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Abstract

The dengue fever is today the most spread arbovirosis
in Brazil. Transmitted only by the female Aedes aegypti
mosquito, it reaches its peek during the hot and humid
Brazilian summer season. While there are many approaches
to analyze the spread of the dengue fever, most of them
focus on developing a mathematical model to represent that
process. One disadvantage of such approach is to neglect
the importance of micro-level behavior, focusing instead on
the macro-level aspects of the system. This work proposes
an agent-based model of the spread of the dengue fever
arbovirosis, where agents interact between themselves and
the environment representing the process of dissemination of
the disease. This model will be implemented and simulated
through the Swarm platform and the simulation results will
then be analyzed.

1. INTRODUCTION

Used as a tool to build a representation of a given system,
simulation models mainly differ from traditional models,
such as mathematical ones, in the sense that they allow: (i)
the study of how the modeled system behaves under certain
conditions, and (ii) the examination, in varying degrees of
detail, of the consequences of changing internal behaviors of
the system, and vice versa.

The results obtained in a simulation can be of great help
in the decision-making process, in the evaluation of systems
and in reducing implementation time and costs.

In [12,13] some simulation goals are presented, namely:

e Discover and formalize new theories and models;

Develop a better understanding of some features of the
real system;

Test hypotheses of the modeled system;
e Predict future actions and behaviors.

More specifically, Ferber [12] defines that an agent-based
simulation model relates to the idea that a system is com-
prised of all relationships of its inner parts, and in that sense,
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it is possible to simulate an artificial world based on the
relationships of its entities.

The simulation occurs when there is a transposition of
the population of a target system' to a conceptual model
equivalent, followed by the encoding of this model to a
computational model. In this case, an agent (or actor) equates
to a real world entity or a group of them. Such actors can
be of different natures and with various granularities, such as
humans, robots, computer programs, inanimate objects and
organizations.

The agent-based simulation provides an adequate infras-
tructure to model and understand processes related to social
interactions such as coordination, cooperation, formation
of coalitions and groups, development of conventions and
standards, intentionality, free will, conflict resolution, among
others. This is possible because of the relationship established
between local and global behavior, leading to explicit chains
of cause and effect of how internal agent components affect
the agents behavior, how this behavior affects the agency and,
dialectically, how the agency affect its agents components
[7,13,17].

This work aims to develop an agent-based model for the
spread of the Dengue fever through the simulation of the
spread process using the Swarm platform. For that goal,
this study is organized according to the following: Section
2 presents some studies on modeling the spread of general
diseases, including the Dengue fever. Section 3 offers a
brief overview of the agent-based simulation area. Section 4
presents a Swarm platform overview, its functioning and ar-
chitecture to be used in this work. Section 5 shows the current
outlook of Dengue in Brazil. Section 6 describes a proposed
agent-based model for the spread of the Dengue fever, and
Section 7 presents the results obtained in the performed
computational simulation, together with an analysis of such
results. Finally, Section 8 presents the final considerations for
this work, including some proposals for future works.

2. BACKGROUND

Several researches on the simulation of the spread of epi-
demics have been done in the past. Tran and Raffy in [22]

I The target system is equivalent to the simulation domain and can be real
or theoretical.
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proposed a spatial and temporal model for the dynamics
of the dengue fever, where the transmission processes are
described by a set of differential equations. Sakdanupah and
Morre [20] also proposed a mathematical model for Dengue
fever based on nonlinear differential equations.

One common disadvantage of such models is that the micro
mechanisms of the spread process are ignored. Agent-based
simulation is considered a new method to investigate the
micro mechanisms of complex systems. Cellular Automata
(CA) simulation can also be regarded as a type of agent
simulation. Chaussalet et al [3] developed a CA model of
the spread of the barley yellow dwarf virus and performed
sensitivity analysis. Deng et al [9] developed a multi-agent
simulation model to study the disease spread processes under
different amounts of initial patients, infection ratios and rules,
cure ratios and population density environments.

Demetrios et al [11] also developed an agent community
named “GeneCity" to test some hypothesis about the spread
of thalassaemia. Although the mechanisms at the individual
level are described in these models, the network structures
for the spread processes are ignored.

