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Supplementary text 

S1. Winter field campaign.  

Measurements of atmospheric H2O2, NO, PM2.5 and RH were performed from 4 

November to 31 December 2017 at the Station of Rural Environment, Research Center 

for Eco-Environmental Sciences (SRE-RCEES, 38.7 N, 115.3 E) in Wangdu, 

Baoding, Hebei Province of the North China Plain (NCP). Detailed information about 

the rural site was given in our previous studies 1, 2. H2O2 was measured by a commercial 

H2O2 monitor based on wet chemical dual enzyme fluorescence detection by Lazarus 

et al. 3 (Model AL-2021, AERO-laser, Germany). NO was detected by a 

chemiluminescence instrument (Model 42i, Thermo, USA). PM2.5 mass concentrations 

were measured by a standard Tapered Element Oscillating Microbalance system 

(Model TEOM 1405A, Thermo, USA). Atmospheric RH was monitored by a portable 

weather station (Model WXT520, Vaisala, Finland). 

S2. Chemical and optical analysis.  

One quarter of each micro-quartz fiber filter sample was extracted ultrasonically with 

20 mL ultrapure water for half an hour. After being purified through a syringe-driven 

filter (MillexGV PVDF, 0.22 m; Millipore, Ireland), the solutions were used for 

measuring water-soluble ions (WSIs; SO4
2-, NO3

-, Cl-, Na+, NH4
+, Mg2+, Ca2+ and K+), 

water-soluble organic carbon (WSOC) and light absorption spectra (200-900 nm) of 

water-soluble components (WSCs) by an ion chromatograph (IC6200, Wayeal, China), 

a total carbon analyzer (TOC-L, Shimadzu, Japan) and an UV-vis spectrophotometer 

(DR6000, HACH, USA), respectively. Then, the light absorption capability, also 

named as mass absorption efficiency (MAE, m2 g-1), was calculated by the following 

expression, which represents the water-soluble light absorbance per unit mass of PM2.5 

4, 5: 



𝑀𝐴𝐸 = (𝐴𝑏𝑠 − 𝐴𝑏𝑠700) ×
𝑉𝑠

𝐿 × 𝑀
× ln⁡(10) 

where Abs is the light absorption at  nm; Vs is the volume (mL) of extraction solutions; 

L is the path length (cm) of light; M is the mass (g) of PM2.5. The light absorption at 

700 nm (Abs700) was obtained from the average value between 695 nm and 705 nm to 

avoid the possible errors due to the baseline drift 6. 

Another quarter of each sample was digested with 8 mL of mixed aqueous solutions of 

HCl (6 mL) and HNO3 (2 mL) by a microwave reaction system (Multiwave PRO, Anton 

Paar, Germany). The metal elements (MEs; Al, Mn, Fe, Ba, Ni, Cu, Zn, As, Se and Pb) 

were analyzed by an inductively coupled plasma-mass spectrometer (ICP-MS, Agilent 

8800, USA). The rest of each micro-quartz fiber filter sample was cut into a circular 

area of 0.5 cm2 for the measurements of organic carbon (OC) and element carbon (EC) 

by a thermal/optical carbon analyzer (DRI-2001A, USA) with the IMPROVE 

thermal/optical reflectance protocol. Detailed measurement information has been 

described in the previous studies 1, 6-9. The concentrations of the chemical components 

(WSIs, WSOC, MEs, OC and EC) from the PM2.5 samples were displayed in Table S1. 

Based on the USEPA TO-11A method (USEPA, 1999), atmospheric carbonyls 

(formaldehyde, acetaldehyde, acetone and propionaldehyde) were collected into 2, 4-

dinitrophenylhydrazine (DNPH)-coated silica gel cartridges (Sep-Pak, Waters, USA) 

at the outlet of the flow tube with a flow rate of 1.2L min-1 for 1 h before and after 

irradiation, respectively. After sampling, the cartridges were eluted immediately by 5 

mL acetonitrile and analyzed by a high-performance liquid chromatograph (HPLC, 

Wayeal, China) with acetonitrile-water binary mobile phase 10-13. 

S3. Density functional theory (DFT) calculations.  

