14	71.85	73.72	75.12
	athymetry 655 m	\rightarrow																																	ļ
633			1%	5%		25%	50%	75%	84%	95%		186-11 M	25 -																						
	ercentiles	\square	-2.68	-2.52	-0.18	0.94	2.66	9.96	13.63	21.11																									ļ
635		+										%	20 -																						ļ
636		\rightarrow	Mean									C	15 -																						
	oment measures		4.28		0.22	1.60						Jer	10	75		_																			
	raphic (Folk)	+	5.37	7.03	0.57	1.07						frequency	10 -	SID C			_		1.88																
639 In	man			6.91	0.59							ţ.	5 -	=0.00		dh.	16		11 % F	+															ļ
640		+			0.11								0 +	8 11	1600	нШ	Ilha	ann İ	m.	$\downarrow \vdash \downarrow$															ļ
641			Gravel		Silt	Clay						phi	0 1	6.05.04.0	3.02.01.	00.01.02.		06.07.08.		'															ļ
	roportions		11.51	47.90	8.71	31.88																													
643																																			
644 18																																			ļ
645 Da			0.00	0.00	0.00		0.00		0.00	0.00	0.00		0.13		0.03			0.03		0.03	0.03					0.05	0.03			0.03					
	requency %		0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	8.61		1.99			1.99		1.99							1.99								
	umulative %		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.61	9.93	11.92	13.91	16.56	18.54	21.85	23.84	25.83	27.15	27.81	27.81	29.14	32.45	34.44	35.76	39.07	41.06	45.70	49.67	53.64	58.28	62.91
	athymetry 690 m	_																																	
649			1%	5%		25%	50%	75%	84%	95%		186-14 M	25 +							,															ļ
	ercentiles	1	-1.20	-1.06	0.90	2.79	8.54	11.43	12.76	15.45																									ļ
651												%	20 -																						ļ
652					Skew							S	15 -	D n																					
	oment measures		6.76		-0.77							len	10	80					5 g																ļ
	raphic (Folk)		7.40		-0.23	0.78						frequency	10 -	8 F					70 III101 =37 09																ļ
655 In	man	\downarrow		5.93	-0.29							Ę.							-m																
656													0			ann	₽₽₽ċd	հՈՍ																	ļ
657				Sand		Clay						phi	0 +	-6.05.04.0	3.02.01.	00.01.02.	03.04.05.	06.07.08.	09.010.0	·															ļ
	roportions		8.61	19.21	17.88	54.30																													ļ
659		_																																	
660 18		+	0.05	0.00		0.07	0.0-		1.0-	0.15	0.01		0.07	0.57	0.7	0.07	1.05	0.70	1.16	0.70	1.0-	0.75	0.75		0.0-		0.4-		0.07	0.05	0.00	0.07			
661 Da		+	0.00	0.00	0.00		0.00			0.48	0.29					0.97		0.73			1.02		0.77				0.15						0.13		
	requency %		0.00	0.00	0.00						1.86							4.68		5.06				0.71			0.96		0.38						
	umulative %		0.00	0.00	0.00	0.00	0.00	0.00	7.88	10.96	12.82	14.36	15.96	19.74	24.62	30.83	37.24	41.92	51.28	56.35	62.88	67.69	72.63	73.33	73.65	74.23	75.19	75.90	76.28	77.88	79.94	81.79	82.63	84.04	86.60
	athymetry 1050m																																		
665			1%	5%		25%	50%	75%	84%	95%		186-15	25 -							,															ļ
	ercentiles		-3.20	-3.05	-0.99	0.03	1.93	5.90	9.49	12.40		SW																							ļ
667	,	\downarrow										%	20 -																						ļ
668				StDev		Kurt						5	15 -	ō																					ļ
	oment measures		2.94	4.30	0.54	2.19						frequency	10	e c					70 III161 =13.40																ļ
	raphic (Folk)	\downarrow	3.47	4.96	0.40	1.08						be	10 -						8 T	$ \square$															ļ
	man			5.24	0.44							fre	5 -			ոդի	fleri -																		ļ
672		\downarrow													l had				ыЛ																ļ
673				Sand	Silt	Clay						phi	U +	-6.05.04.0	3.02.01.	00.01.02	03.04.05.	06.07.08.	09.010.0																ļ
ô74 Pi	roportions		15.96	56.67	7.31	20.06																													
675																																			

