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Module 1
OpenFOAM® overview – First tutorial –

Working our way in OpenFOAM® 
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OpenFOAM® brief overview

General description:

• OpenFOAM® stands for Open Source Field Operation and Manipulation.

• OpenFOAM® is first and foremost a C++ library used to solve partial differential equations 

(PDEs), and ordinary differential equations (ODEs).

• It comes with several ready-to-use or out-of-the-box solvers, pre-processing utilities, and post-

processing utilities. 

• It is licensed under the GNU General Public License (GPL).  

• That means it is freely available and distributed with the source code.

• It can be used in massively parallel computers. No need to pay for separate licenses.

• It is under active development.

• It counts with a wide-spread community around the world (industry, academia and research 

labs).
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Multi-physics simulation capabilities:

• OpenFOAM® has extensive multi-physics simulation capabilities, among others:

• Computational fluid dynamics (incompressible and compressible flows).

• Computational heat transfer and conjugate heat transfer.

• Combustion and chemical reactions. 

• Multiphase flows and mass transfer.

• Particle methods (DEM, DSMC, MD) and lagrangian particles tracking.

• Stress analysis and fluid-structure interaction.

• Rotating frames of reference, arbitrary mesh interface, dynamic mesh handling, and 

adaptive mesh refinement.

• 6 DOF solvers, ODE solvers, computational aero-acoustics, computational 

electromagnetics, computational solid mechanics, MHD.

OpenFOAM® brief overview

4



Physical modeling capabilities: 

• OpenFOAM® comes with many physical models, among others:

• Extensive turbulence modeling capabilities (RANS, DES and LES).

• Transport/rheology models. Newtonian and non-Newtonian viscosity models.

• Thermophysical models and physical properties for liquids and gases.

• Source terms models.

• Lagrangian particle models.

• Interphase momentum transfer models for multiphase flows.

• Combustion, flame speed, chemical reactions, porous media, radiation, phase change.

OpenFOAM® brief overview
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Under the hood you will find the following:

• Finite Volume Method (FVM) based solver.

• Collocated polyhedral unstructured meshes.

• Second order accuracy in space and time.  Many discretization schemes available (including 

high order methods).

• Steady and transient solvers available.

• Pressure-velocity coupling via segregated methods (SIMPLE and PISO). 

• But coupled solvers are under active development.

• Massive parallelism through domain decomposition.

• It comes with its own mesh generation tools.

• It also comes with many mesh manipulation and conversion utilities. 

• It comes with many post-processing utilities.

• All components implemented in library form for easy re-use.

OpenFOAM® brief overview
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OpenFOAM® vs. Commercial CFD applications:

• OpenFOAM® capabilities mirror those of commercial CFD applications.

• The main differences with commercial CFD applications are:

• There is no native GUI.

• Knowing your way around the Linux bash shell is extremely useful.

• It does not come with predefined setups.  

• The users need to have a basic understanding of the CFD basics and be familiar with 

OpenFOAM® command line interface (CLI).

• It is not a single executable. 

• Depending of what you are looking for, you will need to execute a specific application 

from the CLI.

• It is not well documented, but the source code is available.

• Access to complete source = no black magic.  But to understand the source code you 

need to know object-oriented programming and C++.

• Solvers can be tailored for a specific need, therefore OpenFOAM® is ideal for research 

and development. 

• It is free and has no limitation on the number of cores you can use.

OpenFOAM® brief overview
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Developing new solvers (in case you need it):

• As the user has complete access to the source code, she/he has total freedom to modify 

existing solvers or use them as the starting point for new solvers.

• New solvers can be easily implemented using OpenFOAM® high level programming,  e.g.:

OpenFOAM® brief overview

solve

(

fvm::ddt(T)

+ fvm::div(phi,T)

- fvm::laplacian(nu,T)

==

0

);

Correspondence between the implementation and the original equation is clear.
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OpenFOAM® is an excellent piece of C++ 

and software engineering. Decent piece of 

CFD code.

H. Jasak

OpenFOAM® brief overview
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If you installed OpenFOAM® in the default location, the 
environment variable $WM_PROJECT_DIR should point 

to the following directory (depending on the installed 

version):

$HOME/OpenFOAM/OpenFOAM-9

or

$HOME/OpenFOAM/OpenFOAM-dev

In this directory you will find all the files containing 

OpenFOAM® installation. 

In this directory you will also find additional files (such as 
README.org, COPYING, etc.), but the most important 

one is Allwmake, which compiles OpenFOAM®.

OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── test

├── tutorials

└── wmake
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OpenFOAM® environment variables

The entries starting with the symbol $ are environment 

variables. You can find out the value of an environment 

variable by echoing its value, for example:

$> echo $WM_PROJECT_DIR

will print out the following information on the terminal,

$HOME/OpenFOAM/OpenFOAM-9

To list all the environment variables, type in the terminal 

window,

$> env

To list all the environment variables related to 

OpenFOAM®, type in the terminal:

$> env | grep –i “OpenFOAM”

OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── test

├── tutorials

└── wmake
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OpenFOAM® aliases

You can go to any of these directories by using the 

predefined aliases set by OpenFOAM® (refer to 
$WM_PROJECT_DIR/etc/config.sh/aliases or 

$WM_PROJECT_DIR/etc/config.csh/aliases).  

Just to name a few of the aliases defined:

alias foam=‘cd $WM_PROJECT_DIR’

alias app=‘cd $FOAM_APP’

alias src=‘cd $FOAM_SRC’

alias tut=‘cd $FOAM_TUTORIALS’

For a complete list type  alias in the terminal.

To list all the aliases related to OpenFOAM®, type in the 

terminal:

$> alias | grep -i “FOAM”

OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── test

├── tutorials

└── wmake
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OpenFOAM® directory organization

$WM_PROJECT_DIR 

├── Allwmake

├── applications

├── bin

├── COPYING

├── doc

├── etc

├── platforms

├── README.org

├── src

├── test

├── tutorials

└── wmake

Let us study each directory inside 
$WM_PROJECT_DIR

• Any modification you add to the source code in 
WM_PROJECT_DIR will affect the whole library.

• Unless you know what are you doing,  do not modify 

anything in the original installation 
($WM_PROJECT_DIR), except for updates!
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OpenFOAM® directory organization

Let us visit the applications directory. Type in the terminal app or                                       

$> cd $WM_PROJECT_DIR/applications.  You will find the following sub-directories:

• solvers, which contains the source code for the distributed solvers.

• test, which contains the source code of several test cases that show the usage of 

some of the OpenFOAM® classes.

• utilities, which contains the source code for the distributed utilities.

There is also an Allwmake script, which will compile all the content of solvers and 

utilities. To compile the test cases in test, go to the desired test case directory and 

compile it by typing wmake.

$WM_PROJECT_DIR/applications 

├── Allwmake

├── solvers

├── test

└── utilities

The applications directory
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OpenFOAM® directory organization

Let us visit the bin directory:

• The bin directory contains many shell 

scripts, such as foamNew, foamLog, 

foamJob, foamNewApp, etc.

• This directory also contains the script 
paraFoam that will launch paraView.

• The foamInfo command prints detailed 

information about an application, a script, 

or a model (including boundary conditions, 

function objects and fvModels).

• To get more information type in the terminal

• $> foamInfo -help

The bin directory

$WM_PROJECT_DIR/bin/

├── foamCleanCase

├── foamCleanTutorials

├── foamCloneCase

├── foamInfo

├── foamJob

├── foamLog

├── foamMonitor

├── foamNew

├── foamNewApp

├── foamNewBC

├── foamNewFunctionObject

├── paraFoam

├── ...

└── tools

The directory tree is not complete
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OpenFOAM® directory organization

Let us visit the doc directory:

• The doc directory contains the documentation 

of OpenFOAM®, namely; user guide, 

programmer’s guide and Doxygen generated 

documentation in html format.

• The Doxygen documentation needs to be 
compiled by typing Allwmake doc in 

$WM_PROJECT_DIR. 

• You can access the Doxygen documentation 

online, http://cpp.openfoam.org/v9

The doc directory

$WM_PROJECT_DIR/doc/

├── Allwmake

├── codingStyleGuide.org

├── Doxygen

├── Guides

└── tools
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OpenFOAM® directory organization

Let us visit the etc directory:

• The etc directory contains the environment  

files, global OpenFOAM® instructions, 

templates, and the default thermochemical 
database thermoData/thermoData

• In the directory caseDicts, you will find many 

templates related to the input files used to setup 

a case in OpenFOAM®. We recommend you 

take some time and explore these files.

• It also contains the super dictionary 
controlDict, where you can set several 

debug flags and the defaults units.

The etc directory

$WM_PROJECT_DIR/etc/

├── bashrc

├── caseDicts

├── cellModels

├── codeTemplates

├── config.csh

├── config.sh

├── controlDict

├── cshrc

├── paraFoam

├── README.org

├── templates

└── thermoData
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OpenFOAM® directory organization

Let us visit the platforms directory. 

• This directory contains the binaries generated when compiling the applications

directory and the libraries generated by compiling the source code in the src directory.

• After compilation, the binaries will be located in the directory 
$WM_PROJECT_DIR/platforms/linux64GccDPInt32OptSYSTEMOPENMPI/bin 

$WM_PROJECT_DIR/platforms/linux64GccDPOpt/lib).

• After compilation, the libraries will be located in the directory 
$WM_PROJECT_DIR/platforms/linux64GccDPInt32OptSYSTEMOPENMPI/lib

The platforms directory

$WM_PROJECT_DIR/platforms/

├── linux64GccDPInt32Opt

│ ├── applications

│ ├── bin

│ ├── lib

│ └── src

└── linux64GccDPInt32OptSYSTEMOPENMPI

└── src
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Let us visit the src directory. Type in the terminal 

src or $> cd $WM_PROJECT_DIR/src

• This directory contains the source code for all 

the foundation libraries, this is the core of 

OpenFOAM®.  

• It is divided in different subdirectories and each 

of them can contain several libraries.

A few interesting directories are:

• OpenFOAM. This core library includes the 

definitions of the containers used for the 

operations, the field definitions, the declaration 

of the mesh and mesh features such as zones 

and sets.

OpenFOAM® directory organization

The src directory

$WM_PROJECT_DIR/src

├── Allwmake

├── combustionModels

├── finiteVolume

├── fvModels

├── lagrangian

├── MomentumTransportModels

├── ...

├── OpenFOAM

├── parallel

├── sampling

├── sixDoFRigidBodyMotion

├── thermophysicalModels

├── transportModels

└── waves

The directory tree is not complete
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A few interesting directories are:

• finiteVolume. This library provides all the 

classes needed for the finite volume 

discretization, such as mesh handling, finite 

volume discretization operators (divergence, 

laplacian, gradient, fvc/fvm and so on), and 

boundary conditions. In the directory 
finiteVolume/lnInclude you also find the 

very important file fvCFD.H, which is included 

in most applications.

• MomentumTransportModels, which contains 

many turbulence models.

• sixDoFRigidBodyMotion. This core library 

contains the solver for rigid body motion.

• transportModels. This core library contains 

many transport models.

OpenFOAM® directory organization

The src directory

The directory tree is not complete
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$WM_PROJECT_DIR/src

├── Allwmake

├── combustionModels

├── finiteVolume

├── fvModels

├── lagrangian

├── MomentumTransportModels

├── ...

├── OpenFOAM

├── parallel

├── sampling

├── sixDoFRigidBodyMotion

├── thermophysicalModels

├── transportModels

└── waves



OpenFOAM® directory organization

The tutorials directory

$WM_PROJECT_DIR/tutorials/

├── Allclean

├── Allrun

├── Alltest

├── basic

├── combustion

├── compressible

├── discreteMethods

├── DNS

├── electromagnetics

├── financial

├── heatTransfer

├── incompressible

├── lagrangian

├── mesh

├── multiphase

├── resources

└── stressAnalysis

Let us visit the tutorials directory. Type in the 

terminal tut or

$> cd $WM_PROJECT_DIR/tutorials

• The tutorials directory contains example 

cases for each solver.  These are the tutorials 

distributed with OpenFOAM®.

• They are organized according to the physics 

involved.

• Use these tutorials as the starting point to 

develop you own cases.

• A word of caution, do not use these     

tutorials as  best practices, they are          

there just to show how to use the 

applications.
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OpenFOAM® directory organization

The wmake directory

$WM_PROJECT_DIR/wmake/

├── makefiles

├── platforms

├── rules

├── scripts

├── src

├── wclean

├── wcleanLnIncludeAll

├── wcleanPlatform

├── wdep

├── wmake

├── ...

├── wmakeFilesAndOptions

├── wmakeLnInclude

├── wmakeLnIncludeAll

├── ...

└── wrmo

Let us visit the wmake directory.

• OpenFOAM® uses a special make 
command: wmake

• wmake understands the file structure in 

OpenFOAM® and uses default compiler 

directives set in this directory.

• If you add a new compiler name in 
OpenFOAM® bashrc file, you should also 

tell wmake how to interpret that name. 

• In wmake/rules you will find the default 

settings for the available compilers.

• In this directory, you will also find a few 

scripts that are useful when organizing your 

files for compilation, or for cleaning up. 

The directory tree is not complete
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• Let us now study OpenFOAM® user directory $WM_PROJECT_USER_DIR 

• When working with OpenFOAM®, you can put your files wherever you want.

• To keep things in order, it is recommended to put your cases in your OpenFOAM® user 
directory or $WM_PROJECT_USER_DIR. 

• It is also recommended to put your modified solvers, utilities, and libraries in your 
OpenFOAM® user directory or $WM_PROJECT_USER_DIR. This is done so you do not 

modify anything in the original installation. 

• If you followed the standard installation instructions, the variable 
$WM_PROJECT_USER_DIR should point to the directory               

$HOME/OpenFOAM/USER_NAME-9, where USER_NAME is the name of the user (e.g., 

johnDoe).

OpenFOAM® directory organization

$HOME/OpenFOAM/

├── $WM_PROJECT_USER_DIR      

└── $WM_PROJECT_DIR

OpenFOAM® user directory
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Looking for information in OpenFOAM® source code 

• To locate files, you can use the find command.  

• If you want to locate a directory inside $WM_PROJECT_DIR that contains the string fvPatch in 

its name, you can proceed as follows,

• $> find $WM_PROJECT_DIR –type d -name “*fvPatch*”

• If you want to locate a file inside $WM_PROJECT_DIR that contains the string fvPatch in its 

name, you can proceed as follows,

• $> find $WM_PROJECT_DIR –type f -name “*fvPatch*”

• If you want to find a string inside a file, you can use the grep command.

• For example, if you want to find the string LES inside all the files within the directory

$FOAM_SOLVERS, you can proceed as follows,

• $> grep -r -n “LES” $FOAM_SOLVERS 

The argument -r means recursive and -n will output the line number.

OpenFOAM® directory organization

Where to look for Look for 

directories
Case 

sensitive

Look for this 

(using wildcards)

Where to look for Look for 

files
Case 

sensitive

Look for this 

(using wildcards)
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• Dictionaries are input files required by OpenFOAM®.

• As you can imagine, there are many dictionaries in OpenFOAM®.  The easiest way to find all of 

them is to do a local search in the installation directory as follows,

• For instance, if you are interested in finding all the files that end with the Dict word in the 
tutorials directory, in the terminal type: 

• $> find $FOAM_TUTORIALS -name “*Dict”

(Case sensitive search)

• $> find $FOAM_TUTORIALS –iname ‘*dict’

(Non-case sensitive search)

• When given the search string, you can use single quotes ‘ ’ or double-quotes “ ” (do not mixed 

them).  

• We recommend to use single quotes, but it is up to you.

Looking for information in OpenFOAM® source code 

OpenFOAM® directory organization
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• A few more advanced commands to find information in your OpenFOAM® installation.

• To find which tutorial files use the boundary condition slip: 

• $> find $FOAM_TUTORIALS -type f | xargs grep -sl ‘ slip’

This command will look for all files inside the directory $FOAM_TUTORIALS, then the 

output is used by grep to search for the string slip.

• To find where the source code for the boundary condition slip is located: 

• $> find $FOAM_SRC -name “*slip*”

• To find what applications do not run in parallel:

• $> find $WM_PROJECT_DIR -type f | xargs grep -sl ‘noParallel’

• OpenFOAM® understands REGEX syntax.

Looking for information in OpenFOAM® source code 

OpenFOAM® directory organization
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Environment variables

OpenFOAM® directory organization

• Remember, OpenFOAM® uses its own environment variables.

• OpenFOAM® environment settings are contained in the OpenFOAM-9/etc directory. 

• If you installed OpenFOAM® in the default location, they should be in:

• $HOME/OpenFOAM/OpenFOAM-9/etc

• If you are running bash or ksh (if in doubt type in the terminal echo $SHELL), you sourced the 

$WM_PROJECT_DIR/etc/bashrc file by adding the following line to your $HOME/.bashrc 

file: 

• source $HOME/OpenFOAM/OpenFOAM-9/etc/bashrc

• By sourcing the file $WM_PROJECT_DIR/etc/bashrc, we start to use OpenFOAM®

environment variables.

• By default, OpenFOAM® uses the system compiler and the system MPI compiler. 

• When you use OpenFOAM® you are using its environment settings, that is, its

path to libraries and compilers. So if you are doing software developing, and

you are having compilation problems due to conflicting libraries or missing

compilers, try to unload OpenFOAM® environment variables
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Directory structure of an OpenFOAM® application/utility

The $WM_PROJECT_DIR/applications/solvers/solverName/ directory contains the 

source code of the solver.

• solverName/appName.C: is the actual source code of the solver.

• solverName/createFields.H: declares all the field variables and initializes the solution.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the solverName name and 

location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the 

solver against. 

$WM_PROJECT_DIR/applications/solvers/solverName/

├── createFields.H

├── appName.C

└── Make

├── files

└── options

Directory structure of a general solver 
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The $WM_PROJECT_DIR/utilities/utilityName/ directory contains the source code of 

the utility.

• utilityName/utilityName.C: is the actual source code of the application.

• utilityName/header_files.H: header files required to compile the application.

• utilityName/utility_dictionary: application’s master dictionary.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the utilityName name 

and location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the 

solver against. 

$WM_PROJECT_DIR/applications/utilities/utilityName/

├── utility_dictionary

├── utilityName.C

├── header_files.H

└── Make

├── files

└── options

Directory structure of a general utility 

Directory structure of an OpenFOAM® application/utility
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• For your own solvers and utilities, it is recommended to put the source code in the directory 
$WM_PROJECT_USER_DIR following the same structure as in  

$WM_PROJECT_DIR/applications/solvers and $WM_PROJECT_DIR/utilities/.

• Also, you will need to modify the files Make/files and Make/options to point to the new 

name and location of the compiled binaries and libraries to link the solver against.

• You can do anything you want to your own copies, so you do not risk messing things up.

• This is done so you do not modify anything in the original installation, except for updates! 

Directory structure of an OpenFOAM® application/utility
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• OpenFOAM® is not a single executable.

• Depending of what you want to do, you will need to use a specific application and there are 

many of them.

• If you are interested in knowing all the solvers, utilities, and libraries that come with your 

OpenFOAM® distribution, read the applications and libraries section in the user guide (chapter 

3). 

• In the directory $WM_PROJECT_DIR/doc you will find the documentation in pdf format.  

• You can also access the online user guide. Go to the link http://cfd.direct/openfoam/user-

guide/#contents, then go to chapter 3 (applications and libraries).

• If you want to get help on how to run an application, type in terminal

Applications/utilities in OpenFOAM®

1. $> application_name -help

• The option –help will not run the application; it will only show all the options available.

• You can also get all the help you want from the source code.
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• You will find all the applications in the directory $FOAM_SOLVERS (you can use the alias sol to 

go there).

• You will find all the utilities in the directory $FOAM_UTILITIES (you can use the alias util to 

go there).

• For example, in the directory $FOAM_SOLVERS, you will find the directories containing the 

source code for the solvers available in the OpenFOAM® installation (version 9):

Applications/utilities in OpenFOAM®

• basic  

• combustion  

• compressible  

• discreteMethods  

• DNS  

• electromagnetics 

• financial 

• heatTransfer  

• incompressible  

• lagrangian  

• multiphase  

• stressAnalysis

• The solvers are subdivided according to the physics they address.

• The utilities are also subdivided in a similar way.
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Applications/utilities in OpenFOAM®

• For example, in the sub-directory incompressible you will find several sub-directories 

containing the source code of the following solvers:

• adjointShapeOptimizationFoam  

• boundaryFoam    

• icoFoam  

• nonNewtonianIcoFoam  

• pimpleFoam  

• pisoFoam   

• shallowWaterFoam  

• simpleFoam

• Inside each directory, you will find a file with the extension *.C and the same name as the 

directory. This is the main file, where you will find the top-level source code and a short 

description of the solver or utility. 

• For example, in the file incompressible/icoFoam/icoFoam.C you will find the following 

description:

Transient solver for incompressible, laminar flow of Newtonian fluids.
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• Remember, OpenFOAM® is not a single executable.

• You will need to find the solver or utility that best fit what you want to do.

• A few solvers that we will use during this course:

• icoFoam: laminar incompressible unsteady solver. Be careful, do not use this solver for 

production runs as it has many limitations.

• simpleFoam: incompressible steady solver for laminar/turbulent flows.

• pimpleFoam: incompressible unsteady solver for laminar/turbulent flows.

• rhoSimpleFoam: compressible steady solver for laminar/turbulent flows.

• rhoPimpleFoam: unsteady compressible solver for (laminar/turbulent flows.

• interFoam: unsteady multiphase solver for separated flows using the VOF method 

(laminar and turbulent flows).

• laplacianFoam: Laplace equation solver.

• potentialFoam: potential flow solver.

• scalarTransportFoam: steady/unsteady general transport equation solver.

Applications/utilities in OpenFOAM®
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• Take your time and explore the source code. 

• Also, while exploring the source code be careful not to add unwanted modifications in the 

original installation. 

• If you modify the source code, be sure to do the modifications in your user directory instead of 

the main source code.

Applications/utilities in OpenFOAM®
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Directory structure of an OpenFOAM® case

case_name

├── 0

│ ├── p

│ └── U

├── constant

│ ├── polyMesh

│ │ ├── boundary

│ │ ├── faces

│ │ ├── neighbour

│ │ ├── owner

│ │ └── points

│ └── transportProperties

├── system

│    ├── controlDict

│    ├── fvSchemes

│    └── fvSolution

└── time_directories

Directory structure of a general case 

• OpenFOAM® uses a very particular directory 

structure for running cases.

• You should always follow the directory structure, 

otherwise, OpenFOAM® will complain.

• To keep everything in order, the case directory is 

often located in the path 
$WM_PROJECT_USER_DIR/run.

• This is not compulsory but highly advisable. You can 

copy the case files anywhere you want. 

• The name of the case directory is given by the user 

(do not use white spaces or strange symbols).   

• Depending of the solver or application you would like 

to use, you will need different files in each sub-

directory.

• Remember, you always run the applications and 

utilities in the top level of the case directory (the 

directory with the name case_name). Not in the 
directory system, not in the directory constant, not 

in the directory 0. 
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Directory structure of an OpenFOAM® case

case_name

├── 0

│ ├── p

│ └── U

├── constant

│ ├── polyMesh

│ │ ├── boundary

│ │ ├── faces

│ │ ├── neighbour

│ │ ├── owner

│ │ └── points

│ └── transportProperties

├── system

│    ├── controlDict

│    ├── fvSchemes

│    └── fvSolution

└── time_directories

Directory structure of a general case 

case_name: the name of the case directory is given by 

the user (do not use white spaces or strange 

symbols). 

This is the top-level directory, where you run the 

applications and utilities. 

system: contains run-time control and solver 

numerics. 

constant: contains physical properties, 

turbulence modeling properties, advanced physics 

and so on.

constant/polyMesh: contains the 

polyhedral mesh information.

0: contains boundary conditions (BC) and initial 

conditions (IC).

time_directories: contains the solution and 

derived fields.  These directories are created by the 

solver automatically and according to the preset 

saving frequency, e.g., 1, 2, 3, 4, … , 100.
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Before we start – Always remember the directory structure

case_name

├── 0

├── constant

│ └── polyMesh

├── system

└── time_directories

• To keep everything in order, the case directory is often located in the path 
$WM_PROJECT_USER_DIR/run.   

• This is not compulsory but highly advisable, you can put the case in any directory of your preference. 

• The name of the case directory if given by the user (do not use white spaces).   

• You run the applications and utilities in the top level of this directory.

• The directory system contains run-time control and solver numerics.

• The directory constant contains physical properties, turbulence modeling properties, advanced physics 

and so on.

• The directory constant/polyMesh contains the polyhedral mesh information.

• The directory 0 contains boundary conditions (BC) and initial conditions (IC).

Running my first OpenFOAM® case setup blindfold
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Before we start – Setting OpenFOAM® cases

• As you will see, it is quite difficult to remember all the dictionary files needed to run each 

application.

• It is even more difficult to recall the compulsory and optional entries of each input file.

• When setting a case from scratch in OpenFOAM®, what you need to do is find a tutorial or a 

case that close enough does what you want to do and then you can adapt it to your physics. 

• Having this in mind, you have two sources of information:

• $WM_PROJECT_DIR/tutorials 
(The tutorials distributed with OpenFOAM®) 

• $PTOFC 

(The tutorials used during this training) 

• If you use a GUI, things are much easier.  However, OpenFOAM® does not come with a native 

GUI interface.

• We are going to do things in the hard way (and maybe the smart way), we are going to use the 

Linux terminal

Running my first OpenFOAM® case setup blindfold
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Running my first OpenFOAM® case setup blindfold

Flow in a lid-driven square cavity – Re = 100

Incompressible flow

Physical and numerical side of the  

problem:

• The governing equations of the problem are the 

incompressible laminar Navier-Stokes equations.

• We are going to work in a 2D domain, but the 

problem can be easily extended to 3D.

• To find the numerical solution we need to 

discretize the domain (mesh generation), set the 

boundary and initial conditions, define the flow 

properties, setup the numerical scheme and solver 

settings, and set runtime parameters (time-step, 

simulation time, saving frequency and so on).

• For convenience, when dealing with 

incompressible flows we will use relative pressure.

• All the dictionary files have been already preset.
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Workflow of the case

Running my first OpenFOAM® case setup blindfold

blockMesh

icoFoam

sampling

functionObjects

paraview
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A word of caution about the solver icoFoam

Running my first OpenFOAM® case setup blindfold
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• The solver icoFoam is targeted for laminar incompressible unsteady solver. 