3. AGENT BASED SIMULATION
FIELD: A BRIEF PORTRAY

After the consolidation of the agent paradigm in computer
science, the role of agent-based simulation has been acquiring
importance in a variety of scientific disciplines. In particular,
the sources of analogy between agent-based technologies and
models of actual social systems have created an intense inter-
disciplinary effort, opening new interfaces of research across
various disciplines under the umbrella of a new scientific
field, which may be called Agent Based Simulation (ABS)
[15].

The general objective of ABS researchers is to develop and
study simulation models, taking into account the theoretical-
technical infrastructure from the Distributed Artificial Intelli-
gence area. These models mainly differ from traditional ones,
such as mathematical models, as they allow researchers: (i)
to study the global behaviour of the modelled system under
certain conditions, and (ii) to examine the consequences of
changes in the internal components of the system [8].

More specifically, to [6] an agent simulation model is based
on the idea that it is possible to simulate an artificial world
populated with interactive computational entities. Simulation
can be achieved by transposing the population of a target
system to its artificial counterpart. In this sense, an agent is
equivalent to an entity of the target system, or a group of
them.

In simulation systems, an important issue to be considered
is the warranty that both conceptual and computational mod-
els represent, in a trustworthy way, the target system. This is
obtained by using two processes: validation and verification.

The validation process aims to assure that conceptual model
represents, within an acceptable degree of adherence, the
target system. The verification process aims to assure that the
conceptual model is correctly translated to the computational
environment. Figure 1 shows the steps of the modeling
process.
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Figure 1. An Overview of the Modeling Process.

4. SWARM PLATFORM’S CONCEPTUAL
MODEL AND ARCHITECTURE

The Swarm Platform is a multi-agent software simulation
toolkit that supports a hierarchical modeling approach, de-
signed to help modelers simulating complex adaptive systems
through the use of object oriented libraries of reusable com-
ponents [14].

The Swarm’s conceptual model deals with a set of agents
that interact with each other by discrete events. In the Swarm
model, the main component that manages the agents is called
swARM, which can be described as a set of agents with an
activity time scheduling for them [1].

The Swarm model architecture keeps the observation ac-
tions and the simulation actions apart. In the first level of
the architecture, called OBSERVER SWARM, the simulation
can be watched. Therefore, what the user sees or perceives
is controlled by this level [1, 14]. Among the actions per-
formed in the OBSERVER SWARM are: (i) a user interface
management by creating observation screens, (ii) a second
hierarchical level instantiation, called MODEL SWARM and
(iii) file and/or chart generation based on MODEL SWARM
resulting data.

The main goal of the time scheduling at the OBSERVER
SWARM is to direct the data gathering process (getting the
information and showing it in an interactive manner to the
user, or storing it in files when running in batch mode).
In the second hierarchical level, the MODEL SWARM, the
simulation is executed. Some of the actions performed at this
level are [1]: (i) instantiation of the simulation agent’s along
with other possible hierarchical levels, (ii) time-scheduling
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for the agents, (iii) control of the actions performed by the
agents during the simulation, etc.

4.1. The Architecture of the Swarm Platform

What makes Swarm scientifically relevant and often mathe-
matically intractable, is the coupling between the individual
and the group behaviors. Although individuals are usually
relatively simple, their collective behavior can be quite com-
plex. Swarms allow researchers to focus directly on the
fundamental roots of complexity: they capture the point at
which simplicity becomes complexity [14].

The behavior of a swarm as a whole emerges in a highly
nonlinear manner from the behaviors of the individuals.
This emergence involves a critical feedback loop between
the behavior of the individuals and the behavior of the
whole collection. In a swarm, the combination of individual
behaviors determines the collective behavior of the whole
group. In turn, the behavior of the whole group determines
the conditions (spatial and temporal patterns of information)
within which each individual makes its behavioral choices.
These individual choices, again, collectively determine the
overall group behavior, and so on, in a never—ending loop
[1,14].

Agents that receive messages are free to perform whatever
computation they wish in response to the message. Typically,
the response to a message will be the execution of some
algorithm that captures the modeled agent’s behavior. Agents
can also insert other actions into the schedule. In this way,
Swarm supports a discrete event type of simulation. Swarm
programmers are also free to use simple, fixed schedules that
continually repeat the same actions [14].