A E	3 C	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R	s	т	U	v	w	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
		В	Οι	itpu	t da	ta fo	or gi	rain	size																									
2 Class midpts	Π								-2.75																									
3 Class limits	\downarrow	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.0
676 186-16																																		ļ
677 Data		0.00	0.00	0.00					0.28									0.73		0.74			0.57	0.51	0.43	0.16					0.12		0.16	
678 Frequency %	+	0.00	0.00	0.00	0.00					1.19	6.02						3.72						4.52			1.27		1.35						
679 Cumulative %	+	0.00	0.00	0.00	0.00	0.00	0.00	5.86	8.08	9.27	15.29	17.27	19.73	22.11	25.04	28.61	32.33	38.11	42.79	48.65	57.13	63.55	68.07	72.11	75.52	76.78	78.53	79.87	81.46	82.88	83.84	85.18	86.45	87.1
680 Bathymetry 726	\downarrow																											ļ						
681		1%	5%	16%	25%	50%	75%	84%	95%		186-16 SW	25 т							ا															
682 Percentiles	4	-3.18	-3.02	-1.32	0.49	3.08	5.42	8.56	17.65		500																							
583	+										%	20 -																						
684	\downarrow	Mean			Kurt						C	15 -																						ļ
85 Moment measures		3.32		0.31	2.28						Jer	10 -	D					% II.ner =12.84					ļ					ļ						ļ
86 Graphic (Folk)		3.44		0.26	1.72						frequency	'° 1	90 C					R []																
87 Inman			4.94	0.11							Ţ,	5 -	۶ G			մՌ	-																	
88	+			0.111								0		h-1 hi	пШП		llaa	έm.																
689		Gravel		Silt	Clay						phi	• •	-6.05.04.0	3.02.01	00.01.02.	03.04.05	.06.07.08	.09.010.0	·															
690 Proportions		17.27	46.28	19.33	17.12																													
591																																		
592 186-17	+												0.10				0.54																	
693 Data	+	0.00	0.00	0.00					0.00	0.30	0.00								0.70		1.54	0.76	0.55	0.51						0.12			0.10	
94 Frequency %	+	0.00	0.00	0.00	0.00	0.00			0.00	3.04	0.00	0.30		0.81			5.48						5.58			1.52				1.22				
695 Cumulative %	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.04	3.04	3.35	4.36	5.17	7.61	11.97	17.44	25.66	32.76	41.89	57.51	65.21	70.79	75.96	78.80	80.32	81.24	81.85	82.45	83.67	85.19	86.41	87.42	88.4
696 Bathymetry 716 m		4.0/	50/	400/	050/	500/	750/	0.49/	059/																									
	+	1%	5%	16%	25%	50%	75%	84%	95%		186-17 SW	25 -						-	- I															
598 Percentiles	+	-2.12	-0.10	1.38	1.96	3.26	4.90	8.11	14.43			20																						
699 700	+		010	0	16 and						%	20 -																						
	ł		StDev		Kurt						Ś	15 -	D																					ļ
701 Moment measures	+	3.97		0.75	3.01						ner	10 -	8					70 III168 =1156																
702 Graphic (Folk)	+	4.25		0.49	2.03						frequency		20		D.	ЛЫ		21																
703 Inman	+		3.36	0.44							Ŧ	5 -		_	- dil	IIIh	L																	
704	+	0	0	0.11	0							0			ъЩЩ		linner	İm.	┥┝──															
705 706 Proportions	+	Gravel	61.87	Silt	Clay 16.33						phi		-6.05.04.0	3.0-2.01.	00.01.02.	03.04.05	5.06.07.08	.09.010.0	·															
706 Proportions	+	3.35	01.0/	10.40	10.33												1 1		l															+
708 186-18	+																																	+
709 Data	+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02	0.21	0.30	0.38	0.45	0.56	1 16	0.74	0.96	0.86	0.26	0.18	0.20	0.27	0.26	0.26	0.15	0.24	0.22	0.24	0.21	0.19	0 1
10 Frequency %		0.00	0.00	0.00					0.00	0.00	0.03				3.38		4.98			8.53		2.31						1.33					1.69	
11 Cumulative %	+	0.00	0.00	0.00				0.00	0.00	0.00	0.27										50.40													
712 Bathymetry 608 m		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.44	2.01	30	0.00	12.00	17.55	27.04	07.22	72.70	00.40		0-1.01		00.45	00.00	00.11	0-7.44	00.00	00.00	10.01	12.55	17.22	1
713	+	1%	5%	16%	25%	50%	75%	84%	95%		400.40																							+
714 Percentiles	+	-0.77	0.00	1.38				15.70			186-18 M	²⁵ T							r															1
141 ercentiles		-0.11	0.00	1.00	1.00	0.41	5.54	10.70	21.40		. ^	20 -																<u> </u>						
/16	+	Mean	StDev	Skow	Kurt						%							-																+
17 Moment measures		5.12	3.86		1.55						lo D	15 - 10 - 5 -	De la					8.0																+
18 Graphic (Folk)	1		7.73		1.39						ant	10 -	8					70 III 161																+
19 Inman		0.00	7.16		1.00						fe	5 -	ŝ			-In i		: ° î																+
'20			7.10	5.11				h			+	5 -			الس		_	_										<u> </u>						+
20	+	Gravel	Sand	Silt	Clav							0 +		 [₩₩₩ ₩	HILL	mm	IM.	┥ ├															
	+			15.82							phi		-6.05.04.0	3.02.01.	00.01.02.	03.04.05	5.06.07.08	.09.010.0																+
722 Proportions																																		

