
Supplement 7
High level programming in OpenFOAM®

Building blocks

1

1. Programming in OpenFOAM®. Building blocks.

2. Implementing boundary conditions using high level

programming

3. Modifying/implementing applications – Highlights

4. Implementing an application from scratch

5. Adding the scalar transport equation to icoFoam

Roadmap

2

• In the directory $WM_PROJECT_DIR/applications/test, you will

find the source code of several test cases that show the usage of most

of the OpenFOAM® classes.

• We highly encourage you to take a look at these test cases and try to

understand how to use the classes.

• We will use these basic test cases to understand the following base

classes: tensors, fields, mesh, and basic discretization.

Programming in OpenFOAM®. Building blocks

3

• During this session we will study the building blocks to write basic programs in OpenFOAM®:

• First, we will start by taking a look at the algebra of tensors in OpenFOAM®.

• Then, we will take a look at how to generate tensor fields from tensors.

• Next, we will learn how to access mesh information.

• Finally, we will see how to discretize a model equation and solve the linear system of

equations using OpenFOAM® classes and templates.

• And of course, we are going to program a little bit in C++. But do not be afraid, after all this

is not a C++ course.

• Remember, all OpenFOAM® components are implemented in library form for easy re-use.

• OpenFOAM® encourage code re-use.

• Basically, we are going to take something that already exist, and we are going to modify it to fix

our needs.

• We like to call this method CPAC (copy-paste-adapt-compile).

Programming in OpenFOAM®. Building blocks

4

Basic tensor classes in OpenFOAM®

Tensor Rank Common name Basic class Access function

0 Scalar scalar

1 Vector vector x(), y(), z()

2 Tensor tensor xx(), xy(), xz() …

Programming in OpenFOAM®. Building blocks

• OpenFOAM® represents scalars, vectors and matrices as tensor fields. A zero-rank tensor is a

scalar, a first rank tensor is a vector, and a second rank tensor is a matrix.

• OpenFOAM® contains a C++ class library named primitive
($FOAM_SRC/OpenFOAM/primitives/). In this library, you will find the classes for the tensor

mathematics.

• In the following table, we show the basic tensor classes available in OpenFOAM®, with their

respective access functions.

5

• We can access the component or using the xz () access function,

• In OpenFOAM®, the second rank tensor (or matrix)

Basic tensor classes in OpenFOAM®

Programming in OpenFOAM®. Building blocks

tensor T(1, 2, 3, 4, 5, 6, 7, 8, 9);

can be declared in the following way

6

Basic tensor classes in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• For instance, the following statement,

• Notice that to output information to the screen in OpenFOAM®, we use the function Info instead

of the function cout (used in standard C++).

• The function cout will work fine, but it will give you problems when running in parallel.

Info << “Txz = “ << T.xz () << endl;

• Will generate the following screen output,

$> Txz = 3

7

Algebraic tensor operations in OpenFOAM®

Operation Remarks
Mathematical

description

OpenFOAM®

description

Addition a + b a + b

Scalar multiplication sa s * a

Outer product rank a, b >=1 ab a * b

Inner product rank a, b >=1 a.b a & b

Double inner product rank a, b >=2 a:b a && b

Magnitude |a| mag(a)

Determinant det T det(T)

You can find a complete list of all operators in the programmer’s guide

Programming in OpenFOAM®. Building blocks

• Tensor operations operate on the entire tensor entity.

• OpenFOAM® syntax closely mimics the syntax used in written mathematics, using descriptive

functions (e.g., mag) or symbolic operators (e.g., +).

• OpenFOAM® also follow the standard rules of linear algebra when working with tensors.

• Some of the algebraic tensor operations are listed in the following table (where a and b are

vectors, s is a scalar, and T is a tensor).

8

Dimensional units in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• As we already know, OpenFOAM® is fully dimensional.

• Dimensional checking is implemented as a safeguard against implementing a meaningless

operation.

• OpenFOAM® encourages the user to attach dimensional units to any tensor and it will perform

dimension checking of any tensor operation.

• You can find the dimensional classes in the directory
$FOAM_SRC/OpenFOAM/dimensionedTypes/

• The dimensions can be hardwired directly in the source code or can be defined in the input

dictionaries.

• From this point on, we will be attaching dimensions to all the tensors.

9

Dimensional units in OpenFOAM®

1 dimensionedTensor sigma

2 (

3 “sigma”,

4 dimensionSet(1, -1, -2, 0, 0, 0, 0),

5 tensor(10e6,0,0,0,10e6,0,0,0,10e6)

6);

Programming in OpenFOAM®. Building blocks

• Units are defined using the dimensionSet class tensor, with its units defined using the

dimensioned<Type> template class, the <Type> being scalar, vector, tensor, etc. The

dimensioned<Type> stores the variable name, the dimensions and the tensor values.

• For example, a tensor with dimensions is declare in the following way:

• In line 1 we create the object sigma.

• In line 4, we use the class dimensonSet to attach units to the object sigma.

• In line 5, we set the input values of the tensor sigma.

10

Units correspondence in dimensionSet

dimensionSet (kg, m, s, K, mol, A, cd)

Programming in OpenFOAM®. Building blocks

1 dimensionedTensor sigma

2 (

3 “sigma”,

4 dimensionSet(1, -1, -2, 0, 0, 0, 0),

5 tensor(10e6,0,0,0,10e6,0,0,0,10e6)

6);

• The units of the class dimensionSet are defined as follows,

• Therefore, the tensor sigma,

• Has pressure units or

11

Dimensional units examples

Programming in OpenFOAM®. Building blocks

• To attach dimensions to any tensor, you need to access dimensional units class.

• To do so, just add the header file dimensionedTensor.H to your program.

#include “dimensionedTensor.H”

...

...

...

dimensionedTensor sigma

(

"sigma",

dimensionSet(1, -1, -2, 0, 0, 0, 0),

tensor(1e6,0,0,0,1e6,0,0,0,1e6)

);

Info<< "Sigma: " << sigma << endl;

...

...

...

• The output of the previous program should look like this:

sigma sigma [1 -1 -2 0 0 0 0] (1e+06 0 0 0 1e+06 0 0 0 1e+06)

12

Dimensional units examples

Programming in OpenFOAM®. Building blocks

• As for base tensors, you can access the information of dimensioned tensors.