S. DENGUE: EPIDEMIOLOGY AND
THE BRAZILIAN SCENARIO

The Dengue Fever is an acute viral disease, transmitted by
a specific type of mosquito, the Aedes aegypti (female).
Considered the most important arbovirus in the world, it
annually affects about 50 million people, with great potential
for expansion and an endemic-epidemic pattern in almost all
continents of the globe. The disease usually manifests itself
in a benign fashion but can progress to a severe form known
as hemorrhagic dengue fever.

This makes the Dengue Fever one of the most important
objects in public health projects in Brazil nowadays, as
they focus on controlling the Aedes aegypti. Due to the
Aedes aegypti’s ability to reproduce itself on clean water, the
Dengue Fever is present in all of the 27 states of the Brazilian
Federation, distributed across 3.794 cities, being responsible
for almost 60% of all the notifications in the Americas [4,5].

There are four soro-types of this disease (DEN-1, DEN-2,
DEN-3, DEN-4) spread all over the world. In 1981, DEN-
1 and DEN-4 had been the first isolated soro-types, due

to an epidemic of Dengue Fever in Boa Vista (Roraima).
After a long hiatus, the disease (DEN-1) re-appeared in Rio
de Janeiro, Alagoas, Ceard, Pernambuco, Bahia and Minas
Gerais in 1986-1987, spreading itself all over the country. In
2001-2002, the soro-types DEN-2 and DEN-3 re-appeared as
well. Currently, only three of them are outstanding in Brazil:
DEN-1, DEN-2 and DEN-3 [5].

The spread of the Dengue Fever is highly dependent on
ecological and social-environmental conditions. Places with
high temperatures and constant raining are more likely to
present higher infectious rates and larger risk groups. The
Aedes aegypti’s life cycle is comprised of four stages: egg,
larva, pupa and the land form, which corresponds to the adult
mosquito. Following, we present a brief overview of this
cycle based on [4,23]:

1. Egg - The egg stage is the most resistant stage of the
of Aedes aegypti’s life cycle, when eggs are laid by
females on the water surface, adhering to the inner wall
of containers, and then progressing to the incubation
period. Under favorable conditions, it should take no
longer than two (2) or three (3) days for them to be ready
to hatch. The desiccation resistance increases as the eggs
get older, i.e., the resistance increases the closer to the
end of the embryonic development, and they can remain
viable for six (6) to eight (8) months.

2. Larva - The larva is equipped with great mobility and
have the primary function of growth. They spend most
of their time feeding on organic substances, bacteria,
fungi and protozoa in the water. The duration of the larva
stage, with favorable temperature ranging from 25 to 29
°C and good food supply is about five (5) to ten (10)
days, but it could take up to a few weeks.

3. Pupa - In this stage, the insect does not eat, just breathe,
being not endowed with good mobility. It is rarely
affected by the action of larvicide. The duration of the
pupal stage in favorable temperature is about two (2)
days on average.

4. Mosquito - Both male and female feed on nectar and
plant juices, but the female mosquito requires blood after
mating to guarantee the maturation of eggs. There is a
direct relationship in tropical countries between rain and
the increased number of vectors. Also, the temperature
greatly influences the transmission of dengue and the
disease is rarely transmitted at temperatures below 16
°C. Transmission occurs preferentially at temperatures
above 20 °C. The ideal temperature for the proliferation
of Aedes aegypti is estimated to be around 30 to 32 °C.

The virus is transmitted to mosquitoes when they feed
on the blood of a person already infected with the dengue
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virus. After an incubation period of eight (8) to twelve (12)
days, the mosquito is then ready to propagate the disease. In
humans, the incubation period might last from three (3) to
fifteen (15) days, and symptoms are noticeable only after this
period. Most importantly, there is no transmission through
direct patient contact (including secretions) with a healthy
person. The virus is not transmitted through water or food
as well.

As the disease is of worldwide concern, there is some
mobilization by the scientific community to study it. Efforts
have been made to better understand, prevent and control the
spread of the epidemic. This paper proposes an agent-based
simulation model for the epidemic disease in the hopes of
contributing to such effort.

