LME library(readxl) library(lme4) library(nlme) data0 <- read_excel("E:/SR/Mann.xlsx") a<-lme(N_effect ~ (PWM)^2+ PWM, random = ~ 1 | sample, na.action=na.omit, data = data0) summary(a) b<-lme(N_effect ~ AP, random = ~ 1 | sample, na.action=na.omit, data = data0) summary(b) data0 <- read_excel("E:/SR/Mann.xlsx") c<-lme(N_effect ~ (MTCQ)^2+ MTCQ, random = ~ 1 | sample, na.action=na.omit, data = data0) summary(c) d<-lme(N_effect ~ PWM, random = ~ 1 | sample, na.action=na.omit, data = data0) summary(d) c<-lm(N_effect ~ (MinTCM)^2+ MinTCM, na.action=na.omit, data = data0) summary(c) piecewiseSEM library(nlme) library(lme4) library(piecewiseSEM) library(QuantPsyc) Rt<-read_excel("E:/Q10/data/Rt.xlsx") #composite predictor of climate# model1 <- lm(N_effect ~ legacy17 + legacy19 + current18, Rt) coefs(model1, standardize = 'scale') beta_legacy17 <- summary(model1)$coefficients[2, 1] beta_legacy19 <- summary(model1)$coefficients[3, 1] beta_current18 <- summary(model1)$coefficients[4, 1] climate <- beta_legacy17 * Rt$legacy17 + beta_legacy19 * Rt$legacy19 + beta_current18 * Rt$current18 Rt$climate <- climate summary(lm(N_effect ~ climate, Rt)) coefs(lm(N_effect ~ climate, Rt)) #composite predictor of soil# model2 <- lm(N_effect ~ Cropland + Forest + wetland + Grassland, Rt) summary(model2)$coefficients beta_Cropland <- summary(model2)$coefficients[2, 1] beta_Forest <- summary(model2)$coefficients[3, 1] beta_wetland <- summary(model2)$coefficients[4, 1] ecosystem <- beta_Cropland * Rt$Cropland + beta_Forest * Rt$Forest + beta_wetland * Rt$wetland Rt$ecosystem <- ecosystem summary(lm(N_effect ~ ecosystem, Rt)) coefs(lm(N_effect ~ ecosystem, Rt)) #composite predictor of microbe# model3 <- lm(N_effect ~ SOC + TN + C_N, Rt) coefs(model3, standardize = 'scale') beta_SOC <- summary(model3)$coefficients[2, 1] beta_TN <- summary(model3)$coefficients[3, 1] beta_C_N <- summary(model3)$coefficients[4, 1] soil <- beta_SOC * Rt$SOC + beta_TN * Rt$TN + beta_C_N * Rt$C_N Rt$soil <- soil summary(lm(N_effect ~ soil, Rt)) coefs(lm(N_effect ~ soil, Rt)) ##### stander effect ###### model0 <- lm(N_effect ~ Lon + Lat, Rt) coefs(model0, standardize = 'scale') beta_Lon <- summary(model0)$coefficients[2, 1] beta_Lat <- summary(model0)$coefficients[3, 1] geography <- beta_Lon * Rt$Lon + beta_Lat * Rt$Lat Rt$geography <- geography summary(lm(N_effect ~ geography, Rt)) coefs(lm(N_effect ~ geography, Rt)) #multiple regression# microbe.list <- list( lme(climate ~ geography , random = ~ 1 | site , na.action = na.omit, data = Rt), lme(soil ~ climate + Rate+ ecosystem, random = ~ 1 | site , na.action = na.omit, data = Rt), lme(N_effect ~ climate + ecosystem + soil, random = ~ 1 | site , na.action = na.omit, data = Rt) ) microbe.psem <- as.psem(microbe.list) (new.summary <- summary(microbe.psem, .progressBar = F)) plot(microbe.psem,return = FALSE,alpha = 0.05,show = "std") Rh<-read_excel("E:/Q10/data/Rh.xlsx") model1 <- lm(N_effect ~ legacy2 + legacy15 + legacy7, Rh) coefs(model1, standardize = 'scale') beta_legacy2 <- summary(model1)$coefficients[2, 1] beta_legacy15 <- summary(model1)$coefficients[3, 1] beta_legacy7 <- summary(model1)$coefficients[4, 1] climate <- beta_legacy2 * Rh$legacy2 + beta_legacy15 * Rh$legacy15 + beta_legacy7 * Rh$legacy7 Rh$climate <- climate summary(lm(N_effect ~ climate, Rh)) coefs(lm(N_effect ~ climate, Rh)) model2 <- lm(N_effect ~ Cropland + Forest + Grassland, Rh) summary(model2)$coefficients beta_Cropland <- summary(model2)$coefficients[2, 1] beta_Forest <- summary(model2)$coefficients[3, 1] beta_Grassland <- summary(model2)$coefficients[4, 1] ecosystem <- beta_Cropland * Rh$Cropland + beta_Forest * Rh$Forest Rh$ecosystem <- ecosystem summary(lm(N_effect ~ ecosystem, Rh)) coefs(lm(N_effect ~ ecosystem, Rh)) model3 <- lm(N_effect ~ SOC + TN + C_N, Rh) summary(model3)$coefficients