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Finite volume method overview
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Finite Volume Method: A Crash introduction

• This a brief introduction to the FVM to illustrate some basic concepts.

• There is much more under the hood.

• We will use the general transport equation as the starting point to explain the FVM,
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• Starting from this equation, we can write down the Navier-Stokes equations (NSE).

• So, everything we are going to address also applies to the NSE or any set of equations that can 

be derived form the general transport equation.



Problem statement

• Find the approximate solution to the general transport equation for the transported quantity        

in a given domain, with given boundary conditions (BC) and initial conditions (IC).  

• It is an initial boundary value problem (IBVP).

• This is a second order equation.  Therefore, for good accuracy, it is necessary that the order of 

the discretization is equal or higher than the order of the equation that is being discretized (in 

space and time).  
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• Let us use the general transport equation as the starting point to explain the FVM,

Profile assumptions using Taylor expansions around point P (in space) and point t (in time)

• Hereafter we are going to assume that the discretization practice is at least second order 

accurate in space and time.

• As consequence of the previous requirement, all dependent variables are assumed to vary 

linearly around a point P in space and instant t in time,
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• Domain discretization (or mesh generation), consist in dividing the solution domain into a finite 

number of arbitrary control volumes or cells, such as the one illustrated below.

• Inside each control volume the solution is sought.

• The control volumes can be of any shape (e.g., tetrahedrons, hexes, prisms, pyramids, 

dodecahedrons, and so on). The only requirement is that the faces that made up the control 

volume need to be planar.

• We also know which control volumes are internal and which control volumes lie on the 

boundaries.

 

 

 

 

 

  

 

 

  

 

 
 

  

 

 

 

Domain discretization – Mesh information and variable arrangement
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Domain discretization – Mesh information and variable arrangement

• In the control volume illustrated, the centroid  P and face center f  are known.

• We also assume that the values of all variables are computed and stored in the centroid of the 

control volume Vp and that they are represented by a piecewise constant profile (the mean 

value),

• This is known as the cell centered collocated arrangement.

• All approximations used so far are at least second order accurate.

 

 

 

 

 

  

 

 

  

 

 
 

  

 

 

 



Summary:

• The control volume        has a volume V and is constructed 

around point P, which is the centroid of the control volume.  

Therefore the notation       . 

• The vector from the centroid P of        to the centroid N of the 

neighboring control volume         is named d. 

• We also know all neighbors       of the control volume

• The control volume faces are labeled f, which also denotes the 

face center. 

• The location where the vector d intersects a face is     .

• The face area vector         point outwards from the control 

volume, is located at the face centroid, is normal to the face and 

has a magnitude equal to the area of the face.

• The vector from the centroid P to the face center f  is named Pf.
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Domain discretization – Mesh information and variable arrangement

• Putting all together, it is a lot geometrical information that we need to track. 

• A lot of overhead goes into the data book-keeping.

• At the end of the day, the FVM simply consist in conservation of the transported quantities and 

interpolating information from cell centers to face centers.
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Gauss theorem and face fluxes computation

• Let us recall the Gauss or Divergence theorem,

where          is a closed surface bounding the control volume        and           represents an 

infinitesimal surface element are with associated normal       pointing outwards of the          

surface          , and

• The Gauss or Divergence theorem simply states that 

the outward flux of a vector field through a closed 

surface is equal to the volume integral of the divergence 

over the region inside the surface.

• This theorem is fundamental in the FVM. 

• It is used to convert the volume integrals appearing in 

the governing equations into surface integrals.  
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Gauss theorem and face fluxes computation

• Let us use the Gauss theorem to convert the volume integrals into surface integrals,

• At this point the problem reduces to interpolating somehow the cell centered values (known 

quantities) to the face centers.

• That is, we need to compute the gradient terms, source terms, and convective and diffusive 

fluxes across the faces.



Finite Volume Method: A Crash introduction

621

Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Convective term:

where we have approximated the integrant by means of 

the mid point rule, which is second order accurate

By using Gauss theorem we convert volume 

integrals into surface integrals

Gauss theorem:
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Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Diffusive term:

where we have approximated the integrant by means of 

the mid point rule, which is second order accurate

By using Gauss theorem we convert volume 

integrals into surface integrals

Gauss theorem:
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Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Gradient term:

where we have approximated the centroid gradients by using the Gauss theorem.

This method is second order accurate and is known as Gauss cell-based.

Gauss theorem:

 

 

 

 

  

 

   

Note:

• There are more methods for gradients 

computation, e.g., least squares, node-

based reconstruction, and so on.

• As there is some algebra involved, we 

do not provide the demonstration.
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Gauss theorem and face fluxes computation

• Integrating in space each term of the general transport equation and by using Gauss theorem,  

yields to the following discrete equations for each term

Source term:

Gauss theorem:

 

 

 

 

  

 

   

This approximation is exact if        is either constant or varies linearly within the control volume; otherwise is 

second order accurate. 

Sc is the constant part of the source term and Sp is the non-linear part
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Gauss theorem and face fluxes computation

• Using the previous equations to evaluate the general transport equation over all the control 

volumes, we obtain the following semi-discrete equation

where is the convective flux and                is the diffusive flux. 

• And recall that all variables are computed and stored at the centroid of the control volumes. 

• The face values appearing in the convective and diffusive fluxes have to be computed by 

some form of interpolation from the centroid values of the control volumes at both sides of 

face f.



Interpolation of the convective fluxes

Finite Volume Method: A Crash introduction

• This type of interpolation scheme is known as linear interpolation or central differencing and it is 

second order accurate.  

• However, it may generate oscillatory solutions (unbounded solutions).

• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,
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• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,

Finite Volume Method: A Crash introduction

• This type of interpolation scheme is known as upwind differencing and it is first order accurate.  

• This scheme is bounded (non-oscillatory) and diffusive.

Interpolation of the convective fluxes
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• By looking the figure below, the face values appearing in the convective flux can be computed 

as follows,
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• This type of interpolation scheme is known as second order upwind differencing (SOU), linear 

upwind differencing (LUD) or Beam-Warming (BW), and it is second order accurate.  

• For highly convective flows or in the presence of strong gradients, this scheme is oscillatory 

(unbounded).

Interpolation of the convective fluxes
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• By adding a well-designed limiter function          , we get a high resolution (second order 

accurate) and bounded scheme (HR).  This is a TVD scheme.

• When the limiter detects strong gradients or changes in slope, it switches locally to low 

resolution (upwind).

• The concept of the limiter function           is based on monitoring the ratio of successive 

gradients, e.g., 

Interpolation of the convective fluxes

Finite Volume Method: A Crash introduction

• To prevent oscillations in the SOU, we add a gradient or slope limiter function           . 
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Interpolation of the convective fluxes – TVD schemes
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• A TVD scheme, is a scheme that does not create 

new local undershoots and/or overshoots in the 

solution or amplify existing extremes. 

• In CFD we want stable, non-oscillatory, bounded, 

high order schemes. 

• The Sweby diagram (Sweby, 1984), gives the 

necessary and sufficient conditions for a scheme to 

be TVD.  

• In the figure, the shaded area represents the 

admissible TVD region.  However, not all limiter 

functions are second order. 

• High-resolution schemes falls in the blue area and 

low-resolution schemes falls in the grey area.

• The drawback of the limiters is that they reduce the 

accuracy of the scheme locally to first order (low 

resolution scheme), when r < 0 (sharp gradient, 

opposite slopes or zero gradient).  However, this is 

justified when it serves to suppress oscillations.

• No particular limiter has been found to work well for 

all problems, and a particular choice is usually made 

on a trial-and-error basis.

UD = upwind

SOU = second order upwind

CD = central differencing

D = downwind



• Let us see how the upwind, linear upwind, linear, and Minmod TVD schemes behave in a 

numerical schemes killer test case:

• The oblique double step profile in a uniform vector field (pure convection).

• Even if this problem seems to be easy, from the numerical point of view is difficult to resolve due 

to the strong discontinuities.

• This problem has an exact solution.

Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – TVD schemes
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• Qualitative comparison of the upwind, linear upwind, linear, and Minmod TVD schemes 

Finite Volume Method: A Crash introduction

Upwind – 1st order 

Very bounded but too Diffusive
Linear – 2nd order 

Very accurate but too oscillatory
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Interpolation of the convective fluxes – TVD schemes

Linear Upwind – 2nd order

Bounded and accurate

SuperBee – TVD high resolution

Compressive

Minmod – TVD high resolution

Diffusive

vanLeer – TVD high resolution

Smooth
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Interpolation of the convective fluxes – TVD schemes

• Quantitative comparison of the upwind, linear upwind, linear, and Minmod TVD schemes 



• In the previous explanation, we assumed a line structure (figure A). That is, the cell centers PP, 

P, and N are all aligned.

• In unstructured meshes (which are often used in industrial cases), most of the times the cell 

center PP is not aligned with the vector connecting cells P and N (figure B). Therefore, 

extending the previous formulations to these meshes is not very straightforward.

• Higher-order schemes for unstructured meshes are an area of active research, and new ideas 

continue to emerge.

Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – Unstructured meshes
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• A simple way around this problem is to redefine       

higher-order schemes in terms of gradients at the 

control volume P.

• For example, using the gradient of the cells, we can 

compute the face values as follows,

Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – Unstructured meshes

Upwind  → 

Central difference  → 

Second order upwind differencing  → 

• Notice that in this new formulation the cell PP does not appear anymore.

• The problem now turns in the accurate evaluation of the gradients at the cell and face centers. 

• For example, the gradients at the cell centers can be computed using the Gauss method, and 

then interpolated to the face centers.

• At this point, we are only missing the reconstruction of the cell center gradients at the face 

centers, this is explained latter.

  

  

      

 

 

 

  

 

 

 

635



Finite Volume Method: A Crash introduction

Interpolation of the convective fluxes – Unstructured meshes
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• In unstructured meshes, as often the value of the node PP (of NN) is not available or 

straightforward to compute, the ratio of successive gradients r can be computed as follows [1],

U → Upwind

D → Downwind

• As you can see, the value of r depends on the flow direction.

• There are many ways to compute r.  This is an area of active research

Reference:

[1] Darwish, M. S., Moukalled, F., “TVD schemes for unstructured grids”
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Gradients computation at cell centers

• There are many methods for the computation of the cell centered gradients, e.g., least squares, 

Gauss cell-based, Gauss node-based, and so on.

• Using the Gauss cell-based method, the cell centered gradients can be computed as follows,
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• This approximation is second order accurate given that the mesh quality is acceptable, and the 

volume of the cell is finite.

• In general, the least squares method tends to be more accurate.
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Gradients reconstruction at face centers

• Face gradients           arise from the discretization process of the convective and diffusive terms.

• One way to reconstruct the face gradient          , is by using weighted interpolation of the cell 

centered quantities           and          .

• Mesh non-orthogonality and skewness introduce errors when approximating the face gradients, 

so corrections need to be added.

• This is an iterative process, where we compute successively better approximations to the 

gradients starting from an initial approximation.
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where

Face gradient



• By looking the figure below, the face values 

appearing in the diffusive flux in an orthogonal 

mesh can be computed as follows,

Finite Volume Method: A Crash introduction

• This is a central difference approximation of the 

first order derivative. This type of 

approximation is second order accurate.

Interpolation of diffusive fluxes in an orthogonal mesh
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• By looking the figure below, the face values 

appearing in the diffusive flux in a non-orthogonal 

mesh (20°) can be computed as follows,

• This type of approximation is second order accurate 

but involves a larger truncation error.  It also uses a 

larger numerical stencil, which make it less stable.

• Remember, the non-orthogonal angle is the angle between the vector S and the vector d



• By looking the figures below, the face values appearing in the diffusive flux in a non-orthogonal 

mesh (       ) can be computed as follows.

• Using the over-relaxed approach, the diffusive fluxes can be corrected as follow,

Finite Volume Method: A Crash introduction

Over-relaxed approach

Correction of diffusive fluxes in a non-orthogonal mesh
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• In order to maintain second order accuracy, and to avoid unboundedness, we need to correct 

non-orthogonality and skewness errors.

• The ideal case is to have an orthogonal and non skew mesh, but this is the exception rather 

than the rule.

Finite Volume Method: A Crash introduction

Orthogonal and non skew mesh Non-orthogonal and non skew mesh

Orthogonal and skew mesh Non-orthogonal and skew mesh

Mesh induced errors
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where is the convective flux and                is the diffusive flux. 

• Using the previous equations to evaluate the general transport equation over all the control 

volumes, we obtain the following semi-discrete equation,

Finite Volume Method: A Crash introduction

• After spatial discretization, we can proceed with the temporal discretization.  By proceeding 

in this way we are using the Method of Lines (MOL).

• The main advantage of the MOL method, is that it allows us to select numerical 

approximations of different accuracy for the spatial and temporal terms.  Each term can be 

treated differently to yield to different accuracies.

Temporal discretization
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• Now, we evaluate in time the semi-discrete general transport equation

Finite Volume Method: A Crash introduction

• At this stage, we can use any time discretization scheme, e.g., Crank-Nicolson, euler implicit, 

forward euler, backward differencing, adams-bashforth, adams-moulton.

• It should be noted that the order of the temporal discretization of the transient term does not 

need to be the same as the order of the discretization of the spatial terms.  

• Each term can be treated differently to yield different accuracies.  As long as the individual terms 

are at least second order accurate, the overall accuracy will also be second order.

Temporal discretization
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in every control volume         of the domain, a system of linear algebraic equations for the 

transported quantity       is assembled,

• After spatial and temporal discretization and by using equation

• This system can be solved by using any iterative or direct method.

Linear system solution

644



So, what does OpenFOAM® do?

Finite Volume Method: A Crash introduction

• It simply discretize in space and time the governing equations in arbitrary polyhedral control 

volumes over the whole domain.  