• We do not recommend the use of this solver for production runs as it has limited post-

processing features and no modeling capabilities.

• Instead of using icoFoam, you are better of with pisoFoam or pimpleFoam.



Pressure field (relative pressure) Velocity magnitude field
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Mesh (very coarse and 2D)

At the end of the day, you should get something like this

48



At the end of the day, you should get something like this

Running my first OpenFOAM® case setup blindfold

Y centerline

X centerline

• And as CFD is not only about pretty colors we should also validate 

the results

High-Re Solutions for incompressible flow using the navier-stokes equations and a multigrid method

U. Ghia, K. N. Ghia, C. T. Shin.

Journal of computational physics, 48, 387-411 (1982)
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• Let us run our first case. Go to the directory:

$PTOFC/101OF/cavity2D 

Running my first OpenFOAM® case setup blindfold
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• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Loading OpenFOAM® environment 

• If you are using the lab workstations, you will need to source OpenFOAM® (load OpenFOAM® 

environment).

• To source OpenFOAM®, type in the terminal:

• $> of9

• To use PyFoam (a plotting utility) you will need to source it.  Type in the terminal:

• $> anaconda3

• Remember, every time you open a new terminal window you need to source OpenFOAM® and 

PyFoam. 

• Also, you might need to load OpenFOAM® again after loading PyFoam.

• By default, when installing OpenFOAM® and PyFoam you do not need to do this.  This is our 

choice as we have many things installed and we want to avoid conflicts between applications.

Running my first OpenFOAM® case setup blindfold
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What are we going to do?

• We will use the lid-driven square cavity tutorial as a general example to show you how to set up 

and run solvers and utilities in OpenFOAM®.

• In this tutorial we are going to generate the mesh using blockMesh. 

• After generating the mesh, we will look for topological errors and assess the mesh quality.  For 
this we use the utility checkMesh.  Later on, we are going to talk about what is a good mesh.

• Then, we will find the numerical solution using icoFoam, which is a transient solver for 

incompressible, laminar flow of Newtonian fluids. By the way, we hope you did not forget where 

to look for this information.

• And we will finish with some quantitative post-processing and qualitative visualization using 
paraFoam and OpenFOAM® utilities.

• While we run this case, we are going to see a lot of information on the screen (standard output 

stream or stdout), but it will not be saved.  This information is mainly related to convergence of 

the simulation, we will talk about this later on.

• A final word, we are going to use the solver icoFoam but have in mind that this is a very basic 

solver with no modeling capabilities and limited post-processing features. 

• Therefore, is better to use pisoFoam or pimpleFoam which are equivalent to icoFoam but 

with many more features.

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold

1. $> cd $PTOFC/101OF/cavity

2. $> ls –l 

3. $> blockMesh 

4. $> checkMesh

5. $> icoFoam

6. $> postProcess -func sampleDict -latestTime

7. $> gnuplot gnuplot/gnuplot_script

8. $> paraFoam 

• Let us run this case blindfold.  

• Later we will study in detail each file and directory.

• Remember, the variable $PTOFC is pointing to the path where you unpacked the tutorials.

• You can create this environment variable or write down the path to the directory.

• In the terminal window type:

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold

• In step 1 we go to the case directory. Remember, $PTOFC is pointing to the path where you 

unpacked the tutorials.

• In step 2 we just list the directory structure (this step is optional). Does it look familiar to you? In 
the directory 0 you will the initial and boundary conditions, in the constant directory you will 

find the mesh information and physical properties, and in the directory system you will find the 

dictionaries that controls the numerics, runtime parameters and sampling.

• In step 3 we generate the mesh.

• In step 4 we check the mesh quality. We are going to address how to assess mesh quality later 

on.

• In step 5 we run the simulation. This will show a lot information on the screen, the standard 

output stream will not be saved.

• In step 6 we use the utility postProcess to do some sampling only of the last saved solution 

(the latestTime flag). This utility will read the dictionary file named sampleDict located in 

the directory system.

• In step 7 we use a gnuplot script to plot the sampled values. Feel free to take a look and reuse 

this script.

• Finally, in step 8 we visualize the solution using paraFoam. In the next slides we are going to 

briefly explore this application.

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam

Menu Bar

Toolbars

Pipeline Browser

Advanced Toggle

Properties panel

3D View/Canvas

Apply button

Press this button to 

load the case or to 

apply a filter

Running my first OpenFOAM® case setup blindfold

55



Crash introduction to paraFoam – Toolbars

• Main Controls

• VCR Controls (animation controls)

• Current Time Controls

• Active Variable Controls

• Representation Toolbar

• Camera Controls (view orientation)

• Center Axes Controls

• Common Filters

• Data Analysis Toolbar

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Mesh visualization
Select Surface With Edges in the Representation Toolbar

Select Solid Color in the 

Active Variable Controls

Select the volume fields to 

visualize. By default it will select 

U and p

Select mesh parts to visualize. 

By default it will automatically 
select internalMesh

Click on the eyeball in 

the Pipeline Browser to 
hide/unhide the object

Fit to screen Select the -Z view

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – 3D View and mouse interaction

Rotate

Zoom

Pan

Zoom

Select view orientation in the Camera Controls

Mouse interaction in the 

3D view

3D View/Canvas

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Fields visualization
Select Last Frame in the VCR Controls

Select U in Active Variable Controls 

Turn on/off color bar

Select Magnitude in the 

drop down menu

Select Surface in the 

Representation Toolbar

Select volume fields to visualize. 

By default it will select U and p.

Current Time Controls
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Crash introduction to paraFoam – Filters

• Filters are functions that generate, extract or derive features from the input data.

• They are attached to the input data.

• You can access the most commonly used filters from the Common Filters toolbar

• You can access all the filters from the menu Filter.

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Filters

• Even if the case is 2D, it will be 

visualized as if it were a 3D case.

• Notice that there is only one cell in 

the Z direction.

• Let us use the slice filter. This filter 

will create a cut plane.

• Let us create a slice normal to the 

Z direction.  

Filters are attached 
to the input data

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Slice filter

1. Select the Slice filter

2. Select the direction Z Normal.  

Additionally you can choose the 

origin of the plane (by default is the 

mid section)

3. Optional - Turn off the 
option Show Plane

4. Press Apply

If you want to erase a filter, 

right click on it and select 
Delete
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Crash introduction to paraFoam – Glyph filter

1. Select the Glyph filter.  This 

filter will be applied on the 
Slice1 filter

2. Filter options

3. Press Apply

4. Color the colors using Solid Color

Notice that the filter 
Glyph was applied on 

the Slice1 filter.

Running my first OpenFOAM® case setup blindfold

Notice that the vectors are plotted in the 

cell vertices.  To plot the vectors at the 
cell centers, use the filter cell 

centers and replot the vectors.
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Crash introduction to paraFoam – Plot Over Line filter

1.a. Select the Plot Over Line

filter.  

1.b. Alternative, you can select Plot 

Over Line filter from the Data 

Analysis Toolbar  

2. Enter the coordinates of the line

3. Press Apply

Notice that we are using the filter in 
a clean Pipeline

Line

Running my first OpenFOAM® case setup blindfold
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Crash introduction to paraFoam – Filters

1. Click on the line chart view (the blue frame indicates that it is the active view)

2. Select the variables to 

plot in the line chart view

3. Optional - To save the 

sampled data in CSV 

format, click on the filter.  
Then click on the File

menu and select the 
option Save Data

4. Optional – Use the VCR Control to change the frame.  
The line chart view will be updated automatically

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold with log files

• In the previous case, we ran the simulation, but we did not save the standard output stream 
(stdout) in a log file.  

• We just saw the information on-the-fly. 

• Our advice is to always save the standard output stream (stdout) in a log file.

• It is of interest to always save the log as if something goes wrong and you would like to do 

troubleshooting, you will need this information.

• Also, if you are interested in plotting the residuals you will need the log file.

• By the way, if at any point you ask us what went wrong with your simulation, it is likely that we 

will ask you for this file. 

• We might also ask for the standard error stream (stderr).

Running my first OpenFOAM® case setup blindfold
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Running the case blindfold with log files

1. $> foamCleanTutorials 

2. $> blockMesh | tee log.blockMesh

3. $> checkMesh | tee log.checkMesh

4. $> icoFoam | tee log.icoFoam

• There are many ways to save the log files.

• From now on, we will use the Linux tee command to save log files.

• To save a log file of the simulation or the output of any utility, you can proceed as follows:

Running my first OpenFOAM® case setup blindfold

The vertical bar or pipelining operator is used to concatenate commands

• You can use your favorite text editor to read the log file (e.g., gedit, vi, emacs).
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• In step 1 we erase the mesh and all the folders, except for 0, constant and system. This 

script comes with your OpenFOAM® installation.

• In step 2, we generate the mesh using the meshing tool blockMesh. We also redirect the 

standard output to an ascii file with the name log.blockMesh (it can be any name). The tee

command will redirect the screen output to the file log.blockMesh and at the same time will 

show you the information on the screen.

• In step 3 we check the mesh quality. We also redirect the standard output to an ascii file with the 
name log.checkMesh (it can be any name). 

• In step 4 we run the simulation. We also redirect the standard output to an ascii file with the 
name log.icoFoam (it can be any name). Remember, the tee command will redirect the 

screen output to the file log.icoFoam and at the same time will show you the information on 

the screen.
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• To postprocess the information contained in the solver log file log.icoFoam, we can use the 

utility foamLog. Type in the terminal:

• $> foamLog log.icoFoam 

• This utility will extract the information inside the file log.icoFoam. The extracted information is 

saved in an editable/plottable format in the directory logs. 

• At this point we can use gnuplot to plot the residuals. 

• Type in the terminal:

• $> gnuplot

Running my first OpenFOAM® case setup blindfold
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• To plot the information extracted with foamLog using gnuplot, we can proceed as follows 

(remember, at this point we are using the gnuplot prompt):

1. gnuplot> set logscale y

Set log scale in the y axis

2. gnuplot> plot ‘logs/p_0’ using 1:2 with lines

Plot the file p_0 located in the directory logs, use columns 1 and 2 in the file p_0, use lines to output the plot.

3. gnuplot> plot ‘logs/p_0’ using 1:2 with lines, ‘logs/pFinalRes_0’ using 1:2 with lines

Here we are plotting to different files. You can concatenate files using comma (,)

4. gnuplot> reset

To reset the scales

5. gnuplot> plot ‘logs/CourantMax_0’ u 1:2 w l

To plot file CourantMax_0. The letter u is equivalent to using. The letters w l are equivalent to with lines

6. gnuplot> set logscale y

7. gnuplot> plot [30:50][] ‘logs/Ux_0’ u 1:2 w l title ‘Ux’,‘logs/Uy_0’ u 1:2 w l title ‘Uy’

Set the x range from 30 to 50 and plot tow files and set legend titles

8. gnuplot> exit

To exit gnuplot
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• The output of step 3 is the following:

• The fact that the initial residuals (red line) are dropping to the same value of the final residuals 

(monotonic convergence), is a clear indication of a steady behavior.
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• It is also possible to plot the log information on the fly. 

• The easiest way to do this is by using PyFoam (you will need to install it):

• $> pyFoamPlotRunner.py [options] <foamApplication>

• If you are using the lab workstations, you will need to source PyFoam.  To source PyFoam, type in the 

terminal:

• $> anaconda3

• If you need help or want to know all the options available,

• $> pyFoamPlotRunner.py –-help

Running my first OpenFOAM® case setup blindfold
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• To run this case with pyFoamPlotRunner.py,  in the terminal type:

• $> pyFoamPlotRunner.py icoFoam

• If you do not feel comfortable using pyFoamPlotRunner.py to run the solver, it is also possible to plot the 

information saved in the log file using PyFoam.  

• To do so you will need to use the utility pyFoamPlotWatcher.py.  

• For example,

• $> icoFoam | tee log.icoFoam

• Then, in a new terminal window launch pyFoamPlotWatcher, as follows,

• $> pyFoamPlotWatcher.py log.icoFoam

• You can also use pyFoamPlotWatcher.py to plot the information saved in an old log file.

Running my first OpenFOAM® case setup blindfold

Running the case blindfold with log files and plotting the residuals

73



• This is a screenshot on my computer. In this case, pyFoamPlotRunner is plotting the initial 

residuals and continuity errors on the fly.
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1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  9                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 format      ascii;

11 class dictionary;

12 object      controlDict;

13 }

14 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

15

16 application     icoFoam;

17

18 startFrom       startTime;

19

20 startTime       0;

21

22 stopAt          endTime;

23

24 endTime         50;

• Your simulation will automatically stop at the time value you set using the keyword endTime in 
the controlDict dictionary.

endTime 50;

• If for any reason you want to stop your simulation before reaching the value set by the keyword 

endTime, you can change this value to a number lower than the current simulation time (you 

can use 0 for instance).  This will stop your simulation, but it will not save your last time-step or 

iteration, so be careful.

Stopping the simulation

Running my first OpenFOAM® case setup blindfold
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• If you want to stop the simulation and save the solution, in the controlDict dictionary made 

the following modification,

stopAt writeNow;

This will stop your simulation and will save the current time-step or iteration.

Stopping the simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  9                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 format      ascii;

11 class dictionary;

12 object      controlDict;

13 }

14 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

15

16 application     icoFoam;

17

18 startFrom       startTime;

19

20 startTime       0;

21

22 stopAt          writeNow;

23

24 endTime         50;
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• The previous modifications can be done on-the-fly, but you will need to set the keyword 
runTimeModifiable to true in the controlDict dictionary.  

• By setting the keyword runTimeModifiable to true, you will be able to modify most of the 

dictionaries on-the-fly.

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  9                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 format      ascii;

11 class dictionary;

12 object      controlDict;

13    }

44

45 runTimeModifiable true;

46

Stopping the simulation
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• You can also kill the process.  For instance, if you did not launch the solver in background, go to its terminal 
window and press ctrl-c. This will stop your simulation, but it will not save your last time-step or iteration, so 

be careful.

• If you launched the solver in background, just identify the process id using top or htop (or any other process 

manager) and terminate the associated process. Again, this will not save your last time-step or iteration.

• To identify the process id of the OpenFOAM® solver or utility, just read screen. At the beginning of the output 

screen, you will find the process id number.

Stopping the simulation
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/*---------------------------------------------------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  9                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

Build  : 4.x-e964d879e2b3

Exec   : icoFoam

Date   : Mar 11 2017

Time   : 23:21:50

Host   : "linux-ifxc"

PID    : 3100

Case   : /home/joegi/my_cases_course/5x/101OF/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Process id number
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• When working locally, we usually proceed in this way:

• $> icoFoam | tee log.icofoam

This will run the solver icoFoam (by the way, this works for any solver or utility), it will save the 

standard output stream in the file log.icofoam and will show the solver output on the fly.  

• If at any moment we want to stop the simulation, and we are not interested in saving the last 
time-step, we press ctrl-c.  

• If we are interested in saving the last time-step, we modify the controlDict dictionary and 

add the following keyword

stopAt writeNow;

• Remember, this modification can be done on the fly. However, you will need to set the keyword 
runTimeModifiable to yes in the controlDict dictionary. 

Stopping the simulation
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• If you want to erase the mesh and the solution in the current case folder, you can type in the 

terminal,

$> foamCleanTutorials

If you are running in parallel, this will also erase the processorN directories.  We will talk about 

running in parallel later.

• If you are looking to only erase the mesh, you can type in the terminal,

$> foamCleanPolyMesh

• If you are only interested in erasing the saved solutions, in the terminal type,

$> foamListTimes -rm

• If you are running in parallel and you want to erase the solution saved in the processorN

directories, type in the terminal,

$> foamListTimes –rm -processor

Cleaning the case folder
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A deeper view to my first OpenFOAM® case setup

• We will take a close look at what we did by looking at the case files. 

• The case directory originally contains the following sub-directories: 0, constant, and system. 

After running icoFoam it also contains the time-step directories 1, 2, 3, ..., 48, 49, 50, the 

post-processing directory postProcessing, and the log.icoFoam file (if you chose to 

redirect the standard output stream).

• The time-step directories contain the values of all the variables at those time-steps (the 
solution). The 0 directory is thus the initial condition and boundary conditions.

• The constant directory contains the mesh and dictionaries for thermophysical, turbulence 

models and advanced physical models.

• The system directory contains settings for the run, discretization schemes and solution 

procedures.

• The postProcessing directory contains the information related to the functionObjects

(we are going to address functionObjects later).

• The icoFoam solver reads these files and runs the case according to those settings.
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• Before continuing, we want to point out the following:

• Each dictionary file in the case directory has a header.

• Lines 1-7 are commented.  

• You should always keep lines 8 to 13, if not, OpenFOAM® will complain.

• According to the dictionary you are using, the class keyword (line 11) will be different.  We 

are going to talk about this later on.

• From now on and unless it is strictly necessary, we will not show the header when listing 

the dictionaries files.

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | =========                 |                                                 |

3 | \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

4 |  \\ /   O peration     | Version:  9                                     |

5 |   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

6 |    \\/     M anipulation  |                                                 |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 format      ascii;

11 class dictionary;

12 object      controlDict;

13    }
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A deeper view to my first OpenFOAM® case setup

Let us explore the case directory
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• In this directory you will find the sub-directory polyMesh and the dictionary file 

transportProperties.

• The transportProperties file is a dictionary for the dimensioned scalar nu, or the kinematic 

viscosity.

A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

18 nu              nu [ 0 2 -1 0 0 0 0 ] 0.01; //Re 100

19    //nu              nu [ 0 2 -1 0 0 0 0 ] 0.001; //Re 1000

• Notice that line 19 is commented.

• The values between square bracket are the units. 

• OpenFOAM® is fully dimensional.  

• You need to define the dimensions for each field dictionary and physical                        

properties defined.  

• Your dimensions shall be consistent.
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No. Property Unit Symbol

1 Mass Kilogram kg

2 Length meters m

3 Time second s

4 Temperature Kelvin K

5 Quantity moles mol

6 Current ampere A

7 Luminuous intensity candela cd

Dimensions in OpenFOAM® (metric system)  

[ 1 (kg), 2 (m), 3 (s), 4 (K), 5 (mol), 6 (A), 7 (cd)]

A deeper view to my first OpenFOAM® case setup
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• Therefore, the dimensioned scalar nu or the kinematic viscosity,

A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

18 nu              nu [ 0 2 -1 0 0 0 0 ] 0.01;

has the following units

[ 0 m^2 s^-1 0 0 0 0 ]

Which is equivalent to
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• In this case, as we are working with an incompressible flow, we only need to define the 

kinematic viscosity.

• Later on, we will ask you to change the Reynolds number, to do so you can change the value of 

nu.  Remember,

A deeper view to my first OpenFOAM® case setup

• You can also change the free stream velocity U or the reference length L.

The constant directory
(and by the way, open each file and go thru its content)
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A deeper view to my first OpenFOAM® case setup

The constant directory
(and by the way, open each file and go thru its content)

• Depending on the physics involved and models used, you will need to define more variables in 
the dictionary transportProperties.

• For instance, for a multiphase case you will need to define the density rho and kinematic 

viscosity nu for each single phase. 

• You will also need to define the surface tension.

• Also, depending on your physical model, you will find more dictionaries in the constant directory. 

• For example, if you need to set gravity, you will need to create the dictionary g.

• If you work with compressible flows you will need to define the dynamic viscosity mu, and many 
other physical properties in the dictionary thermophysicalProperties. 

• As we are not dealing with compressible flows (for the moment), we are not going into details.  
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A deeper view to my first OpenFOAM® case setup

The constant/polyMesh directory
(and by the way, open each file and go thru its content)

• In this case, the polyMesh directory is initially empty. After generating the mesh, it will contain 

the mesh in OpenFOAM® format.

• To generate the mesh in this case, we use the utility blockMesh. This utility reads the dictionary 

blockMeshDict located in the system folder.

• We will briefly address a few important inputs of the blockMeshDict dictionary.

• Do not worry, we are going to revisit this dictionary during the meshing session.

• However, have in mind that rarely you will use this utility to generate a mesh for complex 

geometries.

• Go to the directory system and open blockMeshDict dictionary with your favorite text 

editor, we will use gedit.
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The system/blockMeshDict dictionary 

• The blockMeshDict dictionary first defines a list with a number of vertices:

• The keyword convertToMeters (line 17), is a scaling factor.  In this case 

we do not scale the dimensions.

• In the section vertices (lines 37-58), we define the vertices coordinates of 

the geometry. In this case, there are eight vertices defining the geometry. 

OpenFOAM® always uses 3D meshes, even if the simulation is 2D.

• We can directly define the vertex coordinates in the section vertices  

(commented lines 49-56), or we can use macro syntax.

• Using macro syntax, we first define a variable and its value (lines 19-24), 

and then we can use them by adding the symbol $ to the variable name 

(lines 39-46).

• In lines 26-28, we define a set of variables that will be used at a later time. 

These variables are related to the number of cells in each direction.

• Finally, notice that the vertex numbering starts from 0 (as the counters in 

c++). This numbering applies for blocks as well.

17 convertToMeters 1;

18 

19 xmin 0;

20 xmax 1;

21 ymin 0;

22 ymax 1;

23 zmin 0;

24 zmax 1;        

25

26 xcells 20;

27 ycells 20;

28 zcells 1;

29 

37 vertices

38 (

39 ($xmin  $ymin  $zmin) //vertex 0

40 ($xmax  $ymin  $zmin) //vertex 1

41 ($xmax  $ymax  $zmin) //vertex 2

42 ($xmin  $ymax  $zmin) //vertex 3

43 ($xmin  $ymin  $zmax) //vertex 4

44 ($xmax  $ymin  $zmax) //vertex 5

45 ($xmax  $ymax  $zmax) //vertex 6

46 ($xmin  $ymax  $zmax) //vertex 7

47 

48 /*

49 (0 0 0)

50 (1 0 0)

51 (1 1 0)

52 (0 1 0)

53 (0 0 0.1)

54 (1 0 0.1)

55 (1 1 0.1)

56 (0 1 0.1)

57 */

58 );
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A deeper view to my first OpenFOAM® case setup
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The blockMeshDict dictionary. 

• In lines 60-63, we define the block topology.

• In line 62, the hex keyword means that it is a structured hexahedral block. 

• In this case, we are generating a rectangular mesh using a single block.

• In the same line, (0 1 2 3 4 5 6 7) are the vertices used to define the block (and yes, the order is important).

• Each hex block is defined by eight vertices in sequential order and where the first vertex in the list represents 

the origin of the coordinate system (vertex 0 in this case).

• ($xcells $ycells $zcells) is the number of mesh cells in each direction (X Y Z).  Notice that we are using 

macro syntax, and we compute the values using inline calculations.

• simpleGrading (1 1 1) is the grading or mesh stretching in each direction (X Y Z), in this case the mesh is 

uniform.  We will deal with mesh grading/stretching in the next case.

60  blocks

61  (

62  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

63  );

64  

65  edges

66  (

69  );



A deeper view to my first OpenFOAM® case setup
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The blockMeshDict dictionary. 

• Let us talk about the block ordering hex (0 1 2 3 4 5 6 7), which is extremely important (line 62).

• hex blocks are defined by eight vertices in sequential order; where the first vertex in the list represents the 

origin of the coordinate system (vertex 0 in this case). Starting from this vertex, we construct the block 

topology. 

• In this case, the first part of the block is made up by vertices 0 1 2 3 and the second part of the block is made 

up by vertices 4 5 6 7 (notice that we start from vertex 4 which is the projection in the Z-direction of vertex 0).

• Notice that the vertices are ordered in such a way that if we look at the screen/paper (-z direction), the vertices 

rotate counter-clockwise.

• If you add a second block, you must identify the first vertex and starting from it, you must construct the block 

topology (in this case you will need to merges faces, you will find more information about merging faces in the 

supplement lectures).

60  blocks

61  (

62  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

63  );

64  

65  edges

66  (

69  );



A deeper view to my first OpenFOAM® case setup
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The blockMeshDict dictionary. 

• In lines 65-69, we define edges. 

• Edges, are constructed from the vertices definition.

• Each edge joining two vertices is assumed to be straight by default.

• The user can specify any edge to be curved by entries in the section edges. 

• Possible options are Bspline, arc, line, polyline, project, projectCurve, spline.

• For example, to define an arc we first define the vertices to be connected to form an edge and then we give an 

interpolation point.

• To define a polyline, we first define the vertices to be connected to form an edge and then we give a list of  the 

coordinates of the interpolation points.

• In this case and as we do not specify anything, all edges are assumed to be straight lines.

60  blocks

61  (

62  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

63  );

64  

65  edges

66  (

69  );
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The system/blockMeshDict dictionary 

• The blockMeshDict dictionary also defines the boundary patches:
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71 boundary

72 (

73 movingWall

74 {

75 type wall;

76 faces

77 (

78 (3 7 6 2)

79 );

80 }

81 fixedWalls

82 {

83 type wall;

84 faces

85 (

86 (0 4 7 3)

87 (2 6 5 1)

88 (1 5 4 0)

89 );

90 }

91 frontAndBack

92 {

93 type empty;

94 faces

95 (

96 (0 3 2 1)

97 (4 5 6 7)

98 );

99 }

100    );

Name

Type

Connectivity

• In the section boundary, we define all the surface 

patches where we want to apply boundary conditions.

• This step is of paramount importance, because if we do 

not define the surface patches, we will not be able to 

apply the boundary conditions.

• For example: 

• In line 73 we define the patch name movingWall 

(the name is given by the user).

• In line 75 we give a base type to the surface patch. 

In this case wall (do not worry we are going to talk 

about this later on).

• In line 78 we give the connectivity list of the 

vertices that made up the surface patch or face, 

that is, (3 7 6 2). Have in mind that the vertices 

need to be neighbors and it does not matter if the 

ordering is clockwise or counterclockwise.

• Remember, faces are defined by a list of 4 vertex 

numbers, e.g., (3 7 6 2).



A deeper view to my first OpenFOAM® case setup

The system/blockMeshDict dictionary 

• To sum up, the blockMeshDict dictionary generates in this case a single block with: 

• X/Y/Z dimensions: 1.0/1.0/1.0

• Cells in the X, Y and Z directions: 20 x 20 x 1 cells. 

• One single hex block with straight lines.