• For example, to access the name, dimensions, and values of a dimensioned tensor, you can

proceed as follows:

Info<< "Sigma yy (22) value: " << sigma.value().yy() << endl;

• To extract a value of a dimensioned tensor, you can proceed as follows:

Info << “Sigma name: “ << sigma.name () << endl;

Info << “Sigma dimensions: “ << sigma.dimensions () << endl;

Info << “Sigma value: “ << sigma.value () << endl;

• Note that the value() member function first converts the expression to a tensor, which has a yy()

member function.

• The dimensionedTensor class does not have a yy() member function, so it is not possible to

directly get its value by using sigma.yy().

13

OpenFOAM® lists and fields

Programming in OpenFOAM®. Building blocks

• OpenFOAM® frequently needs to store sets of data and perform mathematical operations.

• OpenFOAM® provides an array template class List<Type>, making it possible to create a list of

any object of class Type that inherits the functions of the Type. For example, a List of vector is

List<vector>.

• Lists of the tensor classes are defined in OpenFOAM® by the template class Field<Type>.

• For better code legibility, all instances of Field<Type>, e.g., Field<vector>, are renamed using

typedef declarations as scalarField, vectorField, tensorField, symmTensorField,

tensorThirdField and symmTensorThirdField.

• You can find the field classes in the directory $FOAM_SRC/OpenFOAM/fields/Fields.

• Algebraic operations can be performed between fields, subject to obvious restrictions such as

the fields having the same number of elements.

• OpenFOAM® also supports operations between a field and a zero-rank tensor, e.g., all values of

a Field U can be multiplied by the scalar 2 by simple coding the following line, U = 2.0 * U.

14

Construction of a tensor field in OpenFOAM®

Programming in OpenFOAM®. Building blocks

#include "tensorField.H"

...

...

...

tensorField tf1(2, tensor::one);

Info<< "tf1: " << tf1 << endl;

tf1[0] = tensor(1, 2, 3, 4, 5, 6, 7, 8, 9);

Info<< "tf1: " << tf1 << endl;

Info<< "2.0*tf1: " << 2.0*tf1 << endl;

...

...

...

• To create fields, you need to access the tensor class.

• To do so, just add the header file tensorField.H to your program. This class inherit all the

tensor algebra.

• In this example, we created a list of two tensor fields (tf1), and both tensors are initialized to

one.

• We can access components on the list using the access operator [].
15

Example of use of tensor and field classes

Programming in OpenFOAM®. Building blocks

• In the directory $PTOFC/101programming/playground/my_tensor you will find a tensor

class example.

• The original example is located in the directory
$HOME/OpenFOAM/OpenFOAM-9/applications/test.

• Feel free to compare the files to spot the differences.

• Before compiling the file, let us recall how applications are structure,

working_directory/

├── applicationName.C

├── header-files.H

└── Make

├── files

└── options

• applicationName.C: is the actual source code of the application.

• header_files.H: header files required to compile the application.

16

Programming in OpenFOAM®. Building blocks

• Before compiling the file, let us recall how applications are structure.

working_directory/

├── applicationName.C

├── header-files.H

└── Make

├── files

└── options

• The Make directory contains compilation instructions.

• files: names all the source files (.C), it specifies the name of the new application and

the location of the output file.

• options: specifies directories to search for include files and libraries to link the solver

against.

• At the end of the file files, you will find the following line of code,

EXE = $(FOAM_USER_APPBIN)/my_Test-tensor

• This is telling the compiler to name your application my_Test-tensor and to copy the executable

in the directory $FOAM_USER_APPBIN.

• To avoid conflicts between applications, always remember to give a proper name and a location

to your programs and libraries.

Example of use of tensor and field classes

17

Programming in OpenFOAM®. Building blocks

• Let us now compile the tensor class example. Type in the terminal:

1. $> cd $PTOFC/101programming/playground/my_tensor

2. $> wmake

3. $> my_Test-tensor

• In step 2, we used wmake (distributed with OpenFOAM®) to compile the source code.

• The name of the executable will be my_Test-tensor and it will be located in the directory
$FOAM_USER_APPBIN (as specified in the file Make/files)

• At this point, take a look at the output and study the file Test-tensor.C. Try to understand

what we have done.

• After all, is not that difficult. Right?

Example of use of tensor and field classes

18

• At this point, we are a little bit familiar with tensor, fields, and lists in

OpenFOAM®.

• They are the base to building applications in OpenFOAM®.

• Let us now take a look at the whole solution process:

• Creation of the tensors.

• Mesh assembly.

• Fields creation.

• Equation discretization.

• All by using OpenFOAM® classes and template classes

Programming in OpenFOAM®. Building blocks

19

Discretization of a tensor field in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• The discretization is done using the FVM (Finite Volume Method).

• The cells are contiguous, i.e., they do not overlap and completely fill the domain.

• Dependent variables and other properties are stored at the cell centroid.

• No limitations on the number of faces bounding each cell.

• No restriction on the alignment of each face.

• The mesh class polyMesh is used to construct the polyhedral mesh using the minimum

information required.

• You can find the polyMesh classes in the directory $FOAM_SRC/OpenFOAM/meshes

• The fvMesh class extends the polyMesh class to include additional data needed for the FVM

discretization.

• You can find the fvMesh classes in the directory $FOAM_SRC/src/finiteVolume/fvMesh

20

Discretization of a tensor field in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• The template class geometricField relates a tensor

field to a fvMesh.

• Using typedef declarations geometricField is renamed

to volField (cell center), surfaceField (cell faces), and

pointField (cell vertices).

• You can find the geometricField classes in the directory
$FOAM_SRC/OpenFOAM/fields/GeometricFields.

• The template class geometricField stores internal

fields, boundary fields, mesh information, dimensions,

old values and previous iteration values.

• A geometricField inherits all the tensor algebra of its

corresponding field, has dimension checking, and can

be subjected to specific discretization procedures.

• Let us now access the mesh information of a simple

case.

21

Data stored in the fvMesh class

Class Description Symbol
Access

function

volScalarField Cell volumes V()

surfaceVectorField Face area vector Sf()

surfaceScalarField Face area magnitude magSf()

volVectorField Cell centres C()

surfaceVectorField Face centres Cf()

surfaceScalarField Face fluxes Phi()

Programming in OpenFOAM®. Building blocks

22

• These are the most important functions to access mesh information.

Accessing fields defined in a mesh

Programming in OpenFOAM®. Building blocks

• To access fields defined at cell centers of the mesh you need to use the class volField.