• Assembling in this way a large set of linear discrete algebraic equations (DAE), and then it solves 

this system of DAE to find the solution of the transported quantities. 

• Therefore, we need to give to OpenFOAM® the following information:

• Discretization of the solution domain or the mesh. 

• This information is contained in the directory constant/polyMesh

• Boundary conditions and initials conditions. 

• This information is contained in the directory 0

• Physical properties such as density, gravity, diffusion coefficient, viscosity, etc. 

• This information is contained in the directory constant

• Physics involve, such as turbulence modeling, mass transfer, source terms, dynamic 

meshes, multiphase models, combustion models, etc. 

• This information is contained in the directories constant and/or system
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So, what does OpenFOAM® do?

Finite Volume Method: A Crash introduction

• Therefore, we need to give to OpenFOAM® the following information:

• How to discretize in space each term of the governing equations (diffusive, convective, 

gradient and source terms).  

• This information is set in the system/fvSchemes dictionary.

• How to discretize in time the obtained semi-discrete governing equations. 

• This information is set in the system/fvSchemes dictionary.

• How to solve the linear system of discrete algebraic equations (crunch numbers). 

• This information is set in the system/fvSolution dictionary.

• Set runtime parameters and general instructions on how to run the case (such as time step, 

maximum CFL number, solution saving frequency, and so on). 

• This information is set in the system/controlDict dictionary.

• Additionally, we may set sampling and monitors for post-processing (functionObjects).  

• This information is set in the system/controlDict dictionary or in the specific 

sampling dictionaries located in the directory system/
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ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

Where do we set all the discretization schemes in OpenFOAM®?

• The fvSchemes dictionary contains the information related to 

the discretization schemes for the different terms appearing in 

the governing equations.

• The discretization schemes can be chosen in a term-by-term 

basis.

• The keyword ddtSchemes refers to the time discretization.

• The keyword gradSchemes refers to the gradient term 

discretization.

• The keyword divSchemes refers to the convective term 

discretization.

• The keyword laplacianSchemes refers to the Laplacian term  

discretization.

• The keyword interpolationSchemes refers to the method used 

to interpolate values from cell centers to face centers. It is 

unlikely that you will need to use something different from 

linear.

• The keyword snGradSchemes refers to the discretization of 

the surface normal gradients evaluated at the faces.

• Remember, if you want to know the options available for each 

keyword you can use the banana method.
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Time discretization schemes

• There are many time discretization schemes available in OpenFOAM®. 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes

• These are the time discretization schemes that you will use most of the times:

• steadyState: for steady state simulations (implicit/explicit).

• Euler: time dependent first order (implicit/explicit), bounded.

• backward: time dependent second order (implicit), bounded/unbounded.

• CrankNicolson: time dependent second order (implicit), bounded/unbounded.

• First order methods are bounded and stable, but diffusive. 

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.

• If you keep the CFL less than one when using the Euler method, numerical diffusion is not that 

much (however, we advise you to do your own benchmarking).
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Time discretization schemes

• The Crank-Nicolson method as it is implemented in OpenFOAM®, uses a blending factor. 

ddtSchemes

{

default        CrankNicolson       ;

}

• Setting       to 0 is equivalent to running a pure Euler scheme (robust but first order accurate). 

• By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate but 

oscillatory, formally second order accurate).  

• If you set the blending factor to 0.5, you get something in between first order accuracy and 

second order accuracy, or in other words, you get the best of both worlds.

• A blending factor of 0.7-0.9 is safe to use for most applications (stable and accurate).
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Convective terms discretization schemes

• There are many convective terms discretization schemes available in OpenFOAM® (more than 

50 last time we checked). 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/interpolation/surfaceInterpolation

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linear: second order accurate, unbounded. 

• A good TVD scheme (vanLeer or Minmod): TVD, second order accurate, bounded.

• limitedLinear: second order accurate, unbounded, but more stable than pure linear. 

Recommended for LES simulations (kind of similar to the Fromm method).

• LUST: blended 75% linear and 25% linearUpwind scheme

• First order methods are bounded and stable but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution. 650



Finite Volume Method: A Crash introduction

Convective terms discretization schemes

• When you use linearUpwind for div(phi,U), you need to tell OpenFOAM® how to compute the 

velocity gradient or grad(U):

gradSchemes

{

grad(U) cellMDLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

}

• Same applies for every transported quantity (e.g. k, epsilon, omega, T)
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Gradient terms discretization schemes

• There are many gradient discretization schemes available in OpenFOAM®.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes

• These are the gradient discretization schemes that you will use most of the times:

• Gauss linear (cell-based method)

• Gauss pointLinear (node-based method; more accurate than the cell-based method)

• leastSquares

• To avoid overshoots or undershoots when computing the gradients, you can use gradient 

limiters. 

• Gradient limiters increase the stability of the method but add diffusion due to clipping. 

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/gradSchemes/limitedGradSchemes

• These are the most important gradient limiter schemes available in OpenFOAM®:

• cellLimited, cellMDLimited, faceLimited, faceMDLimited

• All of the gradient discretization schemes are at least second order accurate.
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Gradient terms discretization schemes

• These are the gradient limiter schemes available in OpenFOAM®:

cellMDLimited

cellLimited

faceMDLimited

faceLimited

Less diffusive

More diffusive

• Cell limiters will limit cell-to-cell values.

• Face limiters will limit face-to-cell values.

• The multi-directional (dimensional) limiters (cellMDLimited and faceMDLimited), will apply the 

limiter in each face direction separately.

• The standard limiters (cellLimited and faceLimited), will apply the limiter to all components of 

the gradient.

• The default method is the Minmod.
653

Note: for smooth field variation, cell 

limiting may provide less numerical 

dissipation on meshes with skewed 

cells



Finite Volume Method: A Crash introduction

Gradient terms discretization schemes

• The gradient limiter implementation in OpenFOAM®, uses a blending factor      . 

gradSchemes

{

default        cellLimited Gauss linear        ;

}

• Setting       to 0 is equivalent to turning off the gradient limiter. You gain accuracy but the solution 

might become unbounded.

• By setting the blending factor equal to 1 the limiter is set to be very aggressive (kind of saying 

that it is always on). You gain stability but you give up accuracy (due to gradient clipping).

• If you set the blending factor to 0.5, you get the best of both worlds.

• You can use limiters with all gradient discretization schemes.

It can be any method

Gradient limiter scheme
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Laplacian terms discretization schemes

• There are many Laplacian terms discretization schemes available in OpenFOAM®.

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/snGradSchemes
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• These are the Laplacian terms discretization schemes that you will 

use most of the times:

• orthogonal: mainly limited for hexahedral meshes with no 

grading (a perfect mesh). Second order accurate, bounded 

on perfect meshes, without non-orthogonal corrections.

• corrected: for meshes with grading and non-orthogonality. 

Second order accurate, bounded depending on the quality of 

the mesh, with non-orthogonal corrections.

• limited: for meshes with grading and non-orthogonality. 

Second order accurate, bounded depending on the quality of 

the mesh, with non-orthogonal corrections.

• uncorrected: usually limited to hexahedral meshes with very 

low non-orthogonality. Second order accurate, without non-

orthogonal corrections. Stable but more diffusive than the 

limited and corrected methods.

Can be computed using the over-relaxed approach

Can be computed using the over-relaxed approach
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Laplacian terms discretization schemes

• The limited method uses a blending factor      . 

laplacianSchemes

{

default        Gauss linear limited          ;

}

• Setting       to 1 is equivalent to using the corrected method. You gain accuracy, but the solution might 

become unbounded.

• By setting the blending factor equal to 0 is equivalent to using the uncorrected method. You give up accuracy 

but gain stability.

• If you set the blending factor to 0.5, you get the best of both worlds. In this case, the non-orthogonal 

contribution does not exceed the orthogonal part. You give up accuracy but gain stability.

• For meshes with non-orthogonality less than 70, you can set the blending factor to 1.

• For meshes with non-orthogonality between 70 and 85, you can set the blending factor to 0.5

• For meshes with non-orthogonality more than 85, it is better to get a better mesh.  But if you want to use that 

mesh, you can set the blending factor to 0.333-0.5, and increase the number of non-orthogonal corrections.

• If you are doing LES or DES simulations, use a blending factor of 1 (this means that you need good meshes).

Interpolation method of the diffusion coefficient

Only option

Surface normal gradients discretization 
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Laplacian terms discretization schemes

• Just to make it clear, the blending factor       is used to avoid the non-orthogonal contribution 

exceeding the orthogonal part.

• That is, non-orthogonal contribution ≤ orthogonal contribution.
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The blending factor works as a limiter acting on this term (non-orthogonal contribution)

Implicit part Explicit part

• In meshes with large non-orthogonality, the explicit term can lead to unboundedness and 

eventually divergence.

• This limiting is local, similar to the treatment done for the connective terms when using slope 

limiters and TVD schemes.

• The explicit contribution is added to the RHS of the linear system (source term), so if this term 

becomes too large it will lead to convergence problems.

• It becomes harder to guarantee diagonal dominance of the matrix of coefficient.
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Laplacian terms discretization schemes

• The surface normal gradients terms usually use the same method as the one chosen for the 

Laplacian terms.

• For instance, if you are using the limited 1 method for the Laplacian terms, you can use the 

same method for snGradSchemes:

laplacianSchemes

{

default        Gauss linear limited 1;

}

snGradSchemes

{

default        limited 1;

}
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Finite Volume Method: A Crash introduction

What method should I use?

ddtSchemes

{

default CrankNicolson 0; //or 0.3;

}

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss linearUpwind   grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• This setup is recommended for most of            

the cases.

• It is equivalent to the default method you will find in 

commercial solvers.

• In overall, this setup is second order accurate and 

fully bounded.

• To keep temporal diffusion to a minimum, use a CFL 

number less than 2, and preferably below 1.

• If during the simulation the turbulence quantities 

become unbounded, you can safely change the 

discretization scheme to upwind.  After all, 

turbulence is diffusion.

• For gradient discretization the leastSquares

method is more accurate. But we have found that it 

is a little bit oscillatory in tetrahedral meshes.
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A very accurate but oscillatory numerics

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss leastSquares;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

div(phi,omega) Gauss limitedlinear 1;

div(phi,k) Gauss limitedLinear 1;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1;

}

• If you are looking for more accuracy, you can use 

this method.

• In overall, this setup is second order accurate but 

oscillatory.

• Use this setup with LES simulations or laminar 

flows with no complex physics and meshes with 

overall good quality.

• Use this method with a CFL number less than 2, 

and preferably below 1.

• Instead of the linear method for div(phi,U), you can 

use limitedLinear or LUST,

div(phi,U)      Gauss limitedLinear 1;

div(phi,U)      Gauss LUST default;

660



Finite Volume Method: A Crash introduction

A very stable but too diffusive numerics

ddtSchemes

{

default Euler;

}

gradSchemes

{

default cellLimited Gauss linear 1;

}

divSchemes

{

default none;

div(phi,U)      Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 0.5;

}

• If you are looking for extra stability, you can use this 

method.

• This setup is very stable but too diffusive.

• This setup is first order in space and time.

• You can use this setup to start the solution in the 

presence of bad quality meshes or strong 

discontinuities.

• Remember, you can start using a first order method 

and then switch to a second order method.

• Start robustly, end with accuracy.

• You can use this method for troubleshooting. If the 

solution diverges, you better check boundary 

conditions, physical properties, and so on.
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• The CFL number is a measure of how much information (    ) traverses a computational grid cell 

(        ) in a given time-step (       ).

• The CFL number is not a magical number.

• The CFL number is a necessary condition to guarantee the stability of the numerical scheme.

• But not all numerical schemes have the same stability requirements.  

• By doing a linear stability study, we can find the stability requirements of each numerical 

scheme (but this is out of the scope of this lecture). 

On the CFL number

• First of all, what is the CFL or Courant number?

• In one dimension, the CFL number is defined as,
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On the CFL number

• Let us now talk about the CFL number condition. The CFL number condition is the maximum allowable 

CFL number a solver can use. 

• For the N dimensional case, the CFL number condition becomes,

• CFD solvers can be explicit and implicit. 

• Explicit and implicit solvers have different stability requirements.

• Implicit numerical methods are unconditionally stable. 

• In other words, they are not constrained to the CFL number condition.

• However, the fact that you are using a numerical method that is unconditionally stable, does not mean that 

you can choose a time step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features, and it maintains the 

solver stability.

• When we use implicit solvers, we need to assemble a large system of equations.

• The memory requirements of implicit methods are much higher than those of explicit methods.

• In OpenFOAM®, most of the solvers are implicit. 

• In our personal experience, we have been able to go up to a CFL = 5.0 while maintaining the accuracy and 

without increasing too much the computational cost.

• But as we are often interested in the unsteadiness of the solution, we usually use a CFL number in the order of 

1.0
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On the CFL number

• I like to see the CFL number as follows,

The CFL number for dummies

• It is an indication of the amount of information that 

propagates through one cell (or many cells), in one time-

step.

• By the way, and this is extremely important, the CFL condition is a necessary condition for 

stability (and hence convergence).  

• But it is not always sufficient to guarantee stability.

• Other properties of the discretization schemes that you should observe are: conservationess, 

boundedness, transportiveness, and accuracy.
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On the CFL number

application     pimpleFoam;

startFrom       latestTime;

startTime       0;

stopAt          endTime;

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1;

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off;

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• You can control the CFL number by changing the mesh cell 

size or changing the time-step size. 

• The time step size is set in the controlDict dictionary.

• The easiest way is by changing the time-step size.

• If you refine the mesh, and you would like to have the same 

CFL number as the base mesh, you will need to decrease the 

time-step size.

• On the other side, if you coarse the mesh and you would like 

to have the same CFL number as the base mesh, you will 

need to increase the time-step size.

• The keyword deltaT controls the time-step size of the 

simulation (0.0001 seconds in this generic case).

