
Module 3
Meshing preliminaries – Mesh quality

assessment – Meshing in OpenFOAM®

315

Before we begin

316

• The starting point of every CFD workflow is the geometry.

• Then we proceed to generate the mesh and assign the boundaries surface patches.

• Mesh quality and mesh size depend on the underlying geometry.

• And the quality and convergence rate of the solution highly depend on the mesh.

• So, try to do your best when generating the geometry and the mesh.

• After we have a valid mesh, we proceed to the case setup, and we launch/monitor the simulation.

• At the end, we do the post-processing (quantitative and qualitative).

Before we begin

317

• The percentages shown are based on personal experience.

• The percentages do not add to 100% because the overload changes from case to case.

• During this course we are going to address solid modeling and meshing.

Before we begin

• OpenFOAM® comes with the following meshing applications:

• blockMesh

• snappyHexMesh

• foamyHexMesh

• foamyQuadMesh

• We are going to work with blockMesh and snappyHexMesh.

• blockMesh is a multi-block mesh generator.

• snappyHexMesh is an automatic split hex mesher, refines and snaps to surface.

• If you are not comfortable using OpenFOAM® meshing applications, you can use an

external mesher.

• OpenFOAM® comes with many mesh conversion utilities. Many popular meshing

formats are supported. To name a few: gambit, cfx, fluent, gmsh, ideas, netgen,

plot3d, starccm, VTK.

• In this module, we are going to address how to mesh using OpenFOAM®

technology, how to convert meshes to OpenFOAM® format, and how to assess

mesh quality in OpenFOAM®.

318

Before we begin

You will use blockMesh to mesh the pyramids

You will use snappyHexMesh to mesh the sphinx

By the end of this module, you will realize that

319

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

Roadmap

320

Meshing preliminaries

• Mesh generation or domain discretization consist in dividing the physical domain into a finite

number of discrete regions, called control volumes or cells in which the solution is sought

www.wolfdynamics.com/wiki/moving/ani2.gifwww.wolfdynamics.com/wiki/moving/ani1.gif

321

http://www.wolfdynamics.com/wiki/moving/ani2.gif
http://www.wolfdynamics.com/wiki/moving/ani1.gif

Meshing preliminaries

Mesh generation process

322

• Generally speaking, when generating the mesh, we follow these three simple steps:

• Geometry generation: we first generate the geometry that we are going to feed into the

meshing tool.

• Mesh generation: the mesh can be internal or external. We also define surface and

volume refinement regions. We can also add inflation layers to better resolve the boundary

layer. During the mesh generation process we also check the mesh quality.

• Definition of boundary surfaces: in this step we define physical surfaces where we are

going to apply the boundary conditions. If you do not define these individual surfaces, you

will have one single surface and it will not be possible to apply different boundary

conditions.

Meshing preliminaries

Geometry generation - Input geometry

323

• The geometry must be watertight.

• Remember, the quality of the mesh and hence the quality of the solution greatly depends on the geometry. So

always do your best when creating the geometry.

Meshing preliminaries

Mesh generation

324

• If we are interested in external aerodynamics, we define a physical domain and we mesh the region around

the body.

• If we are interested in internal aerodynamics, we simply mesh the internal volume of the geometry.

• To resolve better the flow features, we can add surface and volume refinement.

• always check the mesh quality.

Meshing preliminaries

Definition of boundary surfaces (patches)

inlet outlet

top

bottom

rightleft

airplane

325

• In order to assign boundary conditions, we need to create boundary surfaces (patches) where we are going to

apply the boundary values.

• The boundary surfaces (patches) are created at meshing time.

• In OpenFOAM®, you will find this information in the boundary dictionary file which is located in the directory

constant/polyMesh. This dictionary is created automatically at meshing time.

Meshing preliminaries

What cell type should I use?

http://www.wolfdynamics.com/wiki/cells/ani_tetra.gif http://www.wolfdynamics.com/wiki/cells/ani_hexa.gif http://www.wolfdynamics.com/wiki/cells/ani_poly.gif

• In the meshing world, there are many cell types. Just to name a few: tetrahedrons, pyramids,

hexahedrons, prisms, polyhedral.

• Each cell type has its very own properties when it comes to approximating the gradients and

fluxes, we are going to talk about this later when we deal with the FVM.

• Generally speaking, hexahedral cells will give more accurate solutions under certain conditions.

• However, this does not mean that tetra/poly cells are not good.

• What cell type do I use? It is up to you; at the end of the day the overall quality of the final mesh

should be acceptable, and your mesh should resolve the physics

326

http://www.wolfdynamics.com/wiki/cells/ani_tetra.gif
http://www.wolfdynamics.com/wiki/cells/ani_hexa.gif
http://www.wolfdynamics.com/wiki/cells/ani_poly.gif

Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

327

What is a good mesh?

22rd IMR Meshing Maestro Contest Winner

Travis Carrigan, John Chawner and Carolyn Woeber. Pointwise.

http://imr.sandia.gov/22imr/MeshingContest.html

• There is no written theory when it comes to mesh generation and mesh quality assessment.

• Basically, the whole process depends on user experience and trial-and-error (it is an iterative

process).

• A standard rule of thumb is that the elements shape and distribution should be pleasing to the

eye.

328

What is a good mesh?

• In a sounder way, the user can rely in mesh metrics.

• However, no single standard benchmark or metric exists that can effectively assess the quality

of a mesh, but the user can rely on suggested best practices.

• Hereafter, we will present the most common mesh quality metrics:

• Orthogonality.

• Skewness.

• Aspect Ratio.

• Smoothness.

• After generating the mesh, we measure these quality metrics, and we use them to assess the

goodness of the mesh.

• Have in mind that there are many more mesh quality metrics out there, and some of them are

not very easy to interpret (e.g., jacobian matrix, determinant, flatness, equivalence, condition

number, and so on).

• It seems that it is much easier diagnosing bad meshes than good meshes.

329

• Mesh orthogonality is the angular deviation of the vector S (located at the face center f) from

the vector d connecting the two cell centers P and N. In this case is .

• It mainly affects the Laplacian (diffusive) terms and gradient terms at the face center f.

• It adds numerical diffusion to the solution.

Mesh quality metrics. Mesh orthogonality

What is a good mesh?

330

• Skewness (also known as non-conjunctionality) is the deviation of the vector d that connects

the two cells P and N, from the face center f.

• The deviation vector is represented with and is the point where the vector d intersects

the face f .

• It affects the interpolation of the cell centered quantities at the face center f.

• It affects the convective and diffusive terms (but to a lesser extend when compared to the

orthogonality).

• It adds numerical diffusion and wiggles to the solution.

Mesh quality metrics. Mesh skewness

What is a good mesh?

331

• Mesh aspect ratio AR is the ratio between the longest side and the shortest side .

• Large AR are ok if gradients in the largest direction are small.

• High AR smear gradients.

• Large AR add numerical diffusion to the solution.

• In RANS/URANS simulation large AR are acceptable.

• Instead, in SRS simulations (DES and LES), large AR can add too much numerical dissipation.

Mesh quality metrics. Mesh aspect ratio AR

What is a good mesh?

332

Mesh quality metrics. Smoothness

What is a good mesh?

Smooth transitionSteep transition

• Smoothness, also known as expansion rate, growth factor or uniformity, defines the transition in

size between contiguous cells.

• Large transition ratios between cells add diffusion to the solution.

• Ideally, the maximum change in mesh spacing should be less than 20%:

333

What is a good mesh?

Mesh quality metrics. Element type close to the walls - Cell/Flow alignment

• Hexes, prisms, and quadrilaterals can be stretched easily to resolve boundary layers without

losing quality.

• Triangular and tetrahedral meshes have inherently larger truncation error.

• Less truncation error when faces aligned with flow direction and gradients.

Flow direction

334

Striving for quality

What is a good mesh?

• For the same cell count, hexahedral meshes will give more accurate solutions, especially if the

grid lines are aligned with the flow.

• But this does not mean that tetrahedral meshes are not good, by carefully choosing the

numerical scheme you can get the same level of accuracy as in hexahedral meshes.

• The problem with tetrahedral meshes is mainly related to the way gradients are computed.

335

Year

Q
O

I

Hexa

Tetra

1
9
7
0
’s

1
9
8
0
’s

1
9
9
0
’s

2
0
0
0
’s

• In the early years of CFD, there was a huge

gap between the outcome of tetra and hex

meshes.

• But with time and thanks to developments in

numerical methods and computer science

(software and hardware), today all cell types

give the same results.

Striving for quality

What is a good mesh?

23rd IMR Meshing Maestro Contest Winner

Zhoufang Xiao , Jianjing Zheng, Dawei Zhao, Lijuan Zeng, Jianjun Chen, Yao Zheng

Center for Engineering & Scientific Computation, Zhejiang University, China.

http://www.sandia.gov/imr/MeshingContest.html

• The mesh density should be high enough to capture all relevant flow features.

• In areas where the solution change slowly, you can use larger elements.

• A good mesh does not rely in the fact that the more cells we use the better the solution.

336

Striving for quality

What is a good mesh?

• Hexes, prisms, and quadrilaterals can be easily aligned with the flow.

• They can also be stretched to resolve boundary layers without losing much quality.

• Triangular and tetrahedral meshes can easily be adapted to any kind of geometry. The mesh

generation process is almost automatic.

• Tetrahedral meshes normally need more computing resources during the solution stage. But

this can be easily offset by the time saved during the mesh generation stage.

• Increasing the cells count will likely improve the solution accuracy, but at the cost of a higher

computational cost. However, a finer mesh does not mean a better mesh.

• To keep the cell count low, use non-uniform meshes to cluster cells only where they are

needed. Use local refinements and solution adaption to further refine only on selected areas.

• In boundary layers, quads, hexes, and prisms/wedges cells are preferred over triangles,

tetrahedrons, or pyramids.

• If you are not using wall functions (turbulence modeling), the mesh next to the walls should be

fine enough to resolve the boundary layer flow. Have in mind that this will rocket the cell count

and increase the computing time.

337

Striving for quality

What is a good mesh?

• Use hexahedral meshes whenever is possible, specially if high accuracy in predicting forces is

your goal (drag prediction) or for turbo machinery applications.

• For complex flows without dominant flow direction, quad and hex meshes loose their

advantages.

• Keep orthogonality, skewness, and aspect ratio to a minimum.

• Change in cell size should be smooth.

• Always check the mesh quality. Remember, one single cell can cause divergence or give you

inaccurate results.

• When you strive for quality, you avoid the GIGO syndrome (garbage in, garbage out).

• Just to end for good the mesh quality talk:

• A good mesh is a mesh that serves your project objectives.

• So, as long as your results are physically realistic, reliable and accurate; your mesh is

good.

• Know your physics and generate a mesh able to resolve the physics involve, without

over-doing.
338

What is a good mesh?

339

A good mesh might not lead to the ideal solution, but a bad

mesh will always lead to a bad solution.

P. Baker – Pointwise

Who owns the mesh, owns the solution.

H. Jasak – Wikki Ltd.

Avoid the GIGO syndrome (Garbage In – Garbage Out).

As I am a really positive guy I prefer to say,

good mesh – good results.

J. G. – WD

Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

340

Mesh quality assessment in OpenFOAM®

341

Mesh quality metrics in OpenFOAM

36 Foam::scalar Foam::primitiveMesh::closedThreshold_ = 1.0e-6;

37 Foam::scalar Foam::primitiveMesh::aspectThreshold_ = 1000;

38 Foam::scalar Foam::primitiveMesh::nonOrthThreshold_ = 70; // deg

39 Foam::scalar Foam::primitiveMesh::skewThreshold_ = 4;

40 Foam::scalar Foam::primitiveMesh::planarCosAngle_ = 1.0e-6;

• In the file primitiveMeshCheck.C located in the directory

$WM_PROJECT_DIR/src/OpenFOAM/meshes/primitiveMesh/primitiveMeshCheck/

you will find the quality metrics hardwired in OpenFOAM. Their maximum (or minimum) values

are defined as follows:

• You will be able to run simulations with mesh quality errors such as high skewness, high aspect

ratio, and high non-orthogonality.

• But remember, they will affect the solution accuracy, might give you strange results, and

eventually can made the solver blow-up.

• Have in mind that if you have bad quality meshes, you will need to adapt the numerics to deal

with this kind of meshes. We will give you our recipe later when we deal with the numerics.

Mesh quality assessment in OpenFOAM®

342

Mesh quality metrics in OpenFOAM

36 Foam::scalar Foam::primitiveMesh::closedThreshold_ = 1.0e-6;

37 Foam::scalar Foam::primitiveMesh::aspectThreshold_ = 1000;

38 Foam::scalar Foam::primitiveMesh::nonOrthThreshold_ = 70; // deg

39 Foam::scalar Foam::primitiveMesh::skewThreshold_ = 4;

40 Foam::scalar Foam::primitiveMesh::planarCosAngle_ = 1.0e-6;

• In the file primitiveMeshCheck.C located in the directory

$WM_PROJECT_DIR/src/OpenFOAM/meshes/primitiveMesh/primitiveMeshCheck/

you will find the quality metrics hardwired in OpenFOAM. Their maximum (or minimum) values

are defined as follows:

• You should avoid as much as possible non-orthogonality values close to 90. This is an indication

that you have zero-volume cells.

• In overall, large aspect ratios do not represent a problem. It is just an indication that you have

very fine meshes (which is the case when you are resolving the boundary layer).

• The default quality metrics in OpenFOAM seems to be a little bit conservative.

Mesh quality assessment in OpenFOAM®

343

Mesh quality metrics in OpenFOAM

• Our own personal quality metrics maximum values are:

• Non-orthogonality = 80

• Skewness = 8

• If we get values higher than these, we inspect the mesh and depending on the physics involved

and the number and location of the bad quality cells/faces, we decide to redo the mesh or

proceed with the simulation.

• If we proceed with the simulation, we choose a numerical scheme able to reduce the numerical

errors introduced due to the low-quality cells/faces.

Checking the mesh quality in OpenFOAM®

Mesh quality assessment in OpenFOAM®

• To check the mesh quality and validity, OpenFOAM® comes with the utility checkMesh.

• To use this utility, just type in the terminal checkMesh, and read the screen output.

• checkMesh will look for/check for:

• Mesh stats and overall number of cells of each type.

• Check topology (boundary conditions definitions).

• Check geometry and mesh quality (bounding box, cell volumes, skewness, orthogonality, aspect

ratio, and so on).

• If for any reason checkMesh finds errors, it will give you a message and it will tell you what check failed.

• It will also write a set with the faulty cells, faces, and/or points.

• These sets are saved in the directory constant/polyMesh/sets/

• Mesh topology and patch topology errors must be repaired.

• You will be able to run with mesh quality errors such as skewness, aspect ratio, minimum face area, and non-

orthogonality.

• But remember, they will severely tamper the solution accuracy, might give you strange results, and eventually

can made the solver blow-up.

• Unfortunately, checkMesh does not repair these errors.

• You will need to check the geometry for possible errors and generate a new mesh.

• You can visualize the failed sets directly in paraFoam .

• You can also convert the failed sets into VTK format by using the utility foamToVTK.

344

Visualizing the failed sets in OpenFOAM®

Mesh quality assessment in OpenFOAM®

• You can load the failed sets directly within
paraFoam.

• Remember, you will need to create the sets. To
do so, just run the checkMesh utility.

• If there are problems in the mesh, checkMesh

will automatically save the sets in the directory
constant/polyMesh/sets

• In paraFoam, simply select the option Include

Sets and then select the sets you want to

visualize.

• This method only works when using the wrapper
paraFoam.

• If you are using paraview or a different scientific

visualization application, you will need to convert

the failed sets to VTK format or an alternative

format.

• Also, when working with large meshes we prefer

to convert the faulty sets to VTK format.

• To convert the faulty sets to VTK format you can
use the utility foamToVTK.

345

Failed sets

Check this box to include sets

Visualizing the failed sets in OpenFOAM®

Mesh quality assessment in OpenFOAM®

• To convert the failed faces/cells/points to VTK format, you can proceed as follows:

• $> foamToVTK -set_type name_of_sets

where set_type is the type of sets (faceSet, cellSet, pointSet, surfaceFields) and
name_of_sets is the name of the set located in the directory constant/polyMesh/sets

(highAspectRatioCells, nonOrthoFaces, wrongOrientedFaces, skewFaces, unusedPoints, and

so on).