• Patch type wall and patch name fixedWalls at three sides.

• Patch type wall and patch name movingWall at one side. 

• Patch type empty and patch name frontAndBack patch at two sides.

• If you are interested in visualizing the actual block topology, you can use paraFoam as follows,

• $> paraFoam –block
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A deeper view to my first OpenFOAM® case setup

The system/blockMeshDict dictionary 

• As you can see, the blockMeshDict dictionary can be really tricky.

• If you deal with easy geometries (rectangles, cylinders, and so on), then you can use 
blockMesh to do the meshing, but this is the exception rather than the rule.

• When using snappyHexMesh, (a body fitted mesher that comes with OpenFOAM®) you will 

need to generate a background mesh using blockMesh. We are going to deal with this later on.

• Our best advice is to create a template and reuse it.

• Also, take advantage of macro syntax for parametrization, and #calc syntax to perform inline 
calculations (lines 30-35 in the blockMeshDict dictionary we just studied).

• We are going to deal with #codeStream syntax and #calc syntax during the programming 

session.
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• First of all, this file is automatically generated after you create the mesh using blockMesh or 

snappyHexMesh, or when you convert the mesh from a third-party format. 

• In this file, the geometrical information related to the base type patch of each boundary (or 

surface patch) of the domain is specified.

• The base type boundary condition is the actual surface patch where we are going to apply a 

numerical type boundary condition (or numerical boundary condition).

• The numerical type boundary condition assign a field value to the surface patch (base type).

• We define the numerical type patch (or the value of the boundary condition), in the directory 0

or time directories.

The constant/polyMesh/boundary dictionary
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• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

17    3

18 (

19 movingWall 

20 { 

21 type wall;

22 inGroups 1(wall);

23 nFaces 20;

24 startFace 760;

25 }

26 fixedWalls

27 { 

28 type wall;

29 inGroups 1(wall);

30 nFaces 60;

31 startFace 780;

32 }

33 frontAndBack 

34 { 

35 type empty;

36 inGroups 1(empty);

37 nFaces 800;

38 startFace 840;

39 }

40 )

Number of surface patches

In the list bellow there must be 3 patches 

definition.

fixedWall

fi
x

e
d

W
a

ll

frontAndBack

movingWall

fi
x

e
d

W
a

ll

frontAndBack

99



• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

Name and type of the surface patches

• The name and type of the patch is given by 

the user.

• In this case the name and type was assigned 
in the dictionary blockMeshDict.

• You can change the name if you do not like it.  

Do not use strange symbols or white spaces.

• You can also change the base type.  For 

instance, you can change the type of the 

patch movingWall from wall to patch.

• When converting the mesh from a third-party 

format, OpenFOAM® will try to recover the 

information from the original format.  But it 

might happen that it does not recognizes the 

base type and name of the original file.  In this 

case you will need to modify this file manually.

17    3

18 (

19 movingWall 

20 { 

21 type wall;

22 inGroups 1(wall);

23 nFaces 20;

24 startFace 760;

25 }

26 fixedWalls

27 { 

28 type wall;

29 inGroups 1(wall);

30 nFaces 60;

31 startFace 780;

32 }

33 frontAndBack 

34 { 

35 type empty;

36 inGroups 1(empty);

37 nFaces 800;

38 startFace 840;

39 }

40 )

Name

Type
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17    3

18 (

19 movingWall 

20 { 

21 type wall;

22 inGroups 1(wall);

23 nFaces 20;

24 startFace 760;

25 }

26 fixedWalls

27 { 

28 type wall;

29 inGroups 1(wall);

30 nFaces 60;

31 startFace 780;

32 }

33 frontAndBack 

34 { 

35 type empty;

36 inGroups 1(empty);

37 nFaces 800;

38 startFace 840;

39 }

40 )

• In this case, the file boundary is divided as follows

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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inGroups keyword

• This keyword is optional. You can erase this information safely.

• It is used to group patches during visualization in 

ParaView/paraFoam.  If you open this mesh in paraFoam you will 

see that there are two groups, namely: wall and empty.

• As usual, you can change the name.

• If you want to put  a surface patch in two groups, you can proceed 

as follows: 

2(wall wall1)

In this case the surface patch belongs to the groups wall and

wall1.

• Groups can have more than one patch.

nFaces and startFace keywords

• Unless you know what are you doing, you do not need to        

modify this information.

• This information is related to the starting face and ending face of 

the boundary patch in the mesh data structure.

• This information is created automatically when generating the 

mesh or converting the mesh.
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The constant/polyMesh/boundary dictionary

• There are a few base type patches that are constrained or paired.  This means that the type 
should be the same in the boundary file and in the numerical boundary condition defined in the 

field files, e.g., the files 0/U and 0/p.

• In this case, the base type of the patch frontAndBack (defined in the file boundary), is 

consistent with the numerical type patch defined in the field files 0/U and 0/p.  They are of 

the type empty.  

• Also, the base type of the patches movingWall and fixedWalls (defined in the file boundary), 

is consistent with the numerical type patch defined in the field files 0/U and 0/p.

• This is extremely important, especially if you are converting meshes as not always the type of 

the patches is set as you would like.

• Hence, it is highly advisable to do a sanity check and verify that the base type of the patches 
(the type defined in the file boundary), is consistent with the numerical type of the patches 

(the patch type defined in the field files contained in the directory 0 (or whatever time directory 

you defined the boundary and initial conditions).

• If the base type and numerical type boundary conditions are not consistent, OpenFOAM® will 

complain.

• Do not worry, we are going to address boundary conditions later on.
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• The following base type boundary conditions are constrained or paired. That is, the type needs 
to be same in the boundary dictionary and field variables dictionaries (e.g., U, p).

constant/polyMesh/boundary 0/U - 0/p (IC/BC)

symmetry

symmetryPlane

empty

wedge

cyclic

processor

symmetry

symmetryPlane

empty

wedge

cyclic

processor

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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• The base type patch can be any of the numerical or derived type boundary conditions 

available in OpenFOAM®.  Mathematically speaking; they can be Dirichlet, Neumann or Robin 

boundary conditions.

constant/polyMesh/boundary 0/U - 0/p (IC/BC)

patch

calculated

fixedValue

flowRateInletVelocity

freestream

inletOutlet

slip

totalPressure

zeroGradient

… and  o on

Refer to the doxygen documentation or the source code for a list 

of all numerical boundary conditions available.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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• The wall base type boundary condition is defined as follows:

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

wall
type fixedValue;

value uniform (0 0 0);
zeroGradient

• This boundary condition is not contained in the patch base type boundary condition group, 

because specialize modeling options can be used on this boundary condition.  

• An example is turbulence modeling, where turbulence can be generated or dissipated at the 

walls.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary
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• The name of the base type boundary condition and the name of the numerical type boundary 

condition needs to be the same, if not, OpenFOAM® will complain.

• Pay attention to this, specially if you are converting the mesh from another format.

A deeper view to my first OpenFOAM® case setup

The constant/polyMesh/boundary dictionary

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

movingWall 

fixedWalls

frontAndBack 

movingWall 

fixedWalls

frontAndBack

movingWall 

fixedWalls

frontAndBack

• As you can see, all the names are the same across all the dictionary files.
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The system directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be used for the 

different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear equation system. 

• Do not worry, we are going to study in detail the most important entries of each dictionary (the 

compulsory entries).

• If you forget a compulsory keyword or give a wrong entry to the keyword, OpenFOAM® will 

complain and it will let you what are you missing.  This applies for all the dictionaries in the 

hierarchy of the case directory.

• There are many optional parameters, to know all of them refer to the doxygen documentation or 

the source code.  Hereafter we will try to introduce a few of them.

• OpenFOAM® will not complain if you are not using optional parameters, after all, they are 

optional.  However, if the entry you use for the optional parameter is wrong OpenFOAM® will let 

you know.
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The controlDict dictionary

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          endTime;

24

25 endTime         50;

26

27 deltaT          0.01;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• The controlDict dictionary contains runtime simulation controls, such as, 

start time, end time, time-step, saving frequency and so on. 

• Most of the entries are self-explanatory.

• This case starts from time 0 (keyword startFrom – line 19 – and keyword 

startTime  – line 21 –).  If you have the initial solution in a different time 

directory, just enter the number in line 21. 

• The case will stop when it reaches the desired time set using the keyword 

stopAt (line 23). 

• It will run up to 50 seconds (keyword endTime – line 25 –). 

• The time-step of the simulation is 0.01 seconds (keyword deltaT              – line 

27 –). 

• It will write the solution every second (keyword writeInterval – line 31 –) of 

simulation time (keyword runTime – line 29 –). 

• It will keep all the solution directories (keyword purgeWrite – line 33 –).  If you 

want to keep only the last 5 solutions just change the value to 5. 

• It will save the solution in ascii format (keyword writeFormat – line 35 –) with a 

precision of 8 digits (keyword writePrecision – line 37 –). 

• And as the option runTimeModifiable (line 45) is on (true), we can modify all 

these entries while we are running the simulation.

• FYI, you can modify the entries on-the-fly for most of the dictionaries files.
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The controlDict dictionary

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt          banana;

24

25 endTime         50;

26

27 deltaT          0.01;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• So how do we know what options are available for each keyword?

• The hard way is to refer to the source code.

• The easy way is to use the banana method.

• So, what is the banana method? This method consist in inserting a dummy word 

(that does not exist in the installation) and let OpenFOAM® list the available 

options.

• For example. If you add banana in line 23, you will get this output:

banana is not in enumeration 

4 

( 

nextWrite

writeNow 

noWriteNow 

endTime 

)

• So, your options are nextWrite, writeNow, noWriteNow, endTime

• And how do we know that banana does not exist in the source code? Just type in 

the terminal:

• $> src

• $> grep –r –n banana .

• If you see some bananas in your output someone is messing around with your 

installation.

• Remember, you can use any dummy word, but you have to be sure that it does 

not exist in OpenFOAM®.
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The controlDict dictionary

17 application     icoFoam;

18

19 startFrom       startTime;

20

21 startTime       0;

22

23 stopAt endTime;

24

25 //endTime         50;

26

27 deltaT          0.01;

28

29 writeControl    runTime;

30

31 writeInterval   1;

32

33 purgeWrite      0;

34

35 writeFormat     ascii;

36

37 writePrecision  8;

38

39 writeCompression off;

40

41 timeFormat      general;

42

43 timePrecision   6;

44

45 runTimeModifiable true;

• If you forget a compulsory keyword, OpenFOAM® will tell you what 

are you missing.

• So, if you comment line 25, you will get this output:

--> FOAM FATAL IO ERROR

keyword endTime is undefined in dictionary …

• This output is just telling you that you are missing the keyword 

endTime.

• Do not pay attention to the words FATAL ERROR, maybe the 

developers of OpenFOAM® exaggerated a little bit.
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The fvSchemes dictionary

17 ddtSchemes

18 {

19 default         backward;

20 }

21 

22 gradSchemes

23 {

24 default         Gauss linear;

25 grad(p)         Gauss linear;

26 }

27 

28 divSchemes

29 {

30 default         none;

31 div(phi,U)      Gauss linear;

32

33 div((nuEff*dev2(T(grad(U))))) Gauss linear;

34 }

35 

36 laplacianSchemes

37 {

38 //default         Gauss linear orthogonal;

39 default         Gauss linear limited 1;

40 }

41 

42 interpolationSchemes

43 {

44 default         linear;

45 }

46 

47 snGradSchemes

48 {

49 //default         orthogonal;

50 default         limited 1;

51 }

• The fvSchemes dictionary contains the information related to 

the discretization schemes for the different terms appearing in 

the governing equations.

• As for the controlDict dictionary, the parameters can be 

changed on-the-fly.

• Also, if you want to know what options are available, just use 

the banana method.

• In this case we are using the backward method for time 

discretization (ddtSchemes). For gradients discretization 

(gradSchemes) we are using Gauss linear method. For the 

discretization of the convective terms (divSchemes) we are 

using linear interpolation for the term div(phi,U). 

• For the discretization of the Laplacian (laplacianSchemes and 

snGradSchemes) we are using the Gauss linear method with 

limited 1 corrections (to handle mesh non-orthogonality and 

non-uniformity).

• The method we are using is second order accurate but 

oscillatory.  We are going to talk about the properties of the 

numerical schemes later.

• Remember, at the end of the day we want a solution that is 

second order accurate.
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The fvSolution dictionary

17 solvers

18 {

19 p

20 {

21 solver          PCG;

22 preconditioner  DIC;

23 tolerance       1e-06;

24 relTol          0;

39 }

40 

41 pFinal

42 {

43 $p;

44 relTol          0;

45 }

46 

47 U

48 {

49 solver          smoothSolver;

50 smoother        symGaussSeidel;

51 tolerance       1e-08;

52 relTol          0;

53 }

54 }

55 

56 PISO

57 {

61 nCorrectors     1;

62 nNonOrthogonalCorrectors 1;

63 pRefCell        0;

64 pRefValue       0;

65 }
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• The fvSolution dictionary contains the instructions of how 

to solve each discretized linear equation system. The equation 

solvers, tolerances, and algorithms are controlled from the sub-

dictionary solvers. 

• In the dictionary file fvSolution (and depending on the solver 

you are using), you will find the additional sub-dictionaries 

PISO, PIMPLE, SIMPLE, and relaxationFactors. These 

entries will be described later.

• As for the controlDict and fvSchemes dictionaries, the 

parameters can be changed on-the-fly.

• Also, if you want to know what options are available just use 

the banana method.

• In this case, to solve the pressure (p) we are using the PCG

method, with the preconditioner DIC, an absolute tolerance

equal to 1e-06 and a relative tolerance relTol equal to 0. 

• The entry pFinal refers to the final pressure correction (notice 

that we are using macro syntax), and we are using a relative 

tolerance relTol equal to 0.  We are putting more computational 

effort in the last iteration. 

• In this case, we are using the same tolerances for p and 

pFinal. However, you can use difference tolerances, where 

usually you use a tighter tolerance in pFinal.
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The fvSolution dictionary

17 solvers

18 {

19 p

20 {

21 solver          PCG;

22 preconditioner  DIC;

23 tolerance       1e-06;

24 relTol          0;

39 }

40 

41 pFinal

42 {

43 $p;

44 relTol          0;

45 }

46 

47 U

48 {

49 solver          smoothSolver;

50 smoother        symGaussSeidel;

51 tolerance       1e-08;

52 relTol          0;

53 }

54 }

55 

56 PISO

57 {

58 nCorrectors     1;

59 nNonOrthogonalCorrectors 0;

60 pRefCell        0;

61 pRefValue       0;

62 }

• To solve U, we are using the smoothSolver method, with the 

smoother symGaussSeidel, an absolute tolerance equal to 

1e-08 and a relative tolerance relTol equal to 0. 

• The solvers will iterative until reaching any of the tolerance 

values set by the user or reaching a maximum value of 

iterations (optional entry). 

• FYI, solving for the velocity is relatively inexpensive, whereas 

solving for the pressure is expensive.

• The PISO sub-dictionary contains entries related to the 

pressure-velocity coupling method (the PISO method).

• In this case we are doing only one PISO correction and no 

orthogonal corrections.

• You need to do at least one PISO loop (nCorrectors).
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The system directory
(optional dictionary files)
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• In the system directory you will also find these two additional files:

• decomposeParDict 

• sampleDict

• decomposeParDict is read by the utility decomposePar.  This dictionary file contains 

information related to the mesh partitioning. This is used when running in parallel.  We will 

address running in parallel later.

• sampleDict is read by the utility postProcess.  This utility sample field data (points, lines or 

surfaces).  In this dictionary file we specify the sample location and the fields to sample.  The 

sampled data can be plotted using gnuplot or Python. 
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The sampleDict dictionary

17 type sets;

18

19 setFormat raw;

20 

23 interpolationScheme cellPointFace;

24 

26 fields

27 (

28 U

29 );

30 

31 sets

32 (

33 

34 l1

35 {

38 type            lineFace;

43 axis            x;

44 start           ( -1  0.5 0);

45 end             ( 2  0.5 0);

46 }

47 

48 l2

49 {

52 type            lineFace;

57 axis            y;

58 start           (0.5 -1 0);

59 end             (0.5 2 0);

60 }

61 

62 );

Format of the output file, raw format is a generic format 

that can be read by many applications.  The output file is 
human readable (ascii format).

Interpolation method at the solution level (location of the 
interpolation points).

Fields to sample.

Location of the sample line. We define start and end 
point, and the axis of the sampling.

Location of the sample line. We define start and end 
point, and the axis of the sampling.

Sample method.  How to interpolate the solution to the 
sample entity (line in this case)

Sample method from the solution to the line.

Type of sampling, sets will sample along a line.
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The sampleDict dictionary

Name of the output file

Name of the output file

The sampled information is always saved in the 

directory,

postProcessing/name_of_input_dictionary

As we are sampling the latest time solution (50) and 
using the dictionary sampleDict, the sampled data 

will be located in the directory:

postProcessing/sampleDict/50

The files l1_U.xy and l2_U.xy located in the 

directory postProcessing/sampleDict/50 

contain the sampled data. Feel free to open them using 

your favorite text editor.
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17 type sets;

18

19 setFormat raw;

20 

23 interpolationScheme cellPointFace;

24 

26 fields

27 (

28 U

29 );

30 

31 sets

32 (

33 

34 l1

35 {

38 type            lineFace;

43 axis            x;

44 start           ( -1  0.5 0);

45 end             ( 2  0.5 0);

46 }

47 

48 l2

49 {

52 type            lineFace;

57 axis            y;

58 start           (0.5 -1 0);

59 end             (0.5 2 0);

60 }

61 

62 );



• The 0 directory contains the initial and boundary conditions for all primitive variables, in this case 

p and U.  The U file contains the following information (velocity vector):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 1 -1 0 0 0 0];

18 

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            fixedValue;

26 value           uniform (1 0 0);

27 }

28 

29 fixedWalls

30 {

31 type            fixedValue;

32 value           uniform (0 0 0);

33 }

34 

35 frontAndBack

36 {

37 type            empty;

38 }

39 }

Dimensions of the field

Uniform initial conditions.

The velocity field is initialized to (0 0 0) in 

all the domain

Remember velocity is a vector with three 
components, therefore the notation (0 0 0).

Note:
If you take some time and compare the files 0/U and

constant/polyMesh/boundary, you will see that the name and type of each 

numerical type patch (the patch defined in 0/U), is consistent with the base 

type patch (the patch defined in the file constant/polyMesh/boundary).
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• The 0 directory contains the initial and boundary conditions for all primitive variables, in this case 

p and U.  The U file contains the following information (velocity):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 1 -1 0 0 0 0];

18 

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            fixedValue;

26 value           uniform (1 0 0);

27 }

28 

29 fixedWalls

30 {

31 type            fixedValue;

32 value           uniform (0 0 0);

33 }

34 

35 frontAndBack

36 {

37 type            empty;

38 }

39 }

Numerical boundary condition for the patch 
movingWall

Numerical boundary condition for the patch 
fixedWalls

Numerical boundary condition for the patch 

frontAndBack (this is a constrained boundary 
condition).

Dimensions of the field
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• The 0 directory contains the initial and boundary conditions for all primitive variables, in this case 

p and U.  The p file contains the following information (modified pressure):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 2 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            zeroGradient;

26 }

27 

28 fixedWalls

29 {

30 type            zeroGradient;

31 }

32 

33 frontAndBack

34 {

35 type            empty;

36 }

37 }

38 

Dimensions of the field

Uniform initial conditions.

The modified pressure field is initialized to 0

in all the domain. This is relative pressure.

Note:
If you take some time and compare the files 0/p and

constant/polyMesh/boundary, you will see that the name and type of each 

numerical type patch (the patch defined in 0/p), is consistent with the base 

type patch (the patch defined in the file constant/polyMesh/boundary).
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• The 0 directory contains the initial and boundary conditions for all primitive variables, in this case 

p and U.  The p file contains the following information (modified pressure):

The 0 directory
(and by the way, open each file and go thru its content)

A deeper view to my first OpenFOAM® case setup

17 dimensions      [0 2 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 movingWall

24 {

25 type            zeroGradient;

26 }

27 

28 fixedWalls

29 {

30 type            zeroGradient;

31 }

32 

33 frontAndBack

34 {

35 type            empty;

36 }

37 }

38 

Dimensions of the field

Numerical boundary condition for the patch 
movingWall

Numerical boundary condition for the patch 
fixedWalls

Numerical boundary condition for the patch 

frontAndBack (this is a constrained boundary 
condition).
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• We just used icoFoam which is an incompressible solver.

• Let us be really loud on this. All the incompressible solvers implemented in OpenFOAM® 
(icoFoam, simpleFoam, pisoFoam, and pimpleFoam), use the modified pressure, that is, 

A deeper view to my first OpenFOAM® case setup

• Or in OpenFOAM® jargon: dimensions [0 2 -2 0 0 0 0]

• So, when visualizing or post processing the results do not forget to multiply the pressure by 

the density in order to get the right units of the physical pressure, that is,

• Or in OpenFOAM® jargon: dimensions [1 -1 -2 0 0 0 0] 

A very important remark on the pressure field

with units
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/*--------------------------------*- C++ -*----------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  9                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

FoamFile

{

format      ascii;

class       volScalarField;

object      p;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

A deeper view to my first OpenFOAM® case setup

• Coming back to the headers, and specifically the headers related to the field variable 
dictionaries (e.g., U, p, gradU, and so on).

• In the header of the field variables, the class type should be consistent with the type of field 

variable you are using.  

• Be careful with this, specially if you are copying and pasting files.

• If the field variable is a scalar, the class should be volScalarField.
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/*--------------------------------*- C++ -*----------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  9                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

FoamFile

{

format      ascii;

class       volTensorField;

object      gradU;

}

• If the field variable is a vector, the class should be volVectorField.
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/*--------------------------------*- C++ -*----------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  9                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

FoamFile

{

format      ascii;

class       volVectorField;

object      U;

}

• If the field variable is a tensor (e.g., the velocity gradient tensor), the class should be 

volTensorField.



• Finally, let us talk about the output screen, which shows a lot of information.

The output screen

A deeper view to my first OpenFOAM® case setup
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Simulation time

Courant number

Execution time (wall time)

Additional information

Minimum and maximum values of each field variable

Velocity residuals

Continuity errors

Pressure residuals

No orthogonal corrections

Only one PISO correction



• By default, OpenFOAM® does not show the minimum and maximum information. 

• To print out this information, we use online monitors.

• In OpenFOAM®, the monitors are referred to as functionObject.  

• We are going to address functionObject in detail when we deal with post-processing and sampling.

• But for the moment, what we need to know is that we add functionObject at the end of the controlDict

dictionary.  

• In this case, we are using a functionObject that prints the minimum and maximum information of the selected 

fields.

• This information complements the residuals information, and it is saved in the postProcessing directory.  

• Minimum and maximum values of the field variables give a better indication of stability, boundedness and 

consistency of the solution.

The output screen

A deeper view to my first OpenFOAM® case setup
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• There are many ways to define functionObjects in OpenFOAM.

• In this case we are using packed functionObjects.

• The packed functionObjects are located in the directory $WM_PROJECT_DIR/etc/caseDicts 

• All functionObjects are defined in the block (or sub-dictionary) functions (lines 49-222).

The output screen

A deeper view to my first OpenFOAM® case setup

49 functions

50 {

51

169 cellMin

170 {

171 #includeEtc "caseDicts/postProcessing/minMax/cellMin.cfg"

172 enabled true; //true or false

173 log             true; //write to screen

174 fields  (p);

175 }

177 cellMax

178 {

179 #includeEtc "caseDicts/postProcessing/minMax/cellMax.cfg"

180 enabled true; 

181 log             true;

182 fields  (p);

183 }

186 cellMinMag

187 {

188 #includeEtc "caseDicts/postProcessing/minMax/cellMinMag.cfg"

189 enabled true; 

190 log             true;

191 fields  (U);

192 }

194 cellMaxMag

195 {

196 #includeEtc "caseDicts/postProcessing/minMax/cellMaxMag.cfg"

197 enabled true; 

198 log             true;

199 fields  (U);

200 }

222 };
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Name of the functionObject.  

This is also the name of the folder where the 
output of the functionObject will be saved.

Location and type of the packed 

functionObject.

• cellMin – minimum value of a scalar field.

• cellMax – maximum value of a scalar field.

• cellMinMag – minimum value of a vector 

field (magnitude).

• cellMaxMag – maximum value of a vector 

field (magnitude).

Options related to the functionObject.

The functionObject can have more options 

than the ones shown here. 

In this case we are using the following options:

• enabled = Enable/disable functionObject.

• log = Print to screen output of the 

functionObject

Fields to sample



• A packed functionObject can be expanded as follows,

The output screen
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min_scalar

{

type            volFieldValue;

libs            ("libfieldFunctionObjects.so");

enabled true; 

log             true;

writeControl    timeStep;

writeInterval   1;

writeLocation   true;

regionType      all;

operation       min;

fields

(

p

);

}
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functionObject to use.

Library to use.

Enable/disable functionObject.
Print to screen output of the functionObject.

Output interval of the functionObject

Write location of the minimum value (or 
maximum value)

Compute the functionObject in all the domain

Compute the minimum value. 

Possible options (among many): min, max, 
minMag, maxMag.

Apply the functionObject to these field 
variables.

• This expanded functionObject is equivalent to the packed functionObject listed in lines 169-175.

• In lines 77-162 the expanded functionObject are listed (notice that these lines are commented).

• In the expanded functionObject, besides the compulsory entries, we can also define optional entries.



• Another very important output information is the CFL or Courant number.

• The Courant number imposes the CFL number condition, which is the maximum allowable 

CFL number a numerical scheme can use. For the n - dimensional case, the CFL number 

condition becomes,

The output screen

A deeper view to my first OpenFOAM® case setup

• In OpenFOAM®, most of the solvers are implicit, which means they are unconditionally 

stable. In other words, they are not constrained to the CFL number condition.

• However, the fact that you are using a numerical method that is unconditionally stable, does 

not mean that you can choose a time-step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features, and it 

maintains the solver stability.

• For the moment and for the sake of simplicity, let us try to keep the CFL number below 5.0 and 

preferably close to 1.0 (for good accuracy).