• If you use a solver that supports adjustable time-step 

(adjustTimeStep), you can set the maximum CFL number 

and maximum allowable time-step using the keywords 

maxCo and maxDeltaT, respectively. 

How to control the CFL number
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On the CFL number

• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number 

(maxCo) or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• To use these features, you need to turn-on the option 

adjustTimeStep.

• Remember, the first time-step of the simulation is done using 

the value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step 

in order to let the solver scale-up the time-step size.

• If you want to change the values on-the-fly, you need to turn-

on the option runTimeModifiable.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

How to control the CFL number

application     pimpleFoam;

startFrom       latestTime;

startTime       0;

stopAt          endTime;

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1;

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off;

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;
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On the CFL number

The output screen

Courant Number mean: 0.10863988 max: 0.73950028

deltaT = 0.001

Time = 30.000289542261612

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.003190933, Final residual = 1.0207483e-09, No Iterations 5

DILUPBiCG:  Solving for Uy, Initial residual = 0.0049140114, Final residual = 8.5790109e-10, No Iterations 5

DILUPBiCG:  Solving for Uz, Initial residual = 0.010705877, Final residual = 3.5464756e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.024334674, Final residual = 0.0005180308, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00051825089, Final residual = 1.6415538e-05, No Iterations 5

time step continuity errors : sum local = 8.768064e-10, global = 9.8389717e-11, cumulative = -2.6474162e-07

GAMG:  Solving for p, Initial residual = 0.00087813032, Final residual = 1.6222017e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 1.6217958e-05, Final residual = 6.4475277e-06, No Iterations 1

time step continuity errors : sum local = 3.4456296e-10, global = 2.6009599e-12, cumulative = -2.6473902e-07

ExecutionTime = 33091.06 s  ClockTime = 33214 s

fieldMinMax domainminandmax output:

min(p) = -0.59404715 at location (-0.019 0.02082288 0.072) on processor 1

max(p) = 0.18373302 at location (-0.02083962 -0.003 -0.136) on processor 1

min(U) = (0.29583255 -0.4833922 -0.0048229716) at location (-0.02259661 -0.02082288 -0.072) on processor 0

max(U) = (0.59710937 0.32913292 0.020043679) at location (0.11338793 -0.03267608 0.12) on processor 3

min(nut) = 1.6594481e-10 at location (0.009 -0.02 0.024) on processor 0

max(nut) = 0.00014588174 at location (-0.02083962 0.019 0.072) on processor 1

yPlus yplus output:

patch square y+ : min = 0.44603573, max = 6.3894913, average = 2.6323389

writing field yPlus

Courant number (mean and maximum values)

Current time-step

Simulation time

CPU time and wall clock

• This is the output screen of a solver supporting the option adjustTimeStep.

• In this case maxCo is equal 2 and maxDeltaT is equal to 0.001.  

• Notice that the solver reached the maximum allowable maxDeltaT.

One PIMPLE iteration (outer loop), this is equivalent to PISO
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in every control volume         of the domain, a system of linear algebraic equations for the 

transported quantity       is assembled

Linear solvers in OpenFOAM®

• After spatial and temporal discretization and by using equation

670
• This system can be solved by using any iterative or direct method.



Linear solvers in OpenFOAM®

• The equation solvers, tolerances, and algorithms are controlled 
from the sub-dictionary solvers located in the fvSolution

dictionary file. 

• In the dictionary file fvSolution and depending on the solver 

you are using you will find the additional sub-dictionaries PISO, 

PIMPLE, and SIMPLE, which will be described later.

• In this dictionary is where we tell OpenFOAM® how to crunch 

numbers.

• The solvers sub-dictionary specifies each linear solver that is 

used for each equation being solved. 

• The linear solvers distinguish between symmetric matrices and 

asymmetric matrices. 

• If you forget to define a linear-solver or use the wrong one, 

OpenFOAM® will let you know.

• The syntax for each entry within the solvers sub-dictionary uses 

a keyword that is the word relating to the variable being solved 

in the particular equation and the options related to the linear 

solver.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary
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• In this generic case, to solve the pressure (p) we are using the 

PCG method with the DIC preconditioner, an absolute 

tolerance equal to 1e-06 and a relative tolerance relTol equal 

to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0 (disabled).  

• To solve the velocity field (U) we are using the PBiCGStab

method with the DILU preconditoner, an absolute tolerance

equal to 1e-08 and a relative tolerance relTol equal to 0. 

• The linear solvers will iterative until reaching any of the 

tolerance values set by the user or reaching a maximum value 

of iterations (optional entry). 

• FYI, solving for the velocity is relatively inexpensive, whereas 

solving for the pressure is expensive.

• The pressure equation is particularly important as it governs 

mass conservation.

• If you do not solve the equations accurately enough (tolerance), 

the physics might be wrong. 

• Selection of the tolerance is of paramount importance, and it 

might be problem dependent.

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary

• The linear solvers are iterative, i.e., they are based on reducing 

the equation residual over a succession of solutions. 

• The residual is a measure of the error in the solution so that the 

smaller it is, the more accurate the solution. 

• More precisely, the residual is evaluated by substituting the 

current solution into the equation and taking the magnitude of 

the difference between the left- and right-hand sides (L2-norm).

• It is also normalized to make it independent of the scale of the 

problem being analyzed. 
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solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0.01;

}

pFinal

{

$p;

relTol    0;

}

U

{

solver          PBiCGStab;

preconditioner      DILU;

tolerance       1e-08;

relTol          0;

minIter 3;

maxIter 100;

}

}  

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

Linear solvers – fvSolution dictionary

• Before solving an equation for a particular field, the initial 

residual is evaluated based on the current values of the field.

• After each solver iteration the residual is re-evaluated. The 

solver stops if either of the following conditions are reached: 

• The residual falls below the solver tolerance, tolerance. 

• The ratio of current to initial residuals falls below the solver 

relative tolerance, relTol.

• The number of iterations exceeds a maximum number of 

iterations, maxIter. 

• The solver tolerance should represent the level at which the 

residual is small enough that the solution can be deemed 

sufficiently accurate. 

• The keyword maxIter is optional and the default value is 1000.

• The user can also define the minimum number of iterations 

using the keyword minIter. This keyword is optional, and the 

default value is 0.
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Linear solvers

• These are the linear solvers (segregated) available in OpenFOAM®:

• GAMG  

• PBiCG  

• PBiCGStab 

→   Multigrid solver

→   Newton-Krylov solver

→   Newton-Krylov solver

• PCG 

• smoothSolver 

• diagonalSolver

→   Newton-Krylov solver

→   Smooth solver

• You will find the source code of the linear solvers in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/solvers
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• DIC

• DILU

• FDIC

• GAMG

• diagonal

• noPreconditioner

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/preconditioners

• The smoothSolver solver requires the specification of a smoother.

• These are the smoothers available in OpenFOAM®:

• DIC

• DICGaussSeidel

• DILU

• DILUGaussSeidel

• FDIC

• GaussSeidel

• nonBlockingGaussSeidel

• symGaussSeidel

• You will find the source code in the following directory:

• $WM_PROJECT_DIR/src/OpenFOAM/matrices/lduMatrix/smoothers

• When using Newton-Krylov solvers, you need to define preconditoners.

• These are the preconditioners available in OpenFOAM®:



Linear solvers in OpenFOAM®

Linear solvers – General remarks

• As you can see, when it comes to linear solvers there are many options and combinations 

available in OpenFOAM®.

• When it comes to choosing the linear solver, there is no written theory.  

• It is problem and hardware dependent (type of the mesh, physics involved, processor cache 

memory, network connectivity, partitioning method, and so on).

• Most of the times using the GAMG method (geometric-algebraic multi-grid), is the best choice for 

symmetric matrices (e.g., pressure).

• The GAMG method should converge fast (less than 100 iterations). 

• If it’s taking more iterations, try to change the smoother.

• And if it is taking too long or it is unstable, use the PCG solver.

• When running with many cores (more than 500), using the PCG might be a better choice.
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Linear solvers – General remarks

• For asymmetric matrices, the PBiCGStab method with DILU preconditioner is a good choice.

• The smoothSolver solver with smoother GaussSeidel, also performs very well.

• If the PBiCGStab method with DILU preconditioner mysteriously crashed with an error related to 

the preconditioner, use the smoothSolver or change the preconditioner.

• But in general, the PBiCGStab solver should be faster than the smoothSolver  solver.

• Remember, asymmetric matrices are assembled from the velocity (U), and the transported 

quantities (k, omega, epsilon, T, and so on).

• Usually, computing the velocity and the transported quantities is inexpensive and fast, so it is a 

good idea to use a tight tolerance (1e-8) for these fields.

• The diagonal solver is used for back-substitution, for instance, when computing density using the 

equation of state (we know p and T).
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Linear solvers – General remarks

• A few comments on the linear solvers residuals (we will talk about monitoring the residuals   

later on).

• Residuals are not a direct indication that you are converging to the right solution.

• The first time-steps the solution might not converge, this is acceptable.

• Also, you might need to use a smaller time-step during the first iterations to maintain solver 

stability.

• If the solution is not converging after a while, try to reduce the time-step size.

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5) Residuals
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Linear solvers tolerances

• So how do we set the tolerances?

• The pressure equation is particularly important, so we should resolve it accurately. Solving the 

pressure equation is the expensive part of the whole iterative process.

• For the pressure equation (symmetric matrix), you can start the simulation with a tolerance

equal to 1e-6 and relTol equal to 0.01.  

• And after a while, you change these values to 1e-6 and 0.0, respectively.

• If the linear solver is taking too much time, you can change the convergence criterion to 1e-4 

and relTol equal to 0.05.  You usually will do this during the first iterations.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

}

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance Tight tolerance
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Linear solvers tolerances

• For the velocity field (U) and the transported quantities (asymmetric matrices), you can use the 

following criterion.

• Solving for these variables is relatively inexpensive, so you can start right away with a tight 

tolerance.

• As a side note, the relative tolerance (relTol) is the difference between the initial residuals and 

the current final residuals.

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.001;

}

Loose tolerance

U

{

solver           PBiCGStab;

preconditioner DILU;

tolerance        1e-8;

relTol          0.0;

}

Tight tolerance
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Linear solvers tolerances

• It is also a good idea to set the minimum number of iterations (minIter), we recommend using a 

value of 3.

• If your solver is doing too many iterations, you can set the maximum number of iterations 

(maxIter).  

• But be careful, if the solver reach the maximum number of iterations it will stop, we are talking 

about unconverged time-steps or outer-iterations.

• Setting the maximum number of iterations is especially useful during the first time-steps where 

the linear solver takes longer to converge.

• You can set minIter and maxIter in all symmetric and asymmetric linear solvers.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.01;

minIter 3;

maxIter 100;

}
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Linear solvers tolerances

• When you use the PISO or PIMPLE method with the momentumPredictor option (which is 

enabled by default), you also have the option to set the tolerance for the final pressure corrector 

step (pFinal).  

• By proceeding in this way, you can put all the computational effort only in the last corrector step 

(pFinal). 

• For all the intermediate corrector steps, you can use a more relaxed convergence criterion.

• For example, you can use the following solver and tolerance criterion for all the intermediate 

corrector steps (p), then in the final corrector step (pFinal) you tight the solver tolerance.

p

{

solver           PCG;

preconditioner DIC;

tolerance        1e-4;

relTol          0.01;

}

pFinal

{

solver           PCG;

preconditioner DIC;

tolerance        1e-6;

relTol          0.0;

}

Loose tolerance for p Tight tolerance for pFinal
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Linear solvers tolerances

Courant Number mean: 0.10556573 max: 0.65793603

deltaT = 0.00097959184

Time = 10

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.0024649332, Final residual = 2.3403547e-09, No Iterations 4

DILUPBiCG:  Solving for Uy, Initial residual = 0.0044355904, Final residual = 1.8966277e-09, No Iterations 4

DILUPBiCG:  Solving for Uz, Initial residual = 0.010100894, Final residual = 1.4724403e-09, No Iterations 4

GAMG:  Solving for p, Initial residual = 0.018497918, Final residual = 0.00058090899, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.00058090857, Final residual = 2.5748489e-05, No Iterations 5

time step continuity errors : sum local = 1.2367812e-09, global = 2.8865505e-11, cumulative = 1.057806e-08

GAMG:  Solving for p, Initial residual = 0.00076032002, Final residual = 2.3965621e-05, No Iterations 3

GAMG:  Solving for p, Initial residual = 2.3961044e-05, Final residual = 6.3151172e-06, No Iterations 2

time step continuity errors : sum local = 3.0345314e-10, global = -3.0075104e-12, cumulative = 1.0575052e-08

DILUPBiCG:  Solving for omega, Initial residual = 0.00073937735, Final residual = 1.2839908e-10, No Iterations 4

DILUPBiCG:  Solving for k, Initial residual = 0.0018291502, Final residual = 8.5494234e-09, No Iterations 3

ExecutionTime = 29544.18 s  ClockTime = 29600 s

pFinal

p

p

• When you use the PISO or PIMPLE method with the momentumPredictor option (which is 

enabled by default), you also have the option to set the tolerance for the final pressure corrector 

step (pFinal).  

• By proceeding in this way, you can put all the computational effort only in the last corrector step 

(pFinal in this case). 

• For all the intermediate corrector steps (p), you can use a more relaxed convergence criterion.

• If you proceed in this way, it is recommended to do at least 2 corrector steps (nCorrectors).

1

2

nCorrectors
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Linear solvers – Matrix reordering

• As we are solving a sparse matrix, the more diagonal the matrix is, the best the convergence 

rate will be. 

• So, it is highly advisable to use the utility renumberMesh before running the simulation.

• $> renumberMesh –overwrite

• The utility renumberMesh can dramatically increase the speed of the linear solvers, specially 

during the first iterations.