								к	L	М	Ν	0	Р	Q	R	S	т	U	V	W	х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
APPENDIX								size																									
Class midpts								-2.75	-2.25	-1.75	-1.25	-0.75	-0.25										4.75	5.25									
Class limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.0
186-19																																	
5 Data	0.00				0.00	0.00				0.00				0.04			0.11				0.53				0.19			0.16					
6 Frequency %	0.00					0.00			9.15	0.00																		2.66			3.49		
7 Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.15	9.15	10.48	10.82	11.31	11.98	12.81	13.98	15.81	17.80	20.63	25.46	34.28	40.27	46.09	51.08	54.24	56.41	58.24	60.90	64.73	67.89	71.38	74.71	77.7
8 Bathymetry 775 m																																	
9	1%	5%	16%		50%	75%	84%	95%		186-19	25 -																						
0 Percentiles	-2.21	-2.07	2.05	3.45	5.39	9.55	11.20	14.56		м																							
1										*	20 -										I												1
2	Mean	StDev	Skew	Kurt								_																					
3 Moment measures	5.67	3.97	-0.45	2.29						frequency	15	22					30 16																
4 Graphic (Folk)	6.21	4.81	0.19	1.12						nb	10 -				_		70 IIIBII				1										-		1
5 Inman		4.57	0.27							fre	5 -	8 F			Jh	2																	1
6											5			-		Ռում	hmn -																1
7	Grave	Sand	Silt	Clav						phi	0 +			mA		*****	┞┞┞┞╷																
8 Proportions			30.45							pm		-6.05.04.0	3.02.01.0	0.01.02	03.04.0	5.06.07.08	.09.010.0																1
9	10.10	20.10	00.10	00.27								1				1								•••••							-		· · · · · ·
0 186-21																																	
1 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.04	0.04	0.05	0.09	0.14	0.12	0.13	0.14	0.1
2 Frequency %	0.00	0.00			0.00	0.00				0.00	0.00			0.01							0.48	0.02			1.90		2.38	4.29		6.19			
3 Cumulative %	0.00				0.00	0.00				0.00	0.00			0.48							4.29	5.24					12.38						
4 Bathymetry 570 m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.40	0.95	1.43	2.30	2.00	3.33	3.01	4.29	5.24	5.71	0.19	0.10	10.00	12.30	10.07	23.33	29.52	35.71	42.30	4/.
5	1%	5%	16%	250/	50%	75%	84%	95%										L															
										186-21 M	25 -																						
6 Percentiles	1.06	4.38	7.43	8.14	10.30	13.10	14.42	17.12		m	~																						
7 8	-									%	20 -						2 00																ļ
			Skew							2	15 -	Đ					79111 of 1911																j
9 Moment measures	9.07	2.12								len	40	2 C					8 °									ļ							J
0 Graphic (Folk)	10.72			1.05						frequency	. 10 -	20 UU																					ļ
1 Inman		3.50	0.18							Ę	5 -	2 11				1	ΠL																
2											0			_		_ mdl																	
3	Grave			Clay						phi	0 1	-6.05.04	03.02.01	00.01.02	.03.04.0	5.06.07.08	.09.010.0	,															
4 Proportions		4.29	19.05	76.67																													
5																					Ĩ												1
6 186-22																																	
7 Data	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.01	0.01	0.01	0.01	0.02	0.05	0.04	0.01	0.07	0.12	0.05	0.06	0.05	0.07	0.05	0.07	0.08	0.09	0.1
8 Frequency %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.86	0.62	0.62	0.62	0.62	0.62	1.24	3.11	2.48	0.62	4.35	7.45	3.11	3.73	3.11	4.35	3.11	4.35	4.97	5.59	8.7
9 Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.86	2.48	3.11	3.73	4.35	4.97	6.21	9.32	11.80	12.42			27.33	31.06	34.16	38.51	41.61	45.96	50.93	56.52	65.2
0 Bathymetry660 m	-																																
1	1%	5%	16%	25%	50%	75%	84%	95%		186-22																							
2 Percentiles	-0.07	2.51	4.92				11.33			M	²⁵ 1						1																
3	0.01	2.01	1.02	0.00	0.01	10.02	11.00	12.10			20 -																						1
4	Mean	StDev	Skew	Kurt						% ^							7.B									İ							
5 Moment measures	7.87	2.86	-0.95							frequency	15 -	10 20					34.7																·
Graphic (Folk)	8.38	3.16	-0.95							ne	. 10 -	80					~ "																·
7 Inman	0.30		-0.25	0.04						eq	· · · ·	2 G				п									•••••								
7 Inman 8		3.21	-0.24				 			4	5 -					المم	an l																·
	+										0			Deres	-d D-											ļ							,
9	Grave			Clay						phi	0 1	-6.05.04	03.02.01.	00.01.02	.03.04.0	5.06.07.0	.09.010.0	, h															
0 Proportions		11.80	29.81	58.39																													
	1	i i										1														1							1