• At the end, foamToVTK will create a directory named VTK, where you will find the failed

faces/cells/points in VTK format.

• At this point you can use paraview/paraFoam or any scientific visualization application to

open the VTK files and visualize the failed sets.

346

Checking mesh quality in OpenFOAM®

Mesh quality assessment in OpenFOAM®

Mesh stats

points: 81812

faces: 902132

internal faces: 871012

cells: 443286

faces per cell: 4

boundary patches: 9

point zones: 0

face zones: 1

cell zones: 1

Overall number of cells of each type:

hexahedra: 0

prisms: 0

wedges: 0

pyramids: 0

tet wedges: 0

tetrahedra: 443286

polyhedra: 0

Checking topology...

Boundary definition OK.

Cell to face addressing OK.

***Unused points found in the mesh, number unused by faces: 16 number unused by cells: 16

<<Writing 16 unused points to set unusedPoints

Upper triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).

• Sample checkMesh output,

Mesh stats

Number of each type of cells

Checking mesh topology

Unused points found in the mesh

In this case they do not harm the solution
They can be removed using topoSet and subsetMesh

347

Checking mesh quality in OpenFOAM®

Mesh quality assessment in OpenFOAM®

Checking patch topology for multiply connected surfaces...

Patch Faces Points Surface topology

FAIRING 1267 727 ok (non-closed singly connected)

FUSELAGE 3243 1774 ok (non-closed singly connected)

WING 15313 7706 ok (non-closed singly connected)

INLET 272 160 ok (non-closed singly connected)

OUTLET 272 160 ok (non-closed singly connected)

SYMM 6280 3324 ok (non-closed singly connected)

FARFIELD 3136 1645 ok (non-closed singly connected)

NOSE 76 49 ok (non-closed singly connected)

COCKPIT 1261 670 ok (non-closed singly connected)

Checking geometry...

Overall domain bounding box (-15000 -7621.0713 -7396.4536) (30048.969 0 7446.8442)

Mesh has 3 geometric (non-empty/wedge) directions (1 1 1)

Mesh has 3 solution (non-empty) directions (1 1 1)

Boundary openness (-4.2298633e-18 8.0240802e-16 4.013988e-16) OK.

Max cell openness = 4.8098963e-16 OK.

Max aspect ratio = 29.575835 OK.

Minimum face area = 0.0066721253. Maximum face area = 1037224.8. Face area magnitudes OK.

Min volume = 0.00050536842. Max volume = 3.2500889e+08. Total volume = 5.0960139e+12. Cell volumes OK.

Mesh non-orthogonality Max: 86.939754 average: 17.939523

*Number of severely non-orthogonal (> 70 degrees) faces: 3168.

Non-orthogonality check OK.

<<Writing 3168 non-orthogonal faces to set nonOrthoFaces

Face pyramids OK.

Max skewness = 2.5719979 OK.

Coupled point location match (average 0) OK.

Failed 1 mesh checks.

End

• Sample checkMesh output,

Boundary patches

Aspect ratio

High non-orthogonality
But we still can run the simulation

Skewness

Mesh bounding box

The fact that one check failed does not mean that you can not run the simulation

348

Mesh quality assessment in OpenFOAM®

Non orthogonal faces (green spheres) and unused points (yellow spheres)

Visualization of faulty sets in paraFoam

• You will find this case ready to use in the directory,
$PTOFC/mesh_quality_manipulation/M1_wingbody

• To run the case, just follow the instructions in the README.FIRST files.

349

Roadmap

350

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

blockMesh

• “blockMesh is a multi-block mesh generator.”

• For simple geometries, the mesh generation utility blockMesh can be used.

• The mesh is generated from a dictionary file named blockMeshDict located in the system

directory.

• This meshing tool generates high quality meshes.

• It is the tool to use for very simple geometries. As the complexity of the geometry increases, the

effort and time required to setup the dictionary increases a lot.

• Usually, the background mesh used with snappyHexMesh consist of a single rectangular block;

therefore, blockMesh can be used with no problem.

• It is highly recommended to create a template of the dictionary blockMeshDict that you can

change according to the dimensions of your domain.

• You can also use m4 or Python scripting to automate the whole process.

351

Mesh generation using blockMesh

blockMesh

• “blockMesh is a multi-block mesh generator.”

• For simple geometries, the mesh generation utility blockMesh can be used.

• The mesh is generated from a dictionary file named blockMeshDict, which is located in the

directory system.

• If you are using OpenFOAM 2.4.x (or older versions) this dictionary is located in the
constant/polyMesh directory.

• The blockMeshDict dictionary can be easily parameterize.

• The meshing tool generates high quality meshes; it is the tool to use for very simple geometries.

As the complexity of the geometry increases, the effort and time required to setup the dictionary

increases a lot.

• Usually, the background mesh used with snappyHexMesh consist of a single rectangular block,

therefore blockMesh can be used with no problem.

• It is highly recommended to create a template of the dictionary blockMeshDict that you can

change according to the dimensions of your domain.

• You can also use m4 or Python scripting to automate the whole process.

352

Mesh generation using blockMesh

blockMesh

353

Mesh generation using blockMesh

• These are a few meshes that you can generate using blockMesh. As you can see, they are not very

complex.

• However, generating the blocking topology requires some effort.

blockMesh workflow

Mesh generation using blockMesh

• To generate a mesh with blockMesh, you will need to define the vertices, block connectivity

and number of cells in each direction.

• To assign boundary patches, you will need to define the faces connectivity

354

blockMesh guided tutorials

355

• Meshing with blockMesh – Case 1.

• We will use the square cavity case.

• You will find this case in the directory:

$PTOFC/101BLOCKMESH/C1

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

blockMesh guided tutorials

What are we going to do?

• We will use this simple case to take a close look at a blockMeshDict dictionary.

• We will study all sections in the blockMeshDict dictionary.

• We will introduce two features useful for parameterization, namely, macro syntax and inline

calculations.

• You can use this dictionary as a blockMeshDict template that you can change automatically

according to the dimensions of your domain and the desired cell spacing.

356

blockMesh guided tutorials

17 convertToMeters 1;

18

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;

25

30 deltax 0.05;

31 deltay 0.05;

32 deltaz 0.05;

33

34 lx #calc "$xmax - $xmin";

35 ly #calc "$ymax - $ymin";

36 lz #calc "$zmax – $zmin";

37

38 xcells #calc "round(($lx)/($deltax))";

39 ycells #calc "round(($ly)/($deltay))";

40 zcells #calc "round(($lz)/($deltaz))";

41

42 vertices

43 (

44 //BLOCK 0

45 ($xmin $ymin $zmin) //0

46 ($xmax $ymin $zmin) //1

47 ($xmax $ymax $zmin) //2

48 ($xmin $ymax $zmin) //3

49 ($xmin $ymin $zmax) //4

50 ($xmax $ymin $zmax) //5

51 ($xmax $ymax $zmax) //6

52 ($xmin $ymax $zmax) //7

64);

The blockMeshDict dictionary.

• The keyword convertToMeters (line 17), is a scaling

factor. In this case we do not scale the dimensions.

• In lines 19-24 we declare some variables using macro

syntax notation. With macro syntax, we first declare the

variables and their values (lines 19-24), and then we can

use the variables by adding the symbol $ to the variable

name (lines 45-52).

• In lines 30-32 we use macro syntax to declare another

set of variables that will be used later.

• Macro syntax is a very convenient way to parameterize

dictionaries.

357

17 convertToMeters 1;

18

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;

25

30 deltax 0.05;

31 deltay 0.05;

32 deltaz 0.05;

33

34 lx #calc "$xmax - $xmin";

35 ly #calc "$ymax - $ymin";

36 lz #calc "$zmax – $zmin";

37

38 xcells #calc "round(($lx)/($deltax))";

39 ycells #calc "round(($ly)/($deltay))";

40 zcells #calc "round(($lz)/($deltaz))";

41

42 vertices

43 (

44 //BLOCK 0

45 ($xmin $ymin $zmin) //0

46 ($xmax $ymin $zmin) //1

47 ($xmax $ymax $zmin) //2

48 ($xmin $ymax $zmin) //3

49 ($xmin $ymin $zmax) //4

50 ($xmax $ymin $zmax) //5

51 ($xmax $ymax $zmax) //6

52 ($xmin $ymax $zmax) //7

64);

blockMesh guided tutorials

The blockMeshDict dictionary.

• In lines 34-40 we are doing inline calculations using the

directive #calc.

• Basically, we are programming directly in the dictionary.

OpenFOAM® will compile this function as it reads it.

• With inline calculations and codeStream you can access

many OpenFOAM® functions from the dictionaries.

• Inline calculations and codeStream are very convenient

ways to parameterize dictionaries and program directly

on the dictionaries.

358

blockMesh guided tutorials

The blockMeshDict dictionary.

• To do inline calculations using the directive #calc, we

proceed as follows (we will use line 35 as example):

ly #calc "$ymax - $ymin";

• We first give a name to the new variable (ly), we then tell

OpenFOAM® that we want to do an inline calculation

(#calc), and then we do the inline calculation ("$ymax-

$ymin";). Notice that the operation must be between

double quotation marks.

359

17 convertToMeters 1;

18

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;

25

30 deltax 0.05;

31 deltay 0.05;

32 deltaz 0.05;

33

34 lx #calc "$xmax - $xmin";

35 ly #calc "$ymax - $ymin";

36 lz #calc "$zmax – $zmin";

37

38 xcells #calc "round(($lx)/($deltax))";

39 ycells #calc "round(($ly)/($deltay))";

40 zcells #calc "round(($lz)/($deltaz))";

41

42 vertices

43 (

44 //BLOCK 0

45 ($xmin $ymin $zmin) //0

46 ($xmax $ymin $zmin) //1

47 ($xmax $ymax $zmin) //2

48 ($xmin $ymax $zmin) //3

49 ($xmin $ymin $zmax) //4

50 ($xmax $ymin $zmax) //5

51 ($xmax $ymax $zmax) //6

52 ($xmin $ymax $zmax) //7

64);

17 convertToMeters 1;

18

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;

25

30 deltax 0.05;

31 deltay 0.05;

32 deltaz 0.05;

33

34 lx #calc "$xmax - $xmin";

35 ly #calc "$ymax - $ymin";

36 lz #calc "$zmax – $zmin";

37

38 xcells #calc "round(($lx)/($deltax))";

39 ycells #calc "round(($ly)/($deltay))";

40 zcells #calc "round(($lz)/($deltaz))";

41

42 vertices

43 (

44 //BLOCK 0

45 ($xmin $ymin $zmin) //0

46 ($xmax $ymin $zmin) //1

47 ($xmax $ymax $zmin) //2

48 ($xmin $ymax $zmin) //3

49 ($xmin $ymin $zmax) //4

50 ($xmax $ymin $zmax) //5

51 ($xmax $ymax $zmax) //6

52 ($xmin $ymax $zmax) //7

64);

blockMesh guided tutorials

The blockMeshDict dictionary.

• In lines lines 34-36, we use inline calculations to

compute the length in each direction.

• Then we compute the number of cells to be used in each

direction (lines 38-40).

• To compute the number of cells we use as cell spacing

the values declared in lines 30-32.

• By proceeding in this way, we can compute automatically

the number of cells needed in each direction according to

the desired cell spacing.

360

blockMesh guided tutorials

The blockMeshDict dictionary.

• In the vertices section (lines 42-64), we define the vertex

coordinates of the geometry.

• In this case, there are eight vertices defining a 3D block.

• Remember, OpenFOAM® always uses 3D meshes, even

if the simulation is 2D. For 2D meshes, you only add one

cell in the third dimension.

• Notice that the vertex numbering starts from 0 (as the

counters in c++). This numbering applies for blocks as

well.

361

17 convertToMeters 1;

18

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;

25

30 deltax 0.05;

31 deltay 0.05;

32 deltaz 0.05;

33

34 lx #calc "$xmax - $xmin";

35 ly #calc "$ymax - $ymin";

36 lz #calc "$zmax – $zmin";

37

38 xcells #calc "round(($lx)/($deltax))";

39 ycells #calc "round(($ly)/($deltay))";

40 zcells #calc "round(($lz)/($deltaz))";

41

42 vertices

43 (

44 //BLOCK 0

45 ($xmin $ymin $zmin) //0

46 ($xmax $ymin $zmin) //1

47 ($xmax $ymax $zmin) //2

48 ($xmin $ymax $zmin) //3

49 ($xmin $ymin $zmax) //4

50 ($xmax $ymin $zmax) //5

51 ($xmax $ymax $zmax) //6

52 ($xmin $ymax $zmax) //7

64);

blockMesh guided tutorials

The blockMeshDict dictionary.

• In lines 66-69, we define the block topology, hex means that it is a structured hexahedral block. In this case,

we are generating a rectangular mesh.

• In line 68, (0 1 2 3 4 5 6 7) are the vertices used to define the block (and yes, the order is important). Each

hex block is defined by eight vertices, in sequential order. Where the first vertex in the list represents the

origin of the coordinate system (vertex 0 in this case).

• ($xcells $ycells $zcells) is the number of mesh cells in each direction (X Y Z). Notice that we are using

macro syntax, and we compute the values using inline calculations.

• simpleGrading (1 1 1) is the grading or mesh stretching in each direction (X Y Z), in this case the mesh is

uniform. We will deal with mesh grading/stretching in the next case.

362

66 blocks

67 (

68 hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

69);

70

71 edges

72 (

73

74);

blockMesh guided tutorials

66 blocks

67 (

68 hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

69);

70

71 edges

72 (

73

74);

The blockMeshDict dictionary.

• Let us talk about the block ordering hex (0 1 2 3 4 5 6 7), which is extremely important.

• hex blocks are defined by eight vertices in sequential order. Where the first vertex in the list represents the

origin of the coordinate system (vertex 0 in this case).

• Starting from this vertex, we construct the block topology. So, in this case, the first part of the block is made

up by vertices 0 1 2 3 and the second part of the block is made up by vertices 4 5 6 7 (notice that we start from

vertex 4 which is the projection in the Z-direction of vertex 0).

• In this case, the vertices are ordered in such a way that if we look at the screen/paper (-z direction), the

vertices rotate counter-clockwise.

• If you add a second block, you must identify the first vertex and starting from it, you should construct the block

topology. In this case, you will need to merges faces, you will find more information about merging face in the

supplement lectures.

363

blockMesh guided tutorials

The blockMeshDict dictionary.

• In lines 71-74, we define the edges.

• Edges, are constructed from the vertices definition.

• Each edge joining two vertices is assumed to be straight by default.

• The user can specify any edge to be curved by entries in the section edges.

• Possible options are Bspline, arc, line, polyline, project, projectCurve, spline.

• For example, to define an arc we first define the vertices to be connected to form an edge and then we give an

interpolation point.

• To define a polyline, we first define the vertices to be connected to form an edge and then we give a list of the

coordinates of the interpolation points.

• In this case and as we do not specify anything, all edges are assumed to be straight lines.

364

66 blocks

67 (

68 hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

69);

70

71 edges

72 (

73

74);

blockMesh guided tutorials

76 boundary

77 (

79 minX

80 {

81 type wall;

82 faces

83 (

84 (0 4 7 3)

85);

86 }

88 maxX

89 {

90 type wall;

91 faces

92 (

93 (2 6 5 1)

94);

95 }

97 minY

98 {

99 type wall;

100 faces

101 (

102 (0 1 5 4)

103);

104 }

106 maxY

107 {

108 type wall;

109 faces

110 (

111 (3 7 6 2)

112);

113 }

The blockMeshDict dictionary.

• In the section boundary, we define all the patches where

we want to apply boundary conditions.

• This step is of paramount importance, because if we do

not define the surface patches, we will not be able to

apply the boundary conditions to individual surface

patches.

365

blockMesh guided tutorials

76 boundary

77 (

79 minX

80 {

81 type wall;

82 faces

83 (

84 (0 4 7 3)

85);

86 }

88 maxX

89 {

90 type wall;

91 faces

92 (

93 (2 6 5 1)

94);

95 }

97 minY

98 {

99 type wall;

100 faces

101 (

102 (0 1 5 4)

103);

104 }

106 maxY

107 {

108 type wall;

109 faces

110 (

111 (3 7 6 2)

112);

113 }

The blockMeshDict dictionary.