• The idea behind reordering is to make the matrix more diagonally dominant, therefore, speeding 

up the iterative solver.
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Matrix structure plot before reordering Matrix structure plot after reordering

Note: this is the actual pressure matrix from an OpenFOAM® model case
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On the multigrid solvers

• The development of multigrid solvers (GAMG in OpenFOAM®), together with the development 

of high-resolution TVD schemes and parallel computing, are among the most remarkable 

achievements of the history of CFD.

• Most of the time using the GAMG linear solver is fine.  

• However, if you see that the GAMG linear solver is taking too long to converge or is converging 

in more than 100 iterations, it is better to use the PCG linear solver.

• Particularly, we have found that the GAMG linear solver in OpenFOAM® does not perform very 

well when you scale your computations to more than 500 processors.

• Also, we have found that for some multiphase cases the PCG method outperforms the GAMG. 

• But again, this is problem and hardware dependent. 

• As you can see, you need to always monitor your simulations (stick to the screen for a while.

• Otherwise, you might end-up using a solver that is performing poorly, and this translate in 

increased computational time and costs.
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On the multigrid solvers tolerances

• If you go for the GAMG linear solver for symmetric matrices (e.g., pressure), the following 

tolerances are acceptable for most of the cases.

p

{

solver           GAMG;

tolerance        1e-6;

relTol          0.01;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

pFinal

{

solver           GAMG;

tolerance        1e-6;

relTol          0;

smoother         GaussSeidel;

nPreSweeps       0;

nPostSweeps     2;

cacheAgglomeration on;

agglomerator     faceAreaPair;

nCellsInCoarsestLevel 100;

mergeLevels      1;

minIter 3;

}

Loose tolerance for p Tight tolerance for pFinal

NOTE:

The GAMG parameters are not optimized, that is up to you. 

Most of the times is safe to use the proposed parameters.
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Linear solvers tolerances – Steady simulations

• The previous tolerances are fine for unsteady solver.

• For extremely coupled problems you might need to have tighter tolerances.

• You can use the same tolerances for steady solvers. However, it is acceptable to use a looser 

criterion.

• For steady simulations using the SIMPLE method, you can set the convergence controls based 

on residuals of fields. 

• The controls are specified in the residualControls sub-dictionary of the dictionary file 
fvSolution. 

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

Residual control for every 

field variable you are solving
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Linear solvers benchmarking of a model case

Case Linear solver for P Preconditioner or smoother MR Time QOI

IC1 PCG FDIC NO 278 2.8265539

IC2 smoothSolver symGaussSeidel NO 2070 2.8271198

IC3 ICCG GAMG NO 255 2.8265538

IC4 GAMG GaussSeidel NO 1471 2.8265538

IC5 PCG GAMG-GaussSeidel NO 302 2.8265538

IC6 GAMG GaussSeidel YES 438 2.8265539

IC7 PCG FDIC YES 213 2.8265535

IC8 PCG GAMG-GaussSeidel YES 283 2.8265538

IC9 ICCG GAMG YES 261 2.8265538

IC10 PCG DIC NO 244 2.8265539

Solver used = icoFoam – Incompressible case

MR = matrix reordering (renumberMesh)

QOI = quantity of interest. In this case the maximum velocity at the outlet (m/s)

TIME = clock time (seconds)
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• Choose any tutorial or a case of your own and do a benchmarking of the linear solvers. 

• Using your benchmarking case, conduct the following numerical experiments:

• Find the optimal parameters for the GAMG solver.

• Use different linear solvers for p and pFinal (symmetric matrices). Do you see any advantage?

• Do a benchmarking of the different reordering methods available

(Hint: look for the dictionary renumberMeshDict)

• Compare the performance of the asymmetric solvers PBiCG, PBiCGStab, and smoothSolver. Do you 

see any significant difference between both solvers?

• Is it possible to switch between segregated and coupled linear solvers on-the-fly?

• In what files are located the controls of the SIMPLE, PISO, and PIMPLE methods?

(Hint: for example, using grep look for the keyword nCorrectors in the directory src/finiteVolume)

Exercises
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Pressure-Velocity coupling in OpenFOAM®

• To solve the Navier-Stokes equations we need to use a solution approach able to deal with the 

nonlinearities of the governing equations and with the coupled set of equations.

Additional equations deriving from models, such as, volume fraction, chemical 

reactions, turbulence modeling, combustion, multi-species, etc.
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• Many numerical methods exist to solve the Navier-Stokes equations, just to name a few:

• Pressure-correction methods (Predictor-Corrector type).

• SIMPLE, SIMPLEC, SIMPLER, PISO.

• Projection methods.

• Fractional step (operator splitting), MAC, SOLA.

• Density-based methods and preconditioned solvers.

• Riemann solvers, ROE, HLLC, AUSM+, ENO, WENO.

• Artificial compressibility methods.

• Artificial viscosity methods.

• The most widely used approaches for solving the NSE are:

• Pressure-based approach (predictor-corrector).

• Density-based approach.
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• Historically speaking, the pressure-based approach was developed for low-speed 

incompressible flows, while the density-based approach was mainly developed for high-speed 

compressible flows.

• However, both methods have been extended and reformulated to solve and operate for a wide 

range of flow conditions beyond their original intent.

• In OpenFOAM®, you will find segregated pressure-based solvers.

• The segregated pressure-based solvers in OpenFOAM®, solve a modified pressure equation 

(pressure-Poisson equation).

• The following methods are available: 

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

• SIMPLEC (SIMPLE Corrected/Consistent)

• PISO (Pressure Implicit with Splitting Operators)

• You will find the solvers in the following directory:

• $WM_PROJECT_DIR/applications/solvers

• Additionally, you will find something called PIMPLE, which is a hybrid between SIMPLE and 

PISO (known as iterative PISO outside OpenFOAM® jargon).  

• This formulation can give you more accuracy and stability when using very large time-

steps or in pseudo-transient simulations.
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• In OpenFOAM®, the PISO (PISO non-iterative) and PIMPLE (PISO iterative) methods are 

formulated for unsteady simulations.

• Whereas the SIMPLE and SIMPLEC methods are formulated for steady simulations.

• If conserving time is not a priority, you can use the PIMPLE method in pseudo transient mode. 

• The pseudo transient PIMPLE method is more stable than the SIMPLE method, but it has a 

higher computational cost.

• Also, the pseudo transient PIMPLE method  tends to be faster than the fully transient PIMPLE 

when reaching steady states.

• Depending on the method and solver you are using, you will need to define a specific sub-
dictionary in the dictionary file fvSolution.

• For instance, if you are using the PISO method, you will need to specify the PISO sub-

dictionary.

• And depending on the method, each sub-dictionary will have different entries.
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On the origins of the methods

695

• SIMPLE

• S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum 

transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, 15, 1787-1806 (1972).

• SIMPLE-C

• J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting 

incompressible fluid flows”, Numerical Heat Transfer, 7, 147-163 (1984).

• PISO

• R. I. Issa, “Solution of the implicitly discretized fluid flow equations by operator-splitting”, J. 

Comput. Phys., 62, 40-65 (1985).

• PIMPLE

• Unknown origins outside OpenFOAM® ecosystem (we are referring to the semantics).

• It is equivalent to PISO with outer iterations (iterative time-advancement of the solution).

• Useful reference (besides PISO reference):

• I. E. Barton, “Comparison of SIMPLE and PISO-type algorithms for transient flows, Int. J. 

Numerical methods in fluids, 26,459-483 (1998).

• P. Oliveira and R. I. Issa, “An improved piso algorithm for the computation of buoyancy-driven 

flows”, Numerical Heat Transfer, 40, 473-493 (2001).



Pressure-Velocity coupling in OpenFOAM®

The SIMPLE sub-dictionary

SIMPLE

{

nNonOrthogonalCorrectors    1;

}

• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the SIMPLE pressure-velocity coupling method.

• The SIMPLE method only makes one correction. 

• An additional correction to account for mesh non-orthogonality is available when using the 

SIMPLE method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 
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The SIMPLE sub-dictionary

• You can use the optional keyword consistent to enable or disable the SIMPLEC method. 

• This option is disable by default.

• In the SIMPLEC method, the cost per iteration is marginally higher but the convergence rate is 

better, so the number of iterations is reduced.

• The SIMPLEC method relaxes the pressure in a consistent manner and additional relaxation of 

the pressure is not generally necessary (but it is recommended). 

• In addition, convergence of the p-U system is better and still is reliable with less aggressive 

relaxation factors of the momentum equation.

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors    1;

}
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The SIMPLE sub-dictionary

• These are the typical (or industry standard) under-relaxation factors for the SIMPLE and 

SIMPLEC methods.  

• Remember the under-relaxation factors are problem dependent.
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relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

relaxationFactors

{

fields

{

p 1.0;

}

equations

{

p 1.0;

U    0.9;

k 0.9; 

omega 0.9;

}

}

SIMPLE SIMPLEC

Usually there is no need 

to under-relax pressure; 

however, it is advisable.
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The SIMPLE sub-dictionary

• If you are planning to use the SIMPLEC method, 

we recommend you use under-relaxation factors 

that are little bit smaller that the industry standard 

values.

• If during the simulation you still have some stability 

problems, try to reduce all the values to 0.5.

• Remember the under-relaxation factors are 

problem dependent.

• If you are having convergence problems, it is 

recommended to start the simulation with low 

values (about 0.3), and then increase the values 

slowly up to 0.7 or 0.9 (for faster convergence).

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

p 0.7;

U    0.7;

k 0.7; 

omega 0.7;

}

}

SIMPLEC
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The SIMPLE loop in OpenFOAM®

700

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

This is an excerpt of the actual source code of 

the solver
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The PISO sub-dictionary
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• This sub-dictionary is located in the dictionary file fvSolution.

• It controls the options related to the PISO pressure-velocity coupling method.

• The PISO method requires at least one correction (nCorrectors). 

• For good accuracy and stability (specially in unstructured meshes), it is recommended to use at 

least 2 nCorrectors. 

• An additional correction to account for mesh non-orthogonality is available when using the PISO 

method. The number of non-orthogonal correctors is specified by the 

nNonOrthogonalCorrectors keyword. 

• The number of non-orthogonal correctors is chosen according to the mesh quality. 

• For orthogonal meshes you can use 0 non-orthogonal corrections. However, it is strongly 

recommended to do at least 1 non-orthogonal correction (this helps stabilizing the solution).

• For non-orthogonal meshes, it is recommended to do at least 1 correction. 

PISO

{

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PISO sub-dictionary

• You can use the optional keyword momentumPredictor to enable or disable the momentum 

predictor step. 

• The momentum predictor helps in stabilizing the solution as we are computing better 

approximations for the velocity. 

• It is clear that this will add an extra computational cost, which most of the times is negligible. 

• In most of the solvers, this option is enabled by default.

• It is recommended to use this option for highly convective flows (high Reynolds number). If you 

are working with low Reynolds flow or creeping flows it is recommended to turn it off.

• Note that when you enable the option momentumPredictor, you will need to define the linear 

solvers for the variables .*Final (we are using regex notation). 

• Also, if you want to use URF you will need to apply then to all field variables (including .*Final).
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PISO

{

momentumPredictor yes;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}



Pressure-Velocity coupling in OpenFOAM®

703

fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PISO loop in OpenFOAM®

(PISO with non-iterative marching – NITA – )

This is an excerpt of the actual source code of 

the solver
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The PIMPLE sub-dictionary
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• This sub-dictionary is located in the dictionary file fvSolution. It controls the options related to the PIMPLE 

pressure-velocity coupling method.

• The PIMPLE method works very similar to the PISO method. 

• In fact, setting the keyword nOuterCorrectors to 1 is equivalent to running using the PISO method. 

• The keyword nOuterCorrectors controls a loop outside the PISO loop.

• To gain more stability, especially when using large time-steps or when dealing with complex physics 

(combustion, chemical reactions, shock waves, and so on), you can use more outer correctors 

(nOuterCorrectors).  

• Usually between 2 and 5 corrections for computational efficiency. 

• Have in mind that increasing the number of nOterCorrectors will highly increase the computational cost.

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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The PIMPLE sub-dictionary

705

• You can use under-relaxation factors (URF) with the PIMPLE solvers. 

• By using URF, you will gain more stability in time dependent solutions (as they control the amount of change of 

field variables within the time-step). 

• However, if you use too low URF values, your solution might not be time-accurate anymore.

• You can use the same or larger URF values as those for steady simulation.

• Note that when you enable the option momentumPredictor, you will need to define the linear solvers for the 

variables .*Final (we are using regex notation). 

• You can assign URF to all variables (including .*Final), to only the intermediate field variables (U, p, k, and so 

on), or to only the .*Final variables (UFinal, pFinal, kFinal, and so on).

• We recommend to use URF in all variables.

PIMPLE

{

momentumPredictor yes;

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}
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fvVectorMatrix UEqn

(

fvm::ddt(U) + fvm::div(phi, U) - fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

U = HbyA – rAU*fvc::grad(p);

The PIMPLE loop in OpenFOAM®

(PISO with iterative marching – ITA – )

This is an excerpt of the actual source code of 

the solver
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Comparison of PISO with non-iterative time-advancement (PISO-NITA) 

against  PISO with Iterative time-advancement (PISO-ITA) 

PISO-NITA PISO-ITA (PIMPLE in OpenFOAM®)

• The main difference between both methods is the outer loop present in the PISO-ITA.

• This outer loop gives more stability and allow the use of very large time-steps (CFL numbers).

• The recommended CFL number of the PISO-NITA is below 2 (for good accuracy and stability).
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Unsteady and steady simulations

Turbulent flows - SRS

www.wolfdynamics.com/wiki/FVM_uns/ani4.gif

Sliding grids – Continuous stirred tank reactor

www.wolfdynamics.com/wiki/FVM_uns/ani5.gif
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• Nearly all flows in nature and industrial applications 

are unsteady (also known as transient or 

time-dependent).