• The class volField can be accessed by adding the header volFields.H to your program.

volScalarField p

(

IOobject

(

"p",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< p << endl;

Info<< p.boundaryField()[0] << endl;

Create scalar volField p

Assign and initialization of

scalar volField to the
mesh

Output some information

23

Accessing fields using for loops

Programming in OpenFOAM®. Building blocks

• To access fields using for loops, we can use OpenFOAM® macro forAll, as follows,

forAll(mesh.boundaryMesh(), patchI)

Info << "Patch " << patchI << ": " << mesh.boundary()[patchI].name() << " with "

<< mesh.boundary()[patchI].Cf().size() << " faces. Starts at total face "

<< mesh.boundary()[patchI].start() << endl;

• In the previous statement mesh.boundaryMesh() is the size of the loop, and patchI is the

iterator. The iterator always starts from zero.

• The forAll loop is equivalent to the standard for loop in C++.

for (int i = 0; i < mesh.boundaryMesh().size(); i++)

Info << "Patch " << i << ": " << mesh.boundary()[i].name() << " with "

<< mesh.boundary()[i].Cf().size() << " faces. Starts at total face "

<< mesh.boundary()[i].start() << endl;

• Notice that we used as iterator i instead of patchI, this does not make any difference.

Outputs name of patch

Outputs size of patch (number of faces)

Outputs starting face of patch

24

Equation discretization in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• At this stage, OpenFOAM® converts the PDEs into a set of linear algebraic equations, A x = b,

where x and b are volFields (geometricField).

• A is a fvMatrix, which is created by the discretization of a geometricField and inherits the

algebra of its corresponding field, and it supports many of the standard algebraic matrix

operations.

• The fvm (finiteVolumeMethod) and fvc (finiteVolumeCalculus) classes contain static

functions for the differential operators and discretize any geometricField.

• fvm returns a fvMatrix, and fvc returns a geometricField.

• In the directories $FOAM_SRC/finiteVolume/finiteVolume/fvc and

$FOAM_SRC/finiteVolume/finiteVolume/fvm you will find the respective classes.

• Remember, the PDEs or ODEs we want to solve involve derivatives of tensor fields with respect

to time and space. What we re doing at this point, is applying the finite volume classes to the

fields, and assembling a linear system.

25

Discretization of the basic PDE terms in OpenFOAM®

Term description
Mathematical

expression

fvm::

fvc::

Laplacian
laplacian(phi)

laplacian(Gamma, phi)

Time derivative
ddt(phi)

ddt(rho,phi)

Convection
div(psi,scheme)

div(psi,phi)

Source
Sp(rho,phi)

SuSp(rho,phi)

,

,

,

vol<type>Field scalar, volScalarField surfaceScalarField

The list is not complete

Programming in OpenFOAM®. Building blocks

26

Discretization of the basic PDE terms in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• To discretize the fields in a valid mesh, we need to access the finite volume class. This class can
be accessed by adding the header fvCFD.H to your program.

• To discretize the scalar transport equation in a mesh, we can proceed as follows,

solve

(

fvm::ddt(T)

+ fvm::div(phi,T)

- fvm::laplacian(DT,T)

);

Assemble and solve

linear system arising form
the discretization

Discretize equations

• Remember, you will need to create the mesh first, and then initialize the variables and constants.

That is, all the previous steps.

• Finally, everything we have done so far inherits all parallel directives. There is no need for

specific parallel programming.

27

Discretization of the basic PDE terms in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• The previous discretization is equivalent to,

fvScalarMatrix TEqn

(

fvm::ddt(T)

+ fvm::div(phi,T)

- fvm::laplacian(DT,T)

);

Teqn.solve();

Creates object TEqn that

contains the coefficient matrix
arising from the discretization

Discretize equations

• Here, fvScalarMatrix contains the matrix derived from the discretization of the model equation.

• fvScalarMatrix is used for scalar fields and fvVectorMatrix is used for vector fields.

• This syntax is more general, since it allows the easy addition of terms to the model equations.

Solve the linear system Teqn

28

Discretization of the basic PDE terms in OpenFOAM®

Programming in OpenFOAM®. Building blocks

• At this point, OpenFOAM® assembles and solves the following linear system,

Coefficient Matrix (sparse, square)

The coefficients depend on geometrical quantities,
fluid properties and non-linear equations

Boundary conditions
and source terms

Unknow quantity
29

Programming in OpenFOAM®. Building blocks

• Let us study a fvMesh example. First let us compile the program my_Test-mesh. Type in the

terminal,

1. $> cd $PTOFC/101programming/playground/my_mesh/

2. $> wmake

• To access the mesh information, we need to use this program in a valid mesh.

Example of use of tensor and field classes

1. $> cd $PTOFC/101programming/playground/my_mesh/cavity

2. $> blockMesh

3. $> my_Test-mesh

• At this point, take a look at the output and study the file Test-mesh.C. Try to understand what

we have done.

• FYI, the original example is located in the directory
$WM_PROJECT_DIR/applications/test/mesh.

30

A few OpenFOAM® programming references

Programming in OpenFOAM®. Building blocks

• You can access the API documentation in the following link, https://cpp.openfoam.org/v5/

• You can access the coding style guide in the following link, https://openfoam.org/dev/coding-style-guide/

• You can report programming issues in the following link, https://bugs.openfoam.org/rules.php

• You can access openfoamwiki coding guide in the following link,

http://openfoamwiki.net/index.php/OpenFOAM_guide

• You can access the user guide in the following link, https://cfd.direct/openfoam/user-guide/

• You can read the OpenFOAM® Programmer’s guide in the following link (it seems that this guide is not

supported anymore), http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf

A few good C++ references

• The C++ Programming Language. B. Stroustrup. 2013, Addison-Wesley.

• The C++ Standard Library. N. Josuttis. 2012, Addison-Wesley.

• C++ for Engineers and Scientists. G. J. Bronson. 2012, Cengage Learning.

• Sams Teach Yourself C++ in One Hour a Day. J. Liberty, B. Jones. 2004, Sams Publishing.

• C++ Primer. S. Lippman, J. Lajoie, B. Moo. 2012, Addison-Wesley.

• http://www.cplusplus.com/

• http://www.learncpp.com/

• http://www.cprogramming.com/

• http://www.tutorialspoint.com/cplusplus/

• http://stackoverflow.com/

31

https://cpp.openfoam.org/v5/
https://openfoam.org/dev/coding-style-guide/
https://bugs.openfoam.org/rules.php
http://openfoamwiki.net/index.php/OpenFOAM_guide
https://cfd.direct/openfoam/user-guide/
http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf
http://www.cplusplus.com/
http://www.learncpp.com/
http://www.cprogramming.com/
http://www.tutorialspoint.com/cplusplus/
http://stackoverflow.com/

Roadmap

1. Programming in OpenFOAM®. Building blocks.

2. Implementing boundary conditions using high level

programming

3. Modifying/implementing applications – Highlights

4. Implementing an application from scratch

5. Adding the scalar transport equation to icoFoam

32

Implementing boundary conditions using high level programming

• Hereafter we will work with high level programming, this is the hard part of programming in

OpenFOAM®.