• In lines 79-86 we define a boundary patch.

• In line 79 we define the patch name minX (the name is

given by the user).

• In line 81 we give a base type to the surface patch. In

this case wall (do not worry we are going to talk about

this later).

• In line 84 we give the connectivity list of the vertices that

made up the surface patch or face, that is, (0 4 7 3).

• Have in mind that the vertices need to be neighbors and

it does not matter if the ordering is clockwise or

counterclockwise.

366

blockMesh guided tutorials

76 boundary

77 (

79 minX

80 {

81 type wall;

82 faces

83 (

84 (0 4 7 3)

85);

86 }

88 maxX

89 {

90 type wall;

91 faces

92 (

93 (2 6 5 1)

94);

95 }

97 minY

98 {

99 type wall;

100 faces

101 (

102 (0 1 5 4)

103);

104 }

106 maxY

107 {

108 type wall;

109 faces

110 (

111 (3 7 6 2)

112);

113 }

The blockMeshDict dictionary.

• Have in mind that the vertices need to be neighbors and

it does not matter if the ordering is clockwise or

counterclockwise.

• Remember, faces are defined by a list of 4 vertex

numbers, e.g., (3 7 6 2).

• In lines 88-95 we define the patch maxX.

• In lines 97-104 we define the patch minY.

• In lines 106-113 we define the patch maxY.

367

blockMesh guided tutorials

115 minZ

116 {

117 type wall;

118 faces

119 (

120 (0 3 2 1)

121);

122 }

124 maxZ

125 {

126 type wall;

127 faces

128 (

129 (4 5 6 7)

130);

131 }

132);

133

134 mergePatchPairs

135 (

136

137);

The blockMeshDict dictionary.

• In lines 115-122 we define the patch minZ.

• In lines 124-132 we define the patch maxZ.

• You can also group many faces into one patch, for

example, instead of creating the patches minZ and

maxZ, you can group them into a single patch named

backAndFront, as follows,

backAndFront

{

type wall;

faces

(

(4 5 6 7)

(0 3 2 1)

);

}

368

blockMesh guided tutorials

115 minZ

116 {

117 type wall;

118 faces

119 (

120 (0 3 2 1)

121);

122 }

124 maxZ

125 {

126 type wall;

127 faces

128 (

129 (4 5 6 7)

130);

131 }

132);

133

134 mergePatchPairs

135 (

136

137);

The blockMeshDict dictionary.

• We can merge blocks in the section mergePatchPairs

(lines 134-137).

• The block patches to be merged must be first defined in
the boundary list, blockMesh then connect the two

blocks.

• In this case, as we have one single block there is no

need to merge patches.

369

blockMesh guided tutorials

The blockMeshDict dictionary.

• To sum up, the blockMeshDict dictionary

generates a single block with:

• X/Y/Z dimensions: 1.0/1.0/1.0

• As the cell spacing in all directions is defined

as 0.05, it will use the following number of cells

in the X, Y and Z directions: 20 x 20 x 20 cells.

• One single hex block with straight lines.

• Six patches of base type wall, namely, left,

right, top, bottom, front and back.

• The information regarding the patch base type and
patch name is saved in the file boundary. Feel free

to modify this file to fit your needs.

• Remember to use the utility checkMesh to check the

quality of the mesh and look for topological errors.

• Topological errors must be repaired.

• If you are interested in visualizing the actual block
topology, you can use paraFoam as follows,

• $> paraFoam –block

370

blockMesh guided tutorials

The constant/polyMesh/boundary dictionary
17 6

18 (

19 minX

20 {

21 type wall;

22 inGroups List<word> 1(wall);

23 nFaces 400;

24 startFace 22800;

25 }

26 maxX

27 {

28 type wall;

29 inGroups List<word> 1(wall);

30 nFaces 400;

31 startFace 23200;

32 }

33 minY

34 {

35 type empty;

36 inGroups List<word> 1(wall);

37 nFaces 400;

38 startFace 23600;

39 }

40 maxY

41 {

42 type wall;

43 inGroups List<word> 1(wall);

44 nFaces 400;

45 startFace 24000;

46 }

47 minZ

48 {

49 type wall;

50 inGroups List<word> 1(wall);

51 nFaces 400;

52 startFace 24400;

53 }

54 maxZ

55 {

56 type empty;

57 inGroups List<word> 1(wall);

58 nFaces 400;

59 startFace 24800;

60 }

61)

• First of all, this file is automatically generated after you

create the mesh, or you convert it from a third-party format.

• In this file, the geometrical information related to the base

type patch of each boundary of the domain is specified.

• The base type boundary condition is the actual surface

patch where we are going to apply a primitive type

boundary condition (or numerical boundary condition).

• The primitive type boundary condition assign a field value

to the surface patch.

• You define the numerical type patch (or the value of the
boundary condition), in the directory 0 or time directories.

• The name and base type of the patches was defined in the
dictionary blockMeshDict in the section boundary.

• You can change the name if you do not like it. Do not use

strange symbols or white spaces.

• You can also change the base type. For instance, you can

change the type of the patch minX from wall to patch.

371

blockMesh guided tutorials

The constant/polyMesh/boundary dictionary
17 6

18 (

19 minX

20 {

21 type wall;

22 inGroups List<word> 1(wall);

23 nFaces 400;

24 startFace 22800;

25 }

26 maxX

27 {

28 type wall;

29 inGroups List<word> 1(wall);

30 nFaces 400;

31 startFace 23200;

32 }

33 minY

34 {

35 type empty;

36 inGroups List<word> 1(wall);

37 nFaces 400;

38 startFace 23600;

39 }

40 maxY

41 {

42 type wall;

43 inGroups List<word> 1(wall);

44 nFaces 400;

45 startFace 24000;

46 }

47 minZ

48 {

49 type wall;

50 inGroups List<word> 1(wall);

51 nFaces 400;

52 startFace 24400;

53 }

54 maxZ

55 {

56 type empty;

57 inGroups List<word> 1(wall);

58 nFaces 400;

59 startFace 24800;

60 }

61)

• If you do not define the boundary patches in the dictionary
blockMeshDict, they are grouped automatically in a default

group named defaultFaces of type empty.

• For instance, if you do not assign a base type to the patch

front, it will be grouped as follows:

defaultFaces

{

type empty;

inGroups 1(empty);

nFaces 400;

startFace 24800;

}

• Remember, you can manually change the name and type.

372

blockMesh guided tutorials

The constant/polyMesh/boundary dictionary
17 6

18 (

19 minX

20 {

21 type wall;

22 inGroups List<word> 1(wall);

23 nFaces 400;

24 startFace 22800;

25 }

26 maxX

27 {

28 type wall;

29 inGroups List<word> 1(wall);

30 nFaces 400;

31 startFace 23200;

32 }

33 minY

34 {

35 type empty;

36 inGroups List<word> 1(wall);

37 nFaces 400;

38 startFace 23600;

39 }

40 maxY

41 {

42 type wall;

43 inGroups List<word> 1(wall);

44 nFaces 400;

45 startFace 24000;

46 }

47 minZ

48 {

49 type wall;

50 inGroups List<word> 1(wall);

51 nFaces 400;

52 startFace 24400;

53 }

54 maxZ

55 {

56 type empty;

57 inGroups List<word> 1(wall);

58 nFaces 400;

59 startFace 24800;

60 }

61)

Number of surface patches

In the list bellow there must be 6 patches

definition.

minY

minX

minZ

maxY

maxX

maxZ

373

blockMesh guided tutorials

The constant/polyMesh/boundary dictionary
17 6

18 (

19 minX

20 {

21 type wall;

22 inGroups List<word> 1(wall);

23 nFaces 400;

24 startFace 22800;

25 }

26 maxX

27 {

28 type wall;

29 inGroups List<word> 1(wall);

30 nFaces 400;

31 startFace 23200;

32 }

33 minY

34 {

35 type empty;

36 inGroups List<word> 1(wall);

37 nFaces 400;

38 startFace 23600;

39 }

40 maxY

41 {

42 type wall;

43 inGroups List<word> 1(wall);

44 nFaces 400;

45 startFace 24000;

46 }

47 minZ

48 {

49 type wall;

50 inGroups List<word> 1(wall);

51 nFaces 400;

52 startFace 24400;

53 }

54 maxZ

55 {

56 type empty;

57 inGroups List<word> 1(wall);

58 nFaces 400;

59 startFace 24800;

60 }

61)

Name and type of the surface patches

• The name and base type of the patch is given

by the user.

• In this case the name and base type was
assigned in the dictionary blockMeshDict.

• You can change the name if you do not like it.

Do not use strange symbols or white spaces.

• You can also change the base type.

• For instance, you can change the type of the

patch minX from wall to patch.

374

blockMesh guided tutorials

The constant/polyMesh/boundary dictionary
17 6

18 (

19 minX

20 {

21 type wall;

22 inGroups List<word> 1(wall);

23 nFaces 400;

24 startFace 22800;

25 }

26 maxX

27 {

28 type wall;

29 inGroups List<word> 1(wall);

30 nFaces 400;

31 startFace 23200;

32 }

33 minY

34 {

35 type empty;

36 inGroups List<word> 1(wall);

37 nFaces 400;

38 startFace 23600;

39 }

40 maxY

41 {

42 type wall;

43 inGroups List<word> 1(wall);

44 nFaces 400;

45 startFace 24000;

46 }

47 minZ

48 {

49 type wall;

50 inGroups List<word> 1(wall);

51 nFaces 400;

52 startFace 24400;

53 }

54 maxZ

55 {

56 type empty;

57 inGroups List<word> 1(wall);

58 nFaces 400;

59 startFace 24800;

60 }

61)

inGroups keyword

• This is optional.

• You can erase this information safely.

• It is used to group patches during visualization

in ParaView/paraFoam. If you open this mesh

in paraFoam you will see that there are two

groups, namely: wall and empty.

• As usual, you can change the name.

• If you want to put a surface patch in two

groups, you can proceed as follows:

2(wall wall1)

In this case the surface patch belongs to the

group wall (which can have another patch)

and the group wall1

375

blockMesh guided tutorials

The constant/polyMesh/boundary dictionary
17 6

18 (

19 minX

20 {

21 type wall;

22 inGroups List<word> 1(wall);

23 nFaces 400;

24 startFace 22800;

25 }

26 maxX

27 {

28 type wall;

29 inGroups List<word> 1(wall);

30 nFaces 400;

31 startFace 23200;

32 }

33 minY

34 {

35 type empty;

36 inGroups List<word> 1(wall);

37 nFaces 400;

38 startFace 23600;

39 }

40 maxY

41 {

42 type wall;

43 inGroups List<word> 1(wall);

44 nFaces 400;

45 startFace 24000;

46 }

47 minZ

48 {

49 type wall;

50 inGroups List<word> 1(wall);

51 nFaces 400;

52 startFace 24400;

53 }

54 maxZ

55 {

56 type empty;

57 inGroups List<word> 1(wall);

58 nFaces 400;

59 startFace 24800;

60 }

61)

nFaces and startFace keywords

• Unless you know what are you doing, you do

not need to change this information.

• Basically, this is telling you the starting face

and ending face of the patch.

• This information is created automatically when

generating the mesh or converting the mesh.

376

blockMesh guided tutorials

Running the case

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam

• You can run the rest of the cases following the same steps.

• If you want to visualize the blocking topology, type in the terminal

1. $> paraFoam -block

377

blockMesh guided tutorials

378

Final remarks on blockMesh

• For the moment, we will limit the use of blockMesh to single-block mesh topologies, which are

used to run some simple cases.

• Also, single-block meshes are the starting point for snappyHexMesh, as shown in the

diagram below.

• So, it is extremely important to master this simple mesh topologies.

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

blockMesh guided tutorials

379

Final remarks on blockMesh

• Have in mind that you can do more elaborated meshes, however, it requires careful setup of the input file.

• It is tricky to generate multi-block meshes with curve edges and stretching.

• With the training material, you will find a set of supplement slides where we explain how to create multi-block

meshes, how to add stretching, and how to define curve edges.

Multi-block mesh with curved edges and

multi-stretching

Multi-block mesh with curved edges and

multi-stretching

Multi-block mesh with face matching

Single-block mesh with multi-stretching

Multi-block mesh with face merging

Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

380

snappyHexMesh

Mesh generation using snappyHexMesh

381

• “Automatic split hex mesher. Refines and snaps to surface.”

• For complex geometries, the mesh generation utility snappyHexMesh can be used.

• The snappyHexMesh utility generates 3D meshes containing hexahedra and split-hexahedra

from a triangulated surface geometry in Stereolithography (STL) format.

• The mesh is generated from a dictionary file named snappyHexMeshDict located in the

system directory and a triangulated surface geometry file located in the directory
constant/triSurface.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

• To generate a mesh with snappyHexMesh we proceed as follows:

• Generation of a background or base mesh.

• Geometry definition.

• Generation of a castellated mesh or cartesian mesh.

• Generation of a snapped mesh or body fitted mesh.

• Addition of layers close to the surfaces or boundary layer meshing.

• Check/enforce mesh quality.

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

382

snappyHexMesh workflow – Background mesh

Mesh generation using snappyHexMesh

383

• The background or base mesh can be generated using blockMesh or an external mesher.

• The following criteria must be observed when creating the background mesh:

• The mesh must consist purely of hexes.

• The cell aspect ratio should be approximately 1, at least near the STL surface.

• There must be at least one intersection of a cell edge with the STL surface.

• However, the more cells that intersect the STL, the better (this means fine background meshes).

• It is extremely recommended to align the background mesh with the STL surface. However, most of the

times this not trivial.

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

snappyHexMesh workflow – Geometry (STL file)

Mesh generation using snappyHexMesh

384

• The STL geometry can be obtained from any geometry modeling tool.

• The STL file can be made up of a single surface describing the geometry, or multiple surfaces that describe

the geometry.

• In the case of a STL file with multiple surfaces, we can use local refinement in each individual surface.

• This gives us more control when generating the mesh.

• The STL geometry is always located in the directory constant/triSurface

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

snappyHexMesh workflow

Mesh generation using snappyHexMesh

385

• The meshing utility snappyHexMesh reads the dictionary snappyHexMeshDict located in the directory

system.

• The snappyHexMesh meshing utility generates the mesh in three steps: castellation, snapping, and

boundary layer meshing.

• All these steps are controlled by the dictionary snappyHexMeshDict.

• The final mesh is always located in the directory constant/polyMesh

blockMesh or external mesher

OpenFOAM mesh

snappyHexMesh

Background mesh Geometry (STL file)

Mesh generation using snappyHexMesh

386

Base cell – RL 0 RL 1 RL 2

* RL = refinement level

and so on …

Note:

• In 2D each quad is subdivided in 4

quads.

• In 3D each hex is subdivided in 8

hexes.

snappyHexMesh workflow – Cell splitting

• All the volume and surface refinement is done in reference to the background or base mesh.

• snappyHexMesh works by splitting hexahedral cells.

snappyHexMesh workflow

• The process of generating a mesh using snappyHexMesh will be described using this figure.

• The objective is to mesh a rectangular shaped region (shaded grey in the figure) surrounding an object

described by a STL surface (shaded green in the figure).

• This is an external mesh (e.g., for external aerodynamics).

• You can also generate an internal mesh (e.g., flow in a pipe).

Mesh generation using snappyHexMesh

387

snappyHexMesh workflow

Mesh generation using snappyHexMesh

388

Step 1. Creating the background hexahedral mesh

• Before snappyHexMesh is executed the user must create a background mesh of hexahedral cells that fills the entire region as

shown in the figure. This can be done by using blockMesh or any other mesher.

• The following criteria must be observed when creating the background mesh:

• The mesh must consist purely of hexes. That is, around the surfaces and volume regions where you are planning to add

refinement, the mesh must consist of pure hexes

• The cell aspect ratio should be approximately 1, at least near the STL surface.

• There must be at least one intersection of a cell edge with the STL surface.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

389

Step 2. Cell splitting at feature edges

• Cell splitting is performed according to the specification supplied by the user in the castellatedMeshControls sub-dictionary in
the snappyHexMeshDict dictionary.