6. AN AGENT-BASED MODEL FOR THE
DENGUE FEVER SPREAD

To better understand and simulate the features observed in
the real world, a transposition was made in order to build
a model to be executed in a controlled environment. Rules
were established for building a model as close to reality as
possible, according to the scope of the project. One challenge
was to adequate the model to the time-stepping characteristic
of Swarm simulations. As the simulation works in cycles, it
was necessary to adopt a time measure, as shown in Equation
1.

C(d)=3d ()

Where C(d) represents the number of cycles and d the
number of days in the real world.

In the sequel, we present a description of the simulation
model, based on [8, 18,21], as well as the behavioral rules
transposed to the computational model implemented in the
Swarm platform.

(A) Mosquito Agent Behavior

As in the real world, this agent is modeled to display
four (04) distinct stages: egg, larva, pupa and the land form,
which corresponds to the adult mosquito. Each one of them is
discussed separately in this section. During simulation, each
stage is represented internally in the mosquito agent with
no graphical/visual representation being used to differentiate
distinct stages. The mosquito agent evolves according to the
simulation progress and its behavior is internally adjusted
according to its current life cycle stage.

(A.1) Egg Agent Behavior

Egg agents cannot move or feed and have an ideal temper-
ature higher than 20 °C, with an ideal humidity higher than
70%. Their outbreak will normally take place in about three
(03) days.

(A.2) Larva Agent Behavior

These agents move only within their birthplace water spot,

feeding on microorganisms and on their own egg remains.

Their ideal temperature is between 25 °C and 29 °C, and their
ideal humidity is higher than 70%. Under such conditions,
this stage will take between three (03) to five (05) days to
complete.

(A.3) Pupa Agent Behavior

Just like eggs, pupa agents cannot move nor feed. Their
ideal temperature and humidity is around 20 °C e 70%
respectively, and they will have an 83% chance to become
adult mosquitoes within three (03) days approximately.
(A.4) Adult Mosquito Agent Behavior

In this stage, agents are able to move freely through the
environment up to 100m from their birthplace. Only females
are capable of transmitting the disease, and that rarely hap-
pens at temperatures below 16 °C, normally taking place
under temperatures above 20 °C. The mosquitoes proliferate
at an estimated temperature between 16 °C and 29 °C, and
they have an average egg positivity of four (04) during their
lifetime. Females will lay about 300 eggs on clean water with
a 40% survival rate and 60% chance of being capable of
transmitting the disease, i.e., other females. So, about 72 eggs
will be considered in the simulation.

The mosquitoes can be killed by either exterminator agents
or traps in the environment. They have an incubation period
of about 8 to 11 days, by the time at which they become
infectious and remain so for the rest of their life. Each
infected female mosquito can propagate the disease to heathy
humans by only a simple bite.

To help understanding the simulation process, Table 1
summarizes the rules for the adult mosquito agent.

Table 1. Rules for the Adult Mosquito Agent.
Rule This rule establishes how the adult mosquito agent
1: operates through the simulation.
IF age is greater than 33 days THEN die
IF any human is within visual field (10x10 cells)
THEN chase him to feed
IF targeted human is close enough (10m) THEN
bite him
IF clean water is nearby THEN deposit eggs
Rule When depositing eggs: IF eggs are successfully laid
2: AND there are proper conditions as show in Section
6. THEN about 72 adult mosquitoes might emerge
from the eggs
IF the water is poisoned (a trap) THEN die
Rule IF the adult mosquito is infected AND bites a
3: non-infected human THEN the human becomes
infected within 3 to 6 days
IF the adult mosquito is not infected AND bites
an infected human, the mosquito becomes infected
within 8 to 11 days

(B) Human Agent Behavior
As in the real world, this agent represents a human being,
which might or might not become infected by the disease.
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Humans can move freely through the environment. After
being bitten, it takes three (03) to six (06) days to start
showing symptoms. The Dengue Fever might last from three
(03) to fifteen (15) days, with an average of five (05) to six
(06) days. After being infected, the human agent can transmit
the virus to others non-infected mosquitoes by blood contact
during a mosquito’s bite. This can occur one day before the
first signs of symptoms and continues up to the last day of the
disease. The death rates on multiple infections (also called
the hemorrhagic dengue) are: 0.5% when infected twice; 10%
when infected three times; 15% when infected four times and
25% when infected more than 4 times.