• Other properties of the numerical method that you should observe are: conservationess, 

boundedness, transportiveness, and accuracy. We are going to address these properties and 

the CFL number when we deal with the FVM theory. 128
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Time = 49.99

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.1174405e-09, Final residual = 1.1174405e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4904251e-09, Final residual = 1.4904251e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 6.7291723e-07, Final residual = 6.7291723e-07, No Iterations 0

time step continuity errors : sum local = 2.5096865e-10, global = -1.7872395e-19, cumulative = 2.6884327e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208362 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

Time = 50

Courant Number mean: 0.044365026 max: 0.16800273

smoothSolver:  Solving for Ux, Initial residual = 1.0907508e-09, Final residual = 1.0907508e-09, No Iterations 0

smoothSolver:  Solving for Uy, Initial residual = 1.4677462e-09, Final residual = 1.4677462e-09, No Iterations 0

DICPCG:  Solving for p, Initial residual = 1.0020944e-06, Final residual = 1.0746895e-07, No Iterations 1

time step continuity errors : sum local = 4.0107145e-11, global = -5.0601748e-20, cumulative = 2.637831e-18

ExecutionTime = 4.47 s  ClockTime = 5 s

fieldMinMax minmaxdomain output:

min(p) = -0.37208345 at location (0.025 0.975 0.5)

max(p) = 0.77640927 at location (0.975 0.975 0.5)

min(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

max(U) = (0.00028445255 -0.00028138799 0) at location (0.025 0.025 0.5)

The output screen

• To control the CFL number you can change the time-step, or you can change the mesh.

• The easiest way is by changing the time-step.

• For a time-step of 0.01 seconds, this is the output you should get for this case,

CFL number at 
time step n

CFL number at 
time step n - 1
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Time = 49.9

Courant Number mean: 0.4441161 max: 1.6798756

smoothSolver:  Solving for Ux, Initial residual = 0.00016535808, Final residual = 2.7960145e-09, No Iterations 5

smoothSolver:  Solving for Uy, Initial residual = 0.00015920267, Final residual = 2.7704949e-09, No Iterations 5

DICPCG:  Solving for p, Initial residual = 0.0015842846, Final residual = 5.2788554e-07, No Iterations 26

time step continuity errors : sum local = 8.6128916e-09, global = 3.5439859e-19, cumulative = 2.4940081e-17

ExecutionTime = 0.81 s  ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34322821 at location (0.025 0.975 0.5)

max(p) = 0.73453489 at location (0.975 0.975 0.5)

min(U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)

max(U) = (0.0002505779 -0.00025371425 0) at location (0.025 0.025 0.5)

Time = 50

Courant Number mean: 0.44411473 max: 1.6798833

smoothSolver:  Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5

smoothSolver:  Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5

DICPCG:  Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17

ExecutionTime = 0.81 s  ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34244269 at location (0.025 0.975 0.5)

max(p) = 0.73656831 at location (0.975 0.975 0.5)

min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

max(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

The output screen

• To control the CFL number you can change the time-step, or you can change the mesh.

• The easiest way is by changing the time-step.

• For a time-step of 0.1 seconds, this is the output you should get for this case,

CFL number at 
time step n - 1

CFL number at 
time step n
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Time = 2

Courant Number mean: 1.6828931 max: 5.6061178

smoothSolver:  Solving for Ux, Initial residual = 0.96587058, Final residual = 4.9900041e-09, No Iterations 27

smoothSolver:  Solving for Uy, Initial residual = 0.88080685, Final residual = 9.7837781e-09, No Iterations 25

DICPCG:  Solving for p, Initial residual = 0.95568243, Final residual = 7.9266324e-07, No Iterations 33

time step continuity errors : sum local = 6.3955627e-06, global = 1.3227253e-17, cumulative = 1.4125109e-17

ExecutionTime = 0.04 s  ClockTime = 0 s

fieldMinMax minmaxdomain output:

min(p) = -83.486425 at location (0.975 0.875 0.5)

max(p) = 33.078468 at location (0.025 0.925 0.5)

min(U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5)

max(U) = (0.1309243 -0.13648118 0) at location (0.025 0.025 0.5)

Time = 2.5

Courant Number mean: 8.838997 max: 43.078153

#0  Foam::error::printStack(Foam::Ostream&) at ??:?

#1  Foam::sigFpe::sigHandler(int) at ??:?

#2  ? in "/lib64/libc.so.6"

#3  Foam::symGaussSeidelSmoother::smooth(Foam::word const&, Foam::Field<double>&, Foam::lduMatrix const&, Foam::Field<double> const&, 

Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&, unsigned char, int) at ??:?

#4  Foam::symGaussSeidelSmoother::smooth(Foam::Field<double>&, Foam::Field<double> const&, unsigned char, int) const at ??:?

#5  Foam::smoothSolver::solve(Foam::Field<double>&, Foam::Field<double> const&, unsigned char) const at ??:?

#6  ? at ??:?

The output screen

• To control the CFL number you can change the time-step, or you can change the mesh.

• The easiest way is by changing the time-step.

• For a time-step of 0.5 seconds, this is the output you should get for this case,

Compare these values with the values 

of the previous cases.  For the 

physics involved these values are 
unphysical. 

The solver crashed.

The offender? Time step too large.

CFL number at 
time step n - 1

CFL number at 

time step n (way 
too high)
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Time = 50

Courant Number mean: 0.44411473 max: 1.6798833

smoothSolver:  Solving for Ux, Initial residual = 0.00016378098, Final residual = 2.7690608e-09, No Iterations 5

smoothSolver:  Solving for Uy, Initial residual = 0.00015720331, Final residual = 2.7354499e-09, No Iterations 5

DICPCG:  Solving for p, Initial residual = 0.0015662416, Final residual = 5.2290439e-07, No Iterations 26

time step continuity errors : sum local = 8.5379223e-09, global = -3.6676527e-19, cumulative = 2.4573316e-17

ExecutionTime = 0.81 s  ClockTime = 1 s

fieldMinMax minmaxdomain output:

min(p) = -0.34244269 at location (0.025 0.975 0.5)

max(p) = 0.73656831 at location (0.975 0.975 0.5)

min(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

max(U) = (0.00025028679 -0.00025338014 0) at location (0.025 0.025 0.5)

The output screen

• Another output you should monitor are the continuity errors.

• These numbers should be small (it does not matter if they are negative or positive).

• If these values increase in time (about the order of 1e-2), you better control the case setup because 

something is wrong.

• The continuity errors are defined in the following file

$WM_PROJECT_DIR/src/finiteVolume/cfdTools/incompressible/continuityErrs.H

Continuity errors
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• If you forget a keyword or a dictionary file, give a wrong option to a compulsory or optional entry, 

misspelled something, add something out of place in a dictionary, use the wrong dimensions, 
forget a semi-colon and so on, OpenFOAM® will give you the error FOAM FATAL IO ERROR.

• This error does not mean that the actual OpenFOAM® installation is corrupted. It is telling you 

that you are missing something, or something is wrong in a dictionary.

• Maybe the guys of OpenFOAM® went a little bit extreme here.

/*---------------------------------------------------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  9                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

Build  : 5.x-5d8318b22cbe

Exec   : icoFoam

Date   : Nov 02 2014

Time   : 00:33:41

Host   : "linux-cfd"

PID    : 3675

Case   : /home/cfd/my_cases_course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Create time

--> FOAM FATAL IO ERROR: 

Error output
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Build  : 6.x-5d8318b22cbe

Exec   : icoFoam

Date   : Nov 02 2014

Time   : 00:33:41

Host   : "linux-cfd"

PID    : 3675

Case   : /home/cfd/my_cases_course/cavity

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Allowing user-supplied system call operations

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Create time

--> FOAM FATAL IO ERROR: 

banana_endTime is not in enumeration: 

4

(

endTime

nextWrite

noWriteNow

writeNow

)

file: /home/cfd/my_cases_course/cavity/system/controlDict.stopAt at line 24.

From function NamedEnum<Enum, nEnum>::read(Istream&) const

in file lnInclude/NamedEnum.C at line 72.

FOAM exiting

• Also, before entering into panic read carefully the output screen because OpenFOAM® is telling 

you what is the error and how to correct it.

The origin of the error

Possible options to correct the error

Location of the error

Error output
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• It is very important to read the screen and understand the output. 

--> FOAM FATAL IO ERROR: 

cannot find file

file: /home/joegi/my_cases_course/6/101OF/cavity/0/p at line 0.

From function regIOobject::readStream()

in file db/regIOobject/regIOobjectRead.C at line 73.

FOAM exiting

• Train yourself to identify the errors.  Hereafter we list a few possible errors.

• Missing compulsory file p

Error output

“E perience is simply the name we give our mistakes.”
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--> FOAM FATAL IO ERROR: 

Cannot find patchField entry for xmovingWall

file: /home/joegi/my_cases_course/6/101OF/cavity/0/p.boundaryField from line 25 to line 35.

From function GeometricField<Type, PatchField, GeoMesh>::GeometricBoundaryField::readField(const 

DimensionedField<Type, GeoMesh>&, const dictionary&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/OpenFOAM/lnInclude/GeometricBoundaryField.C at line 209.

FOAM exiting

• Mismatching patch name in file p

--> FOAM FATAL IO ERROR: 

keyword div(phi,U) is undefined in dictionary 

"/home/joegi/my_cases_course/6/101OF/cavity/system/fvSchemes.divSchemes"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/fvSchemes.divSchemes from line 30 to line 30.

From function dictionary::lookupEntry(const word&, bool, bool) const

in file db/dictionary/dictionary.C at line 442.

FOAM exiting

• Missing compulsory keyword in fvSchemes

Error output
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--> FOAM FATAL IO ERROR: 

"ill defined primitiveEntry starting at keyword 'PISO' on line 68 and ending at line 68"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/fvSolution at line 68.

From function primitiveEntry::readEntry(const dictionary&, Istream&)

in file lnInclude/IOerror.C at line 132.

FOAM exiting

• Missing entry  in file fvSolution at keyword PISO

• Incompatible dimensions. Likely the offender is the file U

Error output

--> FOAM FATAL ERROR: 

incompatible dimensions for operation 

[U[0 1 -2 1 0 0 0] ] + [U[0 1 -2 2 0 0 0] ]

From function checkMethod(const fvMatrix<Type>&, const fvMatrix<Type>&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvMatrix.C at line 1295.

FOAM aborting

#0  Foam::error::printStack(Foam::Ostream&) at ??:?

#1  Foam::error::abort() at ??:?

#2  void Foam::checkMethod<Foam::Vector<double> >(Foam::fvMatrix<Foam::Vector<double> > const&, 

Foam::fvMatrix<Foam::Vector<double> > const&, char const*) at ??:?

#3  ? at ??:?

#4  ? at ??:?

#5  __libc_start_main in "/lib64/libc.so.6"

#6  ? at /home/abuild/rpmbuild/BUILD/glibc-2.19/csu/../sysdeps/x86_64/start.S:125

Aborted 137
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--> FOAM FATAL IO ERROR: 

keyword deltaT is undefined in dictionary "/home/joegi/my_cases_course/6/101OF/cavity/system/controlDict"

file: /home/joegi/my_cases_course/6/101OF/cavity/system/controlDict from line 17 to line 69.

From function dictionary::lookupEntry(const word&, bool, bool) const

in file db/dictionary/dictionary.C at line 442.

FOAM exiting

• Missing keyword deltaT in file controlDict

--> FOAM FATAL ERROR: 

Cannot find file "points" in directory "polyMesh" in times 0 down to constant

From function Time::findInstance(const fileName&, const word&, const IOobject::readOption, const word&)

in file db/Time/findInstance.C at line 203.

FOAM exiting

• Missing file points in directory polyMesh. Likely you are missing the mesh.

Error output
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--> FOAM FATAL IO ERROR: 

Unknown patchField type sfixedValue for patch type wall

Valid patchField types are :

74

(

SRFFreestreamVelocity

SRFVelocity

SRFWallVelocity

activeBaffleVelocity

...

...

...

variableHeightFlowRateInletVelocity

waveTransmissive

wedge

zeroGradient

)

file: /home/joegi/my_cases_course/6/101OF/cavity/0/U.boundaryField.movingWall from line 25 to line 26.

From function fvPatchField<Type>::New(const fvPatch&, const DimensionedField<Type, volMesh>&, const 

dictionary&)

in file /home/joegi/OpenFOAM/OpenFOAM-6/src/finiteVolume/lnInclude/fvPatchFieldNew.C at line 143.

FOAM exiting

• Unknown boundary condition type.

Error output
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/*---------------------------------------------------------------------------*\

| =========                 |                                                 |

| \\ /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |

|  \\ /   O peration     | Version:  9                                     |

|   \\ /    A nd           | Web:      www.OpenFOAM.org                      |

|    \\/     M anipulation  |                                                 |

\*---------------------------------------------------------------------------*/

Build  : 6.x-5d8318b22cbe

Exec   : icoFoam

Date   : Nov 02 2014

Time   : 00:33:41

Host   : "linux-cfd"

PID    : 3675

fileName::stripInvalid() called for invalid fileName /home/cfd/my_cases_course/cavity0

For debug level (= 2) > 1 this is considerd fatal

Aborted

• This one is especially hard to spot,

• This error is related to the name of the working directory.  In this case the name of the working 
directory is cavity 0 (there is a blank space between the word cavity and the number 0).

• Do not use blank spaces or funny symbols when naming directories and files.

• Instead of cavity 0 you could use cavity_0. 

Error output
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• You should worry about the SIGFPE error signal.  This error signal indicates that something 

went really wrong (erroneous arithmetic operation).

• This message (that seems a little bit difficult to understand), is giving you a lot information.

• For instance, this output is telling us that the error is due to SIGFPE and the class associated to 

the error is lduMatrix.  It is also telling you that the GAMGSolver solver is the affected one 

(likely the offender is the pressure).

Error output

#0  Foam::error::printStack(Foam::Ostream&) at ??:?

#1  Foam::sigFpe::sigHandler(int) at ??:?

#2   in "/lib64/libc.so.6"

#3  Foam::DICPreconditioner::calcReciprocalD(Foam::Field<double>&, Foam::lduMatrix const&) at ??:?

#4  Foam::DICSmoother::DICSmoother(Foam::word const&, Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double> 

const&, Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&) at ??:?

#5  Foam::lduMatrix::smoother::addsymMatrixConstructorToTable<Foam::DICSmoother>::New(Foam::word const&, 

Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double> const&, Foam::FieldField<Foam::Field, double> const&, 

Foam::UPtrList<Foam::lduInterfaceField const> const&) at ??:?

#6  Foam::lduMatrix::smoother::New(Foam::word const&, Foam::lduMatrix const&, Foam::FieldField<Foam::Field, double> 

const&, Foam::FieldField<Foam::Field, double> const&, Foam::UPtrList<Foam::lduInterfaceField const> const&, 

Foam::dictionary const&) at ??:?

#7  Foam::GAMGSolver::initVcycle(Foam::PtrList<Foam::Field<double> >&, Foam::PtrList<Foam::Field<double> >&, 

Foam::PtrList<Foam::lduMatrix::smoother>&, Foam::Field<double>&, Foam::Field<double>&) const at ??:?

#8  Foam::GAMGSolver::solve(Foam::Field<double>&, Foam::Field<double> const&, unsigned char) const at ??:?

#9  Foam::fvMatrix<double>::solveSegregated(Foam::dictionary const&) at ??:?

#10  Foam::fvMatrix<double>::solve(Foam::dictionary const&) at ??:?

#11  

at ??:?

#12  __libc_start_main in "/lib64/libc.so.6"

#13  

at /home/abuild/rpmbuild/BUILD/glibc-2.17/csu/../sysdeps/x86_64/start.S:126

Floating point exception 141
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Dictionary files general features

• OpenFOAM® follows same general syntax rules as in C++.

• Commenting in OpenFOAM® (same as in C++):

142

• As in C++, you can use the #include directive in your dictionaries (do not forget to create the respective include file): 

#include “ n t   C nd t  n ” 

• Scalars, vectors, lists and dictionaries.

• Scalars in OpenFOAM® are represented by a single value, e.g., 

3.14159

• Vectors in OpenFOAM® are represented as a list with three components, e.g.,

(1.0  0.0  0.0)

• A second order tensor in OpenFOAM® is represented as a list with nine components, e.g.,

(

1.0  0.0  0.0

0.0  1.0  0.0

0.0  0.0  1.0

)

/* 

This is a block comment

*/

// This is a line comment 
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Dictionary files general features

• Scalars, vectors, lists and dictionaries.

• List entries are contained within parentheses ( ).  A list can contain scalars, vectors, tensors, words, and so on.

• A list of scalars is represented as follows:

name_of_the_list

(

0

1

2

);

• A list of vectors is represented as follows:

name_of_the_list

(

(0 0 0)

(1 0 0)

(2 0 0)

);

• A list of words is represented as follows

name_of_the_list

(

“  rd1”

“  rd2”

“  rd3”

);
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Dictionary files general features

solvers

{

p

{

solver                 PCG;

preconditioner   DIC;

tolerance            1e-06;

relTol                   0;

}

U

{

solver                 PBiCGStab;

preconditioner   DILU;

tolerance            1e-06;

relTol                   0;

}

…

…

…

}

• OpenFOAM® uses dictionaries to specify data in an input file (dictionary file). 

• A dictionary in OpenFOAM® can contain multiple data entries and at the same time dictionaries can contain 

sub-dictionaries.

• To specify a dictionary entry, the name is followed by the keyword entries in curly braces:

Dictionary solvers

Sub-dictionary p
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Sub-dictionary U



• Macro expansion.  

• We first declare a variable (x = 10) and then we use it through the $ macro substitution ($x).

vectorField (20 0 0); //Declare variable

internalField uniform $vectorField; //Use declared variable

scalarField 101328; //Declare variable

type fixedValue;

value uniform $scalarField; //Use declared variable

• You can use macro expansion to duplicate and access variables in dictionaries

p // Declare/create the dictionary p

{

solver          PCG;

preconditioner  DIC;

tolerance       1e-06;

relTol          0;

}

$p; //To create a copy of the dictionary p

$p.solver; //To access the variable solver in the dictionary p

A deeper view to my first OpenFOAM® case setup

Dictionary files general features
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Dictionary files general features

• In tead of writing  t e poor  an’  way :

146

leftWall 

{

type fixedValue; 

value uniform (0 0 0);

}

rightWall 

{

type fixedValue; 

value uniform (0 0 0);

}

topWall 

{

type fixedValue; 

value uniform (0 0 0);

}

• You can write (the lazy way):

“( eft|r ght|t  )W   ”

{

type fixedValue; 

value uniform (0 0 0);

}

• You could also try (even lazier):

“.*W   ”

{

type fixedValue; 

value uniform (0 0 0);

}

• OpenFOAM® understands the syntax of regular expressions (regex or regeaxp).
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Dictionary files general features

• Inline calculations.  

• You can use the directive #calc to do inline calculations, the syntax is as follows:

X = 10.0; //Declare variable

Y = 3.0; //Declare variable

Z    #c  c    “$ *$  – 12.0”; //Do inline calculation. The result is saved in the variable Z

• With inline calculations you can access all the mathematical functions available in C++.

• Macro expansions and inline calculations are very useful to parametrize dictionaries and avoid repetitive tasks.

• Switches: they are used to enable or disable a function or a feature in the dictionaries. 

• Switches are logical values.  You can use the following values:
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Switches

false true

off on

no yes

n y

f t

none true

• You can find all the valid switches in the following file:

OpenFOAM-9/src/OpenFOAM/primitives/bools/Switch/Switch.C



• If you need help about a solver or utility, you can use the option –help. For instance:

• $> icoFoam –help

will print some basic help and usage information about icoFoam

• Remember, you have the source code there so you can always                                           

check the original source. 

A deeper view to my first OpenFOAM® case setup

Solvers and utilities help

148



• You can also use the utility foamInfo:

• $> foamInfo   search_string

A deeper view to my first OpenFOAM® case setup

Solvers and utilities help

149

Look for this string

• This command prints the following for an application, a script, or a model (including boundary 

conditions, function objects and fvModels).

• File: the location of the relevant source code header file.

• Description details from the header file.

• Usage details from the header file.

• Models: lists other models belonging to the same family, where applicable.

• To get more information type in the terminal

• $> foamInfo -help
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Solvers and utilities help

• To get more information about the boundary conditions, post-processing utilities, and the API read the 

Doxygen documentation. 

• If you did not compile the Doxygen documentation, you can access the information online, 

http://cpp.openfoam.org/v6/
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API documentation

Boundary conditions and post-processing 

utilities documentation

http://cpp.openfoam.org/v8/
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Exercises

• Run the case with Re = 10 and Re = 1000. Feel free to change any variable to achieve the Re value (velocity, 

viscosity or length). Do you see an unsteady behavior in any of the cases? What about the computing time, 

what simulation is faster?

• Run the tutorial with Re = 100, a mesh with  120 x 120 x 1 cells, and using the default setup (original 
controlDict, fvSchemes and fvSolution). Did the simulation converge? Did it crash?  Any comments.

• If your simulation crashed, try to solve the problem. 

(Hint: try to reduce the time-step to get a CFL less than 1)

• Besides reducing the time-step, can you find another solution? 

(Hint: look at the PISO options)

• Change the base type of the boundary patch movingWall to patch. (the boundary file). Do you get the same 

results? Can you comment on this?

• Try to extent the problem to 3D and use a uniform mesh (20 x 20 x 20). Compare the solution at the mid 

section of the 3D simulation with the 2D solution. Are the solutions similar?

• How many time discretization schemes are there in OpenFOAM®? Try to use a different discretization 

scheme.

• Run the simulation using Gauss upwind instead of Gauss linear for the term div(phi,U) (fvSchemes).  Do 

you get the same quantitative results?

• Sample the field variables U and P at a different location and plot the results using gnuplot.

• What density value do you think we were using? What about dynamic viscosity?

Hint: the physical pressure is equal to the modified pressure and
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Dam break free surface flow

Physical and numerical side of the 

problem:

• In this case we are going to use the volume of 

fluid (VOF) method.  

• This method solves the incompressible Navier-

Stokes equations plus an additional equation to 

track the phases (free surface location).

• As this is a multiphase case, we need to define 

the physical properties for each phase involved 

(viscosity, density and surface tension).

• The working fluids are water and air.

• Additionally, we need to define the gravity vector 

and initialize the two flows.

• This is a three-dimensional and unsteady case.

• The details of the case setup can be found in 

the following reference:

A Volume-of-Fluid Based Simulation Method for Wave 

Impact Problems. 

Journal of Computational Physics 206(1):363-393. 

June, 2005.

3D Dam break – Free surface flow

Gravity

Obstacle

Water column

Box with open top
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Workflow of the case

3D Dam break – Free surface flow

setFields

interFoam

sampling

functionObjects

paraview

blockMesh

+

snappyHexMesh
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Initial conditions – Coarse mesh Solution at Time = 1 second – Coarse mesh

3D Dam break – Free surface flow

At the end of the day, you should get something like this
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VOF Fraction (Free surface tracking) – Very fine mesh
http://www.wolfdynamics.com/validations/3d_db/dbreak.gif

3D Dam break – Free surface flow
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3D Dam break – Free surface flow

• Let us run this case. Go to the directory:

$PTOFC/101OF/3d_damBreak 
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• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



What are we going to do?

3D Dam break – Free surface flow

• We will use this case to introduce the multiphase solver interFoam.

• interFoam is a solver for 2 incompressible, isothermal immiscible fluids using a VOF (volume 

of fluid) phase-fraction based interface capturing approach 

• We will define the physical properties of two phases, and we are going to initialize these phases.

• We will define the gravity vector in the dictionary g.

• After finding the solution, we will visualize the results. This is an unsteady case so now we are 

going to see things moving.

• We are going to briefly address how to post-process multiphase flows.

• We are going to generate the mesh using snappyHexMesh, but for the purpose of this tutorial 

we are not going to discuss the dictionaries.

• Remember, different solvers have different input dictionaries.
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The constant directory

• In this directory, we will find the following compulsory dictionary files:

• g

• transportProperties

• momentumTransport

• g contains the definition of the gravity vector. 

• transportProperties contains the definition of the physical properties of each phase.

• momentumTransport contains the definition of the turbulence model to use. 

3D Dam break – Free surface flow
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• This dictionary file is located in the directory 
constant.

• For multiphase flows, this dictionary is 

compulsory.

• In this dictionary we define the gravity vector (line 

17).

• Pay attention to the class type (line 11).

The g dictionary file

8  FoamFile

9  {

10 format      ascii;

11 class       uniformDimensionedVectorField;

12 object      g;

13 }

16 dimensions      [0 1 -2 0 0 0 0];

17 value           (0 0 -9.81);

3D Dam break – Free surface flow
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• This dictionary file is located in the directory 
constant.

• We first define the name of the phases (line 17). 

In this case we are defining the names water and 

air. The first entry in this list is the primary phase 

(water).

• The name of the primary phase is the one you will 

use to initialize the solution.

• The name of the phases is given by the user.

• In this file we set the kinematic viscosity (nu), 

density (rho) and transport model 

(transportModel) of the phases.

• We also define the surface tension (sigma).

The transportProperties dictionary file

17 phases (water air);

18 

19 water

20 {

21 transportModel  Newtonian;

22 nu              [0 2 -1 0 0 0 0] 1e-06;

23 rho             [1 -3 0 0 0 0 0] 1000;

24 }

25 

26 air

27 {

28 transportModel  Newtonian;

29 nu              [0 2 -1 0 0 0 0] 1.48e-05;

30 rho             [1 -3 0 0 0 0 0] 1;

31 }

32 

33 sigma           [1 0 -2 0 0 0 0] 0.07;

Primary phase 

3D Dam break – Free surface flow
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• In this dictionary file we select the turbulence model.

• In this case we use a RANS turbulence model (kEpsilon).

The momentumTransport dictionary file

17 simulationType    RAS;

18

19 RAS

20 {

21 RASModel kEpsilon;

22

23 turbulence on;

24

25 printCoeffs on;

26 }

3D Dam break – Free surface flow
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The 0 directory

• In this directory, we find the input files that contain the boundary and initial conditions for all the 

primitive variables.

