
553

Module 5
The postprocess utility – Sampling – Probing

– On-the-fly postprocessing – Field

manipulation – Data conversion

Roadmap

554

1. On-the-fly postprocessing – functionObjects and the

postProcess utility

2. Sampling with the postProcess utility

3. Field manipulation

4. Data conversion

On-the-fly postprocessing – functionObjects

• It is possible to perform data sampling, extraction and manipulation while the simulation is

running by using monitors or as they are called in OpenFOAM, functionObjects.

• functionObjects are small pieces of code executed at a regular interval without explicitly being

linked to the application.

• When using functionObjects, files of sampled data can be written for plotting and post

processing.

• functionObjects are specified in the controlDict dictionary and executed at pre-defined

intervals.

• All functionObjects are runtime modifiable.

• Depending on the functionObject you are using, its output is saved in the directory
postProcessing or in the solution directory (time directories).

• It is also possible to execute functionObjects after the simulation is over, we will call this

running functionObjects a-posteriori.

• You can use functionObjects to compute the Mach number, the vorticity field, and to sample

the velocity at given points or along a line, and everything while the simulation is running.

555

On-the-fly postprocessing – functionObjects

556

• In the directory $FOAM_SRC/functionObjects you will find the source code for the

functionObjects.

• There are many functionObjects, and according to what they do, they are located in different
sub-directories, namely, field, forces, lagrangian, solvers, and utilities. Just to

name a few functionObjects:

• CourantNo • forceCoeffs

• div • forces

• fieldAverage • WallShearStress

• fieldValues • scalarTransport

• grad • codedFunctionObject

• MachNo • residuals

• Q • systemCall

• vorticity • timeActivatedFileUpdate

• yPlus • writeObjects

• In addition to the functionObjects located in the directory $FOAM_SRC/functionObjects,

you can also run the sampling and co-processing utilities on-the-fly.

• You will find the source code for the sampling and co-processing utilities in the directory
$FOAM_SRC/sampling.

• functionObjects are defined in the controlDict dictionary.

• To execute a functionObject you need to at least define the following entries:

On-the-fly postprocessing – functionObjects

557

function_object_name

type function_object_to_use;

functionObjectLibs ("function_object_library.so");

enabled true;

writeControl outputTime;

timeStart 0;

timeEnd 20;

// ...

// functionObject

// keywords and sub-dictionaries

// ...

log true;

User given name

functionObject to use

Turn on/off functionObject

Show on screen the output of the

functionObject

Output frequency

Keywords and sub-dictionaries specific to

the functionObject

Library to use

Instead of functionObjectLibs, you

can also use libs

On-the-fly postprocessing – functionObjects

558

• There are many functionObjects implemented in OpenFOAM®, and they can have many

options, as well as limitations.

• Our best advice is to read the doxygen documentation or the source code to learn how to use

the functionObjects.

• Remember, the source code of the functionObjects is located in the directory:

$WM_PROJECT_DIR/src/functionObjects

• The source code of the sampling and co-processing utilities is located in the directory:

$WM_PROJECT_DIR/src/sampling

• The source code of the database entries required by the functionObjects is located in the

directory:

$FOAM_SRC/OpenFOAM/db/functionObjects

• Here after we are going to study a few commonly used functionObjects.

On-the-fly postprocessing – functionObjects

559

• Let us do some on-the-fly postprocessing.

• For this we will use the multi-element airfoil 2D case.

• You will find this case in the directory:

$PTOFC/101postprocessing/MDA_30P30N

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

On-the-fly postprocessing – functionObjects

560

At the end of the day, you should get something like this

cd cl

Experimental values 0.0332 2.167

Numerical values 0.0346 2.238

Additionally, by using functionObjects we will

compute many derived quantities, such as,

• yPlus.

• Voriticity.

• Mean values of the field variables (notice

that we will compute the average of a

steady solution).

• Forces.

• Force coefficients.

• Minimum and maximum values of the field

variables.

• Sampling at given points.

• Mass flow at inlets and outlets.

Qualitative post-processing Quantitative post-processing

On-the-fly postprocessing – functionObjects

561

At the end of the day, you should get something like this

Quantitative post-processing

On-the-fly postprocessing – functionObjects

562

At the end of the day, you should get something like this

Quantitative post-processing – Assessing residuals

Should I stop here? Or should I stop here?

On-the-fly postprocessing – functionObjects

563

• Do not erase the solution as we are going to use it in the next section.

Running the case

• Let us run this case using the automatic scripts distributed with the tutorial. In the terminal type:

1. $> sh run_all.sh

• After the simulation is finish, you will find the decomposed directories (processor0,

processor1, processor2 and processor3), the postProcessing directory, and the

2000 directory. The solution, and output of the functionObjects, is saved in these directories.

• Remember, to visualize the decomposed solution you will need to launch paraFoam as follows,

1. $> paraFoam -builtin

On-the-fly postprocessing – functionObjects

564

48 functions

49 {

name_of_the_functionObject_dictionary

{

Sub-dictionary with functionObject entries

}

398 #include "externalFunctionObject"

402 }

• Let us take a look at the bottom of the controlDict

dictionary file. In this dictionary is where we define all

functionObjects.