	с р							к	L	М	Ν	0	Р	Q	R	s	Т	U	V	w	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
APPENDIX								size																									
Class midpts								-2.75						0.25	0.75	1.25	1.75	2.25	2.75				4.75	5.25									
Class limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.0
2 186-26																																	
3 Data	0.00		0.00	0.00			0.00	1.14					0.60				1.52					0.49		0.36	0.20				0.12				
Frequency %	0.00		0.00	0.00			0.00	7.99						4.91			10.65						3.15		1.40								
5 Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.99	9.11	10.93	12.54	14.16	18.36	23.27	29.43	36.02	46.67	53.26	61.46	70.22	77.22	80.66	83.81	86.33	87.74	88.58	89.28	89.84	90.68	91.52	91.94	92.57	93.9
6 Bathymetry 390 m																																	
7	1%	5%		25%		75%	84%	95%		186-26	25 -							.															
8 Percentiles	-2.70	-2.55	-0.27	0.65	2.25	3.83	5.04	10.43		N																							
Э										%																							
D		StDev	Skew							frequency	15 -	5					_																
1 Moment measures	2.58	3.28		3.48						len	40	S II C		_			76 IITIBL																
2 Graphic (Folk)	2.34	3.29		1.67						1De	. 10 -	ED OD			-0		۴ °																
3 Inman		2.65	0.05							f.	5 -	~ 11		ഫി	ΗП																		
4											0		lland		IIIIn	h																	
5	Grave		Silt	Clay						phi	0 +	-6.05.04.	03.02.01.	00.01.02	.03.04.05	.06.07.08	.09.010.0	٦ L															
6 Proportions	12.54	64.68	13.45	9.32																													
7																																	
B 186-27																																	
Data	0.00						0.00	0.00		0.00			0.02								0.27		0.37								0.08		
Frequency %	0.00		0.00	0.00			0.00	0.00	0.00	0.00	0.00						6.31					4.64		6.12	5.01			1.30					
Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.56	1.86	5.01	9.09	15.40	20.41	26.16	31.35	36.36	41.00	47.87	53.99	59.00	61.97	63.45	64.75	67.35	69.39	70.87	73.10	73.2
2 Bathymetry 436 m																																	
3	1%	5%		25%		75%	84%	95%		186-27 N	25 -						_																
4 Percentiles	0.23	1.00	2.07	2.90	5.17	14.71	43.12	100.87		N																							
5										%																							
6			Skew							2	15 -																						
7 Moment measures	5.85	3.44	0.16							ē		n n					70 III 101																
B Graphic (Folk)	16.79	25.40	0.88	3.47						frequency	. 10 -	10 00 m					% =																
9 Inman		20.53	0.85							fre	5 -	×π			hand	հ																	
0														ഫി		Մետ	n- n																
1	Grave		Silt	Clay						phi	0 +	-6.05.04.	03.02.01.	00.01.02	.03.04.05	.06.07.08	09.010.0	-				j							j				
2 Proportions		36.36	30.98	32.65																													
3																																	
4 186-28																T																	
5 Data	0.00		0.00				1.47	0.01		0.16					0.39								0.33								0.18		
6 Frequency %	0.00		0.00	0.00			11.80	0.08		1.28					3.13		5.46					2.73		2.81	2.81			3.05				1.77	
Cumulative %	0.00	0.00	0.00	0.00	0.00	0.00	11.80	11.88	13.48	14.77	15.65	17.58	19.26	21.27	24.40	27.93	33.39	37.32	42.86	49.20	52.17	54.90	57.54	60.35	63.16	65.41	67.42	70.47	72.79	74.40	75.84	77.61	78.2
Bathymetry 338 m																																	
9	1%	5%	16%	25%	50%	75%	84%	95%		186-28	25 -																						
Percentiles	-3.23	-3.09	-0.91	1.09	3.64	8.71	14.94	29.96		NE																							
1										%	20 -																						
2		StDev	Skew																														
3 Moment measures	4.25	4.60	-0.07	1.85						frequency		20	-				% IIIef																
Graphic (Folk)	5.89	8.97	0.51	1.78						n Dic	. 10 -	300					28																
Inman		7.92	0.43							fre	5 -	<u>«</u>			n n i						1							1					
5											Ĩ.			inn.	n I hr	(Thr/Th	mn.				ĺ							ĺ					
7	Grave	Sand	Silt	Clay						phi	0 +	-6.05.04	03 02 01	00.01.02	03 04 05	.06.07.08	09 00 0	1															
8 Proportions	15.65	36.52	20.63									0.00.04	00.02.01.																				
9	1										:																						