Spin-polarized density functional theory (DFT) calculations with periodic boundary 

conditions (PBC) were performed using the Perdew-Burke-Ernzerhof (PBE) functional 



14 as implemented in the Vienna ab initio simulation package (VASP 5.4.4) 15. The 

projector augmented wave method (PAW) was used to describe the core-valence 

electron interaction 16. The plane wave energy cutoff was set to 400 eV for all atoms. A 

graphene plane with a rectangular boundary (17.04×17.22 Å2) was used as the model 

of carbonaceous soot surfaces 17, 18. A vacuum spacing of 20 Å was used to avoid the 

periodic image interaction normal to the surface. The supercells were sufficiently large 

to use only Γ point sampling for integration over the Brillouin zone 17. The conjugate 

gradient algorithm was used for geometry optimization until the forces on all atoms 

were less than 0.02 eV/Å. The Gaussian smearing method with a smearing width of 0.2 

eV was applied to accelerate the convergence of integration at the Brillouin zone. The 

reaction pathways and transition states were traced by the climbing image nudged 

elastic band (CI-NEB) method with a spring constant of 5.0 eV/Å2 19-21. Frequency 

analysis was performed to confirm the transition states and their connected minima. 

  



Fig. S1. Time series of NO, RH, PM2.5 and H2O2 (A), diurnal variations of H2O2, 

NO and RH (B), and diurnal variations of H2O2 under low (<75 g m-3) and high 

(>75 g m-3) PM2.5 conditions (C) during the winter field campaign in the North 

China Plain. 

  



 

Fig. S2. Sketch of the photochemical flow tube reactor setup. 
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Fig. S3. Irradiance spectrum of the fluorescent lamps used in the flow tube. 

  



 

Fig. S4. Sketch of the photochemical smog chamber reactor setup. 
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Fig. S5. The influence of PM2.5 loadings on H2O2 production from PM2.5 filter 

samples under irradiation of the UV lamps in the flow tube. The experiments were 

carried out for the PM2.5 filter samples (WD-16-Apr-20) collected during 2h, 4h, 6h and 

8h by flushing humidified synthesis air of ~15% RH (296  2K) at a flow rate of 5L 

min-1. The blank areas and the yellow shadows represent the dark condition and the UV 

irradiation, respectively. 

  



 

Fig. S6. The influence of water vapor on H2O2 production from PM2.5 filter 

samples under irradiation of the UV lamps in the flow tube. The blank areas, the 

yellow shadows and the black arrows represent the dark condition, the UV irradiation, 

and the introduction of water vapor (~15% RH), respectively. All experiments were 

conducted at room temperature (296  2 K) with flushing synthesis air at a flow rate of 

5L min-1. (A) The experiment was carried out for the PM2.5 filter sample (WD-18-Jan-

19) under 10 min, 20 min, 30 min and 60 min irradiation, respectively, before 

introducing water vapor. (B) The experiments were carried out for the same PM2.5 filter 

sample (WD-10-Jan-20) by introducing water vapor at 0 min, 20 min and 60 min 

intervals, respectively, after irradiation. (C) The experiment was carried out for the 

PM2.5 filter sample (WD-2-Jan-20) preloaded with a certain fraction of H2O2 until 

equilibrium condition before introducing water vapor. 

  



 

Fig. S7. The influence of typical water-soluble ions on H2O2 production from pre-

treated filter samples under irradiation of the UV lamps in the flow tube. The 

experiments were carried out for blank filters loaded with K++NO3
-, Fe3++K++NO3

-, 

Fe3++K++NO3
-+Na++Cl-, Cu2++K++NO3

- and Cu2++K++NO3
-+Na++SO4

2- by flushing 

synthesis air with ~15% RH, respectively. The green bars represent the average 

concentration of H2O2 under 2h UV irradiation. 

  



 

Fig. S8. The carbonyls (formaldehyde, acetaldehyde, acetone and 

propionaldehyde) production from PM2.5 filter sample under irradiation of the 

UV lamps in the flow tube. The experiment was carried out for the PM2.5 filter sample 

(WD-18-Jan-19) by flushing humidified synthesis air of ~15% RH (296  2K) at a flow 

rate of 5L min-1 under 1h dark and 1h irradiation conditions. 

  



 

Fig. S9. Pathway for the reactions of HO2 radicals with surface hydroxyl to 

produce H2O2 over carbonaceous soot surfaces with and without the presence of 

water molecules as well as the optimized geometries of the reactant complex (RC), 

transition states (TS), intermediate species (IM), and product complex (PC). Cyan, 

red, white, and yellow circles denote C, O, H, and S atoms, respectively. The imaginary 

frequency of the transition state is presented. 