• The splitting process begins with cells being selected according to specified edge features as illustrated in the figure.
• The feature edges can be extracted from the STL geometry file using the utility surfaceFeatures.

• The feature edges can also be extracted using paraview.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

390

Step 3. Cell splitting at surfaces

• Following feature edges refinement, cells are selected for splitting in the locality of specified surfaces as illustrated in the figure.

• The surface refinement (splitting) is performed according to the specification supplied by the user in the refinementSurfaces in
the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• Notice that we added additional internal cells splitting (the region within the red square).

• This new cell region can be used to define a source term, or it can be put into motion.

This is a volume region
selection used for
internal cell splitting

snappyHexMesh workflow

Mesh generation using snappyHexMesh

391

Step 4. Cell removal

• Once the feature edges and surface splitting is complete, a process of cell removal begins.

• The region in which cells are retained are simply identified by a location point within the region, specified by the locationInMesh
keyword in the castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• Cells are retained if, approximately speaking, 50% or more of their volume lies within the region.

• Be careful to put the locationInMesh point in pure hexahedral regions. Do no put it in transition regions as you will get into

problems.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

392

Step 5. Cell splitting in specified regions

• Those cells that lie within one or more specified volume regions can be further split by a region (in the figure, the region within

the red rectangle).

• The information related to the refinement of the volume regions is supplied by the user in the refinementRegions block in the
castellatedMeshControls sub-dictionary in the snappyHexMeshDict dictionary.

• This is a valid castellated or cartesian mesh that can be used for a simulation.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

393

Step 6. Snapping to surfaces

• After deleting the cells in the region specified and refining the volume mesh, the points are snapped on the surface to create a

conforming mesh.
• The snapping is controlled by the user supplied information in the snapControls sub-dictionary in snappyHexMeshDict.

• Sometimes, the recommended snapControls options are not enough and you will need to adjust the values to get a good mesh,
so it is advisable to save the intermediate steps with a high writing precision (controlDict).

• This is a valid snapped or body fitted mesh that can be used for a simulation.

snappyHexMesh workflow

Mesh generation using snappyHexMesh

394

Step 7. Mesh layers

• The mesh output from the snapping stage may be suitable for simulation, although it can produce some irregular cells along

boundary surfaces.

• There is an optional stage of the meshing process which introduces boundary layer meshing in selected parts of the mesh.
• This information is supplied by the user in the addLayersControls sub-dictionary in the snappyHexMeshDict dictionary.

• This is the final step of the mesh generation process using snappyHexMesh.

• This is a valid body fitted mesh with boundary layer meshing, that can be used for a simulation.

This is a volume region
selection used for
internal cell splitting

Mesh generation using snappyHexMesh

snappyHexMesh in action
www.wolfdynamics.com/http://www.wolfdynamics.com/training/meshing/image4.gif

/shm/ani.gif

395

http://www.wolfdynamics.com/wiki/shm/ani.gif
http://www.wolfdynamics.com/training/meshing/image4.gif
http://www.wolfdynamics.com/wiki/shm/ani.gif

• Let us study the snappyHexMesh dictionary in

details.

• We are going to work with the case we just saw in

action.

• You will find this case in the directory:

Mesh generation using snappyHexMesh

$PTOFC/101SHM_basic/M101_WD

396

Let us explore the snappyHexMeshDict dictionary.

Mesh generation using snappyHexMesh

397

The dictionary snappyHexMeshDict consists of five main sections:

• geometry

Definition of geometry entities to be used for meshing.

• castellatedMeshControls

Definition of feature, surface and volume mesh refinement. Definition of mesh location

point. All the mesh refinement is done in this step.

• snapControls

Definition of surface mesh snapping and advanced parameters.

• addLayersControls

Definition of boundary layer meshing and advanced parameters. Only prismatic elements

are added in this step, there is no refinement of the surface or volume mesh.

• meshQualityControls

Definition of mesh quality metrics

castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

geometry

{

...

...

}

castellatedMeshControls

{

...

...

}

snapControls

{

...

...

}

addLayersControls

{

...

...

}

meshQualityControls

{

...

...

}

Let us explore the snappyHexMeshDict dictionary.

• Open the dictionary snappyHexMeshDict with your favorite text

editor (we will use gedit).

• The snappyHexMesh dictionary is made up of five sections, namely:

geometry, castellatedMeshControls, snapControls,

addLayersControls and meshQualityControls. Each section

controls a step of the meshing process.

• In the first three lines we can turn off and turn on the different

meshing steps. For example, if we want to generate a body fitted

mesh with no boundary layer we should proceed as follows:

castellatedMesh true;

snap true;

addLayers false;

Mesh generation using snappyHexMesh

Definition of geometry entities

to be used for meshing

Definition of feature, surface

and volume mesh refinement

Definition of surface mesh

snapping and advanced

parameters

Definition of boundary layer

meshing and advanced

parameters

Definition of mesh quality

metrics

398

castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

geometry

{

...

...

}

castellatedMeshControls

{

...

...

}

snapControls

{

...

...

}

addLayersControls

{

...

...

}

meshQualityControls

{

...

...

}

Let us explore the snappyHexMeshDict dictionary.

• Have in mind that there are more than 60

parameters to control in
snappyHexMeshDict dictionary.

• Adding the fact that there is no native GUI, it

can be quite tricky to control the mesh

generation process.

• Nevertheless, snappyHexMesh generates

very good hexa dominant meshes.

• Hereafter, we will only comment on the most

important parameters.

• The parameters that you will find in the
snappyHexMeshDict dictionaries distributed

with the tutorials, in our opinion are robust and

will work most of the times.

It can be located In a separated file

Mesh generation using snappyHexMesh

399

geometry

{

wolfExtruded.stl

{

type triSurfaceMesh;

name wolf;

regions

{

wolflocal

{

name wolf_wall;

}

}

}

box

{

type searchableBox;

min (-100.0 -120.0 -50.0);

max (100.0 120.0 150.0);

}

sphere

{

type searchableSphere;

centre (120.0 -100.0 50.0);

radius 40.0;

}

}

Let us explore the snappyHexMeshDict dictionary.

• In this section we read in the STL geometry. Remember, the input
geometry is always located in the directory constant/triSurface

• We can also define geometrical entities that can be used to refine the

mesh, create regions, or generate baffles.

• You can add multiple STL files.

• If you do not give a name to the surface, it will take the name of the

STL file.

• The geometrical entities are created inside snappyHexMesh.

Note 1:

If you want to know what geometrical entities are available, just

misspelled something in the type keyword.

Note 1

Mesh generation using snappyHexMesh

STL file to read

Name of the surface inside snappyHexMesh

Use this option if you have a STL with multiple patches defined

This is the name of the region or surface patch in the STL

User-defined patch name. This is the final name of the patch

Name of geometrical entity

Name of geometrical entity

Geometry controls section

400

castellatedMeshControls

{

//Refinement parameters

maxLocalCells 100000;

maxGlobalCells 2000000;

nCellsBetweenLevels 3;

...

...

//Explicit feature edge refinement

features

(

...

...

);

//Surface based refinement

refinementSurfaces

{

...

...

}

//Region-wise refinement

refinementRegions

{

...

...

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0);

}

Let us explore the snappyHexMeshDict dictionary.

• In the castellatedMeshControls section, we define the global

refinement parameters, explicit feature edge refinement,

surface-based refinement, region-wise refinement and the

material point.

• In this step, we are generating the castellated mesh.

Note 1:

Maximum number of cells in the domain. If the mesher reach this

number, it will not add more cells.

Note 2:

The material point indicates where we want to create the mesh,

that is, inside or outside the body to be meshed.

Dictionary block

Dictionary block

Dictionary block

Note 2

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 1

401

castellatedMeshControls

{

// Refinement parameters

maxLocalCells 100000;

maxGlobalCells 2000000;

minRefinementCells 0;

maxLoadUnbalance 0.10;

nCellsBetweenLevels 3;

//Local curvature and

//feature angle refinement

resolveFeatureAngle 30;

planarAngle 30;

allowFreeStandingZoneFaces true;

//Explicit feature edge refinement

features

(

{

file "wolfExtruded.eMesh";

level 2;

}

);

...

...

...

}

Note 1:

This parameter controls the transition between cell

refinement levels.

Note 2:

This parameter controls the local curvature refinement. The

higher the value, the less features it captures. For example,

if you use a value of 100 it will not add refinement in high

curvature areas. It also controls edge feature snapping; high

values will not resolve sharp angles in surface intersections.

Note 3:

This file is automatically created when you use the utility
surfaceFeatures. The file is located in the directory

constant/triSurface

Note 2

Let us explore the snappyHexMeshDict dictionary.

Note 1

Dictionary block

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 3

402

castellatedMeshControls

{

...

...

...

//Surface based refinement

refinementSurfaces

{

//wolf was defined in the geometry section

wolf

{

level (1 1); //Global refinement

regions

{

wolflocal

{

level (2 4);

patchInfo

{

type wall;

}

}

}

}

...

...

}

Note 1:

The surface wolf was defined in the geometry section.

Note 2:

The region wolflocal was defined in the geometry section.

Note 3:

Named region in the STL file. This refinement is local.

To use the surface refinement in the regions, the local

regions must exist in STL file. We created a pointer to this

region in the geometry section.

Note 4:

You can only define patches of type wall or patch.

Let us explore the snappyHexMeshDict dictionary.

Note 3

Note 4

Local refinement

Dictionary block

Note 2

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 1

403

castellatedMeshControls

{

//Surface based refinement

refinementSurfaces

{

...

...

...

//This surface or geometrical entity

//was defined in geometry section

sphere

{

level (1 1);

faceZone face_inner;

cellZone cell_inner;

mode inside;

//faceType internal;

}

}

...

...

}

Let us explore the snappyHexMeshDict dictionary.

Note 1:

Optional specification of what to do with faceZone faces:

internal: keep them as internal faces (default)

baffle: create baffles from them. This gives more freedom in mesh

motion

boundary: create free-standing boundary faces (baffles but

without the shared points)

e.g., faceType internal;

Dictionary block

Mesh generation using snappyHexMesh

Castellated mesh controls section

Note 1

Name of faceZone

Create internal faces from faceZone

Uncomment to create the internal faceZone

Create inner cellZone

Name of cellZone

404

castellatedMeshControls

{

...

...

...

//Region-wise refinement

refinementRegions

{

//This region or geometrical entity

//was defined in the geometry section

box

{

mode inside;

levels ((1 1));

}

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0);

}

Let us explore the snappyHexMeshDict dictionary.

Dictionary block

Note 1

Mesh generation using snappyHexMesh

Castellated mesh controls section

405

Note 1:

• This region or geometrical entity was created in the geometry section.

• You can use open or close geometries.

• You can use STL files.

• But you cannot use regions defined in the STL.

castellatedMeshControls

{

...

...

...

//Region-wise refinement

refinementRegions

{

//This region or geometrical entity

//was defined in the geometry section

box

{

mode inside;

levels ((1 1));

}

}

//Mesh selection

locationInMesh (-100.0 0.0 50.0);

}

Let us explore the snappyHexMeshDict dictionary.

Dictionary block

Mesh generation using snappyHexMesh

Castellated mesh controls section

406

• This point defines where do you want the mesh.

• According to the point locations, the mesh can be internal or

external.

• If the point is inside the STL, it is an internal mesh.

• If the point is inside the background mesh and outside the

STL it is an external mesh.

• Put this point in pure hexahedral regions. Do no put it in transition

regions as it will give you problems.

• At this point we have a valid mesh (cartesian)

Do not put the

locationInMesh

point in this

region because

the cells are not

hexahedral

snapControls

{

//Number of patch smoothing iterations

//before finding correspondence to surface

nSmoothPatch 3;

tolerance 2.0;

//- Number of mesh displacement relaxation

//iterations.

nSolveIter 30;

//- Maximum number of snapping relaxation

//iterations. Should stop before upon

//reaching a correct mesh.

nRelaxIter 5;

// Feature snapping

//Number of feature edge snapping iterations.

nFeatureSnapIter 10;

//Detect (geometric only) features by

//sampling the surface (default=false).

implicitFeatureSnap false;

// Use castellatedMeshControls::features

// (default = true)

explicitFeatureSnap true;

multiRegionFeatureSnap false;

}

Let us explore the snappyHexMeshDict dictionary.

Note 1

Note 2

Mesh generation using snappyHexMesh

Snap mesh controls section

Note 3

407

Note 1:

The higher the value the better the body fitted mesh. The

recommended value is 30. If you are having problems with the mesh

quality (related to the snapping step), try to increase this value to 100.

Have in mind that this will increase the meshing time.

Note 2:

Increase this value to improve the quality of the body fitted mesh.

Note 3:

Increase this value to improve the quality of the edge features.

• In this step, we are generating the body fitted mesh.

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.01;

layers

{

wolf_wall

{

nSurfaceLayers 3;

//Local parameters

//expansionRatio 1.3;

//finalLayerThickness 0.3;

//minThickness 0.1;

}

}

// Advanced settings

nGrow 0;

featureAngle 130;

maxFaceThicknessRatio 0.5;

nSmoothSurfaceNormals 1;

nSmoothThickness 10;

minMedianAxisAngle 90;

maxThicknessToMedialRatio 0.3;

nSmoothNormals 3;

slipFeatureAngle 30;

nRelaxIter 5;

nBufferCellsNoExtrude 0;

nLayerIter 50;

nRelaxedIter 20;

}

Let us explore the snappyHexMeshDict dictionary.

Note 1:

In this section we select the patches where we want to add the

layers. We can add multiple patches (if they exist).

Note 2:

This patch was created in the geometry section.

Note 3:

Specification of feature angle above which layers are collapsed

automatically.

• In this step, we are generating the boundary layer mesh.

Mesh generation using snappyHexMesh

Boundary layer mesh controls section

Note 1

Note 2

Note 3

408

meshQualityControls

{

maxNonOrtho 75;

maxBoundarySkewness 20;

maxInternalSkewness 4;

maxConcave 80;

minVol 1E-13;

//minTetQuality 1e-15;

minTetQuality -1e+30;

minArea -1;

minTwist 0.02;

minDeterminant 0.001;

minFaceWeight 0.05;

minVolRatio 0.01;

minTriangleTwist -1;

minFlatness 0.5;

nSmoothScale 4;

errorReduction 0.75;

}

Let us explore the snappyHexMeshDict dictionary.

Note 1

Note 2

Mesh generation using snappyHexMesh

Mesh quality controls section

409

Note 1:

Maximum non-orthogonality angle.

Note 2:

Maximum skewness angle.

• During the mesh generation process, the mesh quality is continuously

monitored.
• The mesher snappyHexMesh will try to generate a mesh using the

mesh quality parameters defined by the user.

• If a mesh motion or topology change introduces a poor quality cell or

face the motion or topology change is undone to revert the mesh back

to a previously valid error free state.

debugFlags

(

// write intermediate meshes

mesh

// write current mesh intersections as .obj files

intersections

// write information about explicit feature edge

// refinement

featureSeeds

// write attraction as .obj files

attraction

// write information about layers

layerInfo

);

writeFlags

(

// write volScalarField with cellLevel for

// postprocessing

scalarLevels

// write cellSets, faceSets of faces in layer

layerSets

// write volScalarField for layer coverage

layerFields

);

Let us explore the snappyHexMeshDict dictionary.

Mesh generation using snappyHexMesh

Mesh debug and write controls sections

410

• At the end of the dictionary, you will find the sections:

debugFlags and writeFlags

• By default, they are commented. If you uncomment them, you

will enable debug information.

• debugFlags and writeFlags will produce a lot of outputs that you

can use to post process and troubleshoot the different steps of

the meshing process.

Let us explore the snappyHexMeshDict dictionary.

Mesh generation using snappyHexMesh

411

• Of all entries in the snappyHexMeshDict dictionary, probably the most important ones are

those related to the snap control (snapControls section).

• Remember, there are no default values, so you will need to play around to find the best

parameters, which at the same time are likely to be problem dependent.