	А В С		Е	F	G	н	I	J	K	L	М	N	0	Р	Q	R	s	т	U	v	w	x	Υ	z		AB	AC	AD	AE	AF	AG	AH	AI	AJ
1 A	PPENDIX	B	Οι	itput	t da	ta fo	or a	rain	size																									
•	ass midpts								-2.75	-2.25	-1.75	-1.25	-0.75	-0.25	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75
	ass limits	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50								1.50				3.50			5.00		6.00						9.00		
20 186																																		
21 Dat	ta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.09	0.12	0.11	0.07	0.12	0.15	0.26	0.18	0.32	0.43	0.48	0.18	0.23	0.19	0.13	0.11	0.10	0.12	0.11	0.12	0.09	0.10	0.04
	equency %	0.00	0.00		0.00	0.00	0.00				5.23						2.70									2.34							1.80	
	mulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.23																	64.14					73.87	74.59
24 Bat	thymetry 1230m																																	
25		1%	5%	16%	25%	50%	75%	84%	95%		186-29																							
26 Per	rcentiles	-1.67	-1.51	1.30	2.49	4.43	10.28	17.45	32.02		F	²⁵ T						1	٦ ·····															
27		1									%	20 -																						1
28		Mean	StDev	Skew	Kurt								_													•••••								
29 Mo	ment measures	5.24	3.96	0.01	1.80						frequency	10 -	LSGI																					
30 Gra	aphic (Folk)	7.73	9.12	0.63	1.76						nb	10 -	B C CB			_		70 III161				1												
31 Inm	nan		8.08	0.61							fre	5 -	8 ¶	_	_	11		8 N	i															
32												5		IL.	المح	HILF	ll	-							*****									
33		Gravel	Sand	Silt	Clay						phi	0 +	0.05.04				5.06.07.0	FII	-							•								
34 Prc	oportions	6.85	40.36	21.08	31.71								-0.03.04.	93.92.91	00.01.02	.03.04.00	5.00.07.0	5.09.00.0																
35	·																					i												
36 186	6-31																																	
37 Dat	ta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.03	0.10	0.07	0.13	0.11	0.20	0.21	0.23	0.23	0.22	0.22	0.09
38 Fre	equency %	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00											0.24			1.66	3.08		4.74				5.21		
	mulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.47	0.95	1.18	1.42	1.66	2.13	2.37	2.61	2.84	3.08	3.79	6.16	7.82	10.90	13.51	18.25	23.22	28.67	34.12	39.34	44.55	46.68
40 Bat	thymetry 1625m																					1							1					İ
41		1%	5%	16%	25%	50%	75%	84%	95%		186-31																							
42 Per	rcentiles	0.12	4.78	6.78	7.67	10.77	17.04	20.02	26.06		F	²⁵ T						-											İ					
43		1									%	20 -																						
44		Mean	StDev	Skew	Kurt						-		_																					
45 Mo	ment measures	8.90	2.24	-1.69	6.15						enc	10 1	120					33																
46 Gra	aphic (Folk)	12.52	6.54	0.42	0.93						frequency	10 -	800					70 IIIRI =53.32																
47 Inm	nan		6.62	0.40		1					fre	5 -	§ 🕯				_	E .																1
48												Ŭ				ſ	ഹിി	III.																
49		Gravel	Sand	Silt	Clay						phi	0 +	6 05 04	13 02 01	00102	03.04.05	5.06.07.08	109 010 0																
50 Prc	oportions		3.08	25.59	71.33								0.00.0 1.	00.02.01	00.01.02		5.00.01.00					1							1					
51																						1							1					
52 186	6-32																																	
53 Dat		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.02	0.02	0.03	0.04	0.04	0.05	0.05	0.06		0.04	0.06	0.08	0.09	0.18	0.15	0.21	0.27	0.25	0.28	0.22	0.21	0.22
54 Fre	equency %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90	0.45	0.45	0.67	0.90	0.90	1.12	1.12	1.35	1.35	0.90	1.35	1.79	2.02	4.04	3.36	4.71	6.05	5.61	6.28	4.93	4.71	4.93
55 Cur	mulative %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90	1.35	1.79	2.47	3.36	4.26	5.38	6.50	7.85	9.19	10.09	11.43	13.23	15.25	19.28	22.65	27.35	33.41	39.01	45.29	50.22	54.93	59.87
	thymetry 565 m																																	
57		1%	5%		25%		75%	84%	95%		186-32	25 -																						
	rcentiles	-0.87	1.84	5.60	6.76	8.98	11.69	12.96	15.54		F																							
59						T					%	20 -										T]]			
60				Skew									h.																					
	ment measures	8.12	2.84	-1.30							frequency		arso					7e IIIter =40.13																
	aphic (Folk)	9.18	3.92		1.14						nbe	10 -	0 00																Τ					
63 Inm	nan		3.68	0.08							fre	5 -	8 ¶				П	Íben -																
64														_		-m-r	-6111												1					
65		Gravel	Sand		Clay						phi	0 +	-6.05.04.	03.02.01	00.01.02	.03.04.05	5.06.07.08	3.09.010.0	, E															
66 D	oportions	0.90	9.19	28.92	60.99																													
67																																		

APPENDIX C

List of Species

Informal Group ACRITARCHA Evitt (1963), Downie et al (1963) Subgroup ACANTHOMORPHITAE Downie, Evitt and Sargent (1963) Acritarch sp. 1

Plate 1 Figure 1-3

Acanthomorphitae: Spherical with no inner body, processes are simple have regular symmetry, and are homomorphic. No obvious opening. Size 125 μ m. Size of processes 25 μ m.

Acritarch sp. 2

Plate 1 Figure 4-7

Acanthomorphitae: Ovoid with no inner body, processes are simple, acuminate, pelatoid and cylindrical, have regular symmetry and are heteromorphic. No obvious opening. Size 75 µm. Second type size 95.

Acritarch sp. 3

Plate 1 Figure 8-10

Acanthomorphitae: Spherical and dorso-ventrally compressed; processes are simple, have regular symmetry and are homomorphic. No obvious opening. Size 120-125 μ m.

Acritarch sp. 4

Plate 1 Figure 11-12, Plate 2 Figure1-4

Acanthomorphitae: Spherical with no inner body; processes are simple, acuminate, and cylindrical, have regular symmetry and are heteromorphic. Opening visible. Size 100-150 μ m.

Order PYRAMIMONADALES Chadefaud 1950 Family Leiosphaeridiaceae Timofeev 1956

Form genus *Leiosphaeridia* Eisenack 1958 *Leiospherida* sp. Plate 2 Figure 5

2000 Leiosphaeridia sp.2 Hannah et al Figure 4d

Spherical and pale yellow in colour, wall is smooth unornamented $\sim 1 \ \mu m$ thick. No visible opening; size $\sim 35 \ \mu m$.