• As we are solving the incompressible RANS Navier-Stokes equations using the VOF method, 

we will find the following field files:

• alpha.water (volume fraction of water phase)

• p_rgh (pressure field minus hydrostatic component)

• U (velocity field)

• k (turbulent kinetic energy field)

• epsilon (rate of dissipation of turbulence energy field)

• nut (turbulence viscosity field)

3D Dam break – Free surface flow
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The file 0/alpha.water

17 dimensions      [0 0 0 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 front

24 {

25 type            zeroGradient;

26 }

27 back

28 {

29 type            zeroGradient;

30 }

31 left

32 {

33 type            zeroGradient;

34  }

35 right

36 {

37 type            zeroGradient;

38 }

39 bottom

40 {

41 type            zeroGradient;

42 }

43 top

44 {

45 type            inletOutlet;

46 inletValue      uniform 0;

47 value           uniform 0;

48 }

49 stlSurface

50 {

51 type zeroGradient;

52 }

53 

54 }

• This file contains the boundary and initial conditions 

for the non-dimensional scalar field alpha.water

• This file is named alpha.water, because the 

primary phase is water (we defined the primary 
phase in the transportProperties dictionary).

• Initially, this field is initialized as 0 in the whole 

domain (line 19). This means that there is no water in 

the domain at time 0.  Later, we will initialize the 

water column and this file will be overwritten with a 

non-uniform field for the internalField.

• For the front, back, left, right, bottom and 

stlSurface patches we are using a zeroGradient

boundary condition (we are just extrapolating the 

internal values to the boundary face).

• For the top patch we are using an inletOutlet

boundary condition.  This boundary condition avoids 

backflow into the domain. If the flow is going out it 

will use zeroGradient and if the flow is coming back 

it will assign the value set in the keyword inletValue

(line 46).
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The file 0/p_rgh

• This file contains the boundary and initial conditions 

for the dimensional scalar field p_rgh.  The 

dimensions of this field are given in Pascal (line 17)

• This scalar field contains the value of the static 

pressure field minus the hydrostatic component.

• This field is initialized as 0 in the whole domain (line 

19). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

fixedFluxPressure boundary condition (refer to the 

source code or doxygen documentation to know 

more about this boundary condition).

• For the top patch we are using the totalPressure

boundary condition (refer to the source code or 

doxygen documentation to know more about this 

boundary condition).
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17 dimensions      [1 -1 -2 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 front

24 {

25 type            fixedFluxPressure;

26 value uniform 0;

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type            totalPressure;

51 p0 uniform 0;

52 U U;

53 phi phi;

54 rho rho;

55 psi none;

56 gamma 1;

57 value uniform 0;

58 }

59 stlSurface

60 {

61 type            fixedFluxPressure;

62 value uniform 0;

63 }

64 

65 }
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The file 0/U

• This file contains the boundary and initial conditions 

for the dimensional vector field U. 

• We are using uniform initial conditions and the 

numerical value is (0 0 0) (keyword internalField in 

line 19).

• The front, back, left, right, bottom and stlSurface

patches are no-slip walls, therefore we impose a 

fixedValue boundary condition with a value of (0 0 0) 

at the wall.

• For the top patch we are using the 

pressureInlterOutletVelocity boundary condition

(refer to the source code or doxygen documentation 

to know more about this boundary condition).
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17 dimensions      [0 -1 -1 0 0 0 0];

18 

19 internalField   uniform (0 0 0);

20 

21 boundaryField

22 {

23 front

24 {

25 type            fixedValue;

26 value uniform (0 0 0);

27 }

28 back

33 left

38 right

43 bottom

48 top

49 {

50 type            pressureInletOutletVelocity;

51 value uniform (0 0 0);

52 }

53 stlSurface

54 {

55 type            fixedValue;

56 value uniform (0 0 0);

57 }

58 

59 }
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The file 0/k

• This file contains the boundary and initial conditions 

for the dimensional scalar field k. 

• This scalar (turbulent kinetic energy), is related to the 

turbulence model.

• This field is initialized as 0.1 in the whole domain, 

and all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

kqRWallFunction boundary condition, which applies 

a wall function at the walls (refer to the source code 

or doxygen documentation to know more about this 

boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles 

backflow (refer to the source code or doxygen 

documentation to know more about this boundary 

condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -2 0 0 0 0];

18 

19 internalField   uniform 0.1;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            kqRWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35 

36 }
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The file 0/epsilon

• This file contains the boundary and initial conditions 

for the dimensional scalar field epsilon. 

• This scalar (rate of dissipation of turbulence energy), 

is related to the turbulence model.

• This field is initialized as 0.1 in the whole domain, 

and all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

epsilonWallFunction boundary condition, which 

applies a wall function at the walls (refer to the 

source code or doxygen documentation to know 

more about this boundary condition).

• For the top patch we are using the inletOutlet

boundary condition, this boundary condition handles 

backflow (refer to the source code or doxygen 

documentation to know more about this boundary 

condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -3 0 0 0 0];

18 

19 internalField   uniform 0.1;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            epsilonWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            inletOutlet;

32 inletValue $internalField;

33 value $internalField;

34 }

35 

36 }
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The file 0/nut

• This file contains the boundary and initial conditions 

for the dimensional scalar field nut. 

• This scalar (turbulent viscosity), is related to the 

turbulence model.

• This field is initialized as 0 in the whole domain, and 

all the boundary patches take the same value 

($internalField). 

• For the front, back, left, right, bottom and 

stlSurface patches we are using the 

nutkWallFunction boundary condition, which applies 

a wall function at the walls (refer to the source code 

or doxygen documentation to know more about this 

boundary condition).

• For the top patch we are using the calculated

boundary condition, this boundary condition 

computes the value of nut from k and epsilon (refer to 

the source code or doxygen documentation to know 

more about this boundary condition).

• We will deal with turbulence modeling later.
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17 dimensions      [0 2 -1 0 0 0 0];

18 

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 “(front|back|left|right|bottom|stlSurface)”

24 {

25 type            nutkWallFunction;

26 value $internalField;

27 }

28

29 top

30 {

31 type            calculated;

32 value $internalField;;

33 }

34 

35 }
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The system directory

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be used for the 

different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear equation system. 
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17   application     interFoam;

18   

19   startFrom       startTime;

20   

21   startTime       0;

22   

23   stopAt          endTime;

24   

25   endTime         8;

26   

27   deltaT          0.0001;

28   

29   writeControl    adjustableRunTime;

30   

31   writeInterval   0.02;

32   

33   purgeWrite      0;

34   

35   writeFormat     ascii;

36   

37   writePrecision  8;

38   

39   writeCompression uncompressed;

40   

41   timeFormat      general;

42   

43   timePrecision   8;

44   

45   runTimeModifiable yes;

46   

47   adjustTimeStep  yes;

48   

49   maxCo           1.0;

50   maxAlphaCo      0.5;

51   maxDeltaT       0.01;

• This case starts from time 0 (startTime), and it will run up to 8 

seconds (endTime). 

• The initial time step of the simulation is 0.0001 seconds 

(deltaT).

• It will write the solution every 0.02 seconds (writeInterval) of 

simulation time (runTime).  It will automatically adjust the time 

step (adjustableRunTime), in order to save the solution at the 

precise write interval.

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is  8 digits (writePrecision). It will only save 

eight digits in the output files.

• And as the option runTimeModifiable is on, we can modify all 

these entries while we are running the simulation.

• In line 47 we turn on the option adjustTimeStep. This option 

will automatically adjust the time step to achieve the maximum 

desired courant number (lines 49-50). We also set a maximum 

time step in line 51.

• Remember, the first time step of the simulation is done using 

the value set in line 27 and then it is automatically scaled to 

achieve the desired maximum values (lines 49-51). 

The controlDict dictionary
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55   functions

56   {

...

79   minmaxdomain_scalar

...

...

111   minmaxdomain_vector

...

...

139        mindomain_scalar

...   

...

145   mindomain_vector

...

...

151   maxdomain_scalar

...

...

157   maxdomain_vector

...

230  };   

• Let us take a look at the monitors definition 

(functionObjects).

• In lines 79-161 we define the following functionObject:

• minmaxdomain_scalar

• minmaxdomain_vector

• mindomain_scalar

• mindomain_vector

• maxdomain_scalar

• maxdomain_vector

• These functionObject are used to compute the minimum 

and maximum values of the field variables (p p_rgh U 

alpha.water k epsilon).

• Notice that we are not using packed functionObject.

The controlDict dictionary
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55   functions

56   {

166   water_in_domain

167   {

168   type            volRegion;

169   functionObjectLibs ("libfieldFunctionObjects.so");

170   

171   enabled         true;

172   log             true;

173   

174   //writeControl     outputTime;

175   writeControl   timeStep;

176   writeInterval  1;

177   

178   writeFields      false;

179         writeLocation    false; 

180

181   regionType      all;

182   

183 operation       volIntegrate;

184  fields

185  (

186  alpha.water

187  );

188  }

230  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 166-188 we define the water_in_domain 

functionObject which computes the volume integral 

(volIntegrate) of the field variable alpha.water in all the 

domain.

• Basically, we are monitoring the quantity of water in the 

domain.
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55   functions

56   {

193   probes1

194   {

195   type            probes;

196   functionObjectLibs ("libsampling.so");

197

198   pobeLocations

199   (

200  (0.82450002 0 0.021)

201  (0.82450002 0 0.061)

202  (0.82450002 0 0.101)

203  (0.82450002 0 0.141)

204  (0.8035 0 0.161)

205  (0.7635 0 0.161)

206  (0.7235 0 0.161)

207  (0.6835 0 0.161)

208   );

209   

210  fields

211  (

212  p p_rgh

213  );

214

215   writeControl   timeStep;

216   writeInterval 1;

217  }

230  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 193-217 we define the probes1 functionObject 

which sample the selected fields (line 212) at the selected 

locations (lines 200-207).

• This sampling is done on-the-fly.  All the information 

sample by this functionObject is saved in the directory 
./postProcessing/probes1

• As we are sampling starting from time 0, the sampled 

data will be located in the directory:

postProcessing/probes1/0

• Feel free to open the files located in the directory 
postProcessing/probes1/0 using your favorite text 

editor.

3D Dam break – Free surface flow

Sampling locations 
(probeLocations)
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55   functions

56   {

221   yplus

222   {

223   type            yPlus;

224   functionObjectLibs ("libfieldFunctionObjects.so ");

225 enabled true;

226 writeControl outputTime;

227 }

230  };

The controlDict dictionary

• Let us take a look at the functionObjects definitions.

• In lines 221-227 we define the yplus functionObject 

which computes the y+ value.  

• This quantity is related to turbulence modeling.

• This functionObject will save the yplus field in the 

solution directories with the same saving frequency as the 

solution (line 226).

• It will also save the minimum, maximum and mean values 

of y+ in the directory:

postProcessing/yplus
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17 ddtSchemes

18 {

19 default         Euler;

21 }

22 

23 gradSchemes

24 {

25 default         Gauss linear;

26 grad(U)         cellLimited Gauss linear 1;

27 }

28 

29 divSchemes

30 {

31 div(rhoPhi,U)  Gauss linearUpwindV grad(U);

33 div(phi,alpha)  Gauss interfaceCompression vanLeer 1;

39 div(phi,k) Gauss upwind;

40 div(phi,epsilon) Gauss upwind;

41 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

42 }

43 

44 laplacianSchemes

45 {

46 default         Gauss linear corrected;

47 }

48 

49 interpolationSchemes

50 {

51 default         linear;

52 }

53 

54 snGradSchemes

55 {

56 default         corrected;

57 }

• In this case, for time discretization (ddtSchemes) we are using the 

Euler method.

• For gradient discretization (gradSchemes) we are using the Gauss 

linear as the default method and slope limiters (cellLimited) for the 

velocity gradient or grad(U). 

• For the discretization of the convective terms (divSchemes) we are 

using linearUpwindV interpolation method for the term 

div(rhoPhi,U).

• For the term div(phi,alpha) we are using interfaceCompression

vanLeer interpolation scheme.  

• This is an interface compression corrected scheme used to 

maintain sharp interfaces in VOF simulations. 

• The coefficient defines the degree of compression, where 1 is 

suitable for most VOF applications. 

• For the terms div(phi,k) and div(phi,epsilon) we are using upwind 

(these terms are related to the turbulence modeling).

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are using 

linear interpolation (this term is related to the turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes and 

snGradSchemes) we are using the Gauss linear corrected method 

• In overall, this method is second order accurate but a little bit 

diffusive. Remember, at the end of the day we want a solution that is 

second order accurate.

The fvSchemes dictionary
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17 solvers

18 {

19 "alpha.water.*"

20 {

21 nAlphaCorr      2;

22 nAlphaSubCycles 1;

23 cAlpha          1;

24 

25 MULESCorr       yes;

26 nLimiterIter    10;

27 

35 solver          PBiCGStab;

36 smoother        DILU;

37 tolerance       1e-8;

38 relTol          0;

39 }

40 

41 “(pcorr|pcorrFinal)”

42 {

43 solver          PCG;

44 preconditioner  DIC;

45 tolerance       1e-8;

46 relTol          0;

47 }

48 

49 p_rgh

50 {

51 solver          PCG;

52 preconditioner  DIC;

53 tolerance       1e-06;

54 relTol          0.01;

55 minIter         2;

90 }

• To solve the volume fraction or alpha.water (lines 19-32) we 

are using the smoothSolver method. 

• In line 25 we turn on the semi-implicit method MULES. The 

keyword nLimiterIter controls the number of MULES iterations 

over the limiter.

• To have more stability it is possible to increase the number of 

loops and corrections used to solve alpha.water (lines 21-22). 

• The keyword cAlpha (line 23) controls the sharpness of the 

interface (1 is usually fine for most cases).

• In lines 41-47 we setup the solver for pcorr and pcorrFinal 

(pressure correction).

• In this case pcorr is solved only one time at the beginning of 

the computation.

• In lines 49-90 we setup the solver for p_rgh.  

• The keyword minIter 2 (line 55), means that the linear solver 

will do at least two iteration.

The fvSolution dictionary
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92 p_rghFinal

93 {

94 $p_rgh;

96 relTol          0;

97 minIter         1;

98 }

99 

100 "(U|UFinal)"

101 {

109 solver          PBiCGStab;

110 Preconditioner  DILU;

111 tolerance       1e-08;

112 relTol          0;

114 }

115

116 "(k|epsilon).*"

117 {

125 solver          PBiCGStab;

126 Preconditioner  DILU;

127 tolerance       1e-08;

128 relTol          0;

130 }

132 }

• In lines 92-98 we setup the solver for p_rghFinal. This 

corresponds to the last iteration in the loop (we can use a 

tighter convergence criteria to get more accuracy without 

increasing the computational cost)

• In lines 100-114 we setup the solvers for U and UFInal.  

• In lines 116-130 we setup the solvers for the turbulent 

quantities, namely, k and epsilon.

The fvSolution dictionary
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133

134 PIMPLE

135 {

136 Consistent yes;

137 momentumPredictor   yes;

139 nOuterCorrectors    1;

140 nCorrectors         3;

141 nNonOrthogonalCorrectors 1;

142 }

143 

144 relaxationFactors

145 {

146 fields

147 {

148 ".*" 0.9;

149 }

150 equations

151 {

152 ".*" 0.9;

153 }

154 }

155

• In lines 134-142 we setup the entries related to the pressure-

velocity coupling method used (PIMPLE in this case). Setting 

the keyword nOuterCorrectors to 1 is equivalent to running 

using the PISO method.

• To gain more stability we can increase the number of correctors 

(lines 139-140), however this will increase the computational 

cost. 

• In line 136, we use the consistent formulation of the SIMPLE

method (used in the PIMPLE method outer iterations).

• In lines 144-154 we setup the under-relaxation factors related 

to the PIMPLE method outer iterations.

• By using under-relaxation, we ensure diagonal equality. 

• Be careful not use too low values as you will lose time 

accuracy.

• If you want to disable under-relaxation, comment out 

these lines. 

• The option momentumPredictor (line 137), is recommended 

for highly convective flows.

The fvSolution dictionary
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The system directory

• In the system directory you will find the following optional dictionary files: 

• decomposeParDict

• setFieldsDict

• decomposeParDict is read by the utility decomposePar.  This dictionary file contains 

information related to the mesh partitioning. This is used when running in parallel. 

• setFieldsDict is read by the utility setFields.  This utility set values on selected 

cells/faces. 
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The setFieldsDict dictionary

17 defaultFieldValues

18 (

19 volScalarFieldValue alpha.water 0

20 );

21 

22 regions

23 (

24 boxToCell

25 {

26 box (1.992 -10 0) (5 10 0.55);

27 fieldValues

28 (

29 volScalarFieldValue alpha.water 1

30 );

31 }

32 );

• This dictionary file is located in the directory system.

• In lines 17-20 we set the default value to be 0 in the whole 

domain (no water).

• In lines 22-32, we initialize a rectangular region (box) 

containing water (alpha.water 1). 

• In this case, setFields will look for the dictionary file 

alpha.water and it will overwrite the original values 

according to the regions defined in setFieldsDict.

• We initialize the water phase because is the primary phase in 
the dictionary transportProperties.

• If you are interested in initializing the vector field U, you can 

proceed as follows volVectorFieldValue U (0 0 0)
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boxToCell region

Water
alpha.water = 1

Air
alpha.water = 0
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The decomposeParDict dictionary

17 numberOfSubdomains 4;

18 

19 method scotch;

20 

• This dictionary file is located in the directory system.

• This dictionary is used to decompose the domain in order to run in parallel.

• The keyword numberOfSubdomains (line 17) is used to set the number of cores we want to use in the 

parallel simulation.

• In this dictionary we also set the decomposition method (line 19).  

• Most of the times the scotch method is fine.

• In this case we set the numberOfSubdomains to 4, therefore we will run in parallel using 4 cores.
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• When you run in parallel, the solution is saved in the directories processorN, where N stands for processor 

number.  In this case you will find the following directories with the decomposed mesh and solution: 
processor0, processor1, processor2, and processor3.
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Running the case

1. $> foamCleanTutorials

2. $> rm –rf 0

3. $> blockMesh 

4. $> surfaceFeatures 

5. $> snappyHexMesh -overwrite

6. $> createPatch -dict system/createPatchDict.0 -overwrite

7. $> createPatch -dict system/createPatchDict.1 -overwrite

8. $> checkMesh

9. $> paraFoam

3D Dam break – Free surface flow

• Let us first generate the mesh.  

• To generate the mesh will use snappyHexMesh (sHM), do not worry we will talk about sHM 

tomorrow.
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Running the case

1. $> rm –rf 0

2. $> cp –r 0_org 0

3. $> setFields

4. $> paraFoam

5. $> decomposePar

6. $> mpirun –np 4 interFoam –parallel | tee log.interFoam

7. $> reconstructPar

8. $> paraFoam
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• Let us run the simulation in parallel using the solver interFoam. 

• We will talk more about running in parallel tomorrow 

• To run the case, type in the terminal:
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Running the case

• In steps 1-2 we copy the information of the backup directory 0_org into the directory 0. We do 

this because in the next step the utility setFields will overwrite the file 0/alpha.water, so it 

is a good idea to keep a backup.

• In step 3 we initialize the solution using the utility setFields. This utility reads the dictionary 

setFieldsDict located in the system directory. 

• In step 4 we visualize the initialization using paraFoam. 

• In step 5 we use the utility decomposePar to do the domain decomposition needed to run in 

parallel. 

• In step 6 we run the simulation in parallel.  Notice that np means number of processors and the 

value used should be the same number as the one you set in the dictionary 
decomposeParDict. 

• If you want to run in serial, type in the terminal: interFoam | tee log

• In step 7 we reconstruct the parallel solution. This step is only needed if you are running in 

parallel.

• Finally, in step 8 we visualize the solution. 
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• To plot the sampled data using gnuplot you can proceed as follows. To enter to the gnuplot 

prompt type in the terminal:

1. $> gnuplot

3D Dam break – Free surface flow

1. set xlabel 'Time (seconds)'

2. set ylabel 'Water volume integral'

3. gnuplot> plot 'postProcessing/water_in_domain/0/volRegion.dat' u 1:2 w l title 

'Water in domain'

4. set xlabel 'Time (seconds)'

5. set ylabel 'Pressure'

6. plot 'SPHERIC_Test2/case.txt' u 1:2 w l title 'Experiment', 

'postProcessing/probes1/0/p' u 1:2 w l title 'Numerical simulation'

7. gnuplot> exit

To exit gnuplot

• Now that we are inside the gnuplot prompt, we can type,
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• The output of steps 3 and 6 is the following:
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alpha.water vs. time p vs. time (at probe 0)
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The output screen

3D Dam break – Free surface flow

Courant Number mean: 0.0099001831 max: 0.50908228

Interface Courant Number mean: 0.0012838336 max: 0.05362054

deltaT = 0.00061195165

Time = 0.41265658

PIMPLE: iteration 1

smoothSolver:  Solving for alpha.water, Initial residual = 0.00035163885, Final residual = 9.3476388e-11, No Iterations 2

Phase-1 volume fraction = 0.20706923  Min(alpha.water) = -9.1300674e-12  Max(alpha.water) = 1.0000113

MULES: Correcting alpha.water

MULES: Correcting alpha.water

MULES: Correcting alpha.water

Phase-1 volume fraction = 0.20706923  Min(alpha.water) = -1.2354076e-07  Max(alpha.water) = 1.0000113

DILUPBiCGStab:  Solving for Ux, Initial residual = 0.00057936556, Final residual = 2.3207684e-09, No Iterations 1

DILUPBiCGStab:  Solving for Uy, Initial residual = 0.0021990412, Final residual = 7.228845e-09, No Iterations 1

DILUPBiCGStab:  Solving for Uz, Initial residual = 0.00041048425, Final residual = 3.946807e-10, No Iterations 1

DICPCG:  Solving for p_rgh, Initial residual = 0.0013260985, Final residual = 1.2556023e-05, No Iterations 4

DICPCG:  Solving for p_rgh, Initial residual = 1.4873252e-05, Final residual = 8.7706547e-07, No Iterations 13

time step continuity errors : sum local = 2.166836e-08, global = -4.8300033e-11, cumulative = -5.8278026e-05

DICPCG:  Solving for p_rgh, Initial residual = 1.6925332e-05, Final residual = 8.9811533e-07, No Iterations 9

DICPCG:  Solving for p_rgh, Initial residual = 1.1731393e-06, Final residual = 4.991128e-07, No Iterations 1

time step continuity errors : sum local = 1.2328745e-08, global = -3.6165262e-09, cumulative = -5.8281643e-05

DICPCG:  Solving for p_rgh, Initial residual = 8.2834963e-07, Final residual = 4.6047958e-07, No Iterations 1

DICPCG:  Solving for p_rgh, Initial residual = 4.6053278e-07, Final residual = 4.65519e-07, No Iterations 1

time step continuity errors : sum local = 1.1498949e-08, global = -3.1908629e-09, cumulative = -5.8284834e-05

DILUPBiCGStab:  Solving for epsilon, Initial residual = 0.001169828, Final residual = 9.2601488e-11, No Iterations 2

DILUPBiCGStab:  Solving for k, Initial residual = 0.0014561556, Final residual = 9.4651262e-11, No Iterations 2

ExecutionTime = 23.21 s  ClockTime = 24 s

fieldMinMax minmaxdomain write:

min(p) = -9.8942827 in cell 5509 at location (2.490155 0.025000016 1) on processor 2

max(p) = 4703.3656 in cell 1485 at location (3.1948336 -0.425 0) on processor 2

min(p_rgh) = -7.9025882 in cell 1241 at location (0.82088765 -0.20846334 0.043756428) on processor 1

max(p_rgh) = 4831.247 in cell 3285 at location (3.1948341 -0.475 0.42499986) on processor 2

min(U) = (-0.96505264 -0.019641482 -0.052664083) in cell 2 at location (2.1879167 -0.42500042 0.024999822) on processor 2

max(U) = (0.32541708 0.29383224 2.7117589) in cell 5246 at location (0.8884354 0.087713417 0.16296979) on processor 1

min(alpha.water) = -1.2354076e-07 in cell 2653 at location (0.84202094 -0.10628417 0.0062556498) on processor 1

max(alpha.water) = 1.0000113 in cell 224 at location (2.6411358 -0.42500003 0.074999874) on processor 2

min(k) = 0.0041733636 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(k) = 0.83402261 in cell 6589 at location (1.2803306 -0.025028634 0.17499623) on processor 1

min(epsilon) = 0.018352121 in cell 2510 at location (0.65789113 -0.0062500875 0.0062360099) on processor 1

max(epsilon) = 11.712212 in cell 1933 at location (0.83147515 -0.19630576 0.068753535) on processor 1

volFieldValue water_in_domain write:

volIntegrate() of alpha.water = 0.66459985

Flow courant number

Interface courant number. When solving multiphase flows, is always 

desirable to keep the interface courant number less than 1.  
alpha.water 
residuals

nAlphaCorr 3
nAlphaSubCycles 1
Only one loop

3 pressure correctors 

and no non-orthogonal 
corrections 

Tighter tolerance 

(p_rghFinal) is only applied 

to this iteration (the final 
one)

Volume integral functionObject
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Post-processing multiphase flows in paraFoam

• To visualize the volume fraction, proceed as follows,

3D Dam break – Free surface flow

2. Select alpha.water in 

the Active Variable drop-

down menu

1. In the Properties tab select 

alpha.water in Volume Fields 

3. Select Surface in the 

Representation drop-down 
menu

Air
alpha.water = 0

Water
alpha.water = 1

Interface
alpha.water = 0.5

4. To animate the solution, press Play in the 

VCR Controls

189



Post-processing multiphase flows in paraFoam

• To visualize a surface representing the interface, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Contour

2. Select alpha.water or the field you 

want to use to plot the iso-surface (it 

has to be a scalar)

3. Enter the value 0.5 which 

corresponds to the interface 
between water and air

4. Press apply

5. To animate the solution, press Play in the 

VCR Controls

Iso-surface representing the interface 
between water and air
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Post-processing multiphase flows in paraFoam

• To visualize all the cells representing the water fraction, proceed as follows,

3D Dam break – Free surface flow

1. Select the filter Threshold

2. Select alpha.water or the field 

you want to use to visualize the 

cells (it has to be a scalar)

3. Select the range you want to 

visualize.  To visualize the 
water select Minimum 0.5 and 

Maximum 1.

4. Press apply

Cells representing the 
water location

5. To animate the solution, press Play in the 

VCR Controls
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3D Dam break – Free surface flow

• Instead of using the boundary condition totalPressure and pressureInletOutletVelocity for the patch top, try 

use zeroGradient.  Do you get the same results? Any comments?