• We recommend you use the following values,

snapControls

{

nSmoothPatch 3;

tolerance 2.0;

nSolveIter 30;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

}

snapControls

{

nSmoothPatch 3;

tolerance 2.0;

nSolveIter 100;

nRelaxIter 20;

nFeatureSnapIter 100;

implicitFeatureSnap false;

explicitFeatureSnap true;

}

Recommended values Improved values

• A word of caution, these values are based on our experience and do not represent best

standard practices when generating the mesh using snappyHexMesh.

Let us explore the snappyHexMeshDict dictionary.

Mesh generation using snappyHexMesh

412

• If the recommended values do not generate a good mesh, try to use the improved values.

• However, do not immediately use the advised maximum values as this will considerably

increase the meshing time.

• Instead, starting from the initial recommended values, you can double the reference values.

• Usually, after one doubling of the parameters you will fix most of the issues.

• You can keep doubling until reaching the advised maximum values.

• If after reaching the advised maximum values you are still getting meshing problems, it is

advised to increase the surface mesh refinement or the background mesh resolution.

snapControls

{

nSmoothPatch 3;

tolerance 2.0;

nSolveIter 100;

nRelaxIter 20;

nFeatureSnapIter 100;

implicitFeatureSnap false;

explicitFeatureSnap true;

}

Improved values (advised maximum values)

snapControls

{

nSmoothPatch 3;

tolerance 2.0;

nSolveIter 50;

nRelaxIter 10;

nFeatureSnapIter 20;

implicitFeatureSnap false;

explicitFeatureSnap true;

}

Improved values (after one doubling iteration)

Let us explore the snappyHexMeshDict dictionary.

Mesh generation using snappyHexMesh

413

• Another important entry in the snappyHexMeshDict dictionary, is the resolveFeatureAngle in the

castellatedMeshControls section.

• The parameter resolveFeatureAngle controls the local curvature refinement.

• The higher the value, the less features it captures. For example, if you use a value of 100 it will not add

refinement in high curvature areas.

• This parameter also influence edge feature snapping. As for surface curvature, high values will not resolve

sharp angles in surface intersections.

• Usually, a value of 30 is a good choice. If you want to resolve more feature, simply reduce this value.

castellatedMeshControls

{

…

…

…

resolveFeatureAngle 30;

…

…

…

}

Recommended starting value

Let us explore the snappyHexMeshDict dictionary.

Mesh generation using snappyHexMesh

414

addLayersControls

{

…

featureAngle 130;

maxFaceThicknessRatio 0.5;

…

}

addLayersControls

{

…

featureAngle 330;

maxFaceThicknessRatio 1;

…

}

Recommended values Improved values (advised maximum values)

• Regarding the inflation layer parameters (addLayersControls), in our experience the most

important parameters are featureAngle and featureAngle.

• To set these values, you can follow the same guidelines as the ones we defined for

snapControls.

• It is important to stress that we are referring to the control parameters related to the mesh

quality and iterative relaxation.

• The parameters related to the inflation layer thickness are much more important.

• We will demonstrate this using an excel worksheet.

Let us generate the mesh of the wolf dynamics logo.

• This tutorial is located in the directory:

• $PTOFC/101SHM_basic/M101_WD

• In this case we are going to generate a body fitted mesh with boundary layer. This is an

external mesh.

• Before generating the mesh take a look at the dictionaries and files that will be used.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeaturesDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/wolfExtruded.stl

• constant/triSurface/wolfExtruded.eMesh

• The file wolfExtruded.eMesh is generated after using the utility surfaceFeatures, which

reads the dictionary surfaceFeaturesDict.

Mesh generation using snappyHexMesh

415

• To generate the mesh, in the terminal window type:

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

• To visualize the mesh, in the terminal window type:

• $> paraFoam

• Remember to use the VCR controls in paraView/paraFoam to visualize the mesh intermediate

steps.

1. $> foamCleanTutorials

2. $> blockMesh

3. $> surfaceFeatures

4. $> snappyHexMesh

5. $> checkMesh –latestTime

416

Let us generate the mesh of the wolf dynamics logo.

• In the case directory you will find the time folders 1, 2, and 3, which contain the castellated

mesh, snapped mesh and boundary layer mesh respectively.

• In this case, snappyHexMesh automatically saved the intermediate steps.

• Before running the simulation, remember to transfer the solution from the latest mesh to the
directory constant/polyMesh, in the terminal type:

Mesh generation using snappyHexMesh

1. $> cp 3/polyMesh/* constant/polyMesh

2. $> rm –rf 1

3. $> rm –rf 2

4. $> rm –rf 3

5. $> checkMesh –latestTime

417

• If you want to avoid the additional steps of transferring the final mesh to the directory
constant/polyMesh by not saving the intermediate steps, you can proceed as follows:

• $> snappyHexMesh –overwrite

• When you proceed in this way, snappyHexMesh automatically saves the final mesh in the

directory constant/polyMesh.

• Have in mind that you will not be able to visualize the intermediate steps.

• Also, you will not be able to restart the meshing process from a saved state (castellated or

snapped mesh).

• Unless it is strictly necessary, from this point on we will not save the intermediate steps.

Let us generate the mesh of the wolf dynamics logo.

Mesh generation using snappyHexMesh

418

The constant/polyMesh/boundary file

Mesh generation using snappyHexMesh

• At this point, we have a valid mesh to run a simulation.

• Have in mind that before running the simulation you will need to set the boundary and initial
conditions in the directory 0.

• Let us talk about the constant/polyMesh/boundary file,

• First of all, this file is automatically generated after you create the mesh, or you convert it

from a third-party format.

• In this file, the geometrical information related to the base type patch of each boundary of

the domain is specified.

• The base type boundary condition is the actual surface patch where we are going to apply

a numerical type boundary condition.

• The numerical type boundary condition assign a field value to the surface patch (base

type).

• You define the numerical type patch (or the value of the boundary condition), in the
directory 0 or time directories.

• The name and base type of the patches was defined in the dictionaries blockMeshDict

and snappyHexMeshDict.

• You can change the name if you do not like it. Do not use strange symbols or white

spaces.

• You can also change the base type. For instance, you can change the type of the patch

maxY from wall to patch. 419

The constant/polyMesh/boundary file

Mesh generation using snappyHexMesh

420

• At this point, we have a valid mesh to run a simulation.

• Have in mind that before running the simulation you will need to set the boundary and initial
conditions in the directory 0.

• The name and base type information of the boundary patches is saved in the file
constant/polyMesh/boundary.

• Remember, the base type (patch type defined in the file constant/polyMesh/boundary)

and the numerical type of the boundary conditions (patch type defined in the fields dictionary
in the directory 0), must be compatible.

• You also need to use the same naming convention. That is, the name of the patches defined in
the file constant/polyMesh/boundary and the name of the patches defined in the files

inside the directory 0, must be the same.

The constant/polyMesh/boundary file

Mesh generation using snappyHexMesh

421

• First of all, this file is automatically generated after you create the mesh, or you convert it from a

third-party format.

• In this file, the geometrical information related to the base type patch of each boundary of the

domain is specified.

• The base type boundary condition is the actual surface patch where we are going to apply a

numerical type boundary condition (or numerical boundary condition).

• The numerical type boundary condition assign a field value to the surface patch (base type).

• You define the numerical type patch (or the value of the boundary condition), in the directory 0

or time directories.

• The name and base type of the patches was defined in the dictionaries blockMeshDict and

snappyHexMeshDict.

• You can change the name if you do not like it. Do not use strange symbols or white spaces.

• You can also change the base type. For instance, you can change the type of the patch maxY

from wall to patch.

Mesh generation using snappyHexMesh

18 9

19 (

20 minX

21 {

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 466399;

26 }

27 maxX

28 {

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 466799;

33 }

34 minY

35 {

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 467199;

40 }

41 maxY

42 {

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 467599;

47 }

48 minZ

49 {

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 467999;

54 }

minY

minX

minZ

maxY

maxX

maxZ

wolf_wall

sphere

sphere_slave

Number of surface patches

In the list bellow there must be 9 patches

definition.

The constant/polyMesh/boundary file

422

Mesh generation using snappyHexMesh

17 9

18 (

19 minX

20 {

21 type wall;

22 nFaces 400;

23 startFace 499702;

24 }

25 maxX

26 {

27 type wall;

28 nFaces 400;

29 startFace 500102;

30 }

31 minY

32 {

33 type empty;

34 nFaces 400;

35 startFace 500502;

36 }

37 maxY

38 {

39 type wall;

40 nFaces 400;

41 startFace 500902;

42 }

43 minZ

44 {

45 type wall;

46 nFaces 400;

47 startFace 501302;

48 }

Name and type of the surface patches

• The name and base type of the patch is given by the user.

• In this case the name and base type was assigned in the
dictionaries blockMeshDict and snappyHexMeshDict.

• You can change the name if you do not like it. Do not use

strange symbols or white spaces.

• You can also change the base type. For instance, you can

change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

• Unless you know what are you doing, you do not

need to change this information.

• Basically, this is telling you the starting face and ending face

of the patch.

• This information is created automatically when generating

the mesh or converting the mesh.

Name

Type

nFaces

startFace

The constant/polyMesh/boundary file

423

Mesh generation using snappyHexMesh

49 maxZ

50 {

51 type wall;

52 nFaces 400;

53 startFace 500902;

54 }

55 wolf

56 {

57 type wall;

58 inGroups 1(wall);

59 nFaces 20419;

60 startFace 502102;

61 }

62 sphere

63 {

64 type empty;

65 inGroups 1(wall);

66 nFaces 368;

67 startFace 522521;

68 }

69 sphere_slave

70 {

71 type wall;

72 inGroups 1(wall);

73 nFaces 368;

74 startFace 522889;

75 }

76)

Name and type of the surface patches

• The name and base type of the patch is given by the user.

• In this case the name and base type was assigned in the
dictionaries blockMeshDict and snappyHexMeshDict.

• You can change the name if you do not like it. Do not use

strange symbols or white spaces.

• You can also change the base type. For instance, you can

change the type of the patch maxY from wall to patch.

nFaces and startFace keywords

• Unless you know what are you doing, you do not

need to change this information.

• Basically, this is telling you the starting face and ending face

of the patch.

• This information is created automatically when generating

the mesh or converting the mesh.

nFaces

startFace

Name

Type

The constant/polyMesh/boundary file

424

• When generating the mesh using OpenFOAM®, it is extremely important to start from a clean

case directory.

• To clean all the case directory, in the terminal type:

• $> foamCleanTutorials

• To only erase the mesh information, in the terminal type:

• $> foamCleanPolyMesh

• If you are planning to start the meshing from a previous saved state, you do not need to clean

the case directory.

• Before proceeding to compute the solution, remember to always check the quality of the mesh.

Cleaning the case directory

Mesh generation using snappyHexMesh

425

Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

426

snappyHexMesh guided tutorials

• Meshing with snappyHexMesh – Case 1.

• 3D cylinder with feature edge refinement (external mesh).

• You will find this case in the directory:

$PTOFC/101SHM_basic/M1_cyl/C1

427

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

snappyHexMesh guided tutorials

• Our first case will be a mesh around a cylinder.

• This is a simple geometry, but we will use it to study all the meshing steps and introduce a few

advanced features.

• This case is located in the directory $PTOFC/101SHM_basic/M1cyl

428

3D Cylinder with edge refinement.

Sphere with no edge refinement

snappyHexMesh guided tutorials

Cylinder with edge refinement Cylinder with no edge refinement

429

• If the geometry does not have sharp angles, you do not need to do this extra step.

• In the end, it is up to you to decide if you want to resolve the sharp angles.

• However, it is extremely recommended to resolve sharp angles (if they exist).

• In the left figure there is no need to use edge refinement as there are no sharp angles.

• In the mid figure we used edge refinement to resolve the sharp angles.

• In the right figure we did not use edge refinement, therefore we did not resolve well the sharp

angles.

3D Cylinder with edge refinement.

• How do we control curvature refinement and enable edge refinement?

• In the file snappyHexMeshDict, look for the following entries:

castellatedMeshControls

{

...

...

...

//Local curvature and

//feature angle refinement

resolveFeatureAngle 30;

...

...

...

//Explicit feature edge refinement

features

(

{

file “surfacemesh.eMesh";

level 0;

}

);

...

...

...

}

To control curvature refinement

To enable and

control edge

refinement level

snappyHexMesh guided tutorials

430

3D Cylinder with edge refinement.

angle

0: mark the whole surface for refinement

180: do not mark any STL face for refinement

resolveFeatureAngle

If angle is more than resolveFeatureAngle

the adjacent STL faces will be marked for

refinement

How resolveFeatureAngle works?

angle < resolveFeatureAngle

No curvature refinement

snappyHexMesh guided tutorials

STL

431

3D Cylinder with edge refinement.

STL

angle

0: mark the whole surface for refinement

180: do not mark any STL face for refinement

resolveFeatureAngle

If angle is more than resolveFeatureAngle

the adjacent STL faces will be marked for

refinement

How resolveFeatureAngle works?

angle > resolveFeatureAngle

Curvature refinement

snappyHexMesh guided tutorials

432

3D Cylinder with edge refinement.

• How do we control surface refinement?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

//Surface based refinement

refinementSurfaces

{

banana_stlSurface

{

level (2 4);

}

}

...

...

...

}

To control surface refinement.

The first digit controls the global

surface refinement level, and the

second digit controls the curvature

refinement level, according to the angle

set in the entry resolveFeatureAngle

snappyHexMesh guided tutorials

433

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

• How do we create refinement regions?

• In the file snappyHexMeshDict, look for the following entry:

geometry

{

...

...

...

refinementBox

{

type searchableBox;

min (-2 -2 -2);

max (2 2 2);

}

...

...

...

};

Name of refinement region

Geometrical entity type.

This is the zone where we

want to apply the refinement

Dimensions of geometrical entity

434

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

• How do we create refinement regions?

• In the file snappyHexMeshDict, look for the following entry:

castellatedMeshControls

{

...

...

...

refinementRegions

{

refinementBox

{

mode inside;

levels ((1 1));

}

}

...

...

...

}

Name of the region

created in the geometry section

Type of refinement (inside,

outside, or distance mode)

Min refinement level

If distance mode is used, it represents the

distance normal to the wall (in both direction)

Max refinement level

435

Explicit feature edge refinement level 0

resolveFeatureAngle 110

Surface based refinement level (2 2)

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 2)

Effect of various parameters on edge capturing and surface refinement

• To control edges capturing you can decrease the value of resolveFeatureAngle.

• Be careful, this parameter also controls curvature refinement, so if you choose a low value you

also will be adding a lot of refinement on the surface.

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

436

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 2)

Explicit feature edge refinement level 4

resolveFeatureAngle 60

Surface based refinement level (2 2)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control edges refinement level, you can change the value of the explicit feature edge

refinement level.

snappyHexMesh guided tutorials

437

Explicit feature edge refinement level 6

resolveFeatureAngle 5

Surface based refinement level (2 4)

Explicit feature edge refinement level 0

resolveFeatureAngle 5

Surface based refinement level (2 4)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control edges refinement level, you can change the value of the explicit feature edge

refinement level.

snappyHexMesh guided tutorials

438

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 4)

Explicit feature edge refinement level 4

resolveFeatureAngle 60

Surface based refinement level (2 2)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control surface refinement level, you can change the value of the surface-based refinement

level.

• The first digit controls the global surface refinement level, and the second digit controls the

curvature refinement level.

snappyHexMesh guided tutorials

439

Explicit feature edge refinement level 0

resolveFeatureAngle 60

Surface based refinement level (2 4)

Explicit feature edge refinement level 0

resolveFeatureAngle 5

Surface based refinement level (2 4)

3D Cylinder with edge refinement.

Effect of various parameters on edge capturing and surface refinement

• To control surface refinement due to curvature together with control-based surface refinement

level, you can change the value of resolveFeatureAngle, and surface-based refinement level

snappyHexMesh guided tutorials

440

3D Cylinder with edge refinement.

surfaces (“surfacemesh.stl”)

includedAngle 150;

subsetFeatures

{

nonManifoldEdges yes;

openEdges yes;

}

writeObj yes;

• Let us explore the dictionary surfaceFeaturesDict used by the utility surfaceFeatures.

• This utility will extract surface features (sharp angles) according to an angle criterion

(includedAngle).

Name of the STL.