• Within this dictionary, functionObjects are defined in

the sub-dictionary functions, i.e.,

The controlDict dictionary

• In this case, the functionObjects are defined in lines

48-402 (the sub-dictionary functions).

• Each defined functionObject has its own name and its

compulsory keywords and entries.

• Notice that in line 398 we use the directive include to

call an external dictionary with the functionObjects

definition.

• If you do not give the path of the external dictionary, the
solver will look for it in the directory system.

• If you use the include directive, you will need to update
the controlDict dictionary in order to read any

modification done in the included dictionary files.

functions

{

functionObjects definition

};

On-the-fly postprocessing – functionObjects

565

48 functions

49 {

204 forces_object

205 {

206 type forces;

207 functionObjectLibs ("libforces.so");

210 writeControl timeStep;

211 writetInterval 1;

213 enabled true;

215 //// Patches to sample

216 patches ("wall_slat" "wall_airfoil" "wall_flap");

218 //// Name of fields

219 pName p;

220 Uname U;

222 //only for incompressible flows

223 rho rhoInf;

224 rhoInf 1.0;

226 //// Centre of rotation

227 CofR (0 0 0);

228 }

402 }

The controlDict dictionary

• Let us explain in detail how to setup a functionObject.

• As the names implies, this functionObject is used to

compute the forces on a given body or set of bodies

(line 204).

• You can add as many forces functionObjects (or any

other one) as you like, but you should assign them

different identifiers (line 204). Remember not to use

white spaces when naming functionObjects.

• The output of this functionObject is saved in the
directory postProcessing/forces_object,

where the directory name is taken from line 204.

• Inside this directory, you will find the subdirectory 0,

which means that you started to sample data from time
0.

• If you start from a different time, you will find a different
subdirectory, e.g., 86.05

• Remember, different functionObjects will have

different entries, to know the entries just refer to the

online documentation or skim the source code, which

is located in the directory,

• $WM_PROJECT_DIR/src/functionObjects

functionObject identifier

(user given)

On-the-fly postprocessing – functionObjects

566

48 functions

49 {

204 forces_object

205 {

206 type forces;

207 functionObjectLibs ("libforces.so");

210 writeControl timeStep;

211 writetInterval 1;

213 enabled true;

215 //// Patches to sample

216 patches ("wall_slat" "wall_airfoil" "wall_flap");

218 //// Name of fields

219 pName p;

220 Uname U;

222 //only for incompressible flows

223 rho rhoInf;

224 rhoInf 1.0;

226 //// Centre of rotation

227 CofR (0 0 0);

228 }

402 }

The controlDict dictionary

functionObject to use

functionObject library to use

Controls for saving frequency

Turn on/off functionObject

Compute the forces on these patches

Name of the velocity and pressure fields. If you use

different fields, e.g., pMean and Umean, they need to be

computed before this functionObject

Reference density value. It only needs to be defined for

incompressible flows. For compressible flows, the

computed density is used instead (you will need to define

a dummy value, though)

Reference center of rotation to compute moments

functionObject identifier (user given)

• Let us study all entries of the forces functionObject

Note:

• The source code of this functionObject is located in the directory
$FOAM_SRC/functionObjects/forces/forces

• Use the banana method to know all the options available for each entry.

On-the-fly postprocessing – functionObjects

567

48 functions

49 {

234 forceCoeffs_object

235 {

236 type forceCoeffs;

237 functionObjectLibs ("libforces.so");

239 enabled true;

241 patches ("wall_slat" "wall_airfoil" "wall_flap");

243 pName p;

244 Uname U;

247 rho rhoInf;

248 rhoInf 1.0;

251 log true;

253 CofR (0.0 0 0);

255 pitchAxis (0 0 1);

256 magUInf 1.0;

257 lRef 1;

258 Aref 1;

263 writeControl timeStep;

264 writeInterval 1;

267 liftDir (0 1 0);

268 dragDir (1 0 0);

273 }

402 }

The controlDict dictionary

• This functionObject computes the force coefficients.

• These entries are similar to those of the force

functionObject

This option will output the values to a text file located in the
directory postProcessing/forceCoeffs_object

Reference values used to compute coefficients

Controls for saving frequency

Reference axes to compute the lift and drag coefficients.

Reference center of rotation to compute moments

• Let us study now the functionObject used to

compute the force coefficients.functionObject

identifier (user given)

On-the-fly postprocessing – functionObjects

568

48 functions

49 {

234 forceCoeffs_object

235 {

236 type forceCoeffs;

237 functionObjectLibs ("libforces.so");

239 enabled true;

241 patches ("wall_slat" "wall_airfoil" "wall_flap");

243 pName p;

244 Uname U;

247 rho rhoInf;

248 rhoInf 1.0;

251 log true;

253 CofR (0.0 0 0);

255 pitchAxis (0 0 1);

256 magUInf 1.0;

257 lRef 1;

258 Aref 1;

263 writeControl timeStep;

264 writeInterval 1;

267 liftDir (0 1 0);

268 dragDir (1 0 0);

273 }

402 }

The controlDict dictionary

functionObject

identifier (user given)

• Reference axes to compute the lift and drag coefficients.