(Hint: this combination of boundary conditions might give you an error, if so, read carefully the screen 
and try to find a fix, you can start by looking at the file fvSolution)

• Instead of using the boundary condition fixedFluxPressure for the walls, try to use zeroGradient. Do you get 

the same results? Any comments?

• Run the simulation in a close domain. Does the volume integral of alpha.water remains the same? Why the 

value is not constant when the domain is open?

• Use the utility postprocess to measure the average pressure on the obstacle.                                                    

(Hint: use the utility postProcess with patchAverage, take a look at module 5)

• Look for a functionObject to measure the average pressure on the obstacle (something similar to the method 

used in the previous question).

• How many initialization methods are there available in the dictionary setFieldsDict?

(Hint: use the banana method)

• Run the simulation using Gauss upwind instead of Gauss vanLeer or Gauss interfaceCompression 
vanLeer 1 for the term div(phi,alpha) (fvSchemes).  Do you get the same quantitative results?

Exercises
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3D Dam break – Free surface flow

• Run a numerical experiment for cAlpha equal to 0, 1, and 2.  Do you see any difference in the solution? What 

about computing time?

• Use the solver GAMG instead of using the solver PCG for the variable p_rgh.  Do you see any difference on 

the solution or computing time?

• Increase the number of nOuterCorrector to 2 and study the output screen. What difference do you see?

• Turn off the MULES corrector (MULESCorr). Do you see any difference on the solution or computing time? 

• If you set the gravity vector to (0 0 0), what do you think will happen?

• Try to break the solver and identify the cause of the error.  You are free to try any kind of setup.

Exercises
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Roadmap

1. OpenFOAM® brief overview

2. OpenFOAM® directory organization

3. Directory structure of an application/utility

4. Applications/utilities in OpenFOAM®

5. Directory structure of an OpenFOAM® case

6. Running my first OpenFOAM® case setup blindfold

7. A deeper view to my first OpenFOAM® case setup

8. 3D Dam break – Free surface flow

9. Flow past a cylinder – From laminar to turbulent flow
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• At this point we all have a rough idea of what is going 

on with all these dictionary files.

• Unless it is strictly necessary, from now on we will not 

go into details about the dictionaries and  files we are 

using.

• Remember, if you are using the lab computers, do not 

forget to load the environment variables.

Flow past a cylinder – From laminar to turbulent flow
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Flow around a cylinder – 10 < Re < 2 000 000

Incompressible and compressible flow

All the dimensions are in meters

Flow past a cylinder – From laminar to turbulent flow

Physical and numerical side of the 

problem:

• In this case we are going to solve the flow 

around a cylinder.  We are going to use 

incompressible and compressible solvers, in 

laminar and turbulent regime.

• Therefore, the governing equations of the 

problem are the incompressible/compressible 

laminar/turbulent Navier-Stokes equations.

• We are going to work in a 2D domain.

• Depending on the Reynolds number, the flow 

can be steady or unsteady.

• This problem has a lot of validation data.
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Workflow of the case

Flow past a cylinder – From laminar to turbulent flow

icoFoam

pisoFoam

pimpleFoam

pimpleDyMFoam

simpleFoam

rhoPimpleFoam

interFoam

sonicFoam

potentialFoam

mapFields

sampling

functionObjects

postProcessing 

utilities

paraview

blockMesh

Or

fluentMeshToFoam

NOTE:

One single mesh can be used with all 

solvers and utilities
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Vortex shedding behind a cylinder

Flow past a cylinder – From laminar to turbulent flow

Drag coefficient

Strouhal number

Re < 5

5 < Re < 40 - 46

40 - 46 < Re < 150

150 < Re < 300

300 < Re < 3 x 10
5

3 x 10  < Re < 3 x 10
5 6

Transition to turbulence

3 x 10  > Re 
6

Creeping flow (no separation)
Steady flow

A pair of stable vortices
in the wake
Steady flow

Laminar vortex street
(Von Karman street)
Unsteady flow

Laminar boundary layer up to
the separation point, turbulent 
wake
Unsteady flow

Boundary layer transition to
turbulent
Unsteady flow

Turbulent vortex street, but the 
wake is  narrower than in the 
laminar case
Unsteady flow
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Flow past a cylinder – From laminar to turbulent flow

Some experimental (E)  and numerical (N)  results of the flow past a circular 
cylinder at various Reynolds numbers

[1]  D. Tritton.  Experiments on the flow past a circular cylinder at low Reynolds numbers.  Journal of Fluid Mechanics, 6:547-567, 1959.

[2]  M. Cuntanceau and R. Bouard.  Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation.  Part 1.  Steady flow.  Journal of Fluid 

Mechanics, 79:257-272, 1973.

[3]  D. Rusell and Z. Wang.  A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow.  Journal of Computational Physics, 191:177-205, 2003.

[4]  D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions.  Journal of Computational Physics. 176:231-275, 2002.

[5]  T. Ye, R. Mittal, H. Udaykumar, and W. Shyy.  An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries.  Journal of Computational Physics, 

156:209-240, 1999.

[6]  B. Fornberg.  A numerical study of steady viscous flow past a circular cylinder.  Journal of Fluid Mechanics, 98:819-855, 1980.

[7]  J. Guerrero.  Numerical simulation of the unsteady aerodynamics of flapping flight.  PhD Thesis, University of Genoa, 2009.

Lrb = length of recirculation bubble, cd = drag coefficient, Re = Reynolds number, 

Reference cd – Re = 20 Lrb – Re = 20 cd – Re = 40 Lrb – Re = 40

[1] Tritton (E) 2.22 – 1.48 –

[2] Cuntanceau and Bouard (E) – 0.73 – 1.89

[3] Russel and Wang (N) 2.13 0.94 1.60 2.29

[4] Calhoun and Wang (N) 2.19 0.91 1.62 2.18

[5] Ye et al. (N) 2.03 0.92 1.52 2.27

[6] Fornbern (N) 2.00 0.92 1.50 2.24

[7] Guerrero (N) 2.20 0.92 1.62 2.21
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Flow past a cylinder – From laminar to turbulent flow

Some experimental (E)  and numerical (N)  results of the flow past a circular 
cylinder at various Reynolds numbers

[1]  D. Rusell and Z. Wang.  A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow.  Journal of Computational Physics, 191:177-205, 2003.

[2]  D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions.  Journal of Computational Physics. 176:231-275, 2002.

[3]  M. Braza, P. Chassaing, and H. Hinh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder.  Journal of Fluid Mechanics, 165:79-130, 

1986.

[4]  J. Choi, R. Oberoi, J. Edwards, an J. Rosati.  An immersed boundary method for complex incompressible flows.  Journal of Computational Physics, 224:757-784, 2007.

[5]  C. Liu, X. Zheng, and C. Sung. Preconditioned multigrid methods for unsteady incompressible flows.  Journal of Computational Physics, 139:33-57, 1998.

[6]  J. Guerrero.  Numerical Simulation of the unsteady aerodynamics of flapping flight.  PhD Thesis, University of Genoa, 2009.

Reference cd – Re = 100 cl – Re = 100 cd – Re = 200 cl – Re = 200

[1] Russel and Wang (N) 1.38 ± 0.007 ± 0.322 1.29 ± 0.022 ± 0.50

[2] Calhoun and Wang (N) 1.35 ± 0.014 ± 0.30 1.17 ± 0.058 ± 0.67

[3] Braza et al. (N) 1.386± 0.015 ± 0.25 1.40 ± 0.05 ± 0.75

[4] Choi et al. (N) 1.34 ± 0.011 ± 0.315 1.36 ± 0.048 ± 0.64

[5] Liu et al. (N) 1.35 ± 0.012 ± 0.339 1.31 ± 0.049 ± 0.69

[6] Guerrero (N) 1.38 ± 0.012 ± 0.333 1.408 ± 0.048 ± 0.725

cl = lift coefficient, cd = drag coefficient, Re = Reynolds number
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Incompressible flow – Reynolds 200

At the end of the day, you should get something like this

Flow past a cylinder – From laminar to turbulent flow

Instantaneous velocity magnitude field
www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvmag.gif

Instantaneous vorticity magnitude field
www.wolfdynamics.com/wiki/cylinder_vortex_shedding/movvort.gif
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Incompressible flow – Reynolds 200

At the end of the day, you should get something like this

Flow past a cylinder – From laminar to turbulent flow
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Flow past a cylinder – From laminar to turbulent flow
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• Let us run this case. Go to the directory:

$PTOFC/101OF/vortex_shedding 

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



What are we going to do?

• We will use this case to learn how to use different solvers and utilities.

• Remember, different solvers have different input dictionaries.

• We will learn how to convert the mesh from a third-party software.

• We will learn how to use setFields to initialize the flow field and accelerate the convergence.

• We will learn how to map a solution from a coarse mesh to a fine mesh.

• We will learn how to setup a compressible solver.

• We will learn how to setup a turbulence case.

• We will use gnuplot to plot and compute the mean values of the lift and drag coefficients.

• We will visualize unsteady data.

Flow past a cylinder – From laminar to turbulent flow
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• Let us first convert the mesh from a third-party format (Fluent format).

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c2 

• In the terminal window type:              

1. $> foamCleanTutorials 

2. $> fluent3DMeshToFoam ../../../meshes_and_geometries/vortex_shedding/ascii.msh

3. $> checkMesh

4. $> paraFoam

• In step 2, we convert the mesh from Fluent format to OpenFOAM® format.  Have in mind that 

the Fluent mesh must be in ascii format.

• If we try to open the mesh using paraFoam (step 4), it will crash.  Can you tell what is the 

problem by just reading the screen? 

Running the case

Flow past a cylinder – From laminar to turbulent flow

205



• To avoid this problem, type in the terminal,

• Basically, the problem is related to the names and type of the patches in the file boundary and 

the boundary conditions (U, p). Notice that OpenFOAM® is telling you what and where is the 

error.

Running the case

Flow past a cylinder – From laminar to turbulent flow

1. $> paraFoam -builtin

Created temporary 'c2.OpenFOAM'

--> FOAM FATAL IO ERROR: 

patch type 'patch' not constraint type 'empty'

for patch front of field p in file "/home/joegi/my_cases_course/8/101OF/vortex_shedding/c2/0/p"

file: /home/joegi/my_cases_course/8/101OF/vortex_shedding/c2/0/p.boundaryField.front from line 60 to line 60.

From function Foam::emptyFvPatchField<Type>::emptyFvPatchField(const Foam::fvPatch&, const 

Foam::DimensionedField<Type, Foam::volMesh>&, const Foam::dictionary&) [with Type = double]

in file fields/fvPatchFields/constraint/empty/emptyFvPatchField.C at line 80.

FOAM exiting

What Where
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• Remember, when converting meshes the name and type of the patches are not always set as 
you would like, so it is always a good idea to take a look at the file boundary and modify it 

according to your needs.

• Let us modify the boundary dictionary file.

• In this case, we want to setup the following numerical type boundary conditions.

Flow past a cylinder – From laminar to turbulent flow
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The boundary dictionary file 

• This dictionary is located in the 
constant/polyMesh directory. 

• This file is automatically created when converting 

or generating the mesh.

• To get a visual reference of the patches, you can 

visualize the mesh with paraFoam/paraview.

• The type of the out patch is OK.

• The type of the sym1 patch is OK.

• The type of the sym2 patch is OK.

• The type of the in patch is OK.

18  7

19  (

20  out

21  {

22  type            patch;

23  nFaces          80;

24  startFace       18180;

25  }

26  sym1

27  {

28  type            symmetry;

29  inGroups        1(symmetry);

30  nFaces          100;

31  startFace       18260;

32  }

33  sym2

34  {

35  type            symmetry;

36  inGroups        1(symmetry);

37  nFaces          100;

38  startFace       18360;

39  }

40  in

41  {

42  type            patch;

43  nFaces          80;

44  startFace       18460;

45  }

Flow past a cylinder – From laminar to turbulent flow

208



The boundary dictionary file 

46  cylinder

47  {

48  type            wall;

49  inGroups        1(wall);

50  nFaces          80;

51  startFace       18540;

52  }

53  back

54  {

55  type            patch;

56  nFaces          9200;

57  startFace       18620;

58  }

59  front

60  {

61  type            patch;

62  nFaces          9200;

63  startFace       27820;

64  }

65  )

• The type of the cylinder patch is OK.

• The type of the back patch is NOT OK. 

Remember, this is a 2D simulation, therefore the 

type should be empty. 

• The type of the front patch is NOT OK. 

Remember, this is a 2D simulation, therefore the 

type should be empty. 

• Remember, we assign the numerical type 

boundary conditions (numerical values), in the 
field files found in the directory 0

Flow past a cylinder – From laminar to turbulent flow
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• One of the most difficult things to understand in OpenFOAM is how to setup boundary conditions.

• There are too many and can be used in many combinations.

• To simplify things, it is better to think only in Dirichlet and Neumann boundary conditions. Therefore, we only 

need to deal with two types of boundary conditions (mathematically speaking).

• In the table below, we list the most frequent boundary conditions.

• Remember, you can always browse the source code or use the utility foamInfo to get more information about 

the boundary conditions.

Flow past a cylinder – From laminar to turbulent flow
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constant/polyMesh/boundary 0/U - 0/p (IC/BC)

symmetry

empty

cyclic

symmetry

empty

cyclic

constant/polyMesh/boundary 0/U (IC/BC) 0/p (IC/BC)

wall
type fixedValue;

value uniform (0 0 0);
zeroGradient
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constant/polyMesh/boundary 0/U - 0/p (IC/BC)

patch

calculated

fixedValue

flowRateInletVelocity

freestream

inletOutlet

slip

supersonicFreeStream

totalPressure

zeroGradient

• One of the most difficult things to understand in OpenFOAM is how to setup boundary conditions.

• There are too many and can be used in many combinations.

• To simplify things, it is better to think only in Dirichlet and Neumann boundary conditions. Therefore, we only 

need to deal with two types of boundary conditions (mathematically speaking).

• In the table below, we list the most frequent boundary conditions.

• Remember, you can always browse the source code or use the utility foamInfo to get more information about 

the boundary conditions.
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• And when dealing with turbulence modeling, these are the most often used boundary conditions.

• To use these boundary conditions (wall functions) and to be able to compute y+, the primitive patch (the patch 
type defined in the boundary dictionary), must be of type wall.

• That is, these boundary conditions only apply to walls (moving or fixed).

• We will talk more about this when dealing with turbulence modeling.

Field Wall functions – High RE Resolved BL – Low RE

nut
nut(–)WallFunction* or nutUSpaldingWallFunction**

(with 0 or a small number)

nutUSpaldingWallFunction**, nutkWallFunction, 

nutUWallFunction, nutLowReWallFunction or fixedValue*** (with 0 

or a small number)

k, q, R

kqRWallFunction** (with inlet value or a small 

number) kqRWallFunction** or kLowReWallFunction (with inlet value, 0, or a 

small number) or fixedValue*** (with 0 or a small number)

epsilon

epsilonWallFunction (with inlet value) 
epsilonWallFunction (with inlet value) or zeroGradient*** or 

fixedValue*** (with 0 or a small number)

omega

omegaWallFunction** (with a large number)

omegaWallFunction** or fixedValue*** (both with a large number)

nuTilda –
fixedValue (one to ten times the molecular viscosity, a small number, 

or 0)

* nutUWallFunction or nutkWallfunction

** Recommended options for y+ insensitive treatment (continuous wall functions)

*** Will disable wall functions. The equations will be integrated down to the viscous sublayer with no damping or corrections.



• At this point, check that the name and type of the base type boundary conditions and 

numerical type boundary conditions are consistent.  If everything is ok, you are ready to go.

• Do not forget to explore the rest of the dictionary files, namely:

• 0/p (p is defined as relative pressure)

• 0/U

• constant/transportProperties

• system/controlDict 

• system/fvSchemes

• system/fvSolution

• Reminder:

• The diameter of the cylinder is 2.0 m.

• And we are targeting for a Re = 200.

Flow past a cylinder – From laminar to turbulent flow
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c2 

• In the folder c1 you will find the same setup, but to generate the mesh we use blockMesh (the 

mesh is identical).

• To run this case, in the terminal window type:

1. $> renumberMesh -overwrite 

2. $> icoFoam | tee log.icofoam

3.
$> pyFoamPlotWatcher.py log.icofoam

You will need to launch this script in a different terminal

4.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

5. $> paraFoam 

Running the case

Flow past a cylinder – From laminar to turbulent flow
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• In step 1 we use the utility renumberMesh to make the linear system more diagonal dominant, 

this will speed-up the linear solvers.  This is inexpensive (even for large meshes), therefore is 

highly recommended to always do it.

• In step 2 we run the simulation and save the log file.  Notice that we are sending the job to 

background.

• In step 3 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the job is 

running in background, we can launch this utility in the same terminal tab.

• In step 4 we use the gnuplot script scripts0/plot_coeffs to plot the force coefficients on-

the-fly.  Besides monitoring the residuals, is always a good idea to monitor a quantity of interest. 

Feel free to take a look at the script and to reuse it.

• The force coefficients are computed using functionObjects.

• After the simulation is over, we use paraFoam to visualize the results. Remember to use the 

VCR Controls to animate the solution.

• In the folder c1 you will find the same setup, but to generate the mesh we use blockMesh (the 

mesh is identical).

Running the case

Flow past a cylinder – From laminar to turbulent flow
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• At this point try to use the following utilities. In the terminal type:

• $> postProcess –func vorticity –noZero 

This utility will compute and write the vorticity field. The –noZero option means do not compute the vorticity field for the 

solution in the directory 0.  If you do not add the –noZero option, it will compute and write the vorticity field for all the 

saved solutions, including 0

• $> postprocess –func 'grad(U)' –latestTime

This utility will compute and write the velocity gradient or grad(U) in the whole domain (including at the walls).  The       

–latestTime option means compute the velocity gradient only for the last saved solution.

• $> postprocess –func 'grad(p)' 
This utility will compute and write the pressure gradient or grad(U) in the whole domain (including at the walls). 

• $> foamToVTK –time 50:300 

This utility will convert the saved solution from OpenFOAM® format to VTK format.  The –time 50:300 option means 

convert the solution to VTK format only for the time directories 50 to 300

• $> postProcess -func 'div(U)'
This utility will compute and write the divergence of the velocity field or grad(U) in the whole domain (including at the 

walls).

• $> pisoFoam -postProcess -func CourantNo 

This utility will compute and write the Courant number. This utility needs to access the solver database for the physical 
properties and additional quantities; therefore, we need to tell what solver we are using.  As the solver icoFoam does not 

accept the option –postProcess, we can use the solver pisoFoam instead. Remember, icoFoam is a fully laminar 

solver and pisoFoam is a laminar/turbulent solver.

• $> pisoFoam -postProcess -func wallShearStress

This utility will compute and write the wall shear stresses at the walls.  As no arguments are given, it will save the wall 

shear stresses for all time-steps.

Flow past a cylinder – From laminar to turbulent flow
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Non-uniform field initialization

• In the previous case, it took about 150 seconds of simulation time to onset the instability.

• If you are not interested in the initial transient or if you want to speed-up the computation, you 

can add a perturbation in order to trigger the onset of the instability.

• Let us use the utility setFields to initialize a non-uniform flow.

• This case is already setup in the directory ,

$PTOFC/101OF/vortex_shedding/c3

• As you saw in the previous example, icoFoam is a very basic solver that does not have access 

to all the advanced modeling or postprocessing capabilities that comes with OpenFOAM®.

• Therefore, instead of using icoFoam we will use pisoFoam (or pimpleFoam) from now on.

• To run the solver pisoFoam (or pimpleFoam) starting from the directory structure of an 

icoFoam case, you will need to add the followings modifications:

• Add the file momentumTransport in the directory constant.

• Add the transportModel to be used in the file constant/transportProperties.

• Add the entry div((nuEff*dev2(T(grad(U))))) Gauss linear; to the dictionary 
system/fvSchemes in the section divSchemes (this entry is related to the Reynodls 

stresses).
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The setFieldsDict dictionary

17 defaultFieldValues

18 (

19 volVectorFieldValue U (1 0 0)

20 );

21 

22 regions

23 (

24 boxToCell

25 {

26 box (0 -100 -100) (100 100 100);

27 fieldValues

28 (

29 volVectorFieldValue U (0.98480 0.17364 0)

30 );

31 }

32 );

• This dictionary file is located in the directory system.

• In lines 17-20 we set the default value of the velocity vector 

to be (0 0 0) in the whole domain.

• In lines 24-31, we initialize a rectangular region (box) just 

behind the cylinder with a velocity vector equal to (0.98480 

0.17364 0)

• In this case, setFields will look for the dictionary file U 

and it will overwrite the original values according to the 
regions defined in setFieldsDict.

boxToCell region

U
 (

1
 0

 0
)

U
 (

0
.9

8
4
8
0
 0

.1
7
3
6
4
 0

)

• Let us run the same case but using a non-uniform field
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• Let us run the same case but using a non-uniform field.

• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c3 

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  Hereafter, we will 

use blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> rm –rf 0 > /dev/null 2>&1

4. $> cp –r 0_org/ 0

5. $> setFields

6. $> renumberMesh -overwrite 

7. $> pisoFoam | tee log.solver

8.
$> pyFoamPlotWatcher.py log.pisofoam 

You will need to launch this script in a different terminal

9.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

10. $> paraFoam 
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Running the case – Non-uniform field initialization

• In step 2 we generate the mesh using blockMesh. The name and type of the patches are 

already set in the dictionary blockMeshDict so there is no need to modify the boundary file.

• In step 4 we copy the original files to the directory 0.  We do this to keep a backup of the original 

files as the file 0/U will be overwritten when using setFields.

• In step 5 we initialize the solution using setFields.

• In step 6 we use the utility renumberMesh to make the linear system more diagonal dominant, 

this will speed-up the linear solvers. 

• In step 7 we run the simulation and save the log file.  Notice that we are sending the job to 

background.

• In step 8 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the job is 

running in background, we can launch this utility in the same terminal tab.

• In step 9 we use the gnuplot script scripts0/plot_coeffs to plot the lift and drag 

coefficients on-the-fly.  Besides monitoring the residuals, is always a good idea to monitor a 

quantity of interest. Feel free to take a look at the script and to reuse it.
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No field initialization With field initialization

Does non-uniform field initialization make a difference?

• A picture is worth a thousand words. No need to tell you yes, even if the solutions are slightly 

different.

• This bring us to the next subject, for how long should we run the simulation?
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For how long should run the simulation?

• This is the difficult part when dealing with 

unsteady flows.

• Usually, you run the simulation until the 

behavior of a quantity of interest does not 

oscillates or it becomes periodic.

• In this case we can say that after the 50 

seconds mark the solution becomes 

periodic, therefore there is no need to run up 

to 350 seconds (unless you want to gather a 

lot of statistics).

• We can stop the simulation at 150 seconds 

(or maybe less), and do the average of the 

quantities between 100 and 150 seconds.
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• Residuals are telling you a lot, but they are 

difficult to interpret.

• In this case the fact that the initial residuals 

are increasing after about 10 seconds, does 

not mean that the solution is diverging. This 

is in indication that something is happening 

(in this case the onset of the instability).

• Remember, the residuals should always 

drop to the tolerance criteria set in the 
fvSolution dictionary (final residuals). If 

they do not drop to the desired tolerance, we 

are talking about unconverged time-steps.

• Things that are not clear from the residuals:  

• For how long should we run the 

simulation? 

• Is the solution converging to the right 

value?

What about the residuals?



51  functions

52  {

178 forceCoeffs_object

179 {

188 type forceCoeffs;

189 functionObjectLibs ("libforces.so");

191 patches (cylinder);

193 pName p;

194 Uname U;

195 rhoName rhoInf;

196 rhoInf 1.0;

198 //// Dump to file

199 log true;

201 CofR (0.0 0 0);

202 liftDir (0 1 0);

202 dragDir (1 0 0);

204 pitchAxis (0 0 1);

205 magUInf 1.0;

206 lRef 1.0;       

207 Aref 2.0;         

209 outputControl   timeStep;

210 outputInterval  1;

211 }

237 };

• To compute the force coefficients, we use 

functionObjects.

• Remember, functionObjects are defined at the end of 
the controlDict dictionary file.

• In line 178 we give a name to the functionObject.

• In line 191 we define the patch where we want to 

compute the forces.

• In lines 195-196 we define the reference density value.

• In line 201 we define the center of rotation (for moments).

• In line 202 we define the lift force axis.

• In line 203 we define the drag force axis.

• In line 204 we define the axis of rotation for moment 

computation.

• In line 206 we give the reference length (for computing 

the moments)

• In line 207 we give the reference area (in this case the 

frontal area).

• The output of this functionObject is saved in the file 
forceCoeffs.dat located in the directory 

forceCoeffs_object/0/

How to compute force coefficients
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Can we compute basic statistics of the force coefficients using gnuplot?

1. gnuplot> stats ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ u 3

This will compute the basic statistics of all the rows in the file forceCoeffs.dat (we are sampling column 3 in the input file)

2. gnuplot> stats ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ every ::3000::7000 u 3

This will compute the basic statistics of rows 3000 to 7000 in the file forceCoeffs.dat (we are sampling column 3 in the input file)

3. gnuplot> plot ‘postProcessing/forceCoeffs_object/0/forceCoeffs.dat’ u 3 w l

This will plot column 3 against the row number (iteration number)

4. gnuplot> exit

To exit gnuplot

• Yes, we can. Enter the gnuplot prompt and type:

• Remember the force coefficients information is saved in the file forceCoeffs.dat located in 

the directory postProcessing/forceCoeffs_object/0
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17 ddtSchemes

18 {

20 default         backward;

22 }

23 

24 gradSchemes

25 {  

29 default cellLimited leastSquares 1;

35 }

36 

37 divSchemes

38 {

39 default         none;  

43 div(phi,U)      Gauss linearUpwindV default;

48 div((nuEff*dev2(T(grad(U))))) Gauss linear;

49 }

50 

51 laplacianSchemes

52 { 

53 default         Gauss linear limited 1;

54 }

55

56 interpolationSchemes

57 {

58 default linear;

59 }

60 

61 snGradSchemes

62 {

63 default limited 1;

64 }

• At the end of the day, we want a solution that is second order 

accurate.

• We define the discretization schemes (and therefore the 
accuracy) in the dictionary fvSchemes.

• In this case, for time discretization (ddtSchemes) we are 

using the backward method.