• Unsteadiness can be due to:

• Instabilities.

• Non-equilibrium initial conditions.

• Time-dependent boundary conditions.

• Source terms.

• Chemical reactions and finite rate chemistry.

• Phase change.

• Moving or deforming bodies.

• Turbulence.

• Buoyancy and heat transfer.

• Discontinuities.

• Multiple phases.

• Fluid structure interaction.

• Combustion.

• And much more.

Multiphase flow

www.wolfdynamics.com/wiki/FVM_uns/ani3.gif

http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani1.gif
http://www.wolfdynamics.com/wiki/FVM_uns/ani3.gif


How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

• Select the time step. The time-step must be chosen in such a way that it resolves the time-dependent features 

and maintains solver stability.

• Select the temporal discretization scheme.

• Set the tolerance (absolute and/or relative) of the linear solvers.

• Monitor the CFL number. 

• Monitor the stability and boundedness of the solution.

• Monitor a quantity of interest.

• And of course, you need to save the solution with a given frequency.

• Have in mind that unsteady simulations generate a lot of data.

• End time of the simulation?, it is up to you.  

• In the controlDict dictionary you need to set runtime parameters and general instructions on how to run the 

case (such as time step and maximum CFL number).   You also set the saving frequency.

• In the fvSchemes dictionary you need to set the temporal discretization scheme.

• In the fvSolution dictionary you need to set the linear solvers.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method used (e.g. PISO
or PIMPLE), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  The functionObjects are used to 

do sampling, probing and co-processing while the simulation is running.
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How to run unsteady simulations in OpenFOAM®?

Unsteady and steady simulations

ddtSchemes

{

default backward;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case we are using the backward method for time 

discretization (ddtSchemes). 

• This scheme is second order accurate but oscillatory. 

• The parameters can be changed on-the-fly.
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Unsteady and steady simulations

• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. 

• Most of the entries are self-explanatory.

• This generic case starts from time 0 (startTime), and it will run 

up to 10 seconds (endTime). 

• It will write the solution every 0.1 seconds (writeInterval) of 

simulation time (runTime). 

• The time step of the simulation is 0.0001 seconds (deltaT). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (yes), we can 

modify all these entries while we are running the simulation.

• To reduce parsing time and file size, it is recommended to use 

binary format to write the solution.

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;
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Unsteady and steady simulations

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10;

deltaT          0.0001;

writeControl    runTime;

writeInterval   0.1; 

purgeWrite      0;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

adjustTimeStep  yes;

maxCo           2.0;

maxDeltaT       0.001;

• In this generic case, the solver supports adjustable time-step 

(adjustTimeStep).

• The option adjustTimeStep will automatically adjust the time 

step to achieve the maximum desired courant number (maxCo) 

or time-step size (maxDeltaT). 

• When any of these conditions is reached, the solver will stop 

scaling the time-step size.

• Remember, the first time-step of the simulation is done using the 

value defined with the keyword deltaT and then it is 

automatically scaled (up or down), to achieve the desired 

maximum values (maxCo and maxDeltaT). 

• It is recommended to start the simulation with a low time-step in 

order to let the solver scale-up the time-step size.

• The feature adjustTimeStep is only present in the PIMPLE

family solvers, but it can be added to any solver by modifying 

the source code.

• If you are planning to use large time steps (CFL much higher 

than 1), it is recommended to do at least 3 correctors steps 

(nCorrectors) in PISO/PIMPLE loop, and at least 2 outer 

correctors in the PIMPLE loop.
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Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol    0;

}

“U.*”

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

PIMPLE

{

nOuterCorrectors 1;

nCorrectors    2;

nNonOrthogonalCorrectors    1;

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• To set these parameters, follow the guidelines given in the 

previous section.

• Depending on the solver you are using, you will need to define 

the sub-dictionary PISO or PIMPLE.

• Setting the keyword nOuterCorrectors to 1 in PIMPLE solvers 

is equivalent to running using the PISO method.

• To gain more stability, especially when using large time-steps, 

you can use more outer correctors (nOuterCorrectors).

• If you are using large time steps (CFL much higher than 1), it is 

recommended to do at least 3 correctors steps (nCorrectors) in 

PISO/PIMPLE loop.

• Remember, in both PISO and PIMPLE method you need to do 

at least one correction (nCorrectors).

• Adding corrections increase the computational cost 

(nOuterCorrectors and nCorrectors). 
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• Remember, when running unsteady simulations the time-step must be chosen in such a way 

that it resolves the time-dependent features and maintains solver stability.

When you use large time steps you do not 

resolve well the physics

By using a smaller time step you resolve 

better the physics and you gain stability

Unsteady and steady simulations

How to choose the time-step in unsteady simulations and monitor the solution
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• When running unsteady simulations, it is highly advisable to monitor a quantity of interest.

• The quantity of interest can fluctuate in time, this is an indication of unsteadiness.

Unsteady and steady simulations

Monitoring unsteady simulations
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What about steady simulations?

Unsteady and steady simulations

• First of all, steady simulations are a big simplification of reality. 

• Steady simulations is a trick used by CFDers to get fast outcomes with results that might be 

even more questionable. 

• Remember, most of the flows you will encounter are unsteady so be careful of this hypothesis.

• In steady simulations, we made two assumptions:

• We ignore unsteady fluctuations.  That is, we neglect the time derivative in the governing 

equations.

• We perform time averaging when dealing with stationary turbulence (RANS modeling)

• The advantage of steady simulations is that they require low computational resources, give fast 

outputs, and are easier to post-process and analyze.

• To do so, you need to use the appropriate solver and use the right discretization scheme.

• As you are not solving the time derivative, you do not need to set the time step.  However, you 

need to tell OpenFOAM®  how many iterations you would like to run.

• You can also set the residual controls (residualControl), in the fvSolution dictionary file. 

You set the residualControl in the SIMPLE sub-dictionary.

• If you do not set the residual controls, OpenFOAM® will run until reaching the maximum 

number of iterations (endTime).
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Unsteady and steady simulations

• In the controlDict dictionary you need to set runtime parameters and general instructions on 

how to run the case (such as the number of iterations to run). 

• Remember to set also the saving frequency.

• In the fvSchemes dictionary you need to set the time discretization scheme, for steady 

simulations it must be steadyState.

• In the fvSolution dictionary you need to set the linear solvers, under-relaxation factors, and 

residual controls.

• Also, you will need to set the number of corrections of the velocity-pressure coupling method 
used (e.g., SIMPLE or SIMPLEC), this is done in the fvSolution dictionary.

• Additionally, you may set functionObjects in the controlDict dictionary.  

• The functionObjects are used to do sampling, probing and co-processing while the simulation 

is running.
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• The under-relaxation factors (URF) control the change of the variable    .

Unsteady and steady simulations

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right URF involved experience and some trial and error.

• Selecting the URF it is kind of equivalent to selecting the right time step.

• Many times, steady simulations diverge because of wrongly chosen URF.

p           0.3;

U           0.7;

k           0.7;

omega       0.7;
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How to run steady simulations in OpenFOAM®?

• Under-relaxation is a feature typical of steady solvers using the SIMPLE family of methods.

• These are the URF commonly used with SIMPLE and SIMPLEC (industry standard),

p           1;    

U           0.9;

k           0.9;

omega       0.9;

SIMPLE SIMPLEC

Pressure Usually does not require under-relaxing



• The URF are bounded between 0 and 1.

• If you set the URF close to one you increase the 

convergence rate but loose solution stability. 

• On the other hand, if you set the URF close to zero 

you gain stability but reduce convergence rate.

Unsteady and steady simulations
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How to run steady simulations in OpenFOAM®?

• An optimum choice of under-relaxation factors is one that is small enough to ensure stable 

computation but large enough to move the iterative process forward quickly.

• Under-relaxation can be implicit (equation in OpenFOAM) or explicit (field in OpenFOAM).

• A small CFL number is equivalent to small URF.

Implicit URF Explicit URF

• You can relate URF to the CFL number as follows, 



How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p)         Gauss linear;

}

divSchemes

{

default none;

div(phi,U)     bounded Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

• The fvSchemes dictionary contains the information related to 

time discretization and spatial discretization schemes.

• In this generic case and as we are interested in using a steady 

solver, we are using the steadyState method for time 

discretization (ddtSchemes). 

• It is not a good idea to switch between steady and unsteady 

schemes on-the-fly.

• For steady state cases, the bounded form can be applied to the 

divSchemes, in this case, div(phi,U) bounded Gauss linear.

• This adds a linearized, implicit source contribution to the 

transport equation of the form,

• This term removes a component proportional to the continuity 

error. This acts as a convergence aid to tend towards a bounded 

solution as the calculation proceeds. 

• At convergence, this term becomes zero and does not 

contribute to the final solution.
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How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

startFrom       latestTime;

startTime       0;

stopAt          endTime; 

endTime         10000;

deltaT          1;

writeControl    runTime;

writeInterval   100; 

purgeWrite      10;

writeFormat     ascii;

writePrecision  8;

writeCompression off; 

timeFormat      general;

timePrecision   6;

runTimeModifiable yes;

• The controlDict dictionary contains runtime simulation 

controls, such as, start time, end time, time step, saving 

frequency and so on. 

• Most of the entries are self-explanatory.

• As we are doing a steady simulation, let us talk about iterations 

instead of time (seconds).

• This generic case starts from iteration 0 (startTime), and it will 

run up to 10000 iterations (endTime). 

• It will write the solution every 100 iterations (writeInterval) of 

simulation time (runTime). 

• It will advance the solution one iteration at a time (deltaT). 

• It will keep the last 10 saved solutions (purgeWrite).

• It will save the solution in ascii format (writeFormat) with a 

precision of 8 digits (writePrecision). 

• And as the option runTimeModifiable is on (true), we can 

modify all these entries while we are running the simulation.
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How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}  

SIMPLE

{

nNonOrthogonalCorrectors    2;

residualControl

{

p    1e-4;

U    1e-4;

}

}

• The fvSolution dictionary contains the instructions of how to 

solve each discretized linear equation system.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• To set these parameters, follow the guidelines given in the 

previous section.

• Increasing the number of nNonOrthogonalCorrectors 

corrections will add more stability but at a higher computational 

cost.

• Remember, nNonOrthogonalCorrectors is used to improve 

the gradient computation due to mesh quality.

• The SIMPLE sub-dictionary also contains convergence controls 

based on residuals of fields. The controls are specified in the 

residualControls sub-dictionary. 

• The user needs to specify a tolerance for one or more solved 

fields and when the residual for every field falls below the 

corresponding residual, the simulation terminates. 

• If you do not set the residualControls, the solver will iterate 

until reaching the maximum number of iterations set in the 
controlDict dictionary.
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How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

}

}

• The fvSolution dictionary also contains the 

relaxationFactors sub-dictionary. 

• The relaxationFactors sub-dictionary which controls under-

relaxation, is a technique used for improving stability when using 

steady solvers.

• Under-relaxation works by limiting the amount which a variable 

changes from one iteration to the next, either by modifying the 

solution matrix and source prior to solving for a field (equations

keyword) or by modifying the field directly (fields keyword).

• Under-relaxing the equations is also known as implicit under-

relaxation. 

• Whereas, under-relaxing the fields is also known as explicit 

under-relaxation.

• An optimum choice of under-relaxation factors is one that is 

small enough to ensure stable computation but large enough to 

move the iterative process forward quickly.

• In this case we are using the industry standard URF.

• Remember, URF are problem dependent.

• If you do not define URF, the solver will not under-relax.
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How to run steady simulations in OpenFOAM®?

Unsteady and steady simulations

725

SIMPLE

{

consistent yes;

nNonOrthogonalCorrectors    3;

}

Enabled/disabled consistent formulation of the 

SIMPLE loop

• To enable the consistent formulation of the SIMPLE method, you need to add the following 

keywork to the SIMPLE sub-dictionary,

relaxationFactors

{

fields

{

p 0.3;

}

equations

{

U    0.7;

k 0.6; 

omega 0.6;

}

}

relaxationFactors

{

fields

{

p 0.7;

}

equations

{

U    0.7;

k 0.7; 

omega 0.7;

}

}

SIMPLE SIMPLEC

• The following URF are recommended,



• Steady simulations require less computational power than unsteady simulations.

• They are also much faster than unsteady simulations.

• But sometimes they do not converge to the right solution.

• They are easier to post-process and analyze (you just need to take a look at the last saved 

solution).

• You can use the solution of an unconverged steady simulation as initial conditions for an 

unsteady simulation.

• Remember, steady simulations are not time accurate. Therefore, is not a good idea to compute 

a dominant frequency using steady simulations, e.g., vortex shedding frequency.

Unsteady and steady simulations

Steady simulations vs. Unsteady simulations
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Steady solution QOI unsteady solution QOI
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Understanding residuals

• Before talking about residuals, let us clarify something.

• When we talk about iterations in unsteady simulations, we are talking about the time-step or 

outer-iterations.

1. To arrive to this physical time of the monitored QOI

2. We iterate this many times
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3. And we iterate inside each time-step (or outer-

iteration), until reaching the linear solver tolerance 

or maximum number of iterations.



Understanding residuals

• To get a better idea of how iterative methods work, and what are initial residuals and final residuals, let us 

take another look at a residual plot. 
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• is the initial guess used to start the iterative solver.

• You can use any value at iteration 0, but usually is a good choice to take the previous solution vector. 

• If the following condition is fulfilled                               (where r is the convergence criterion or tolerance), the linear solver will 

stop iterating and will advance to the next time-step.

• By working in an iterative way, every single iteration           is a better approximation of the previous iteration         .

• Sometimes the linear solver might stop before reaching the predefined convergence criterion because it has reached the 

maximum number of iterations, you should be careful of this because we are talking about unconverged iterations.