• Remember, lift and drag are perpendicular and parallel

to the incoming flow, respectively.

• So, if the inlet velocity is entering at a given angle, you

should adjust the vectors liftDir and dragDir so they are

aligned with the incoming flow (rotation matrix).

• Let us study now the functionObject used to

compute the force coefficients.

On-the-fly postprocessing – functionObjects

569

48 functions

49 {

120 minmaxdomain_scalar

121 {

122 type volFieldValue;

123 libs ("libfieldFunctionObjects.so");

125 enabled true;

126 log true;

129 writeControl timeStep;

130 writeInterval 1;

132 writeFields false;

134 writeLocation true;

138 regionType all;

140 operation none;

142 fields

143 (

144 p nuTilda nut

145);

146 }

176 mindomain_scalar

177 {

178 $minmaxdomain_scalar

179 operation min;

180 }

188 maxdomain_scalar

189 {

190 $minmaxdomain_scalar

191 operation max;

192 }

402 }

The controlDict dictionary

• volFieldValue functionObject

• This functionObject can be used to compute the

minimum and maximum values of the field variables.

• The output of this functionObject is saved in ascii format
in the file volFieldValue.dat located in the directory

postProcessing/minmaxdomain_scalar/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (e.g., line 120).

• In this case, we are splitting the computation of the

minimum and maximum values in two parts.

• In lines 120-146, we define the body of the

functionObject.

• In lines 176-180 and 188-192, we compute the

minimum and maximum values of the scalar field

variables (line 144), using the body of the

functionObject (lines 120-146).

• This particular functionObject definition can be use for

scalar fields.

On-the-fly postprocessing – functionObjects

570

48 functions

49 {

148 minmaxdomain_vector

149 {

150 type volFieldValue;

151 libs ("libfieldFunctionObjects.so");

153 enabled true;

154 log true;

157 writeControl timeStep;

158 writeInterval 1;

160 writeFields false;

162 writeLocation true;

166 regionType all;

168 operation none;

170 fields

171 (

172 U

173);

174 }

182 mindomain_vector

183 {

184 $minmaxdomain_scalar

185 operation minMag;

186 }

194 maxdomain_vector

195 {

196 $minmaxdomain_scalar

197 operation maxMag;

198 }

402 }

The controlDict dictionary

• volFieldValue functionObject

• For vector fields, we can use the following

functionObject definition.

• For vectors we use the operations minMag (line 185) and

maxMag (line 197).

• Whereas for scalar fields, we use the operations min (line

179) and max (line 191).

• In this case, the vector field variable is defined in line 172.

• If the option writeLocation is enabled (line 134 or line

162), this functionObject will report the location of the

minimum or maximum value.

On-the-fly postprocessing – functionObjects

571

48 functions

49 {

81 cellMin

82 {

83 #includeEtc "caseDicts/postProcessing/minMax/cellMin.cfg"

84 enabled true;

85 log true;

86 fields (p);

87 }

89 cellMax

90 {

91 #includeEtc "caseDicts/postProcessing/minMax/cellMax.cfg"

92 enabled true;

93 log true;

94 fields (p);

95 }

98 cellMinMag

99 {

100 #includeEtc "caseDicts/postProcessing/minMax/cellMinMag.cfg"

101 enabled true;

102 log true;

103 fields (U);

104 }

106 cellMaxMag

107 {

108 #includeEtc "caseDicts/postProcessing/minMax/cellMaxMag.cfg"

109 enabled true;

110 log true;

111 fields (U);

112 }

402 }

The controlDict dictionary

• The previous definition of the functionObject is expanded.

• In OpenFOAM, it is also possible to use packed

functionObjects.

• The packed functionObjects are located in the directory
$WM_PROJECT_DIR/etc/caseDicts

• To use packed functionObjects you just need to include them in

the definition, e.g., line 83.

• You will also need to add any optional entry, e.g., lines 84-86.

• Notice that lines 81-112 are commented in the original dictionary.

• Lines 81-87, are equivalent to lines 120-146 and lines 176-180 in

the expanded functionObject.

• Personally speaking, we prefer to use the expanded definition of

the functionObjects.

On-the-fly postprocessing – functionObjects

572

48 functions

49 {

81 cellMin

82 {

83 #includeEtc "caseDicts/postProcessing/minMax/cellMin.cfg"

84 enabled true;

85 log true;

86 fields (p);

87 }

89 cellMax

90 {

91 #includeEtc "caseDicts/postProcessing/minMax/cellMax.cfg"

92 enabled true;

93 log true;

94 fields (p);

95 }

98 cellMinMag

99 {

100 #includeEtc "caseDicts/postProcessing/minMax/cellMinMag.cfg"

101 enabled true;

102 log true;

103 fields (U);

104 }

106 cellMaxMag

107 {

108 #includeEtc "caseDicts/postProcessing/minMax/cellMaxMag.cfg"

109 enabled true;

110 log true;

111 fields (U);

112 }

402 }

The controlDict dictionary

Name of the functionObject.

This is also the name of the folder where the output of the
functionObject will be saved.