• For gradient discretization (gradSchemes) we are using the 

leastSquares method with slope limiters (cellLimited) for all 

terms (default option).  

• Sometimes adding a gradient limiter to the pressure gradient 

or grad(p) can be too diffusive, so it is better not to use 

gradient limiters for grad(p), e.g., grad(p) leastSquares.

• For the discretization of the convective terms (divSchemes) 

we are using linearUpwindV interpolation method for the 

term div(rho,U).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear 

limited 1 method 

• In overall, this method is second order accurate (this is what 

we want).

On the solution accuracy
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17 solvers

18 {

31 p

32 {

33 solver           GAMG;

34 tolerance        1e-6;

35 relTol           0;

36 smoother         GaussSeidel;

37 nPreSweeps       0;

38 nPostSweeps      2;

39 cacheAgglomeration on;

40 agglomerator     faceAreaPair;

41 nCellsInCoarsestLevel 100;

42 mergeLevels      1;

43 }

44 

45 pFinal

46 {

47 $p;

48 relTol          0;

49 }

50 

51 U

52 {

53 solver          PBiCGStab;

54 preconditioner  DILU;

55 tolerance       1e-08;

56 relTol          0;

57 }

69 }

70 

71 PISO

72 {

73 nCorrectors     2;

74 nNonOrthogonalCorrectors 2;

77 }

• We define the solution tolerance and linear solvers in the 
dictionary fvSolution.

• To solve the pressure (p) we are using the GAMG method 

with an absolute tolerance of 1e-6 and a relative tolerance 

relTol of 0.01.

• The entry pFinal refers to the final correction of the PISO

loop.  It is possible to use a tighter convergence criteria only 

in the last iteration. 

• To solve U, we are using the solver PBiCGStab and the 

DILU preconditioner, with an absolute tolerance of 1e-8 and 

a relative tolerance relTol of 0 (the solver will stop iterating 

when it meets any of the conditions).

• Solving for the velocity is relatively inexpensive, whereas 

solving for the pressure is expensive.

• The PISO sub-dictionary contains entries related to the 

pressure-velocity coupling (in this case the PISO method). 

Hereafter we are doing two PISO correctors (nCorrectors) 

and two non-orthogonal corrections 

(nNonOrthogonalCorrectors).

On the solution tolerance and linear solvers
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17  application     pisoFoam;

18  

20  startFrom       latestTime;

21  

22  startTime       0;

23  

24  stopAt          endTime;

26  

27  endTime         350;

28  

29  deltaT          0.05;

30  

31  writeControl    runTime;

32  

33  writeInterval   1;

34  

35  purgeWrite      0;

36  

37  writeFormat     ascii;

38  

39  writePrecision 8;

40  

41  writeCompression off;

42  

43  timeFormat      general;

44  

45  timePrecision   6;

46  

47  runTimeModifiable true;

• This case starts from the latest saved solution (startFrom). 

• In this case as there are no saved solutions, it will start from 

0 (startTime).

• It will run up to 350 seconds (endTime). 

• The time-step of the simulation is 0.05 seconds (deltaT). The 

time-step has been chosen in such a way that the Courant 

number is less than 1

• It will write the solution every 1 second (writeInterval) of 

simulation time (runTime). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is 8 digits (writePrecision).

• And as the option runTimeModifiable is on, we can modify 

all these entries while we are running the simulation.

On the runtime parameters
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Time = 350

Courant Number mean: 0.11299953 max: 0.87674198

DILUPBiCG:  Solving for Ux, Initial residual = 0.0037946307, Final residual = 4.8324843e-09, No Iterations 3

DILUPBiCG:  Solving for Uy, Initial residual = 0.011990022, Final residual = 5.8815028e-09, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.022175872, Final residual = 6.2680545e-07, No Iterations 14

GAMG:  Solving for p, Initial residual = 0.0033723932, Final residual = 5.8494331e-07, No Iterations 8

GAMG:  Solving for p, Initial residual = 0.0010074964, Final residual = 4.4726195e-07, No Iterations 7

time step continuity errors : sum local = 1.9569266e-11, global = -3.471923e-14, cumulative = -2.8708402e-10

GAMG:  Solving for p, Initial residual = 0.0023505548, Final residual = 9.9222424e-07, No Iterations 8

GAMG:  Solving for p, Initial residual = 0.00045248026, Final residual = 7.7250386e-07, No Iterations 6

GAMG:  Solving for p, Initial residual = 0.00014664077, Final residual = 4.5825218e-07, No Iterations 5

time step continuity errors : sum local = 2.0062733e-11, global = 1.2592813e-13, cumulative = -2.8695809e-10

ExecutionTime = 746.46 s  ClockTime = 807 s

faceSource inMassFlow output:

sum(in) of phi = -40

faceSource outMassFlow output:

sum(out) of phi = 40

fieldAverage fieldAverage output:

Calculating averages

Writing average fields

forceCoeffs forceCoeffs_object output:

Cm    = 0.0043956828

Cd    = 1.4391786

Cl    = 0.44532594

Cl(f) = 0.22705865

Cl(r) = 0.21826729

fieldMinMax minmaxdomain output:

min(p) = -0.82758125 at location (2.2845502 0.27072681 1.4608125e-17)

max(p) = 0.55952746 at location (-1.033408 -0.040619346 0)

min(U) = (-0.32263726 -0.054404584 -1.8727033e-19) at location (2.4478235 -0.69065656 -2.5551406e-17)

max(U) = (1.4610304 0.10220218 2.199981e-19) at location (0.43121241 1.5285504 -1.4453535e-17)

The output screen

• This is the output screen of the pisoFoam solver.

nNonOrthogonalCorrectors 2

Force 
coefficients

Mass flow at in patch

Mass flow at out patch

Computing averages of fields

Courant number

pFinal

nCorrectors 2
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Let us use a potential solver to find a quick solution

• In this case we are going to use the potential solver potentialFoam (remember potential 

solvers are inviscid, irrotational and incompressible).

• This solver is super fast, and it can be used to find a solution to be used as initial conditions 

(non-uniform field) for an incompressible solver. 

• A good initial condition will accelerate and improve the convergence rate.

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c4

• Do not forget to explore the dictionary files.

• The following dictionaries are different

• system/fvSchemes

• system/fvSolution

Try to spot the differences.
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c4

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  In this case we will 

use blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> potentialFoam –noFunctionObjects –initialiseUBCs –writep -writePhi

6. $> paraFoam 

Running the case – Let us use a potential solver to find a quick solution
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• In step 2 we generate the mesh using blockMesh. The name and type of the patches are 

already set in the dictionary blockMeshDict so there is no need to modify the boundary file.

• In step 4 we copy the original files to the directory 0.  We do this to keep a backup of the original 

files as they will be overwritten by the solver potentialFoam.

• In step 5 we run the solver.  We use the option –noFunctionObjects to avoid conflicts with 

the functionobjects. The options –writep and –writePhi will write the pressure field and 

fluxes respectively.

• At this point, if you want to use this solution as initial conditions for an incompressible solver, just 
copy the files U and p into the start directory of the incompressible case you are looking to run. 

Have in mind that the meshes need to be the same.

• Be careful with the name and type of the boundary conditions, they should be same between 

the potential case and incompressible case.
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Potential solution

• Using a potential solution as initial conditions is much better than using a uniform flow. It will 

speed up the solution and it will give you more stability.

• Finding a solution using the potential solver is inexpensive.

Velocity field Pressure field

Flow past a cylinder – From laminar to turbulent flow

233



Calculating potential flow

DICPCG:  Solving for Phi, Initial residual = 2.6622265e-05, Final residual = 8.4894837e-07, No Iterations 27

DICPCG:  Solving for Phi, Initial residual = 1.016986e-05, Final residual = 9.5168103e-07, No Iterations 9

DICPCG:  Solving for Phi, Initial residual = 4.0789046e-06, Final residual = 7.7788216e-07, No Iterations 5

DICPCG:  Solving for Phi, Initial residual = 1.8251249e-06, Final residual = 8.8483568e-07, No Iterations 1

DICPCG:  Solving for Phi, Initial residual = 1.1220074e-06, Final residual = 5.6696809e-07, No Iterations 1

DICPCG:  Solving for Phi, Initial residual = 7.1187246e-07, Final residual = 7.1187246e-07, No Iterations 0

Continuity error = 1.3827583e-06

Interpolated velocity error = 7.620206e-07

Calculating approximate pressure field

DICPCG:  Solving for p, Initial residual = 0.0036907012, Final residual = 9.7025397e-07, No Iterations 89

DICPCG:  Solving for p, Initial residual = 0.0007470416, Final residual = 9.9942495e-07, No Iterations 85

DICPCG:  Solving for p, Initial residual = 0.00022829496, Final residual = 8.6107759e-07, No Iterations 36

DICPCG:  Solving for p, Initial residual = 7.9622793e-05, Final residual = 8.4360883e-07, No Iterations 31

DICPCG:  Solving for p, Initial residual = 2.8883108e-05, Final residual = 8.7152873e-07, No Iterations 25

DICPCG:  Solving for p, Initial residual = 1.151539e-05, Final residual = 9.7057871e-07, No Iterations 9

ExecutionTime = 0.17 s  ClockTime = 0 s

End

The output screen

• This is the output screen of the potentialFoam solver.

• The output of this solver is also a good indication of the sensitivity of the mesh quality to 

gradients computation. If you see that the number of iterations are dropping iteration after 

iteration, it means that the mesh is fine.

• If the number of iterations remain stalled, it means that the mesh is sensitive to gradients, so 

you should use non-orthogonal correction.

• In this case we have a good mesh.

nNonOrthogonalCorrectors 5

Initial approximation
Velocity computation

Pressure computation
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Let us map a solution from a coarse mesh to a finer mesh

• It is also possible to map the solution from a coarse mesh to a finer mesh (and all the way 

around).

• For instance, you can compute a full Navier-Stokes solution in a coarse mesh (fast solution), 

and then map it to a finer mesh.

• Let us map the solution from the potential solver to a finer mesh (if you want you can map the 
solution obtained using pisoFoam or icoFoam). To do this we will use the utility mapFields.

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c6
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c6 

• To generate the mesh, use blockMesh (remember this mesh is finer).

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> rm –rf 0

4. $> cp –r 0_org 0

5. $> mapfields ../c4 –consistent –noFunctionObjects –mapMethod cellPointInterpolate -sourceTime 0

6. $> paraFoam 

Running the case – Let us map a solution from a coarse mesh to a finer mesh

Flow past a cylinder – From laminar to turbulent flow

236

• To run step 5 you need to have a solution in the directory ../c4



• In step 2 we generate a finer mesh using blockMesh. The name and type of the patches are 

already set in the dictionary blockMeshDict so there is no need to modify the boundary file.

• In step 4 we copy the original files to the directory 0.  We do this to keep a backup of the original 

files as they will be overwritten by the utility mapFields.

• In step 5 we use the utility mapFields with the following options:

• We copy the solution from the directory ../c4 

• The options –consistent is used when the domains and BCs are the same.

• The option –noFunctionObjects is used to avoid conflicts with the functionObjects. 

• The option –mapMethod cellPointInterpolate defines the interpolation method.

• The option -sourceTime 0 defines the time from which we want to interpolate the 

solution.
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Coarse mesh Fine mesh

mapFields

The meshes and the mapped fields
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Source: "/home/joegi/my_cases_course/OF8/101OF/vortex_shedding" "c5"

Target: "/home/joegi/my_cases_course/OF8/101OF/vortex_shedding" "c6"

Mapping method: cellPointInterpolate

Create databases as time

Source time: 350

Target time: 0

Create meshes

Source mesh size: 9200  Target mesh size: 36800

Consistently creating and mapping fields for time 0

interpolating Phi

interpolating p

interpolating U

End

The output screen

• This is the output screen of the mapFields utility.

• The utility mapFields, will try to interpolate all fields in the source directory.

• You can control the target time via the startFrom and startTime keywords in the controlDict

dictionary file.

Interpolated fields

Source case

Source and target mesh cell count

Target case

Interpolation method

Source time

Target time
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• Finally, after mapping the solution, you can run the solver in the usual way. The solver will use 
the mapped solution as initial conditions.



Setting a turbulent case

• So far, we have used laminar incompressible solvers.  

• Let us do a turbulent simulation.

• When doing turbulent simulations, we need to choose the turbulence model, define the 
boundary and initial conditions for the turbulent quantities, and modify the fvSchemes and 

fvSolution dictionaries to take account for the new variables we are solving (the transported 

turbulent quantities).

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c14
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• The following dictionaries remain unchanged

• system/blockMeshDict

• constant/polyMesh/boundary

• 0/p

• 0/U

• The following dictionaries need to be adapted for the turbulence case

• constant/transportProperties

• system/controlDict

• system/fvSchemes

• system/fvSolution

• The following dictionaries need to be adapted for the turbulence case

• constant/momentumTransport 
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• This dictionary file is located in the directory constant.

• In this file we set the transport model and the kinematic viscosity (nu).

The transportProperties dictionary file

16 transportModel  Newtonian;

17 

19 nu              nu [ 0 2 -1 0 0 0 0 ] 0.0002;

Flow past a cylinder – From laminar to turbulent flow

• Reminder:

• The diameter of the cylinder is 2.0 m.

• And we are targeting for a Re = 10000.
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• This dictionary file is located in the directory constant.

• In this dictionary file we select what model we would like to use (laminar or turbulent).

• In this case we are interested in modeling turbulence, therefore the dictionary is as follows

The momentumTransport dictionary file

17 simulationType  RAS;

18 

19 RAS

20 {

21 RASModel        kOmegaSST;

22 

23 turbulence      on;

24 

25 printCoeffs     on;

26 }

• If you want to know the models available use the banana method.

RANS type simulation

RANS model to use 

Turn on/off turbulence.  Runtime modifiable

Print coefficients at the beginning

RANS sub-dictionary
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17 application     pimpleFoam;

18 

20 startFrom       latestTime;

21 

22 startTime       0;

23 

24 stopAt          endTime;

25 

26 endTime         500;

27 

28 deltaT          0.001;

29 

30 writeControl    runTime;

31 

32 writeInterval   1;

33 

34 purgeWrite      0;

35 

36 writeFormat     ascii;

37 

38 writePrecision  8;

39 

40 writeCompression off;

41 

42 timeFormat      general;

43 

44 timePrecision   6;

45 

46 runTimeModifiable yes;

47 

48 adjustTimeStep  yes;

49 

50 maxCo           0.9;

51 maxDeltaT       0.1;

• This case will start from the last saved solution (startFrom).  If there is 

no solution, the case will start from time 0 (startTime).

• It will run up to 500 seconds (endTime). 

• The initial time-step of the simulation is 0.001 seconds (deltaT).

• It will write the solution every 1 second (writeInterval) of simulation time 

(runTime). 

• It will keep all the solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• The write precision is  8 digits (writePrecision). 

• And as the option runTimeModifiable is on, we can modify all these 

entries while we are running the simulation.

• In line 48 we turn on the option adjustTimeStep. This option will 

automatically adjust the time-step to achieve the maximum desired 

courant number maxCo (line 50). 

• We also set a maximum time-step maxDeltaT in line 51.

• Remember, the first time-step of the simulation is done using the value 

set in line 28 and then it is automatically scaled to achieve the desired 

maximum values (lines 50-51).

• The feature adjustTimeStep is only present in the PIMPLE family 

solvers, but it can be added to any solver by modifying the source code.

The controlDict dictionary
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17 ddtSchemes

18 {

21 default         CrankNicolson 0.7;

22 }

24 gradSchemes

25 {   

29 default cellLimited leastSquares 1;

34 grad(U) cellLimited Gauss linear 1;

35 }

37 divSchemes

38  {

39  default none;

45  div(phi,U)      Gauss linearUpwindV grad(U);

47  div((nuEff*dev2(T(grad(U))))) Gauss linear;

49  div(phi,k) Gauss linearUpwind default;

50  div(phi,omega) Gauss linearUpwind default;

58  } 

60  laplacianSchemes

61  {

62  default         Gauss linear limited 1;

63  }

65  interpolationSchemes

66  {

67  default linear;

68  }

70  snGradSchemes

71  {

72  default         limited 1;

73  } 

75  wallDist

76  {

77  method meshWave;

78  }

The fvSchemes dictionary

• In this case, for time discretization (ddtSchemes) we are using the 

blended CrankNicolson method.  The blending coefficient goes from 0 

to 1, where 0 is equivalent to the Euler method and 1 is a pure Crank 

Nicolson.

• For gradient discretization (gradSchemes) we are using as default 

option the leastSquares method.  For grad(U) we are using Gauss 

linear with slope limiters (cellLimited). You can define different 

methods for every term in the governing equations, for example, you 

can define a different method for grad(p).

• For the discretization of the convective terms (divSchemes) we are 

using linearUpwindV interpolation method with slope limiters for the 

term div(phi,U).

• For the terms div(phi,k) and div(phi,omega) we are using 

linearUpwind interpolation method with no slope limiters. These terms 

are related to the turbulence modeling.

• For the term div((nuEff*dev2(T(grad(U))))) we are using linear 

interpolation (this term is related to turbulence modeling).

• For the discretization of the Laplacian (laplacianSchemes and 

snGradSchemes) we are using the Gauss linear limited 1 method.

• To compute the distance to the wall and normals to the wall, we use the 

method meshWave.  This only applies when using wall functions 

(turbulence modeling).

• This method is second order accurate.
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17  solvers

18  {

31  p

32  {

33  solver           GAMG;

34  tolerance        1e-6;

35  relTol           0.001;

36  smoother         GaussSeidel;

37  nPreSweeps       0;

38  nPostSweeps      2;

39  cacheAgglomeration on;

40  agglomerator     faceAreaPair;

41  nCellsInCoarsestLevel 100;

42  mergeLevels      1; 

44  minIter 2;

45  }

46  

47  pFinal

48  {

49  solver          PCG;

50  preconditioner  DIC;

51  tolerance       1e-06;

52  relTol          0;

53  minIter 3;

54  }

55  

56  U

57  {

58  solver          PBiCGStab;

59  preconditioner  DILU;

60  tolerance       1e-08;

61  relTol         0;

62  minIter 3;

63  }

The fvSolution dictionary

• To solve the pressure (p) we are using the GAMG method, with an 

absolute tolerance of 1e-6 and a relative tolerance relTol of 0.001. 

Notice that we are fixing the number of minimum iterations (minIter).

• To solve the final pressure correction (pFinal) we are using the PCG

method with the DIC preconditioner, with an absolute tolerance of 1e-6 

and a relative tolerance relTol of 0. 

• Notice that we can use different methods between p and pFinal. In this 

case we are using a tighter tolerance for the last iteration. 

• We are also fixing the number of minimum iterations (minIter). This 

entry is optional.

• To solve U we are using the solver PBiCGStab with the DILU

preconditioner, an absolute tolerance of 1e-8 and a relative tolerance 

relTol of 0. Notice that we are fixing the number of minimum iterations 

(minIter).
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17  solvers

18  {

77  UFinal

78  {

79  solver          PBiCGStab;

80  preconditioner  DILU;

81  tolerance       1e-08;

82  relTol          0;

83  minIter 3;

84  }

85  

86  omega

87  {

88  solver          PBiCGStab;

89  preconditioner  DILU;

90  tolerance       1e-08;

91  relTol          0;

92  minIter 3;

93  }

94  

95  omegaFinal

96  {

97  solver          PBiCGStab;

98  preconditioner  DILU;

99  tolerance       1e-08;

100 relTol          0;

101 minIter 3;

102 }

103 

104 k

105 {

106 solver          PBiCGStab;

107 preconditioner  DILU;

108 tolerance       1e-08;

109 relTol          0;

110 minIter 3;

111 }

The fvSolution dictionary

• To solve UFinal we are using the solver PBiCGStab with an absolute 

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are 

fixing the number of minimum iterations (minIter).

• To solve omega and omegaFinal we are using the solver PBiCGStab 

with an absolute tolerance of 1e-8 and a relative tolerance relTol of 0. 

Notice that we are fixing the number of minimum iterations (minIter).

• To solve k, we are using the solver PBiCGStab with an absolute 

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are 

fixing the number of minimum iterations (minIter).
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113 kFinal

114 {

115 solver          PBiCGStab;

116 preconditioner  DILU;

117 tolerance       1e-08;

118 relTol          0;

119 minIter 3;

120 }

121 }

122 

123 PIMPLE

124 {

125 momentumPreditor yes;

126 consistent yes;

130         nOuterCorrectors 1;

132         nCorrectors 3;

133 nNonOrthogonalCorrectors 1;

137 }

157 relaxationFactors

158 {

159 fields

160 {

161 “.*”            0.9;

162 }

163 equations

164 {

165 “.*”            0.9;

166 }

167 }

The fvSolution dictionary

• To solve kFinal we are using the solver PBiCGStab with an absolute 

tolerance of 1e-8 and a relative tolerance relTol of 0. Notice that we are 

fixing the number of minimum iterations (minIter).

• In lines 123-137 we setup the entries related to the pressure-velocity 

coupling method used (PIMPLE in this case). Setting the keyword 

nOuterCorrectors to 1 is equivalent to running using the PISO method.

• To gain more stability we are using 1 outer correctors 

(nOuterCorrectors), 3 inner correctors or PISO correctors 

(nCorrectors), and 1 correction due to non-orthogonality 

(nNonOrthogonalCorrectors). 

• Remember, adding corrections increase the computational cost. 

• In lines 157-167 we setup the under-relaxation factors used during the 

outer corrections of the PIMPLE method.

• The values defined correspond to the industry standard of the 

SIMPLE method. 

• By using under-relaxation, we ensure diagonal equality. 

• Be careful not use too low values as you will lose time accuracy.

• If you want to disable under-relaxation, comment out these lines. 
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• The following dictionaries are new

• 0/k

• 0/omega

• 0/nut

These are the field variables related to the closure equations of the turbulent model.

• As we are going to use the                              model, we need to define the initial conditions 

and boundaries conditions.

• To define the IC/BC we will use the free stream values of       and

• In the following site, you can find a lot information about choosing initial and boundary 

conditions for the different turbulence models:

• https://turbmodels.larc.nasa.gov/
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• The initial value for the specific turbulent dissipation rate      can be found as follows 

• The initial value for the turbulent kinetic energy       can be found as follows

Turbulence model free-stream boundary conditions

Flow past a cylinder – From laminar to turbulent flow

• Where            is the viscosity ratio and                    is the turbulence intensity.  

• If you are working with external aerodynamics or virtual wind tunnels, you can use the following 

reference values for the turbulence intensity and the viscosity ratio.  They work most of the 

times, but it is a good idea to have some experimental data or a better initial estimate.

Low Medium High

1.0 % 5.0 % 10.0 %

1 10 100
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The file 0/k

19  internalField   uniform 0.00015;

20  

21  boundaryField

22  {

23  out

24  {

25  type            inletOutlet;

26  inletValue      uniform 0.00015;

27  value           uniform 0.00015;

28  }

29  sym1

30  {

31  type            symmetry;

32  }

33  sym2

34  {

35  type            symmetry;

36  }

37  in

38  {

39  type            fixedValue;

40  value           uniform 0.00015;

41  }

42  cylinder

43  {

44  type            kqRWallFunction;

45  value           uniform 0.00015;

46  }

47  back

48  {

49  type            empty;

50  }

51  front

52  {

53  type            empty;

54  }

55  }

• We are using uniform initial conditions (line 19). 

• For the in patch, we are using a fixedValue boundary 

condition.  

• For the out patch we are using an inletOutlet boundary 

condition (this boundary condition avoids backflow).

• For the cylinder patch (which is base type wall), we 

are using the kqRWallFunction boundary condition.  

This is a wall function; we are going to talk about this 

when we deal with turbulence modeling.  Remember, 

we can use wall functions only if the patch is of base 

type wall.

• The rest of the patches are constrained.

• FYI, the inlet velocity is 1 and the turbulence intensity is 

equal to 1%.

• We will study with more details how to setup the 

boundary conditions when we deal with turbulence 

modeling in the advanced modules.
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The file 0/omega

19  internalField   uniform 0.075;

20  

21 boundaryField

22 {

23 out

24 {

25 type            inletOutlet;

26 inletValue      uniform 0.075;

27 value           uniform 0.075;

28 }

29 sym1

30 {

31 type            symmetry;

32 }

33 sym2

34 {

35 type            symmetry;

36 }

37 in

38 {

39 type            fixedValue;

40 value           uniform 0.075;

41 }

42 cylinder

43 {

44 type            omegaWallFunction;

45 Cmu             0.09;

46 kappa           0.41;

47 E               9.8;

48 beta1           0.075;

49 value           uniform 0.075;

50 }

51 back

52 {

53 type            empty;

54 }

55 front

56 {

57 type            empty;

58 }

59 }

• We are using uniform initial conditions (line 19). 

• For the in patch, we are using a fixedValue boundary 

condition.  

• For the out patch we are using an inletOutlet boundary 

condition (this boundary condition avoids backflow).

• For the cylinder patch (which is base type wall), we 

are using the omegaWallFunction boundary condition.  

This is a wall function; we are going to talk about this 

when we deal with turbulence modeling. Remember, we 

can use wall functions only if the patch is of base type 

wall.

• The rest of the patches are constrained.

• FYI, the inlet velocity is 1 and the eddy viscosity ratio is 

equal to 10.

• We will study with more details how to setup the 

boundary conditions when we deal with turbulence 

modeling in the advanced modules.
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The file 0/nut

19 internalField   uniform 0;

20 

21 boundaryField

22 {

23 out

24 {

25 type            calculated;

26 value           uniform 0;

27 }

28 sym1

29 {

30 type            symmetry;

31 }

32 sym2

33 {

34 type            symmetry;

35 }

36 in

37 {

38 type            calculated;

39 value           uniform 0;

40 }

41 cylinder

42 {

43 type            nutkWallFunction;

44 Cmu             0.09;

45 kappa           0.41;

46 E               9.8;

47 value           uniform 0;

48 }

49 back

50 {

51 type            empty;

52 }

53 front

54 {

55 type            empty;

56 }

57 }

• We are using uniform initial conditions (line 19). 

• For the in patch, we are using the calculated boundary 

condition (nut is computed from kappa and omega)

• For the out patch we are using the calculated

boundary condition (nut is computed from kappa and 

omega)

• For the cylinder patch (which is base type wall), we 

are using the nutkWallFunction boundary condition.  