• High level programming requires some knowledge on C++ and OpenFOAM® API library.

• Before doing high level programming, we highly recommend you try with codeStream, most of

the time it will work.

• We will implement the parabolic profile, so you can compare this implementation with

codeStream ad codedFixedValue BCs.

• When we program boundary conditions, we are building a new library that can be linked with any
solver. To compile the library, we use the command wmake (distributed with OpenFOAM®).

• At this point, you can work in any directory, but we recommend you work in your OpenFOAM®

user directory, type in the terminal,

1. $> cd $WM_PROJECT_USER_DIR/run

33

• Let us create the basic structure to write the new boundary condition, type in the terminal,

1. $> foamNewBC –f –v myParabolicVelocity

2. $> cd myParabolicVelocity

• The utility foamNewBC, will create the directory structure and all the files needed to write your

own boundary conditions.

• We are setting the structure for a fixed (the option –f) velocity (the option –v), boundary

condition, and we name our boundary condition ParabolicVelocity .

• If you want to get more information on how to use foamNewBC, type in the terminal,

1. $> foamNewBC –help

Implementing boundary conditions using high level programming

34

./myParabolicVelocity

├── Make

│ ├── files

│ └── options

├── myParabolicVelocityFvPatchVectorField.C

└── myParabolicVelocityFvPatchVectorField.H

The directory contains the source code of the boundary condition.

• myParabolicVelocityFvPatchVectorField.C: is the actual source code of the

application. This file contains the definition of the classes and functions.

• myParabolicVelocityFvPatchVectorField.H: header files required to compile the

application. This file contains variables, functions and classes declarations.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the boundary condition

library name and location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the

solver against.

Directory structure of the new boundary condition

Implementing boundary conditions using high level programming

35

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

//- Single valued scalar quantity, e.g. a coefficient

scalar scalarData_;

//- Single valued Type quantity, e.g. reference pressure pRefValue_

// Other options include vector, tensor

vector data_;

//- Field of Types, typically defined across patch faces

// e.g. total pressure p0_. Other options include vectorField

vectorField fieldData_;

//- Type specified as a function of time for time-varying BCs

autoPtr<Function1<vector>> timeVsData_;

//- Word entry, e.g. pName_ for name of the pressure field on database

word wordData_;

//- Label, e.g. patch index, current time index

label labelData_;

//- Boolean for true/false, e.g. specify if flow rate is volumetric_

bool boolData_;

// Private Member Functions

//- Return current time

scalar t() const;

• In lines 96-123 different types of

private data are declared.

• These are the variables we will use for

the implementation of the new BC.

• In our implementation we need to use

vectors and scalars, therefore we can

keep the lines 97 and 101.

• We can delete lines 103-117, as we

do not need those datatypes.

• We can also erase lines 122-123

• Also, as we will use two vectors in our

implementation, we can duplicate line

101.

• You can leave the rest of the file as

they are.

The header file (.H)

• Let us start to do some modifications. Open the header file using your favorite text editor (we

use gedit).

Implementing boundary conditions using high level programming

36

96

97

98

99

100

101

102

//- Single valued scalar quantity, e.g. a coefficient

scalar scalarData_;

//- Single valued Type quantity, e.g. reference pressure pRefValue_

// Other options include vector, tensor

vector data_;

vector data_;

96

97

98

99

100

101

102

//- Single valued scalar quantity, e.g. a coefficient

scalar maxValue_;

//- Single valued Type quantity, e.g. reference pressure pRefValue_

// Other options include vector, tensor

vector n_;

vector y_;

• Change the name of scalarData_ to maxValue_ (line 97).

• Change the names of the two vectors data_ (lines 101-102). Name the first one n_ and the last

one y_.

• At this point, your header file should look like this one,

• We just declared the variables that we will use. You can now save and close the file.

The header file (.H)

It is recommended to initialize

them in the same order as you
declare them in the header file

Implementing boundary conditions using high level programming

37

The source file (.C)

• Let us start to modify the source file. Open the source file with your favorite editor.

• Lines 34-37 refers to a private function definition. This function allows us to access simulation

time.

• Since in our implementation we do not need to use time, we can safely remove these lines.

• You can also leave this function, but it will not be used in out implementation.

34

35

36

37

Foam::scalar Foam::myParabolicVelocityFvPatchVectorField::t() const

{

return db().time().timeOutputValue();

}

• You will get a lot of errors.

• Since we deleted the datatypes fieldData, timeVsData, wordData, labelData and boolData in

the header file, we need to delete them as well in the C file. Otherwise, the compiler complains.

1. $> wmake

• Let us compile the library to see what errors we get. Type in the terminal,

Implementing boundary conditions using high level programming

38

• At this point, let us erase all the occurrences of the datatypes fieldData, timeVsData,

wordData, labelData, and boolData.

• Locate line 38,

The source file (.C)

38 Foam::myParabolicVelocityFvPatchVectorField::

...

...

...

• Using this line as your reference location in the source code, follow these steps,

• Erase the following lines in incremental order (be sure to erase only the lines that contain

the words fieldData, timeVsData, wordData, labelData and boolData):

• 48-52

• 63-67

• 90-94

• 103-107

• 160-163.

Implementing boundary conditions using high level programming

39

• Before proceeding to the next step, verify that the following lines are correct,

The source file (.C)

Implementing boundary conditions using high level programming

40

47

48

49

data_(Zero),

{

}

61

62

63

64

65

66

scalarData_(dict.lookup<scalar>("scalarData")),

data_(dict.lookup<vector>("data")),

{

fixedValueFvPatchVectorField::evaluate();

89

90

91

data_(ptf.data_),

{}

• Erase the following lines in incremental order (they contain the word fieldData),

• 114

• 128

• 140-142

• Replace all the occurrences of the word scalarData with maxValue (9 occurrences).