beta_SOC <- summary(model3)$coefficients[2, 1] beta_TN <- summary(model3)$coefficients[3, 1] beta_C_N <- summary(model3)$coefficients[4, 1] soil <- beta_SOC * Rh$SOC + beta_TN * Rh$TN + beta_C_N * Rh$C_N Rh$soil <- soil summary(lm(N_effect ~ soil, Rh)) coefs(lm(N_effect ~ soil, Rh)) model0 <- lm(N_effect ~ Lon + Lat, Rh) coefs(model0, standardize = 'scale') beta_Lon <- summary(model0)$coefficients[2, 1] beta_Lat <- summary(model0)$coefficients[3, 1] geography <- beta_Lon * Rh$Lon + beta_Lat * Rh$Lat Rh$geography <- geography summary(lm(N_effect ~ geography, Rh)) coefs(lm(N_effect ~ geography, Rh)) microbe.list <- list( lme(climate ~ geography , random = ~ 1 | site , na.action = na.omit, data = Rh), lme(soil ~ climate + Rate+ ecosystem, random = ~ 1 | site , na.action = na.omit, data = Rh), lme(N_effect ~ climate + ecosystem + soil, random = ~ 1 | site , na.action = na.omit, data = Rh) ) microbe.psem <- as.psem(microbe.list) (new.summary <- summary(microbe.psem, .progressBar = F)) plot(microbe.psem,return = FALSE,alpha = 0.05,show = "std") Ra<-read_excel("E:/Q10/data/Ra.xlsx") model1 <- lm(N_effect ~ current18 + legacy12, Ra) coefs(model1, standardize = 'scale') beta_current18 <- summary(model1)$coefficients[2, 1] beta_legacy12 <- summary(model1)$coefficients[3, 1] climate <- beta_current18 * Ra$current18 + beta_legacy12 * Ra$legacy12 Ra$climate <- climate summary(lm(N_effect ~ climate, Ra)) coefs(lm(N_effect ~ climate, Ra)) model2 <- lm(N_effect ~ Cropland + Forest + Grass, Ra) summary(model2)$coefficients beta_Cropland <- summary(model2)$coefficients[2, 1] beta_Forest <- summary(model2)$coefficients[3, 1] beta_Grassland <- summary(model2)$coefficients[4, 1] ecosystem <- beta_Cropland * Ra$Cropland + beta_Forest * Ra$Forest + beta_Grassland * Ra$Grass Ra$ecosystem <- ecosystem summary(lm(N_effect ~ ecosystem, Ra)) coefs(lm(N_effect ~ ecosystem, Ra)) model3 <- lm(N_effect ~ SOC + TN + C_N, Ra) coefs(model3, standardize = 'scale') beta_SOC <- summary(model3)$coefficients[2, 1] beta_TN <- summary(model3)$coefficients[3, 1] beta_C_N <- summary(model3)$coefficients[4, 1] soil <- beta_SOC * Ra$SOC + beta_TN * Ra$TN + beta_C_N * Ra$C_N Ra$soil <- soil summary(lm(N_effect ~ soil, Ra)) coefs(lm(N_effect ~ soil, Ra)) model0 <- lm(N_effect ~ Lon + Lat, Ra) coefs(model0, standardize = 'scale') beta_Lon <- summary(model0)$coefficients[2, 1] beta_Lat <- summary(model0)$coefficients[3, 1] geography <- beta_Lon * Ra$Lon + beta_Lat * Ra$Lat Ra$geography <- geography summary(lm(N_effect ~ geography, Ra)) coefs(lm(N_effect ~ geography, Ra)) microbe.list <- list( lme(climate ~ geography , random = ~ 1 | site , na.action = na.omit, data = Ra), lme(soil ~ climate + Rate+ ecosystem, random = ~ 1 | site , na.action = na.omit, data = Ra), lme(N_effect ~ climate + ecosystem + soil, random = ~ 1 | site , na.action = na.omit, data = Ra) ) microbe.psem <- as.psem(microbe.list) (new.summary <- summary(microbe.psem, .progressBar = F)) plot(microbe.psem,return = FALSE,alpha = 0.05,show = "std") VP library(readxl) SR<-read_excel("E:/SR/SR2.xlsx") Envir<-read_excel("E:/SR/Env2.xlsx") library(vegan) rda.result<-rda(SR,Envir) rda.result summary(rda.result) vif.cca(rda.result) rda.vp<-varpart(SR,Envir[c("Rate","Type","Fertilizer_Type")],Envir[c("legacy1", "legacy2","legacy3","legacy4","legacy5","legacy6","legacy7","legacy8","legacy9","legacy10","legacy11","legacy12","legacy13","legacy14","legacy15","legacy16","legacy17","legacy18","legacy19")], Envir[c("current1","current2","current3","current4","current5","current6","current7","current8","current9","current10","current11","current12","current13","current14","current15","current16","current17","current18","current19")]) rda.vp plot(rda.vp, digits = 2, Xnames = c('N_addition', 'Contemporary_Climate',"Paleoclimate"), bg = c('blue','red',"green"))