Unsteady solution residuals Steady solution residuals

• This is a typical residual plot for an unsteady simulation.

• Ideally, the solution should converge at every time-step (final 

residuals tolerance).

• If the solution is not converging, that is, the residuals are not 

reaching the predefined final residual tolerance, try to reduce 

the time-step size.

• The first time-steps the solution might not converge, this is 

acceptable.

• Also, you might need to use a smaller time-step during the 

first iterations to maintain solver stability.

• You can also increase the number of maximum inner 

iterations.

• If the initial residuals fall bellow the convergence criterion, you 

might say that you have arrived at a steady solution (the 

exception rather than the rule).

Understanding residuals
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• This is a typical residual plot for a steady simulation.

• In this case, the initial residuals are falling below the 

convergence criterion (monotonic convergence), hence we 

have reached a steady-state.

• In the solver does not reach the convergence criteria or the 

residuals get stalled, it does not mean that the solution is 

diverging, it is just an indication of unsteadiness, and it 

might be better to run using an unsteady solver.

• In comparison to unsteady solvers, steady solvers require 

less iterations to arrive to a converge solution, if they arrive.



• Remember, residuals are not a direct indication that you are converging to the right solution.

• It is better to monitor a quantity of interest (QOI). 

• And by the way, you should get physically realistic values.

• In this case, if you monitor the residuals, you might get the impression that the simulation is diverging.

• Instead, if you monitor a QOI you will realize that there is an initial transient (long one by the way), then the 

onset of an instability, and then a periodic behavior of the phenomenon.

• You should assess the convergence of the solution and compute the unsteady statistics in the time window 

where the behavior of the QOI is periodic.

• To monitor the stability, you can check the minimum and maximum values of the field variables.

• If you have bounded quantities, check that you do not have over-shoots or under-shoots. 

Understanding residuals
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Residuals QOI



Understanding residuals

• This is the output of the residuals for all field 

variables of an unsteady case.

• Notice that at the beginning the residuals show a 

monotonic behavior. 

• Then, after a while the convergence rate changes.

• This not necessarily means that the solution is 

diverging, it might be an indication of unsteadiness.

• This is the output of the residuals for all field 

variables of a steady case.

• The jumps are due to the changes in tolerance 

introduced while running the simulation.

• As you can see, the residuals are falling in a 

monotonic way.
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Understanding residuals

• This is the output of the aerodynamic 

coefficients for an unsteady case.

• This is the output of the aerodynamic 

coefficients for a steady case.
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Boundary conditions and initial conditions

• First of all, when we use a CFD solver to find the approximate solution of the governing 

equations, we are solving an Initial Boundary Value Problem (IBVP).

• In an IBVP, we need to impose appropriate boundary conditions and initial conditions.

• No need to say that the boundary conditions and initial conditions need to be physically realistic.

• Boundary conditions are a required component of the numerical method, they tell the solver 

what is going on at the boundaries of the domain.  

• You can think of boundary conditions as source terms.

• Initial conditions are also a required component of the numerical method, they define the initial 

state of the problem.

On the initial boundary value problem (IBVP)
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Boundary conditions and initial conditions

• Boundary conditions (BC) can be divided into three fundamental mathematical types:

• Dirichlet boundary conditions: when we use this BC, we prescribe the value of a variable at the 

boundary.

• Neumann boundary conditions: when we use this BC, we prescribe the gradient normal to the 

boundary.

• Robin Boundary conditions: this BC is a mixed of Dirichlet boundary conditions and Neumann 

boundary 

• You can use any of these three boundary conditions in OpenFOAM®.  

• During this discussion, the semantics is not important, that depends of how you want to call the BCs or how 

they are named in the solver, i.e., in, inlet, inflow, velocity inlet, incoming flow and so on.

• Defining boundary conditions involves:

• Finding the location of the boundary condition in the domain.

• Determining the boundary condition type.

• Giving the required physical information.

• The choice of the boundary conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available at the boundary condition location.

• Numerical considerations.

• And most important, you need to understand the physics involved.

A few words about boundary conditions
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Boundary conditions and initial conditions

• To define boundary conditions you need to know the location of the boundaries (where they are 

in your mesh).

• You also need to supply the information at the boundaries.

• Last but not least important, you must know the physics involved.

A few words about boundary conditions
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Boundary conditions and initial conditions

• Initial conditions (IC) can be divided into two groups:

• Uniform initial conditions.

• Non-uniform initial conditions.

• For non-uniform IC, the value used can be obtained from:

A few words about initial conditions
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• Defining initial conditions involves:

• Finding the location of the initial condition in the domain.

• Determining the initial condition type.

• Giving the required physical information.

• The choice of the initial conditions depend on:

• Geometrical considerations.

• Physics involved.

• Information available.

• Numerical considerations.

• And most important, you need to understand the physics involved.

• Another simulation (including a solution with 

different grid resolution).

• A mathematical function 

• A potential solver. • Reduced order models.

• Experimental results.



Boundary conditions and initial conditions

• For initial conditions, you need to supply the initial information or initial state of your problem.  

• This information can be a uniform value or a non-uniform value.

• You can apply the initial conditions to the whole domain or separated zones of the domain.

• Last but not least important, you must know the physics involved.

A few words about initial conditions

739



Boundary conditions and initial conditions

• Inlets and outlets boundary conditions:

• Inlets are for regions where inflow is expected; however, inlets might support outflow when 

a velocity profile is specified.

• Pressure boundary conditions do not allow outflow at the inlets.

• Velocity specified inlets are intended for incompressible flows.

• Pressure and mass flow inlets are suitable for compressible and incompressible flows.

• Same concepts apply to outlets, which are regions where outflow is expected.
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Boundary conditions and initial conditions

• Zero gradient (Neumann) and backflow boundary conditions:

• Zero gradient boundary conditions extrapolates the values from the domain.  They require 

no information.  

• Zero gradient boundary conditions can be used at inlets, outlets, and walls.

• Backflow boundary conditions provide a generic outflow/inflow condition, with specified 

inflow/outflow for the case of backflow. 

• In the case of a backflow outlet, when the flux is positive (out of domain) it applies a 

Neumann boundary condition (zero gradient), and when the flux is negative (into of 

domain), it applies a Dirichlet boundary condition (fixed value).

• Same concept applies to backflow inlets.
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Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• Some combinations of boundary conditions are very stable, and some are less reliable.

• And some configurations are unreliable.

• Inlet velocity at the inlet and pressure zero gradient at the outlet. This combination 

should be avoided because the static pressure level is not fixed.

• Qualitatively speaking, the results are very different.  

• This simulation will eventually crash.

BCs 1. Inlet velocity and fixed outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC1.gif

BCs 2. Inlet velocity and zero gradient outlet pressure

www.wolfdynamics.com/wiki/BC/aniBC2.gif
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Boundary conditions and initial conditions

• On the outlet pressure boundary condition

• If you only rely on a  QOI and the residuals, you will not see any major difference between 

the two cases with different outlet pressure boundary condition. 

• This is very misleading.

• However, when you visualize the solution, you will realize that something is wrong.  This is 

a case where pretty pictures can be used to troubleshoot the solution.

• Quantitative speaking, the results are very similar.  

• However, this simulation will eventually crash.

Residual plot for pressure Quantity of interest – Force coefficient on the body
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Boundary conditions and initial conditions

• Symmetry boundary conditions:

• Symmetry boundary conditions are a big simplification of the problem. However, they help 

to reduce mesh cell count.

• Have in mind that symmetry boundary conditions only apply to planar faces.

• To use symmetry boundary conditions, both the geometry and the flow field must be 

symmetric.

• Mathematically speaking, setting a symmetry boundary condition is equivalent to zero 

normal velocity at the symmetry plane, and zero normal gradients of all variables at the 

symmetry plane.

• Physically speaking, they are equivalent to slip walls.
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Boundary conditions and initial conditions

• Location of the outlet boundary condition:

• Place outlet boundary conditions as far as possible from recirculation zones or backflow 

conditions, by doing this you increase the stability.

• Remember, backflow conditions requires special treatment.

Possible backflow
Far enough so the flow can be 

considered fully developed
Might be OK
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Boundary conditions and initial conditions

Domain dimensions (when the dimensions are not known)
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• If you do not have any constrain in the domain 

dimensions, you can use as a general guideline the 

dimensions illustrated in the figure, where L is a 

reference length (in this case, L is the wing chord). 

• The values illustrated in the figure are on the 

conservative side, but if you want to play safe, multiply 

the values by two or more.

• Always verify that there are no significant gradients 

normal to any of the boundaries patches.  

• If there are, you should consider increasing the domain 

dimensions.

• The larger the domain, the better.



Boundary conditions and initial conditions

• Boundary conditions and initial conditions need to be physically realistic.

• Poorly defined boundary conditions can have a significant impact on your solution.

• Initial conditions are as important as the boundary conditions. 

• A good initial condition can improve the stability and convergence rate. 

• On the other hand, unphysical initial conditions can slow down the convergence rate or can cause divergence.

• You need to define boundary conditions and initials conditions for every single variable you are solving.

• Setting the right boundary conditions is extremely important, but you need to understand the physics.

• You need to understand the physics in order to set the right boundary conditions.

• Do not force the flow at the outlet, use a zero normal gradient for all flow variables except pressure.  The solver 

extrapolates the required information from the interior.

• Be careful with backward flow at the outlets (flow coming back to the domain) and backward flow at inlets 

(reflection waves), they required special treatment.

• If possible, select inflow and outflow boundary conditions such that the flow either goes in or out normal to the 

boundaries.

• At outlets, use zero gradient boundary conditions only with incompressible flows and when you are sure that the 

flow is fully developed.

• Outlets that discharge to the atmosphere can use a static pressure boundary condition. This is interpreted as 

the static pressure of the environment into which the flow exhausts.

A few considerations and guidelines
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Boundary conditions and initial conditions

• Inlets that take flow into the domain from the atmosphere can use a total pressure boundary condition (e.g. 

open window).

• Mass flow inlets produce a uniform velocity profile at the inlet.

• Pressure specified boundary conditions allow a natural velocity profile to develop.

• The required values of the boundary conditions and initial conditions depend on the equations you are solving, 

and physical models used, e.g.,

• For incompressible and laminar flows you will need to set only the velocity and pressure.

• If you are solving a turbulent compressible flow you will need to set velocity, pressure, temperature and 

the turbulent variables.

• For multiphase flows you will need to set the primitives variables for each phase.  You will also need to 

initialize the phases.

• If you are doing turbulent combustion or chemical reactions, you will need to define the species, reactions 

and turbulent variables.

• Minimize grid skewness, non-orthogonality, growth rate, and aspect ratio near the boundaries.  You do not want 

to introduce diffusion errors early in the simulation, especially close to the inlets.

• Try to avoid large gradients in the direction normal to the boundaries and near inlets and outlets.  

• That is to say, put your boundaries far away from where things are happening.

A few considerations and guidelines
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Boundary conditions and initial conditions

• OpenFOAM® distinguish between base type boundary conditions and numerical type 

boundary conditions.

Base type boundary conditions Numerical type boundary conditions

• Base type boundary conditions are based on geometry 

information (surface patches) or on inter-processor 

communication link (halo boundaries). 

• Base type boundary conditions are defined in the file 
boundary located in the directory constant/polyMesh

• The file boundary is automatically created when you 

generate or convert the mesh.

• When you convert a mesh to OpenFOAM® format, you 
might need to manually modify the file boundary.  This is 

because the conversion utilities do not recognize the 

boundary type of the original mesh. 

• Remember, if a base type boundary condition is missing, 

OpenFOAM® will complain and will tell you where and what 

is the error.

• Also, if you misspelled something OpenFOAM® will complain 

and will tell you where and what is the error

• Numerical type boundary condition assigns the value to the 

field variables in the given surface patch. 

• Numerical type boundary conditions are defined in the field 
variables dictionaries located in the directory 0 (e.g. U, p).

• When we talk about numerical type boundary conditions, we 

are referring to Dirichlet, Neumann or Robin boundary 

conditions.

• You need to manually create the field variables dictionaries 
(e.g. 0/U, 0/p, 0/T, 0/k, 0/omega). 

• Remember, if you forget to define a numerical boundary 

condition, OpenFOAM® will complain and will tell you where 

and what is the error.

• Also, if you misspelled something OpenFOAM® will complain 

and will tell you where and what is the error.
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Boundary conditions and initial conditions

• The following base type and numerical type boundary conditions are constrained or paired. 

• That is, the type needs to be same in the boundary dictionary and field variables dictionaries 

(e.g., 0/U, 0/p, 0/T, 0/k, 0/omega).

Base type Numerical type

constant/polyMesh/boundary 0/U - 0/p - 0/T - 0/k - 0/omega (IC/BC)

cyclic

cyclicAMI

empty

processor

symmetry

symmetryPlane

wedge

cyclic

cyclicAMI

empty

processor

symmetry

symmetryPlane

wedge
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• These are known as constraint patches in OpenFOAM.

• To find a complete list and the source code location of these patches, go to the directory $WM_PROJECT_DIR and type in the 

terminal:

• $> find . -type d -iname *constraint*



Base type Numerical type

constant/polyMesh/boundary 0/U - 0/p - 0/T - 0/k - 0/omega (IC/BC)

patch

calculated

codedFixedValue

epsilonWallFunction

fixedValue

flowRateInletVelocity

inletOutlet

movingWallVelocity

rotatingWallVelocity

slip

supersonicFreeStream

totalPressure

zeroGradient

… and so on

Refer to the doxygen documentation or the source code for a list of all 

numerical boundary conditions available.

Boundary conditions and initial conditions

• The base type patch can be any of the boundary conditions available in OpenFOAM®.  