• Before proceeding to the next step, verify that the following lines are correct,

The source file (.C)

Implementing boundary conditions using high level programming

41

45

46

47

fixedValueFvPatchVectorField(p, iF),

maxValue_(0.0),

data_(Zero),

87

88

89

fixedValueFvPatchVectorField(ptf, p, iF, mapper),

maxValue_(ptf.maxValue_),

data_(ptf.data_),

• Before proceeding to the next step, verify that the following lines are correct,

The source file (.C)

Implementing boundary conditions using high level programming

42

112

113

114

{

fixedValueFvPatchVectorField::autoMap(m);

}

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

void Foam::myParabolicVelocityFvPatchVectorField::updateCoeffs()

{

if (updated())

{

return;

}

fixedValueFvPatchVectorField::operator==

(

);

fixedValueFvPatchVectorField::updateCoeffs();

}

The source file (.C)

• Duplicate all the lines where the word data appears (5 lines), change the word data to n in the

first line, and to y in the second line.

• For example,

45

46

47

48

fixedValueFvPatchVectorField(p, iF),

maxValue_(0.0),

data_(Zero),

data_(Zero),

45

46

47

48

fixedValueFvPatchVectorField(p, iF),

maxValue_(0.0),

n_(Zero),

y_(Zero) Remember to erase the comma

Original statements

Modified statements

Implementing boundary conditions using high level programming

43

• Erase the comma in the last line (line 48).

The source file (.C)

• We are almost done; we just defined all the datatypes. Now we need to implement the actual

boundary condition.

• Look for line 135 (updateCoeffs() member function), and add the following statements,

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

void Foam::myParabolicVelocityFvPatchVectorField::updateCoeffs()

{

if (updated())

{

return;

}

boundBox bb(patch().patch().localPoints(), true);

vector ctr = 0.5*(bb.max() + bb.min());

const vectorField& c = patch().Cf();

scalarField coord = 2*((c - ctr) & y_)/((bb.max() - bb.min()) & y_);A
d

d
 t
h

e
s
e

 l
in

e
s

Find patch bounds (minimum
and maximum points)

Coordinates of patch midpoint

Access patch face centers

Computes scalar field to be used for defining the parabolic profile
x

The actual

implementation of

the BC is always
done in this class

Implementing boundary conditions using high level programming

44

x

The source file (.C)

• Add the following statement in line 164,

152

153

154

155

156

fixedValueFvPatchVectorField::operator==

(

n_*maxValue_*(1.0 - sqr(coord))

);

The access function operator== is

used to assign the values to the
boundary patches

Our boundary condition

• The last step before compiling the new BC is to erase a few commas.

• Look for lines 48, 64, 92, 106, and erase the comma at the end of each line (if you did not erase

them before).

• At this point we have a valid library where we implemented a new BC.

• Finally, you can go back to the header file (*.H) and document your boundary condition

implementation.

• You can add the comments in the header of the file (lines 1-73).

Implementing boundary conditions using high level programming

45

The source file (.C)

• At this point we have a valid library where we have implemented a new BC.

• Try to compile it, we should not get any error (maybe one warning). Type in the terminal,

1. $> wmake

• You might get a compilation warning. Do not pay attention to it, after all, it is a warning.

• But if you want to get rip off this warning, erase (or comment) lines 129-130 in the *.C file and

recompile.

• From this point on, we will assume that you did not erase lines 129-130.

• If you are feeling lazy, or if you can not fix the compilation errors, you will find the source code in

the directory,

• $PTOFC/101programming/src/myParabolicVelocity

Implementing boundary conditions using high level programming

46

• Before moving forward, let us comment a little bit the source file.

• First at all, there are four classes constructors and each of them have a specific task.

• In our implementation we did not use all the classes, we only use the first two classes.

• The first class is related to the initialization of the variables.

• The second class is related to reading the input dictionaries.

• We will not comment on the other classes as it is out of the scope of this example (they deal

with input tables, mapping, and things like that).

• The implementation of the boundary condition is always done using the updateCoeffs()

member function.

• When we compile the source code, it will compile a library with the name specified in the file
Make/file. In this case, the name of the library is libmyParabolicVelocity.

• The library will be located in the directory $(FOAM_USER_LIBBIN), as specified in the file
Make/file.

The source file (.C)

Implementing boundary conditions using high level programming

47

• The first class is related to the initialization of the variables declared in the header file.

• In line 47 we initialize maxValue with the value of zero. The vectors n and y are initialized as a

zero vector by default or (0, 0, 0).

• It is not a good idea to initialize these vectors as zero vectors by default. Let us use as default

initialization (1, 0, 0) for vector n and (0,1,0) for vector y.

The source file (.C)

38

39

40

41

42

43

44

45

46

47

48

49

50

Foam::myParabolicVelocityFvPatchVectorField::

myParabolicVelocityFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF

)

:

fixedValueFvPatchVectorField(p, iF),

maxValue_(0.0),

n_(Zero),

y_(Zero)

{

}

Change to n_(1,0,0)

Change to y_(0,1,0)

Implementing boundary conditions using high level programming

48

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

77

Foam::myParabolicVelocityFvPatchVectorField::

myParabolicVelocityFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const dictionary& dict

)

:

fixedValueFvPatchVectorField(p, iF),

maxValue_(readScalar(dict.lookup("maxValue"))),

n_(pTraits<vector>(dict.lookup("n"))),

y_(pTraits<vector>(dict.lookup("y")))

{

fixedValueFvPatchVectorField::evaluate();

}

• The second class is used to read the input dictionary.

• Here we are reading the values defined by the user in the dictionary U.

• The function lookup will search the specific keyword in the input file.

The source file (.C)

dict.lookup will look for

these keywords in the
input dictionary

Implementing boundary conditions using high level programming

49

66

67

68

69

70

71

72

73

74

75

76

77

78

if (mag(n_) < SMALL || mag(y_) < SMALL)

{

FatalErrorIn("parabolicVelocityFvPatchVectorField(dict)")

<< "n or y given with zero size not correct"

<< abort(FatalError);

}

n_ /= mag(n_); //This is equivalent to n_ = n_/mag(n_)

y_ /= mag(y_); //This is equivalent to y_ = y_/(mag(y_)

fixedValueFvPatchVectorField::evaluate();

• Since we do not want the vectors n and y to be zero vectors, we add the following sanity check

starting from line 67.

• These statements check if the given n and y vectors in the input dictionary is zero or not.

• If any of the vectors are zero it gives the fatal error and terminate the program.

• On the other hand, if everything is ok it will normalize n and y (since in our implementation they

are direction vectors).

The source file (.C)

A
d

d
 t
h

e
s
e

 s
ta

te
m

e
n
ts

Implementing boundary conditions using high level programming

50

The source file (.C)

1. $> wmake

• At this point, we are ready to go.