To help understanding the simulation process, Table 2
summarizes the rules of the human agent.

Table 2. Rules for the Human Agent.

Rule This rule establishes how the human agent operates

1: through the simulation.
IF is bitten twice by an infected mosquito, there
is a probability of 0.5% to become infected by
hemorrhagic dengue fever and die
ELSE IF is bitten three times by an infected
mosquito, there is a probability of 10% to become
infected by hemorrhagic dengue fever and die
ELSE IF is bitten four times by an infected
mosquito, there is a probability of 15% to become
infected by hemorrhagic dengue fever and die
ELSE IF is bitten more than four times by an
infected mosquito, there is a probability of 25% to
become infected by hemorrhagic dengue fever and
die
ELSE move freely through the environment

(C) Exterminator Agent Behavior

The exterminator agent moves freely through the environ-
ment based on the mosquitoes gradient, attracted by areas
of high mosquitoes density in the map. This represents the
public health organizations that map and notify all risk areas
when planning control actions. Their role in the simulation is
to perform the killing of adult mosquito agents.

To help understanding the simulation process, Table 3
summarizes the rules of the exterminator agent.
(D) The Environment

The environment is not modeled as an agent on his own,
but influences the agents behaviors. Environmental factors
such as temperature, food rate (probability to find food) and
humidity are globally defined as average values for the entire
simulation, simplifying the simulation model and allowing
the study of scenarios with different average values. There
will be two states presented in the scenario: clean water
and trap. Clean water servers as the place where mosquitos
will lay their eggs. Traps, on the other hand, are placed by
exterminators to eliminate mosquitoes.

Table 3. Rules for the Exterminator.

Rule This rule establishes how the exterminator agent

1: operates through the simulation.
IF an exterminator locates an adult mosquito
THEN releases poison that kills mosquitoes in
an area of 10x10 cells, with an effectiveness
rate directly proportional to the distance from the
exterminator
ELSE IF follows the indications given by the
sensors (these indicates, through a gradation
of color, where the highest concentration of
mosquitoes is located on the map - dark indicates
a high concentration of mosquitoes and lighter
indicates a low concentration of them)

7. COMPUTATIONAL SIMULATION

In this section, we present the computational simulation
implemented for this study. In section 7.1 we describe the
simulation environment. In section 7.2 we perform the ver-
ification and validation of the computational model through
two proposed scenarios. Finally, in section 7.3 we offer a
conclusion for the simulation model analyzed.

7.1. Simulation Environment

The conceptual model is transposed to a computational model
that was later implemented in the Swarm simulation platform.
Figure 2 shows all modeled agents as well as their relation-
ships.

Simulation

Infects

Control

Figure 2. An Overview of the Simulation Environment.

Environment

As described in the previous section, the environment
interacts with all agents offering food for the mosquitoes,
water for their reproduction and traps with substances to
inhibit their proliferation. The results of such interactions
between agents and the environment can be visualized by a
2D raster provided by the Swarm platform. Figure 3 shows
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the simulation screen during a given cycle.
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Figure 3. Simulation Screen.

7.2. Verification e Validation

This section focus on verifying and validating the proposed
model through analyzing the results obtained in two different
scenarios.

According to Dantas et al. [6] and Dibo et al. [10],
meteorological aspects such as temperature, humidity and
precipitation can be used as Dengue incidence predictors.
In that sense, evaluating different climatic seasons allows a
better understanding of the spread of the disease.

In this work, we consider a tropical wet and dry climate
region (Aw) according to the Koppen-Geiger climate classifi-
cation [16, 19], as this is the predominant climate for most
of Brazil. The weather in Brazil is characterized by high
average annual temperatures and by a pluviometric regime
that separates two distinct seasons: a rainy summer and a dry
winter season.