The STL file is located

in constant/triSurface

Angle criterion

to extract features

If you want to save

the .obj files

Features edges

Features edges

snappyHexMesh guided tutorials

441

Keep non-manifold edges

(edges with more that 2

connected faces)

Keep open edges

(edges with 1 connected face)

3D Cylinder with edge refinement.

• Let us explore the dictionary surfaceFeaturesDict used by the utility surfaceFeatures.

• This utility will extract surface features (sharp angles) according to an angle criterion

(includedAngle).

STL

angle

Mark edges whose adjacent surface normals

are at an angle less than includedAngle

0: selects no edges

180: selects all edge

includedAngle

If angle is less than includedAngle

this feature will be marked

snappyHexMesh guided tutorials

442

surfaces (“surfacemesh.stl”)

includedAngle 150;

subsetFeatures

{

nonManifoldEdges yes;

openEdges yes;

}

writeObj yes;

Name of the STL.

The STL file is located

in constant/triSurface

Angle criterion

to extract features

If you want to save

the .obj files

Keep non-manifold edges

(edges with more that 2

connected faces)

Keep open edges

(edges with 1 connected face)

3D Cylinder with edge refinement.

• If you want to have a visual representation of the feature edges, you can use

paraview/paraFoam.

• Just look for the filter Feature Edges.

• Have in mind that the angle you need to define in paraview/paraFoam is the complement of the
angle defined in the dictionary surfaceFeaturesDict

snappyHexMesh guided tutorials

443

• In this case we are going to generate a body fitted mesh with edge refinement. This is an

external mesh.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeaturesDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/surfacemesh.stl

• constant/triSurface/surfacemesh.eMesh

• The file surfacemesh.eMesh is generated after using the utility surfaceFeatures, which

reads the dictionary surfaceFeaturesDict.

• The utility surfaceFeatures, will save a set of *.obj files with the captured edges. These files

are located in the directory constant/extendedFeatureEdgeMesh. You can use paraview

to visualize the *.obj files.

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

444

• Let us generate the mesh, in the terminal window type:

3D Cylinder with edge refinement.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> snappyHexMesh –overwrite

5. $> checkMesh –latestTime

6. $> paraFoam

• In step 2 we extract the sharp angles from the geometry.

• In step 3 we generate the background mesh.

• In step 4 we generate the body fitted mesh. Have in mind that as we use the option –

overwrite, we are not saving the intermediate steps.

• In step 5 we check the mesh quality.

445

snappyHexMesh guided tutorials

$PTOFC/101SHM_basic/M1_cyl/C2

• Meshing with snappyHexMesh – Case 2.

• 3D cylinder with feature edge refinement and boundary layer (external

mesh).

• You will find this case in the directory:

446

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Your final mesh should look like this one

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

447

• How do we enable boundary layer?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer.

castellatedMesh true; //or false

snap true; //or false

addLayers true; //or false

...

...

...

Set this parameter to

true if you want to

enable boundary layer

meshing

snappyHexMesh guided tutorials

448

• How do we enable boundary layer?

• In the file snappyHexMeshDict, look for the section addLayersControls:

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

449

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

banana_stlSurface

{

nSurfaceLayers 3;

}

}

// Advanced settings

...

...

...

}

These options control how the boundary layer mesh grows from

the surface into the domain. Possible combinations are:

• First layer thickness (firstLayerThickness) and overall

thickness (thickness).

• First layer thickness (firstLayerThickness) and expansion

ratio (expansionRatio).

• Final layer thickness (finalLayerThickness) and expansion

ratio (expansionRatio).

• Final layer thickness (finalLayerThickness) and overall

thickness (thickness).

• Overall thickness (thickness) and expansion ratio

(expansionRatio).

• The option minThickness controls the minimum thickness of

the layers.

• How do we enable boundary layer?

• In the file snappyHexMeshDict, look for the section addLayersControls:

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

450

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

banana_stlSurface

{

nSurfaceLayers 3;

}

}

// Advanced settings

...

...

...

}

Name of the surface or user-defined

patch where you want to add the

boundary layer mesh.

Number of layers to add.

In this sub/dictionary you can also set local per patch

parameters. The local options overwrite the global

parameters.

You can use the same parameters as the one you use

in the global parameters, except for relativeSizes.

• How do we control boundary layer collapsing?

• In the file snappyHexMeshDict, look for the section addLayersControls:

3D Cylinder with edge refinement and boundary layer.

addLayersControls

{

...

...

...

// Advanced settings

nGrow 0;

featureAngle 130;

maxFaceThicknessRatio 0.5;

...

...

...

}

Increase this value to avoid BL collapsing

The maximum value should not be greater than 330

snappyHexMesh guided tutorials

451

Increase this value to avoid BL collapsing

The maximum value should not be greater than 1

Let us explore the snappyHexMeshDict dictionary.

Mesh generation using snappyHexMesh

452

addLayersControls

{

…

featureAngle 130;

maxFaceThicknessRatio 0.5;

…

}

addLayersControls

{

…

featureAngle 330;

maxFaceThicknessRatio 1;

…

}

Recommended values Improved values (advised maximum values)

• Regarding the inflation layer parameters (addLayersControls), in our experience the most

important parameters are featureAngle and featureAngle.

• To set these values, you can follow the same guidelines as the ones we defined for

snapControls.

• It is important to stress that we are referring to the control parameters related to the mesh

quality and iterative relaxation.

• The parameters related to the inflation layer thickness are much more important.

• We will demonstrate this using an excel worksheet.

3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

relativeSizes false

expansionRatio 1.2

firstLayerThickness 0.025

minThickness 0.01

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

Effect of different parameters on the boundary layer meshing

snappyHexMesh guided tutorials

453

• The option finalLayerThickness controls the thickness of the final layer, whereas the option

minThickness controls the minimum thickness of the first layer.

• The actual thickness of the layers depends on the keyword relativeSizes.

3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is true, the boundary layer meshing is done relative to the size

of the cells next to the surface.

• This option requires less user intervention but can not guarantee a uniform boundary layer.

• Also, it is quite difficult to set a desired thickness of the first layer.

snappyHexMesh guided tutorials

454

3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is false, we give the actual thickness of the layers.

• This option requires a lot user intervention, but it guarantees a uniform boundary layer and the

desired layer thickness.

snappyHexMesh guided tutorials

455

3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 4)

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 2)

Effect of different parameters on the boundary layer meshing

• When the option relativeSizes is true and in order to have a uniform boundary layer, we need

to have a uniform surface refinement.

• Nevertheless, we still do not have control on the desired thickness of the first layer.

snappyHexMesh guided tutorials

456

3D Cylinder with edge refinement and boundary layer.

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 130

nSurfaceLayers 3

Surface based refinement level (2 2)

relativeSizes true

expansionRatio 1.2

finalLayerThickness 0.5

minThickness 0.1

featureAngle 30

nSurfaceLayers 3

Surface based refinement level (2 2)

Effect of different parameters on the boundary layer meshing

• To avoid boundary layer collapsing close to the corners, we can increase the value of the

boundary layer parameter featureAngle.

snappyHexMesh guided tutorials

457

3D Cylinder with edge refinement and boundary layer.

Effect of different parameters on the boundary layer meshing

• The disadvantage of setting relativeSizes to false, is that it is difficult to control the expansion

ratio from the boundary layer meshing to the far mesh.

• To control this transition, we can add a refinement region at the surface with distance mode.

relativeSizes false

nSurfaceLayers 6

relativeSizes false

nSurfaceLayers 6

Refinement region at the stl surface:

mode distance;

levels ((0.05 4))

snappyHexMesh guided tutorials

458

• To generate the mesh, in the terminal window type:

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> snappyHexMesh -overwrite

5. $> checkMesh –latestTime

6. $> paraFoam

459

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

460

• At the end of the meshing process, you will get the following information regarding the boundary

layer meshing:

patch faces layers overall thickness

[m] [%]

----- ----- ------ --- ---

banana_stlSurface 4696 3 0.0569 95.9

Layer mesh : cells:48577 faces:157942 points:61552

• This is a general summary of the boundary layer meshing.

• Pay particular attention to the overall and thickness information.

• Overall is roughly speaking the thickness of the whole boundary layer.

• Thickness is the percentage of the patch that has been covered with the boundary layer mesh.

• A thickness of 100% means that the whole patch has been covered (a perfect BL mesh).

• If you want to visualize the boundary layer thickness, you can enable writeFlags in the
snappyhexMeshDict dictionary,

3D Cylinder with edge refinement and boundary layer.

...

...

...

writeFlags

(

scalarLevels; // write volScalarField with cellLevel for postprocessing

layerSets; // write cellSets, faceSets of faces in layer

layerFields; // write volScalarField for layer coverage

);

...

...

...

snappyHexMesh guided tutorials

461

• Then you can use paraview/paraFoam to visualize the boundary layer coverage.

3D Cylinder with edge refinement and boundary layer.

Boundary layer thickness and number of layers

snappyHexMesh guided tutorials

The yellow surface represent the BL coverage

462

• After creating the mesh and if you do not like the inflation layer or you want to try different layer

parameters, you do not need to start the meshing process from scratch.

• To restart the meshing process from a saved state you need to save the intermediate steps

(castellation and snapping), and then create the inflation layers starting from the snapped mesh.

• That is, do not use the option snappyHexMesh -overwrite.

• Also, in the dictionary controlDict remember to set the entry startFrom to latestTime or

the time directory where the snapped mesh is saved (in this case 2).

• Before restarting the meshing, you will need to turn off the castellation and snapping options and
turn on the boundary layer options in the snappyHexMeshDict dictionary.

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

463

3D Cylinder with edge refinement and boundary layer.

snappyHexMesh guided tutorials

• Remember, before restarting the meshing you will need to modify the snappyHexMeshDict

dictionary as follows:

• At this point, you can restart the meshing process by typing in the terminal,

• $> snappyHexMesh

• By the way, you can restart the boundary layer mesh from a previous mesh with a boundary

layer.

• So, in theory, you an add one layer at a time, this will give you more control, but it will require

more manual work and some scripting.

castellatedMesh false;

snap false;

addLayers true;

464

snappyHexMesh guided tutorials

• Meshing with snappyHexMesh – Case 3.

• 3D cylinder with feature edge refinement and boundary layer using a STL

with multiple surfaces (external mesh).

• You will find this case in the directory:

$PTOFC/101SHM_basic/M1_cyl/C3

465

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

STL visualization with a single surface using paraview (the

single surface in represented with a single color)

STL visualization with multiple surfaces using paraview (each

color corresponds to a different surface)

• When you use a STL with multiple surfaces, you have more control over the meshing process.

• By default, STL files are made up of one single surface.

• If you want to create the multiple surfaces you will need to do it in the solid modeler.

• Alternatively, you can split the STL manually or using the utility surfaceAutoPatch.

• Loading multiple STLs is equivalent to using a STL with multiple surfaces.

466

• When you use a STL with multiple surfaces, you have more control over the meshing process.

• In this case, we were able to use different refinement parameters in the lateral and central

surface patches of the cylinder.

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

467

• How do we assign different names to different surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

geometry

{

surfacemesh.stl

{

type triSurfaceMesh;

name stlSurface;

regions

{

patch0 Named region in the STL file

{

name surface0;

}

patch1

{

name surface1;

}

patch2

{

name surface2;

}

}

}

...

...

...

}

snappyHexMesh guided tutorials

468

User-defined patch name

This is the name you need to use when setting the

boundary layer meshing

• How do we refine user defined surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

castellatedMeshControls

{

...

...

...

refinementSurfaces

{

level (2 2);

regions

{

patch0

{

level (2 2);

patchInfo

{

type wall;

}

}

...

...

...

}

}

...

...

...

}

snappyHexMesh guided tutorials

Local refinement level

Global refinement level

Local surface patch

Type of the patch.

This information is optional

469

• How do we control curvature refinement on surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

castellatedMeshControls

{

...

...

...

refinementSurfaces

{

level (2 2);

regions

{

patch0

{

level (2 4);

patchInfo

{

type wall;

}

}

...

...

...

}

}

...

...

...

}

snappyHexMesh guided tutorials

Local curvature refinement (in red)

Global refinement level

Local surface patch

470

• How do we control curvature refinement on surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

castellatedMeshControls

{

...

...

...

//Local curvature and

//feature angle refinement

resolveFeatureAngle 60;

...

...

...

}

snappyHexMesh guided tutorials

The default value is 30.

Using a higher value will capture

less features.

471

• How do we control boundary layer meshing on the surface patches?

• In the file snappyHexMeshDict, look for the following entry:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

addLayersControls

{

//Global parameters

relativeSizes true;

expansionRatio 1.2;

finalLayerThickness 0.5;

minThickness 0.1;

layers

{

“surface.*”

{

nSurfaceLayers 5;

}

surface0

{

nSurfaceLayers 3;

expansionRatio 1.0;

finalLayerThickness 0.25;

minThickness 0.1;

}

}

//Advanced settings

...

...

...

}

Global BL parameters

Local surface patch

Local BL parameters

POSIX wildcards are permitted

snappyHexMesh guided tutorials

472

• Let us first create the STL file with multiple surfaces.

• In the directory geo, you will find the original STL file.

• In the terminal type:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> cd geo

2. $> surfaceAutoPatch geo.stl output.stl 130

3. $> cp output.stl ../constant/triSurface/surfacemesh.stl

4. $> cd ..

5. $> paraview

• The utility surfaceAutoPatch will read the original STL file (geo.stl), and it will find the

patches using an angle criterion of 130 (similar to the angle criterion used with the utility
surfaceFeatures). It writes the new STL geometry in the file output.stl.

• By the way, it is better to create the STL file with multiple surfaces directly in the solid modeler.

• FYI, there is an equivalent utility for meshes, autoPatch. So, if you forgot to define the

patches, this utility will automatically find the patches according to an angle criterion.
473

• If you open the file output.stl, you will notice that there are three surfaces defined in the

STL file. The different surfaces are defined in by the following sections:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

solid patch0

…

endsolid patch0

solid patch1

…

endsolid patch1

solid patch2

…

endsolid patch2

• The name of the solid sections are

automatically given by the utility
surfaceAutoPatch.

• The convention is as follows: patch0,

patch1, patch2, … patchN.

• If you do not like the names, you can

change them directly in the STL file.

Surface patch 3

Surface patch 2

Surface patch 1

snappyHexMesh guided tutorials

474

• The new STL file is already in the constant/triSurface directory.

• To generate the mesh, in the terminal window type:

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> snappyHexMesh -overwrite

5. $> checkMesh –latestTime

• To visualize the mesh, in the terminal window type:

6. $> paraFoam

475

• This case is ready to run using the solver simpleFoam. But before running, you will need to

set the boundary and initial conditions.

• You will need to manually modify the file constant/polyMesh/boundary

• Remember:

• Base type boundary conditions are defined in the file boundary located in the directory

constant/polyMesh.

• Numerical type boundary conditions are defined in the field variables files located in the
directory 0 or the time directory from which you want to start the simulation (e.g., U, p).

• The name of the base type boundary conditions and numerical type boundary conditions

needs to be the same.

• Also, the base type boundary condition needs to be compatible with the numerical type

boundary condition.

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

476

• This case is ready to run with simpleFoam.

• To run the case (mesh and simulation), type in the terminal,

3D Cylinder with edge refinement and boundary layer, using a STL file

with multiple surfaces.

snappyHexMesh guided tutorials

1. $> sh run_all.sh

477

• Feel free to open the files run_mesh.sh (meshing steps) and run_solver.sh (simulation

steps) to get an idea of all steps used.

• The most critical step is to give the right name and type to the boundary patches, this is done in
the file boundary and the input files located in the directory 0 (boundary conditions and initial

conditions).

snappyHexMesh guided tutorials

• Meshing with snappyHexMesh – Case 4.

• 2D cylinder (external mesh)

• You will find this case in the directory:

$PTOFC/101SHM_basic/M1_cyl/C4

478

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

2D Cylinder

snappyHexMesh guided tutorials

From 3D To 2D

• To generate a 2D mesh using snappyHexMesh, we need to start from a 3D. After all,

snappyHexMesh is a 3D mesher.

• To generate a 2D mesh (and after generating the 3D mesh), we use the utility extrudeMesh.