• Save the files and recompile. Type in the terminal,

• We should not get any error (maybe one warning).

• At this point we have a valid library that can be linked with any solver.

• If you get compilation errors, read the screen and try to sort it out, the compiler is always telling

you what is the problem.

• If you are feeling lazy, or if you can not fix the compilation errors, you will find the source code in

the directory,

• $PTOFC/101programming/high_level_programming_BC/src/myParabolic

Velocity

Implementing boundary conditions using high level programming

51

The source file (.C)

• Before using the new BC, let us take a look at the logic behind the implementation.

 ound ox (a c (). a c ().local oin s(), rue);

cons vec or ield c a c (). f(); vec or c r . (.max() .min());

scalar ield coord ((c c r) y) ((.max() .min()) y);

n max alue (. s r(coord))

 ser defined

Implementing boundary conditions using high level programming

52

• This case is ready to run, the input files are located in the directory $PTOFC/101programming/
high_level_programming_BC/test_cases/case_elbow2d

• Go to the case directory,

Running the case

1. $> cd $PTOFC/101programming/high_level_programming_BC/test_cases/case_elbow2d

• Open the file 0/U, and look for the definition of the new BC velocity-inlet-5,

velocity-inlet-5

{

type myParabolicVelocity;

maxValue 2.0;

n (1 0 0);

y (0 1 0);

}

Name of the boundary condition

User defined values

max value, n, y

If you set n or y to (0 0 0), the solver will
abort execution

Implementing boundary conditions using high level programming

53

• We also need to tell the application that we want to use the library we just compiled.

• To do so, we need to add the new library in the dictionary file controlDict,

Running the case

15

16

17

18

19

// * //

libs ("libmyParabolicVelocity.so");

application icoFoam;

Name of the library
You can add as many libraries as you like

• The solver will dynamically link the library.

• At this point, we are ready to launch the simulation.

Implementing boundary conditions using high level programming

54

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/high_level_programming_BC/test_cases/case_elbow2d

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> fluentMeshToFoam ../../../../meshes_and_geometries/fluent_elbow2d_1/ascii.msh

3. $> icoFoam | tee log.solver

4. $> paraFoam

Running the case

• At this point, you can compare the three implementations (codeStream, codedFixedValue and

high-level programming).

• All of them will give the same outcome.

Implementing boundary conditions using high level programming

55

• Let us add some outputs to the BC.

• After the member function updateCoeffs (line 167), add the following lines,

Adding some verbosity to the BC implementation

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

fixedValueFvPatchVectorField::updateCoeffs();

Info << endl << "Face centers (c):" << endl;

Info << c << endl;

Info << endl << "Patch center (ctr):" << endl;

Info << ctr << endl;

Info << endl << "Patch (c - ctr):" << endl;

Info << c - ctr << endl;

Info << endl << "Patch max bound (bb.max):" << endl;

Info << bb.max() << endl;

Info << endl << "Patch min bound (bb.max):" << endl;

Info << bb.min() << endl;

Info << endl << "Patch coord (2*((c - ctr) & y_)/((bb.max() - bb.min()) & y_)):" << endl;

Info << coord << endl;

Info << endl << "Patch (1.0 - sqr(coord)) :" << endl;

Info << n_*maxValue_*(1.0 - sqr(coord))<< endl;

Info << endl << "Loop for c, BC assigment << endl;

forAll(c, faceI)

{

Info << c[faceI] << " " << n_*maxValue_*(1.0 - sqr(coord[faceI])) << endl;

}

}

• Recompile, rerun the simulation, look at the output, and do the math.

Implementing boundary conditions using high level programming

56

• In the directory
$PTOFC/101programming/high_level_programming_BC/src/myParabolicVelocityMod, you will

find an implementation of this boundary condition with conditional switches and screen output

information.

• Try to figure out how this BC works.

• Do you take the challenge?

• Starting from this boundary condition, try to implement a paraboloid BC.

• If you are feeling lazy or at any point, do you get lost, in the directory
$PTOFC/101programming/high_level_programming_BC/src/myParaboloidVelocity you

will find a working implementation of the paraboloid profile.

• Open the source code and try to understand what we did (pretty much similar to the

previous case).

• In the directory
$PTOFC/101programming/high_level_programming_BC/test_cases/case_elbow3d you

will find a case ready to use.

Implementing boundary conditions using high level programming

57

Roadmap

1. Programming in OpenFOAM®. Building blocks.

2. Implementing boundary conditions using high level

programming

3. Modifying/implementing applications – Highlights

4. Implementing an application from scratch

5. Adding the scalar transport equation to icoFoam

58

Modifying applications – Highlights

• Implementing a new application from scratch in OpenFOAM® (or any other high-level

programming library), can be an incredible daunting task.

• OpenFOAM® comes with many solvers, and as it is today, you do not need to implement new

solvers from scratch.

• Of course, if your goal is to write a new solver, you will need to deal with programming. What

you usually do, is take an existing solver and modify it.

• But in case that you would like to take the road of implementing new applications from scratch,

we are going to give you the basic building blocks.

• We are also going to show how to add basic modifications to existing solvers.

• We want to remind you that this requires some knowledge on C++ and OpenFOAM® API library.

• Also, you need to understand the FVM, and be familiar with the basic algebra of tensors.

• Some common sense is also helpful.

59

Roadmap

1. Programming in OpenFOAM®. Building blocks.

2. Implementing boundary conditions using high level

programming

3. Modifying/implementing applications – Highlights

4. Implementing an application from scratch

5. Adding the scalar transport equation to icoFoam

60

Implementing an application from scratch

• Let us do a little bit of high-level programming, this is the hard part of working with

OpenFOAM®.

• At this point, you can work in any directory. But we recommend you work in your OpenFOAM®

user directory, type in the terminal,

1. $> cd $WM_PROJECT_USER_DIR/run

• To create the basic structure of a new application, type in the terminal,

1. $> foamNewApp scratchFoam

2. $> cd scratchFoam

• The utility foamNewApp, will create the directory structure and all the files needed to create the

new application from scratch. The name of the application is scratchFoam.

• If you want to get more information on how to use foamNewApp, type in the terminal,

1. $> foamNewApp –help

61

Implementing an application from scratch

Directory structure of the new boundary condition

scratchFoam/

├── createFields.H

├── scratchFoam.C

└── Make

├── files

└── options

The scratchFoam directory contains the source code of the solver.

• scratchFoam.C: contains the starting point to implement the new application.

• createFields.H: in this file we declare all the field variables and initializes the solution.