Location and type of the packed functionObject.

• cellMin – minimum value of a scalar field.

• cellMax – maximum value of a scalar field.

• cellMinMag – minimum value of a vector field (magnitude).

• cellMaxMag – maximum value of a vector field (magnitude).

Options related to the functionObject.

The functionObject can have more options than the ones shown

here.

In this case we are using the following options:

• enabled = Enable/disable functionObject.

• log = Print to screen output of the functionObject

Fields to sample

• Packed functionObject

On-the-fly postprocessing – functionObjects

573

48 functions

49 {

279 yplus

280 {

281 type yPlus;

282 functionObjectLibs ("libfieldFunctionObjects.so");

283 enabled true;

284 log true;

285 writeControl outputTime;

286 }

402 }

The controlDict dictionary

• yPlus functionObject

• This functionObject is used to compute the yPlus field.

• This functionObject has two outputs, one output saved
in the solution directories (1, 2, 3, and so on). You can

visualize this output using paraview/paraFoam.

• The second output is located in the directory

postProcessing/yplus/0

• In this file you will find the minimum, maximum and

average values of yPlus in all patches defined as walls.

• Remember, the name of the directory where the output

data (descriptive statistics) is saved is the same as the

name of the functionObject (line 279).

On-the-fly postprocessing – functionObjects

574

48 functions

49 {

358 fieldAverage1

359 {

360 type fieldAverage;

361 libs ("libfieldFunctionObjects.so");

362 writeControl writeTime;

366 timeStart 100;

367 //timeEnd 1000;

369 fields

370 (

371 U

372 {

373 mean on;

374 prime2Mean on;

375 base time;

376 }

378 p

379 {

380 mean on;

381 prime2Mean on;

382 base time;

383 }

385 nut

386 {

387 mean on;

388 prime2Mean on;

389 base time;

390 }

391);

392 }

402 }

The controlDict dictionary

• fieldAverage functionObject

• This functionObject is used to compute the average

values of the field variables.

• The output of this functionObject is saved in the time

solution directories.

• In this case, we are computing the field averages of

velocity (U), pressure (p), and turbulent viscosity (nut).

• In line 366, we define the starting time to compute the

statistics. If you do not define this value, the statistics will

be computed starting from 0.

• In line 367, we define the end time of the statistics (notice

that this line is commented). If you do not define this

value, the statistics will be computed until the end of the

simulation.

• In the source code you can find a description of all options

for this functionObject. The source code is located in the

directory:

• $WM_PROJECT_DIR/src/functionObjects/field/fieldAverage

• In this functionObject, prime2Mean is the average of the

product of the fluctuations of the variable,

On-the-fly postprocessing – functionObjects

575

48 functions

49 {

398 #include "externalFunctionObject"

402 }

The controlDict dictionary

• In line 398 we add a functionObject definition using an external

file.

• In this case, the functionObject is located in the directory
system

• If you want to run this functionObject online, do not add

lines 51, 52, and 211 in the file
externalFunctionObject.

• To run this functionObject a-posteriori (after the simulation

is over by using the saved solution); add lines 51, 52, and
211 to the file externalFunctionObject.

• We explain how to run functionObjects a posteriori later.

User given file name

On-the-fly postprocessing – functionObjects

576

24 probes_online

25 {

26 type probes;

27 functionObjectLibs ("libfieldFunctionObjects.so");

28 enabled true;

29 writeControl timeStep;

30 writeInterval 1;

31

32 probeLocations

33 (

34 (1 0 0)

35 (2 0 0)

36 (2 0.25 0)

37 (2 -0.25 0)

38);

39

40 fields

41 (

42 U

43 p

44);

45

46 }

52 vorticity

53 {

54 type vorticity;

55 functionObjectLibs ("libfieldFunctionObjects.so");

56 enabled true;

57 log true;

58 writeControl outputTime;

59 }

The externalFunctionObject dictionary

• probes functionObject

• This functionObject is used to probe field data at the

given locations.

• In this case, we are sampling the fields U and p (lines 42-

43)

• The output of this functionObject is saved in ascii format
in the files p and U located in the directory

postProcessing/probes_online/0

• Remember, the name of the directory where the output

data is saved is the same as the name of the

functionObject (line 24).

• vorticity functionObject

• This functionObject is used to compute the vorticity field.

• The output of this functionObject is saved in the solution
directories (1, 2, 3, and so on).

• You can visualize this output using paraview/paraFoam.

On-the-fly postprocessing – functionObjects

577

• Sometimes it can happen that you forget to use a functionObject or you want to execute a

functionObject a-posteriori (when the simulation is over).

• The solution to this problem is to use the solver with the option -postProcess.

• This will only compute the new functionObject, it will not rerun the simulation.

• For example, let us say that you forgot to use a given functionObject.