Subgroup uncertain

Genus Sigmopollis Hedlund 1965, Tappan 1980

Sigmopollis sp. Hannah et al 1998

1998 *Sigmopollis* sp. Hannah *et al* Figure 4g 2000 *Sigmopollis* sp. Hannah *et al* Figure 4c Subspherical to ovoid and sigmoidal, wall is smooth unornomented, hyaline and colourless; size 55 μm.

Subgroup SPHAEROMORPHITAE Downie, Evitt & Sarjeant 1963

Sphaeromorph sp.

Plate 2 Figure 6-12

Spherical to ovoid no inner body; wall is usually smooth and easily folded, unornamented with no visible opening. Size $60-200+ \mu m$.

Division PYRRHOPHYTA Pascher, 1914

Class DINOPHYCEAE Fritsch, 1929

Order GONYAULACALES Taylor, 1980

Family Goniodomaceae Lindemann, 1928

Alisocysta sp. Stover & Evitt 1978

Plate 3 Figure 1-3

1980 Alisocysta sp. Tappan Figure 4.124

2000 Alisocysta sp. Levy & Harwood Plate 1, Figures a-d

Ovoid with penitabular septa with an apical archeopyles, pale brown colour size 75 μ m.

Genus Impagidinium Stover and Evitt 1978

Impagidinium sp.

Plate 4 Figures 6-9

Subspherical light brown in colour, wall smooth, paratabulation, singulum visible; Size 60 µm.

Genus *Hystrichosphaeridium* Deflandre 1937b, Davis and Williams 1966 Plate 4 Figures 4-5

1980 Hystrichosphaeridium Wilson and Close page 56
2000 Hystrichosphaeridium Levy & Harwood, Plate 6, h-j
Spherical, processes vary in length but chorate. Size 50 - 75 μm.

Order PERIDINIALES Haekel, 1894

Family Protoperidiniaceae Bujak and Davies, 1998

Genus Cryodinium Esper and Zonneveld 2002

Cryodinium sp.

Plate 3 Figure 4-12

2002 *Cryodinium meridianum* sp. Esper and Zonneveld Figure 4-9 Spherical and dark brown in colour, paratabulation with intercalary archeopyles size 35-50 μm.

Genus *Protoperidium* Bergh, 1881 emend. Balech, 1974 *Protoperidiniod* sp. 1

Plate 5 Figure 5-9

Spherical to ovoid with Suessioid tabulation type, pale yellow in colour and no processes; possible cingulum in the form of smaller latitudinal plate arrangements size $115 \mu m$.

Genus Protoperidium Bergh, 1881 emend. Balech, 1974 Protoperidiniod sp. 2

Plate 4 Figure 10-12

1998 Dinocyst sp. Wrenn et al Figure 5a,b

Sub-spheroidal to ovoid in shape with a prominent cingulum and sulcus. Wall is dark brown and granular with no tabulation or processes present; size 75 μ m.

Genus *Selenopemphix* Benedek, 1972 emend. Head, 1993 *Selenopemphix antarctica* Marret and de Vernal, 1997 Plate 5 Figures 1-4

1997 Selenopemphix antarctica Marret, and de Vernal Plate V Figures 1-5

1998 Selenopemphix antarctica Harland et al Plate 2 Figures 10-12

Spherical with two antapical horns, apically and antapically compressed, slightly pinkish in colour with granulations on the surface. Size $60 - 75 \,\mu\text{m}$

Dinocyst sp.

Plate 4 Figure 1-3

Dinocyst sp: Ovoid with apical archeopyle and processes chorate, size 60 µm.

Reworked Dinocysts

Genus Alterbidinium Lentin & Williams 1985; emend. Khowaja-Ateequzzaman and Jain 1991

Alterbidinium asymmetricum Wilson, 1967 comb. Nov.

Plate 10 Figure 3, Figure 7-9

Ovoid, hyaline bi-layered, dorso-ventrally flattened, angular, bi-laterally asymmetric, smooth walls. Long apical horn, smaller antapical horns, cingulum, intercalary archeopyle. Size 80 µm.

Genus Deflandrea Eisenack 1938; emend. Williams and Downie 1966; Deflandrea sp.

Plate 10 Figure 1-2

Spherical inner body, thick walled smooth, dorso-ventrally flattened, outer layer forms pointed apical horn and two antapical horns. Intercalary archeopyle. Size 70 µm.

Family Gonyaulacaceae Lindemann, 1928

Genus Enneadocysta partridgei Stover & Williams 1995

Spherical, chorate processes splayed out at the end. Size 75 µm.

Genus Spinidinium Cookson & Eisenack, 1962; Lentin & Williams 1976 Spinodinium sp.

Sub spherical showing short spines with long apical horn. Species broken. Size \sim 75 μ m.

Spinidinium macmurdoense (Wilson 1967) Lentin & Williams, 1976

2000 *Spinidinium macmurdoense* Levy & Harwood Plate 9, Figure c,d Sub spherical with smooth hyaline inner body, dorso-ventrally flattened, angular bilaterally asymmetric. Outer covering has small spines. Long apical horn shorter antapical horn. Size 75 µm.

Genus *Turbiosphaera* Archangelsky, 1969a *Turbiosphaera filosa* (Wilson, 1967) Archangelsky 1969a Plate 9 Figures 10-12

1999 *Turbiosphaera filosa* CRP Science Team Figure 5.8i p129
2000 *Turbiosphaera filosa* Levy & Harwood Plate 10 d-i
Spherical dark brown inner body, cingulum visible, outer membrane appearance
granular and extends out over inner body unevenly. Size 50 μm.