• The utility extrudeMesh works by projecting a face into a mirror face.

• Therefore, the faces need to parallel.
479

2D Cylinder

snappyHexMesh guided tutorials

• At most, the input geometry and the background mesh need to have the same width.

• If the input geometry is larger than the background mesh, it will be automatically cut by the faces

of the background mesh.

• In this case, the input geometry will be cut by the two lateral patches of the background mesh.

• If you want to take advantage of symmetry in 3D, you can cut the geometry in half using one of

the faces of the background mesh.

• When dealing with 2D

• Extracting the features edges is optional for the 2D geometry extremes, but it is recommended if

there are internal edges that you want to resolve.

Geometry width

Background mesh width

FACE 1

FACE 2

The utility extrudeMesh works by

projecting FACE 1 into FACE 2.

Therefore, the faces need to be

parallel.

480

2D Cylinder

snappyHexMesh guided tutorials

• How do we create the 2D mesh?

• After generating the 3D mesh, we use the utility extrudeMesh.

• This utility reads the extrudeMeshDict,

constructFrom patch;

sourceCase “.”

sourcePatches (minZ);

exposedPatchName maxZ;

extrudeModel linearNormal

nLayers 1;

linearNormalCoeffs

{

thickness 1;

}

mergeFaces false;

Name of source patch

Name of the mirror patch

Number of layers to use in the linear extrusion.

As this is a 2D case we must use 1 layer

Thickness of the extrusion.

It is highly recommended to use a value of 1

481

2D Cylinder

snappyHexMesh guided tutorials

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> snappyHexMesh –overwrite

4. $> extrudeMesh

5. $> checkMesh –latestTime

6. $> paraFoam

• Remember, the utility extrudeMesh (step 4) reads the dictionary extrudeMeshDict, which is

located in the directory system.

• Also remember to set the empty patches in the dictionary boundary and in the boundary

conditions.

482

snappyHexMesh guided tutorials

Exercises

• To get a feeling of the surface refinement, try to change the value of the surface refinement in the dictionary
snappyHexMeshDict.

• In the dictionary snappyHexMeshDict, change the value of nCellsBetweenLevels and

resolveFeatureAngle. What difference do you see in the output?

• Use paraview to get a visual representation of the feature angles.

• In the dictionary snappyHexMeshDict, try to add curvature-based refinement.

• In the dictionary snappyHexMeshDict, in the section addLayersControls change the value of

featureAngle. Use a value of 60 and 160 and compare the boundary layer meshing.

• To control the boundary layer collapsing, try to use a uniform surface refinement. For this you have two

options, set surface level refinement to a uniform value or adding distance region refinement at the wall.

• To control the boundary layer collapsing, try to use absolute sizes when creating the boundary layer mesh.

• To get a feeling of region refinement, try to change the value of the local refinement in the dictionary
snappyHexMeshDict. What difference do you see in the output?

• Try to use local inflation layers in the regions defined.

• In the dictionary extrudeMeshDict, change the value of nLayers and thickness.

• In the dictionary extrudeMeshDict, try to change the extrudeModel.

483

snappyHexMesh guided tutorials

• Meshing with snappyHexMesh – Case 5.

• Mixing elbow (internal mesh)

• You will find this case in the directory:

$PTOFC/101SHM_basic/M2_mixing_elbow

484

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Your final mesh should look like this one

Mixing elbow.

snappyHexMesh guided tutorials

485

Mixing elbow.

castellatedMeshControls

{

...

...

...

refinementRegions

{
mixing_elbow

{

mode distance;

levels ((1e-4 1));

}

}

...

...

...

}

• How do we control surface refinement using region refinement?

• In the file snappyHexMeshDict, look for the following entry:

Distance from

the surface patch

Refinement level

Refinement using distance mode

Name of surface

snappyHexMesh guided tutorials

486

• In this case we are going to generate a body fitted mesh with edge refinement and boundary

layer meshing.

• This is an internal mesh.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/surfaceFeaturesDict

• system/meshQualityDict

• system/blockMeshDict

• constant/triSurface/surfacemesh_multi.stl

• constant/triSurface/surfacemesh_multi.eMesh

• The file surfacemesh_multi.eMesh is generated after using the utility surfaceFeatures,

which reads the dictionary surfaceFeaturesDict.

Mixing elbow.

snappyHexMesh guided tutorials

487

• At this point, we are going to work in parallel (but you can work in serial as well).

• To generate the mesh, in the terminal window type:

Mixing elbow.

snappyHexMesh guided tutorials

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> decomposePar

5. $> mpirun -np 4 snappyHexMesh –parallel –overwrite

6. $> mpirun -np 4 checkMesh –parallel –latestTime

7. $> reconstructParMesh -constant

8. $> paraFoam

488

• Meshing in parallel is no different from meshing in serial. So, from now on feel free to run in

parallel.

• Have in mind that blockMesh does not run in parallel.

Mixing elbow.

snappyHexMesh guided tutorials

• So, what did we do?

• Step 4: we distribute the mesh among the processors we want to use.

• Step 5 and 6: we run in parallel.

• Step 7: we put back together the decomposed mesh. Notice that to reconstruct a
parallel mesh we use the command reconstructParMesh.

• Step 8: we visualize the reconstructed mesh.

• Remember, to reconstruct parallel meshes we use the command,

• $> reconstructParMesh

• Also remember to use the option –constant or –time <time_folder>.

• If you are dealing with adaptive mesh refinement (AMR), you will need to first reconstruct the

parallel mesh with,

• $> reconstructParMesh

• After reconstructing the mesh, you will need to reconstruct the fields using,

• $> reconstructPar

489

Mixing elbow.

snappyHexMesh guided tutorials

490

• Notice that the utility blockMesh does not run in parallel.

• Remember to set the keyword numberOfSubdomains in the dictionary decomposeParDict

equal to the number of processors you want to use.

• In this case, as we are using 4 processors with mpirun, numberOfSubdomains needs to be

equal to 4.

• To run the simulation and after reconstructing the mesh, you will need to transfer the boundary

and initial conditions information to the decomposed mesh as follows,

• $> decomposePar –fields

• Or you can force to decompose everything as follows,

• $> decomposePar –force

• After running checkMesh, you will get the following information regarding the patch names:

Mixing elbow.

snappyHexMesh guided tutorials

Patch Faces Points Surface topology

mixing_elbow_inlet1 1264 1297 ok (non-closed singly connected)

pipe 38884 41118 ok (non-closed singly connected)

mixing_elbow_inlet2 314 337 ok (non-closed singly connected)

mixing_elbow_outlet 1264 1297 ok (non-closed singly connected)

• Sometimes you can get empty patches.

Patch Faces Points Surface topology

minX 0 0 ok (empty)

maxX 0 0 ok (empty)

minY 0 0 ok (empty)

maxY 0 0 ok (empty)

minZ 0 0 ok (empty)

maxZ 0 0 ok (empty)

mixing_elbow_inlet1 1264 1297 ok (non-closed singly connected)

pipe 38884 41118 ok (non-closed singly connected)

mixing_elbow_inlet2 314 337 ok (non-closed singly connected)

mixing_elbow_outlet 1264 1297 ok (non-closed singly connected)

491

• Empty patches are no problem, they remain from the background mesh.

• To erase the empty patches, you can do it manually (you will need to modify the file
boundary), or you can use the utility createPatch as follows (the utility runs in parallel):

• $> createPatch -overwrite

• The surface patch pipe was created in the geometry section of the dictionary
snappyHexMeshDict.

• The patches mixing_elbow_outlet, mixing_elbow_inlet1 and mixing_elbow_inlet2 were
created automatically by snappyHexMesh.

• You have the choice of giving the names of the patches yourself or letting snappyHexMesh

assign the names automatically.

• Remember, when creating the boundary layer mesh, these are the names you need to use to

assign the layers.

Mixing elbow.

snappyHexMesh guided tutorials

492

• The mesh used in the previous case was a STL with multiple surfaces.

• In you do not create the regions in the geometry section of the dictionary
snappyHexMeshDict, snappyHexMesh will automatically assign the names of the surface

patches as follows:

Mixing elbow.

…

…

geometry

{

surfacemesh.stl

{

type triSurfaceMesh;

name mixing_elbow;

regions

{

pipe

{

name pipe;

}

}

}

};

…

…

system/surfaceFeaturesDict

NOTE 1

NOTE 2

snappyHexMesh guided tutorials

493

• mixing_elbow_outlet

• mixing_elbow_inlet1

• mixing_elbow_inlet2

NOTE 1:

This is the name of the surface patch (or solid) in the STL file.

NOTE 2:

User-defined patch name (it can be different from the name in the STL

file). This is the final name of the patch.

This is the name to be used when generating the inflation layer

• The mesh used in the previous case was a STL with multiple surfaces.

• In you do not create the regions in the geometry section of the dictionary
snappyHexMeshDict, snappyHexMesh will automatically assign the names of the surface

patches as follows:

Mixing elbow.

constant/triSurface/surfacemesh.stl

solid outlet

…

…

…

solid outlet

solid inlet1

…

…

…

solid inlet1

solid inlet2

…

…

…

solid inlet2

snappyHexMesh guided tutorials

494

• mixing_elbow_outlet

• mixing_elbow_inlet1

• mixing_elbow_inlet2

Mixing elbow.

snappyHexMesh guided tutorials

495

• If you do not want to use a single STL with multiple surfaces, you can load multiple surfaces in
the dictionary snappyHexMeshDict.

geometry

{

geo1.stl

{

type triSurfaceMesh;

name geo1;

regions

{

geo1_region

{

name my_patch;

}

}

}

geo2.stl

{

type triSurfaceMesh;

name geo2;

}

geo3.stl

{

type triSurfaceMesh;

name geo3;

}

}

User-defined patch name. This is the final name of the patch.

This is the name of the region or surface patch in the STL file

• The mesh used in the previous case was a STL with multiple surfaces.

• In the directory geometry, you fill find the file allss.stl, this STL has one single surface.

• Try to use this STL file to generate the mesh.

• You will notice that the final mesh has only one patch, namely mixing_elbow (or whatever

name you chose).

• Also, it is not possible to have local control on the mesh refinement and boundary layer

meshing.

• You will also face the conundrum that as there is only one surface patch, it is not possible to

assign boundary conditions.

Mixing elbow.

snappyHexMesh guided tutorials

496

• To solve the problem of the single surface patch, you can use the utility autoPatch. To do so,

you can proceed as follows:

• $> autoPatch 60 -overwrite

• The option -overwrite, will copy the new mesh in the directory constant/polyMesh.

• The utility autoPatch will use an angle criterion to find the patches, and will assign the name

auto0, auto1, auto2 and auto3 to the new patches.

• The angle criterion is similar to that of the utility surfaceFeatures.

• The only difference is that it uses the complement of the angle. So, the smaller the angle the

more patches it will find.

• The naming convention is autoN, where N is the patch number.

• Remember, autoPatch will manipulate the mesh located in the directory

constant/polyMesh.

• FYI, autoPatch does not un in parallel.

Mixing elbow.

snappyHexMesh guided tutorials

497

Mixing elbow.

snappyHexMesh guided tutorials

498

• To restart this case from the latest saved solution and do only the boundary layer meshing,
modify the dictionary snappyHexMeshDict as follows:

castellatedMesh false;

snap false;

addLayers true;

• To generate the mesh restarting from the snapped mesh (or latest time), in the terminal window

type :

• $> snappyHexMesh

• Remember to set in the dictionary controlDict the entry startFrom to latestTime or the time

directory where the snapped mesh is saved (in this case 2).

• At this point, you can work in serial or parallel.

snappyHexMesh guided tutorials

Exercises

• To get a feeling of the includedAngle value, try to change the value in the dictionary
surfaceFeaturesDict.

• Remember the higher the includedAngle value, the more features you will capture.

• In the dictionary snappyHexMeshDict, change the value of resolveFeatureAngle (try to use a lower value),

and check the mesh quality in the intersection between both pipes.

• In the castellatedMeshControls section, try to disable or modify the distance refinement of the

mixing_elbow region (refinementRegions).

• What difference do you see in the output?

• Starting from the body fitted mesh, add 3 inflation layers at the walls (save the intermediate step).

• Try to add local surface refinement at the surface patch inlet2 (look at the STL file
constant/triSurface/surfacemesh_multi.stl).

• Using paraview, extract the feature edge at the joint section of the pipes. Then, try to add local refinement at

this feature edge.

• Try to add curvature refinement at the feature edge extracted from the surface patch inlet1.

499

snappyHexMesh guided tutorials

Exercises

• Use the STL file with a single surface (surfacemesh_single.stl) and generate the same mesh, do not

add inflation layers.

• Use the utility autopatch to split the mesh in different surface patches. To get a feeling on how to use

this utility, use different angle values. Try to get four surface patches.

• After splitting the mesh in four surface patches, rename the boundary patches using the utility
createPatch.

• After renaming the boundary patches, change the type of each one using the utility foamDictionary.

• Starting from the body fitted mesh, add 3 inflation layers at the walls (do not save the intermediate step).

• Hints: if you do not know how to use the utilities createPatch and foamDictionary, look at the

script file run_mesh_single_surface.sh

• After generating the mesh, setup a simple incompressible simulation (with no turbulence model).

• Set the inlet velocity to 1 at both inlet patches and use a dynamic viscosity value equal to 0.01. Run the

simulation in steady and unsteady mode.

500

snappyHexMesh guided tutorials

$PTOFC/101SHM_basic/M4_ahmed

• Meshing with snappyHexMesh – Case 6.

• Ahmed body (external mesh).

• You will find this case in the directory:

501

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

snappyHexMesh guided tutorials

Ahmed body

502

• At this point, we all have a clear idea of how snappyHexMesh works.

• So let us go free styling and play around with this case.

snappyHexMesh guided tutorials

Ahmed body

503

• In our YouTube channel you will find many instructional videos.

• You can find our YouTube channel in the following link:

https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g

• You can also find a playlist dedicated to this case.

• The playlist is titled: CFD workflow tutorial using open-source tools.

• You can find the playlist at this link:

https://www.youtube.com/playlist?list=PLoI86R1JVvv-EN7BsoyomcWJIPaVPXaHO

• In these videos, we show a few extra features and some tips and tricks to take the most out of
snappyHexMesh.

https://www.youtube.com/channel/UCNNBm3KxVS1rGeCVUU1p61g
https://www.youtube.com/playlist?list=PLoI86R1JVvv-EN7BsoyomcWJIPaVPXaHO

snappyHexMesh guided tutorials

Ahmed body

504

• The dictionaries snappyHexMeshDict and blockMeshDict used in this case are very

clean and ready to use.

• Feel free to use them as your templates

• Our best advice is not to get lost in all the options available in the dictionary
snappyHexMeshDict.

• Most of the times the recommended options will work fine.

• That being said, you only need to follow the following steps:

• Read in the geometries.

• Set the feature edges and surface refinement levels.

• Set region refinement (if required).

• Choose in which surfaces you want to add the boundary layers.

• Choose how many layers you want to add and follow the guidelines given during the

lectures so you can get good inflation layers..

snappyHexMesh guided tutorials

Ahmed body

505

• Final advice:

• Use your solid modeling tool or paraFoam/paraview to get visual references.

• Instead of using large surface refinement values, it is better to have finer background

meshes.

• Usually, surface refinement larger than 4 will give problems with the boundary layer.

• To avoid very large background meshes, you can use mesh stretching or local

refinement to concentrate more cells in the region close to the STL surface.

• If you want to generate the boundary layer mesh, do it at the end using the restarting

method.

• If you are working with very complicated geometry, add one layer at a time.

• Always check the quality of your mesh.

snappyHexMesh guided tutorials

506

• As an exercise, try to setup the boundary conditions and run the case with an inlet velocity

of 30 m/s.

• Run with simpleFoam for no more the 300 iterations.

• Do not use turbulence model.

• Use air standard properties.

• Monitor the forces on the body.

Exercises

Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

507

Mesh conversion

• OpenFOAM® gives users a lot of flexibility when it comes to meshing.

• You are not constrained to use OpenFOAM® meshing tools.

• To convert a mesh generated with a third-party software to OpenFOAM® format, you can use

the OpenFOAM® mesh conversion utilities.

• If your format is not supported, you can write your own conversion tool.