  



 

Fig. S10. The variations of H2O2 and SO2 (A) and the production of sulfate (B) for 

PM2.5 filter samples under irradiation of the UV lamps in the chamber. The 

experiments were carried out for three parallel PM2.5 filter samples (WD-25-Dec-19) 

with and without the presence of SO2 in humidified synthesis air of ~30% RH. The 

blank areas and the yellow shadows in (A) represent the dark condition and the UV 

irradiation, respectively. 

 



 

Fig. S11. Pathway for the reactions of SO2 with H2O2 to produce H2SO4 over 

carbonaceous soot surfaces and the optimized geometries of the reactant complex 

(RC), transition states (TS), and product complex (PC). Cyan, red, white, and 

yellow circles denote C, O, H, and S atoms, respectively. The imaginary frequency of 

the transition state is presented. 
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Fig. S12. Pathway for the oxidation of SO2 by H2O2 with surface -OH assistance 

over carbonaceous soot surfaces and the optimized geometries of the reactant 

complex (RC), transition states (TS), and product complex (PC). (A) The reaction 

of SO2 with surface -OH to produce H2SO3
-. (B) The reaction of H2SO3

- with H2O2 to 

produce HSO4
- and H2O. Cyan, red, white, and yellow circles denote C, O, H, and S 

atoms, respectively. The imaginary frequency of the transition state is presented. 
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Fig. S13. The variations of NO, NO2 and NOx for PM2.5 filter samples under 

irradiation of the UV lamps in the chamber. The experiment was carried out for three 

parallel PM2.5 filter samples (WD-25-Dec-19) with and without the presence of NO in 

humidified synthesis air of ~30% RH. The blank areas and the yellow shadows 

represent the dark condition and the UV irradiation, respectively. 

  



Table S1. The mass concentrations (g m-3) of WSIs, WSOC, MEs, OC, EC and 

PM2.5 in the several typical PM2.5 filter samples. 

Species BJ a SH a GZ a Mel a WD1 b WD2 b WD3 b 

Na+ 4.75 1.03 0.92 0.18 1.54 4.19 10.52 

Mg2+ 0.04 0.13 0.11 0.01 0.29 0.63 0.77 

Ca2+ 0.34 0.64 0.98 0.04 1.79 3.26 2.41 

K+ 1.24 0.67 0.69 0.09 1.79 4.07 3.01 

NH4
+ 3.17 7.03 5.22 1.08 6.81 23.99 15.80 

NO3
- 7.01 26.32 11.32 2.55 12.80 46.44 19.25 

SO4
2- 6.66 7.48 12.70 0.96 7.57 17.47 16.66 

Cl- 4.53 1.04 0.50 0.10 7.68 25.86 11.25 

WSOC 20.11 5.90 8.07 0.93 10.84 38.92 52.37 

Al 2.32 0.55 0.58 0.10 0.88 3.69 1.75 

Mn 0.78 0.04 0.05 0.01 0.07 0.15 0.25 

Fe 4.79 0.44 0.53 0.13 1.09 1.44 1.88 

Ni 0.57 0.00 0.01 0.00 0.03 0.07 0.20 

Cu 0.42 0.02 0.02 0.00 0.04 0.44 0.26 

Zn 0.00 0.00 0.14 0.01 0.38 0.28 1.29 

As 0.91 0.02 0.02 0.01 0.04 0.11 0.21 

Se 0.84 0.02 0.03 0.00 0.07 0.20 0.21 

Ba 1.71 0.02 0.03 0.01 0.07 0.14 0.28 

Pb 1.21 0.06 0.05 0.01 0.11 0.31 0.31 

OC 63.30 8.71 11.02 1.36 22.16 99.23 126.84 

EC 17.25 4.17 4.75 0.78 12.42 49.49 60.02 

PM2.5 146.27 62.44 54.83 7.96 88.15 334.18 342.63 
a BJ: Beijing; SH: Shanghai; GZ: Guangzhou; Mel: Melpitz,  
b WD1: WD-2-Jan-20; WD2: WD-18-Jan-19; WD3: WD-13-Dec-18 
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