This file does not exist at this point, we will create it later.

• The Make directory contains compilation instructions.

• Make/files: names all the source files (.C), it specifies the name of the solver and

location of the output file.

• Make/options: specifies directories to search for include files and libraries to link the

solver against.

• To compile the new application, we use the command wmake.

Does not exist, we will create it later

62

Implementing an application from scratch

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

#include "fvCFD.H"

// * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H“

#include "createMesh.H"

#include "createFields.H"

// * //

Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

Info<< "End\n" << endl;

return 0;

}

• Open the file scratchFoam.C using your favorite text editor, we will use gedit.

• At this point you should have this file that does not do anything. We need to add the statements

to create a working applications.

• This is the starting point for new applications.

This header is extremely important, it will add all the class

declarations needed to access mesh, fields, tensor algebra, fvm/fvc
operators, time, parallel communication, linear algebra, and so on.

63

Implementing an application from scratch

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

49

51

#include "fvCFD.H"

#include "pisoControl.H"

// * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "createFields.H"

#include "CourantNo.H"

#include "initContinuityErrs.H"

pisoControl piso(mesh);

Info<< "\nStarting time loop\n" << endl;

Set directory structure

Create time (object runtime)

Create time (object mesh)

Initialize fields
This source file does not exist yet, we need to create it

Calculates and outputs the Courant Number

Declare and initialize the cumulative continuity error

Assign PISO controls to object mesh. Creates object piso.
Alternatively, you can use the header file createControl.H

Output some information

• Stating from line 31, add the following statements.

• We are going to use the PISO control options, even if we do not have to deal with velocity-

pressure coupling.

Solution control using PISO class – Loop controls

64

Implementing an application from scratch

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

70

71

72

while (runTime.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

#include "CourantNo.H"

while (piso.correct())

{

while (piso.correctNonOrthogonal())

{

fvScalarMatrix Teqn

(

fvm::ddt(T)

+ fvm::div(phi, T)

- fvm::laplacian(DT, T)

);

TEqn.solve();

}

}

• We are going to use the PISO control options, even if we do not have to deal with velocity-

pressure coupling.

Time loop

Calculates and outputs the Courant Number

PISO options (correct loop)

PISO options (non orthogonal corrections
loop)

Model equation (convection-diffusion)

We need to create the scalar field T, vector

field U (used in phi or face fluxes), and the

constant DT.

We will declare these variables in the

createFields.H header file.

In the dictionary fvSchemes, you will need to

define how to compute the differential

operators, that is,

ddt(T)

div(phi, T)

laplacian(DT, T)

You will need to define the linear solver for T
in the dictionary fvSolution

Solve TEqn

At this point the object
TEqn holds the solution.

Create object TEqn.

fvScalarMatrix is a scalar instance of fvMatrix

65

Implementing an application from scratch

74

76

78

79

80

81

82

83

84

85

86

87

88

89

90

91

#include "continuityErrs.H"

runTime.write();

}

// * //

Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

Info<< "End\n" << endl;

return 0;

}

• We are going to use the PISO control options, even if we do not have to deal with velocity-

pressure coupling.

Computes continuity errors

Write the solution in the runtime folder

It will write the data requested in the file createFields.H

W
ri
te

 C
P

U
 t
im

e
 a

t
th

e
 e

n
d

 o
f
th

e
 t
im

e
 l
o
o

p
.

If
 y

o
u

 w
a

n
t
to

 c
o

m
p

u
te

 t
h

e
 C

P
U

 t
im

e
 o

f
e

a
c
h

 i
te

ra
ti
o

n
,

a
d

d
 t
h

e
 s

a
m

e
 s

ta
te

m
e

n
t
in

s
id

e
 t
h

e
 t
im

e
 l
o
o

p

Output this message

End of the program (exit status).

If everything went fine, the program should return 0.

To now the return value, type in the terminal,
$> echo $?

At this point we are outside of the time loop

66

Implementing an application from scratch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Info<< "Reading field T\n" << endl;

volScalarField T

(

IOobject

(

"T",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

• Let us create the file createFields.H, type in the terminal,

1. $> touch createFields.H

• Now open the file with your favorite editor, and start to add the following information,

Create scalar field T

Name of the dictionary file to read/write

runtime directory

Read the dictionary in the runtime directory

(MUST_READ, and write the value in the runtime

directory (AUTO_WRITE).

If you do not want to write the value, use the option
NO_WRITE

Create object for input/output operations

Link object to mesh

Object registry

67

Implementing an application from scratch

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

• Remember, in the file createFields.H, we declare all the variables (or fields) that we will use

(U and T in this case).

• The dimensions of the fields are defined in the input dictionaries, you also have the option to

define the dimensions in the source code.

• You can also define the fields directly in the source file scratchFoam.C, but it is good practice

to do it in the header. This improves code readability.

Create vector field U

Name of the dictionary file to read/write

68

Implementing an application from scratch

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

Info<< "Reading diffusivity DT\n" << endl;

dimensionedScalar DT

(

transportProperties.lookup("DT")

);

#include "createPhi.H"

• We also need to declare the constant DT, that is read from the dictionary
transportProperties.

• The dimensions are defined in the input dictionary.

Create object transportProperties used to

read data

Name of the input dictionary

Location of the input dictionary, in this case

is located in the directory constant

Re-read data if it is modified

Do not write anything in the dictionary

Create scalar DT (diffusion coefficient)

Access value of DT in the object

transportProperties

Creates and initializes the relative face-

flux field phi.

69

Implementing an application from scratch

• At this point, we are ready to compile. Type in the terminal,

1. $> wmake

• If everything went fine, you should have a working solver named scratchFoam.

• If you are feeling lazy or you can not fix the compilation errors, you will find the source code in

the directory,

• $PTOFC/101programming/my_solvers/scratchFoam

• You will find a case ready to run in the directory,

$PTOFC/101programming/my_solvers/scratchFoam/scratchFoam/test_case

• At this point, we are all familiar with the convection-diffusion equation and OpenFOAM®, so you

know how to run the case. Do your magic.

70

Implementing an application from scratch

• Let us now add a little bit more complexity, a non-uniform initialization of the scalar field T.

• Remember codeStream? Well, we just need to proceed in a similar way.

• As you will see, initializing directly in the source code of the solver is more intrusive than using

codeStream in the input dicitionaries.

• It also requires recompiling the application.

• Add the following statements to the createFields.H file, recompile and run again the test

case.