• By the way, many of the commercially available meshers can save the mesh in OpenFOAM®

format or in a compatible format.

• In the directory $PTOFC/mesh_conversion_sandbox you will find a few meshes generated

using the most popular third-party mesh generation applications.

• Feel free to play with these meshes.

508

• Remember to always check the file boundary after converting the mesh.

• You will need to change the name and type of the surface patches according to

what you to do.

• When possible, save the mesh in ASCII format in the third-party meshing tools.

• Also, to convert the mesh you need to be in the top level of the case directory,

and you need to give to the conversion utility the path (absolute or relative) of

the mesh to be converted.

• In the directory $FOAM_UTILITIES/mesh/conversion you will find the source code for the

mesh conversion utilities:

• ansysToFoam • kivaToFoam

• cfx4ToFoam • mshToFoam

• datToFoam • netgenNeutralToFoam

• fluent3DMeshToFoam • Optional/ccm26ToFoam

• fluentMeshToFoam • plot3dToFoam

• foamMeshToFluent • sammToFoam

• foamToStarMesh • star3ToFoam

• foamToSurface • star4ToFoam

• gambitToFoam • tetgenToFoam

• gmshToFoam • vtkUnstructuredToFoam

• ideasUnvToFoam • writeMeshObj

Mesh conversion

509

• Take your time and read the instructions/comments contained in the source code of the mesh

conversion utilities so you can understand how to use these powerful tools.

Mesh conversion

510

$PTOFC/mesh_conversion_sandbox/M1_mixing_elbow_salome

• Let us convert to OpenFOAM® format a mesh generated using Salome.

• You will find this case in the directory:

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Case 1. Mixing elbow (internal mesh).

Mesh conversion

• Remember to export the mesh in UNV format in Salome.

• Then use the utility ideasUnvToFoam to convert the mesh to OpenFOAM® native format.

• In the terminal window type:

1. $> foamCleanTutorials

2. $> foamCleanPolyMesh

3. $> ideasUnvToFoam ../../meshes_and_geometries/salome_elbow3d/Mesh_1.unv

4. $> checkMesh

5. $> paraFoam

• Remember to always check the file boundary after converting the mesh.

• To convert the mesh, you need to be in the top level of the case directory, and you need to give

the path (absolute or relative) of the mesh to be converted.

511

Case 1. Mixing elbow (internal mesh).

Mesh conversion

• ideasUnvToFoam output.

Create time

Processing tag:2411

Starting reading points at line 3.

Read 31136 points.

Processing tag:2412

Starting reading cells at line 62278.

First occurrence of element type 11 for cell 1 at line 62279

First occurrence of element type 41 for cell 361 at line 63359

First occurrence of element type 111 for cell 20933 at line 104503

Read 151064 cells and 20572 boundary faces.

Processing tag:2467

Starting reading patches at line 406633.

For group 1 named pipe trying to read 19778 patch face indices.

For group 2 named inlet1 trying to read 358 patch face indices.

For group 3 named inlet2 trying to read 78 patch face indices.

For group 4 named outlet trying to read 358 patch face indices.

Sorting boundary faces according to group (patch)

0: pipe is patch

1: inlet1 is patch

2: inlet2 is patch

3: outlet is patch

Constructing mesh with non-default patches of size:

pipe 19778

inlet1 358

inlet2 78

outlet 358

End

Boundary patches detected

Internal cells and boundary faces read

512

Case 1. Mixing elbow (internal mesh).

Mesh conversion

• checkMesh output.

Mesh stats

points: 31136

faces: 312414

internal faces: 291842

cells: 151064

faces per cell: 4

boundary patches: 4

point zones: 0

face zones: 0

cell zones: 0

Overall number of cells of each type:

hexahedra: 0

prisms: 0

wedges: 0

pyramids: 0

tet wedges: 0

tetrahedra: 151064

polyhedra: 0

Checking topology...

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

Upper triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).

513

Case 1. Mixing elbow (internal mesh).

Mesh conversion

• checkMesh output.

Checking patch topology for multiply connected surfaces...

Patch Faces Points Surface topology

pipe 19778 9938 ok (non-closed singly connected)

inlet1 358 200 ok (non-closed singly connected)

inlet2 78 50 ok (non-closed singly connected)

outlet 358 200 ok (non-closed singly connected)

Checking geometry...

Overall domain bounding box (0 -0.414214 -0.5) (5 5 0.5)

Mesh has 3 geometric (non-empty/wedge) directions (1 1 1)

Mesh has 3 solution (non-empty) directions (1 1 1)

Boundary openness (-1.0302e-17 -6.17232e-17 -1.77089e-16) OK.

Max cell openness = 2.32045e-16 OK.

Max aspect ratio = 4.67245 OK.

Minimum face area = 0.000286852. Maximum face area = 0.010949. Face area magnitudes OK.

Min volume = 2.74496e-06. Max volume = 0.00035228. Total volume = 6.75221. Cell volumes OK.

Mesh non-orthogonality Max: 54.2178 average: 15.1295

Non-orthogonality check OK.

Face pyramids OK.

Max skewness = 0.649359 OK.

Coupled point location match (average 0) OK.

Mesh OK.

End

Everything is OK

514

Case 1. Mixing elbow (internal mesh).

Mesh conversion

• The boundary file.

4

(

pipe

{

type patch;

nFaces 19778;

startFace 291842;

}

inlet1

{

type patch;

nFaces 358;

startFace 311620;

}

inlet2

{

type patch;

nFaces 78;

startFace 311978;

}

outlet

{

type patch;

nFaces 358;

startFace 312056;

}

)

Name of the boundary patches

• In this case, the utility recognized the name of

the boundary patches.

• If you do not like the names feel free to

change them.

• Remember, do not use spaces of strange

symbols.

Number of boundary patches

515

Case 1. Mixing elbow (internal mesh).

Mesh conversion

• The boundary file.

4

(

pipe

{

type patch;

nFaces 19778;

startFace 291842;

}

inlet1

{

type patch;

nFaces 358;

startFace 311620;

}

inlet2

{

type patch;

nFaces 78;

startFace 311978;

}

outlet

{

type patch;

nFaces 358;

startFace 312056;

}

)

Base type of the boundary patches

• In this case, the utility automatically

assigned the base type patch to all

boundary patches.

• Feel free to change the base type

according to your needs.

• In this case, it will be wise to change the

base type of patch pipe to wall.

516

Mesh conversion

Exercises

• Remember, you can change the name and type of the boundary patches manually, but as we want to do
things automatically, we will use the utilities createPatch and foamDictionary

• After converting the mesh to OpenFOAM® format, rename the boundary patches using the utility
createPatch.

• After converting the mesh to OpenFOAM® format, change the type of each boundary patch using the
utility foamDictionary.

• After converting the mesh to OpenFOAM® format, add 5 inflation layers at the walls and save the

intermediate step.

• Check the mesh quality before and after adding the inflation layers.

• After converting/generating the mesh, setup a simple incompressible simulation (with no turbulence model).

• Set the inlet velocity to 1 at both inlet patches and use a dynamic viscosity value equal to 0.01.

• Run the simulation in steady and unsteady mode.

517

Roadmap

1. Meshing preliminaries

2. What is a good mesh?

3. Mesh quality assessment in OpenFOAM®

4. Mesh generation using blockMesh.

5. Mesh generation using snappyHexMesh.

6. snappyHexMesh guided tutorials.

7. Mesh conversion

8. Geometry and mesh manipulation utilities

518

• First of all, by mesh manipulation we mean modifying a valid OpenFOAM® mesh.

• These modifications can be scaling, rotation, translation, mirroring, topological changes, mesh

refinement and so on.

• In the directory $FOAM_UTILITIES/mesh/manipulation you will find the mesh

manipulation utilities. Just to name a few:

Geometry and mesh manipulation utilities

519

• autoPatch • rotateMesh

• checkMesh • setsToZones

• createBaffles • splitMesh

• mergeMeshes • splitMeshRegions

• splitBaffles • stitchMesh

• mirrorMesh • subsetMesh

• polyDualMesh • topoSet

• refineMesh • transformPoints

• renumberMesh • mergeBaffles

• In the directory $FOAM_UTILITIES/mesh/manipulation you will find the following mesh

manipulation utilities.

• Inside each utility directory you will find a *.C file with the same name as the directory. This is

the main file, where you will find the top-level source code and a short description of the utility.

• For instance, in the directory checkMesh, you will find the file checkMesh.C, which is the

source code of the utility checkMesh. In the source code you will find the following description:

Geometry and mesh manipulation utilities

Description

Checks validity of a mesh.

Usage

\b checkMesh [OPTION]

Options:

- \par -allGeometry

Checks all (including non finite-volume specific) geometry

- \par -allTopology

Checks all (including non finite-volume specific) addressing

- \par -meshQuality

Checks against user defined (in \a system/meshQualityDict) quality

settings

- \par -region \<name\>

Specify an alternative mesh region.

- \par -writeSets \<surfaceFormat\>

Reconstruct all cellSets and faceSets geometry and write to

postProcessing directory according to surfaceFormat

(e.g. vtk or ensight). Additionally reconstructs all pointSets and

writes as vtk format.
520

• In OpenFOAM® it is also possible to manipulate the geometries in STL format.

• These modifications can be scaling, rotation, translation, mirroring, topological changes, normal

orientation, and so on.

• In the directory $FOAM_UTILITIES/surface you will find the mesh manipulation utilities. Just

to name a few:

Geometry and mesh manipulation utilities

521

• surfaceAdd • surfaceMeshConvert

• surfaceAutoPatch • surfaceMeshExport

• surfaceBooleanFeatures • surfaceMeshTriangulate

• surfaceCheck • surfaceOrient

• surfaceConvert • surfaceSplitByPatch

• surfaceFeatureConvert • surfaceSubset

• surfaceFeatures • surfaceToPatch

• surfaceInertia • surfaceTransformPoints

• In the directory $FOAM_UTILITIES/surface you will find the following surface manipulation

utilities.

• Inside each utility directory you will find a *.C file with the same name as the directory. This is

the main file, where you will find the top-level source code and a short description of the utility.

• For instance, in the directory surfaceTransformPoints, you will find the file

surfaceTransformPoints.C, which is the source code of the utility

surfaceTransformPoints. In the source code you will find the following description:

Geometry and mesh manipulation utilities

Description

Transform (translate, rotate, scale) a surface.

Usage

\b surfaceTransformPoints "\<transformations\>" \<input\> \<output\>

Supported transformations:

- \par translate=<translation vector>

Translational transformation by given vector

- \par rotate=(\<n1 vector\> \<n2 vector\>)

Rotational transformation from unit vector n1 to n2

- \par Rx=\<angle [deg] about x-axis\>

Rotational transformation by given angle about x-axis

- \par Ry=\<angle [deg] about y-axis\>

Rotational transformation by given angle about y-axis

- \par Rz=\<angle [deg] about z-axis\>

Rotational transformation by given angle about z-axis

- \par Ra=\<axis vector\> \<angle [deg] about axis\>

Rotational transformation by given angle about given axis

- \par scale=\<x-y-z scaling vector\>

Anisotropic scaling by the given vector in the x, y, z

coordinate directions

522

Geometry and mesh manipulation utilities

523

$PTOFC/mesh_quality_manipulation/M5_ahmed_body_transform

• Let us do some surface manipulation.

• For this we will use the ahmed body tutorial.

• You will find this case in the directory:

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Geometry manipulation in OpenFOAM®

Geometry and mesh manipulation utilities

1. $> foamCleanTutorials

2. $> surfaceMeshInfo ./constant/triSurface/ahmed_body.stl

3. $> surfaceCheck ./constant/triSurface/ahmed_body.stl

4.
$> surfaceTransformPoints Rx=15

./constant/triSurface/ahmed_body.stl rotated.stl

5.
$> surfaceTransformPoints translate='(0 0.12 0)'

./constant/triSurface/ahmed_body.stl translated.stl

6.
$> surfaceTransformPoints scale='(0.9 1.1 1.3)'

./constant/triSurface/ahmed_body.stl scaled.stl

7. $> surfaceInertia -density 2700 ./constant/triSurface/ahmed_body.stl

8.
$> surfaceOrient ./constant/triSurface/ahmed_body_wrong_normals.stl

out.stl ‘(1e10 1e10 1e10)’

• We will now manipulate a STL geometry. In the terminal type:

524

Geometry and mesh manipulation utilities

Geometry manipulation in OpenFOAM®

• In step 2 we use the utility surfaceMeshInfo to get general information about the STL (such

as number of faces and so on).

• In step 3 we use the utility surfaceCheck to check the STL file.

• In step 4 we use the utility surfaceTransformPoints to rotate the STL 15 degrees about the

X axis. We read in the STL ./constant/triSurface/ahmed_body.stl and we write out

the STL rotated.stl

• In step 5 we use the utility surfaceTransformPoints to translate the STL. We read in the

STL ./constant/triSurface/ahmed_body.stl and we write out the STL

translated.stl

• In step 6 we use the utility surfaceTransformPoints to scale the STL. We read in the STL

./constant/triSurface/ahmed_body.stl and we write out the STL scaled.stl

• In step 7 we use the utility surfaceInertia to compute the inertia of the STL. We read in the

STL ./constant/triSurface/ahmed_body.stl. Notice that we need to give a reference

density value.

• In step 8 we use the utility surfaceOrient to orient the normals of the STL in the same way.

We read in the STL ./constant/triSurface/ahmed_body_wrong_normals.stl and we

write out the STL out.stl. Notice that we give an outside point or ‘(1e10 1e10 1e10)’, if

this point is outside the STL all normals will be oriented outwards, if the point is inside the STL

all normals will be oriented inwards.
525

Geometry and mesh manipulation utilities

Geometry manipulation in OpenFOAM®

• Pay particular attention to step 8.

• We already have seen that snappyHexMesh computes surface angles using the surface

normals as a reference, so it is extremely important to have the normals oriented in the same

way and preferably outwards.

ahmed_body_wrong_normals.stl STL after orienting all normals in the same

direction.

526

Geometry and mesh manipulation utilities

Geometry manipulation in OpenFOAM®

• To plot the normals in paraview/paraFoam you can use the filter Normal Glyphs

Apply the Normal Glyphs

filter to the STL

Uncheck this option

Scale the vectors to fit the screen

Select the Normal Glyphs from the filter menu

527

Geometry and mesh manipulation utilities

528

$PTOFC/mesh_quality_manipulation/M7_cylinder_transform

• Let us do some mesh manipulation.

• For this we will use the 2D cylinder tutorial.

• You will find this case in the directory:

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Mesh manipulation in OpenFOAM®

Geometry and mesh manipulation utilities

1. $> foamCleanTutorials

2. $> blockMesh

3. $> transformPoints 'Rz=90'

4. $> transformPoints 'scale=(0.01 0.01 0.01)'

5. $> transformPoints 'translate=(0 0 1)'

6. $> createPatch -noFunctionObjects –overwrite

7. $> checkMesh

8. $> paraFoam

• We will now manipulate a mesh. In the terminal type:

529

• In step 3 we use the utility transformPoints to rotate the mesh. We rotate the mesh by 90° about the Z

axis.

• In step 4 we use the utility transformPoints to scale the mesh. We scale the mesh by a factor of '(0.01

0.01 0.01)'.

• In step 5 we use the utility transformPoints to translate the mesh. We translate the mesh by the vector

'(0 0 1)'.

• In step 6 we use the utility createPatch to rename the patches of the mesh. This utility reads the dictionary

system/createPatchDict. Instead of using the utility createPatch we could have modified the

boundary file directly.

• This case is ready to run using the solver buoyantBoussinesqPimpleFoam.

Geometry and mesh manipulation utilities

Mesh manipulation in OpenFOAM®

530

Original mesh

Transformed mesh

After renaming the patches and transforming the mesh, we can

use it to conduct this buoyant flow simulation
www.wolfdynamics.com/wiki/heated_cyl/ani1.gif

http://www.wolfdynamics.com/wiki/heated_cyl.gif

	3_1meshing_preliminaries_and_quality_assessment.pdf
	3_2meshing_blockmesh.pdf
	3_3meshing_OF_SHM.pdf
	3_4mesh_conversion.pdf
	3_5mesh_manipulation.pdf

