Supporting Information

Triple-channel charge transfer over W₁₈O₄₉/Au/g-C₃N₄ Zscheme photocatalysts for achieving broad-spectrumsolar hydrogen production

Inju Hong,^{1†} Yi-An Chen,^{2,3,†} Yung-Jung Hsu,^{2,3,4,*} Kijung Yong^{1,*}

¹Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang

University of Science and Technology (POSTECH), Pohang 790-784, Korea

²Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

³Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300,

Taiwan

⁴Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300,

Taiwan

* Corresponding authors: <u>yhsu@cc.nctu.edu.tw</u>(Y. Hsu), <u>kyong@postech.ac.kr</u>(K. Yong)

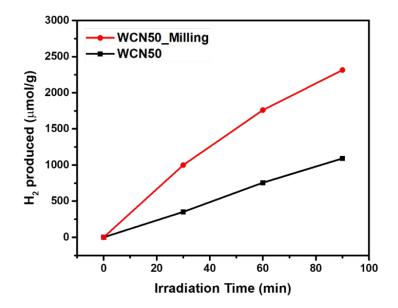


Figure S1. Performance of H₂ production on WCN50 before (756.2 μ mol/g·h) and after (1760.6 μ mol/g·h) milling under one-sun irradiation.

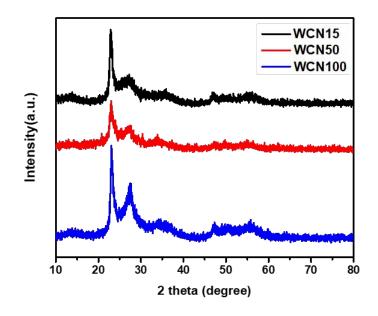


Figure S2. XRD patterns of WCN15, WCN50, and WCN100.

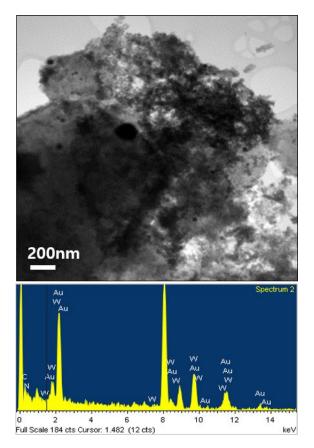


Figure S3. TEM image and EDS data of W₁₈O₄₉/Au/g-C₃N₄.

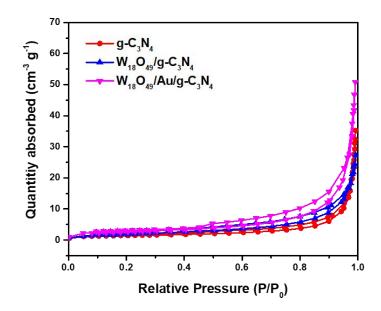


Figure S4. N₂ adsorption-desorption isotherms of g-C₃N₄, W₁₈O₄₉/g-C₃N₄₉, and W₁₈O₄₉/Au/g-C₃N₄.

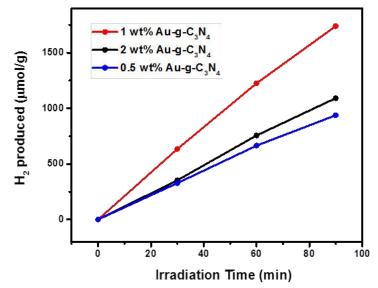


Figure S5. Performance of H₂ production on Au-g-C₃N₄ for different weight ratios of Au.

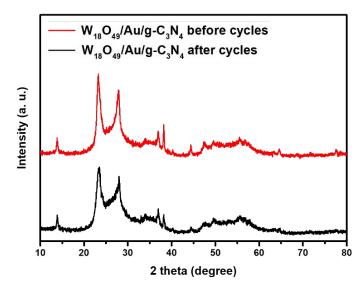


Figure S6. XRD patterns of $W_{18}O_{49}/Au/g-C_3N_4$ before and after cycling test.

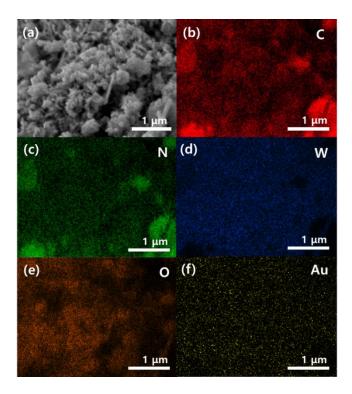


Figure S7. a) SEM image and (b-f) the corresponding EDS mapping data of W₁₈O₄₉/Au/g-C₃N₄ after cycling test.

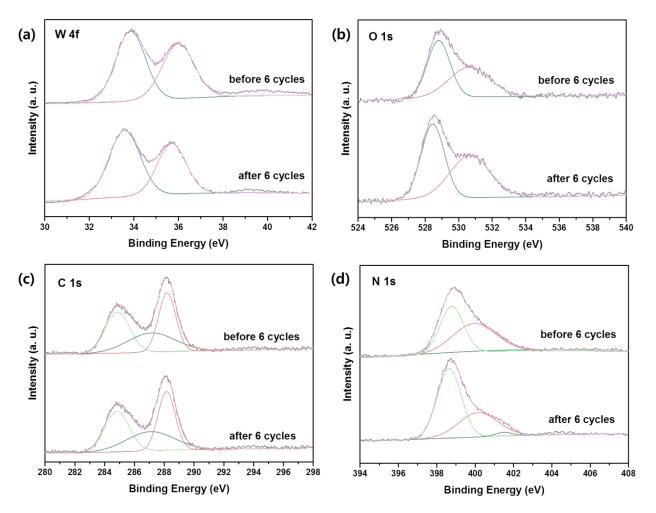


Figure S8. The high-resolution XPS spectra of (a) W 4f, (b) O 1s, (c) C 1s and (d) N 1s for W₁₈O₄₉/Au/g-C₃N₄ before and after cycling test.

Table S1. BET-specific surface areas of the samples.			
BET surface area (m ² g ⁻¹)			
7.10			
9.21			
11.66			

 Table S1. BET-specific surface areas of the samples.

Table S2. Comparison of hydrogen photocatalytic activities of our photocatalyst with other Z-scheme photocatalysts reported in the last 1–2 years.⁶⁰⁻⁶⁷

Charge transfer Type	Heterojunction system	H₂ production [µmol/g*h]	Reference (Year)
ľ	This work (W ₁₈ O ₄₉ /Au/g-C ₃ N ₄)	3465	2021
	NiTiO ₃ /Cd _{0.5} Zn _{0.5} S	1058	[60], 202
	CdS@ZnIn ₂ S ₄	540.3	[61], 202
	Bi ₂ O ₂ CO ₃ /Bi ₂ WO ₆	664.5	[62], 202
	NiS-PCN	1239.3	[63], 202
	CdS/PI	613	[64], 202
	Cu ₃ P/ZnIn ₂ S ₄	2561.1	[65], 202
	MoS ₂ /CaTiO ₃	622.14	[66], 202
	TiO ₂ -Au-CdS	669.7	[67], 202