• Open the dictionary controlDict, add the new functionObject, and type in the terminal,

• $> name_of_the_solver -postProcess –dict dictionary_location

• You also have the option of adding the new functionObject in an external file. If you chose this

option, do not forget to add the functionObject within the function sub-dictionary block:

Running functionObjects a-posteriori

function

{

//functionObject definitions here

};

On-the-fly postprocessing – functionObjects

578

• In the directory system, you will find the following functionObject external dictionaries:

functionObject1

• To run this functionObject a-posteriori, type in the terminal:

1. $> simpleFoam -postProcess -dict system/functionObject1 –noZero

2. $> mpirun –np 4 simpleFoam –parallel -postProcess –dict system/functionObject1 –time 500:2000

3. $> simpleFoam -postProcess -dict system/functionObject1 –latestTime

• In step 1, we are reading the dictionary system/functionObject1 and we are doing the

computation for all the saved solutions, except time zero.

• In step 2, we are reading the dictionary system/functionObject1 and we are doing the

computation for the time range 500 to 2000. Notice that we are running in parallel.

• In step 3, we are reading the dictionary system/functionObject1 and we are doing the

computation only for he latest saved solution.

• If you do not give any time manipulator, the computation will be carried out on every saved

solution.

Running functionObjects a-posteriori

On-the-fly postprocessing – functionObjects

579

• A functionObject that is very useful, but we did not use in this case:

inlet_massflow

{

type surfaceFieldValue;

functionObjectLibs ("libfieldFunctionObjects.so");

enabled true;

log true;

writeControl timeStep;

writeInterval 1;

writeFields false;

regionType patch;

name inlet;

operation sum;

fields (phi);

}

• This functionObject is used to computed the mass flow across a boundary patch.

• Remember, the method is conservative so what is going in, is going out (unless you have

source terms).

• So, if you want to measure the mass imbalance, setup this function object for each boundary

patch where you have flow entering or going out of the domain.

Final remarks on functionObjects

Compute functionObject in a boundary patch

Compute functionObject in this boundary patch

On-the-fly postprocessing – functionObjects

580

• As you can see, there are many functionObjects implemented in OpenFOAM®.

• We just explained the most common functionObjects.

• You can use the banana method to know all the options available for each entry, search in the

documentation, or read the source code located in the directory
$FOAM_SRC/functionObjects

• In the supplement slides you will find more examples of more complex functionObjects.

• You will also find a deck of slides with a detailed explanation of advanced paraview features and

some basic instructions for data plotting and analysis using gnuplot.

• Remember, you can also do the same postprocessing using paraview/paraFoam, but you will

only work on the saved fields.

• A great advice before running your simulation, setup all your functionObjects and gather as

much as possible quantitative data.

Final remarks on functionObjects

On-the-fly postprocessing – functionObjects

581

• Where is located the source code of the functionObjects?

• Try to run in parallel? Do all functionObjects work properly?

• Compute the Courant number using functionObjects.

• Compute the total pressure and velocity gradient using functionObjects (on-the-fly and a-posteriori).

• Sample data (points, lines and surfaces) using functionObjects (a-posteriori).

• Is it possible to do system calls using functionObjects? If so what functionObject will you use and how do

you use it? Setup a sample case.

• Is it possible to update dictionaries using functionObjects? If so what functionObjects will you use and how

do you use it? Setup a sample case.

• What are the compulsory entries of the functionObjects?

Exercises

Roadmap

582

1. On-the-fly postprocessing – functionObjects and the

postProcess utility

2. Sampling with the postProcess utility

3. Field manipulation

4. Data conversion

Sampling with the postProcess utility

583

• OpenFOAM® provides the postProcess utility to sample field data for plotting.

• The sampling parameters are specified in a dictionary located in the case system directory.

• You can give any name to the input dictionary, hereafter we are going to name them
sampleDict (to sample along a line) and probesDict (to sample in a set of probes).

• During the sampling, and inside the case directory, a new directory named postProcessing

will be created. In this directory, the sampled values are stored in a sub-directory with the name
of the input dictionary, in this case, sampleDict and probesDict.

• This utility can sample points, lines, and surfaces.

• Data can be written in a range of formats including well-known plotting packages such as:

grace/xmgr, gnuplot and jPlot.

• The sampling can be executed by running the utility postProcess in the case directory and

according to the application syntax.

• A final word, this utility does not do the sampling while the solver is running. It does the

sampling after you finish the simulation.

Sampling with the postProcess utility

584

• To do sampling, we will use the solution from the previous case.

• If you do not have the solution, follow the instructions given in the previous slides.

• Hereafter, we will sample along a line and in a few probe locations, as illustrated in the figure

below.

Sampling with the postProcess utility

585

• In step 1, we do some sampling using the dictionary sampleDict. We also do the sampling

only for time 2000

• In step 2, we do some sampling using the dictionary probesDict. We also do the sampling

only for time 2000.

• Remember, you can use different time manipulators.

• If you do not give any time manipulator option, the sampling will be computed for all saved

solutions (including time directory 0).

Running the case

• Let us do the sampling,

1. $> postProcess -func sampleDict –time 2000

2. $> postProcess -func probesDict –time 2000

Sampling with the postProcess utility

586

The sampleDict and probesDict dictionaries

• These dictionaries are located in the directory system.

• In this case, the sampleDict dictionary is used to sample along a line. This file contains

several entries to be set according to the user needs. The following entries can be set,

• The choice of the interpolationScheme.