Genus Vozzhennikovia sp.

Sub-spherical to spherical with long apical horn most are broken up but have slightly longer spines covering. Size \sim 50 μ m.

Operculae

Most unknown some may be from Enneadocysta partridgei. All are operculae with processes.

Division PRASINOPHYTA Round 1971

Order PTEROSPERMATALES Schiller 1925

Family Cymatiosphaeraceae Mädler 1963

Genus Cymatiosphaera O.Wetzel, 1933 ex Deflandre, 1954

Cymatiosphaera sp. 1

Plate 5 Figure 10-12

1998 *Cymatiosphaera* sp. Hannah *et al* Figure 3d 2000 *Cymatiosphaera* sp. 1 Hannah *et al* Figure 3c,d Spherical central body, wall smooth colourless to pale yellow $\sim 1 \ \mu m$. hyaline, fine membrane anastomoses over surface, processes visible. No opening visible. Size 15 - 20 μm .

Cymatiosphaera sp. 2

Plate 6 Figure 1-10

Spherical central body, wall smooth, membrane like netting anastomoses over surface, no visible opening, membrane gathered at edges. Size $75 - 115 \,\mu$ m.

Family Pterospermellaceae Eisenack 1972

Genus Pterospermella Eisenack

Pterospermella sp.

Plate 6 Figure 11-12

1998 Pterospermella sp. Hannah et al Figure 3i 2000 Pterospermella sp. Hannah et al Figure 3g Large flotation membrane colourless, borders a spherical compressed central body yellow-brown in colour. No aperture visible. Size 75-90 μm.

Family Tasmanitaceae Sommer 1956

Genus Tasmanites Newton 1875

Tasmanites sp.

Plate 7 Figure 1-3

1980 *Tasmanites* sp. Tappan Figure 10.10 1999 *Tasmanites* sp. CRP Science Team Figure 5.9g Spherical central body, double layered wall with perforations of radially arranged pores of two distinct sizes. Size $105 - 125 \mu m$.

Class RHODOPHYCEAE SubClass FLORIDEOPHYCIDAE Order CERAMIALES

Family Rhodomelaceae Genus *Beringiella* Bujak 1984 *Beringiella* sp.

Plate 7 Figure 4-11

1984 *Beringiella* Mudie 1992 Plate 2 Figure 17 1996 *Beringiella* Mudie and Harland Plate 2 Figure 15 Ovoid central body, smooth walls with edge \sim 1 µm, brown with apical archeopyle with serrated edges. Size 50-60 µm.

Order TINTINNIDA

Family Favellidae Kofoid and Campbell, 1929

Genus unknown

Plate 8 Figure 5-6

Large various shapes bell, to conical, aperture at oral end closed aboral end rounded or pointed form. Hyaline to brown in colour. Size $100 - 300 + \mu m$.

Tintinnid cyst

Plate 8 Figure 3-4

Ovoid shape jug like type, tin walled light brown, aperture round. Size100-125 µm.

UNKNOWN SPECIES

Zooplankton sp.

Plate 8 Figure 7-12, Plate 9 Figure 1-9

Spherical two layered, inner body thick walled brown no ornamentation, round aperture. Outer layer thin hyaline with "tail" attached, easily folds. Size 125 - 175 µm.

Egg Cases

Plate 10 Figure 10-12, Plate 11 Figure 4-5, 7-8 Plate 12 Figure 1-10

Various shapes and sizes, with or without processes and crests and usually an aperture present.

Phylum Foraminiferan linings

Plate 7 Figure 12, Plate 8 Figure 1-2

Various, uniserial, biserial or spiral - planispiral or trochospiral. Sizes $75 - 200 + \mu m$.

Arthropod

Plate 11 Figure 12

Conodonts single or in jaw sockets, skeletal remains, claws. Various sizes

<u>Unknowns</u>

Algal Chains

Plate 11 Figure 10-11

Spherical, hyaline, grouped together to form chains or clumped together.

Unknown sp. 1

Plate 12 Figure 11-12

Ovoid with two loops attached opposite, aboral free flowing thin membrane attached. Size ${\sim}25~\mu m.$

Unknown sp. 2

Plate 11 Figures 1-2

Ovoid, cocoon like single stands coiling in layers. Size 45 μ m.

Unknown sp. 3

Ovoid shape, no ornamentation, no obvious aperture. Size 25 µm.

Unknown sp. 4

Ovoid, dark brown, no ornamentation, wall thick $\sim 1 \ \mu m$ narrowing at apical end. Size 50 μm .

Unknown sp. 5

Ovoid enlongated central body, pale brown with apical archeopyle, antapical wall narrows and thickens. Size $65 \mu m$.

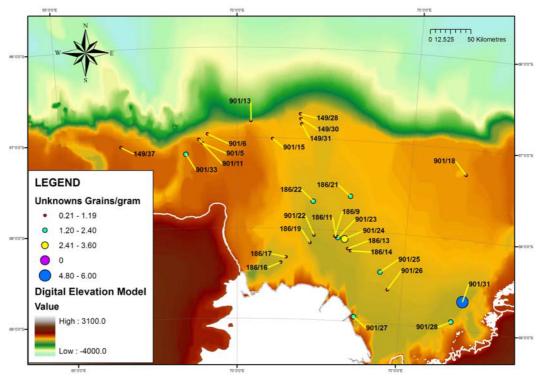
Unknown sp. 6 Plate 11 Figure 6

Ovoid, brown with apical archeopyle, smooth wall extends antapically into long thin strand. Size 75 μ m.