16

17

18

19

20

21

22

23

24

25

26

27

28

forAll(T, i)

{

const scalar x = mesh.C()[i][0];

const scalar y = mesh.C()[i][1];

const scalar z = mesh.C()[i][2];

if (0.3 < x && x < 0.7)

{

T[i] = 1.;

}

}

T.write();

We add the initialization of T after the its declaration

Access cell center coordinates.
In this case y and z coordinates are not used.

Conditional structure

Write field T. As the file createFields.H is outside the time loop
the value is saved in the time directory 0

71

Implementing an application from scratch

• Let us compute a few extra fields. We are going to compute the gradient, divergence, and

Laplacian of T.

• We are going to compute these fields in an explicit way, that is, after finding the solution of T.

• Therefore, we are going to use the operator fvc.

• Add the following statements to the source code of the solver (scratchFoam.C),

68

69

70

71

72

73

74

}

#include "continuityErrs.H"

#include "write.H"

runTime.write();

}
The file is located in the directory

$PTOFC/101programming/applications/solvers/scratchFoam

In this file we declare and define the new variables, take a look at it

Add this header file

• Recompile the solver and rerun the test case.

• The solver will complain, try to figure out what is the problem (you are missing some information
in the fvSchemes dictionary).

72

Implementing an application from scratch

• Let us talk about the file write.H,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

56

57

58

59

60

61

62

63

64

65

66

67

68

69

volVectorField gradT(fvc::grad(T));

volVectorField gradT_vector

(

IOobject

(

"gradT",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

gradT

);

...

volScalarField divGradT

(

IOobject

(

"divGradT",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

fvc::div(gradT)

);

...

Compute gradient of T.

fvc is the explicit operator, it will compute the

requested value using the solution of T

Save vector field in output dictionary gradT

Compute divergence of gradT.

The output of this operation is a scalar field.

In this case we compute the quantity inside the scalar field

declaration (line 67).

We use the fvc operator because the solution of gradT is
already known.

In the dictionary fvSchemes, you will need to tell the solver how to do
the interpolation of the term div(grad(T))

73

Roadmap

1. Programming in OpenFOAM®. Building blocks.

2. Implementing boundary conditions using high level

programming

3. Modifying/implementing applications – Highlights

4. Implementing an application from scratch

5. Adding the scalar transport equation to icoFoam

74

Adding the scalar transport equation to icoFoam

• Let us modify a solver, we will work with icoFoam.

• We will add a passive scalar (convection-diffusion equation).

• At this point, you can work in any directory. But we recommend you work in your OpenFOAM®

user directory, type in the terminal,

1. $> cd $WM_PROJECT_USER_DIR/run

• Let us clone the original solver, type in the terminal,

1. $> cp -r $FOAM_APP/solvers/incompressible/icoFoam/my_icoFoam

2. $> cd my_icoFoam

• At this point, we are ready to modify the solver.

75

Adding the scalar transport equation to icoFoam

111

112

113

114

117

118

119

120

121

122

124

125

126

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions();

}

solve

(

fvm::ddt(S1)

+ fvm::div(phi, S1)

- fvm::laplacian(DT, S1)

);

runTime.write();

• Open the file icoFoam.C using your favorite editor and add the new equation in lines 115-124,

• As the passive scalar equation depends on the vector field U, we need to add this equation after

solving U.

Scalar transport equation.

The name of the scalar is S1.

We need to declare it in the

createFields.H file.

We also need to read the coefficient DT.

In the dictionary fvSchemes, you will need

to define how to compute the differential

operators, that is,

ddt(S1)

div(phi, S1)

laplacian(DT, S1)

You will need to define the linear solver
for S1 in the dictionary fvSolution

76

Adding the scalar transport equation to icoFoam

• Open the file createFields.H using your favorite editor and add the following lines at the

beginning of the file,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

volScalarField S1

(

IOobject

(

"S1",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< "Reading diffusionProperties\n" << endl;

IOdictionary diffusionProperties

(

IOobject

(

"diffusionProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

Info<< "Reading diffusivity DT\n" << endl;

dimensionedScalar DT

(

diffusionProperties.lookup("DT")

);

Declaration of scalar field S1.

The solver will read the input file S1

(BC and IC).

You will need to create the file S1 in
the time directory 0.

Declaration of input/output dictionary

file.

The name of the dictionary is

diffusionProperties and is located in
the directory constant.

Read DT value from the dictionary

diffusionProperties.

77

Adding the scalar transport equation to icoFoam

• Those are all the modifications we need to do.

• But before compiling the new solver, we need to modify the compilation instructions.

• Using your favorite editor, open the file Make/files,

1

2

3

icoFoam.C

EXE = $(FOAM_APPBIN)/icoFoam

1

2

3

icoFoam.C

EXE = $(FOAM_USER_APPBIN)/my_icoFoam

Original file

Modified file

Name of the input file

Name of the executable.

To avoid conflicts with the original

installation, we give a different

name to the executable

Location of the executable.

To avoid conflicts with the original installation, we install the

executable in the user’s personal directory

78

Adding the scalar transport equation to icoFoam

• At this point we are ready to compile, type in the terminal,

1. $> wmake

• If everything went fine, you should have a working solver named my_icoFoam.

• If you are feeling lazy or you can not fix the compilation errors, you will find the source code in

the directory,

• $PTOFC/101programming/my_solvers/my_icoFoam

• You will find a case ready to run in the directory,

$PTOFC/101programming/applications/solvers/my_icoFoam/my_icoFoam/test_case

79

Adding the scalar transport equation to icoFoam

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/my_solvers/my_icoFoam/my_icoFoam/test_case

• To run the case, type in the terminal,

1. $> foamCleanTutorials

2. $> fluentMeshToFoam ../../../../../meshes_and_geometries/fluent_elbow2d_1/ascii.msh

3. $> my_icoFoam | tee log

4. $> paraFoam

Running the case

• Remember, you will need to create the file 0/S1 (boundary conditions and initial conditions for

the new scalar).

• You will also need to create the input dictionary constant/diffusionProperties, from this

dictionary we will read the diffusion coefficient value.

• Finally, remember to update the files system/fvSchemes and

system/fvSolution to take into account the new equation.

80

Adding the scalar transport equation to icoFoam

Running the case

• If everything went fine, you should get something like this

S1 inlet values Visualization of velocity magnitude and passive scalar S1
www.wolfdynamics.com/wiki/BCIC/2delbow_S1

S1 = 300

S1 = 350
S1 = 400

81

http://www.wolfdynamics.com/wiki/BCIC/2delbow_S1