• The format of the line data output.

• The format of the surface data output.

• The fields to be sample.

• The sub-dictionaries that controls each sampling operation.

• In these sub-dictionaries you can set the name, type and geometrical information of

the sampling operation.

• In this case, the probesDict is used to sample in a set of points. This file contains several

entries to be set according to the user needs. The following entries,

• The fields to be sample.

• Location of the probes.

• The following functionObjects type can be used to do sampling: patchProbes, probes, sets,

or surfaces.

Sampling with the postProcess utility

587

The sampleDict dictionary

17 type sets;

18 libs ("libsampling.so");

22 interpolationScheme cellPoint;

25 setFormat raw;

27 surfaceFormat raw;

30 fields

31 (

32 U

33 wallShearStress

34);

36 sets

37 (

39 profile0

40 {

42 type lineCellFace;

44 axis distance;

46 start (0.75150 0.04767 0);

47 end (0.76168 0.14715 0);

48 }

66);

Fields to sample. No need to mention that they must exist.

Name of the set and output file

Note:

Use the banana method to know all the options available.

Sample sets (points and lines).

Interpolation method at the solution level (location of the
interpolation points).

Format of the output file, raw format is a generic format that can be

read by many applications. The file is human readable (ascii
format).

Interpolation method (from the solution to the line).

Sample method definition

Location of the sample line. Definition if the start and end point

Use sampling library

Sub-dictionary where we define all sampling objects (sets)

Sampling with the postProcess utility

588

The sampleDict dictionary

• Remember, the sampled data is always saved in the
directory postProcessing

• Then, in the sub-directory sampleDict (whose name

corresponds to the name of the input file), you will find the

data sampled in a directory corresponding to the sampled

time.

• For example, in this case you fill find the data in the
directory postProcessing/sampleDict/2000

• Then, in the file profile0_U_wallShearStress.xy

you will find the data.

• The name of the output file corresponds to the name of the

sampled set, appended by the name of the sampled fields.

• Different files will be created for tensor, vector and scalar

fields.

• Feel free to open the output files using your favorite text

editor.

Name of
sampled set

17 type sets;

18 libs ("libsampling.so");

22 interpolationScheme cellPoint;

25 setFormat raw;

27 surfaceFormat raw;

30 fields

31 (

32 U

33 wallShearStress

34);

36 sets

37 (

39 profile0

40 {

42 type lineCellFace;

44 axis distance;

46 start (0.75150 0.04767 0);

47 end (0.76168 0.14715 0);

48 }

66);

Sampling with the postProcess utility

589

The probesDict dictionary

17 type probes;

20 (

21 p

22 U

23);

27 probeLocations

28 (

29 (1.0 0 0)

30 (1.25 0 0)

31 (1.5 0 0)

32 (1.75 0 0)

33 (2.0 0 0)

34 (2.0 -.25 0)

35 (2.0 -.5 0)

36 (2.0 .25 0)

37 (2.0 .5 0)

38);

Note:

Use the banana method to know all the options available.

Sample points.

Fields to sample. No need to mention that they must exist.

Location of the points.

Sampling with the postProcess utility

590

The probesDict dictionary

17 type probes;

20 (

21 p

22 U

23);

27 probeLocations

28 (

29 (1.0 0 0)

30 (1.25 0 0)

31 (1.5 0 0)

32 (1.75 0 0)

33 (2.0 0 0)

34 (2.0 -.25 0)

35 (2.0 -.5 0)

36 (2.0 .25 0)

37 (2.0 .5 0)

38);

• Remember, the sampled data is always saved in the
directory postProcessing

• Then, in the sub-directory probesDict (whose name

corresponds to the name of the input file), you will find the

data sampled in a directory corresponding to the sampled

time.

• For example, in this case you fill find the data in the
directory postProcessing/probesDict/2000

• Then, inside this directory, you will find several files

containing the sampled data.

• The name of the output file corresponds to the name of the
sampled fields, in this case, U and p.

• Feel free to open the output files using your favorite text

editor.

Sampling with the postProcess utility

591

The output files – functionObject type sets or surfaces

• The output format of the point sampling (cloud) is as follows:

#POINT_COORDINATES (X Y Z) SCALAR_VALUE

0 0 0.05 13.310995

0 0 0.1 19.293817

…

Scalars

#POINT_COORDINATES (X Y Z) VECTOR_COMPONENTS (X Y Z)

0 0 0.05 0 0 2.807395

0 0 0.1 0 0 2.826176

…

Vectors

Sampling with the postProcess utility

592

The output files – functionObject type sets or surfaces

• The output format of the line sampling is as follows:

#AXIS_COORDINATE SCALAR_VALUE

0 18.594038

0.0015 18.249091

…

Scalars

#AXIS_COORDINATE VECTOR_COMPONENTS (X Y Z)

0 0 0 1.6152966

0.0015 0 0 1.8067536

…

Vectors

Sampling with the postProcess utility

593

The output files – functionObject type sets or surfaces

• The output format of the surface sampling is as follows:

#POINT_COORDINATES (X Y Z) SCALAR_VALUE

0 0 0.05 13.310995

0 0 0.1 19.293817

…

Scalars

#POINT_COORDINATES (X Y Z) VECTOR_COMPONENTS (X Y Z)

0 0 0.05 0 0 2.807395

0 0 0.1 0 0 2.826176

…

Vectors

Sampling with the postProcess utility

594

The output files – functionObject type probes

• The output format of the probing is as follows:

Probe 0 (0 0 0.025)

Probe 1 (0 0 0.05)

Probe 2 (0 0 0.075)

Probe 3 (0 0 0.1)

Probe 0 1 2 3

Time

0 0 0 0 0

0.005 19.1928 16.9497 14.2011 11.7580

0.01 16.6152 14.5294 12.1733 10.0789

…

…

…

Scalars

Sampling with the postProcess utility

595

The output files – functionObject type probes

• The output format of the probing is as follows:

Probe 0 (0 0 0.025)

Probe 1 (0 0 0.05)

Probe 2 (0 0 0.075)

Probe 3 (0 0 0.1)

Probe 0 1 2 3

Time

0 (0 0 0) (0 0 0) (0 0 0) (0 0 0)

0.005 (0 0 2.1927) (0 0 2.1927) (0 0 2.1927) (0 0 2.1927)

0.01 (0 0 2.5334) (0 0 2.5334) (0 0 2.5334) (0 0 2.5334)

…

…

…

Vectors

Sampling with the postProcess utility

596

• Where is located the source code of the utility postProcess?

• Try to do the sampling in parallel? Does it run? What about the output file?

• How many options are there available to do sampling in a line?

• Do point, line, and surface sampling using paraFoam/ParaView and compare with the output of the
postProcess utility. Do you get the same results?

• Compute the descriptive statistics of each column of the output files using gnuplot. Be careful with the

parentheses of the vector files.

(Hint: you can use sed within gnuplot)

Exercises

Roadmap

597

1. On-the-fly postprocessing – functionObjects and the

postProcess utility

2. Sampling with the postProcess utility

3. Field manipulation

4. Data conversion

• Hereafter we are going to deal with field manipulation

• Field manipulation means modifying a field variable or deriving a new field variable using the

primitive variables computed during the solution stage.

• We will do the post-processing using the command line interface (CLI), or non-GUI mode.

• The utility postProcess can be used as a single application, e.g.,

• $> postProcess –func vorticity

• Or it can be used with a solver using the option –postprocess, e.g.,

• $> simpleFoam -postprocess –func vorticity

• Running the solver with the option –postprocess will only execute the post-processing and it

will let you access data available on the database for the particular solver (such as physical

properties or turbulence model).

Field manipulation

598

• To get a list of what can be computed using the postProcess utility, type in the terminal:

• $> postProcess –list

• The utility postProcess can take many options. To get more information on how to use the

utility, type in the terminal:

• $> postProcess –help

• $> simpleFoam -postProcess –help

• The options of the solver using the –postProcess flag are the same as the options of the

utility postProcess.

• In the sub-directory $FOAM_UTILITIES/postProcessing/postProcess you will find the

utility postProcess.

• In the directory $FOAM_SRC/functionObjects, you will find the source code of the objects

that can be used to compute a new field.

Field manipulation

599

Field manipulation

600

• We will now do some field manipulation using the cylinder case.

• For this we will use the supersonic wedge tutorial located in the directory:

$PTOFC/101postprocessing/supersonic_wedge/

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Field manipulation

601

After computing the solution, we can compute derived fields (e.g., Mach number, density,

Courant number, vorticity, and so on), using the primitive fields (U, p, T)

Mach number Total pressure

Divergence of U Divergence of density gradient (numerical shadowgraph)

What are we going to do?

Field manipulation

• We will use this case to introduce the postProcess utility for field manipulation.

• We will also show how to run the solver with the option -postProcess. This will let us do only

the post-processing after the solution has been computed, and it will let us access the database

of the solver.

• To find the numerical solution we will use the solver rhoPimpleFoam.

• rhoPimpleFoam is a transient solver for laminar or turbulent flow of compressible gas.

602

1. $> sh run_solver.sh

2. $> paraFoam

Running the case

• Let us run this case using the automatic script, in the terminal type,

• Fell free to open the file run_solver.sh to know all the steps.

• After finding the solution, we can compute the new field variables using the primitive variables

computed during the solution stage. In the terminal type:

1. $> rhoPimpleFoam -postProcess -func MachNo

2. $> rhoPimpleFoam -postProcess -func CourantNo

3. $> rhoPimpleFoam -postProcess -func wallShearStress

4. $> rhoPimpleFoam -postProcess -func 'writeObjects(rho)' -time 0

5. $> rhoPimpleFoam -postProcess -func vorticity

6. $> postProcess -func vorticity

7. $> rhoPimpleFoam -postProcess -dict system/externalFunctionObject -latestTime

• If the new field variables require information of the simulation database (fluxes, turbulence

properties, transport properties), you will need to process as in steps 1-5.

• If the new field variable only requires to use a variable that already exist in the solution folder,

you can proceed as in step 6.

Field manipulation

603

• In step 1, we compute the Mach number.

