

Identifying putative modes-of-action for environmental chemicals using high-throughput phenotypic profiling

Johanna Nyffeler^{1,2}, Clinton Willis¹, Grace Patlewicz¹, Daniel Chang¹, Imran Shah¹, Joshua Harrill¹

¹ Center for Computational Toxicology & Exposure, Office of Research & Development, US Environmental Protection Agency, Durham NC, United States.

²Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN, United States.

Johanna Nyffeler I Nyffeler.johanna@epa.gov I ORCiD 0000-0002-6155-9743

www.epa.gov

- evaluation that is based on New Approach Methods (NAMs)
- Tier 1 includes two high-throughput profiling assays:
 - high-throughput transcriptomics (HTTr) high-throughput phenotypic profiling (HTPP)
- Goals:
 - potency estimation
 - prediction of putative modes of action (MoA)
- · Labeling of various cell organelles with fluorescent probes in in vitro cultures
- Assessing a large variety of morphological features
- 'Cell Painting' assay: Gustafsdottir et al. 2013 [PMID: 24312513]. Bray et al. 2016 [PMID: 27560178]
- Amenable to many cell types
- · Cost-effective

Aim: Determine if high-throughput phenotypic profiling provides information about putative modes-of-action as part of the tiered testing strategy for chemical hazard evaluation.

Conclusions: Different phenotypic profiles are observed, with some being characteristic for specific modes-ofaction or chemical groups. Phenotypic profiles establish a basis for prioritizing chemicals for further hazard

Study 1: Qualitative comparison

Experimental design	
Cell type	human U-2 OS osteosarcoma cells
Exposure time	24 h
# chemicals	120 reference + 441 environmental
# concentrations	8, ½ log ₁₀ dose spacing
Replicates	1 per plate 4 independent experiments

Profiles of reference chemicals

- chemical, data from the highest non-cytotoxic concentration is displayed. Signatures were generated by flooring all absolute va 1.5 to 0. Features (in columns) are ordered according to the corresponding channel/organelle.
- Different signatures are observed
- Different classes of DNA toxicants (group 6) share similar
- Signatures of microtubule modulators (group 5) are different from DNA toxicants (group 6)

Clustering of reference & environmental chemicals

- Approximately 16 signature clusters are observed
- 300/441 environmental chemicals clustered with the null data sets (i.e. have no distinctive signature at the highest noncytotoxic concentration)
- The remaining environmental chemicals mostly shared signatures with reference chemicals

Study 2: Quantitative comparison

Experimental design	
Cell type	human U-2 OS osteosarcoma cells
Exposure time	24 h
# chemicals	1205
# concentrations	8, ½ log ₁₀ dose spacing
Replicates	1 per plate 4 independent experiments

Biological similarity of nuclear receptor modulators

- Glucocorticoids and retinoids each result in characteristic signatures
- Glucocorticoid receptor (GR) and retinoic acid receptors (RAR) are expressed in U-2 OS cells.

Biological similarity of all tested, active chemicals

Fig 4: Biological similarity of nuclear receptor modulators. Signatures of the three most potent non-cytotoxic concentrations of

The majority of chemicals cluster into two large groups that may represent non-specific biological effects such as cell stress.

B

Fig 5: Biological similarity of structurally related chemicals. (A) Chemicals were grouped by their chemotype into clusters. (B) The biological similarity of a chemical pair was retained from each cluster. (C) The distribution of biological similarity values was compared to a 'null dataset' derived by assigning the same 445 chemicals to random clusters (with the same size distribution as the real data), repeated 10 times. The p-value was calculated using a one-sided Wilcoxon rank sum test (non-parametric

Chemicals that share structural similarity (i.e. are in the same cluster) are more phenotypically similar than expected by

Strobilurins share high biological similarity but low structural

- Several organochlorines share high structural and biological

U.S. Environmental Protection Agency Office of Research and Development

characterization using a tiered strategy.