• Mathematically speaking; they can be Dirichlet, Neumann or Robin boundary conditions.
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Boundary conditions and initial conditions

• The wall base type boundary condition is defined as follows:

Base type Numerical type

constant/polyMesh/boundary 0/U 0/p

wall
type fixedValue;

value uniform (0 0 0);
zeroGradient

• This boundary condition is not contained in the patch base type boundary conditions group, 

because specialize modeling options can be used on this boundary condition.  

• An example is turbulence modeling, where turbulence can be generated or dissipated at the 

walls.
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Boundary conditions and initial conditions

• To deal with backflow at outlets, you can use the following boundary condition:

Base type Numerical type

constant/polyMesh/boundary 0/U 0/p

patch

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0 0 0);

type fixedValue;

value uniform 0;

• The inletValue keyword is used for the reverse flow.  

• In this case, if flow is coming back into the domain, it will use the value set using the keyword 

inletValue.  Otherwise, it will use a zeroGradient boundary condition.

• For the turbulent variables (k, omega, epsilon, and so on), you can use inletOutlet type (pay 

attention that these quantities are scalars).
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Boundary conditions and initial conditions

Boundary type description Pressure Velocity Turbulence fields

Inlet face zeroGradient fixedValue fixedValue

Outlet face fixedValue inletOutlet inletOutlet

Wall face zeroGradient fixedValue Wall functions *

Symmetry face symmetry symmetry symmetry

Periodic face cyclic cyclic cyclic

Empty face (2D) empty empty empty

Slip wall ** slip slip slip

• Typical boundary conditions are as follows (external aerodynamics),

* Wall functions can be: kqWallFunction, omegaWallFunction, nutkWallFunction, and so on (next slide).

** The base type can be wall or patch.
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Boundary conditions and initial conditions
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Field Wall functions – High RE Resolved BL – Low RE

nut
nut(–)WallFunction* or nutUSpaldingWallFunction**

(with 0 or a small number)

nutUSpaldingWallFunction**, nutkWallFunction, 

nutUWallFunction, nutLowReWallFunction or fixedValue*** (with 0 

or a small number)

k, q, R

kqRWallFunction** (with inlet value or a small 

number) kqRWallFunction** or kLowReWallFunction (with inlet value, 0, or a 

small number) or fixedValue*** (with 0 or a small number)

epsilon

epsilonWallFunction (with inlet value) 
epsilonWallFunction (with inlet value) or zeroGradient*** or 

fixedValue*** (with 0 or a small number)

omega

omegaWallFunction** (with a large number)

omegaWallFunction** or fixedValue*** (both with a large number)

nuTilda –
fixedValue (one to ten times the molecular viscosity, a small number, 

or 0)

* nutUWallFunction or nutkWallfunction

** Recommended options for y+ insensitive treatment (continuous wall functions)

*** Will disable wall functions. The equations will be integrated down to the viscous sublayer with no damping or corrections.

• And when dealing with turbulence modeling, these are the most often used wall boundary conditions.

• To use these boundary conditions (wall functions) and to be able to compute y+, the primitive patch (the patch 
type defined in the boundary dictionary), must be of type wall.

• We will talk more about this when dealing with turbulence modeling.



Boundary conditions and initial conditions

• Finally, remember that the name of the base type boundary condition and the name of the 

numerical type boundary condition needs to be the same, if not, OpenFOAM® will complain.

• Pay attention to this, specially if you are converting the mesh from another format.

• Also, do not use spaces of funny characters when assigning the names to the boundary 

patches.

• The following names are consistent among all dictionary files,

Base type Numerical type

constant/polyMesh/boundary 0/U 0/p

inlet inlet inlet

top top top

cylinder cylinder cylinder

sym sym sym
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Boundary conditions and initial conditions

• There is a plethora of boundary conditions implemented in OpenFOAM®.  

• You can find the source code of the main numerical boundary conditions in the following directory:

• $WM_PROJECT_DIR/src/finiteVolume/fields/

• The wall boundary conditions for the turbulence models (wall functions), are located in the following directory:

• $WM_PROJECT_DIR/src/MomentumTransportModels/momentumTransportModels/derivedF

vPatchFields/wallFunctions

• To find all the boundary conditions implemented in OpenFOAM, go to the directory $WM_PROJECT_DIR and 

type in the terminal,

• $> find . -type d -iname *fvPatch*

• $> find . -type d -iname *derivedFv*

• $> find . -type d -iname *pointPatch*

• To get more information about all the boundary conditions available in OpenFOAM® you can read the 

Doxygen documentation. 

• You can access the documentation online at this link http://cpp.openfoam.org/v9/

• To know more about a particular boundary condition, you can use the command foamInfo
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Boundary conditions and initial conditions

• For a generic case, the file boundary is divided as follows

The constant/polyMesh/boundary dictionary

wall

fixedWalls

w
a

ll

fi
x

e
d

W
a

ll
s

empty

frontAndBack

patch

movingWall

w
a

ll

fi
x

e
d

W
a

ll
s

empty

frontAndBack
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3

(

movingWall 

{ 

type patch;

nFaces 20;

startFace 760;

}

fixedWalls

{ 

type wall;

nFaces 60;

startFace 780;

}

frontAndBack 

{ 

type empty;

nFaces 800;

startFace 840;

}

)



Boundary conditions and initial conditions

• For a generic case, the file boundary is divided as follows

The constant/polyMesh/boundary dictionary

Name and type of the surface patches

• The name and type of the patch is given by the user.

• You can change the name if you do not like it.  Do not 

use strange symbols or white spaces.

• You can also change the base type.  For instance, you 

can change the type of the patch movingWall from 

patch to wall.

• When converting the mesh from a third-party format, 

OpenFOAM® will try to recover the information from 

the original format.  But it might happen that it does not 

recognize the base type and name of the original 

format.  If that is your case, you will need to modify the 

file manually or using any of the mesh manipulation 

utilities distributed with OpenFOAM®.

3

(

movingWall 

{ 

type patch;

nFaces 20;

startFace 760;

}

fixedWalls

{ 

type wall;

nFaces 60;

startFace 780;

}

frontAndBack 

{ 

type empty;

nFaces 800;

startFace 840;

}

)
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Number of surface patches

There must be 3 patches definition.

nFaces and startFace keywords

• Unless you know what are you doing,  you do not 

need to change this information.



Boundary conditions and initial conditions

• For a generic case, the numerical type BC are assigned as follows (U),

The 0/U dictionary

dimensions      [0 1 -1 0 0 0 0];

internalField   uniform (0 0 0);

boundaryField

{

movingWall

{

type            fixedValue;

value           uniform (1 0 0);

}

fixedWalls

{

type            fixedValue;

value           uniform (0 0 0);

}

frontAndBack

{

type            empty;

}

}

wall

fixedWalls

type fixedValue;

value uniform (0 0 0);

w
a

ll

fi
x

e
d

W
a

ll
s

ty
p

e
 f

ix
e

d
V

a
lu

e
;

v
a

lu
e

 u
n

if
o

rm
 (

0
 0

 0
);

empty

frontAndBack

type empty;

patch

movingWall

type fixedValue;

value uniform (1 0 0);

w
a

ll

fi
x

e
d

W
a

ll
s

ty
p

e
 f

ix
e

d
V

a
lu

e
;

v
a

lu
e

 u
n

if
o

rm
 (

0
 0

 0
);

empty

frontAndBack

type empty;
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Boundary conditions and initial conditions

• For a generic case, the numerical type BC are assigned as follows (p),

The 0/p dictionary

dimensions      [0 2 -2 0 0 0 0];

internalField   uniform 0;

boundaryField

{

movingWall

{

type            zeroGradient;

}

fixedWalls

{

type            zeroGradient;

}

frontAndBack

{

type            empty;

}

}

wall

fixedWalls

type zeroGradient;

w
a

ll

fi
x

e
d

W
a

ll
s

ty
p

e
 z

e
ro

G
ra

d
ie

n
t;

empty

frontAndBack

type empty;

patch

movingWall

type zeroGradient;

w
a

ll

fi
x

e
d

W
a

ll
s

ty
p

e
 z

e
ro

G
ra

d
ie

n
t;

empty

frontAndBack

type empty;
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Roadmap

1. Finite Volume Method: A Crash Introduction

2. On the CFL number

3. Linear solvers in OpenFOAM®

4. Pressure-Velocity coupling in OpenFOAM®

5. Unsteady and steady simulations

6. Understanding residuals

7. Boundary and initial conditions

8. Numerical playground
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Merry-go-round:

Pure convection of a passive scalar in a vector 

field – One dimensional tube.

Numerical playground
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• This is a visual and mental exercise only.

• You will find this case in the directory

$PTOFC/101FVM/pureConvection/orthogonal_1d

• In this directory, you will also find the README.FIRST file with the 

instructions of how to run the case.

• Hereafter, we will focus our eyes to train our brain. 

Numerical playground
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Pure convection of a scalar in a vector field – One dimensional tube.

Numerical playground

U = (1 0 0)

T = 1

U = zeroGradient

T = zeroGradient

Initial conditions

U = (1 0 0)

T = 0

U = zeroGradient

T = zeroGradient

U = zeroGradient

T = zeroGradient

(0 0 0) (1 0 0)
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• This problem has an exact solution in the form of a traveling wave.

• We will use this case to study the different discretization schemes implemented in 

OpenFOAM®.

• In the figure, we show the solution for time = 0.5 s

Numerical playground

www.wolfdynamics.com/wiki/pureconvection/xani1.gif

www.wolfdynamics.com/wiki/pureconvection/xani2.gif
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Comparison of different spatial discretization schemes.

Euler in time – 100 cells – CFL = 0.1

Linear limiter functions on the Sweby diagram.

Numerical playground

Comparison of different spatial discretization schemes.

Euler in time – 100 cells – CFL = 0.1

Non-linear limiter functions on the Sweby diagram.
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Comparison of different gradient limiters.

Linear upwind in space – Euler in time – 100 cells –

CFL 0.1

Numerical playground

Comparison of different gradient limiters.

Linear upwind in space – Euler in time – 100 cells –

CFL 0.1
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Comparison of different time discretization schemes 

and gradient limiters.

Linear upwind in space – 100 cells – CFL 0.1

Numerical playground

Comparison of Crank Nicolson blending factor using 

cellLimited leastSquares  0.5 gradient limiter.

Linear upwind in space – 100 cells – CFL 0.1
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Comparison of different time-step size (different CFL 

number).

Linear upwind in space – Euler in time – 100 cells 

Numerical playground

Comparison of different mesh sizes.

Linear upwind in space – Euler in time 
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Numerical playground

• This case was for your eyes and brain only, but we encourage you to reproduce all the previous 

results,

• Use all the time discretization schemes.

• Use all the spatial discretization schemes.

• Use all the gradient discretization schemes.

• Use gradient limiters.

• Use different mesh resolution.

• Use different time-steps.

• Sample the solution and compare the results.

• Try to find the best combination of numerical schemes.

• Remember, in the README.FIRST file you will find the instructions of                                     

how to run the case.
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Exercises

• Which one of the following schemes is useless: upwind, downwind, or linear

• Compare the solution obtained with the following schemes: upwind, linearUpwind, MUSCL, QUICK, cubic,

UMIST, OSHER, Minmod, vanAlbada. Are all of them bounded? Are they second order accurate?

• Use the linearUpwind method with Gauss linear, Gauss pointLinear and leastSquares for gradient 

computations, which method is more accurate?

• Imagine that you are using the linearUpwind method with no gradient limiters. How will you stabilize the 

solution if it becomes unbounded?

• When using gradient limiters, what is clipping?

• Use the linearUpwind with different gradient limiters. Which method is more unbounded?

• Use the vanLeer method with a CFL number of 0.1, 0.9 and 2, did all solutions converge? Are both solutions 

bounded? 

• In the directory tri_mesh, you will find the same case setup using a triangular mesh. 

• Run the case and compare the solution with the equivalent setup using the orthogonal mesh.

• Repeat the same experiments as before and draw your conclusions about which method is better 

for unstructured meshes.

• With unstructured meshes, is it possible to get the same accuracy level as for orthogonal meshes?



Numerical playground
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Exercises

• The solver scalarTransportFoam does not report the CFL number on the screen. How will you compute 

the CFL number in this case?

(Hint: you can take a look at the post-processing slides or the utilities directory)

• Which one is more diffusive, spatial discretization or time discretization? 

• Are all time discretization schemes bounded?

• If you are using the Crank-Nicolson scheme, how will you avoid oscillations?

• Does the solution improve if you reduce the time-step?

• Use the upwind scheme and a really fine mesh. Does the accuracy of the solution improve?

• From a numerical point of view, what is the Peclet number? Can it be compared to the Reynolds number?

• If the Peclet number is more than 2, what will happen with your solution if you were using a linear scheme?

(Hint: to change the Peclet number you will need to change the diffusion coefficient)

• Pure convection problems have analytical solutions.  You are asked to design your own tutorial with an 

analytical solution in 2D or 3D.

• Try to break the solver using a time step less than 0.005 seconds.  You are allowed to modify the original mesh 

and use any combination of discretization schemes.



Slide:

2D Laplace equation in a square domain.

Numerical playground
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• This is a visual and mental exercise only.

• You will find this case in the directory

$PTOFC/101FVM/laplace

• In this directory, you will also find the README.FIRST file with the 

instructions of how to run the case.

• Hereafter, we will focus our eyes to train our brain. 

Numerical playground
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Numerical playground

2D Laplace equation in a square domain
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Numerical playground

2D Laplace equation in a square domain

• This case consist of one domain and three different element types.

Hexahedral mesh Triangular mesh Polyhedral mesh

Domain

Detailed section view
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Numerical playground

2D Laplace equation in a square domain

This problem has the following 

analytical solution:

• We will study the influence of the element type on the gradients computation.

• We will also study the influence of the gradSchemes method and laplacianSchemes

method on the solution.

779



Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

A

C

B

T field
780

• This is the actual solution. 

• Each mesh gives basically the 

same solution. 