This is a wall function; we are going to talk about this 

when we deal with turbulence modeling. Remember, we 

can use wall functions only if the patch is of base type 

wall.

• The rest of the patches are constrained.

• Remember, the turbulent viscosity       (nut) is equal to

• We will study with more details how to setup the 

boundary conditions when we deal with turbulence 

modeling in the advanced modules. 
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c14 

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  In this case we will use 

blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> renumberMesh -overwrite 

4.
$> pimpleFoam | tee log.solver

You will need to launch this script in a different terminal

5.
$> pyFoamPlotWatcher.py log.solver

You will need to launch this script in a different terminal

6.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

7. $> pimpleFoam –postprocess –func yPlus –latestTime -noFunctionObjects

8. $> paraFoam 

Running the case – Setting a turbulent case
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• In step 3 we use the utility renumberMesh to make the linear system more diagonal dominant, 

this will speed-up the linear solvers. 

• In step 4 we run the simulation and save the log file.  Notice that we are sending the job to 

background.

• In step 5 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the job is 

running in background, we can launch this utility in the same terminal tab.

• In step 6 we use the gnuplot script scripts0/plot_coeffs to plot the force coefficients on-

the-fly.  Besides monitoring the residuals, is always a good idea to monitor a quantity of interest. 

Feel free to take a look at the script and to reuse it.

• In step 7 we use the utility postProcess to compute the y+ value of each saved solution (we 

are going to talk about y+  when we deal with turbulence modeling).
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Courant Number mean: 0.088931706 max: 0.90251464

deltaT = 0.040145538

Time = 499.97

PIMPLE: iteration 1

DILUPBiCG:  Solving for Ux, Initial residual = 0.0028528538, Final residual = 9.5497298e-11, No Iterations 3

DILUPBiCG:  Solving for Uy, Initial residual = 0.0068876991, Final residual = 7.000938e-10, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.25644342, Final residual = 0.00022585963, No Iterations 7

GAMG:  Solving for p, Initial residual = 0.0073871161, Final residual = 5.2798526e-06, No Iterations 8

time step continuity errors : sum local = 3.2664019e-10, global = -1.3568363e-12, cumulative = -9.8446438e-08

GAMG:  Solving for p, Initial residual = 0.16889316, Final residual = 0.00014947209, No Iterations 7

GAMG:  Solving for p, Initial residual = 0.0051876466, Final residual = 3.7123156e-06, No Iterations 8

time step continuity errors : sum local = 2.2950163e-10, global = -8.0710768e-13, cumulative = -9.8447245e-08

PIMPLE: iteration 2

DILUPBiCG:  Solving for Ux, Initial residual = 0.0013482181, Final residual = 4.1395468e-10, No Iterations 3

DILUPBiCG:  Solving for Uy, Initial residual = 0.0032433196, Final residual = 3.3969121e-09, No Iterations 3

GAMG:  Solving for p, Initial residual = 0.10067317, Final residual = 8.9325549e-05, No Iterations 7

GAMG:  Solving for p, Initial residual = 0.0042844521, Final residual = 3.0190597e-06, No Iterations 8

time step continuity errors : sum local = 1.735023e-10, global = -2.0653335e-13, cumulative = -9.8447452e-08

GAMG:  Solving for p, Initial residual = 0.0050231165, Final residual = 3.2656397e-06, No Iterations 8

DICPCG:  Solving for p, Initial residual = 0.00031459519, Final residual = 9.4260163e-07, No Iterations 36

time step continuity errors : sum local = 5.4344408e-11, global = 4.0060595e-12, cumulative = -9.8443445e-08

DILUPBiCG:  Solving for omega, Initial residual = 0.00060510266, Final residual = 1.5946601e-10, No Iterations 3

DILUPBiCG:  Solving for k, Initial residual = 0.0032163247, Final residual = 6.9350899e-10, No Iterations 3

bounding k, min: -3.6865398e-05 max: 0.055400108 average: 0.0015914926

ExecutionTime = 1689.51 s  ClockTime = 1704 s

fieldAverage fieldAverage output:

Calculating averages

forceCoeffs forceCoeffs_object output:

Cm    = 0.0023218797

Cd    = 1.1832452

Cl    = -1.3927646

Cl(f) = -0.69406044

Cl(r) = -0.6987042

fieldMinMax minmaxdomain output:

min(p) = -1.5466372 at location (-0.040619337 -1.033408 0)

max(p) = 0.54524589 at location (-1.033408 0.040619337 1.4015759e-17)

min(U) = (0.94205232 -1.0407426 -5.0319219e-19) at location (-0.70200781 -0.75945224 -1.3630525e-17)

max(U) = (1.8458167 0.0047368607 4.473279e-19) at location (-0.12989625 -1.0971865 2.4694467e-17)

min(k) = 1e-15 at location (1.0972618 1.3921931 -2.2329889e-17)

max(k) = 0.055400108 at location (2.1464795 0.42727634 0)

min(omega) = 0.2355751 at location (29.403674 19.3304 0)

max(omega) = 21.477072 at location (1.033408 0.040619337 1.3245285e-17)

pimpleFoam output screen

Time step
Courant number

Outer iteration 1 (nOuterCorrectors)

Outer iteration 2 (nOuterCorrectors)

pFinal

kappa and omega residualsMessage letting you know that 

the variable is becoming 
unbounded

Force coefficients

Minimum and 
maximum values
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Time = 500.01

Reading field U

Reading/calculating face flux field phi

Selecting incompressible transport model Newtonian

Selecting RAS turbulence model kOmegaSST

kOmegaSSTCoeffs

{

alphaK1         0.85;

alphaK2         1;

alphaOmega1     0.5;

alphaOmega2     0.856;

gamma1          0.55555556;

gamma2          0.44;

beta1           0.075;

beta2           0.0828;

betaStar        0.09;

a1              0.31;

b1              1;

c1              10;

F3              false;

}

Patch 4 named cylinder y+ : min: 0.94230389 max: 12.696632 average: 7.3497345

Writing yPlus to field yPlus

The output screen

• This is the output screen of the yPlus utility.

Model coefficients

Patch where we are computing y+

Minimum, maximum and average values

Writing the field to the solution directory
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Turbulence model

Transport model
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Using a compressible solver

• So far, we have only used incompressible solvers.  

• Let us use the compressible solver rhoPimpleFoam, which is a,

Transient solver for laminar or turbulent flow of compressible fluids for HVAC and similar 

applications. Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and pseudo-

transient simulations.

• When working with compressible solver we need to define the thermodynamical properties of 

the working fluid and the temperature field (we are also solving the energy equation).

• Also remember, compressible solvers use absolute pressure. Conversely, incompressible 

solvers use relative pressure.

• This case is already setup in the directory 

$PTOFC/101OF/vortex_shedding/c24
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• The following dictionaries remain unchanged

• system/blockMeshDict

• constant/polyMesh/boundary

Flow past a cylinder – From laminar to turbulent flow

• Reminder:

• The diameter of the cylinder is 0.002 m.

• The working fluid is air at 20° Celsius and at a sea level.

• And we are targeting for a Re = 20000.

259



The constant directory

• In this directory, we will find the following compulsory dictionary files:

• thermophysicalProperties

• momentumTransport

• thermophysicalProperties contains the definition of the physical properties of the working 

fluid.

• momentumTransport contains the definition of the turbulence model to use. 
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• This dictionary file is located in the directory constant. 

Thermophysical models are concerned with energy, heat 

and physical properties.

• In the sub-dictionary thermoType (lines 16-26), we 

define the thermophysical models.

• The transport modeling concerns evaluating dynamic 

viscosity (line 21). In this case the viscosity is computed 

using the Sutherland model.

• The thermodynamic models (thermo) are concerned with 

evaluating the specific heat Cp (line 22). In this case Cp 

is constant

• The equationOfState keyword (line 23) concerns to the 

equation of state of the working fluid. In this case

• The form of the energy equation to be used in the 

solution is specified in line 25 (energy). In this case we 

are using enthalpy (sensibleEnthalpy).

The thermophysicalProperties dictionary file

16  thermoType

17  {

18  type            hePsiThermo;

19  mixture         pureMixture;

21  transport       sutherland;

22  thermo          hConst;

23  equationOfState perfectGas;

24  specie          specie;

25  energy          sensibleEnthalpy;

26  }

28  mixture

29  {

30  specie

31  {

32  nMoles      1;

33  molWeight   28.9;

34  }

35  thermodynamics

36  {

37  Cp          1005;

38  Hf          0;

39  }

40  transport

41  {

47 As          1.4792e-06;

48        Ts          116;       

49 }

50  }
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• In the sub-dictionary mixture (lines 28-50), we define the 

thermophysical properties of the working fluid.

• In this case, we are defining the properties for air at 20°

Celsius and at a sea level.

• The constants As and Ts (lines 47-48), are related to the 

Sutherland model.

The thermophysicalProperties dictionary file

16  thermoType

17  {

18  type            hePsiThermo;

19  mixture         pureMixture;

21  transport       sutherland;

22  thermo          hConst;

23  equationOfState perfectGas;

24  specie          specie;

25  energy          sensibleEnthalpy;

26  }

28  mixture

29  {

30  specie

31  {

32  nMoles      1;

33  molWeight   28.9;

34  }

35  thermodynamics

36  {

37  Cp          1005;

38  Hf          0;

39  }

40  transport

41  {

47 As          1.4792e-06;

48        Ts          116;       

49 }

50  }
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• This dictionary file is located in the directory constant.

• In this dictionary file we select what model we would like to use (laminar or turbulent).

• In this case we are interested in modeling turbulence, therefore the dictionary is as follows

The momentumTransport dictionary file
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17 simulationType  RAS;

18 

19 RAS

20 {

21 RASModel        kOmegaSST;

22 

23 turbulence      on;

24 

25 printCoeffs     on;

26 }

• If you want to know the models available use the banana method.

RANS type simulation

RANS model to use 

Turn on/off turbulence.  Runtime modifiable

Print coefficients at the beginning

RANS sub-dictionary



The 0 directory

• In this directory, we will find the dictionary files that contain the boundary and initial conditions for 

all the primitive variables.

• As we are solving the compressible laminar Navier-Stokes equations, we will find the following 

field files:

• p (pressure)

• T (temperature)

• U (velocity field)

• k (turbulent kinetic energy)

• omega (specific turbulent dissipation rate)

• nut (turbulent viscosity)

• alphat (turbulent thermal diffusivity)
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The file 0/p

17  dimensions      [1 -1 -2 0 0 0 0];

18  

19  internalField   uniform 101325;

20  

21  boundaryField

22  {

23  in

24  {

25  type            zeroGradient;

26  }

28  out

29  {

30  type            fixedValue;

31  value           uniform 101325;

32  }

34  cylinder

35  {

36  type            zeroGradient;

37  }

39  sym1

40  {

41  type            symmetry;

42  }

44  sym2

45  {

46  type            symmetry;

47  }

49  back

50  {

51  type            empty;

52  }

54  front

55  {

56  type            empty;

57  }

58  }

• This file contains the boundary and initial conditions 

for the scalar field pressure (p).  We are working 

with absolute pressure.

• Contrary to incompressible flows where we defined 

relative pressure, this is the absolute pressure.

• Also, pay attention to the units (line 17).  The 

pressure is defined in Pascal.

• We are using uniform initial conditions (line 19). 

• For the in patch, we are using a zeroGradient

boundary condition.

• For the outlet patch we are using a fixedValue

boundary condition. 

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.
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The file 0/T

17  dimensions      [0 0 0 -1 0 0 0];

18  

19  internalField   uniform 293.15;

20  

21  boundaryField

22  {

23  in

24  {

25  type            fixedValue;

26  value           $internalField;

27  }

29  out

30  {

31  type            inletOutlet;

32  value           $internalField;

33  inletValue      $internalField;

34  }

36  cylinder

37  {

38  type            zeroGradient;

39  }

41  sym1

42  {

43  type            symmetry;

44  }

46  sym2

47  {

48  type            symmetry;

49  }

51  back

52  {

53  type            empty;

54  }

56  front

57  {

58  type            empty;

59  }

60  }

• This file contains the boundary and initial conditions 

for the scalar field temperature (T). 

• Also, pay attention to the units (line 17).  The 

temperature is defined in Kelvin. 

• We are using uniform initial conditions (line 19). 

• For the in patch, we are using a fixedValue

boundary condition.

• For the out patch we are using an inletOutlet

boundary condition (in case of backflow). 

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.
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The file 0/U

17  dimensions      [0 1 -1 0 0 0 0];

18  

19  internalField   uniform (150 0 0);

20  

21  boundaryField

22  {

23  in

24  {

25  type            fixedValue;

26  value           uniform (150 0 0);

27  }

29  out

30  {

31  type inletOutlet;

32  phi phi;

33  inletValue uniform (0 0 0);

34  value uniform (0 0 0);

35  }

37  cylinder

38  {

39  type            fixedValue;

40  value           uniform (0 0 0);

41  }

43  sym1

44  {

45  type            symmetry;

46  }

48  sym2

49  {

50  type            symmetry;

51  }

53  back

54  {

55  type            empty;

56  }

58  front

59  {

60  type            empty;

61  }

62  }

• This file contains the boundary and initial conditions 

for the dimensional vector field U. 

• We are using uniform initial conditions and the 

numerical value is (150 0 0) (keyword internalField

in line 19).

• For the in patch, we are using a fixedValue

boundary condition.

• For the out patch we are using an inletOutlet

boundary condition (in case of backflow). 

• For the cylinder patch we are using a zeroGradient

boundary condition.

• The rest of the patches are constrained.
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The system directory

• The system directory consists of the following compulsory dictionary files: 

• controlDict 

• fvSchemes

• fvSolution

• controlDict contains general instructions on how to run the case. 

• fvSchemes contains instructions for the discretization schemes that will be used for the 

different terms in the equations.  

• fvSolution contains instructions on how to solve each discretized linear equation system. 
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17  application     rhoPimpleFoam;

18  

19  startFrom       startTime;

20  //startFrom       latestTime;

21  

22  startTime       0;

23  

24  stopAt          endTime;

25  //stopAt writeNow;

26  

27  endTime         0.01;

28  

29  deltaT          0.000001;

30  

31  writeControl    adjustableRunTime;

32  

33  writeInterval   0.00005;

34  

35  purgeWrite      100;

36  

37  writeFormat     ascii;

38  

39  writePrecision  10;

40  

41  writeCompression off;

42  

43  timeFormat      general;

44  

45  timePrecision   6;

46  

47  runTimeModifiable true;

48  

49  adjustTimeStep  yes;

50  maxCo 10;

51  maxDeltaT       0.001;

The controlDict dictionary

• This case will start from the last saved solution (startFrom).  If there is 

no solution, the case will start from time 0 (startTime).

• It will run up to 0.01 seconds (endTime). 

• The initial time-step of the simulation is 0.000001 seconds (deltaT).

• It will write the solution every 0.00005 seconds (writeInterval) of 

simulation time (adjustableRunTime).  The option adjustableRunTime  

will adjust the time-step to save the solution at the precise intervals. This 

may add some oscillations in the solution as the CFL is changing.

• It will keep the latest 100 solution directories (purgeWrite).

• It will save the solution in ascii format (writeFormat).

• And as the option runTimeModifiable is on, we can modify all these 

entries while we are running the simulation.

• In line 49 we turn on the option adjustTimeStep. This option will 

automatically adjust the time-step to achieve the maximum desired 

courant number (line 50). 

• We also set a maximum time-step in line 51.

• Remember, the first time-step of the simulation is done using the value 

set in line 29 and then it is automatically scaled to achieve the desired 

maximum values (lines 50-51).

• The feature adjustTimeStep is only present in the PIMPLE family 

solvers, but it can be added to any solver by modifying the source code.
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55  functions

56  {

178 forceCoeffs_object

179 {

188 type forceCoeffs;

189 functionObjectLibs ("libforces.so");

190 patches (cylinder);

191 

192 pName p;

193 Uname U;

194

195 //rho rhoInf;

196 rhoInf 1.205;

197 

198 //// Dump to file

199 log true;

200 

201 CofR (0.0 0 0);

202 liftDir (0 1 0);

203 dragDir (1 0 0);

204 pitchAxis (0 0 1);

205 magUInf 150;

206 lRef 0.002;         

207 Aref 0.000002;         

208 

209 writeControl   timeStep;

210 writeInterval  1;

211 }

312 };

• As usual, at the bottom of the controlDict dictionary file 

we define the functionObjects (lines 55-312).

• Of special interest is the functionObject 

forceCoeffs_object. 

• As we changed the domain dimensions and the inlet 

velocity, we need to update the reference values (lines 205-

207).

• It is also important to update the reference density (line 

196).

The controlDict dictionary
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17  ddtSchemes

18  {

21  default         Euler;

22  }

23  

24  gradSchemes

25  {

29  default cellLimited leastSquares 1;

34  }

35  

36  divSchemes

37  {

38  default         none;

39  div(phi,U)      Gauss linearUpwind default;

41  

42  div(phi,K)      Gauss linear;

43  div(phi,h)      Gauss linear;

44  

45  div(phi,omega)  Gauss upwind;

46  div(phi,k)      Gauss upwind;

47

48  div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

49  }

50

51  laplacianSchemes

52  {

53  default Gauss linear limited 1;

54  }

55  

56  interpolationSchemes

57  {

58  default         linear;

59  }

60  

61  snGradSchemes

62  {

63  default limited 1;

64  }

• In this case, for time discretization (ddtSchemes) we are 

using the Euler method.

• For gradient discretization (gradSchemes) we are using the 

leastSquares method. 

• For the discretization of the convective terms (divSchemes) 

we are using linearUpwind interpolation with no slope limiters 

for the term div(phi,U).

• For the terms div(phi,K) (kinetic energy) and div(phi,h)

(enthalpy) we are using linear interpolation method with no 

slope limiters. 

• For the terms div(phi,omega) and div(phi,k) (turbulent 

quantities) we are using upwind interpolation method. 

• For the term div(((rho*nuEff)*dev2(T(grad(U))))) we are 

using linear interpolation (this term is related to the turbulence 

modeling).

• For the discretization of the Laplacian (laplacianSchemes

and snGradSchemes) we are using the Gauss linear limited 

1 method.

• This method is second order accurate. 

The fvSchemes dictionary
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17  solvers

18  {   

20  p

21  {

22  solver          PCG;

23  preconditioner  DIC;

24  tolerance       1e-06;

25  relTol         0.01;

26  minIter 2;

27  }

46  pFinal

47  {

48  $p;

49  relTol          0;

50  minIter 2;

51  }

53  "U.*"

54  {

55  solver          PBiCGStab;

56  preconditioner  DILU;

57  tolerance       1e-08;

58  relTol          0;

59  minIter 2;

60  }  

74  "(h|hFinal)"

75  {

76  solver          PBiCGStab;

77  preconditioner  DILU;

78  tolerance       1e-08;

79  relTol         0;

80  minIter 2;

81  }

96  }

• To solve the pressure (p) we are using the PCG method with 

an absolute tolerance of 1e-6 and a relative tolerance relTol

of 0.01.

• The entry pFinal refers to the final correction of the PISO

loop. Notice that we are using macro expansion ($p) to copy 

the entries from the sub-dictionary p.

• To solve U and UFinal (U.*) we are using the solver 

PBiCGStab with an absolute tolerance of 1e-8 and a relative 

tolerance relTol of 0.

• To solve hFinal (enthalpy) we are using the solver 

PBiCGStab with an absolute tolerance of 1e-8 and a relative 

tolerance relTol of 0. 

• Be careful with the enthalpy, it might cause oscillations.

The fvSolution dictionary
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17  solvers

18  {  

83  "(omega|k).*"

84  {

85  solver          PBiCGStab;

86  preconditioner  DILU;

87  tolerance       1e-08;

88  relTol         0;

89  minIter 2;

90  }

92  "rho.*"

93  {

94  solver diagonal;

95  }

96  }

• To solve the turbulent quantities omega and k we are using 

the solver PBiCGStab with an absolute tolerance of 1e-8 and 

a relative tolerance relTol of 0. 

• To solve rho and rhoFinal (rho.*) we are using the diagonal

solver (remember rho is found from the equation of state, so 

this is a back-substitution).

• FYI, solving for the velocity is relatively inexpensive, whereas 

solving for the pressure is expensive. 

The fvSolution dictionary
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97  

98  PIMPLE

99  {

100  momentumPredictor yes;

101 consistent yes;

103  nOuterCorrectors 2;

104 nCorrectors     2;

105  nNonOrthogonalCorrectors 1;

123  }

125 relaxationFactors

126 {

127 fields

128 {

129 “.*”            0.9;

130 }

131 equations

132 {

133 “.*”            0.9;

134 }

135 }

• The PIMPLE sub-dictionary contains entries related to the pressure-

velocity coupling (in this case the PIMPLE method).

• Setting the keyword nOuterCorrectors to 1 is equivalent to running 

using the PISO method.

• Hereafter we are doing 2 PISO correctors (nCorrectors) and 1 non-

orthogonal corrections (nNonOrthogonalCorrectors).

• If we increase the number of nCorrectors and 

nNonOrthogonalCorrectors we gain more stability but at a higher 

computational cost.

• The choice of the number of corrections is driven by the quality of the 

mesh and the physics involve.

• You need to do at least one PISO loop (nCorrectors).

• In lines 125-135 we setup the under-relaxation factors used during the 

outer corrections of the PIMPLE method.

• The values defined correspond to the industry standard of the 

SIMPLE method. 

• By using under-relaxation, we ensure diagonal equality. 

• Be careful not use too low values as you will lose time accuracy.

• If you want to disable under-relaxation, comment out these lines. 

The fvSolution dictionary
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• You will find this tutorial in the directory $PTOFC/101OF/vortex_shedding/c24

• Feel free to use the Fluent mesh or the mesh generated with blockMesh.  In this case we will use 

blockMesh.

• To run this case, in the terminal window type:

1. $> foamCleanTutorials 

2. $> blockMesh 

3. $> transformPoints “scale=(0.001 0.001 0.001)”

4. $> renumberMesh -overwrite 

5. $> rhoPimpleFoam | tee log

6.
$> pyFoamPlotWatcher.py log

You will need to launch this script in a different terminal

7.
$> gnuplot scripts0/plot_coeffs

You will need to launch this script in a different terminal

8. $> rhoPimpleFoam –postProcess –func MachNo

9. $> paraFoam 

Running the case – Using a compressible solver
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• In step 3 we scale the mesh.

• In step 4 we use the utility renumberMesh to make the linear system more diagonal dominant, 

this will speed-up the linear solvers. 

• In step 5 we run the simulation and save the log file.  Notice that we are sending the job to 

background.

• In step 6 we use pyFoamPlotWatcher.py to plot the residuals on-the-fly.  As the job is 

running in background, we can launch this utility in the same terminal tab.

• In step 7 we use the gnuplot script scripts0/plot_coeffs to plot the force coefficients on-

the-fly.  Besides monitoring the residuals, is always a good idea to monitor a quantity of interest. 

Feel free to take a look at the script and to reuse it.

• In step 8 we use the utility MachNo to compute the Mach number.
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• In the directory $PTOFC/101OF/vortex_shedding, you will find 

28 variations of the cylinder case involving different solvers and 

models.  

• There are no exercises in this section, just play around with the 

different cases.
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• This is what you will find in each directory,

• c1 = blockMesh – icoFoam – Unsteady solver – Re = 200.

• c2 = fluentMeshToFoam – icoFoam – Unsteady solver – Re = 200.

• c3 = blockMesh – pisoFoam – Unsteady solver – Field initialization – Re = 200.

• c4 = blockMesh – potentialFoam – Re = 200.

• c5 = blockMesh – mapFields – pisoFoam – Unsteady solver – original mesh – Re = 200.

• c6 = blockMesh – mapFields – pisoFoam – Unsteady solver – Finer mesh – Re = 200.

• c7 = blockMesh – pimpleFoam – Unsteady solver – Re = 200 – No turbulent model.

• c8 = blockMesh – pisoFoam – Unsteady solver – Re = 200 – No turbulent model.

• c9 = blockMesh – pisoFoam – Unsteady solver – Re = 200 – k-Omega SST turbulent model.

• c10 = blockMesh – simpleFoam – Steady solver – Re = 200 – k-Omega SST turbulent model.

• c11 = blockMesh – simpleFoam – Steady solver – Re = 40 – No turbulent model.

• c12 = blockMesh – pisoFoam – Unsteady solver – Re = 40 – No turbulent model.

• c14 = blockMesh – pimpleFoam – Unsteady solver – Re = 10000 – K-Omega SST turbulence model with wall functions.

• c15 = blockMesh – pimpleFoam – Unsteady solver – Re = 100000 – K-Omega SST turbulence model with wall functions 

• c16 = blockMesh – simpleFoam – Steady solver – Re = 100000 – K-Omega SST turbulence model no wall functions.

• c17 = blockMesh – simpleFoam – Steady solver – Re = 100000 – K-Omega SST turbulent model with wall functions.

• c18 = blockMesh – pisoFoam – Unsteady solver – Re = 100000, LES Smagorinsky turbulent model.
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• This is what you will find in each directory,

• c19 = blockMesh – pimpleFoam – Unsteady solver – Re = 1000000 – Spalart Allmaras turbulent model no wall functions.

• c20 = blockMesh – rhoPimpleFoam – Unsteady solver – Mach = 2.0 – Compressible – Laminar.

• c21 = blockMesh – rhoPimpleFoam –Unsteady solver – Mach = 2.0 – Unsteady solver – Compressible – K-Omega SST 

turbulent model with wall functions.

• c22 = blockMesh – rhoSimpleFoam – Mach = 2.0 – Steady solver – Compressible – K-Omega SST turbulent model with 

wall functions.

• c23 = blockMesh – pimpleFoam – Unsteady solver – Re = 200 – No turbulent model – Source terms (momentum)

• c24 = blockMesh – rhoPimpleFoam – Unsteady solver – Re = 20000 – Turbulent, compressible

• c25 = blockMesh – rhoPimpleFoam – Unsteady solver – Re = 200 – Laminar, compressible, isothermal

• c26 = blockMesh – pimpleFoam – Unsteady solver – Re = 200 – Laminar, moving cylinder (oscillating).

• c27 = blockMesh – pimpleFoam/pimpleFoam – Unsteady solver – Re = 200 – Laminar, rotating cylinder using AMI 

patches.

• c28 = blockMesh – interFoam – Unsteady solver – Laminar, multiphase, free surface.
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