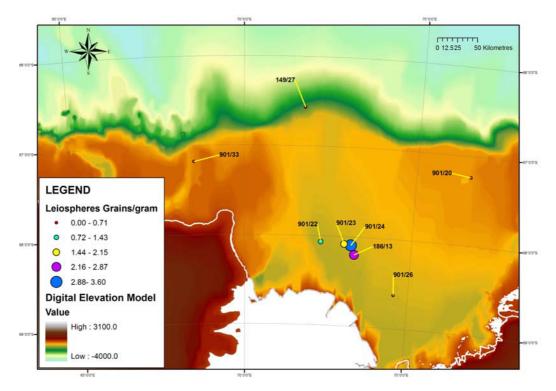
Unknown sp. 7

Sub-spherical to ovoid with granulated wall, apical wall narrows. No openings no processes, 2 eyespot markings. Size $125 \ \mu m$.

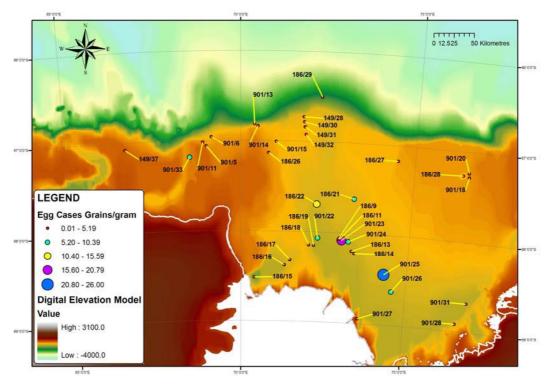
Unknown sp. 8

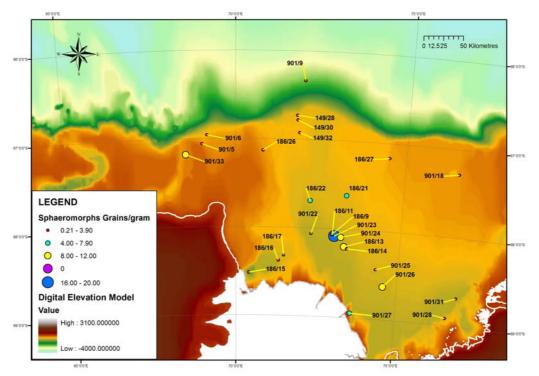

Sub-spherical, granulated membrane covers central body and overlaps the edge. Opening appears to be in centre. Size $165 \ \mu m$.

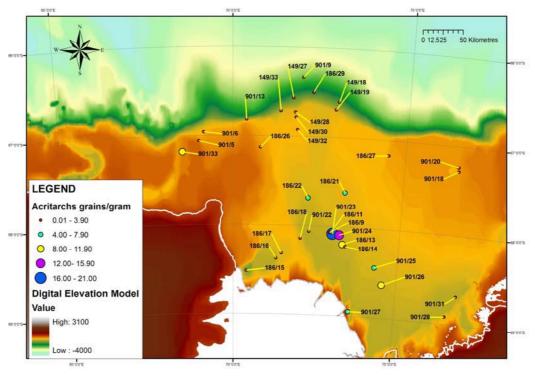
Unknown sp. 9

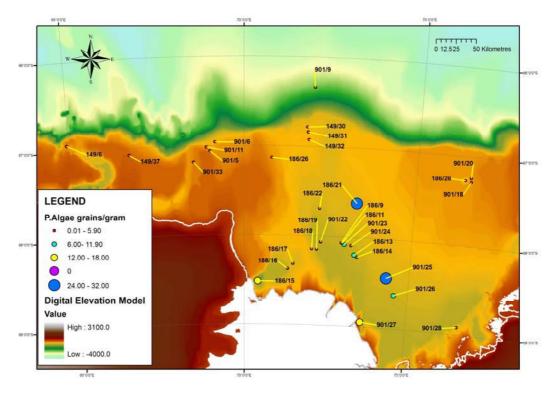

Breaking up but covered in small proximate processes, shape ovoid to elongate, size 75-85 μ m.

Reworked Pollen


The terrestrial material recovered in this project contains pollen species which date back as far as the Permian and the Jurassic and there are some samples on the Fan that are void of marine palynomorphs and contain only terrestrial material. This could imply that they have not travelled far enough to be mixed in with the marine material and are outcropping in that area.


Appendix D: Position of all unknowns grains per gram with highest abundances the larger blue circles as per legend.


Appendix D: Position of all *Leiospheres* grains per gram with the highest abundance the larger blue circles and per legend.


Appendix D: Position of egg cases grains per gram the highest abundance are the larger blue circles.

Appendix D: Position of *Sphaeromorphs* grains per gram the highest abundance are the larger blue circles as per legend.

Appendix D: Position of acritarchs grains per gram the highest abundances are the larger blue circles as per legend.

Appendix D: Position of prasinophycean algae grains per gram the highest abundances are the larger blue circles as per legend.