Following, there is a description of each of the simulation
scenarios and their respective results:

7.2.1. Scenario I: Winter Season
To simulate the Brazilian winter season, we considered Rio
de Janeiro’s climate information [2], with an average tem-
perature of 18 °C e average humidity of 45%. As the winter
in Brazil is characterized by high dryness, we considered 20
water spots, with 5% set as traps. As winter is historically
a season with low dengue fever occurrence, only 10 exter-
minators were made available in this simulation scenario.
The simulation started with 100 human agents, with 8%
already infected with the disease, and 50 mosquitoes, with
60% already infected by the disease.

After 180 simulation cycles (60 days), we observed no
occurrence of hemorrhagic dengue (a human agent being

infected more than once) and the infection rate actually
dropped to 7%. The number of mosquitoes in the environment
also dropped from 50 to 30, with a 100% infection rate and
with 111 mosquitoes in non-adult stages of their life cycles.

Figure 4 (a) shows the simulation screen after 60 days. The
color gradation shows the density of infected mosquitoes, and
clearly shows few concentration spots. Figure 4 (b) shows
the chart of mosquitoes in non-adult stages against adult
mosquitoes. We observed that even though there were many
non-adult mosquitoes, several adults were unable to survive
due to the harsh winter conditions (temperature, humidity and
lack of water spots). Figure 4 (c) shows the infections chart
for the simulation world, and indicates that only a few humans
were infected during that season.

7.2.2. Scenario II: Summer Season

To simulate the Brazilian summer season, we again con-
sidered Rio de Janeiro’s climate data [2], with an average
temperature of 29 °C and humidity of 85%. As the summer in
Brazil is predominantly rainy, we considered 38 water spots,
with 40% set as traps. Also, as the summer season shows
a historical high infection rate, we made 30 exterminators
available. The simulation started with 100 human agents,
being 8% infected by dengue and 50 mosquitoes, with 60%
infected as well.

After 180 simulation cycles (60 days), we observed that 3
humans died due to hemorrhagic dengue and the infection
rate raised considerably to 33%. We also noticed that the
number of mosquitoes jumped to 394, with 83% infected and
with 5086 mosquitoes in non-adult stages.

Figure 5 (a) shows the simulation screen after 60 days.
Figure 5 (b) show the chart for the number of mosquitoes
in non-adult stages against adult mosquitoes. We can clearly
see an almost exponential growth of mosquitoes in non-
adult stages, which corroborates to the rapid increase seen
in the population of adult mosquitoes. Figure 5 (c) shows
the infections chart for the simulation world, with a clear
increasing curve in the number infections for both humans
and mosquitoes.

7.3. Conclusions

The two simulated scenarios allowed us to validate the
proposed model, showing very similar results to the ones
found by [5, 6, 10, 18,21]. Simulating scenarios that consid-
ered climatic seasons allowed us to validate the model against
infection rates and mosquitoes proliferation data during the
same seasons in real life. In both scenarios, it was also
possible to notice the emergency of a spreading behavior for
the dengue fever caused by the interaction of the simulation
agents (mosquitoes, humans, exterminators) and the environ-
ment (food, clean water and traps).
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Figure 5. Simulation environment during a summer season and after 60 simulated days.

8. FINAL CONSIDERATIONS allows the application of intelligence in the decision-making
In this paper we propose a model for the spread of the dengue ~ process, narrowing the model and the simulation to real-
based on the concepts of agent-based systems. Using agents
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life situations, with the advantage of relying on a controlled
environment.

The multi-agent based simulation model presented in this
work was developed aiming to help us analyzing and vali-
dating our approach. We simulated the spread of the disease
considering two scenarios, both summer and winter seasons,
and the obtained results were very close to the ones seem in
similar studies.

We implemented the simulation in the Swarm platform,
focusing on identifying and modeling behavioral aspects
of the micro parts involved in the spread of the Dengue
fever. That way, we can provide a framework for better
understanding the roles of each entity in the global context
of the spread of the disease.

We intend to extend this work in the future to model
even more realistic scenarios, including situations of control
and extermination of the disease. That way, public health
organisms could use the simulation framework as a tool to
plan their actions against the mosquito’s proliferation more
efficiently. Some improvements could also be made on the
agent’s behavioral model, such as the exterminator agent,
for instance, allowing them to react more realistically to the
spread of the disease during the simulation.
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