• To compute this value, the postProcess utility needs to access the

thermophysicalProperties dictionary.

• In step 2, we compute the Courant number.

• To compute this value, the postProcess utility needs to access the face fluxes (phi).

• In step 3, we compute the wall shear stress.

• To compute this value, the postProcess utility needs to access the transport and

turbulence properties.

• In step 4, we compute the density (rho) for the initial time (time = 0).

• To compute this value, the postProcess utility needs to access the simulation database.

• In steps 5 and 6, we compute the vorticity field, this field is derived from the velocity field.

• The postProcess utility does not need to access any particular solver information. Both

options will give the same output.

• In step 7, we use an external file to compute the derived fields.

• In this case we are computing the density gradient grad(rho) and the divergence of the

density gradient div(grad(rho)).

• Remember, in order to compute the derived field div(grad(rho)), you need to compute first

grad(rho).

Field manipulation

604

• After finding the solution, we can compute new field variables using the primitive variables

computed during the solution stage. In the terminal type:

1. $> postProcess -func 'grad(U)'

2. $> postProcess -func 'components(U)'

3. $> postProcess -func 'mag(U)'

4. $> postProcess -func 'magSqr(U)'

5. $> postProcess -func 'totalPressureCompressible(rho,U,p)' -noZero

6. $> postProcess -func 'div(U)' -time 500:1000

7. $> postProcess -func 'mag(grad(U))' -latestTime

Field manipulation

605

8. $> postProcess -func 'patchAverage(p,patch=inlet)' –latestTime

9. $> postProcess -func 'patchAverage(U,patch=outlet)' –latestTime

10. $> postProcess -func 'patchIntegrate(p,patch=inlet)' –latestTime

11. $> postProcess -func 'patchIntegrate(U,patch=outlet)' -latestTime

• We can also use the utility postProcess to compute the average and integral of a specified

field over a patch. In the terminal type:

Field manipulation

606

• In steps 1-11, all the fields are derived from pre-existing fields.

• The postProcess utility does not need to access any particular solver information.

• In step 1, we compute the gradient of the velocity vector U.

• The field is saved as grad(U).

• In step 2, we compute the components of the velocity vector U.

• The components are saved as Ux, Uy and Uz.

• In step 3, we compute the magnitude of the velocity vector U.

• The output is saved as mag(U).

• In step 4, we compute the magnitude squared of the velocity vector U.

• The output is saved as magSqr(U).

• In step 5, we compute the total pressure.

• The output is saved as total(p). The option –noZero means do not compute the value for

time zero.

Field manipulation

607

• In step 6, we compute the divergence of the velocity vector U.

• The output is saved as div(U). You will need to define how to interpolate div(U) in the
fvSchemes dictionary. The option –time 500:1000 means save the values between the

given range (500-1000).

• In step 7, we compute the magnitude of the gradient of the velocity vector U.

• The output is saved as mag(Grad(U)). The option –latestTime will compute the value only

for the latest saved solution.

• In step 8, we compute the average of p over the patch inlet.

• In step 9, we compute the average of U over the patch outlet.

• In step 10, we compute the integral of p over the patch inlet.

• In step 11, we compute the integral of U over the patch outlet.

Roadmap

608

1. On-the-fly postprocessing – functionObjects and the

postProcess utility

2. Sampling and probing with the postProcess utility

3. Field manipulation

4. Data conversion

• OpenFOAM® gives users a lot of flexibility when it comes to scientific visualization.

• You are not obliged to use OpenFOAM® visualization tools (paraFoam or paraview).

• You can convert the solution obtained with OpenFOAM® to many third-party formats by using

OpenFOAM® data conversion utilities.

• If you are looking for a specific format and it is not supported, you can write your own conversion

tool.

• In the directory $FOAM_UTILITIES/postProcessing/dataConversion, you will find the

source code of the following data conversion utilities:

Data conversion

• foamDataToFluent • foamToTecplot360

• foamToEnsight • foamToTetDualMesh

• foamToEnsightParts • foamToVTK

• foamToGMV • smapToFoam

• To get more information on how to use a data conversion utility, you can read the source code or

type in the terminal:

• $> name_of_data_conversion_utility -help

609

Data conversion

• Another utility that might come in handy, specially when dealing with
large meshes is foamFormatConvert.

• This utility converts the mesh and field variables into ascii or binary

format.

• Working in binary format can significantly reduce data parsing and

dimension of the files (specially for large meshes).

• The drawback is that the files are not human readable anymore.

• To convert ascii files into binary files, just type in the terminal:

• $> foamFormatConvert

• Remember you will need to set the keyword writeFormat to binary
in the controlDict dictionary.

• In the same way, if you want to convert from binary to ascii, set the
keyword writeFormat to ascii in the controlDict dictionary and

type in the terminal:

• $> foamFormatConvert

application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 50;

deltaT 0.01;

writeControl runTime;

writeInterval 1;

purgeWrite 0;

writeFormat binary;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

ASCII ↔ Binary conversion

610

	5_1_monitors_function_objects.pdf
	5_2_sampling.pdf
	5_3_field_manipulation.pdf
	5_4_data_conversion.pdf