• However, when we look at the 

information behind the field T, we 

will see a different outcome.

• Precisely, we will take a look at 

the gradients.



Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• For the method used in this case, 

the gradients on the unstructured 

meshes are noisy.



• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• By adjusting the numerics, we 

can smooth the gradients. 

• All meshes show similar 

gradients.

Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss linear 

laplacianSchemes: 

Gauss linear limited 1

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss leastSquares 

laplacianSchemes: 

Gauss linear orthogonal

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• For the method used in this case, 

the gradients on the unstructured 

meshes are noisy.



• This is not the actual solution.  

This is the gradient of the field T 

used to compute the solution.

• The outcome is different for each 

mesh.

• Behind doors, the gradients need 

to be computed accurately.

• By adjusting the numerics, we 

can smooth the gradients. 

• All meshes show similar 

gradients.

Numerical playground

2D Laplace equation in a square domain

gradSchemes: 

Gauss leastSquares

laplacianSchemes: 

Gauss linear limited 1

A. Hexahedral mesh

B. Triangular mesh

C. Polyhedral mesh

field

A

C

B
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Numerical playground

• This case was for your eyes and brain only, but we encourage you to reproduce all the previous 

results.

• In the subdirectory c1 you will find the hexahedral mesh, in the subdirectory c2 you will find the 

triangular mesh, and in the subdirectory c3 you will find the polyhedral mesh.

• Use the script runallcases.sh to run all the cases automatically. 

• When launching paraFoam it will give you a warning, accept the default option (yes).

• In paraFoam, go to the File menu and select Load State. Load the state located in the 

directory paraview (state1.pvsm).

• In the window that pops out, give the location of the *.foam files inside each subdirectory 

(c1/c1.foam, c2/c2.foam, and c3/c3.foam). 

• The file state1.pvsm will load a preconfigured state with all the solutions.

• If you are interested in running the cases individually, enter the subdirectory                            
and follow the instructions in the README.FIRST file.
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Exercises

• Run the case using all gradient discretization schemes available. Which scheme gives the best results?

• According to the previous results, which element type is the best one? Do you think that the choice of the 

element type is problem dependent (e.g., direction of the flow)?

• Use the leastSquares method for gradient discretization, and the corrected and uncorrected method for 

Laplacian discretization. Do you get the same results in all the meshes? How can you improve the results?

(Hint: look at the corrections)

• Does it make sense to do more non-orthogonal corrections using the uncorrected method?

• Run a case only 1 iteration.  Do you get a converged solution? Is there a difference between 1 and 100 

iterations? Compare the solutions.

• Use a different interpolation method for the diffusion coefficient. Do you get the same results?

• Try to break the solver (this is a difficult task in this case).  You are allowed to modify the original mesh and 

use any combination of discretization schemes.



Swing:

Flow in a lid-driven square cavity – Re = 100

Effect of grading and non-orthogonality on the 

accuracy of the solution

Numerical playground
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Numerical playground

Orthogonal mesh 

This is a perfect mesh

Non-orthogonal mesh

The overall quality of this mesh is good (in 

terms of non-orthogonality and skewness),   

but by no standard this is a good mesh.

Flow in a lid-driven square cavity – Re = 100

Non-orthogonal mesh vs. orthogonal mesh

• Often people refer to these non-orthogonal meshes as Kershaw distorted meshes.

• We will use this case to learn how to adjust the numerical schemes according to mesh non-

orthogonality and grading.
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Numerical playground

• And as CFD is not only about pretty colors, we should also validate 

the results

LaplacianSchemes orthogonal – Non-orthogonal corrections disabled

Y centerline

X centerline

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
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Numerical playground

LaplacianSchemes orthogonal – Non-orthogonal corrections enabled

Y centerline

X centerline

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
790

• And as CFD is not only about pretty colors, we should also validate 

the results



Numerical playground

How to adjust the numerical method to deal with non-orthogonality

ddtSchemes

{

default         backward;

}

gradSchemes

{

default         Gauss linear;

//default         Gauss skewCorrected linear;

//default         cellMDLimited Gauss linear 1;

grad(p)         Gauss linear;

}

divSchemes

{

default         none;

//div(phi,U)      Gauss linearUpwind default;

div(phi,U)      Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

//default         Gauss linear limited 1;

//default         Gauss skewCorrected linear limited 1;

}

interpolationSchemes

{

//default          skewCorrected linear;

default linear;

}

snGradSchemes

{

default orthogonal;

//default         limited 1;

}

• In the dictionary fvSchemes we can enable non-

orthogonal corrections.

• Non-orthogonal corrections are chosen using the 

keywords laplacianSchemes and snGradSchemes.

• These are the laplacianSchemes and 

snGradSchemes schemes that you will use most of the 

times:

• orthogonal: second order accurate, bounded on 

perfect meshes, without non-orthogonal 

corrections.

• corrected: second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• limited     : second order accurate, bounded 

depending on the quality of the mesh, with non-

orthogonal corrections.

• uncorrected: second order accurate, without 

non-orthogonal corrections. Stable but more 

diffusive than limited and corrected.
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Numerical playground

solvers

{

p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

pFinal

{

$p;

relTol          0;

}

U

{

solver          smoothSolver;

smoother        symGaussSeidel;

tolerance       1e-08;

relTol          0;

}

}

PISO

{

nCorrectors     1;

nNonOrthogonalCorrectors 0;

pRefCell        0;

pRefValue       0;

}

How to adjust the numerical method to deal with non-orthogonality

• Additionally, in the dictionary fvSolution we need to 

define the number of PISO corrections (nCorrectors) and 

non-orthogonal corrections (nNonOrthogonalCorrectors).

• You need to do at least one PISO correction.  Increasing the 

number of PISO correctors will improve the stability and 

accuracy of the solution at a higher computational cost. 

• For orthogonal meshes, 1 PISO correction is ok. But as  

most of the time you will deal with non-orthogonal meshes, 

doing 2 PISO corrections is a good choice.

• If you are using a method with non-orthogonal corrections 

(corrected or limited 1-0.5), you need to define the number 

of non-orthogonal corrections (nNonOrthogonalCorrectors).

• If you use 0 nNonOrthogonalCorrectors, you are 

computing the initial approximation using central differences 

(accurate but unstable), with no explicit correction.

• To take into account the non-orthogonality of the mesh, you 

will need to increase the number of corrections (you get 

better approximations using the previous correction). 

• Usually 2 nNonOrthogonalCorrectors is ok.
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Numerical playground

793

• We will now illustrate a few of the discretization schemes available in OpenFOAM® using a 

model case.

• We will use the lid-driven square cavity case to study the effect of grading and non-

orthogonality on the accuracy of the solution

• This case is located in the directory:

$PTOFC/101FVM/nonorthoCavity/

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Numerical playground

What are we going to do?

• This is the same case as the one we used during the first tutorial session.  

• The only difference is that we have modified the mesh a little bit in order to add grading and non-orthogonality.

• After generating the mesh, we will use the utility checkMesh to control the quality of the mesh. Is it a good 

mesh? 

• We will use this case to learn how to adjust the numerical schemes according to mesh non-orthogonality and 

grading.

• After finding the numerical solution we will do some sampling and plotting.
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Running the case
• You will find this tutorial in the directory $PTOFC/101FVM/nonorthoCavity

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh –dict system/blockMeshDict.0

3. $> checkMesh

4. $> pisoFoam | log.solver

5. $> postProcess -func sampleDict -latestTime

6. $> gnuplot gnuplot/gnuplot_script

7. $> paraFoam 



Numerical playground

To run the case, follow these steps

• First run the case using the original dictionaries. Did it crash right?

• Now change the laplacianSchemes and snGradSchemes to limited 1. It crashed again but 

this time it ran a few more time-steps, right?

• Now increase the number of nNonOrthogonalCorrectors to 2. It crashed again but it is running 

more time-steps, right?

• Now increase the number of PISO corrections to 2 (nCorrectors). Did it run? 

• Basically we enabled non-orthogonal corrections, we computed better approximations of the 

gradients, and we increased the number of PISO corrections to get better predictions of the field 

variables (U and p).

• Now set the number of nNonOrthogonalCorrectors to 0. Did it crash right? This is telling us 

that the mesh is sensitive to the gradients.

• Now change the laplacianSchemes and snGradSchemes to limited 0 (uncorrected). In this 

case we are not using non-orthogonal corrections, therefore there is no need to increase the 

value of nNonOrthogonalCorrectors.  

• We are using a method that uses a wider stencil to compute the Laplacian, this method is more 

stable but a little bit more diffusive. Did it run?

• At this point, compare the solution obtained with corrected and uncorrected schemes. Which 

one is more diffusive?
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• When it comes to laplacianSchemes and snGradSchemes this is how we proceed most of 

the times (a robust setup),

laplacianSchemes

{

default         Gauss linear limited 1;

}

snGradSchemes

{

default    limited 1;

}

PISO

{

nCorrectors     2;

nNonOrthogonalCorrectors 1;

}

• This method works fine for meshes with non-orthogonality less than 75.

• If the non-orthogonality is more than 75, you should consider using limited 0.5, and increasing 

nCorrectors and nNonOrthogonalCorrectors.

• When the non-orthogonality is more than 85, the best solution is to redo the mesh.
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Exercises

• Using the non-orthogonal mesh and the original dictionaries, try to run the solver reducing the time-step.  Do 

you get a solution at all?

• Try to get a solution using the method limited 1 and two nNonOrthogonalCorrectors (leave nCorrectors

equal to 1).

(Hint: try to reduce the time-step)

• If you managed to get a solution using the previous numerical scheme. How long did it take to get the 

solution? Use the robust setup, clock the time and compare with the previous case.  Which one is faster? Do 

you get the same solution?

• Instead of using the non-orthogonal mesh, use a mesh with grading toward all edges.  How will you stabilize 

the solution?

(Hint: take a look at the blockMesh slides in order to add grading to the mesh)

• Try to get a solution using a time-step of 0.05 seconds. Use the original discretization schemes for the gradient 

and convective terms.

(Hint: increase nCorrectors and nNonOrthogonalCorrectors)

• Using the uniform orthogonal mesh and a robust numerics, determined the largest CFL you can use. Is the 

solution still accurate? What about the clock-speed?

• Try to break the solver and interpret the output screen.  You are allowed to modify the original mesh and use 

any combination of discretization schemes.
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Sod’s shock tube.

Numerical playground
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Sod’s shock tube

• This case has an analytical solution and plenty of experimental data.

• This is an extreme test case used to test solvers.

• Every single commercial and open-source solver use this case for validation of the numerical 

schemes.

• The governing equation of this test case are the Euler equations.
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High Purity Photolysis Shock Tube (NASA Tube)

Shock tube. The driver section, including vacuum pumps, controls, and helium driver gas. 
Photo credit: Stanford University. http://hanson.stanford.edu/index.php?loc=facilities_nasa 

Copyright on the images is held by the contributors. Apart from Fair Use, permission must be sought for any other purpose. 800
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Sod’s shock tube

Boundary conditions and initial conditions

All walls are slip

801

Analytical solution
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Sod’s shock tube

Pressure field

Velocity magnitude field

Density field

Temperature field
802
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• We will now illustrate a few of the discretization schemes available in OpenFOAM® 

using a severe model case.

• We will use the Sod’s shock tube case. 

• This case is located in the directory:

$PTOFC/101FVM/shockTube/

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.
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What are we going to do?

• Now is your turn. 

• You are asked to select the best discretization scheme for the physics involve. 

• Remember the following concepts: accuracy, stability and boundedness.

• We will compare your numerical solution with the analytical solution.

• At this point, we are very familiar with the numerical schemes.  It is up to you to choose the best 

setup.

• You can start using the original dictionaries.

• To find the numerical solution we will use the solver rhoPimpleFoam. 

• rhoPimpleFoam is a transient solver for laminar or turbulent flow of a compressible gas. 

• After finding the numerical solution we will do some sampling.

• At the end, we will do some plotting (using gnuplot or Python) and scientific visualization.
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Running the case

• You will find this tutorial in the directory $PTOFC/101FVM/schockTube

• In the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> checkMesh

4. $> rm –rf 0

5. $> cp –r 0_org 0

6. $> setFields

7. $> rhoPimpleFoam | tee log.solver

8. $> postProcess -func sampleDict -latestTime

9. $> paraFoam 

805

• To plot the analytical solution against the numerical solution, go to the directory python and run the Python script.

• In the terminal window type:

1. $> python3 python/sodshocktube.py

• The Python script will save four .png files with the solution. Feel free to explore and adapt the Python script to your needs.

• Python (version 3) must be installed in order to use the script
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Running the case

• If you used the values proposed in the dictionaries, the solution diverged, right? Try to get the 

case working.                                                                                                                

Hint: look at the gradient limiters. 

• By adjusting the gradient limiters, the case will run, but the final solution is not very accurate. 

How can you increase the accuracy of the solution?

Hint: look at the PIMPLE corrections.

806

Not so accurate solution Accurate solution
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Exercises

• Using the proposed case setup, try to get an accurate solution by reducing the time-step or refining the mesh. 

Did you succeed in getting an accurate solution? 

• Run the case using different time discretization schemes. 

• Run the case using different gradient discretization schemes. 

• Run the case using different convective discretization schemes for the term div(phi,U). 

• Run the case using different convective discretization schemes for the terms div(phi,e) and div(phi,K).  What 

are the variables e and K?

• Extend the case to 2D and 3D. Do you get the same solution?

• Try to run a 2D case using a triangular mesh and adjust the numerical scheme to get  an accurate and stable 

solution.

• Try to run the 1D case using an explicit solver. For the same CFL number, do you have the same time step 

size as for the implicit solver?

(Hint: look for the solver with the word Central)

• Try to break the solver (this is extremely easy in this case).  You are allowed to modify the original mesh and 

use any combination of discretization schemes.
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